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Abstract 
 

As awareness grows regarding impacts of global climate change, so does concern over the 

effects these changes have on a species habitat and distribution. Climate change is thought to 

have a major effect on the distribution of species, with the potential to cause 

isolated/fragmented populations, which could lead to genetic divergence. In this study species 

distribution modelling was applied to species occurrence data on northwest African lizards from 

Morocco, with corresponding environmental data. The aim was to identify how intraspecific 

divergence might be related to historical climatic events. Species distribution models (SDMs) 

were used to quantify a species niche and define the constraining factors that affect that niche. 

SDMs predict areas of suitable habitat under different climatic scenarios that replicate 

prehistoric climates, and used to examine if there is evidence to suggest historical divergence or 

historical splits in distributions that correspond to current patterns of geographical divergence 

within species. MaxEnt was used to develop the SDMs and define the species niche and variable 

constraints. 

Previous studies have shown that the estimated divergence times of species discussed in this 

study range between 1–15 Ma. Environmental data dating back to these divergence times are 

unavailable or unreliable. Therefore, the Last Interglacial (LIG ~120,000 -140,000 years BP) and 

Last Glacial Maxima (LGM~ 21,000 years BP) datasets were used as a surrogate to earlier 

interglacial and glacial maximum climates, to analyse species distributions under earlier climatic 

scenarios which can then be inferred.  

The models produced from this study portray geographical fragmentation/isolations of suitable 

habitat between currently recognised subspecies for all species studied. The results from this 

study give insights into potential events that could cause intraspecific divergence. Given that 

glacial patterns occur in a cyclic manner during the Earth’s history, it is clear that they provide 

potential opportunities for disrupting a species habitat range and causing divergence due to 

oscillations between arid and humid environment.  
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Introduction 
 

Species Distribution Models (SDMs) 
 
Previous studies have shown climate change to pose a significant threat to biodiversity 

worldwide (Cahill et al., 2012; Thomas et al., 2004). Species can respond to climate change in a 

variety of ways, such as altering the timing of phenological events (Walther et al., 2002), 

changing their biotic interactions (Tylianakis et al., 2008) and shifting their distributions 

(Knowles et al., 2007). These changes in distribution could lead to range expansions for some 

species (Davey et al., 2012) and restrictions in others (Dirnböck et al., 2011). Predicting the 

impacts of climate induced changes is a rapidly increasing field for researchers (Bell et al., 2010), 

as these can be used to identify future risks to biodiversity to aid conservation projects (Guisan 

et al., 2013) and also help understand paleo events that could have caused species divergence 

(Knowles et al., 2007).  

Species distribution modelling is used as a tool to help researchers answer theoretical questions 

in relation to a species success under hypothesised climate scenarios (Rossetto et al., 2012). 

Species distribution models (SDMs) are mathematical applications that combine two types of 

data; species occurrence records and environmental (predictor) variables (biotic and abiotic) 

(Austin et al., 2002). SDMs help estimate a species environmental limitations/ecological 

tolerances. They are fundamentally important when reintroducing species into the wild (Hunter 

et al., 2015), relocating a species to a more appropriate area, identifying potential areas for 

conservation (Gusian et al., 2013), selecting areas for growing crop plants or when predicting 

habitat for newly invaded regions (invasive species), (Elith et al., 2009; Johnson & Gillingham, 

2008; Trabucco et al., 2010; Wilson et al., 2011). SDMs also allow the testing of ecological or 

biogeographical hypotheses of a species distribution, by determining factors such as upper and 

lower limits of constraining variables to see how the modelled distributions alter. SDMs can be 

used to estimate the influence of changes in climate (abiotic) on a predicted niche as well as 

non-climatic variables such as food production and competition (biotic). SDMs are able to 

extrapolate over past, present or future climate datasets, these predictions under different 

climatic scenarios can help us to understand how ancestral or future populations may distribute. 

These inferences can be achieved by using a predicted digitalised niche to project over these 
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different climatic/environmental scenarios (Phillips et al., 2006; Knowles et al., 2007; Bell et al., 

2010). 

SDMs typically aim to derive a species niche and the type of habitat required to support a species 

by identifying/quantifying variable importance. Many different mathematical methods and 

techniques can be used such a GLM and boosted regression (BRT) (Lehmann et al., 2002; 

Stryszowska et al., 2016; Benito et al., 2011). Essentially all methods aim to mathematically 

quantify the relationships between the observed species and the environmental variables they 

inhabit; this information is then portrayed in spatial form, normally a map. SDMs are able to 

manage large datasets and are able to use either presence, presence-absence, or abundance 

observations based on a random or stratified field-sampling technique, or observations obtained 

opportunistically (Graham et al. 2008). Observational data are geo-referenced using latitude and 

longitude coordinates for use in SDMs.  

The availability and access to large electronic datasets are increasing (www.gbif.org), these 

sources stem from records in museums and field observations. The ability to measure the 

relationships in a quantitative manner allows data to circulate through many fields of expertise. 

A quantitative description of a species niche equips researchers with more tools to explore some 

of the questions at the forefront of ecology, evolution and conservation, which allows scientists 

to make inferences on whether or not a species can survive under certain hypothesised 

conditions or climatic scenarios. 

Constraints on a species distribution 

Environmental 

Generally, not all species are evenly distributed over a spatial area, with potential to cluster in 

certain areas. Differences in areas of suitability indicates that a number of factors influence a 

species habitat (Phillips et al., 2006). The most common and easily available factors regularly 

used for modelling are abiotic factors. Abiotic factors are classed as non-living, physical or 

chemical factors that impose physiological constraints on a species existence (Soberon, 2005), 

and provide resources for existence in an area (Austin et al., 2002; Guisan et al., 2002). Abiotic 

factors such as precipitation and temperature are considered major influences on a species 

distribution, particularly for species in this study (Chamaille-james et al., 2005; Dickman et al., 

1999; Ryan et al., 2016; Shine et al., 2002). A species free from interference with all other 

organisms, which has the use of all abiotic factors and resources to survive, is determined as 

occupying its fundamental/potential niche (Hutchinson, 1957). 
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Another group of factors are classed as biotic; biotic factors can be described as a living 

component that affects another organism, or shapes the ecosystem. Factors such as plants, 

animals, fungi and competition. Biotic factors can be classed as intra or interspecific (although 

interspecific factors are rarely used in SDMs, as they are hard to source and quantify). 

Intraspecific competition is competition within a species, whilst interspecific competition is the 

competition between two different species for a resource. Species that inhabit environments 

with limited resources means that populations have been found to be in equilibrium on a local 

scale, to minimize interspecific competition (Berendse, 1893). Distributions found to be at 

equilibrium are commonly found in forests, where competition for sunlight produces an even 

distribution of trees. Hutchinson (1957) considered biotic factors combined with abiotic factors 

to determine the realised niche of a species, a niche derived from the constraints of all variables.  

Constraining factors can be categorised differently. Austin (2002) categorised environmental 

variables (resource) is either proximal or distal factors. These correspond to the position of the 

predictor variable in terms of how crucial its role is in regards to the species distribution. The 

most proximal variable is one that has the biggest effect on a species distribution whereas distal 

has a smaller effect. Austin (2002) also defined constraining factors as direct/indirect variables; 

direct variables are those that have a direct physiological effect on the species, for example 

temperature on lizards or territorial interactions. However, the classification depends on the 

species. For example water may be classified as a direct variable in plants, while temperature 

could be a direct variable for lizards. Indirect variables are those that do not have a direct 

physiological effect; for example, an indirect variable for plants could be the angle of slope, while 

competition could be an indirect variable for lizards. Indirect variables are considered easier to 

measure than proximal factors that tend to be more species specific. Although overlap between 

categories occurs, it is important to understand the subtle differences between proximal/distal, 

and indirect/direct. Indirect and distal are two types of predictor variables commonly used in 

most SDMs (Austin, 2002), as they are easier to source and quantify. It is thought that models 

based on proximal and direct gradients would produce the most mathematically robust models. 

However, it is known to be extremely difficult, and possibly impractical to use proximal variables 

for distribution modelling. The reason most models do not incorporate proximal variables is 

because they are hard to reliably quantify/measure and source, particularly due to their 

specificity (Araujo & Guisan, 2006; Austin & Van Niel, 2011). Therefore using variables such as 

proximal increases the potential for errors to be incorporated into a model.   
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Historical  
Dispersal limitations and historical events are other factors that can constrain a species and 

restrict it from reaching equilibrium within its potential habitat, i.e. previous fires/floods or man-

made (road)/natural structures (river) splitting a potential habitat (Condit et al., 2002). For this 

study we are particularly interested in events that occurred within NW Africa, Brown et al. (2002) 

suggested the rise of the Atlas Mountains during the Miocene caused the divergence of Agama 

impalearis through vicariance. This hypothesis has also been suggested for T. weigmanni 

(Sánchez & Escoriza, 2014). For species in northwest Africa, the Atlas Mountains act as a 

geographical barrier that could have possibly caused restrictions to a species potential 

distribution, leading to speciation through the restriction of gene flow, as suggested by Brown 

et al. (2002). The Rif Mountains of North Morocco could also act as a natural barrier and restrict 

gene flow. Mountainous regions can also create microhabitats that could differ significantly to 

environments at sea level; the steep incline means that within a relatively short distance the 

microhabitats can differ significantly from one another, changing environments from suitable to 

unsuitable in a short amount of space. These differences are often due to variations in rainfall, 

oxygen levels, soil quality, temperature and vegetation.  

The end Messinian salinity crises and the consequent opening of the strait of Gibraltar (the 

collapse of the Gibraltar Arc) caused the re-flooding of the Mediterranean basin (Chumakov, 

1973). This re-flooding led to the submergence of several major areas in northwest Africa, 

creating islands (in current inland areas) in the mountainous areas of NW Africa during shifts 

towards a humid climate approximately 5.5 Ma-3 Ma (Steininger & Rogl, 1984). These islands 

have been referred to as “fossil islands” that may have isolated faunas within NW Africa, which 

potentially led to speciation. Morocco’s proximity to Europe and its contact during the 

Messinian stage of the late Miocene 5-6 Ma could also help explain the diversity of amphibians 

and reptiles (Hsü et al., 1973), due to events that have opened and closed the strait of 

Gilbraltar, hence, potential for vicariance speciation.  A less important historical event in 

regards to dispersal limitations in NW Africa are tectonic movements, hence volcanic 

eruptions/earthquakes. Tectonic movements/volcanic eruptions have potential to cause local 

extinctions or destroy certain fundamental resources a species may be depend on throughout 

Morocco, Algeria and Tunisia for a considerable amount of time.  

A species dispersal ability is another constraining factor and can be extremely useful when 

determining a species’ actual distribution from its potential distribution. The discussed 

dispersal limitations and historical events have potential to drastically alter a species 
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distribution and should be considered when possible or when data for such events are 

available. A species may be absent from a site which is highly suitable based on climate and 

biota, however due to historical events and dispersal limitations a species is unable to inhabit 

all suitable areas, or becomes unable to reach suitable areas (Guisan & Zimmermann, 2000). 

Habitat fragmentation can lead to speciation, due to the interruption of gene flow between 

populations, which can lead to evolutionary independence. Evolutionary independence occurs 

when mutation, natural selection, gene flow and drift operate on populations separately. 

Fragmentation can either occur naturally, for example river or Mountain formations, or caused 

by human activity such as land conversion, a more direct effect that alters the environment 

much faster (Guisan & Zimmerman, 2000). 

Species niche concept applied in SDMs 

 

A frequent question in distribution modelling is; what is actually being modelled in a SDM, the 

potential/fundamental niche, the actual/realised niche or the probability of habitat use? (Elith 

et al., 2011). Studies can use the same environmental datasets, modelled under the same 

parameters but describe the output of the model as something different, realised instead of 

probability of occurrence for example (Guisan & Thuiller, 2005). Confusion is created between 

researchers and studies, but simply it depends on what variables have been used.  

Occurrence records are samples of a species geographic distribution within the environmental 

“hypervolume”, considered to include the effects of all factors that influence the species niche. 

Therefore, a current species niche is considered to be ingrained by both the biotic and abiotic 

elements as it is presently confined by both. Therefore, with the observed species population 

being ingrained by all the constraints of the environment more of a realised niche can be 

predicted through the SDM, rather than potential (Phillips et al., 2006). However, this theory is 

open to interpretation of how much biotic influence can be recorded in observation data. When 

the niche predicted by a statistical distribution model is mapped onto geographical space, it 

represents the potential distribution or habitat suitability (Araύjo & Guisan, 2006). 

In the majority of species distribution studies, choices of model variables are often limited to 

mainly abiotic factors, those that determine the potential niche. Other variables that influence 

distribution are rarely used as they are generally difficult to measure over spatial extents, too 

complex to interpret or simply unavailable. These are variable categories such as proximal/biotic 

resources (Thuiller et al., 2003; Soberon & Townsend Peterson, 2005). Using proximal/biotic 
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variables may improve model performance if incorporated, although difficult to incorporate all 

factors into a model without overfitting, therefore variable selection would be beneficial with a 

large amount of environmental (predictor) variables.  

Interpretation of SDMs will depend on the context of the study in which it is used; the focus of 

a study may differ from the importance of potential habitat to the importance of specific 

variables for a species. Not all SDMs will predict a niche classified as potential, this depends on 

the methods and variables available. When biotic variables are unavailable only the potential 

niche can be calculated and results/predicted distributions can only be interpreted in terms of 

abiotic factors. Even though some biotic factors will have been intrinsically incorporated when 

calculating the niche, these biotic factors cannot be measured therefore the weight of influence 

on a species is unmeasurable.  The reason for the calculated distribution being called “potential” 

is that the niche calculated is what a species with use of all resources could potentially cover, 

given the known abiotic constraints, without being influenced by all other organisms (biotic). 

 
Niche evolution and conservation. 

The idea of a species retaining its fundamental niche through time is called niche conservation, 

which suggests a species niche is constrained by the same ecological tolerances as its ancestors. 

If the ecological tolerances of an ancestral species are unknown then this assumption is 

necessary when extrapolating a species niche on to different climatic scenarios. It is argued that 

a species will always inhabit environments that share similar characteristics to those of close 

ancestors, and this may be supported by identifying morphological similarities between current 

species and its ancestor when possible. Therefore, to some extent a species niche is conserved 

through time, which can be used to test hypotheses on the causes of population divergence 

(Knowles et al., 2007). As a result, the question arises of how similar a species niche must be to 

another to be considered conserved (Wiens et al.,2010).  

Niche conservation is often assumed in SDMs (Pearman et al., 2008), although it may not always 

be realistic, unfortunately it is difficult to make reliable inferences about extinct ancestors, even 

when fossil and other information are available. Speciation may occur due to one population 

conserving a species niche, while another isolated population evolves different adaptive traits, 

leading to divergence and eventually/potentially speciation. Different populations of the same 

species may adapt to different environmental conditions, in different parts of the inhabited 

range. If these adaptive traits differ between populations then over time divergence will occur, 
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especially if gene flow is low, as this will accelerate the process. Niche evolution is the alternative 

to niche conservation, and is the cause of geographical variation within the species niche 

(Peterson & Holt, 2003). It is where a species niche evolves over time brought on by different 

adaptive traits, adaptive traits that evolve in different populations brought on by differing 

selective pressures, leading to differentiated populations. 

Niche comparative methods 
 

Various methods have been used to compare the niche of a species and its respective 

subspecies. Niche comparative methods are used to determine the correlation between sister 

subspecies and the constraints imposed on their niche, these types of methods are useful to 

determine how similar or dissimilar the niches of sister subspecies are to one another. Two of 

the methods used to determine these relationships are; principle component analysis (PCA) and 

niche overlap analysis. 

Principal component analysis  
 
Principal component analysis (PCA) is a statistical procedure, which identifies a group of 

uncorrelated variables called principal components, from a potentially correlated dataset such 

as the bioclim dataset (Boulangeat et al., 2012). The purpose of a PCA is to help describe the 

maximum amount of variance within the least number of principal components (grouped 

variables). The first principal component has the largest possible variance, which accounts for 

as much of the variability in the data as possible. Each consecutive component in turn represents 

the highest residual variance possible. PCA is a useful tool for species distribution modelling as 

principal components can help clarify what can be a large uncorrelated array of variables and 

help define what the major constraining factors on a species are (Tamura & Tsujita, 2007). PCA 

can also be used to address collinearity between variables by grouping alike variables together. 

Principal component analysis was used in this study to identify any correlations/relationships 

between bioclim (environmental variables) and between sister subspecies which helps identify 

the differences in niches. More details of the PCA produced in the methods section of this study. 

With the recognised drawbacks associated with a PCA, it is advised that outputs should be 

treated as an observational tool. Usually the PCA is a great and meaningful measure of central 

tendency but not always. One drawback of PCA is that it relies on linear assumptions; a PCA will 

try to find orthogonal relationships between data in order to find hidden linear correlations. 

However if the data are not linearly correlated then PCA will not be effective. In this case, the 
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Kernal PCA (KPCA) may be a better option. For nonlinear relationships, the only way PCA can 

represent that is by adding additional dimensions, this makes for a complicated, possibly 

uninterpretable, and frequently unstable solutions.  As mentioned, a PCA tries to define 

orthogonal principal components within a dataset; however, this may not always be the best 

way to represent the data. A PCA fails to find the correct vectors due to a lack of orthogonal 

relationships, in which case an independent component analysis may be a better option. 

Consideration of how many PCs to discard following a PCA is also important. The PCA considers 

the low variance components in the data as noise and recommends discarding these 

components, even though sometimes those components may play a major role. Several 

techniques for deciding the most important components have been proposed (Cattell, R.B., 

1966; Frontier, S., 1976). 

Niche overlap analysis 

Niche overlap analysis uses the Schoener’s (1968) D value that is a measure derived from 

Hellinger distance called I to quantify the similarities in niches between two species or sister 

subspecies. The values are calculated by comparing the estimates of habitat suitability of a 

species (or in the case of this study subspecies). Calculated from each grid cell of the study area 

produced through Maxent, after normalizing each model so that all suitability scores within the 

geographic space sum to 1. This calculated score helps with niche comparison with a 0-1 scale, 

making it easy to see whether the niche of two different species or subspecies are similar to one 

another. The Schoener’s D values range from 0 (niche models have no overlap), to 1 (niche 

models identical), with suggestions on how to interpret results; 0-0.2 = no or very limited 

overlap, 0.2-0.4= low overlap, 0.4-0.6=moderate overlap, 0.6-0.8= high overlap and 0.8-1= very 

high overlap (Rödder, D & Engler, 2011). Niche overlap was performed in this study to compare 

the estimated niches of sister subspecies. 

Predictions through a SDM 

 

The use of SDMs to predict the effects of climate change on a species distribution generally 

requires some assumptions. These are niche conservation, source habitat and a cyclic 

relationship between glacial cycles and climatic impact, these assumptions are discussed further 

in the methods section. A number of different statistical models and algorithms have been 

applied to SDMs. Certain statistical models are more specific to either fauna/flora or 

presence/presence-absence, depending on why the model was made, with numerous methods 

suggesting how the SDMs should be presented. Anderson (et al., 2006) reviews the different 
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statistical approaches commonly used in distribution modelling. These include multiple 

regression models, Environmental envelopes, Bayesian approach and machine learning 

methods. 

One of the more popular techniques recently used for SDMs are regression models (GLMs and 

GAMs fall under regression models). These allow for a larger range (scale) of distributions to be 

predicted. This is due to the larger range of response curves available such as Gaussian, Poisson, 

Binomial and Gamma, unlike a simplistic model such as least squares regression (Elith & Graham, 

2009). Environmental envelopes are also used for modelling, and have been mainly used in the 

past with large datasets for species or vegetation models (Shao et al., 1995). McKenzie et al 

(1992) developed the BIOCLIM model, a model that uses a species specific, fitted, multi-

dimensional, minimal rectilinear environmental envelope. Originally, the model was developed 

to model plant species distributions in Australia, hence its practicality with large datasets. Soon 

after more techniques were developed based on the environmental envelope methodology 

used in BIOCLIM, these influenced approaches where DOMAIN (Carpenter et al., 1993) and 

HABITAT (Walker et al., 1991).  

The Bayesian approach is another method popular in SDMs. It combines priori probabilities of 

observing a species, with a likelihood based approach on environmental predictor variables, for 

the area in which the species were observed. Machine learning tools have also been introduced 

to species distributions (MaxEnt) (Phillips et al., 2004), used with various methodologies that 

make modelling of large/global data sets much easier (DOMAIN/GARP).  

Anderson et al. (2006) compared model performance between the main methods used in SDMs. 

The study produced and published 16 modelling methods, over 226 species from 6 regions to 

create a comprehensive set of model comparisons. The results from the study state that both 

AUC and r values indicate high predictive performance for MaxEnt.  
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Table 1. A comparative table comparing AUC scores and extra details were available of some of the modelling methods used for species distribution modelling 
derived from Anderson et al. (2006).

Algorithm 
Mean AUC 

rank per 
species  

Rank of 
mean AUC 

over all 
species 

Description Software URL Reference 

BIOCLIM 10.85 16 Envelope model DIVA-GIS www.diva-gis.org (Nix,1986), (Busby, 1991) 

DOMAIN 8.7 9 Gower distance DIVA-GIS www.diva-gis.org (Carpenter et al., 1993) 

OM- GARP 8.92 11 Genetic algorithm DesktopGarp www.nhm.ku.edu/desktopgarp/index.html (Stockwell &Peters, 
1999) 

DK-GARP 10.47 15 Rule sets from genetic 
algorithm DesktopGarp www.nhm.ku.edu/desktopgarp/index.html (Stockwell &Peters, 

1999) 
GAM 8.26 7 Regression GRASP www.unine.ch.cscf/grasp (Lehmann et al., 2002) 

GLM 8.64 10 Regression GRASP www.unine.ch.cscf/grasp (Lehmann et al., 2002) 

MaxEnt 6.69 5 Maximum entropy MAXENT www.cs.princeton.edu/~schapire/maxent (Phillips et al., 2006) 

MaxEnt-T 6.42 3 Maximum entropy; with 
threshold features MAXENT www.cs.princeton.edu/~schapire/maxent (Phillips et al., 2006) 

BRUTO 8.79 12 Regression R and Splus, mda package https://rdrr.io/rforge/sdm/src/inst/methods/sdm/fda.R   

GDM 7.53 4 Generalised dissimilarity 
modelling 

Specialized program, uses Arcview and 
Splus  www.arcgis.com   

GDM- SS 7.38 6 Uses community data Specialized program, uses Arcview and 
Splus  www.arcgis.com   

LIVES 10.22 14 Regression splines Specialized program     

MARS 8.92 8 Regression splines R, mda package https://cran.r-project.org/web/packages/mda/mda.pdf (Mateo et al., 2010)  

MARS -
COMM 6.15 1 Regression splines R, mda package https://cran.r-project.org/web/packages/mda/mda.pdf (Svenning et al., 2015)  

MARS-INT 9.72 13 Regression splines; 
Interaction allowed R, mda package https://cran.r-project.org/web/packages/mda/mda.pdf   

BRT 6.2 2 Boosted regression trees R, gbm package https://cran.r-project.org/web/packages/mda/mda.pdf (Elith et al., 2008)  



15 
 

Maximum Entropy 

 

Maximum Entropy is a principle from mathematics that has been applied in a large spectrum of fields 

such as finance, astronomy and the medical industry (Anderson et al., 2006), and is the principle 

applied in the program MaxEnt. A maximum entropy state in mathematics is considered to be the 

closest to uniform and evenly spread, derived from the known constraints relevant to the subject 

(Phillips et al., 2004). The maximum entropy principle only bases predictions on information known 

about the subject/species such as environmental variables, occurrence records and biotic interactions 

(Jaynes, 1986), with no initial assumptions made that are not justified by the information gathered. It 

provides a suitable approach when trying to calculate a species niche due to the many unknown/ 

unmeasurable variables that constrain a species. A distribution with the largest remaining uncertainty, 

consistent with known constraints is said to have maximum entropy. To simplify, the distribution said 

to have maximum entropy, is the one that makes the least claim to being informed beyond the data 

gathered to construct the model framework. Therefore, no initial assumptions or bias are 

incorporated within a model. 

