
Particle swarm optimization for

dynamically changing environments with

particular focus on scalability and

switching cost

Danial Yazdani

A thesis submitted in partial fulfilment of the requirements of Liverpool John

Moores University for the degree of Doctor of Philosophy

August 2018

Declaration

The work presented in this thesis was carried out at the Liverpool Logistics, Offshore

and Marine Research Institute, Liverpool John Moores University. Unless otherwise

stated, it is the original work of the author.

While registered as a candidate for the degree of Doctor of Philosophy, for which sub-

mission is now made, the author has not been registered as a candidate for any other

award. This thesis has not been submitted in whole, or in part, for any other degree.

Danial Yazdani

Liverpool Logistics, Offshore and Marine Research Institute

Faculty of Engineering and Technology

Liverpool John Moores University

Byrom Street Campus

Liverpool

L3 3AF

UK

October 2018

ii

Abstract

Change is an inescapable aspect of natural and artificial systems, and adaptation is cen-

tral to their resilience. Optimization problems are no exception to this maxim. Indeed,

viability of businesses depends heavily on their effectiveness in responding to a change

in the myriad of optimization problems they entail. Changes in optimization problems

usually are result of change in the objective function and/or number of variables and/or

constraints. Such optimization problems are denoted as dynamic optimization problems

(DOPs) in the literature. Despite the large body of literature on DOPs and algorithms

in this domain, there are still noticeable gaps between real-world DOPs and academic

research. The first objective of this thesis is investigating DOPs to identify any class of

DOPs or any DOPs’ characteristics that are common in practical situation but have not

been studied by the researchers.

In this thesis, two important gaps are identified, namely considering switching cost in

DOPs and large-scale DOPs. Both are common in many real-world dynamic problem

but a few research investigated them in the past. In an attempt to bridge these gaps,

this thesis makes the following contributions:

First, this thesis considers the impact of cost for changing solutions after environmental

changes. In fact, changing solutions in real-world problems is costly. Furthermore, larger

changes have higher cost and need more resources such as time, human resources and

energy. Thus, lack of switching cost consideration in most previous algorithms makes

them unsuitable for many of real-world DOPs. In this thesis, different scenarios of DOPs

with switching cost are investigated, their challenges are identified, and the performance

of the state-of-the-art methods are investigated for solving them. Contributions include

developing a novel robust optimization over time (ROOT) framework, a novel adaptive

method for maximizing efficiency by changing or keeping solutions after environmental

iii

changes, and a novel multi-objective and time-linkage based method for minimizing

switching cost.

Second, this thesis investigates large-scale DOPs. Up to now, little attention has been

given to the scalability of DOPs. Indeed, the dimension of typical DOPs studied in the

literature hardly exceeds twenty. In this thesis, the challenges of large-scale DOPs are

studied, then the efficiency of the current methods are investigated for solving them.

Moreover, this thesis proposes a novel cooperative coevolution algorithm based on a

multi-population approach which benefits from a new resource allocation method for

DOPs with high-dimensional search space.

All the proposed methods in this thesis use particle swarm optimization as the core

optimizer embedded in a multi-population framework. The performance of the pro-

posed methods are compared with state-of-the-art methods on a wide range of problem

instances generated by the state-of-the-art and the proposed DOP benchmarks. The

comparison results indicate the superiority of the proposed methods.

iv

Acknowledgements

Firstly, I would like to express my sincere gratitude to my Supervisors Dr. Trung Thanh

Nguyen, Prof. Juergen Branke and Prof. Jin Wang for the continuous support of my

Ph.D study and related research, for their patience, motivation, and immense knowledge.

Besides my supervisors, I would like to thank Dr. Mohammad Nabi Omidvar for his

insightful comments and encouragement. Last but not the least, I would like to thank

my family: my parents and to my wife for supporting me spiritually throughout writing

this thesis.

This research was supported in part by a Dean’s Scholarship by Faculty of Engineering

and Technology, LJMU, a Newton Institutional Links grant no. 172734213, funded by

the UK BEIS and delivered by the British Council, and a NRCP grant no. NRCP1617-

6-125 delivered by Royal Academy of Engineering.

