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Abstract

This investigation aimed to examine the load carrying capacity of mddel gmbedded in sand soil and to
develop a predictive model to simulate pile settlement using a new artificial netwatkhéANN) approach. A
series of experimental pile load tests were carried out on model concrete pilpsisedmf three piles with
slenderness ratios of 12, 17 and 25. This was to providetah dataset to establish the ANN model, in attempt
at making current, in situ pile-load test methods unnecessary. Ewalgtidevenberg-Marquardt (LM)
MATLAB algorithms, enhanced by T-tests and F-tests, were developeapatidd in this process. The model
piles were embedded in a calibration chamber in three densities of sesa];nfeaglium and dense. According to
the statistical analysis and the relative importance study, pile lengths, appliegiledtexural rigidity, pile
aspects ratio, and sand-pile friction angle were found to play a key pile gettlement at different contribution
levels, following the orde P > & >1c/d > 1c > EA. The results revealed that the optimum model of the LM training
algorithm can be used to characterize pile settlement with good degree daicsicclinere was also close
agreement between the experimental and predicted data with a root meanesqpralRMSE) and correlation

coefficient (R) of 0.0025192 and 0.988, respectively.

Keywords: Cohesion-less soil; Levenberg-Marquardt MATLAB algorithm; pile-iogacapacity; sand relative

density; T-test and F-test.

1. Introduction

Pile foundations are slender structural elements situagadath superstructures, commonly used as load
transferring systems and soil settlement controls at sites where there aguatadsub-soil layers. Pile bearing

capacity and associated settlement play a key role in the design of pilatfonadShahin, 2013; Tschuchnigg
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and Schweiger, 2015; Unsever et al., 2015; Feng et al., 20b@fs been demonstrated by Das (2015) that pile
bearing capacity can be determirmddividing the ultimate applied load by a certain safety factor, depgidin

the strength of the structure aitglserviceability. Associated settlement, on the other hand, can be attribated as
consequence of an increase in effective stress, resulting in elastic compaesksaneduction in soil volume in

the effective stress zone (Momeni et al., 2014).

The stressstrain relationship of soil is non-linear and settlement can be drivanibgrease in relative vertical
stress (Loria et al., 2015; Jebur et al., 201fafonventional procedures, pile settlement can be determined by
dividing the sub-soil layers into sections. The total summation of tiprEssion in soil layers is equal to the
settlement (Tomlinson, 2014)ncertainties associated with a range of factors i.e. soil stress history, soil
compressibility, nonlinear relationships between soil stress-straintasd glistribution due to samplinigave

been cited as barriers accurately determiningile settlement (Shahin et al., 200Bcause of these difficulties,
there has recently been in increase in the number of experimentalraadaal studies concerning pile bearing
capacity (Mullapudi and Ayoub, 2010; Xu et al., 2013; Naghibi et al., 2Bbthusudan and Ayothiraman,
2015). However, for simplification purposes and by necesstyeral hypotheses associated with the significant
parameters that govern pile settlemdratye been assumed. This has resulted in the fact that the majority of
current approaches fail to achieve the required levels of accuracy with respgité settlement (Nejad et al.,

2009)

Due to this failingin situ, static pile load tests (SPLT), dynamic load tests (DLT), stapeaktration tests (SPT)
and cone penetration tests (CPT) are still the most acceptable methodsuxemp#asapacity and its associated
settlement. However, while essential, these come with their own difficultigsiirthey are time consuming
present complication®f the construction process, are not environmentally friendly anélso costly (Momeni

et al., 2014).

There are situations where computational intelligence (Cl), based on artificial netiradrks (ANNS), has been
introduced and found to l@amore robust and accurate approach in comparison to other modellirapsétlejad
et al., 2009)ANN is a data driven, mathematical approach used to mimic the biological strottheehuman
brain and nervous system (Momeni et al., 2014; Schmidhuber, 2015etlakeP016). Recently, the feasibility

of ANN applications have been tested and successfully applied, solving a ramgebtédms related to



geotechnical engineering, giving acceptable levels of accuracy (Momeni etldt. Aroosh et al., 2015; Jaeel

et al., 2016)

Momeni et al. (2014) conducteal study examining pile-bearing capacity using a hybrid genetic algorithm
approach (GA). To develop the database for network training, 50 ipitipading tests were performed on
concrete piles. Four factors were used as the most effective model inpotefeasa affecting pile-beaug
capacity; pile set, pile geometrical properties, drop height and hammer vilggirovide the best model output
trial and error was also used to select the optimum modedodfg was achieved when comparing the results of
the data with the predicted (GA) model output, having a mean squaréM8g) of 0.002. This substantiates

the use of ANN asa practical and efficient approach to modelling pile capacity.