MaxEnt 
 
MaxEnt is the program that incorporates a general-purpose machine learning method and applies the 

maximum entropy methodology to environmental and observational datasets. MaxEnt has the ability 

to make inferences from incomplete data, capable of using presence only observations with predictor 

variables and able to handle a vast amount of data at one time. This means it has become widely used 

for SDMs in numerous fields (Phillips et al., 2004). An advantage of using presence-only observations 

is that the data is removed from any bias that could be created from unreliable absence records 

(Jimenez-Valverde, 2008). Further explanations on this sort of bias are explained later. The MaxEnt 

probability distribution follows a concise mathematical definition, therefore the results are easy to 

understand, interpret and amenable for analysis. MaxEnt is also a generative approach that uses the 

environmental data from across the study area rather than discriminative, which can be an inherent 

advantage when the amount of training data are limited (Phillips & Dudík, 2008; Phillips & Elith, 2013). 

Another advantage of Maxent is that the program is able to use both continuous and categorical 

(feature data) and can distinguish the interactions between them; meaning a broad range of variables 

can be applied within the model (abiotic/biotic). MaxEnt and its use of maximum entropy help remove 

bias from a sensitive model with options to create constructive analytical work, both of which are vital 

in producing work which others can interpret and progress from (Phillips et al., 2004). A detailed 

description of MaxEnt is available from Phillips et al., (2008).  
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For species distribution modelling in MaxEnt the geographical region in the study is considered the 

space which a distribution, and in essence a niche is defined. The projection layer can be larger or 

differ climatically, dependent on the purpose. The environmental layers are considered the available 

abiotic and biotic variables, and the occurrence localities are defined as sample points, from which the 

abiotic/biotic data are sampled from (Phillips et al., 2004). When producing SDMs in MaxEnt, the 

program produces a probability distribution over the pixels in the grid, starting from the uniform 

distribution and repeatedly improving using the maximum entropy method to fit the data. The 

probability it assigns to each pixel is typically very small, as values must sum to 1 over all the pixels in 

the grid. 

A few drawbacks with MaxEnt have been mentioned in other studies that relate to the difficulties 

surrounding presence-only modelling and bias that can be introduced from using background data 

(Yackulic et al., 2013). However, it is acknowledged in other studies that bias can be incorporated 

within absence data as well (Phillips et al., 2009). Another possible drawback that affects the accuracy 

of presence only modelling relates to biases incorporated in the occurrence localities. Using remotely 

sensed datasets rather than field-based observations can help address location bias by providing a 

more complete dataset available for the study area and reducing sampling bias (Arnold et al. 2014). 

This should help remove some of the bias associated with presence only modelling. Phillips et al. 

(2006) also acknowledges that model validation tools within MaxEnt are limited and should be paired 

with external evaluation methods to validate their models such as null hypothesis etc. Chakraborty et 

al. (2011) also describes MaxEnt as more black-box like than better-known statistical analyse, which 

can lead to ill-informed interpretation of results based off misinformed models. Another limitation is 

the possibility of over-fitting, limiting the capacity of the model to generalise well to independent data. 

The ‘regularization multiplier’ parameter in MaxEnt aims to address this by limiting the complexity of 

the model and generating a less localized prediction (Phillips & Dudík, 2008). 

Options in MaxEnt 
 
In MaxEnt users are able to select options that treat the variables entered differently. These 

alternative options in MaxEnt are called features. The features available are; Linear; where continuous 

variables should be close to their observed values (their mean at occurrence localities). Quadratic; 

where variance of continuous variables should be close to observed values. Product; where the 

covariance of two continuous variables should be close to observed values. Threshold; where the 

proportion of the model that has values above a threshold for a continuous variable should be close 

to observed proportion. Hinge; linear features truncated at threshold and Binary; where the 

proportion of each category in a categorical feature should be close to the observed proportions. To 
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illustrate, if we use precipitation as a predictor, the linear feature class ensures that the mean value 

of precipitation where the species is predicted to occur approximately matches the mean value where 

it is observed to occur. A quadratic feature constrains the variance in rainfall where the species is 

predicted to occur to match observation. A product feature constrains the covariance of rainfall with 

other predictors and is equivalent to interaction terms in regression (when linear features are also 

included). Threshold features make a continuous predictor binary by generating a feature whose value 

is 0 below the threshold and 1 above. Hinge features are like threshold features, except that a linear 

function is used, instead of a step function. All features are rescaled to the interval [0,1] to make the 

coefficients comparable. 

MaxEnt has three run types for users to choose from; Bootstrap, Subsample and Cross validation (k-

fold). By default, the replication method used is cross-validation, where the occurrence data are 

randomly split into a number of equal-sized (k) subsets groups called “folds”. Models are created by 

withholding each fold in turn, the remaining folds are then used for evaluation.  Cross-validation has 

an advantage over using a single training/test split: it uses all of the data for validation, thus making 

better use of small data sets. Subsample is an alternative replicative run type. It is a renamed jackknife 

approach (avoiding confusion with jackknife for predictors). The subsample method repeatedly splits 

the presence points into random training and testing subsets. With this method, you can set the 

number of replicates and the percentage to be withheld from each replicated run. This method might 

be ideal for modellers who wish to specifically assign a percentage of data to withhold for testing and 

to control the amount of repetitions the model produces. This type of replication run is suited for 

modellers who have a larger occurrence dataset for their species of interest. Lastly bootstrapping; this 

model selects its training data by sampling with replacement from the presence points, with the 

number of samples equalling the total number of presence points.  With bootstrapping, the number 

of presence points in each set equals the total number of presence points; therefore, the training 

datasets will have duplicate records. This method is also preferred by modellers with a small 

occurrence dataset as MaxEnt tests the model with occurrences that may have been used to train the 

model. 

Model Validation 
 
Model evaluation methods are used in SDMs as they evaluate the ability of a model to discriminate a 

presence from an absence, creating a challenge when using presence only data. Fortunately, methods 

such as r, KAPPA, AUC and sensitivity & specificity analysis can be applied to presence and background 

points/pseudo absences data. As the model distinguishes the available environment for the species, 
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it can determine the non-presence locations as absences. Below are some of the most common 

methods used: 

Jackknife 
 
One method used for model validation is a Jackknife test. Jackknifing involves exclusion of variables in 

turn; a model is then created with the remaining variables. Another model can then be created using 

each variable in isolation. This method allows one to determine which variables show high importance 

within the model. 

AUC 
 
Area under the curve (AUC) is another method commonly used for model validation of SDMs. The area 

calculated is that under the receiver operating characteristic (ROC) plot, originally a method developed 

in fields of medical diagnosis. The axis of the ROC plot comprises of true positive rate on the y-axis 

(Sensitivity) and false positive error rate on the x-axis (1- Specificity). Values are determined using 

each possible value of threshold probability. The values in which the threshold increases by can be 

set, and usually increases in steps of 0.01, i.e. 0.01-1. Once the AUC is calculated by summing the area 

under the ROC curve. The values help evaluate the model and its accuracy. AUC values can range from 

0-1.0; 0.5 taken as random predictions means the model is performing no better than predicting 

randomly. AUC values that range 0.5-0.7 are considered poor in terms of model performance, 0.7-0.9 

adequate and >0.9 being high (Manel et al., 2001). AUC is a method that has been used frequently to 

evaluate SDM predictive performance. The AUC alone does not give a complete assessment due to 

MaxEnts dependence on the unknown real species occurrence. Therefore, should be coupled with 

other evaluating methods such as the null hypothesis (Raes and Steege, 2007).  

Pearson correlation coefficient 
 
The Pearson correlation coefficient (r) is another method used for model validation. Also known as 

the biserial (bivariate) correlation, when one of the binary variables is used as a threshold independent 

measure of the predictive performance of SDMs (Anderson et al., 2006). While the previously 

described AUC is a ranked based measure, the (r) coefficient takes into account the degree in which 

prediction varies linearly with the observation. As the Pearson correlation coefficient measures the 

linear association between the observations (test) and predictions, it has been suggested that it is 

sensitive to the effect of varying relative sampling intensity in the training data (Phillips et al., 2008). 

Variations of this method are used where concordance measures such as observation data are applied. 
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Due to the non-parametric nature of variables such as these the rank correlation (Spearman’s) method 

is more plausible for evaluating SDMs (Pineda & Lobo, 2009). 

Kappa 
 
Kappa is another method used to measure predictive performance, though becoming less popular. 

The kappa value is derived by calculating the differences between observed and chance. Kappa was 

widely used in SDM research however more recently the Kappa value took criticism for being 

“inherently reliant” on prevalence (Lantz & Nebenzahl, 1996). It has been suggested that this sort of 

dependency introduces bias. Therefore, although Kappa has been used in species distributions it is 

becoming less popular due to its sensitivity to prevalence (Segurado & Araujo, 2004; Anderson et al., 

2006). It has also been suggested to be insensitive to prevalence under certain conditions, hence the 

criticism this method has received. Neither (r) nor Kappa have been used in this study as evaluation 

methods. However, these are two commonly used principles used for SDM validation.  

 

Sensitivity and Specificity analysis 
 
Sensitivity and Specificity are considered statistical measurements that represent how well a model 

predicts its binary classifications (presence/absence), (Liu et al., 2013). This binary classification test is 

commonly used in the medical field. Sensitivity, also known as the true positive rate measures the 

proportion of actual positives that are correctly identified as such (the percentage of presence 

locations that where correctly identified as presences). Specificity, also known as the true negative 

rate measures the proportion of absences which where correctly identified as such (the percentage 

of absent locations that were correctly classified as absences). Both sensitivity and specificity are 

directly linked to the concept of type I and type II errors. A type I error (false positive rate) is a rejection 

of the null hypothesis. This is when a model predicts a presence in a location considered unsuitable. 

A type II error (false negative rate) is the failure to reject a false null hypothesis. Essentially this is when 

a model predicts an absence in a location that is considered suitable.  
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Confusion Matrix 

    Data Set 

Predicted 

(Model) 

  Presence Absence 

Presence a b 

Absence c d 

 

 

Sensitivity =  𝑎𝑎
𝑎𝑎+𝑐𝑐

 Specificity = 𝑑𝑑
𝑏𝑏+𝑑𝑑

  

False positive rate (α) = type I error = 1 − specificity  

False negative rate (β) = type II error = 1 − sensitivity  

A perfect performing model will measure 1 (on a scale of 0-1). This represents 100%, which means 

predicting all presences in the presence group. If we look at the sensitivity formula, 100% means a = 

a+c.  When models specificity is valuated at 1, representing 100%, it shows that the model predicts 

absences where the data shows absences. Looking at the specificity formula, 100% means d = b+d. 

 

Null hypothesis evaluation 
 

A null hypothesis evaluation is a principle used by (Raes & Steege, 2007). The null model methodology 

is a way to measure whether the SDMs, produced with presence only data, differ significantly from 

what would be expected by chance. This is achieved by creating random observational datasets and 

seeing how they compare within a model. More details on this method are available in the 

methodology. 

Datasets used in SDMs 
 

Environmental datasets (predictor variables) 
 
Environmental datasets are vital in distribution modelling; the types of data are selected on the 

ecological assumption that they have a direct or indirect correlation with the species, or are related 

with other variables that show correlations. In environmental datasets, the land is classified into 

multiple explicit groups such as annual temperature, annual precipitation and lowest temperature. 

This means one point on a map represents multiple variables. Data such as these are usually available 
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in two formats; vector and raster. They often vary in detail/resolution and scale depending on the 

source and time scale required. These datasets are amenable for their use in GIS programmes in a 

variety of ways, such as transformations. 

Large environmental datasets such as global climate datasets are widely available; usually these 

datasets are constructed from station climatological averages. A recent form of a global climate 

dataset is WorldClim (www.worldclim.org). Hijmans et al., (2005) developed the WorldClim database 

of climate surfaces, with a 30 arc second spatial resolution. It compiled monthly averages of climates 

measured at weather stations, mostly for the 1950–2000 periods. The datasets consist of 19 variables 

listed in the method section of this study. The interpolated climate layers were compiled of databases 

by the Global Historical Climatology Network (GHCN), the FAO, the WMO, the International Centre for 

Tropical Agriculture (CIAT), R-HYdronet and a number of additional minor databases for Australia, New 

Zealand, the Nordic European Countries, Ecuador, Peru, Bolivia among others. 

Past climatic datasets can also be sourced from WorldClim. The last glacial maximum (LGM) climatic 

database (~21,000 years BP) was produced by the Paleoclimate Modelling Intercomparison Project 

Phase II (PMIP2). The last interglacial (LIG) climatic database (~120,000 -140,000 years BP) is an 

independent source, where the data was modelled for use in a project. Otto-Bliesner et al (2008) 

produced climate simulations for the LIG with a global, coupled, ocean-atmosphere-land-sea-ice 

general circulation model (NCAR) Community Climate System Model (CCSM). 

Observational Data 
 
Databases of animal specimens have been available for centuries preserved in the form of specimens 

in museums, providing a documented historical record of occurrence of species (Chapman, 1999). It 

is estimated that there are up to 3 billion records held in this form, each with an associated collection 

event, describing the time and place the specimen was found. Traditionally these records (adhoc) were 

used for taxonomic purposes. Digitalisation of such records has enabled observational data to be 

increasingly available due to improved computer processing, data digitalisation and storage capacities. 

Such georeferenced occurrence records are often derived from field surveys, designed to study a 

species distribution for mapping. The renewed interest in using such records in biogeographic studies 

such as distribution modelling has caused debate on data quality (see next chapter). 

Another source of observational data is survey data, where species are observed in an area of interest 

and recorded within a given time period. A study produced by Valinia et al (2014) used survey data 

where all individuals (fish) were collected in the field and used to create species distribution models. 

Another study collected survey data of a North African Lizard to be used in predicting suitable habitat 
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(Kaliontzopoulou et al., 2008). Data quality is important to SDMs due to the implications poor quality 

data can have in regards to over/ under estimating populations (Araujo & Guisan, 2006). A common 

disadvantage of survey data is the variation in sample intensity, both spatially and temporally meaning 

species may be unobserved, hence creating false negatives. The types of the errors that produce poor 

quality observational data are discussed in the next chapter.  

The introduction of digitised observation data and the accessibility of such data via the internet has 

allowed observational data to become more available. Digitalised data has contributed hugely in the 

increased amount of studies in conservation planning, reserve selection and climate change studies 

that incorporate SDMs. The majority of species observational data that are collected and used for 

SDMs can be classified as presence only data with each species observation are given in longitude-

latitude coordinates.  

It has been suggested that sampling a large geographical region could potentially increase the amount 

of fundamental niche that is represented. This is based on the assumption that in a larger study area 

spatial variation exists in community composition. This allows a greater number of biotic interactions 

to be incorporated that are difficult to record (Peterson & Holt, 2003). This idea stems from the 

thinking that presence records are imprinted by all the factors that constrain them (both abiotic, biotic 

and dispersal), therefore factors that correspond with absences (Manel et al., 2001). It is thought that 

if a species is absent from a potentially suitable location, due to local extinction for example, the 

imprint of that absence is still found in the distribution of the presence records. For example, if a 

population is affected due to over predation, an unknown biotic variable, the effect will be indirectly 

represented in the distribution, without absence records and without predator occurrence records. 

The pattern of presence will suggest the most suitable areas for a species regardless of absence data; 

therefore the surveying size of the study area can affect the impact of this theory (Manel et al., 2001). 

Enough area should be selected in the model to account for these missing absence records. If the area 

selected is too large in comparison to the habitat, then it may lead to the model producing false 

absences or false pseudo absences, affecting the models predictive performance. Idealistically the 

model should cover the fundamental niche, an area quite elusive without any previous studies on the 

particular species. 

Many modelling techniques are purposely designed for presence only data. These incorporate 

absences by different methods. One method determines background points, randomly sampled from 

background data and uses them with the presence records. This method is found in some packages 

such as GARP, ENFA, MaxEnt and regression methods (Elith & Leathwick, 2009). Background data are 

not attempting to guess at absence locations, but rather to characterize environments in the study 
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region (Phillips et al. 2009). In this sense, background is the same, irrespective of where the species 

has been found. Background data establish the environmental domain of the study, whilst presence 

data should establish under which conditions a species is more likely to be present than on average. 

Background data are not attempting to guess at absence locations, but rather to characterize 

environments in the study region (Phillips et al. 2009). MaxEnt assumes that the species is equally 

likely to occur anywhere in the sample region, which assumes that every pixel has the same probability 

of being selected as background.  

A closely related but different concept is “pseudo-absences”, also used for generating the non-

presence class for logistic models. This refers to the situation where it is unknown whether a species 

occurs there or not.  In this case, researchers sometimes try to make informed decisions where 

absences might occur within the background data based on some prior distribution knowledge; they 

may sample the whole region except at presence locations, or they might sample at places unlikely to 

be suitable for the species.  

 

Quality & accuracy with species observational data 

 

Specimen data can be broadly categorised into three dimensions; space, time, and identity (Wieczorek 

et al., 2004), all of which can incorporate issues of data quality. Issues of data quality can be split 

generally into error and bias, although the two are connected. Bias refers to problems intrinsic with 

the data not encompassing the full environmental niche whereas error refers to a mistake in the data 

such as misidentification or human error in georeferencing. Error can result in bias incorporated if not 

identified as such.   

 

Error in species observational data 

 

Error refers to human errors; one example would be a taxanomic misidentification of a species, which 

could lead to an occurrence being identified at an incorrect location due to a misidentification of a 

specimen (Wieczorek et al., 2004). Another error in observational data is spatial error; this stems from 

georeferencing errors, which are imprecisions of an observation record or error in the original location 

of a record. Generally specimen data from museums have typically been recorded as textual 

descriptions with geographical coordinates often added after the collecting event. Adding the 
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coordinates after the collecting event can cause many errors; human error due to incorrect 

coordinates selected or copied (Wieczorek et al., 2004). Alternatively, the textual information of a 

species incorrectly imputed, with location descriptions being outdated. Generally, when field surveys 

obtain the observational records there is rarely any record of the procedures taken, the assumptions 

made or any uncertainties proposed when generating the coordinates (Chapman, 2004). 

It should be noted not all data of low precision is deemed low quality, what are important is if the data 

are fit for the purpose for what they are being applied to. Chapman (1999) notes that errors in 

observational data are common and to be expected. However, the use of Global Positioning System 

(GPS) in field surveys has vastly increased and hoped to help aid in the reduction of errors incorporated 

in terms of geographical error. Although studies have shown to suggest errors with data collected with 

GPS (Hijman et al., 1999). 

 

Bias in observational data 

Sample Bias 
 
Bias can be incorporated into a model through a species’ observed population, whether that is a poor 

sampled area or a species that is hard to detect. This means bias can be introduced through presence 

and presence/absence records alike. Species observational data may incorporate bias due to 

collectors sampling in areas they would expect to find what they are looking for, sampling where 

conveniently accessible or when collected opportunistically. Collectors have often been found to 

sample along rivers, roads, areas of high diversity and areas easily accessible, resulting in a neglection 

of inaccessible areas and restricting the number of observed populations (Chapman, 2004; Hijman et 

al, 1999). This type of bias is considered to have the potential of a much stronger impact on presence- 

only models rather than presence-absence models (Phillips et al., 2009). 

Issues around accuracy can also occur when datasets are particularly coarse, and the low resolutions 

affect accuracy of the geographic locations as they may deviate from the true observed area. The 

availability of Global Positioning System (GPS) has dramatically improved issues with accuracy, and 

should reduce geographical errors when assigning co-ordinates to environmental datasets. However 

Hijman et al., (1999) found even data associated with GPS can have errors.  

There are arguments over absence records, as absence records are considered less reliable and can 

incorporate bias. The reason they are considered to incorporate more bias is that they are considered 

more difficult to realistically definitively say whether a species is absent in an area and difficult to 
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determine the correct geographical range of a species distribution. Generally, less time is spent 

identifying absence locations when compared with identifying presence locations. 

Ecological bias 
 

Generally it is assumed a species population is at equilibrium with its environment and all constraining 

factors. However bias could be incorporated by assuming an equilibrium population when in fact it is 

not, through invasion or disease for example. Therefore further predictions are based on wrong 

assumptions, introducing bias.  

It is suggested presence-only records have potential to incorporate low bias if sampled correctly, as it 

is thought absences bear strong imprints of biotic interactions and dispersal constraints (Manel et al., 

2001; Phillips et al., 2009) which are hard to quantify and therefore easier to incorporate bias from. 

To try reduce the bias incorporated when collating observation locations a systematic sampling 

approach could be used, with notes made about any areas deemed unsatisfactory and any 

assumptions made. If observational data are not reliable then the bias is ingrained into the original 

data itself, adding incorrect assumptions. Potential for ill-informed predictions to be made about 

suitable and unsuitable habitats.  

If sample error/bias has not been accounted for or considered a factor, then the model might be a 

closer fit to that of the observational data rather than to the true distribution of the species (Phillips 

et al., 2009). Jimenez-Valverde (2008) suggests that presence only data have the potential to alleviate 

us from the problems that surround absence records. The study emphasises that absences can carry 

strong imprints on factors such as dispersal constraints and biotic influences. These factors are not 

easily measured or quantified, suggesting that no abiotic factors are free from biotic interactions.  

 

Species distribution in Paleobiology 

Past distributions of organisms and their abundances are key matters for not only paleobiology but 

also biology and geology. How an organism's spatial distribution changes through time is fundamental 

to understanding the evolution of biodiversity in geographic patterns (Lomolino, 2010), as well as the 

conditions that are required to preserve a species niche (Willis et al., 2010). A major problem when 

modelling a species past distribution is the lack of, or incomplete information available. A lack of data 

is also a problem when modelling current distributions, though it is more apparent when modelling 

past distributions. Climatic variables that predate the LIG (140,000 yrs BP) are hard to source and 
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usually coarse as they are essentially predictions themselves. Another problem when modelling a 

species past (paleo) distribution is the assumption that the niche constraints of the ancestral species 

are similar or identical to that of the current species. Generally, data are unavailable to enable 

researchers to quantify if/how much a species has evolved over millions of years, therefore it is 

generally an assumption most researchers use when modelling the paleo distribution of a species.   