Danial Yazdani October 2018

v

Declaration of Authorship

I, Danial Yazdani, declare that this thesis titled, ‘Particle swarm optimization for dy-

namically changing environments with particular focus on scalability and switching cost’

and the work presented in it are my own. I confirm that:

� This work was done wholly or mainly while in candidature for a research degree

at this University.

� Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

vi

“If you can dream it, you can do it.”

Walt Disney

Contents

Declaration ii

Abstract iii

Acknowledgements v

Declaration of Authorship vi

List of Figures xi

List of Tables xii

Abbreviations xv

1 Introduction 1

1.1 Scope of the thesis . 2

1.2 Research questions . 3

1.3 Contribution of the thesis . 4

1.3.1 Considering displacement between successive solutions 4

1.3.1.1 DOPs with previous-solution displacement restriction . . 4

1.3.1.2 DOPs with very large switching cost 5

1.3.1.3 DOPs with varying switching cost 5

1.3.2 Scaling up DOPs . 6

1.4 Outline of the thesis . 7

2 Related work 9

2.1 Particle swarm optimization . 9

2.2 Tracking moving optima . 10

2.3 DOP Benchmarks . 12

2.4 Switching cost in dynamic optimization problems 13

2.5 Robust optimization . 14

2.6 Robust optimization over time . 15

2.7 Dynamic multi-objective optimization problems 19

2.8 Dynamic time-linkage optimization problems 21

2.9 Scaling up dynamic optimization problems 22

2.9.1 Variable interaction . 23

viii

Contents ix

2.9.2 Cooperative coevolution . 24

2.9.3 Decomposition algorithms . 26

2.9.4 Large-scale dynamic optimization problems 27

2.10 Summary . 27

3 A multi-objective time-linkage approach for dynamic optimization prob-
lems with previous-solution displacement restriction 29

3.1 Problem definition . 30

3.2 Proposed hybrid method for PSDR . 31

3.2.1 Addressing dynamic optimization problems’ requirements 31

3.2.2 Addressing multi-objective problems’ requirements 34

3.2.3 Addressing dynamic time-linkage problems’ requirements 34

3.3 Experiments . 36

3.3.1 Benchmark problems . 36

3.3.2 Performance indicator . 37

3.3.3 Compared algorithms and parameter settings 38

3.3.4 Experimental results . 39

3.4 Summary . 41

4 Robust optimization over time by learning problem space characteris-
tics 43

4.1 The proposed framework . 44

4.1.1 The multi-population/multi-swarm method 44

4.1.2 New decision making process for choosing robust solutions 45

4.2 Experiments and analysis . 47

4.2.1 Performance indicators . 47

4.2.2 Benchmark functions . 48

4.2.3 Algorithms and parameter settings 50

4.3 Experimental results . 55

4.3.1 Analyzing the proposed framework on problems with different
characteristics . 56

4.3.2 Comparison with other methods 61

4.4 Summary . 69

5 Changing or keeping solutions in dynamic optimization problems with
switching costs 71

5.1 Proposed algorithm . 72

5.2 Experiments . 74

5.2.1 Performance indicator . 74

5.2.2 Benchmark . 75

5.2.3 Algorithms and parameter settings 75

5.2.4 Experimental results . 76

5.3 Summary . 80

6 Scaling up dynamic optimization problems: a divide-and-conquer ap-
proach 82

6.1 The Proposed benchmark generator . 83

6.2 The Proposed algorithm . 88

Contents x

6.2.1 The framework . 88

6.2.1.1 Decomposition . 88

6.2.1.2 Search and resource allocation 89

6.2.1.3 Change management . 89

6.2.2 Dynamic considerations . 90

6.3 Experiments and analysis . 93

6.3.1 Comparison algorithms . 93

6.3.2 Performance indicator . 94

6.3.3 Parameter settings . 94

6.3.4 Empirical analysis . 95

6.3.4.1 The overall comparison 95

6.3.4.2 Robustness to dynamic changes 104

6.4 Summary . 107

7 Conclusion 109

7.1 Summary of major contributions . 109

7.2 Future work . 111

Appendices 113

A Publications resulting from this thesis 114

A.1 Refereed or submitted journal papers . 114

A.2 Refereed conference papers . 114

Bibliography 116

List of Figures

3.1 Time-linkage property of the PSDR by choosing different peak centers as
the current solution. 40

4.1 An example of mMPBR in dimension D=2 to show the error of the pre-
dictor. 66

4.2 The search space made by Eq. (2.10) with a threshold V=40, dimension
D=2 and peak number m=5 versus the true problem space. 67