Shahin (2014) addressed the feasibility of recurrent neural netwRiKs)(to evaluate the pile bearing capacity

of steel piles. Six model input parameters were found to be the most imfadtors influencing the steel pile
bearing capacity, these comgripile diameter, pile effective length, the weighted average cone point resistance
over the pile tip zone of failure, the weighted average friction resistance oygleteéective depth, the average
cone point resistance over the penetrated depth and the weighted average frictmrerdtie pile embedment
depth. The results revealed that the RNN model had ability to simulate thegnilegbcapacity for steel piles

with some degree of success.

Despite many investigations highlighting the use of artificial neural nEsM@NNS) to simulate pile bearing
capacity and settlement, to date, there are still specific gaps in the skibjaeiedge. Comprehensive
experimental tests evaluating the bearing capacity of rigid and flexible conavded piles, driven in three
different sand densities, carried out to create an accurate database to develepfarad new Levenberg-
Marquardt (LM) algorithm to predict pile load-settlement response, would teaktbrough in deep foundation

research

2. Aim and objectives

The current investigation has been performed to address gaps in the mjeatditbrature in relation to the

determination of accurate pile settlement, the specific objectivas:are



e Perform a series of comprehensive experimental tests to explore thveglwegoacity of concrete piles
having three aspect ratios (Ic/d) of 12, 17 and 25 to simulate the sespbrigid and flexible piles,
penetrated in three, relative sand densities (Dr); loose, medium and dense

e Develop an accurate laboratory database for the ANN model.

e Utilise a new MATLAB training algorithm, i.e. the Levenberg-Marqudriit)(based ANN, to develop
a predictive model of pile settlement.

e Carry out hypothesis testing (T-tests and F-tests), to establish épresentative the database sub-
division, training, validation and testing are, with respect to each other.

e Assess the relative importanc®éta value) and the statistical significanc&i¢e value as well as

outliers of all variables on the model output using SR3Seftware.

3. Materialsand methods

3.1. Sand properties

The sand particles were composed of sub-rounded particles, as confirmeshbng electronic microscopy
(SEM) observationsHigs. Ja and b). Based on the Unified Soil Classification System (USC8)s#nd is
classified as poorly graded (SP). The coefficient of uniforn@ty) @nd the curvature coefficient¢) are 1.786
and 1.142, respectively. The sand was prepared in three relative deDsiifek3, 51 an@3%, as tlis represerad

the entire range of the in situ sand denslitye minimum and the maximum sand unit weigltsw5.33 and
17.5kN/n?, respectively. To maintain the impact of the grain size distributionhencombined soil-pile
interaction, the ratio between the proposed diameter of pile to the mediumteligdy) of the sand specimen
should be 45 (Nunez et al., 1988). To minimize the effect of the et and to give precise simulation of
the sand-pile interaction, it has been suggested by Remaud (1@9%)ethatio must be 60 times the diameter of
the pile. Taylor (1995) however, proposed that the ratio should leasit100. In this study, the ratid the
diameter of the pile to medium diameter gdyds 133 as shown in Fig. 2, meeting the scaling law criteria. Testing

was carried out following the procedure stated by Akdag and Ozde8)(201
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Figs. laand b: Scanning electronic microscopy (SEM) views of the sand specimen.
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Fig. 2: Profile of particle size gradati@amthe sand sample.