The use of SDM’s to predict future or ancestral distributions 

Predicting a species distribution dating further back than the LIG & LGM can be achieved by using LGM 

and LIG datasets. These datasets act as a surrogate to earlier GM and IG periods for which data are 

unreliable (Knowles et al., 2007). This is possible under the assumption that glacial cycles follow a 

cyclic pattern that corresponds to Earths circumnavigation around the Sun; this is known as the 

Milankovitch theory and is discussed later in the study (Hewitt, 2000; Kozak & Wiens, 2010). The 

climatic tolerances and quantifiable variables that impose constraints on a species can be measured 

using specific programs such as MaxEnt, using the present day climate data, a 50-year average (1950-

2000). Once the constraints (biotic/abiotic) have been defined and quantified, a predicted digitalised 

niche is created. This predicted digitalised niche acts as a framework to which the LIG & LGM datasets 

can be projected on to. Inferences towards conditions and potential suitable habitats during earlier 

glacial maximum/interglacial periods can then be made based off the LIG and LGM predictions; hence, 

the potential suitable habitat during a glacial cycle in general can be predicted. 

Paleoclimate and speciation within Africa 

 

Evolutionary theories for speciation events within Africa state that important evolutionary changes 

during Pliocene-Pleistocene interval (the last 5.3 Ma) were potentially mediated by climate variability 

within Africa, due to recurrent arid-humid climate cycles (deMenocal, 2004). Analysis of mammal fossil 

data indicate changes in African faunal assemblage and possibly speciation during the Pliocene-

Pleistocene, with suggested varied and open habitats at 2.9–2.4 Ma and after 1.8Ma (deMenocal, 

2004). These intervals correspond to the emergence of the hominid genes Homo. Together, the 

African faunal and paleo-climatic records suggest three restricted intervals 2.9-2.4 Ma, 1.8-1.6 Ma and 

1.2–0.8 Ma, when shifts towards drier African conditions were accompanied by changes to African 

faunal assemblages and perhaps speciation. These large oscillations in climate producing large 

changes in flora and fauna can also be traced back into the Tertiary (Hewitt, 1996).  

Some consistent patterns of paleoclimate variability have been identified within subtropical Africa 

(deMenocal, 2004). The first is that orbital-scale African climate variability continued throughout the 
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Pliocene and in some cases extended into the Miocene (5.3 – 23.03 Ma) and Oligocene (23.03 Ma+) 

(deMenocal, 1991). The second was that large-amplitude African aridity cycles corresponded to the 

amplification of high-latitude glacial cycles (deMenocal, 1995; deMenocal et al., 1993) and another 

was evidence for 105 - 104 year ‘packets’ of high and low-amplitude paleoclimate variability being 

paced by orbital eccentricity (deMenocal, 1995).  

Marine dust records are used to determine climatic conditions through time, and are used in many 

studies as a template towards paleo climates (Knowles et al., 2007). Due to wind patterns across North 

Africa, sediment is carried from the North/North West of Africa then released into the sea. Sediment 

such as dirt, vegetation and pollen are swept out to sea, where it is deposited on the seafloor. These 

core samples give insights to how an environment may have been altered in the past due to the 

recorded fluctuations in dust and pollen for example, whether it is an indication to changes in 

vegetation (pollen), or an increase in dust indicating aridity (deMenocal, 2004). Any anomalies can 

then be examined to see if there is correlation between a species divergence time and proposed 

climatic oscillations. Marine dust records are essentially core sample records that enable the study of 

Plio-Pleistocene African climates at a large range of timescales (106-103 years), (Trauth et al., 2009). 

Marine sediments accumulating off the western and eastern margins of subtropical North Africa have 

provided some of the most convincing evidence for oscillating arid-humid climate cycles in North 

Africa, with progressive step-like increases in African aridity during the late Neogene and Pleistocene 

(deMenocal, 2004). This African paleoclimate variability emphasises the importance of climatic 

instability as a mechanism for natural selection (deMenocal, 2004). These fluctuations in dust/pollen 

provide evidence to suggest changes in vegetation, which have been shown to affect a lizard’s success 

within an area (Dickman et al., 1999). 

Although some of the suggested climatic fluctuations fall earlier/later than the divergence times of 

some species discussed in the study, they are still evidence to suggest climatic oscillations throughout 

time that some species may have been subjected to. Oscillations that have potential to alter a species 

suitable habitat and therefore distribution. Many more shifts between arid and humid phases have 

also been suggested (Beghin et al., 2015; Chumakov, 1984; DeMenocal, 2004; Griffin, 2002; Grootes 

et al., 1993; Kuechler et al., 2018). These changes in climate have the potential to effect a species 

distribution through fragmentation, isolation, diversification and possibly extinction in parts.  

Quaternary ice ages are known to have had genetic consequences for many species (Bell et al., 2010; 

Bush & Oliveira, 2006; Hewitt, 2000; Knowles et al., 2007; Walstrom et al., 2012). From the beginning 

of the Quaternary (2.4 Ma) until 0.9 Ma ice sheets have advanced and receded with an approximate 

41-Ka cycle (linked to the Earths Axial tilt in relation to its plane of orbit around the sun). Thereafter 
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these cycles have been approximately 100-Ka (linked to the Earths eccentricity, simply, the shape of 

the Earth’s orbit around the Sun) and have become increasingly dramatic, which involved changes of 

as much as 7–15°C over a few decades, which then lasted hundreds of years. The Croll-Milankovitch 

theory tries to explain this cycle and proposes that the Earth’s orbit around the Sun is the “pacemaker” 

of the ice ages (Hewitt, 2000). The main orbital eccentricity has a 100-Ka cycle, deviation in the Earth’s 

axial tilt has a 41-Ka cycle, and precession due to the axial wobble has a 19-23-Ka cycle. All these 

changes to the Earth’s rotation around the Sun adjust the insolation of the Earth and the energy it 

receives. A lot of this energy is diffused/transported by the oceanic circulation system and the 

interaction of orbital variation and currents leads to significant climate changes. There is also evidence 

to suggest that prior to 2.8 Ma subtropical African climate varied at roughly 20-Ka cycles 

(corresponding to Earths precession), which has been linked to African monsoonal variability. Humid–

arid shifts in climate are also suggested to oscillate in approximately 21Ka cycles in North Africa during 

the Miocene, corresponding to Earth’s precession (Hewitt, 2000), again supplying potential evidence 

for habitat disruption due to humid-arid oscillations (Griffin, 2002). After 2.8 Ma, the African climate 

varied primarily at longer 41 Ka cycles. After 1 Ma eolian variability shifted towards the longer and 

larger 100 Ka cycles.  

The “variability selection hypothesis” and “habitat specific hypothesis/savannah hypothesis” 

emphasize the importance of either environmental instability or paleoclimatic variability as a 

mechanism for natural selection (deMenocal, 2004). Climatic fluctuations had the potential to make 

species extinct over large areas of their habitat, to disperse species to new locations and to reduce 

species to small refugia. This pattern of populations retreating/fragmented into refugia then 

expanding is likely to occur several times, due to the glacial patterns brought on by the Earth’s 

circumnavigation of the Sun. During times when populations were restricted/isolated to small refugia 

evolutionary independence will occur due to the restriction of gene flow. This could potentially lead 

to fewer genes successfully exchanged between the two populations during secondary contact. 

Eventually the two populations will become incompatible with each other, as they cannot mate 

successfully, resulting in the two populations regarded as two separate species (Hewitt, 2000). This 

type of speciation is known as allopatric. Allopatric speciation is based on physical isolations that 

effectively create barriers to gene flow, in many cases geographic isolation is the cause of the genetic 

and ecological divergence. The allopatric speciation concept was originally proposed by Mayr (1942), 

and appears relevant to many northwest African lizards.  

Geographical isolation can occur in various ways, one is the dispersal across a physical barrier such as 

the ocean between two islands, followed by colonization of new habitat (Censky et al., 1998). The 
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second is vicariance, in which a species range is fragmented by the appearance of a new physical 

barrier, which could be as small as a road or as large as the ocean, or in the case of a species in this 

study (A. impalearis) the Atlas Mountains (Brown et al., 2002). A species range could also be split due 

to drastic changes in environmental variables, whether they are biotic or abiotic. Changes in 

environment could be caused by glacial patterns that expanded and receded ice sheets worldwide, 

this pattern of glacial expansion then retraction could cause vicariance speciation through the creation 

of a natural barrier. Vicariance can be a slow process, such as the rise of a mountain (Atlas), to rapid 

events such as manmade disruptions (road) or lava flow. 

Six species were included in this study, but population divergence times are unavailable for every 

species, as genetic studies have not been done to estimate such times (T. weigmanni). Genetic studies 

in Morocco and northwest Africa have identified genetic splits within Chalcides mionecton, Agama 

impalearis, Messalina olivieri, Chalcides ocellatus and Saurodactylus mauritanicus, all of which are 

used in this study. Most species have recognised, distinct subspecies that originate from a common 

ancestor (Barata, 2012; Brown et al., 2012; Harris & Rato, 2008; Kapli et al., 2014; Kornilios et al., 

2010). The estimated divergence times that are available for the northwest African species in this 

study date between 1-15 Ma. Reliable climatic data that dates back 15 Ma are unavailable (Elith & 

Leathwick, 2009), hence the LIG and LGM datasets are used as the climate models to act as a surrogate 

to earlier interglacial and glacial maximum periods which surround the divergence times of species 

discussed. 

 

Paleoclimate studies around suggested speciation times 
  
The Calabrian is a subdivision of the Pleistocene Epoch, and covers the time period for the suggested 

divergence of C. mionecton (1.43 Ma) and C. ocellatus (1.6-3 Ma), (Brown et al., 2012; Kornilios et al., 

2010). Two periods of arid conditions suggested by deMenocal (2004) roughly coincide with these 

estimated divergence times. DeMenocal (2004) indicates fundamental shifts in African climate around 

1.8 Ma and 1.0 Ma (deMenocal, 2004). Fundamental shifts in the African climate such as the ones 

described above could cause major changes to a landscape. Natural barriers such as rivers or cut off 

islands due to “hyper” humid phases discussed earlier may have also been possible. The African faunal 

and paelo-climatic studies suggest two other restricted intervals (1.8-1.6 Ma, 1.2-0.8 Ma) around the 

divergence times of C.mionecton and C. ocellatus (1.6-3 Ma, 1.43 Ma). These shifts toward increasingly 

variable, drier African conditions were accompanied by some changes in African faunal assemblages 

(deMenocal, 2004). The apparent increase in African aridity at 1.5 Ma matches the progressive 
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vegetation shift from trees and shrubs to tropical grasses (Trauth et al., 2009; Seegalen et al., 2007). 

Changes in vegetation are a strong indicator of a drastic change in environment/climate, theoretically 

causing changes in habitat with potential to force a species to migrate/disperse or fragment. 

 

Within the North-western African clade the hotter/wetter climate of the middle Pliocene (3.6-2.5 Ma), 

suggested by Willis et al. (1999) quickly became colder and drier during 2.5-1.8 Ma (Webb and Bartlein, 

1992). Fragmentation of plant and animal populations have been suggested to correspond to these 

fluctuations, and supports the major diversification events of several animal species (Mouline et al., 

2008) with the evolution of arid-adapted fauna suggested to correspond to this aridification shift 

(deMenocal, 2004). Two species have estimated divergence times around the suggested climatic 

oscillations between the Mid-Upper Pliocene, M. olivieri (2.8 Ma) and C. ocellatus (1.6-3 Ma). These 

fundamental shifts in African climate are suggested to have initiated bursts of biotic change within 

Africa and are viewed to have favoured the evolution of arid-adapted fauna (deMenocal, 2004). 

Between 3.6 and 2.4 Ma, with a marked rise between 2.6 and 2.4 there is a documented remarkable 

decrease in the closed woodland and forest species and an increase in grassland species. This suggests 

climate change caused significant shifts in vegetation. Many of the first appearances between 2.5–3 

Ma were grazing species, this supports the idea that faunal changes were linked to increased aridity 

which corresponds to expanding grasslands (Vrba, 1995). Arid-adapted taxa are evident, with faunal 

changes between 2.9 and 2.4 Ma. 

One example of divergence being possibly linked to climatic oscillations within northwest Africa is a 

study produced by Brown et al. (2012). This study suggests there is no current evidence of unsuitable 

habitat between the two populations of C. mionecton, with a continuous pattern presently observed 

across the geographic space between the two subspecies (the southernmost four-digit sample from 

Cap Rhir and the adjacent five-digit sample from Taghazoute). This observed distribution pattern is an 

indication of secondary contact, with the two forms coming into contact without hybridization, an 

indicator towards significant genetic differences between the two populations, possibly due to 

allopatric speciation and the effect of restricted gene flow. This appears more likely than the 

hypothesis that divergence is due to an on-going restriction to gene flow mediated by a physical 

barrier such as the Atlas Mountains, as suggested by (Brown et al., 2002) for A. impalearis. Continuous 

patterns of distribution are observed for many of the species discussed in this study. This suggests that 

similar scenarios to C. mionecton may have occurred for the other species, which suggests speciation 

via allopatry.  
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As mentioned, it is unknown when all studied species/subspecies diverged (e.g no estimates are 

available for T. weigmanni). Therefore, any record/study that indicates a climatic fluctuation within 

NW Africa could have influenced a species discussed in this study. The fluctuation could have been the 

direct climatic event that initially caused populations to diverge, or another climatic oscillation that 

the already diverging populations were subjected to. Under the Croll-Milkankovitch theory of the 

Earth’s orbit around the Sun corresponding to changes in the Earth’s climate, we can infer that many 

climatic fluctuations will have occurred (minor and major), that species in this study may have been 

subjected to at some point. 

 

Last Interglacial Climate. 
 
The LIG is known as the last period of global climate warmth before the Holocene period, which 

occurred between ~120 Ka–40 Ka. However, there is some discussion on how long the duration of this 

period was (Cronin et al., 1999). The last interglacial is commonly understood as an interval with 

climate warm as or warmer than today (Kukla et al., 2002), with temperature sensitive species found 

in northerly regions reflecting this. Global sea levels were also suggested to be 4-6m higher (Cronin et 

al., 1999). A reconstruction of the LIG climate (CLIMAP, 1984) calculated a mean annual temperature 

increase of around 1°C. However, another study suggests that at the very beginning of the interglacial, 

between ~130 Ka - 127 Ka, the temperature climbed as much as 3°C higher than today (Kukla et al., 

2002). Seasonality of precipitation was also predicted during the early stage of the LIG (ca. 130–119 

Ka), with mineralogical, macrofossil, and pollen records suggesting a shift from mire to lacustrine 

conditions. This was simultaneous with the expansion of sclerophyllous vegetation (evergreen) and 

the presence of acicular aragonite, which indicates highly evaporative summer conditions (Milner at 

al., 2012). Milner (2012) also suggested that after the early LIG, summer temperatures and 

evaporation decreased and precipitation became less seasonal. At the end of the last interglacial 

period, over 100,000 years ago, glaciers grew, sea levels dropped, and deserts expanded (Kukla et al., 

2002). These changes in temperature and precipitation help support the theory of arid–humid 

transitions and changes in vegetation around earlier periods, produced by P. DeMenocal (2004). The 

same transition occurred many times earlier, linked to periodic shifts of the Earth’s orbit around the 

sun (Hewitt, 2000; Kukla et al., 2002). 
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Last Glacial Maximum Climate 
 
Paleoclimate work suggests the LGM occurred approximately 21 Ka BP, with a duration of 23-18 Ka, 

and was generally associated with drier/cooler conditions than today (Otto-Bliesner et al., 2006). The 

LGM endured conditions considered generally drier in both hemispheres, with an 18% decrease in 

atmospheric perceptible water and an average precipitation decreasing from 2.49 mm per day to 0.25 

mm per day. These annual mean changes in precipitation reflect seasonal changes associated with the 

Milankovitch cycle of solar insolation (Otto-Bliesner et al., 2006). A precipitation time series shows a 

negative shift starting at about 30 Ka BP and ending at the LGM, with estimated precipitation values 

are about 15-20% lower than today (Gasse et al., 1994). A global cooling of 4.5°C was estimated to 

have occurred with greater glacial cooling in higher latitudes but a 2°C decrease in tropical regions. A 

sea surface temperature (SST) decrease of 1.7°C and a topical land decrease of 2.6°C on average have 

also been suggested (Otto-Bliesner et al., 2006). With lower tropical land and sea-surface 

temperatures suggested (Gasse et al., 1994). Maley (1996) used both palynological and 

biogeographical evidence to construct a map detailing the limits of lowland rain forest habitat during 

the Quaternary at high latitudes of Africa. It exposed how different the region was at this time, with 

grassland and savannahs cloaking the forested areas that are around today. The work produced by 

Maley, (1996) indicates very different habitat in comparison to what is found today, which supports 

changes in flora, topography and suitable habitat throughout Africa, supported by DeMeoncal (2004) 

that suggested changes in flora are recorded from arid adapted vegetation to humid adapted 

vegetation throughout Africa’s paleoclimate history.  

 

Opinions on the precipitation within north Africa/Morocco during the LGM differ between 

studies/models, some models predict wetter mean annual conditions (MRI, IPSL, GISS, CNRM and 

CCSM4), whilst others predict annual drier LGM conditions within Morocco (FGOALS, MIROC). The 

differences found between these studies may be the cause of certain climatic indicators being 

sensitive to seasonal precipitation. The reason seasonal precipitation may affect climatic indicators is 

because of the proposed fluctuation of precipitation within Morocco during the LGM (Beghin et al., 

2015). Beghin et al (2015) suggests higher precipitation within Morocco is based from multi proxy 

data, the study also indicates evidence of both semi-arid and temperate taxa found in the marines 

core, which supports the confliction of paleoclimate studies. This reflects the diversity of local climate 

and altitudes within a larger region, suggesting that precipitation is spatially dependent. The higher 

precipitation in Morocco/North Africa is due to the large-scale effect of the southward shift of the 

North Atlantic jet stream during the LGM (Beghin et al., 2015), supported in other paleoclimate studies 

(Kuechlet et al., 2018; Otto-Bliesner et al., 2006). Increased annual precipitation in northern Africa is 
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associated with increased monsoonal precipitation during July–October. Other paleoclimate studies 

also support this arid-humid fluctuation if north Africa/Morocco (deMenocal, 2004; Otto-Bliesner et 

al., 2006; Gasse& Campo, 1994). 

 

 

Climates associated between and within glacial extremes. 
 
In the African tropics and subtropics deglaciation (from the LGM) is said to have started around 17Ka 

(DeMenocal, 1995). This time is considerably earlier than the time glaciation occurred in the North 

Atlantic regions, indicating that the effects of glaciation were less severe in the tropics. A paleoclimate 

study indicated that the last deglacial period in Africa was not only sooner, but happened in a series 

of sudden conversions between arid and humid environments (Gasse et al., 1994). These sudden 

changes between arid and humid environments had the potential to have drastic changes to an 

environment over a short period.  

Major climatic events are suggested around 17-16, 15-14.5 and 11.5-11 Ka (Gasse et al., 1994); these 

arid-humid oscillations indicate that drastic climatic changes occurred within glacial cycles as well as 

between. DeMenocal, (1995) suggested that the North Western Sahara would have experienced much 

wetter conditions than today during interglacial periods, highlighting environmental changes with 

potential to alter a species suitable habitat. As deglaciation continued climatic conditions become 

wetter through North Africa when compared to today. Major dry spells are also recorded between 

~11-9.5 Ka, ~8-7Ka and ~4-3Ka (Gasse et al., 1994). These records again provide evidence for abrupt 

climatic fluctuations within deglaciation periods, and support theories of potential species divergence 

for species in this study due to climatic oscillations. Evidence also suggests conditions were much 

wetter than today in the North Western Sahara around 6Ka. A time period that fits between two dry 

spells previously mentioned, again portraying this pattern of arid-humid fluctuations. 
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Rationale 

Reviewed publications concerning the genetics of study species within this study have estimated 

speciation events within Moroccan Lizards that have occurred during the last 1.4–15 million years 

(Brown et al., 2002; Brown et al., 2012; Harris & Rato, 2008; Kapli et al., 2015; Kornilios et al., 2010). 

These study species show either intraspecific divergence or are recognised as recently-diverged sister 

species. Currently very few modelling studies have addressed the cause of the speciation events within 

Morocco, with some studies suggesting that speciation events could be climatically mediated through 

range shifts (Brown et al., 2012; DeMenocal, 2004; Knowles et al., 2007), whilst other papers suggest 

vicariance due to changes in physical barriers such as mountains (Brown et al., 2002).  

Paleo-climate studies have shown numerous climatic oscillations to have occurred in North Africa 

(Beghin et al., 2015; Chumakov, 1984; deMenocal, 2004; Trauth et al., 2009; Seegalen et al., 2007; 

Webb & Bartlein, 1992), with some of the suggested oscillations corresponding to estimated 

speciation times (Brown et al., 2002; Brown et al., 2012; Carretero et al., 2005; Harris & Rato, 2008; 

Kapli et al., 2015; Kornilios et al., 2010; Mattiucci et al., 2001). This supports theories of speciation 

events within North Africa to be climatically mediated (deMenocal, 2004; Otto-Bliesner, 2006).  

The aim of this study was to identify if changes in climate associated with LIG and LGM conditions had 

potential to change a species distribution, which may have led to climatically mediated divergence 

events. Climatic data that predate the LIG and LGM are considered too coarse to be effective in 

modelling past species distributions. Therefore, the LIG and LGM datasets are used as a surrogate to 

earlier glacial maximum and interglacial climates, under the Croll-Milankovitch theory that proposes 

the Earth’s orbit around the Sun is the “pacemaker” of the ice ages and the climate associated with 

them. Under the Croll-Milankovitch theory any patterns of fragmentation/isolation predicted are said 

to have been potentially repetitive patterns over millions of years. 
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Methods 
Species Studied 
 

Six species were selected for this study that all have distributions within Morocco. Previous studies 

have shown genetic divergence within lizards in this region (Brown et al., 2002; Brown et al., 2012; 

Harris & Rato, 2008; Kapli et al., 2015; Kornilios et al., 2010). This subsequently led to all six species to 

having identified subspecies. The six species possess quite different population sizes, locations and 

ranges within Morocco for variance between species and the habitat they inhabit. Some species have 

a large population with a broad geographical range (A. impalearis) whilst others may have a small 

population with a narrow geographical range (T. weigmanni). The distribution patterns between sister 

subspecies in the study also differ. Some share a continuous pattern with each other (C. mionecton) 

whilst others are geographically isolated from one another (C. ocellatus). Lizards are ectotherms and 

rely on their surroundings to keep warm, they are considered sensitive to temperature and other 

abiotic variables such as precipitation (Hertz et al., 1982), variables that are easily quantifiable and 

easier to source for modelling (WorldClim). Lizards are also considered to have low dispersal abilities 

which is a potential limitation for SDM’s, and often specific ecological niches, making them accurate 

indicators of past climatic conditions (Camargo et al., 2010). Paleoclimate studies also provide 

evidence of climatic oscillations around the speciation times for many species in this study (Chumakov, 

1984; deMenocal, 2000; deMenocal, 2004; Griffin, 2002; Trauth et al., 2009). Paleoclimate work on 

NW Africa will therefore help with the interpretation of results.  