6.1 An example of exponentially growing number of peaks by composing MPBs. 85

6.2 Convergence plot of CCMPSO, MMsPSO, MSsPSO and SMsPSO based
on the average current error of 31 runs on f6 and f7 for the first 20
environments. 103

xi

List of Tables

3.1 Parameter settings of mMPBR (default values are highlighted). 37

3.2 Parameter setting of FTmPSO, oTMO and cTMO 38

3.3 Results on test instances with different number of peaks P 40

3.4 Results on test instances with different shift severities s. 41

3.5 Results on test instances with different change frequencies f 41

4.1 Parameter settings of mMPBR (default values are highlighted) 50

4.2 Parameter settings of FTmPSO . 51

4.3 The obtained average survival time (and standard error) from the RFTmPSO
algorithms with different sub-swarm’s population size (TPS) on the de-
fault scenario of mMPBR. 52

4.4 The average survival time (and standard error) obtained from the RFTmPSO
algorithms with different finder-swarms population size (FPS) on the de-
fault scenario of mMPBR. 52

4.5 The average survival time (and standard error) obtained from the RFTmPSO
algorithms with different Conv-limit (CL) on the default scenario of
mMPBR. 53

4.6 The average survival time (and standard error) obtained from the RFTmPSO
algorithms with different K on the default scenario of mMPBR. 54

4.7 The average survival time (and standard error) obtained from the RFTmPSO
algorithms with different Q on the default scenario of mMPBR. 54

4.8 The average survival time (and standard error) obtained from the RFTmPSO
algorithms with different P on the default scenario of mMPBR. 55

4.9 The average survival time (and standard error) obtained from the RFTmPSO
algorithms with different exclfactor (EF) on the default scenario of mMPBR. 56

4.10 Average survival time (and standard error) on mMPBR with peak number
m = {2, 5, 10, 20}, f = 2500, s randomized ∈ [0.5, 3] and D = 5. 57

4.11 Average survival time (and standard error) on mMPBR with different
peak number m = {30, 50, 100, 200}, f = 2500, s randomized ∈ [0.5, 3]
and D = 5. 57

4.12 Average survival time (and standard error) on mMPBR with different
m = {5, 10}, different D, f = 2500 and s randomized in [0.5,3]. 59

4.13 Average survival time (and standard error) on mMPBR with different
m = {20, 50, 100}, different D, f = 2500 and s randomized in [0.5,3]. . . . 60

4.14 Average survival time (and standard error) on mMPBR with different
shift severities s, D = 5, m = 20 and f = 2500. 61

4.15 Average survival time (and standard error) on mMPBR with different
shift severities s, D = 10, m = 20 and f = 2500. 61

xii

List of Tables xiii

4.16 Average fitness value (and standard error) on mMPBR with m = {5, 10}
and evaluation between changes f , s randomized in [0.5,3] and D=5. . . . 62

4.17 Average fitness value (and standard error) on mMPBR withm = {20, 50, 100}
and evaluation between changes f , s randomized in [0.5,3] and D=5. . . . 63

4.18 Average survival time (and std. err) on test instances with different di-
mension D and peak number m, f = 2500 and s randomized in [0.5,3].
Best results based on Wilcoxon signed-rank test with Holm-Bonferroni
p-value correction, α = 0.05 are highlighted, ignoring ROOT-TFV due to
its unrealistic assumption of knowing the true future fitness. 64

4.19 Average fitness values (and std. err) on test instances with different
dimension D and peak number m, f = 2500 and s randomized in [0.5,3].
Best results based on Wilcoxon signed-rank test with Holm-Bonferroni
p-value correction, α = 0.05 are highlighted, ignoring ROOT-TFV due to
its unrealistic assumption of knowing the true future fitness. 65