3.2. Pileloading procedure

Precast concrete piles have been used in this study, their aspect rationélsdying 12, 17 and 25, with an
outer diameter of 40mm to investigate the behaviour of rigid and flepilele (Madhusudan and Ayothiraman,
2015) Model concrete piles are to be used in this study since they arg regbimmended for deep foundation
systems (Feng et al., 2016). For the mechanical applied load of the pd#c doad test was run in accordance
with the procedure described by ASTM D11@B{American Society for Testing and Materials ASTM, 2013)
Compression loads were applied in increments using a new hydrauliggaeikngsype DBBSM, connected at the
top of the load cell, having a maximum capacity of 10kN. Thissgaared between the pile head loading system
and the hydraulic ram model (ZE3408E-T). A Polytetrafluoroetley(®TFE) sheet was used in the pile-testing
chamber in order to reduce the friction between the chamber andrttiesgecimen. The PTFE sheet has a
coefficient friction of less than 0.04 in comparison to steel sheet frictiefficdents of about 0.605 (Young and
Freedman, 2000). The loads were applied directly onto an aluminium pileittap diameter of 150mm and

thickness of 25mm.

4. TheLevenberg-Marquardt (LM) algorithm model development

The LM training algorithm is a data driven computing method, whiaremapecifically, can be applied when
the relationship between model input and output parameters are nofiNgegen-Truong and Le, 2015Fhe

LM algorithm based on artificial neural networks (ANNSs) considers thremepsing layers or nodes; namely, an
input layer, one or more hidden layer(s) and an output layer (B&£H8) Those layers form the ANN means
of learning and detailing the patterns controlling the dataset that the keésmoonstructed with. It is worth
pointing out that the objective of the hidden layer is to transform titeehinput parameters into the output layer,
multiplied by connection weights andyabias either added or subtracted. This computational intelligence (Cl)
approach has been citedagersatile and efficient computational tool, which successfully solves prelitean
may be difficult to tackle using numerical approaches. The multi-layer pesgagation (MLBP) method
developed by Rumelhart et al. (1986), is the most robust and p@podass to train the network in many fields
of engineering and sciences (Bashar, 20t3this study, the Levenberg-Marquardt (LM) algorithm was trained

using the (MLBP) with training parametees shown in Tablel.



Table 1: The Levenberg-Marquardt (LM) training parameters.

Parameter value description

net.trainParam.epochs 1000 Maximum number of epochs to train
net. trainParam.goal 0 Performance goal

net. trainParam.Ir 0.01 Learning rate

net. trainParam.Ir_inc 1.05 Ratio to increase learning rate

net. trainParam.Ir_dec 0.7 Ratio to decrease learning rate

net. trainParam.max_fail 6 Maximum validation failure

net. trainParam.max_perf_inc 1.04 Minimum performance increase

net. trainParam.mc 0.9 Momentum constant

net. trainParam.min_grad leb5 Minimum performance gradient

net. trainParam.show 25 Epochs between displays (NaN for no displa

4.1. Pre-processing and data classification

To construct theLevenberg-Marquardt (LM) based-ANN model architecture, to smaaoth to eliminate
overfitting, the database is randomly classified into three sets: training, validatiotesting. The goal of the
training dataset is to create the network and fit the model, while the testimg\ddep an independent check of
network performance during the training process. The taskhiorvalidation set is to finally evaluate the
performance and generalisation ability of the ANN model, as reporteddyr5t2016) and Jaeel et al. (2016)
To develop an optimum (ANN) model, all patterns that are present in the databdge beeenclosed in the
training set. Because the testing dataset was used to check the quality dfiNhenddel, it needs to be
representative of the training set and should consequently comprise all gatiemasst in the available database
(Shahin and Jaksa, 2005). The database was normalised between 0.0kefdré.the training of the network,
to eliminate the influence of one factor over another and also to alldwredicidual variable (IV) to receive the
same attention during the training process (Majeed et al., 2013; Biejadaksa, 2017)t is crucial that the
dataset used for the training, testing and cross validation represent similar pop\Mtsters, 1993). However,
in terms of statistical analgs the T-test and F-test, were conducted, for normalised data as shoalne? to

ensure that the training, cross validation and testing datasets have similar stptisticedters.



Table 2: T-test and F-test results for the (ANN) model inputs and output.