Species observed within Morocco were chosen for this study because distributional data were 

available for this region. Each species was modelled using the same environmental layers and 

projected onto the same environmental layer (projection layers) this is done so all species will be 

affected by the same historical processes, beneficial in highlighting general historical events/general 

patterns that may have affected species in north Africa. The observational data for this study 

originated from Bons & Geniez (1996) derived from survey data.  
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The observation maps of the species used is this study are produced below and a table of information 

produced after. 

• Chalcides mionecton 

 

 

(Figure 1.0). Distribution map for Chalcides mionecton, sampled from (Bons & Geniez, 1996). 

C. mionecton was selected for this study as the distribution for this species is narrow, suggesting a 

small niche for the species. A recent study suggests that this species split into a distinct subspecies, C. 

m. mionecton and C. m. trifasciatus (Brown et al., 2012), with allopatric speciation suggested as the 

cause. The geographic variation in digit number has been used to describe two subspecies: The 

subspecies C. mionecton mionecton Böttger 1874 is referred to as the northern form because it is 

applied to populations from Tangiers in the north to Cap Rhir ~700 km to the south-west (Schleich et 

al. 2006). It is characterised by possession of four digits. The southern form, C. mionecton trifasciatus 

Chabanaud 1917, has five digits and has been recorded from Cap Rhir south to Foum Assaka (Bons, 

1959). The southern subspecies possesses 5 digits, but this state was also common in individuals from 

the extreme north. Only four digit specimens were found in between, giving a disjunctive pattern. 

Anatomically, four-toed C. mionecton mionecton possess a 5th metatarsal bone but lack distal or 

proximal phalanges for this toe.  
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• Chalcides ocellatus 

 

(Figure 1.1). Distribution map for Chalcides ocellatus, sampled from Bons & Geniez, (1996). 

C. ocellatus comprises well-defined sub species, with C. ocellatus subtypicus observed on the North 

coast of Morocco and C. ocellatus ocellatus observed inland in the South of Morocco. Similar to S 

mauritanicus the two subspecies are distant from one another with clear differences between them 

in terms of habitat i.e. coastal to inland, North-South, showing no continuous pattern.  

• Messalina olivieri (Audouin, 1829) 

 

(Figure 1.2). Distribution map for Mesalina oliveri sampled from Bons & Geniez (1996). 

In Morocco M. olivieri olivieri and M. olivieri simoni have a continuous pattern geographically, an 

indication that under certain conditions the species inhabit areas close to one another and gene flow 
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would be possible, a considerable difference in range size as well as population size between these 

two subspecies. The present continuous pattern is similar to C. mionecton.  

• Saurodactylus mauritanicus 

 

(Figure 1.3). Distribution map for Saurodactylus mauritanicus, sampled from Bons & Geniez (1996). 

 

S. mauritanicus was chosen for this study as it has quite a small distribution, particularly the subspecies 

mauritanicus. Presently the observed data shows that the two subspecies are distant from one 

another, an indication of a difference in niches between the two subspecies. This observed distribution 

is different to many of the species in this study such as C. mionecton and M. olivieri, which have a 

continuous pattern, a variation in size of distributions and a variation in patterns of distribution; this 

is why it was chosen for this study. S. mauritanicus are an extremely agile species and found only in 

sandy habitat.  
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• Trogonophis weigmanni (Kaup, 1830) 

 

(Figure 1.4). Distribution map for Trogonophis wiegmanni, sampled from Bons & Geniez (1996). 

T. weigmanni was selected as the species’ current distribution possesses both coastal and inland 

habitats for both subspecies and resides in small areas suggesting a specific niche. The two 

populations are observed next to one another producing a continuous pattern, suggesting under 

certain climatic conditions gene flow between the two populations may have been possible, a 

distributional pattern the ancestral species may have had. A study suggests the cause of divergence 

could be due to the rise of the Atlas Mountains during the Miocene (Sánchez & Escoriza, 2014).  

 

• Agama impalearis 

 

(Figure 1.5). Distribution map for Agama impalearis sampled from Bons & Geniez (1996).  
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The above figure shows Agama impalearis as one species, without the population being split into sister 

subspecies. A study indicates genetic divergence within the population (Brown et al., 2002), which suggests the 

two populations diverge around the Atlas Mountains in Morocco, the population was there for split manually 

around the Atlas Mountains for this study.Below is an image of how the split has been interpreted in this study. 

(The pink points represent Northern A. impalearis occurrence points while the yellow points represent 

Southern A. impalearis occurrence points) 

 

 
 

A. impalearis Boettger, 1874 was chosen for this study as the two populations of the subspecies span a large 

area geographically and therefore could incorporate a large variance of environmental variables. A. impalearis 

is presently widespread across Morocco suggesting a much broader niche in comparison to C. mionecton. This 

sort of diversity is important for the study as it allows inferences to be made about how different species with 

different sized distributions and constraints would have managed under LIG and LGM conditions. Genetic work 

on A. impalearis has also shown a genetic split, indicating past disturbances in the species population such as 

fragmentation (Brown et al., 2002). 
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(Table 2). The table below gives particular information on species discussed in this study. Ecology information was not available for every subspecies, with 
only ecological information on the species only. Divergence times also not known for every species in this study. 

Species Range description Elevation Divergence Ecology  

Mesalina olivieri olivieri Morocco, Algeria, Western Sahara, Tunisia, Libya, 
Egypt, Sinai, Israel, Jordan, S Iraq, N Saudi Arabia 

Found from 
sea level up 
to 2,100 m 

2.8 Ma 

Habitat of the species is on flat terraces of open ground on soil with stones and shrubs; 

sandy or loamy soils with Frankenia thymifolia and Zygophyllum album; Halfa grass 

steppes; and sandy regions with rocks in the Saharan region. M. olivieri is considered an 

opportunistic feeder, their diet consists of all insect groups in the biotope; spiders, mites 

(Acarina); snails.  

 

Mesalina olivieri simoni Morocco, Algeria, Western Sahara, Tunisia, Libya, 
Egypt, Sinai, Israel, Jordan, S Iraq, N Saudi Arabia 

Found from 
sea level to 
above 3000 

ft.  

Inhabits rocky plateaus with sparse vegetation. As it has only recently been differentiated 
from M. olivieri, details on ecology are still lacking (Boettger, 1881, Yousefkhani et al. 

2015).  

Chalcides ocellatus 
This very widespread species occurs in northern and 
northeastern Africa and west Asia, and in a few parts 

of southern Europe. 

 Found from 
sea level up 
to 2,500 m 

asl 
(Morocco) 

1.6 - 3 Ma (2.4 Ma) 

Often associated with arid to moist sandy, open areas or places with sparse scrub. It is 
found in coastal dunes and stabilized vegetated dunes further inland and It is found in 

orchards, vineyards, fields, oases, rural gardens and urban areas. C. ocellatus can remain 
active during the hottest hours even in June and July. They remain active into dusk with an 

active temperature range of 28 - 37˚C. 

Agama Impalearis 
This species ranges from the Atlantic coastal region 

of Western Sahara, through most of Morocco to 
northern Algeria (Trape et al. 2012). 

Found from 
sea level up 
to 2,500 m  

9 Ma 

Found in rocky areas, where it is active by day and forages for athropods, although it will 
also feed on small lizards and on plants.(Trape et al. 2012). In Morocco it has also been 

reported from Mediterranean vegetation, steppe, and areas of suitable habitat at the 
margins of cultivated land 

Chalcides mionecton 
This species is largely found on the Atlantic coastal 

area of Morocco. It is a lowland species that is known 
to occur up to 700 m asl. 

A lowland 
species that 
is known to 
occur up to 
700 m asl. 

1.4 Ma 
Found in open areas of loose, slightly moist sand and soil, where it may be found under 

rocks and at the base of sparse vegetation. It can be found at the margins of fields, and in 
courtyards, gardens and parks. It is also known from the Argan Forest. 

Trogonophis wiegmanni 

This species ranges from western Morocco (including 
Ceuta, Melilla and the Chafarinas Islands [Spain]), 

eastwards through northern Algeria into northwestern 
Tunisia.  

Can be 
found from 

sea level up 
to 1,900 m 

asl. 

Unknown 
Found in moist or dry soil that is covered by stones, rocks and other ground cover. It can 
be found close to roadsides, in traditionally cultivated areas, grassland, in oak forest and 

oak-juniper forests, in steppe habitat and in sandy patches without vegetation.  

Saurodactylus mauritanicus mauritanicus 

This species is found in northeastern Morocco, 
northwestern Algeria, and the Spanish territories of 

Melilla, the Isla de Alborán and the Charfarinas 
Archipelago.  

 Can range 
from sea 

level up to 
1,200m asl. 

15 Ma 

Found in semi-arid and arid rocky areas, with a sloping gradient. Animals can be found in 
piles of stones and sheltering in ground vegetation. 

Saurodactylus mauritanicus brosseti 

This species ranges from northern coast of Western 
Sahara, along the southwestern coast of Morocco, 

extending inland in Morocco to the western slopes of 
the Atlas Mountains and the Dra Valley as far east as 
Zagora. There are some isolated inland population in 
northeastern Western Sahara and also north of the 

Atlas Mountains in Morocco. It might occur in 
extreme western Algeria although its presence here 

needs to be confirmed. 

 Occurs from 
sea level up 
to 1,900 m 

asl. 

Found in various stony or rocky areas, including degraded agricultural lands (where it can 
be found under stones). It has also been recorded from semi-forested areas.  
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Observation records 
 

The observational data for this study were based on one book (Bons & Geneiz, 1996). 

Observational records were geo referenced in ArcGIS by matching a Moroccan (georeferenced) 

shape file with the distribution maps from Bons & Geneiz (1996), once the two images are 

aligned points can be marked in ArcGIS at every occurrence point, these marked points can then 

be assigned the correct longitude and latitude co-ordinates. ArcGIS was also used to create the 

study/sample area (Morocco) under a georeferenced digital layer so the program 

predictions/background points were sampled only from the areas required. The geographic 

location of an animal is vital to the model as the model extracts the values of each predictor 

variable (abiotic) used in the study at each observation point, variable importance is calculated 

based the variables at each location.  

 

Climate data 
 
The current climate data was sourced from worldclim.org which has a timeline of 1950-2000, at 

a resolution of 30 arc seconds in the format of an ESRI file. Two Paleoclimate datasets used in 

this study were also sourced from worldclim.org.  

The last interglacial (LIG; ~120,000 - 140,000 years BP) sourced from (Otto-Bliesner et al., 2008), 

and the last glacial maximum (LGM; ~21,000 years BP) was created from Paleoclimate Modelling 

Intercomparison Project Phase II (PMIP2). All bioclim variables were used in this study, the 

Bioclim variables available for all time periods are the same, these are: 

BIO1 = Annual Mean Temperature 

BIO2 = Mean Diurnal Range (Mean of monthly (max temp - min temp))  

BIO3 = Isothermality (BIO2/BIO7) (* 100)  

BIO4 = Temperature Seasonality (standard deviation *100)  

BIO5 = Max Temperature of Warmest Month 

BIO6 = Min Temperature of Coldest Month 

BIO7 = Temperature Annual Range (BIO5-BIO6) 

BIO8 = Mean Temperature of Wettest Quarter  

BIO9 = Mean Temperature of Driest Quarter 

BIO10 = Mean Temperature of Warmest Quarter 

BIO11 = Mean Temperature of Coldest Quarter 
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BIO12 = Annual Precipitation 

BIO13 = Precipitation of Wettest Month 

BIO14 = Precipitation of Driest Month 

BIO15 = Precipitation Seasonality (Coefficient of Variation) 

BIO16 = Precipitation of Wettest Quarter 

BIO17 = Precipitation of Driest Quarter 

BIO18 = Precipitation of Warmest Quarter 

BIO19 = Precipitation of Coldest Quarter.  

Correlation between bioclim variables may be an issue when modelling and bias could be 

introduced. This issue has been analysed through a PCA to determine the correlation between 

variables. See appendix for details of the PCA using bioclim data.   

 

Data Formats 

 

MaxEnt is designed to integrate smoothly with GIS programs such as Arc GIS or GRASS GIS, by 

using the ESRI ASCII grid format (text files representing raster data). MaxEnt will also take input 

in simple csv file format, generally the format environmental and species occurrence data are 

sourced in. MaxEnt insists on species names in the first column along with geocoordinates 

(longitude and latitude). Followed by environmental variables that the niche will be determined 

by in the second column saved as .csv files. Projection layers allow MaxEnt to predict a species 

distribution over different environmental scenarios, whether that is a past, future or 

hypothesised environment. The format for these files is also .csv files, like the environmental 

layer (environmental variables). 

 

Environmental variables were sourced in a BIL format. These files need to be converted to ASCII 

files that are more amenable. Two conversions were done through DivaGIS; BIL to grid (GRD) 

format, and GRD to ASCII. To geo-reference the observational data the program ArcGIS was 

used. This program allows the user to set markers onto a georeferenced digital layer and then 

identify coordinates from the markers that represent places a lizard/animal was observed. 

ArcGIS is also used to convert ASCII files, the form MaxEnt uses for output results. ArcGIS 

converts ASCII files to raster which is better for presentational purposes as reclassifications of 

images can be done from a raster dataset. 
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Study Area  

 

(Figure 2). Image to show the countries that are included in the study area. Another image has also 

been produced that shows the study area overlaid over NW Africa to show surrounding countries 

(Appendix P). 

Morocco is the country all species observation data was sourced, with a large body of 

information on the distributions of species within Morocco, although other areas poorly known 

(Bons & Geniez, 1996; Schleich, 1996). Morocco was therefore used as the area to estimate the 

species potential niche, to use for modelling and hindcasting (Bons & Geniez, 1996). When then 

extrapolating over the LIG and LGM climate scenarios a larger geographical range was chosen 

(NW Africa), comprising of Algeria, Mali, Mauritania Western Sahara and Morocco. For another 

representation of the geographical area chosen to hindcast the niche over can be found in the 

appendix (Appendix Q). NW Africa was the area used to project the LIG and LGM predictions to 

allow for range expansions/dispersion beyond current distributions. The area of Morocco was 

used when hindcasting one species in this study rather than the NW Africa region and that was 

Chalcides mionecton, the reason for this was that there is no observational data for this species 

anywhere else other than Morocco, an indication that the species has always resided in 

Morocco. Morocco is one of the most biodiverse region in North Africa (Bons & Geniez, 1996), 

which has a Mediterranean and sub-Saharan climate, with a current mean precipitation ranging 

from 300 to 600mm (Michard et al., 2008). Morocco is also mountainous, this coupled with 

varied precipitation and climates makes it an interesting region for biodiversity and speciation. 
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Modelling 
 

MaxEnt was used in this study due to its efficiency with presence-only modelling using 

background data to produced background points or pseudo absences randomly generated (from 

study area) (Phillips et al., 2004; Phillps et al., 2006).  MaxEnt was also used due to advantages 

the maximum entropy principle has with incomplete datasets. This is advantageous given that 

this study used only abiotic variables and presence only data. This statistical method performed 

well in model comparison studies (Anderson et al., 2006), which produces generally better 

results than other presence-only SDM methods (Heikkinen et al., 2006). MaxEnt also performs 

well even when the number of observation records available are small (Wisz et al., 2008). For 

research and studies on species distribution, MaxEnt probability distributions follow a concise 

mathematical definition. This makes it is easy to understand and therefore amenable for 

interpretation and analysis. Allowing more validation techniques and methods to be performed 

on the models helps ensure a high level of model validation. With current research using MaxEnt 

a catalogue of advice and literature is available that describes any disadvantages/advantages 

within their research/model and different approaches to consider with MaxEnt under different 

scenarios. It’s beneficial to use a popular modelling method, for additional help from other 

researches and studies. In this report it is assumed the SDMs measure the potential distribution, 

as we cannot incorporate all the variables into the model (proximal/biotic variables for 

example). 

In this study subspecies were modelled both separately and modelled combined with sister 

subspecies (to act as an ancestral species). When combining the subspecies together the climatic 

tolerances of this population may be less extreme and could resemble the climatic tolerances of 

an ancestral species before speciation. Two model types were used as no definitive way (model 

subspecies individually or model subspecies together) has been given to suggest one method 

being better than the other and so by doing both model types comparisons between these two 

models can be made and similar patterns highlighted.  

 

Assumptions made 
 
Niche conservation has been assumed in this project, in other words the assumption is made 

that a species environmental tolerances to both abiotic and biotic are identical to their 

ancestors. This assumption is usually necessary, as information on the environmental tolerances 

of an ancestral species are generally unknown and unavailable to source. Niche conservation is 
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useful for species distribution as a niche can be derived using the present population, and be set 

as a predicted ancestral niche. Used to project onto past climatic scenarios. 

Another assumption made is the assumption that ice ages/glacial patterns are similar to one 

another in relation to environmental impact and duration (Chumakov, 1984; Kukla et al., 2002; 

Otto-Bliesner et al., 2006). This assumption is based on the Croll-Milankovitch theory that 

suggests the regular variations in the Earth’s orbit around the Sun are the “pacemakers” of the 

ice-age cycles. The assumption that earlier glacial patterns are similar to the LGM and LIG aids 

in the analysis of how a species may distribute in time periods where data are not available and 

allow more accurate datasets such as the LIG and LGM to act as a surrogate for other/earlier 

interglacial and glacial maximum climates.  

A source habitat is also assumed in this study, this is the assumption that the current habitat of 

a species allows the population to thrive, and that a species occupies the maximum land 

presently available to the species (equilibrium between species and habitat, including 

equilibrium with predators and competitions). This assumption is made as it becomes difficult 

to try quantify whether a habitat is source or not and to what extent, due to factors such as 

competition and predation etc, being notoriously hard to quantify/source. A species ability to 

adapt to changes in the degree of predation and competition is a factor usually reserved for 

analysis or assumed negligible, mainly because this interaction is hard to quantify and introduce 

to a model. However if data are available predation and competition are an additional 

consideration in outlining a species true ability to reach an equilibrium state throughout suitable 

habitat (Holt & Gaines, 1992; Kawecki, 1995; Holt, 1996; Holt & Gomulkiewicz, 1997). This 

assumption does not take into account dispersal or migration, therefore the model has no way 

to measure the species ability to move across the landscape. 

 

 

MaxEnt options 
 

MaxEnt is able to run a model multiple times, averaging the results from all models created, 

improving the statistical validity of a model prediction. Executing multiple runs also provides a 

way to measure the amount of variability in the model. For this study, the number of replicates 

was 15, suggested in Phillips (2005). The random test percentage option allows users to evaluate 

model performance in MaxEnt. This setting allows MaxEnt to use a certain percentage of your 

presence data to evaluate the models performance. Without setting data aside MaxEnt will 

randomly select a requested percentage from the observational data. For this study, 75% was 

used to build the model and 25% set aside for testing. This allows the program to use statistical 



47 
 

analysis such as regression and AUC. These percentage choices are typical values for this type of 

analysis and considered optimal (Phillips, 2005). The run type used for this study was the 

bootstrap method. This was due to the small occurrence records for some subspecies in this 

study (see appendix N). For this study, the threshold value chosen was one that corresponds to 

equal sensitivity and specificity, and is one that is considered a robust method (Liu, 2005). In this 

study, the background concept is preferred which uses background points rather than pseudo 

absences as it requires fewer assumptions and has some coherent statistical methods for dealing 

with the “overlap” between presence and background points (e.g. Ward et al. 2009; Phillips and 

Elith, 2011). The number of background points was 1000, randomly sampled in MaxEnt from the 

background data distributed over Morocco. Morocco was the decided area from where to 

sample the background points because the extent of Morocco is equivalent to the extent as the 

observed presence points (Bons & Geniez, 1996). A Cross validation run was also performed to 

see how the two different run types compared under the same dataset. This method didn’t 

perform as well due to the model type underperforming with small datasets (sample sizes) (Wisz 

et al, 2008), a comparison table to compare different run types/feature selection has been made 

(tables 6-8). For this project, I decided to use the default settings (auto features). This automates 

the task of choosing feature types, using an empirical algorithm based on sample size. Auto 

features was chosen due the variance of population size between subspecies in this study, the 

sample size and features selected for each subspecies can be found in the appendix (see 

appendix N). A model was also produced for comparison using only the hinge feature; this was 

done to see how the models compared with the auto features model (see table 7). The hinge 

only threshold was used as a comparison as it is suitable for datasets with a small amount of 

observational data. Hinge features provide a generalization of linear and threshold features. A 

model the uses only hinge features produce complex but smoothed response curves that are 

much like GAMs (Elith et al., 2010). A sum of hinge features is always a piece-wise linear function, 

so if only hinge features are used, the MaxEnt exponent is piece-wise linear.  

Model Validation 
 
For this study the AUC, jackknife, sensitivity/specificity analysis and null hypothesis evaluation 

were the model validation techniques used as these four statistics cover most factors concerning 

a distribution model, that are available to extract from this model. As MaxEnt used presence 

only data, the AUC scores define the relationship between presences vs background points, 

rather than presence vs absences (this is because absences are unknown), these are said to be 

slightly inflated values (Yackulic et al., 2013). Therefore, although the AUC scores do indicated 

good model performance in this study, the AUC scores have been primarily used to compare 
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different models within this study. As mentioned elsewhere the AUC coupled with other model 

validation procedures is optimal. PCA and niche overlap analysis were also performed as a niche 

comparison tool to identify differences between the niches of species and respective sister 

subspecies.  

 

Principle component Analysis (PCA) 
 

In this study PCA was performed on subspecies separately. For this the program SPSS was used. 

A PCA was done to see if there are any differences between sister subspecies in terms of variable 

importance. Potentially indicating niche divergence. PCA was performed in this study to further 

describe and quantify differences in niches between subspecies. Data extraction was performed 

at all observation points for each subspecies, exact values of all 19 bioclim variables were 

extracted at these points to help portray a picture of the constraining factors of each subspecies. 

A correlation matrix was produced for each species and respective subspecies (See appendix G-

L). A scree plot of the eigenvalues was plotted to see how many components are needed explain 

the variance within the data. Scatter graphs were produced for each species plotting one 

component against another to see how they interact in the component space; these graphs help 

visually see similarities and differences within the component space, these images can be 

viewed later in the results section. 

Another PCA was performed as a method to measure correlation between the bioclim variables 

(See Appendix O). Data extraction was executed on every point a bioclim variable was located 

within the study area (NW Africa). SPSS was used to handle the large dataset and a correlation 

matrix and scree plot where used to determine the amount of components that were significant. 

Four components were significant judged by the scree plot, which explained 93% of the 

cumulative variance. The components group variables with similar importance that explains the 

majority of variance but minimises the correlation between variables. These components were 

then used as the environmental layer in MaxEnt instead of the individual Bioclim variables. 