Variable Lower Upper Lower  Upper
and Data  T-value  Critical Critical T-test F-value Critical Critical F-test
Set Value Value Value  Value

Load (kN)

Testing -0.39 -1.97 1.97 acceptable 1.01 0.68 1.56 acceptable
Validation 0.43 -1.97 1.97 acceptable 1.07 0.68 1.56 acceptable
Slenderness ratio Lc/d

Testing -0.81 -1.97 1.97 acceptable 0.93 0.68 1.56 acceptable
Validation 1.26 -1.97 1.97 acceptable 0.88 0.68 1.56 acceptable
Pile length, (m)

Testing -0.88 -1.97 1.97 acceptable 0.92 0.68 1.56 acceptable
Validation 1.10 -1.97 1.97 acceptable 0.90 0.68 1.56 acceptable
Pile axial rigidity, (EA)

Testing 0.33 -1.97 1.97 acceptable 0.95 0.68 1.56 acceptable
Validation 0.58 -1.97 1.97 acceptable 0.91 0.68 1.56 acceptable
Soil-pile friction angle, &

Testing -0.33 -1.97 1.97 acceptable 0.95 0.68 1.56 acceptable
Validation 0.58 -1.97 1.97 acceptable 0.91 0.68 1.56 acceptable
Settlement, (mm)

Testing 0.86 -1.97 1.97 acceptable 1.37 0.68 1.56 acceptable
Validation -1.54 -1.97 1.97 acceptable 1.22 0.68 1.56 acceptable

4.2. Statistical significance of each independent variable (1V)

The level of contributiorof each independent variabe/) to the dependent variable (DVf) the constructed
model has been ascertained by calculating the relative importance, or Betandlthee statistical significance
(p value) using SPS&3. Any IV atp > 0.05 can be discounted as it has no substantial influence orde¢ m
target (Field, 2008; Hashim et al., 20178}atistically, the closest to one the absolutéa®alue is, the more
significant the impact of that IV on the model (Pallant, 2005; Hashim eD4lrb2 Hashim et al., 2017.aJable

3 shows that the applied load and the sand-pile interface friction angle bahighbst contribution to the model
output at Beta values of 0.787 and 0.613 respectiRlg slenderness ratios, flexural rigidity and pile length
madea lesser contributiomto the model output. Moreover, resuitsTable 3 also reveadithat the maximum Sig
value for all variables is less than 0.05, matching the statistical criteria. Battedspatistical analyses, the ANN

model, was trained with five parameters, these being applied lo&att Slepderness ratio, Ic/d, pile axial rigidity,



EA, pile effective length, Ic and the interface friction angl&he model output was pile settlement as illustrated

in Fig. 3

4.3. Outliers

Outliers can be illustrated as points, or a single data point, that appearmtoinpatible with other dataset
observations (Walfish, 2006). The performance and the generalisatiity abthe developed model can be
highly influenced by the presence of such extreme points (Hashiin €017c). Therefore, all IVs and DVs
should be screened before the training process. The presence of matliebe tested by determining the
Mahalanobis distances (MDs) following the statistical criteria reported by (Teibkand Fidell, 2013). In this
investigation, for five IVs, the screening test revealed that the maximum iMR286.52. Whereas, for the
experimental dataset, the highest MDs was found to be 19.26 as given i3, bieh evidences the absence of

the outliers. Asummary of the statistical parameters for the models’ inputs and output, are given in Table 4.

Table 3: Results of the statistical analysis.