These components were used as the environmental layers to see if there was any significant 

difference in MaxEnt outputs between models that used the bioclim variables and the 

components that were comprised of bioclim variables (when correlation between variables had 

been addressed and an effort made to try reduced the correlation). The same settings were used 

in MaxEnt as the original model.  
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Niche overlap 

For each species and respective subspecies, Schoener’s D values have been produced from 

tables that present niche breadth overlap values using ENM tools. MaxEnt is used in conjunction 

with ENMtools to define niches of subspecies and to use the Schoener’s D statistic to determine 

the amount of niche overlap, these values range from 0 (niche models have no overlap) to 1 

(niche models identical). These tables can be found in the appendix and the mean values 

calculated and put in a table found in the results section. 

Null hypothesis 
 

A null hypothesis is a method used to determine whether the model produces results that are 

considered better than random. To perform a null hypothesis a number of random species 

locations have to be produced in ENM tools then saved. Each data set having the same number 

of presence points as the original species’ data set. These datasets with the randomly selected 

species locations now act as other independent datasets of specie observations. The 99 

randomly calculated observation datasets are considered a good number with the 100th dataset 

being the actual species dataset, obtained from (Bons & Geniez, 1996). The 99 randomly 

calculated occurrence data sets can then be used in MaxEnt where an evaluation of AUC values  

can take place. 

 

For this study, I produced 99 random sample datasets using the program ENMTools, these 

datasets were then run through MaxEnt, only 1 replicate for each dataset instead of the initial 

15 and the amount of iterations was kept the same. Histograms have been produced for each 

of the species; each histogram contains the AUC values of the randomly sampled observations 

(99), calculated using ENMTools shown in grey, and the actual AUC value from the authentic 

dataset coloured red (see results). The actual AUC value that was calculated using Maxent 

essentially acts as 1%, and can therefore be compared with the randomly observed 99%. 

Producing histograms for each species containing the 99 random datasets shows how the 

model has performed against a random sample.   
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Sensitivity and specificity analysis 
 

To perform sensitivity and specificity analysis a threshold had to be chosen, there are many 

methods on choosing a threshold with reasons for each, some of these methods are: Fixed value; 

where a value is chosen based on no previous statistical work, usually this value would be 0.5. 

Lowest predicted; a method of selecting a threshold that corresponds to the lowest logistic value 

that is assigned to a recorded presence and the fixed sensitivity method; a method of choosing 

a threshold that corresponds to a 95% accuracy of the true positive rate. For this study, the 

threshold value chosen was one that corresponds to equal sensitivity and specificity and is one 

that is considered a robust method (Liu, 2005). Equal sensitivity and specificity means that the 

model uses the threshold to essentially allow the model to perform equally well at both 

predicting true positives as well as true negatives. The MaxEnt outputs were used to obtain the 

values needed for the sensitivity and specificity analysis (true presence, true absence, false 

presence and false absence) and then calculations were performed using the necessary 

formulae. Sensitivity and Specificity analysis was performed on the pseudo ancestral species and 

on individual subspecies (see appendix). An equal sensitivity and specificity threshold was also 

used to change the MaxEnt outputs to a binary colour code, where the options are present or 

absent, again this threshold was derived from the MaxEnt outputs. 
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Results  
Jack knife 
Table 3. Jackknife results produced through MaxEnt as a measure of variable importance. 

Jack knife results for variable importance 

Species Variable with biggest contribution towards model Percentage 
contribution 

Variable with biggest contribution that 
isn’t represented by other variables 

A. impalearis Maximum tempertaure of warmest month (Bio 5) 20.2 Mean Diurnal Range 
C. mionecton Temperature annual range (Bio 7) 39.5 Precipitation of Driest Month 

S. mauritanicus  Isothermality (Bio 3) 24.5 Seasonal precipitation 
C. ocellatus Annual precipitation (Bio 12) 45.9 Precipitation of warmest quarter 
M. olivieri Precipitation of coldest quarter (Bio 19) 35.6 Precipitation of warmest month 

T. wiegmanni Precipitation of coldest quarter (Bio 19) 38.9 Mean temperature of wettest quarter 
 

From examining the Jackknife results (subspecies modelled together to create potential ancestral niche) the variables that are considered to contribute highly 

towards the explanation of a certain species habitat differ. These results can then provide evidence and reasoning to potential differences in the predicted 

suitable habitat for different species. 
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Table 3.1. Table below shows the jackknfe results from MaxEnt when subspecies were treated individually.  

Jack knife results for variable importance (Subspecies) 

Species Variable with biggest contribution towards model Percentage 
contribution 

Northern A. impalearis Precipitation of wettest mounth 23.1 
Southern A. impalearis  Precipitation of coldest quarter 31.1 

C. m. mionecton Temperature annual range  34.3 
C. m. trifasciatus Temperature seasonality 29.4 

S. m. mauritanicus  Mean Diurnal Range 48.2 
S. m. brosseti Isothermality  19 
C. o. ocellatus Annual precipitation  32.2 

C. o. subtypicus Mean Diurnal Range 37.7 
M. o. olivieri Precipitation of wettest mounth 15.2 
M. o. simoni Precipitation of coldest quarter 28.3 
T. w. elegans Precipitation of coldest quarter 34.9 

T. w. wiegmanni Precipitation of warmest quarter  47.3 
 

From comparing the jackknife results of the two different model types, it’s clear that in some of the models it seems a certain subspecies has dominance within 

the model. This observation is based on certain subspecies models showing the same variable importance as the whole subspecies models, while the other 

species does not. 
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Null hypothesis Evaluation 
  

 

(Figure 3)  Graphs to highlight the differences in AUC values when compared with random datasets produced for the null hypothesis evaluation.
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The majority of the AUC values produced for the null hypothesis are above 0.90 for the actual 

model, therefore showing a high level of statistical significance, an indicator that the models 

produced in this study via MaxEnt are strong, evidence they adhere to the initial constraints 

apposed on them. What this means in terms of this study is that the predicted models should 

behave in the same way the original data (observations) interacts with the data (environmental), 

allowing for a better analysis to be performed. The Null hypothesis shows all models perform 

better than random which shows validity towards the program MaxEnt. Other studies also 

suggest using the null-hypothesis as an extra step in model validation (Raes & Steege, 2007). 

 

Sensitivity and Specificity Analysis 
 

For this study, the threshold value chosen was one that corresponds to equal sensitivity and 

specificity and is one that is considered a robust method (Liu, 2005). The threshold value differs 

for each species and can be derived from the results MaxEnt produces. Sensitivity and specificity 

analysis was also performed on subspecies individually, those tables of values can be found in 

the appendix (Appendix M).  

 

Table 4. Table to represent the sensitivity and specificity scores, along with false 

positive/negative rate values for each species. 

Species 
Equal sensitivity 

& Specificity 
threshold 

Sensitivity Specificity False positive 
rate (α) 

False negative 
rate (β) 

C. mionecton 0.2 0.947 0.866 0.133 0.052 
A. impalearis 0.29 0.946 0.287 0.103 0.822 

M.saurodactylus 0.23 0.957 0.756 0.244 0.433 
M. olivieri 0.25 0.929 0.804 0.196 0.071 

C. ocellatus 0.3 0.933 0.770 0.230 0.067 
T. weigmnanni 0.18 0.944 0.700 0.301 0.056 

 

Sensitivity (true presence) values were high for all species in this study, a mean of 94%, the 

specificity (true negative) values were significantly lower with a mean of 69%, the reason for this 

drop is the considerably lower value produced for A. impalearis. This could be due to the vast 

range in which A. impalearis inhabits, potentially making it statistically difficult for the 

programme MaxEnt to define a true negative scenario under the constraints and information 

known on A. impalearis as a whole species. The low specificity of A. impalearis  may also be due 
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to human error when splitting the observation records manually using a GIS program, leading to 

the misidentification of a subspecies. Appendix M compares the sensitivity and specificity scores 

between subspecies and ancestral whole species in table format. 

 

Niche overlap analysis 
 

Table 5. Table to show the Schoener’s D values for each species. Figures derived through 

ENMtools in conjunction with MaxEnt to calculate niche overlap between subspecies and 

respective sister subspecies. Based on the range of values classed by Rödder, D & Engler (2011), 

the niche overlap scores for species in this study indicate very limited to low niche overlap, with 

all values falling within the range 0-0.4. 

A measure of niche overlap between sister subspecies; 
Schoener's D value 

Species   Mean S.D 
Chalcide mionecton  0.268 0.164 
Chalcide ocellatus  0.079 0.005 
Messalina olivieri  0.399 0.008 
Trogonophis weigmanni  0.162 0.009 
Saurodactylus mauritanicus  0.184 0.013 
Agama impalearis   0.299 0.013 
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Table 6. Tables below compare model performance with three models that have different environmental layers; the original environmental layer comprising of 

the bioclim data, a model using 3 principle components derived from Bioclim data and another using 4 components derived from Bioclim data. 

 

As you can see from the tables above, the AUC values and the standard deviation values are highest for the model that used the bioclim variables as the 

environmental layer. All other settings were the same in MaxEnt; 25% of data to testing, 15 replicates, 1000 iterations and equal sensitivity and specificity 

threshold applied. The areas of predicted habitat calculated in MaxEnt for models using the principle components were all in areas similar to the model that used 

the bioclim variables as the environmental layer, however reduced in size. Judging by the AUC scores produced in MaxEnt the results deemed less accurate. SPSS 

outputs for the PCA work on bioclim variables can be found in the appendix. 

Comparison of environmental variable selection in MaxEnt 

Original BioClim data as environmental 
variables 

  

PCA: 3 Components used as environmental 
variables 

  

PCA: 4 Components used as environmental 
variables 

Species Auto Features Species Auto Features Species Auto Features 
  AUC S.D   AUC S.D   AUC S.D 

C. m. mionecton 0.970 0.006 C. m. mionecton 0.950 0.010 C. m. mionecton 0.949 0.007 
C. m. trifasciatus 0.980 0.003 C. m. trifasciatus 0.927 0.130 C. m. trifasciatus 0.958 0.007 
C. o. ocellatus 0.942 0.014 C. o. ocellatus 0.866 0.025 C. o. ocellatus 0.900 0.014 
C. o. subtypicus 0.976 0.006 C. o. subtypicus 0.938 0.008 C. o. subtypicus 0.963 0.007 
A. i. north 0.890 0.004 A. i. north 0.840 0.012 A. i. north 0.851 0.009 
A. i. south 0.891 0.006 A. i. south 0.807 0.012 A. i. south 0.842 0.008 
T. w. elegans 0.918 0.012 T. w. elegans 0.879 0.010 T. w. elegans 0.880 0.011 
T. w. weigmanni 0.964 0.007 T. w. weigmanni 0.889 0.026 T. w. weigmanni 0.933 0.012 
S. m. mauritanicus 0.982 0.002 S. m. mauritanicus 0.963 0.011 S. m. mauritanicus 0.981 0.005 
S. m. broseseti 0.867 0.004 S. m. broseseti 0.899 0.009 S. m. broseseti 0.918 0.006 
M. o. olivieri 0.921 0.011 M. o. olivieri 0.826 0.020 M. o. olivieri 0.870 0.012 
M. o. simoni 0.949 0.008 M. o. simoni 0.889 0.021 M. o. simoni 0.906 0.017 
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Table 7. Two tables comparing some feature choices. The “Auto feature” option used to produce the actual models, using an empirical algorithm based on 

sample size (chosen for this study). The second table using “Hinge” only features. For details on what features were selected using the “auto feature” 

option see appendix N.  

 

 

 

 

 

 

 

 

Generally, the model that used the auto feature option performed better than the model that used the hinge only feature. Higher AUC scores where predicted 

for S. m. brosseti (0.038), S. m. mauritanicus (0.007) and T. w. elegans (0.002) using the hinge only feature. The suitable habitat predicted by MaxEnt when 

using the hinge only feature were very similar to the predicted habitat MaxEnt produced using the auto feature option. 

 

 

Comparison of MaxEnt feature options 
Model Run  Subspecies   AUC S.D Model Run  Subspecies   AUC S.D 

MaxEnt: Bootstrap, 25% 
test, 15 replicates, equal 
spencificity & sensitivity 
threshold, Auto features 

C. m. mionecton 0.970 0.006 

Maxent: Bootstrap, 25% test, 
15 replicates, equal 

spencificity & sensitivity 
threshold, Hinge only 

features 

C. m. mionecton 0.968 0.005 
C. m. trifasciatus 0.980 0.003 C. m. trifasciatus 0.976 0.004 
C. o. ocellatus 0.942 0.014 C. o. ocellatus 0.942 0.011 
C. o. subtypicus 0.976 0.006 C. o. subtypicus 0.975 0.005 
A. i. north 0.890 0.004 A. i. north 0.848 0.009 
A. i. south 0.891 0.006 A. i. south 0.853 0.007 
T. w. elegans 0.918 0.012 T. w. elegans 0.920 0.011 
T. w. weigmanni 0.964 0.007 T. w. weigmanni 0.961 0.008 
S. m. mauritanicus 0.982 0.002 S. m. mauritanicus 0.989 0.003 
S. m. broseseti 0.867 0.004 S. m. brosetti 0.905 0.006 
M. o. olivieri 0.921 0.011 M. o. olivieri 0.856 0.013 
M. o. simoni 0.949 0.008 M. o. simoni 0.947 0.015 
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Table 8. Two tables comparing two run type options from MaxEnt. The first table are values that relate to the Bootstrap run type. The second table are 

values that relate to the Cross-validation run type. All other options in MaxEnt were identical. 

Model Run  Subspecies   AUC S.D       AUC S.D 

Maxent: 
Bootstrap, 25% 

test, 15 
replicates, equal 

spencificity & 
sensitivity 

threshold, Auto 
features 

C. m. mionecton   0.970 0.006 

Maxent: Cross-
validation, 25% 

test, 15 replicates, 
equal spencificity & 

sensitivity 
threshold, Auto 

features 

C. m. mionecton 0.951 0.016 
C. m. trifasciatus   0.980 0.003 C. m. trifasciatus 0.958 0.028 
C. o. ocellatus   0.942 0.014 C. o. ocellatus 0.836 0.062 
C. o. subtypicus   0.976 0.006 C. o. subtypicus 0.962 0.017 
A. i. north   0.890 0.004 A. i. north 0.810 0.004 
A. i. south   0.891 0.006 A. i. south 0.819 0.014 
T. w. elegans   0.918 0.012 T. w. elegans 0.874 0.056 
T. w. weigmanni   0.964 0.007 T. w. weigmanni 0.930 0.070 
S. m. mauritanicus   0.982 0.002 S. m. mauritanicus 0.983 0.014 
S. m. broseseti   0.867 0.004 S. m. brosetti 0.875 0.029 
M. o. olivieri   0.921 0.011 M. o. olivieri 0.774 0.046 
M. o. simoni   0.949 0.008 M. o. simoni 0.895 0.077 

 

As you can see from the table above the AUC and standard deviation values are higher from the model that used the Bootstrap rather than the Cross-validation 
run type. Cross-validation was the model run used as the comparison as it is generally considered a good option to use and is the default option within 
MaxEnt.  
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Table 9. Table below shows the AUC and S.D values produced for the whole species dataset through 
MaxEnt. The values produced are generally lower than when the subspecies are treated individually. 
However these AUC scores are still considered significant. All other MaxEnt options aside from the 
observational data were kept the same. 

Whole species (Ancestral species) Model 

Species 
Auto 

Features 
  AUC S.D 

C. mionecton 0.952 0.003 
C. ocellatus 0.904 0.014 

A. impalearis  0.782 0.006 
T. wiegmanni 0.936 0.009 

S. mauritanicus 0.927 0.007 
M. olivieri 0.903 0.013 

 

 

Principle component analysis  
 

The Principal component analysis (PCA) results are also below for each species to highlight the 

differences in niches between subspecies.  

 

• Chalcides mionecton 

For Chalcides mionecton three components were selected and examined that accounted for the 

majority of the variance (89%): PC1 (44% of variance), PC2 (27% of variance), PC3 (18% of variance). 

Variables with high positive loadings on PC1 are associated with precipitation during the dry periods 

of the year. These variables are precipitation of warmest quarter (0.111), precipitation of driest 

quarter (0.109) and precipitation of driest month. Variables with high negative loadings are associated 

with temperature during the coldest period of the year. These variables are mean temperature of 

coldest quarter (-0.114), mean temperature of wettest quarter (-0.111), minimum temperature of 

coldest month (-0.105) and mean annual temperature (-0.93). 

Variables with high loadings on PC2 are associated with temperature during the warmer periods of 

the year. These variables are maximum temperature of warmest month (0.19), mean temperature of 

driest quarter (0.185) and mean temperature of warmest quarter (0.184). 
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Variables with heavily weighted loadings on PC3 are associated with precipitation during the wetter 

period of the year. These variables are precipitation of wettest month (0.254), precipitation of wettest 

quarter (0.246), precipitation of coldest quarter (0.245) and annual precipitation (0.216). See 

Appendix G for the component score coefficient matrix. 

 

Figure 4: Component scores of component 1 (PC1) v component 2 (PC2) for PCA on Chalcides 

mionecton. 

 

There is considerable overlap between C. mionecton mionecton and C. mionecton trifasciatus in the 

component space. Small differences can be seen in figure 4, subspecies mionecton has a broader range 

across PC2, which is heavily loaded by temperature during warmer periods, while subspecies 

trifasciatus has a broader range across PC1, associated with precipitation during dry periods and 

temperature during cold periods, although cluster more to the right of component space. 
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Figure 4.1: Component scores of component 1 (PC1) v component 3 (PC3) for PCA on Chalcides 

mionecton. 

 

Separation between C. mionecton mionecton and C. mionecton trifasciatus is also visible along PC3. 
This indicates C. mionecton mionecton is associated with higher precipitation particularly during the 
wetter periods. The separation between subspecies seen in the PCA (Figure 4 and 4.1) correspond to 
the low overlap in niche breath (Appendix A). 

• Chalcides ocellatus 

For C. ocellatus two components were selected for analysis: PC1 (54% of variance) and PC3 (10% of 

variance. PC2 shows separation along PC1 as do the other two graphs however for PC2 the range for 

both species are very similar. 

Variables with high positive loadings on PC1 are associated with temperature during the warmest 

periods of the year. These variables are mean temperature of warmest quarter (0.9), annual mean 

temperature (0.9) and maximum temperature of warmest month (0.83). For PC1 variables with high 

negative loadings on PC1 are associated with precipitation. These variables are precipitation of coldest 

quarter (-0.86), precipitation of wettest quarter (-0.89), precipitation of wettest month (-0.89), annual 

precipitation (-0.93) and precipitation of warmest quarter (-0.88). 
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Variables with high loadings on PC3 are associated with seasonal differences and the associated 

temperature and precipitation differences. These are isothermality (0.319), mean temperature of 

driest quarter (0.315) and precipitation seasonality (0.232). This component has one heavily weighted 

negative value, mean temperature of wettest quarter (-0.273). See Appendix H for the component 

score coefficient matrix. 

 
Figure 4.12: Component scores of component 1 (PC1) v component 2 (PC2) for PCA on Chalcides 

ocellatus. 

 

The two subspecies show clear separation along PC1. The separations show that C. ocellatus 

subtypicus is associated with higher precipitation and cooler temperatures during the warmer periods 

of the year. C. ocellatus ocellatus is associated with a warmer climate with less precipitation. 
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Figure 4.13: Component scores of component 1 (PC1) v component 3 (PC3) for PCA on Chalcides 

ocellatus. 

 

It is clear that the ranges of the two subspecies along PC3 differ, heavily loaded by seasonal change 

(Figure 4.13). For C. ocellatus subypicus the range is quite narrow when compared to C. ocellatus 

ocellatus, indicating an association to higher sensitivity to seasonal change for C. ocellatus subtypicus. 

The separation between subspecies indicated through the PCAs (Figure 4.12 and 4.13), correlate to 

the lack of niche equivalency in the niche overlap analysis. 

• Messalina olivieri 

 

For Messalina olivieri 3 principle components were selected for analysis PC1 (53% of variance), PC2 

(25% of variance) and PC3 (11% of variance) representing a total of 89%.  

Variables with high positive loadings on PC1 are associated with precipitation during the warmest 

periods of the year. These are precipitation of driest quarter (0.086), precipitation of warmest quarter 

(0.085) and annual precipitation (0.082). The negatively loaded variables correlated with temperature 

during the coldest period of the year. These variables are minimum temperature of coldest month (-

0.094), mean temperature of coldest quarter (-0.096) and mean annual temperature (0.086). 

Variables with high positive loadings on PC2 are associated with temperature during the warmest 

periods of the years. These variables are maximum temperature of warmest month (0.191) and mean 

temperature of warmest quarter (0.184). 
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Variables with high positive loadings on PC3 are associated with precipitation during the wettest and 

coldest part of year. These variables are precipitation coldest quarter (0.258), precipitation of wettest 

quarter (0.239), precipitation of wettest month (0.234) and mean temperature of driest quarter 

(0.218). Those which are negatively correlated with large loadings relate to the precipitation during 

the driest part of the year, the largest variable being precipitation of driest month (-0.25). See 

Appendix I for the component score coefficient matrix. 

 

 Figure 4.14: Component scores of component 1 (PC1) v component 2 (PC2) for PCA on Messalina 

olivieri. 

Some discrimination between subspecies can be seen from the above graph, PC2 in particular. This 

component represents higher temperature during the warmest part of the year. M. olivieri olivieri 

shows a broad range of scores along component 1 in comparison to M. olivieri simony. This indicates 

subspecies olivieri are found in environments with broader ranges of temperatures during cold periods 

and precipitation during warm periods. 
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Figure 4.15: Component scores of component 1 (PC1) v component 3 (PC3) for PCA on Messalina 

olivieri. 

 

There is separation between subspecies simoni and olivieri along PC3. This indicates M. olivieri simoni 

is associated with wetter conditions during colder parts of the year and lower precipitation during the 

warmer periods in comparison to M. olivieri olivieri. This is represented by the areas of no overlap in 

the top and bottom of the component space. 

 

• Trogonophis weigmanni 

 

For Trogonophis weigmanni 3 components were selected for analysis and further discussion due to 

the percentage of the variance explained through each component. PC1 (51% of variance), PC2 (21% 

of variance) and PC3 (19% of variance), a collective representation of 91%. 

Variables with high positive loadings on PC1 are associated with precipitation during the warmer 

periods of the year. These are precipitation of driest quarter (0.1), precipitation of warmest quarter 

(0.098) and precipitation of driest month (0.097.) The negative loadings in this component are 

associated with temperature during the colder periods of the year. These are mean temperature of 

coldest quarter (-0.102), Minimum temperature of coldest month (-0.101) and annual mean 

temperature. 
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Variables with high loadings on PC2 are associated with precipitation during the wetter colder periods 

of the year. These are precipitation of coldest quarter (0.238), precipitation of wettest quarter (0.237), 

precipitation of wettest month (0.236) and annual precipitation (0.214). 

Variables with heavily weighted loading on PC3 are associated with temperatures during the warmer 

periods of the year. These are mean temperature of driest quarter (0.254), mean temperature of 

warmest quarter (0.249) and maximum temperature of warmest month (0.247). See Appendix J for 

the component score coefficient matrix. 

 

   

Figure 4.16: Component scores of component 1 (PC1) v component 2 (PC2) for PCA on Trogonophis 

wiegmanni.  

 

The above graph shows separation along component 2. T. wiegmanni elegans has a cluster of points 

near top left of the component space where overlap between subspecies is visible. This indicates that 

T. wiegmanni elegans is found in environmental conditions of higher precipitation during the colder 

periods, which would suggest T. wiegmanni wiegmanni is associated with lower precipitation during 

the same periods. Along component 1 there is a lot of overlap between the two subspecies which 

makes it difficult to derive anything definitive from the component. 
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Figure 4.17: Component scores representing Component 1 (PC1) v Component 3 (PC3) for PCA on 

Trogonophis wiegmanni. 

 

The range of T. wiegmanni elegans along PC3 spans that of T. wiegmanni wiegmanni. This would 

indicate that T. wiegmanni elegans is found in environments with higher temperature variation, in 

comparison to T. wiegmanni wiegmanni which is associated to higher temperatures during warmer 

periods.  

 

• Saurodactylus mauritanicus 

For Saurodactylus mauritanicus 3 components were selected for analysis PC1 (59% of variance), PC2 

(24% of variance) and PC3 (7% of variance). 

Variables with high positive loadings on PC1 are associated with precipitation, particularly during the 

warmer parts of the years. These are annual precipitation (0.082), precipitation of driest quarter 

(0.081) and precipitation of warmest quarter 0.081. The negative loadings for PC1 are associated with 

temperature, particularly the colder/wetter parts of the year. These are mean temperature of coldest 

quarter (-0.086), minimum temperature of coldest month (-0.082) and mean temperature of wettest 

quarter (-0.081). 
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Variables with high loadings on PC2 are all positively correlated and are associated with temperatures 

during the warmer/drier parts of the year. These are mean temperature of warmest quarter (0.204), 

max temperature of warmest month (0.203) and mean temperature of driest quarter (0.197). See 

Appendix K for the component score coefficient matrix. 

 
   

Figure 4.18: Component scores representing Component 1 (PC1) v Component 2 (PC2) for PCA on 

Saurodactylus mauritanicus. 

 

S. mauritanicus. mauritanicus and S. mauritanicus. brosseti overlap within the component space on 

both PC1 and PC2 showing no definitive separations. S. mauritanicus brosseti is clustered more toward 

the left of the component space along PC1, although spans the width of the component space. This 

indicates that S. mauritanicus brosseti is found in environmental conditions where temperatures 

fluctuate more, and has more tolerance to changes in temperature when compared to S. mauritanicus 

mauritanicus. Along PC2, S. mauritanicus brosseti spans the component space whereas S. 

mauritanicus mauritanicus clusters towards the middle of the component space, again showing that 

S. mauritanicus brosseti is tolerable to a broader range of temperatures during warmer periods, 

whereas S. mauritanicus mauritanicus is not as comfortable with low or high temperatures when 

compared to S. mauritanicus brosseti. The difference in the amount of sample points however makes 

it quite difficult to determine how much variation there is between the two sister subspecies. The size 
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difference in observation records for subspecies mauritanicus may be a problem in the PCA, 

potentially unable to determine anything definitive due to the size difference (Wisz et al., 2008). 

 

• Agama impalearis 

For Agama impalearis 3 components were selected for analysis PC1 (47% of variance), PC2 (28% of 

variance) and PC3 (13% of variance). 

Variable with high positive loadings on PC1 are associated with precipitation, particularly during the 

warmer parts of the year. These are precipitation of driest quarter (0.905), precipitation of warmest 

quarter (0.892) and precipitation of driest month (0.798). The negatively loaded variables are 

associated with temperature, particularly the colder/wetter parts of the year. These are mean 

temperature of coldest quarter (-0.956), minimum temperature of coldest month (-0.886), annual 

mean temperature (-0.879) and mean temperature of wettest quarter (-0.803). 

Variables with high loadings on PC2 are all positively correlated and are associated with temperatures 

during the warmer/drier parts of the year. These are maximum temperature of warmest month 

(0.911), mean temperature of warmest quarter (0.79), temperature annual range (0.764) and 

temperature seasonality (0.755). 

Variable with high loadings on PC3 are all positively correlated and correspond to precipitation, 

particularly during the colder/wetter parts of the year. These are precipitation of coldest quarter 

(0.617), precipitation of wettest quarter (0.616), precipitation of wettest month (0.606) and annual 

precipitation (0.486). See Appendix L for the component score coefficient matrix. 
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Figure 4.19: Component scores representing component 1 (PC1) v component 2 (PC2) for PCA on 

Agama impalearis. 

 

The above scatter diagram shows some separation of clusters. PC1 shows a lot of overlap between 

subspecies along this component, however it does seem to show A. impalearis. north to be in 

environments where precipitation is higher during the warmer periods with lower temperatures 

during colder periods, indicated by lack of overlap near the end of the component space along PC1. 

PC2 shows more separation within the component space; along PC2 it shows A. impalearis south 

nearer the top with a horizontal separation between subspecies. An indication A. impalearis south is 

associated with warmer temperatures with emphasis on seasonal changes, when compared with A. 

impalearis north. Both PC1 and PC2 highlight A. impalearis south to be associated to warmer drier 

conditions. 
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Figure 4.2: Component scores representing component 3 (PC3) v component 2 (PC2) for PCA on 

Agama impalearis. 

 

The above scatter diagram shows a clear separation along PC3, this indicates A. impalearis north is 

associated with higher precipitation particularly during the colder/wetter parts of the year in 

comparison to A. impalearis south, indicated by the lack of overlap near the end of PC3. Figure 4.2 

also indicates that A. impalearis south can tolerate higher temperatures in comparison to A. impalearis 

north, derived from the slight separation along PC2, more evident separation in Figure 4.19.
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MaXent outputs 
An equal sensitivity and specificity threshold has been added to all images to give a binary presence/ non-presence presentation, the threshold used was 
the calculated equal training sensitivity and specificity threshold (Liu, 2005).  
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MaxEnt predictions 
 

Current climate predictions 
 
When the niches of sister subspecies were compared together for each species little overlap was 

calculated (Schoener’s D), (See Table 5). Current observation maps support this with no overlap 

observed between species and respective subspecies. Some subspecies showing distinct geographical 

differences in suitable habitat (Figures 1.0-1.5), though continuous patterns are observed for most 

species (T. weigmanni, C. mionecton, A. impalearis and M. olivieri). PCA work also supports differences 

between the niches of sister subspecies, highlighted through separations within the component space 

(see figures 4 – 4.2). 

Under current climatic conditions small overlap of suitable habitat was predicted for both M. olivieri 

and S. mauritanicus, with Schoeners D values of (D= 0.4 and 0.2 respectively, although values are still 

considered to represent low overlap). The current observational maps show a continuous pattern for 

M. olivieri and isolated populations for S. mauritanicus. Overlap between the sister subspecies and 

respective subspecies occurred in the component space of the PCA for S. maurtianicus, highlighting 

niche similarities.  

C. mionecton, T. weigmanni and A. impalearis had predicted continuous distributions of suitable 

habitat under current climate conditions, with Schoener’s D values of (D = 0.28, 0.17 and 0.3 

respectively). The current observation maps also show a continuous pattern between sister 

subspecies, supporting MaxEnt outputs. The PCA results for these species and respective subspecies 

highlight differences in the component space portraying differences in niche/variable importance.  

C. ocellatus had no overlap or continuous pattern of suitable habitat predicted under current climate 

conditions, with the two sister subspecies populations’ isolated from one another (Schoeners D value 

for this species was the lowest D = 0.09). The observational data for this species and respective 

subspecies supports the prediction, as currently there is no overlap of populations or continuous 

pattern observed. PCA work also supports the lack of population/ niche overlap observed, as little 

overlap predicted in the component space, highlighting differences in variable importance. 

C. mionecton showed a continuous pattern of suitable habitat when subspecies were modelled 

separately and as a whole, this predicted suitable habitat supports findings from the PCA, which show 

overlap in the component space (Figure 4), with one of the higher values from the niche overlap 

calculations (D= 0.27).  
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When species were modelled as a whole (subspecies together) under current climatic conditions, the 

suitable habitat predicted showed disjunct distributions for C. ocellatus, T. weigmanni, M. olivieri, S. 

mauritanicus and A. impalearis, with areas of predicted habitat in similar locations to those predicted 

by the models when subspecies were modelled individually. 

LIG predictions 
 
Under LIG climate conditions, the suitable habitat predicted for C. ocellatus, T.weigmanni, S. 

mauritanicus and A.impalearis and respective subspecies showed similar scenarios, with predicted 

overlap between areas of suitable habitat. Isolated populations were also predicted in areas that 

coincide with the geographical area that particular sister subspecies currently inhabits (C. m. 

mionecton, C. m. trifasciatus, C. o. subtypicus, T. w. elegans, S. m. mauritanicus and Northern A. 

impalearis). PCA results support the predicted isolations, shown by the separations in component 

space between subspecies. No overlap of suitable habitat was predicted for C. mionecton (D = 0.28) 

and respective subspecies under LIG conditions, with both subspecies completely isolated from one 

another in areas geographically similar to the current observed populations of the individual 

subspecies. The predicted suitable habitat for M. olivieri under LIG conditions showed no isolated 

populations (D = 0.4), with one sister subspecies’ predicted habitat overlapping the other (Figure 4.32). 

Supported by the PCA, which shows some overlap in the component space (Figure 4.14). 

When sister subspecies were modelled together to create a surrogate ancestral species the predicted 

habitats under LIG conditions showed either minor or major fragmentation for all species. Isolated 

habitats were predicted for C. mionecton, C. ocellatus, A. impalearis and M. olivieri in areas 

geographically similar to areas a sister subspecies currently inhabits (C. m. mionecton, C. o. subtypicus, 

Northern A. impalearis and M. o. simoni). 

LGM predictions 
 
The predicted suitable habitats under LGM conditions show overlap and fragmentation for all species 

and their respective subspecies, although the size of the predicted overlap of habitat differs for each 

species. Species’ that only had small areas of overlap predicted where C. mionecton, C. ocellatus, M. 

olivieri and S.mauritanicus. Isolations of predicted suitable habitat during the LGM predicted within 

these species (C. m. mionecton, C. o. subtypicus, M .o. simoni, S. m. mauritanicus and S. m. brosseti). 

These areas of isolated suitable habitat predicted for the subspecies listed, coincide with areas that 

the subspecies currently inhabit, largely in North Africa/Morocco. Under LGM conditions, T. 

weigmanni and A. impalearis have larger areas of niche overlap predicted between subspecies, though 

isolated habitats also predicted between subspecies for Northern A. impalearis. During the LGM T. 
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weigmanni has large areas of suitable habitat overlap, though areas of no overlap between subspecies 

are also predicted. Both the subspecies of T. weigmanni predicted a north south division, so although 

overlap is predicted between populations the geographical distance between the populations could 

be significant, as gene flow would not occur between the northern and southern overlapping 

populations. 

When sister subspecies were modelled together to create a surrogate ancestral species, the predicted 

habitats under LGM showed disjunct/fragmented distributions for all species (C. mionecton, C. 

ocellatus, A. impalearis, S. mauritanicus, T. weigmanni and M. olivieri). Isolated habitats also predicted 

for C. mionecton, C. ocellatus, M. olivieri, T. weigmanni and S. mauritanicus, again these predicted 

isolations are in areas geographically similar to areas a sister subspecies currently inhabits, largely in 

North Africa/Morocco (C. m. mionecton, C. m. trifasciatus, C. o. subtypicus, M. o. simoni and S. m. 

brosseti). The geographical split of suitable habitat for T. weigmanni was a large north-south division 

under LGM conditions.  

All species had predicted habitat isolations for at least one subspecies in at least one climate 

model/scenario, with the whole species models also supporting isolated suitable habitat. Habitat 

isolation predicted for C. o. subtypicus under both climate models (LIG & LGM), with the whole species 

models supporting a LIG isolation. Habitat isolation predicted for T. w. elegans under LIG, with the 

whole species model supporting isolations during the LGM. Habitat isolation predicted for S. m. 

mauritanicus under both climate models (LIG & LGM), with the whole species model supporting 

isolations during the LGM. Habitat isolation predicted for C. m. mionecton under both climate models 

(LIG & LGM), with whole species model supporting isolations under both climate models. Habitat 

isolations predicted for Northern A. impalearis under both climate models (LIG & LGM), with whole 

species model supporting  isolations in both climate models. Finally, habitat isolation predicted for M. 

o. simoni under LGM conditions (LIG & LGM), with whole species model supporting isolation under 

both climate scenarios. Below is a table to portray this information in a concise manner. 
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Table 10. Overview of the MaxEnt predictions of suitable habitat. 
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Discussion 
 

All of the reptile taxa discussed in this study either show intraspecific divergence or are 

recognized as recently-diverged sister species (Brown et al., 2002; Brown et al., 2012; Carretero 

et al., 2005; Harris & Rato, 2008; Kapli et al., 2015; Kornilios et al., 2010; Mattiucci et al., 2001). 

Currently very few modelling studies have addressed the cause of the speciation events within 

Morocco, with some studies suggesting that speciation events could be climatically mediated 

through range shifts (Brown et al., 2012; DeMenocal, 2004), whilst other papers suggest 

vicariance due to changes in physical barriers such as mountains (Brown et al., 2002). The 

rationale for modelling species distributions over past glacial climates (LGM & LIG) was to 

identify opportunities/climatic events that help explain the cause of divergence that led to 

speciation. For example, if isolations/fragmentations due to climatic oscillations are predicted 

for studied species, then this may explain speciation events for other species within 

Morocco/NW Africa.  

The distribution models created for this study show evidence of isolations/fragmentations in 

every case, under either both of the past climate scenarios or at least one of them (LIG or LGM). 

Under LGM conditions, geographically isolated areas of suitable habitat were predicted between 

separately modelled subspecies for all study species, except T. w. weigmanni and T. w. elegans. 

Geographically isolated populations were also predicted under LGM conditions when the whole 

species was modelled (C. mionecton, T. weigmanni, S. mauritanicus. M. olivieri and A. 

impalearis). This indicates that the climate (precipitation/temperature levels) associated with 

the LGM (and earlier glacial maxima) had a stronger impact on a species range when compared 

to precipitation/temperature levels during the LIG (and earlier interglacial). Other species 

distribution studies have also suggested climate associated with the LGM can cause divergence 

within a species (Barnes et al., 2002; Leonard et al., 2000; Rossetto et al., 2012; Walstrom et al., 

2012). Nevertheless, the LIG models produced in this study also predicted geographically 

isolated areas of suitable habitat, irrespective of whether the subspecies were modelled 

separately, (C. mionecton, C. ocellatus, T. weigmanni, A. impalearis & S. mauritanicus) or 

modelled together (C. mionecton, C. ocellatus, A. impalearis & M. olivieri).  
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LGM refugia for most species were found in northern Africa (North of study area), which was 

the area of highest rainfall during that period (Beghin et al, 2015). The higher precipitation in 

this area was due to the large-scale effect of the southward shift of the North Atlantic jet stream 

during the LGM (Beghin et al., 2015). Therefore, during a time when precipitation is considered 

to have generally decreased (Otto-Bliesner et al., 2006), Morocco/north Africa may have 

provided refugia, supported by the higher precipitation in that area. Subspecies C. m. mionecton, 

C. o. subtypicus, T. w. elegans, M. o. olivieri and northern A. impalearis all preferred higher 

precipitation when compared to their sister subspecies, corresponding to isolated refugia in 

northern Africa during the LGM. Hence, rainfall mediated allopatry or range fragmentations 

could have been a driver for divergence in these species. The subspecies S. m. mauritanicus 

similarly had refugia predicted in northern Africa; however, multivariate analysis did not detect 

a preference to higher precipitation when compared to its sister subspecies.  

Precipitation variability would have likely had a major influence on the ecological landscape in 

terms of available food, vegetation, cover or changes that effect prey (direct or indirect) (Beghin 

et al., 2015; Gasse & Campo, 1994; Griffin, 2002; Otto-Bliesner et al., 2006). Cores samples 

analysed by DeMenocal (2004) showed an increase in dust corresponded to changes in pollen, 

showing that an increase in aridity has a direct relationship to changes in vegetation, this 

therefore supports the idea that changes to habitat would correspond to changes in 

precipitation. Other studies have shown rainfall to have a major role in a lizard’s daily behaviour, 

and suggested that it can enhance survival, growth and possibly clutch size and hatching 

success (Dickman et al., 1999). Ryan et al. (2016) suggests that rainfall is the biggest 

contributing factor to changes in a lizard’s microhabitat, not temperature, due to changes in 

cover/vegetation that arise from this. These changes in vegetation/cover have been linked to 

the success and demise of certain lizards within the same environment (Dickman et al. 1999). 

This study cannot determine the exact impact of rainfall and/or associated vegetation 

changes; however, paleoclimate studies coupled with phylogenetic studies suggest that it 

would have produced a habitat change large enough to fragment distributions (deMenocal, 

2004; Kornilios et al., 2010). This is based off estimated divergence times corresponding with 

recorded changes in precipitation (deMenocal, 2004; Mouline et al., 2008). Meaning, times 

associated with increased aridity, a species may have contracted into potentially isolated 

refugia. This may help explain the differences found in the niche comparison methods between 

subspecies used in this study, because of the evolutionary independence of the 

reduced/isolated populations.  
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Temperature variables are the second type of climatic variable available in the Bioclim data. It 

may be expected that lizards would also be effected by temperature, particularly as reptiles are 

ectotherms and very sensitive to this (Ihlow et al., 2012; Kapli et al., 2014; Shine et al., 2002; 

Spellerberg, 1972). Female reptiles of many taxa select nest sites based on physical cues 

(thermal) that relate to incubation success (Bragg et al., 2000). Increases in temperature have 

also been shown to correlate to increases in female body size, and, as fecundity is strongly reliant 

on female body size, clutch size and total reproductive output increase (Chamaille-james et al., 

2005).  

Niche evaluation work in this study showed sister subspecies to indicate differences in 

temperature tolerance between one another. However in this study precipitation seemed to be 

the significant driver, based on the areas on isolation corresponding to areas of higher 

precipitation. Other paleoclimate studies suggest that the impact of changes in temperature are 

indirectly and largely due to associated changes in precipitation (Araújo et al., 2006). Changes in 

temperature are likely to cause changes to a species range, whether it is directly related to the 

temperature change, or the associated impact of changes in precipitation. If populations 

become isolated during times in refugia then the genetic diversity is reduced in the separate 

populations. If gene flow is dramatically reduced or ceases with another population, each isolate 

follows independent evolutionary trajectory, which may potentially lead to speciation (Hewitt, 

2000).  

Deglaciation must have followed the LGM and other glacial maxima as generally temperatures 

and precipitation began to increase (LIG/earlier interglacial). Increased temperatures and 

precipitation could provide opportunities for species to expand from refugia and disperse 

(potential for secondary contact), and for population sizes to increase (Chamaille-james et al., 

2005), due to potential increases in suitable vegetation/habitat. Not every species in this study 

had predicted range expansion that could lead to secondary contact, with certain species 

predicting range contraction during the LIG (C .mionecton and, M. olivieri). The idea of range 

expansion following deglaciation is supported in other studies (Kutch & Tan., 2005; Lee-Yaw et 

al., 2008; Zamudio & Savage., 2003), and is one mechanism that can cause secondary contact.  

The current observed distributions for four of the species (Bons & Geniez, 1996) show a 

continuous distribution across two divergent subspecies, yet currently (at least in the cases of 

C. mionecton and A. impalearis: (Brown et al., 2002; Brown et al., 2012) there is limited gene 

flow. This suggests secondary contact. Secondary contact occurs when two species/subspecies 

that originated during divergence remeet due to changes to a natural barrier or climatic changes 
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increasing a species potential range. Between the glacial extremes (LGM & LIG), patterns of 

range contraction and expansion were predicted in this study. This pattern could have 

potentially repeated itself numerous times over several million years and could explain how 

continuous patterns with no genetic introgression are currently observed. The duration and the 

frequency of the isolations determine the accumulation of genetic divergence (Hewitt, 2000): 

The longer the isolation, the greater the genetic distance between populations, leading to fewer 

genes exchanged during subsequent secondary contact. Therefore, after many glacial cycles 

(with repeated isolations), the two populations would have diverged to a point where they 

cannot mate successfully and so are regarded as two separate species.  

The divergence times for species in this study range between 1-15Ma (Brown et al., 2002; Brown 

et al., 2012; Kapli et al., 2015; Harris & Rato, 2008; Kornilios et al., 2010). For speciation to take 

place, the divergent populations/genomes must have remained largely separate through many 

range changes. The Croll-Milankovitch theory proposes that the Earth’s orbit around the Sun is 

the “pacemaker” of the ice ages (Hewitt, 2000), which states the main orbital eccentricity has a 

100-Ka cycle. Therefore, in 15 Ma there would have been roughly 150 glacial cycles brought on 

by orbital oscillation (Hewitt, 2004). A subspecies such as S. m. brosseti, that has an estimated 

divergence time of 15 Ma from S. m. mauritanicus (Rato & Harris, 2008), may have been 

subjected to repeated fragmentation/isolation events prior to 15 Ma that were climatically 

mediated, with roughly 150 glacial cycles since 15 Ma that will have occurred. These 150 glacial 

cycles would create plenty of potential isolation events followed by secondary contact scenarios, 

until eventually, the separate isolated  populations have diverged to a point where they cannot 

successfully share genes, as they are unable to mate successfully, due to potential habitual or 

morphological differences. This leads to the pattern that is currently observed by some of the 

species in this study (A. impalearis, C. mionecton) and possibly (T. weigmanni, M. olivieri) where 

the current climate enables a continuous pattern between subspecies to occur (secondary 

contact scenario) yet gene flow does not. (Genetic work to determine genetic introgression only 

available for A. imaplearis and C. mionecton). 

The genetic diversity within populations can change drastically following an isolation event. 

Before the isolation event, a species may have had a continuous distribution that spanned a 

large geographical range. Within the species range (prior to fragmentation/isolation), there 

could be varied selection pressures brought on by differences in the environment within the 

extremes of the habitat. Meaning, a population (prior to isolation) may have large genetic 

diversity. A reduction in population size caused by fragmentation/isolation will reduce the 

genetic diversity. This reduction in population size will increase genetic drift within populations 
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leading to greater divergence between populations. Therefore, the predicted isolations will have 

caused reduced populations, attributed to the changes in climate. These reduced populations 

would therefore have reduced genetic diversity leading to divergence through genetic drift or 

differing adaptive pressures between the isolated populations. For example, consider genes that 

relate to predator avoidance. If the range of predation experienced in the larger continuous 

population are varied, then the genetic diversity in relation to predator avoidance is likely to be 

large. Therefore, if a population is split then the genetic diversity in relation to predator 

avoidance may have reduced, due to the smaller population and hence less individuals to share 

genes with. If the genetic diversity is reduced then divergence will occur quicker.  