IVs Sig. value Beta. value Maximum detected MDs
Applied load, (P) 0.000 0.787 19.26
Sandpile angle of interface friction, (8) 0.000 0.613
Flexural rigidity, (EA) 0.010 0.02
Slenderness ratio, (Ic/d) 0.020 0.139
Pile length, (I) 0.000 0.101
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Fig. 3: Sketch of the optimised ANN topology.
Table 4 A statistical summary for the ANN inputs and output variables.
Input Variables Output
Statistical Pile axial Sand-pile
Data Set Parameters Load Sler_lderness Pile rigidity, (EA)  friction  Settlement
(kN) ratio Lc/d length (MN) angle, & (mm)
(m) ©)
Maximum  6.782 25 1 251.2 30.2 14.243
Minimum  0.001 12 0.48 47.2 24.6 0.015
All data Mean 1.581 12.989 0.719 195.018 26.142 6.148
Std. dev  1.526 5.376 0.215 91.252 2.504 451
Range 6.781 13 0.52 204 5.6 14459
Training Set Maximum  6.533 25 1 251.2 30.2 14.2435
Minimum  0.031 12 0.48 47.2 24.6 0.0025
Mean 4.012 18.023 0.721 196.696 26.097 6.555
Std. dev 1.97 5.3 0.212 90.44 2.4827 4.568
Range 6.502 13 0.52 204 5.6 14.241
Testing Set Maximum  6.521 25 1 251.2 30.2 13.76
Minimum  0.087 12 0.48 47.2 24.6 0.0267
Mean 4.11 1218.625 0.745 192.914 26.2 6.08
Std. dev 1.96 5.535 0.2214 93 2.552 3.905
Range 6.435 13 0.52 204 5.6 13.738
Maximum  6.533 25 1 251.2 30.2 13.888
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Validation Minimum  0.0652 12 0.48 47.2 24.6 0.0026

Set Mean 3.8941 17.196 0.688 189.271 26.3 7.5121
Std. dev 1.9 5.577 0.223 94.648 2.598 4.1365
Range 6.4677 13 0.52 204 5.6 13.885

4.4. Dataset size

The reliability of the size of the dataset must be precisely calculated entordevelop the best relationship
between the independent variables (IVs) and the model oatpaitto obtain an efficient model performance
(Pallant, 2005; Hashim et al., 2017€Epr the five input parameters, according to the equation below JBhel
minimum dataset size required to train the LM algorithm is 90 (Tabachnickidall, 2013). In this paper, there
were 254 experimental dataset points used to run the LM training algorithm, isgtidfg aforementioned

statistical criteria.

N >50+8%*1Vs 1)

WhereN andIVs denote the required size of the sample and number of independert fagberform the LM

training algorithm.

5. Resultsand discussion

5.1. Architectureand ANN model performance

The ANN network was trained utilising the Levenberg-Marquardt (LM)TMAB algorithm version R2014, as

it is a more reliable and a faster approach than all other artificial neural approachesa@@dtign, 2005) To
include full details about the LM algorithm is beyond the scope of thiy ftudcan be found in Hagan et al.
(1996).Thegeneralisation abilitandthe performancef the proposed algorithgan be evaluated using different
performance measuring indicat@sggested in the open literatuhe the context of the present papée tnean
square error (MSE) function was identified to measure the model paricenwith an error goal satzera The
LOGSIG transfer function (TF) was utdidin the hidden layer and the PURELIN transfer function was used to
interconnect layer twand three as shown in Eq8 and 3, and as recommended by Alizadeh et al. (2012). It
should be stated thtte existence of the transfer function in the hidden layer and day@utis essential in order

to transform the weighted sum of all signals hitting on a neuronstecsakect its firing intensity” (Majdi and

Beiki, 2010; Jebur et al., 2017b).
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The experimental datasettotal of 254 data points, was randomly divided into three subsetspsethpf 70%
training (178 data poirj, 15% testing (38 data points) and 15% validation (38 data points). Afteintratre
ANN network, the results revesl that the optimum ANN model consstof three layers; the input layer, one
hidden layer with 10 neurons and an output layer. As mentioned prgyitgsperformance of the LM algorithm
was characterised by the mean square error (MSE) as shown inTg. dhain objectivef the training dataset
is to learn the patterns presented in the dataset by updating ANN biases aht$ WEiigjo, 2000; Jaeel et al.,
2016) This training process normally ends when the error value is suffigismall enough (Yadav et al., 2014).
The performance of the model under training is displayed in Fige4gesults revealing that the minimum square
error (MSE) was 0.0025192 at an epoch of 2.8an also be seen that the training process was terminated to
avoid overfitting once the cross-validation error started to inerg@ag variation in error gradient, the Marquardt
adjustment parameter (Jrand checks for the validation are presented in Fig. 5. It can behsgahe gradient
error is 0.004691, while the nfactor and the validation check numbers ar®@and 6 at an iteration of 221

respectively

The error histogram (EH) has been presented in Fig. 6 to obtain adtitarification of network performance.
The EH can also give an indication of outliers and data features where the fit icaigghy poorer than the
majority of the rest of the data (Yadav et al., 2014; Abdellatif et al., 2015)g. 6, the red, green and the blue
bars signify testing, validation and training data, respectively. It shouldtbd that the majority of data coincide

with azero error line, which represents a scheme for outline verificatidetésmine if the dataset is inadequate.