The observed distributions of all the species in this study correspond well to the niche overlap 

detected by this study and the suitable habitat predicted by MaxEnt. The observed distributions 

for T. wiegmanni, C. mionecton, A. impalearis and M. olivieri (Bons & Geniez, 1996) all portray a 

continuous pattern between subspecies, an indication that gene flow could have been possible 

whenever climate conditions were similar to those at present. When modelling subspecies 

separately (for each species) the MaxEnt models support the current distribution maps (Bons & 

Geniez, 1996), with continuous patterns predicted for T. weigmanni, C. mionecton, A. impalearis 

and M. olivieri under current climatic data with no overlap, thus supporting the hypothesis of 

potential gene flow under certain climates. The above species were found to have low niche 

overlap (Rödder & Engler, 2011).  

In contrast, the current distribution maps for C. ocellatus and S. mauritanicus did not show a 

continuous distribution (Bons & Geniez, 1996). They were found to have very low niche overlap 

scores indicating little or no overlap (Rödder & Engler, 2011). C. ocellatus and S. mauritanicus 

were not predicted to be continuous under current climatic data, corresponding well with 

current observed distributions (Bons & Geniez, 1996) and the low niche overlap values for both 

these species. It is important to note that the degree of niche overlap does not seem to be 

associated with the tendency for a continuous distribution or not.  

When species were modelled as a whole (subspecies together), fragmented distributions were 

predicted for all species except C. mionecton under current climatic conditions. This contradicts 

the majority of the observed distributions (C. ocellatus and S. mauritanicus excluded), and the 

models that treated subspecies independently. The reason the whole species models may 

contradict with the subspecies models could be that when the two subspecies are put together 

as a pseudo ancestral species, the niches of two sister subspecies create a broad/varied niche 

and so encompasses a larger suitable habitat with varying ecological constraints. An example of 
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this could be M. olivieri as the two sister subspecies inhabit different geographical/potentially 

ecological areas; M. o. olivieri is observed inland within Morocco and M. o. simoni observed 

along the coast of Morocco. Evidence of conflicting niches can be seen in the jackknife, PCA and 

niche overlap results between the two model types (whole species/subspecies), (See results). 

The jackknife results indicated a particular subspecies to have a strong weighting within the 

whole species models, this was suggested by a certain subspecies jackknife result corresponding 

to the whole species jackknife result.  

Model Evaluation 
 

Model validation methods performed in this study support good model performance for 

MaxEnt. The null hypothesis results showed how the MaxEnt model out performed models 

where the data are random. The majority of AUC scores produced in MaxEnt are of high 

significance. The sensitivity analysis showed good model performance from MaxEnt in both 

whole species and subspecies models, and the niche overlap (Schoeners D) calculations support 

the findings from the PCA which highlighted differences between sister subspecies.   

The jackknife results are noteworthy. It seems that the variables deemed most important in the 

whole species models, were the same for some of the subspecies models, this indicates that one 

subspecies may have higher weighting within the whole species (ancestral) model. However, the 

reason for this higher weighting/dominance of a certain subspecies is unclear, as the sample size 

does not seem to be the contributing factor so there does not seem to be a definitive correlation 

between sample size and dominance of a subspecies. There also does not seem to be a definitive 

correlation between AUC scores and sample sizes which has been highlighted as a potential 

problem in other papers (Wisz et al., 2008). 

Limitations and future work 
 

In this study, we have predicted the past distribution of the species based on modelling of the 

current niche. We have used past distributions to identify areas of isolation which may have led 

to divergence events (opportunities for divergence). Therefore, if we assume that the past 

distributions are an accurate reflection of the niche during the time when speciation took place 

we must therefore assume niche conservation between the niche of the species now and the 

niche at the time of the divergence event. If we assume niche conservation, we must also 

assume that the divergence was due to evolutionary/genetic changes on characteristics other 

than those which influence the climatic niche of the species (Wiens et al., 2010). Under this 
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assumption we can identify past isolations through modelling, but this study can tell us nothing 

about the nature of the divergence which may have occurred.  

We have also made the assumption that conditions within the LIG and LGM are representative 

of other interglacial and glacial maximum conditions which occurred earlier. This is under the 

assumption of the Croll-Milankovitch theory that suggests the regular variations in the Earth’s 

orbit (Eccentricity, Axial tilt and Precession) around the Sun are the pacers of the ice age cycles. 

The variations in the Earth’s orbit adjust the insolation of the Earth and the energy it receives 

leading to significant climate changes, this theory has been supported in other studies (Hays et 

al., 1976; Imbrie & Imbrie, 1980; Kukla & Gavin, 2004; Rossignol, 1983). This is a limitation of the 

study as the climatological data this assumption is based off are estimates, therefore lacking 

certainty. By assuming Earths insolation (therefore climate) is mediated by the Earths 

circumnavigation around the Sun, we can infer that any patterns of isolation or fragmentation 

predicted under the LGM and LIG climates were repeated numerous times. 

The choice of predictor variables was a limitation of this study as Bioclim variables were the only 

environmental variables used due to the lack of available past data for other variables; this 

means that results produced in MaxEnt can only be interpreted in terms of temperature and 

precipitation. This is a limitation of the study as important environmental influences on a species 

distribution (such as biotic factors) have not been incorporated into the model and therefore 

have not been considered.  

Using other variables to calculate the species niche may be beneficial, for example biotic 

variables such as observational data for a predator. Currently few studies have attempted to 

incorporate biotic interactions when hindcasting (Li et al., 2018; Silva et al., 2015; Troy et al., 

2007), with more studies incorporating biotic interactions when forecasting (Dahdouh-Guebas 

et al., 2004; Davis et al., 2012; Hof et al., 2012 ; Keenan et al., 2011; Le Roux et al., 2014; Potter, 

2004). I hope that the progression of the use of SDMs will increase the amount of studies aiming 

to create estimated biotic datasets based on the past. These past biotic dataset can then be 

applied to SDMs. 

Some studies have attempted to predict future patterns of vegetation (Dahdouh-Guebas et al., 

2004; Davis et al., 2012; Keenan et al., 2011; Potter, 2004) to help improve model performance 

when forecasting. The predicted future vegetation pattern equips researchers with more 

environmental interactions on which to project a species niche. Some paleoclimate studies have 

also estimated past vegetation patterns (Li et al., 2018; Troy et al., 2007), this could help 

strengthen predictive studies that hindcast, as extra environmental interactions can be 
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quantified within the model. Vegetation has been proven to correspond with changes in 

precipitation (deMenocal, 2004; Griffin, 2002), as precipitation was identified as a main driver 

in the predicted fragmentations within this study then vegetation data would help validate what 

sort of impact the changes in precipitation had on the geographical landscape. Incorporation of 

other biotic variables such as predation when hindcasting could also improve the predictions. 

Incorporating biotic variables may improve the models ability to calculate the species niche. 

Depending on what variables are added a realised niche may be estimate rather than a potential. 

 

Conclusion 

This study shows some evidence that ranges of North African reptiles are likely to have changed 

dramatically over the most recent glacial cycles (LIG & LGM) associated with changes in 

temperature and precipitation between these two glacial extremes. The divergence times for 

species discussed in this study were previously shown to be between 1-15 Ma, which predates 

any reliable climate data, and so the LGM and LIG act as surrogate climates for earlier interglacial 

and glacial maxima periods. Based on the assumption that glacial cycles have a similar cyclic 

pattern of occurrence (Croll-Milankovitch theory), we can infer that many previous climatic 

cycles would lead to fragmentation/isolation events. These fragmentation/isolation events will 

have occurred within a species between each glacial cycle, creating numerous opportunities 

over time for isolated populations to diverge from one another due to evolutionary 

independence, which over many glacial cycles could result in speciation. 
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Appendix 
Appendix A: Table of Schoener’s D values for niche overlap on Chalcides mionecton. 
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C.m.trifasciatus 9 1 0.273684375 0.266612791 0.272865444 0.26448066 0.269958032 0.269612741 0.271595012 0.253791017 0.271601258 0.246800409 0.903230327 0.924675936 0.928852035 0.930223112 0.940280566 0.944310017 0.924464019 0.902027999 0.911233959
C.m.mionecton  0 x 1 0.965170086 0.951753911 0.948971002 0.936740791 0.950230128 0.950324169 0.923188513 0.92992537 0.918488328 0.288402268 0.286253555 0.285197685 0.281981901 0.277334058 0.260436328 0.282878675 0.245307524 0.28187035
C.m.mionecton  1 x x 1 0.956201785 0.950981756 0.93986391 0.954989697 0.957767384 0.927804184 0.929201246 0.923548589 0.279570022 0.278195048 0.276882481 0.273966475 0.270401009 0.251704279 0.275057766 0.236794722 0.273021478
C.m.mionecton  2 x x x 1 0.936452951 0.949122325 0.973517993 0.969080958 0.914481182 0.953873351 0.910092779 0.287656258 0.287001469 0.284714281 0.281346853 0.277346013 0.260547123 0.282639013 0.245806137 0.281596438
C.m.mionecton  3 x x x x 1 0.935676192 0.942858653 0.934075249 0.936883652 0.925589066 0.9144813 0.277397962 0.273451439 0.274293458 0.27147732 0.267332626 0.249721195 0.271857281 0.234309877 0.270483086
C.m.mionecton  4 x x x x x 1 0.953750843 0.950299814 0.927160302 0.945268919 0.914625707 0.280726493 0.283976939 0.279151108 0.275809989 0.275928207 0.258889498 0.278350329 0.238292082 0.276022372
C.m.mionecton  5 x x x x x x 1 0.964487696 0.910590942 0.953963 0.904359243 0.284368575 0.284310404 0.282124723 0.278718622 0.274359304 0.258236016 0.279742446 0.243340382 0.27940781
C.m.mionecton  6 x x x x x x x 1 0.915208758 0.952971016 0.910615497 0.285743332 0.2863915 0.282953995 0.279803333 0.276081303 0.259839218 0.28178026 0.24382306 0.280058473
C.m.mionecton  7 x x x x x x x x 1 0.900831283 0.924208243 0.261954926 0.257697324 0.258095246 0.255167076 0.257141422 0.237770365 0.257469993 0.217262893 0.254502784
C.m.mionecton  8 x x x x x x x x x 1 0.905418302 0.286521175 0.289708786 0.284198078 0.2807756 0.277724408 0.262856778 0.283509477 0.244181461 0.281711215
C.m.mionecton  9 x x x x x x x x x x 1 0.255250997 0.258938989 0.254797342 0.251886251 0.252903145 0.233700867 0.254338855 0.214304102 0.250191633
C.m.trifasciatus  0 x x x x x x x x x x x 1 0.89837474 0.900541785 0.891580456 0.907504692 0.899186193 0.890687131 0.880047467 0.897830743
C.m.trifasciatus  1 x x x x x x x x x x x x 1 0.950542104 0.947144402 0.930055559 0.920077525 0.947946849 0.905797723 0.914909543
C.m.trifasciatus  2 x x x x x x x x x x x x x 1 0.980048611 0.942356596 0.915625826 0.967535887 0.916611991 0.930937873
C.m.trifasciatus  3 x x x x x x x x x x x x x x 1 0.939169819 0.913424825 0.96972836 0.912724959 0.927387801
C.m.trifasciatus  4 x x x x x x x x x x x x x x x 1 0.923475677 0.939441929 0.898918876 0.936064217
C.m.trifasciatus  5 x x x x x x x x x x x x x x x x 1 0.910803345 0.918544953 0.912895206
C.m.trifasciatus  6 x x x x x x x x x x x x x x x x x 1 0.90718669 0.923229135
C.m.trifasciatus  7 x x x x x x x x x x x x x x x x x x 1 0.911354898
C.m.trifasciatus  8 x x x x x x x x x x x x x x x x x x x 1
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Appendix B: Table of Schoener’s D values for niche overlap on Chalcides ocellatus. 

 

 

 

 

 

 

SPECIES Subsp.subtypOcellatus_Ocellatus_Ocellatus_Ocellatus_Ocellatus_Ocellatus_Ocellatus_Ocellatus_Ocellatus_Ocellatus_Subsp.subSubsp.subSubsp.subSubsp.subSubsp.subSubsp.subSubsp.subSubsp.subSubsp.sub
Subsp.sub 1 0.085847 0.070849 0.077531 0.077117 0.078479 0.082029 0.07971 0.081702 0.076038 0.075035 0.954404 0.943201 0.959649 0.94811 0.950408 0.936616 0.955451 0.967968 0.953336
Ocellatus_x 1 0.92794 0.934316 0.920776 0.929763 0.930114 0.920587 0.932618 0.931097 0.928817 0.084489 0.087069 0.085103 0.08459 0.088274 0.080676 0.089714 0.08595 0.091965
Ocellatus_x x 1 0.91383 0.900761 0.921046 0.896693 0.905827 0.926787 0.914478 0.922426 0.068947 0.072152 0.070334 0.068771 0.073161 0.066938 0.074192 0.071315 0.07723
Ocellatus_x x x 1 0.938972 0.945436 0.933841 0.928738 0.944946 0.949704 0.951648 0.0762 0.078695 0.076175 0.075628 0.079116 0.072001 0.080315 0.077379 0.083389
Ocellatus_x x x x 1 0.938062 0.930451 0.927065 0.937083 0.939977 0.93136 0.076063 0.078343 0.075885 0.075482 0.078925 0.072095 0.080061 0.076989 0.083103
Ocellatus_x x x x x 1 0.915214 0.931047 0.957646 0.958074 0.944284 0.076651 0.079888 0.07756 0.076483 0.080337 0.073825 0.081529 0.078785 0.084721
Ocellatus_x x x x x x 1 0.918063 0.918428 0.918593 0.921218 0.080918 0.083148 0.080556 0.080287 0.08369 0.076832 0.084699 0.081763 0.087742
Ocellatus_x x x x x x x 1 0.932411 0.941891 0.9354 0.07743 0.080986 0.078754 0.076989 0.081049 0.074899 0.082427 0.079987 0.085982
Ocellatus_x x x x x x x x 1 0.959834 0.942742 0.08016 0.083015 0.080792 0.079798 0.083527 0.076513 0.085001 0.081793 0.088041
Ocellatus_x x x x x x x x x 1 0.954661 0.073928 0.077453 0.075188 0.073906 0.077775 0.071468 0.07904 0.076358 0.082427
Ocellatus_x x x x x x x x x x 1 0.073146 0.07604 0.073906 0.072011 0.076133 0.069869 0.077474 0.075099 0.081329
Subsp.subx x x x x x x x x x x 1 0.942174 0.934522 0.934152 0.932147 0.920803 0.938902 0.948189 0.955912
Subsp.subx x x x x x x x x x x x 1 0.934479 0.930143 0.926633 0.934639 0.932904 0.954248 0.945103
Subsp.subx x x x x x x x x x x x x 1 0.945751 0.949656 0.937653 0.966724 0.949288 0.936992
Subsp.subx x x x x x x x x x x x x x 1 0.946515 0.933053 0.943827 0.939968 0.928812
Subsp.subx x x x x x x x x x x x x x x 1 0.951156 0.957722 0.939812 0.938223
Subsp.subx x x x x x x x x x x x x x x x 1 0.934402 0.934955 0.92073
Subsp.subx x x x x x x x x x x x x x x x x 1 0.944259 0.940967
Subsp.subx x x x x x x x x x x x x x x x x x 1 0.955617
Subsp.subx x x x x x x x x x x x x x x x x x x 1
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Appendix C: Table of Schoener’s D values for niche overlap on Messalina olivieri. 

 

 

 

 

 

 

 

SPECIES Olivieri.ol Olivieri simOlivieri simOlivieri.si Olivieri.si Olivieri.simOlivieri.simOlivieri.simOlivieri.simOlivieri.simOlivieri.si Olivieri.ol Olivieri.ol Olivieri.ol Olivieri.ol Olivieri.ol Olivieri.ol Olivieri.ol Olivieri.ol Olivieri.ol
Olivieri.ol 1 0.40323 0.404668 0.399985 0.402779 0.39881 0.406869 0.408878 0.39698 0.403356 0.406489 0.913827 0.929267 0.929364 0.928071 0.924459 0.919607 0.926344 0.927145 0.903383
Olivieri.simx 1 0.897323 0.923291 0.912186 0.91562 0.897628 0.921996 0.898259 0.910415 0.908835 0.39134 0.398217 0.409336 0.406617 0.407747 0.389088 0.399156 0.390124 0.402653
Olivieri.simx x 1 0.910698 0.943809 0.902345 0.921792 0.926272 0.918454 0.936272 0.93502 0.390304 0.399237 0.410137 0.407082 0.407961 0.38885 0.400423 0.391671 0.397356
Olivieri.simx x x 1 0.924452 0.937215 0.911616 0.926323 0.907755 0.934514 0.932986 0.388842 0.394475 0.405388 0.403198 0.404054 0.386139 0.397505 0.388865 0.394537
Olivieri.simx x x x 1 0.918133 0.926541 0.939783 0.916146 0.950216 0.951243 0.388372 0.398118 0.40851 0.404927 0.406188 0.385957 0.399692 0.390759 0.394849
Olivieri.simx x x x x 1 0.901786 0.931748 0.897996 0.912546 0.931987 0.387507 0.395437 0.404029 0.402437 0.40314 0.384542 0.397226 0.388838 0.392254
Olivieri.simx x x x x x 1 0.922283 0.922856 0.943778 0.940298 0.397574 0.400965 0.410034 0.408351 0.410559 0.394495 0.402267 0.394608 0.401856
Olivieri.simx x x x x x x 1 0.908193 0.924225 0.937685 0.397786 0.404126 0.416033 0.413151 0.414896 0.394088 0.407498 0.398726 0.405522
Olivieri.simx x x x x x x x 1 0.925402 0.923841 0.384741 0.391368 0.401189 0.39923 0.399548 0.384267 0.392067 0.382258 0.38841
Olivieri.simx x x x x x x x x 1 0.946259 0.390699 0.397581 0.407325 0.405163 0.406118 0.388286 0.398983 0.390952 0.395692
Olivieri.simx x x x x x x x x x 1 0.394401 0.401713 0.411901 0.409186 0.411211 0.39159 0.404221 0.395244 0.399717
Olivieri.ol x x x x x x x x x x x 1 0.914455 0.923362 0.924298 0.925133 0.935981 0.929379 0.936636 0.899163
Olivieri.ol x x x x x x x x x x x x 1 0.920877 0.930557 0.916861 0.918108 0.936916 0.927235 0.889151
Olivieri.ol x x x x x x x x x x x x x 1 0.930468 0.926478 0.920008 0.933653 0.934749 0.89929
Olivieri.ol x x x x x x x x x x x x x x 1 0.932598 0.921853 0.933599 0.938801 0.902936
Olivieri.ol x x x x x x x x x x x x x x x 1 0.921026 0.921749 0.928364 0.900287
Olivieri.ol x x x x x x x x x x x x x x x x 1 0.928832 0.922462 0.893161
Olivieri.ol x x x x x x x x x x x x x x x x x 1 0.934709 0.896773
Olivieri.ol x x x x x x x x x x x x x x x x x x 1 0.898592
Olivieri.ol x x x x x x x x x x x x x x x x x x x 1
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Appendix D: Table of Schoener’s D values for niche overlap on Trogonophis weigmanni. 

 

 

 

 

 

 

SPECIES Trogonophsubsp.wiesubsp.wiesubsp.wiesubsp.wiesubsp.wiesubsp.wiesubsp.wiesubsp.wiesubsp.wiesubsp.wieTrogonophTrogonophTrogonophTrogonophTrogonophTrogonophTrogonophTrogonophTrogonoph
Trogonoph 1 0.147761 0.157844 0.13737 0.146266 0.154643 0.14906 0.15793 0.159944 0.154271 0.152846 0.938416 0.918325 0.921099 0.917767 0.923196 0.926768 0.934333 0.928597 0.921508
subsp.wiex 1 0.931879 0.923893 0.919635 0.920848 0.916844 0.926128 0.903618 0.891806 0.950211 0.161777 0.16185 0.162207 0.156177 0.166072 0.148719 0.166643 0.16205 0.157466
subsp.wiex x 1 0.918633 0.917546 0.952247 0.940118 0.946647 0.920544 0.886708 0.935617 0.17198 0.171793 0.172357 0.163812 0.17498 0.158501 0.176327 0.171789 0.166271
subsp.wiex x x 1 0.921716 0.920817 0.941394 0.929463 0.90331 0.884805 0.925163 0.149406 0.1508 0.150106 0.14384 0.151895 0.137001 0.15479 0.149908 0.143968
subsp.wiex x x x 1 0.924052 0.921066 0.93286 0.923496 0.919511 0.938724 0.161371 0.16091 0.160825 0.153016 0.162845 0.148209 0.164584 0.161282 0.155936
subsp.wiex x x x x 1 0.94284 0.963678 0.926022 0.898885 0.940592 0.168596 0.168337 0.168603 0.160295 0.171018 0.155308 0.172521 0.168543 0.161937
subsp.wiex x x x x x 1 0.945526 0.91108 0.87735 0.927694 0.162613 0.163203 0.163015 0.15581 0.165473 0.149575 0.167421 0.162439 0.157379
subsp.wiex x x x x x x 1 0.92719 0.89548 0.94828 0.17223 0.172106 0.172213 0.163769 0.174151 0.159118 0.176036 0.172187 0.165819
subsp.wiex x x x x x x x 1 0.934928 0.939358 0.174493 0.174213 0.174387 0.164778 0.176539 0.161248 0.177679 0.17442 0.16624
subsp.wiex x x x x x x x x 1 0.919639 0.168607 0.168002 0.167903 0.159325 0.170184 0.155478 0.171526 0.168696 0.160265
subsp.wiex x x x x x x x x x 1 0.167278 0.166991 0.167286 0.159164 0.17004 0.153934 0.171359 0.167127 0.161427
Trogonophx x x x x x x x x x x 1 0.921936 0.9199 0.908232 0.933358 0.927895 0.930966 0.931612 0.932369
Trogonophx x x x x x x x x x x x 1 0.950453 0.914134 0.937496 0.928382 0.95496 0.943676 0.924373
Trogonophx x x x x x x x x x x x x 1 0.910054 0.924316 0.93675 0.938567 0.93942 0.921697
Trogonophx x x x x x x x x x x x x x 1 0.924612 0.915838 0.921009 0.920297 0.926737
Trogonophx x x x x x x x x x x x x x x 1 0.925142 0.939364 0.942542 0.926375
Trogonophx x x x x x x x x x x x x x x x 1 0.925817 0.949186 0.923776
Trogonophx x x x x x x x x x x x x x x x x 1 0.939015 0.93314
Trogonophx x x x x x x x x x x x x x x x x x 1 0.936761
Trogonophx x x x x x x x x x x x x x x x x x x 1
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Appendix E: Table of Schoener’s D values for niche overlap on Saurodactylus mauritanicus. 