12



Best Validation Performance is 0.0025192 at epoch 215

= Train -]
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m— Test

Mean Squared Error (mse)

0 50 100 150 200
221 Epochs

Fig. 4. Graph presenting the optimum mean square error (MSE) seledtagitte training process.

1

5
Zi=f Zw@ X, + b.(l)) = (2)
! < vt g 1+ exp (Z? —Wi(jl) x; + bj(l))

5
y =zwj<2) 7 + b® 3)
1

A (4)
MSE = — ) (measured(ij) - predicted(i)))’
n 1

Where: he factorawi; ™ andb; ® are the synaptic connection weights and threshold biases that were identified
during the training process between the input and hidden layeectiegsty. wi; @ andb; @ are the synaptic
connection weights and threshold biases that were determined during timg fpadtess in the output layeri X
represents the number of input parameters that used in the first layerlgiyer). f is the log-sigmoid transfer

function, which is used twansform the weighted sum in the hidden laj8E is the Mean Square Error indictor

13



that is utilised to evaluate the performance of the LM trained networlebguring the error percentage between

the measured and the predicted values.

Gradient = 0.004691, at epoch 221

gradient

10_4 1 1 1 1
Mu = 1e-06, at epoch 221

10_6 1 1 1§ J1
Validation Checks = 6, at epoch 221

0 50 100 150 200
221 Epochs

Fig. 5. Performance diagrams for the ANN trained network.

14



Error Histogram with 20 Bins

45 T T T T T T T T T T T T T T T T T T T
B Training

40 | I Validation X
I Test

35 Zero Error

30

25

Instances

20

15

10

0 O N~ N~ ™ 10 0 N © S M M D I « O F ~ O N <
N o O N O O - N O T 0 © F - O N © O ™
N v ® © N © F  — ® OO N - 10 © ® © N —
-~ - % K I T MO O T N ®WONKO - « g
o o @ © 9 9 0 9 5 Q9 Q@ 9 @ e e 9 g5 0o o
R 2 2 A L A A

Errors = Targets - Outputs

Fig. 6. Error histogram during training, testing and validation.

5.2. Evaluation of therobustness of the ANN model

In this section, the results of the experimental lsdatlement (QS) tests were compared with the predicted values
established by the optimum model of the LM trained network. A seriegefienental pile load tests were carried
out on concrete pile models. The testing program comprisedesf fliles with slenderness ratios (Ic/d) of 12, 17,
and 25 with diameters of 40mm to examine the behaviour of rigidlexitle piles In total, 254 points were
recorded from the experimental pile load-settlement results using taio $fpe displacement transducers
(SDTs), with 50mm travel distance connected to a P3 strain indicator.itinagdithe applied loads were recorded
using a calibrated load cell type (DBBSM series S-Beam), having a maxaypaweity of 10kN. As previously
mentioned, the supervised Levenberg-Marquardt (LM) algorithm was utiisselévelop and train the ANN

network based on MATLAB, version (R2017a).

Figs. 7 8 and 9 illustrate the extent of the fit between the experimental anidtpcedormalised load-carrying
capacity of concrete piles, subject to axial loads at different stages ofmizathaading for loose, medium and
dense sand. The load carrying capacity variations are typical foropifeldtions subject to axial mechanical

loading systems, i.e., varying from pile head to pile toe due to the indredgveloped shaft resistance in the

15



effective soil zone. The results revealed that the pile load carrying capaciy didplay a clear elastic branch
for a pile loaded at about 200N in loose sand, 400N in medium sahdpant 800N in dense sand, where local
nonlinearity is observed. Furthermore, plastic mechanisms invaited soil surrounding the pile are the leading
causeof the non-linearity of the load-settlement curve; as the applied load ingré@sqsle response shows
nonlinearity until reaching a maximum capacity at about 10% of pile diafoditeving the pile load test criteria
reported by BSI (BS EN 8004:1986). For model piles witlenderness ratio (Ic/d) of 12 driven in loose sand,
the maximum pile capacity is about 520N. While, for piles with Ic/d7efahd 25 the maximum pile capacity is
about 750N and 950N respectively. Comparing the results of the modielspéd in medium and dense sand, for
a model pile with slenderness ratio of 12, the maximum pile capacitpig 2650N in medium sand and about
three times this value (3, 150N) in dense sand. Moreover, the maxieaning capacity for piles witn aspect
ratio of 17, driven in medium and dense sand is about 1400N afi\ 486respondingly. Furthermore, for pile
with slenderness ratio of 25, the maximum pile capacity in demskis almost three times the pile capacity tested
in medium sand. It should be mentioned that this increase in pile capétitthe increase in the pile effective
depth (Ic) and sand relative density can be assigned due to an increaspamttheearing (end bearing) and
mobilised skin friction resistance developed within the contacted soil inféwieé stress zone. According to
the graphical comparisons between the measured and the predicted fealloese sand, the predicted results
are slightly overestimated for the pile load-test curves in case of prewoekihg settlement. Moreover, there
was an excellent fit between the proposed LM training algorithm anduneelagalues in post-yield pile load tests
responses for all cases, with a correlation coefficient (R) of 0.99 fdatall This demonstrates that the proposed
algorithm is a reliable method that can be applied to predict pile load-settlementwillvas acceptable level

of accuracy.
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Fig. 7. Profiles of measured versus predicted pile load tests for modetpibesided in loose sand.
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For further evaluation of the reliability and the performance of tbpgsed LM algorithm the results were also
presented graphically with the corresponding experimental settlement inrthefforegression calibration curve
(Fig 10). As can be seen, the training algorithm satisfies thetramsstest. All the measured and predicted points
are matched well and close to the best-fit line with correlation coefficients df3999.98565, 0.988819 and
0.99008 for training, validation, testing and all data, substantiating theapmti of the LM algorithm based on

ANN as an effective predictive tool that behaves in an acceptable manner.
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Fig. 10. Regression profiles of the experimental versus predicted settlement faitireg, testing and

validationof all data

Lastly, the performance of the LM algorithm was also examined graphically, as deateasir Fig. 11. The
testing dataset has been utlised to plot a regression calibration curve bigtegerrsus predicted values, with
a 95% confidence interval (Cl). Significant agreement can be obseeregdn the measured versus predicted
values, with a root mean square error (RMSE) and correlation coefficent (R)0678 and 0.988, which also
confirms that ANN, based on theevenberg-Marquardt (LM) MATLAB training algorithm, can succebgfu

reproduce the results of the experimental pile settlementaiih degree of accuracy.
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RMSE = 0.047806, R = 0.98819, p = 6.2824e-31
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Fig. 11 Calibration plot of resulting model for the testing dataset%i% confidence interval (Cl).

6. Concluding remarks

A series of expermental studies have been conducted to examine theapitey capacity of piles embeded in
sandy soil with sand densitd3r} of 18%, 51% andB3%. According to the statistl parameters, the applied load
(P), sand-pile friction angled}, pile axial rigidity EA), pile slenderness ratio (Ic/d), and pile effective lenfgth (
were identified as the most important input parameters on modelt aitpudifferent weights, following the
order: P> >Ic/d>Ic > EA. The results of the screening dataset test reveals that the maximum lei3stiean
the critical value (20.52), which confirms the absence of outliers iexperimental dataset. The LM training
algorithm based ANN has favorable features such as simplicity, high efficieasg of application and
generalisation, which makes it an attractive choice to capturdy higim-linear load-settlement responsks
conclusion, basd on the results of the graphical comparison of pile carrying capacitythen regression
calibration curve, the proposadgorithm can be used as an efficient data-driven approach to accunatddy
pile settlement witlaroot mean square error (RMSE), correlation coefficient (R) and mealubsor (MAE)

of 0.050192, 0.98819 ar@l0025192, respectively. One of the advantages of the proposkddnietthat pile
settlement can be successfully simulated using the LM algorithm, wéhrfput parameters that can be easily

determined without the need to perform expensive and time-constesisg
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