 

 

 

 

 

 

 

SPECIES S. Brosseti S. MauritanicS. MauritaS. MauritaS. MauritaS. MauritaS. MauritaS. MauritaS. MauritaS. MauritaS. MauritaS. Brosseti S. Brosseti S. BrossetiS. Brosseti S. Brosseti S. Brosseti S. Brosseti S. Brosseti S. Brosseti
S. Brosseti 1 0.16901429 0.167599 0.163191 0.165553 0.16977 0.171068 0.167117 0.16541 0.165494 0.168159 0.9387854 0.9170577 0.906109 0.8811513 0.9482896 0.915323 0.9265506 0.8709499 0.9304866
S. Mauritanicus x 1 0.944191 0.918825 0.941565 0.944301 0.936003 0.937939 0.951672 0.941857 0.942645 0.1907539 0.2006673 0.189784 0.1601118 0.1765095 0.1863926 0.1959998 0.196999 0.1901893
S. Mauritanicus x x 1 0.908111 0.951269 0.957196 0.944311 0.947316 0.94615 0.950656 0.95265 0.1882539 0.1997769 0.187506 0.1595206 0.1747665 0.1850401 0.1942726 0.1953602 0.1882583
S. Mauritanicus x x x 1 0.917402 0.917741 0.908459 0.90985 0.923116 0.918779 0.91191 0.1843013 0.1937837 0.184248 0.1536423 0.17063 0.1792858 0.1896223 0.1898452 0.1837161
S. Mauritanicus x x x x 1 0.951228 0.949448 0.941866 0.94281 0.942415 0.944323 0.1878346 0.1976129 0.187718 0.1576653 0.17276 0.1832367 0.1932816 0.1950788 0.1872633
S. Mauritanicus x x x x x 1 0.949583 0.943583 0.944301 0.949471 0.954155 0.190359 0.2016656 0.189457 0.1609918 0.1772625 0.1869359 0.1956616 0.1967379 0.1903115
S. Mauritanicus x x x x x x 1 0.937055 0.937092 0.944867 0.944455 0.194018 0.2029512 0.193421 0.1631681 0.1784869 0.1887208 0.1990662 0.2011215 0.1931826
S. Mauritanicus x x x x x x x 1 0.941346 0.938238 0.942063 0.1884154 0.1991384 0.18732 0.1577594 0.1747494 0.1846136 0.1935243 0.1944296 0.1880834
S. Mauritanicus x x x x x x x x 1 0.937905 0.944657 0.1870899 0.1974939 0.186371 0.157187 0.1728682 0.1830353 0.1927943 0.1938409 0.1867379
S. Mauritanicus x x x x x x x x x 1 0.943297 0.1874243 0.1968267 0.18656 0.1569994 0.1728675 0.1827138 0.1928501 0.1939198 0.186579
S. Mauritanicus x x x x x x x x x x 1 0.1896075 0.1996747 0.188697 0.1605238 0.1753237 0.1855758 0.1960893 0.1969033 0.1894169
S. Brosseti x x x x x x x x x x x 1 0.9325986 0.898361 0.858279 0.9381673 0.9203707 0.9180998 0.8632549 0.9542839
S. Brosseti x x x x x x x x x x x x 1 0.888805 0.8584929 0.9121668 0.9409346 0.925075 0.8681946 0.9402554
S. Brosseti x x x x x x x x x x x x x 1 0.8712512 0.9017322 0.9121782 0.9201188 0.9241949 0.917141
S. Brosseti x x x x x x x x x x x x x x 1 0.8841145 0.8702095 0.892224 0.8623487 0.8758163
S. Brosseti x x x x x x x x x x x x x x x 1 0.9242131 0.9261491 0.8657351 0.9392428
S. Brosseti x x x x x x x x x x x x x x x x 1 0.9307855 0.8876501 0.946572
S. Brosseti x x x x x x x x x x x x x x x x x 1 0.8884024 0.9391595
S. Brosseti x x x x x x x x x x x x x x x x x x 1 0.8812209
S. Brosseti x x x x x x x x x x x x x x x x x x x 1
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Appendix F: Table of Schoener’s D values for niche overlap on Agama impalearis. 

 

 

 

 

 

SPECIES Agama_SoAgama_NoAgama_NoAgama_NoAgama_NoAgama_NoAgama_NoAgama_NoAgama_NoAgama_NoAgama_NoAgama_NoAgama_NoAgama_NoAgama_NoAgama_NoAgama_SoAgama_SoAgama_SoAgama_SoAgama_SoAgama_SoAgama_SoAgama_SoAgama_SoAgama_SoAgama_SoAgama_SoAgama_SoAgama_So
Agama_South_ 1 0.287691 0.303991 0.28306 0.298417 0.287035 0.284805 0.293272 0.303683 0.292952 0.305557 0.300478 0.307897 0.290825 0.310539 0.295731 0.875448 0.868834 0.879209 0.859337 0.875377 0.869592 0.841097 0.863582 0.8736 0.859648 0.866072 0.880633 0.872302 0.872103
Agama_North_x 1 0.865555 0.867183 0.870813 0.835715 0.865194 0.882076 0.853405 0.878192 0.88251 0.851952 0.863121 0.876226 0.86762 0.867937 0.286561 0.291754 0.295138 0.300138 0.305779 0.295486 0.285213 0.303133 0.278247 0.290226 0.296017 0.293574 0.289876 0.291809
Agama_North_x x 1 0.870648 0.875548 0.869922 0.852404 0.878217 0.876637 0.878914 0.868126 0.866239 0.871524 0.867132 0.88351 0.886126 0.298852 0.304132 0.305982 0.310156 0.317911 0.305152 0.297384 0.31541 0.287087 0.301051 0.310685 0.307454 0.302391 0.303469
Agama_North_x x x 1 0.876193 0.862029 0.860934 0.866797 0.863177 0.872951 0.885959 0.860006 0.864759 0.857929 0.874601 0.866694 0.278429 0.28598 0.289395 0.287821 0.295331 0.287092 0.279676 0.29433 0.264529 0.28178 0.291181 0.290497 0.285316 0.282743
Agama_North_x x x x 1 0.860849 0.861089 0.869823 0.884467 0.874976 0.891971 0.867473 0.888257 0.876249 0.878106 0.886135 0.29719 0.303038 0.30455 0.306175 0.315159 0.306431 0.298772 0.310663 0.283449 0.301301 0.308418 0.303953 0.300699 0.299514
Agama_North_x x x x x 1 0.850111 0.839727 0.849479 0.857832 0.857237 0.863707 0.868503 0.849256 0.857645 0.868469 0.284477 0.293257 0.290028 0.295759 0.302979 0.290961 0.284236 0.299197 0.271392 0.287706 0.29407 0.292736 0.288951 0.288612
Agama_North_x x x x x x 1 0.843271 0.842073 0.875494 0.857012 0.843843 0.858553 0.850104 0.845846 0.863243 0.280017 0.288307 0.287035 0.291902 0.297971 0.286927 0.279826 0.296493 0.267899 0.283547 0.290631 0.289303 0.284536 0.285826
Agama_North_x x x x x x x 1 0.873793 0.864558 0.872169 0.858233 0.865762 0.879375 0.878392 0.86197 0.290537 0.296147 0.298403 0.304395 0.309194 0.300616 0.28916 0.307169 0.280994 0.294096 0.301629 0.298184 0.29395 0.295628
Agama_North_x x x x x x x x 1 0.862325 0.863609 0.859462 0.865394 0.857625 0.883308 0.869143 0.30415 0.309405 0.308129 0.310226 0.322264 0.31295 0.304051 0.3141 0.287508 0.309693 0.313444 0.308268 0.30618 0.306445
Agama_North_x x x x x x x x x 1 0.866899 0.872297 0.875581 0.875593 0.872853 0.871532 0.288609 0.294469 0.296382 0.299727 0.308041 0.297561 0.290258 0.305258 0.276844 0.292985 0.302563 0.298626 0.293368 0.291884
Agama_North_x x x x x x x x x x 1 0.870083 0.878477 0.864881 0.86576 0.876156 0.304336 0.311214 0.309994 0.314517 0.321095 0.312719 0.302118 0.318091 0.291093 0.307058 0.312479 0.312741 0.309251 0.308212
Agama_North_x x x x x x x x x x x 1 0.875999 0.858193 0.868159 0.871968 0.300171 0.307313 0.305701 0.309548 0.317139 0.308489 0.298963 0.314276 0.286567 0.303907 0.309854 0.307004 0.302804 0.301035
Agama_North_x x x x x x x x x x x x 1 0.865784 0.87616 0.873576 0.306819 0.312799 0.312509 0.314662 0.325331 0.315808 0.307517 0.3183 0.293821 0.310562 0.316747 0.312327 0.308757 0.308535
Agama_North_x x x x x x x x x x x x x 1 0.861176 0.855378 0.288466 0.29417 0.297011 0.300666 0.306576 0.299235 0.289673 0.30416 0.276227 0.29185 0.29993 0.297481 0.294098 0.293273
Agama_North_x x x x x x x x x x x x x x 1 0.867797 0.307781 0.31366 0.316039 0.315599 0.326661 0.31806 0.308527 0.322869 0.294211 0.312537 0.319782 0.31701 0.312633 0.312862
Agama_North_x x x x x x x x x x x x x x x 1 0.293987 0.299477 0.300336 0.304184 0.312345 0.30018 0.292858 0.310169 0.282381 0.297438 0.304341 0.301029 0.296422 0.29685
Agama_South_x x x x x x x x x x x x x x x x 1 0.892846 0.870842 0.862245 0.857844 0.868631 0.857263 0.875889 0.864817 0.85554 0.876525 0.850988 0.879536 0.879574
Agama_South_x x x x x x x x x x x x x x x x x 1 0.870457 0.876026 0.862216 0.864577 0.846264 0.871365 0.856283 0.868696 0.875737 0.858977 0.864729 0.876846
Agama_South_x x x x x x x x x x x x x x x x x x 1 0.863653 0.867261 0.862314 0.832843 0.871042 0.862312 0.853497 0.867 0.862611 0.865082 0.866803
Agama_South_x x x x x x x x x x x x x x x x x x x 1 0.858372 0.862574 0.827954 0.86849 0.858125 0.859171 0.859487 0.847327 0.856997 0.869021
Agama_South_x x x x x x x x x x x x x x x x x x x x 1 0.85731 0.842008 0.848236 0.854086 0.861801 0.858905 0.866337 0.853629 0.846419
Agama_South_x x x x x x x x x x x x x x x x x x x x x 1 0.851994 0.861721 0.856165 0.862994 0.867967 0.852509 0.876614 0.853886
Agama_South_x x x x x x x x x x x x x x x x x x x x x x 1 0.841692 0.841545 0.853088 0.861769 0.837298 0.858547 0.837865
Agama_South_x x x x x x x x x x x x x x x x x x x x x x x 1 0.86127 0.8575 0.88094 0.856186 0.877282 0.884877
Agama_South_x x x x x x x x x x x x x x x x x x x x x x x x 1 0.859546 0.867402 0.855531 0.849981 0.856355
Agama_South_x x x x x x x x x x x x x x x x x x x x x x x x x 1 0.874372 0.850744 0.853107 0.846512
Agama_South_x x x x x x x x x x x x x x x x x x x x x x x x x x 1 0.85827 0.862148 0.864519
Agama_South_x x x x x x x x x x x x x x x x x x x x x x x x x x x 1 0.861731 0.848551
Agama_South_x x x x x x x x x x x x x x x x x x x x x x x x x x x x 1 0.888064
Agama_South_x x x x x x x x x x x x x x x x x x x x x x x x x x x x x 1
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Appendix G: Component scores of bioclim variables for Chalcides mionecton. 

 

 

 

 

 

 

1 2 3 4
Annual Mean Temperature -.093 .108 .069 .045

Mean Diurnal Range (Mean of monthly (max temp - min temp)) .061 .144 -.031 .338

Isothermality (BIO2/BIO7) (* 100) -.041 -.048 -.040 .714

Temperature Seasonality (standard deviation *100) .078 .145 .003 -.100

Max Temperature of Warmest Month .023 .190 .034 .048

Min Temperature of Coldest Month -.105 -.041 .086 -.130

Temperature Annual Range (BIO5-BIO6) .072 .152 -.022 .102

Mean Temperature of Wettest Quarter -.111 .030 .053 .018

Mean Temperature of Driest Quarter -.026 .185 .062 -.036

Mean Temperature of Warmest Quarter -.028 .184 .063 -.032

Mean Temperature of Coldest Quarter -.114 .011 .063 .056

Annual Precipitation .076 -.033 .216 -.014

Precipitation of Wettest Month .052 -.033 .254 .068

Precipitation of Driest Month .091 -.036 -.128 .122

Precipitation Seasonality (Coefficient of Variation) -.089 -.030 .097 .330

Precipitation of Wettest Quarter .058 -.036 .246 .029

Precipitation of Driest Quarter .109 -.048 -.020 .020

Precipitation of Warmest Quarter .111 -.026 -.027 .121

Precipitation of Coldest Quarter .058 -.037 .245 .055

Component Score Coefficient Matrix

Climatic Variables Component
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Appendix H: Component scores of the bioclim variables for Chalcides ocellatus. 

 

 

 

 

 

1 2 3 4
Annual Mean Temperature .090 -.065 -.076 .143

Mean Diurnal Range (Mean of monthly (max temp - min temp)) .056 .163 .210 -.045

Isothermality (BIO2/BIO7) (* 100) .012 -.046 .319 -.569

Temperature Seasonality (standard deviation *100) .051 .186 -.009 .195

Max Temperature of Warmest Month .083 .104 .006 .180

Min Temperature of Coldest Month .021 -.207 -.188 .078

Temperature Annual Range (BIO5-BIO6) .055 .182 .095 .105

Mean Temperature of Wettest Quarter .079 .004 -.273 -.143

Mean Temperature of Driest Quarter .033 -.050 .315 .135

Mean Temperature of Warmest Quarter .090 .034 -.071 .227

Mean Temperature of Coldest Quarter .063 -.167 -.092 .087

Annual Precipitation -.093 -.004 .068 .170

Precipitation of Wettest Month -.089 -.029 .107 .225

Precipitation of Driest Month -.065 .138 -.150 -.076

Precipitation Seasonality (Coefficient of Variation) .060 -.104 .232 .084

Precipitation of Wettest Quarter -.089 -.019 .123 .232

Precipitation of Driest Quarter -.079 .099 -.140 -.077

Precipitation of Warmest Quarter -.088 .038 -.168 -.088

Precipitation of Coldest Quarter -.086 -.044 .112 .255

Component Score Coefficient Matrix

Climatic Variables Component
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Appendix I: Component scores of bioclim variables for Messalina olivieri. 

 

 

 

 

 

1 2 3
Annual Mean Temperature -.086 .076 .119

Mean Diurnal Range (Mean of monthly (max temp - min temp)) .067 .119 .105

Isothermality (BIO2/BIO7) (* 100) -.067 -.101 -.006

Temperature Seasonality (standard deviation *100) .074 .136 .030

Max Temperature of Warmest Month .024 .191 .117

Min Temperature of Coldest Month -.094 -.037 .015

Temperature Annual Range (BIO5-BIO6) .073 .133 .058

Mean Temperature of Wettest Quarter -.080 .083 -.084

Mean Temperature of Driest Quarter -.011 .115 .218

Mean Temperature of Warmest Quarter -.027 .184 .137

Mean Temperature of Coldest Quarter -.096 -.011 .067

Annual Precipitation .082 -.087 .149

Precipitation of Wettest Month .063 -.114 .234

Precipitation of Driest Month .077 .008 -.250

Precipitation Seasonality (Coefficient of Variation) -.084 -.061 .066

Precipitation of Wettest Quarter .067 -.106 .239

Precipitation of Driest Quarter .086 -.003 -.191

Precipitation of Warmest Quarter .085 -.018 -.183

Precipitation of Coldest Quarter .056 -.121 .258

Component

Component Score Coefficient Matrix

Climatic Variables 
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Appendix J: Component scores of bioclim variables for Trogonophis weigmanni. 

 

 

 

 

 

1 2 3 4

Annual Mean Temperature -.092 -.009 .123 -.028

Mean Diurnal Range (Mean of monthly (max temp - min temp)) .079 -.020 .116 .470
Isothermality (BIO2/BIO7) (* 100) -.051 .047 -.077 .764
Temperature Seasonality (standard deviation *100) .090 -.043 .127 -.028
Max Temperature of Warmest Month .039 -.043 .247 .115
Min Temperature of Coldest Month -.101 .018 .016 -.184
Temperature Annual Range (BIO5-BIO6) .089 -.035 .123 .187
Mean Temperature of Wettest Quarter -.086 -.065 .044 .048
Mean Temperature of Driest Quarter -.032 -.047 .254 -.067
Mean Temperature of Warmest Quarter -.037 -.046 .249 -.077
Mean Temperature of Coldest Quarter -.102 .012 .040 -.037
Annual Precipitation .045 .214 .050 -.066
Precipitation of Wettest Month .013 .236 .059 -.014
Precipitation of Driest Month .097 -.035 -.052 -.024
Precipitation Seasonality (Coefficient of Variation) -.085 .116 .000 .184
Precipitation of Wettest Quarter .014 .237 .054 -.034
Precipitation of Driest Quarter .100 .009 -.030 -.070
Precipitation of Warmest Quarter .098 .001 -.030 -.139

Precipitation of Coldest Quarter .009 .238 .058 -.048

Component
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Appendix K: Component scores of bioclim variables for Saurodactylus mauritanicus 

  
Component 

1 2 3 
Annual Mean Temperature -.077 .090 .167 
Mean Diurnal Range (Mean of monthly (max temp - min 
temp)) .059 .132 -.180 

Isothermality (BIO2/BIO7) (* 100) -.055 -.082 -.274 
Temperature Seasonality (standard deviation *100) .068 .138 -.034 
Max Temperature of Warmest Month .027 .203 .008 
Min Temperature of Coldest Month -.082 -.039 .169 
Temperature Annual Range (BIO5-BIO6) .066 .139 -.099 
Mean Temperature of Wettest Quarter -.081 .038 .105 
Mean Temperature of Driest Quarter -.014 .197 .215 
Mean Temperature of Warmest Quarter -.021 .204 .152 
Mean Temperature of Coldest Quarter -.086 -.005 .148 
Annual Precipitation .082 -.049 .217 
Precipitation of Wettest Month .070 -.077 .304 
Precipitation of Driest Month .072 -.029 -.234 
Precipitation Seasonality (Coefficient of Variation) -.076 -.035 -.119 
Precipitation of Wettest Quarter .073 -.072 .303 
Precipitation of Driest Quarter .081 -.025 -.098 
Precipitation of Warmest Quarter .081 -.015 -.128 
Precipitation of Coldest Quarter .070 -.079 .332 
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Appendix L: Component scores of the bioclim variables for Agama impalearis. 

 

  
Component 

1 2 3 
Annual Mean Temperature -.879 .289 .298 
Mean Diurnal Range (Mean of monthly (max temp - 
min temp)) .514 .733 .132 

Isothermality (BIO2/BIO7) (* 100) -.605 -.435 -.255 
Temperature Seasonality (standard deviation *100) .622 .755 .175 
Max Temperature of Warmest Month .090 .911 .360 
Min Temperature of Coldest Month -.886 -.331 .100 
Temperature Annual Range (BIO5-BIO6) .596 .764 .162 
Mean Temperature of Wettest Quarter -.803 .318 -.006 
Mean Temperature of Driest Quarter -.299 .546 .457 
Mean Temperature of Warmest Quarter -.385 .790 .407 
Mean Temperature of Coldest Quarter -.956 -.148 .151 
Annual Precipitation .700 -.511 .486 
Precipitation of Wettest Month .532 -.581 .606 
Precipitation of Driest Month .798 .072 -.439 
Precipitation Seasonality (Coefficient of Variation) -.742 -.367 .232 
Precipitation of Wettest Quarter .544 -.562 .616 
Precipitation of Driest Quarter .905 -.041 -.242 
Precipitation of Warmest Quarter .892 -.138 -.267 
Precipitation of Coldest Quarter .495 -.606 .617 
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Appendix M: sensitivity and specificity analysis for whole species and individual subspecies. 

 

 

 

 

 

 

 

Sensitivity & Specificity analysis 
      

    Whole species   Subspecies 
   Chalcides mionecton  C. m. mionecton C. m. trifasciatus 
Sensitivity  0.947  0.951 0.937 
Specificity   0.8662   0.879 0.932 

      
    Whole species   Subspecies 
   Chalcides ocellatus  C. o. ocellatus C. o. subtypicus 
Sensitivity  0.933  0.911 0.963 
Specificity   0.77   0.808 0.905 

      
    Whole species   Subspecies 
   Agama impalearis  A. i. north A. i. south 
Sensitivity  0.946  0.869 0.839 
Specificity   0.286   0.759 0.795 

      
    Whole species   Subspecies 
   Saurodactylus mauritanicus  S. m. mauritanicus S. m. brosseti 
Sensitivity  0.956  0.823 0.958 
Specificity   0.755   0.898 0.952 

      
    Whole species   Subspecies 
   Mesalina olivieri  M. o. olivieri M. o. simoni 
Sensitivity  0.929  0.834 0.952 
Specificity   0.803   0.828 0.915 

      
    Whole species   Subspecies 
   Trogonophis wiegmanni  T. w. wiegmanni T. w. elegans 
Sensitivity  0.944  0.892 0.944 
Specificity   0.699   0.87 0.829 
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Appendix N: Details of data input within MaxEnt. 

Species 
Sample 

size 
Background 

points Features selected through "Auto" selection 

C. m. mionecton 47 10000 Hinge, Linear, Quadratic 

C. m. trifasciatus 24 10000 Hinge, Linear, Quadratic 

C. o. ocellatus 34 10000 Hinge, Linear, Quadratic 

C. o. subtypicus 42 10000 Hinge, Linear, Quadratic 

A. i. north 265 10000 Hinge, Linear, Quadratic, Threshold, Product 

A. i. south 331 10000 Hinge, Linear, Quadratic, Threshold, Product 

T. w. weigmanni 28 10000 Hinge, Linear, Quadratic 

T. w. elegans 67 10000 Hinge, Linear, Quadratic 

S. m. brosseti 174 10000 Hinge, Linear, Quadratic, Threshold, Product 

S. m. mauritanicus 18 10000 Hinge, Linear, Quadratic 

M. o. simoni 32 10000 Hinge, Linear, Quadratic 

M. o. olivieri 87 10000 Hinge, Linear, Quadratic, Threshold, Product 

 

Appendix O: PCA on bioclim dataset. 

 
Total Variance Explained 

Component 

Initial Eigenvalues Extraction Sums of Squared Loadings 

Total % of Variance Cumulative % Total % of Variance Cumulative % 

1 8.529 44.887 44.887 8.529 44.887 44.887 

2 5.191 27.320 72.208 5.191 27.320 72.208 

3 2.402 12.641 84.848 2.402 12.641 84.848 

4 .997 5.248 90.096 .997 5.248 90.096 

5 .657 3.455 93.552    
6 .472 2.482 96.034    
7 .344 1.812 97.846    
8 .188 .992 98.838    
9 .112 .588 99.426    
10 .060 .316 99.742    
11 .022 .115 99.857    
12 .008 .045 99.901    
13 .007 .039 99.940    
14 .005 .028 99.968    
15 .002 .012 99.980    
16 .002 .010 99.990    
17 .001 .006 99.996    
18 .001 .004 100.000    
19 2.640E-15 1.389E-14 100.000    
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Appendix P: Shapefile of the geographical area to which the species niches were projected on to laid 
over the top of the study area image.
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