4.20 Average Gbest value (standard error in parenthesis) of PSO in search
space made by Eq. (2.10) with different dimension D. 67

5.1 Parameter settings of mMPBR . 75

5.2 The parameter settings of FTmPSO inside the ASC, TFTmPSO and
RFTmPSO . 76

5.3 Results obtained by Eq.(5.6) by TFTmPSO, RFTmPSO and ASC on
2-dimensional mMPBR with 5 peaks. 77

5.4 Results obtained by Eq.(5.6) by TFTmPSO, RFTmPSO and ASC on
5-dimensional mMPBR with 5 peaks. 78

5.5 Results obtained by Eq.(5.6) by TFTmPSO , RFTmPSO and ASC on
2-dimensional mMPBR with 20 peaks. 79

5.6 Results obtained by Eq.(5.6) by TFTmPSO , RFTmPSO and ASC on
5-dimensional mMPBR with 20 peaks. 80

6.1 Parameter settings of CMPB . 87

6.2 Summery of utilized approaches in the algorithms 94

6.3 Sensitivity analysis on different sub-swarm’s population size of the multi-
swarm PSO from Section 6.2.2 (which is used in CCMPSO, MMsPSO
and SMsPSO) for optimizing MPBs with m = 5, different dimensions
and other parameters from Table 6.1 . 96

6.4 Sensitivity analysis on different swarm’s population size of the MSsPSO
for optimizing MPBs with m = 5, different dimensions and other param-
eters from Table 6.1 . 97

6.5 Sensitivity analysis on different rdeact in CCMPSO for optimizing MPBs
with m = 5, different dimensions and other parameters from Table 6.1. . . 98

6.6 Benchmark Scenarios Based on CMPB. 99

6.7 Comparative results of CCMPSO, MMsPSO, MSsPSO, and SMsPSO on
f1 to f10. The highlighted entries are significantly better using pair-wise
Wilcoxon signed-rank test with Holm p-value adjustment (α = 0.05). . . . 100

6.8 Comparative results of CCMPSO, MMsPSO, MSsPSO, and SMsPSO on
f11 to f20. The highlighted entries are significantly better using pair-wise
Wilcoxon signed-rank test with Holm p-value adjustment (α = 0.05). . . . 101

List of Tables xiv

6.9 Obtained results by algorithms on f6 to f10 with different number of peaks
m for each component randomized in the following ranges {1, . . . , 5},
{1, . . . , 10}, and {1, . . . , 20}. Other parameters of CMPB are set as shown
in Table 6.1. 102

6.10 Results obtained by algorithms on f6 to f10 with different shift severity
values for each peak in each component. The values are randomized in the
following ranges [0.5, 1], [0.5, 3], and [0.5, 5]. Other parameters of CMPB
are set as shown in Table 6.1. 105

6.11 Results obtained by algorithms on f6 to f10 with different change fre-
quencies: 200D, 500D, and 1000D. Other parameters of CMPB are set
as shown in Table 6.1. 106

Abbreviations

ASC Adaptive Solution Chooser

CBCC Contribution-Based Cooperative Coevolution

CC Cooperative Coevolutionary

CCMPSO Cooperative Coevolutionary Multi Particle Swarm Optimization

CMPB Composite Moving Peaks Benchmark

DG Differential Grouping

DG2 Second version of Differential Grouping

DMOOP Dynamic Multi-Objective Optimization Problems

DOP Dynamic Optimization Problems

DTP Dynamic Time-linkage Problem

EA Evolutionary Algorithm

EDO Evolutionary Dynamic Optimization

FTmPSO Finder-Tracker multi-swarm Particle Swarm Optimization

GDG Global Differential Grouping

mMPBR modified Moving Peaks Benchmark for ROOT

MMsPSO Multi Multi swarm Particle Swarm Optimization

MOOP Multi-Objective Optimization Problems

MPB Moving Peaks Benchmark

mPSO Multi-swarm Particle Swarm Optimization

MSsPSO Multi Single swarm Particle Swarm Optimization

NRS Next Robust Solution

POF Pareto-Optimal front

POS Pareto-Optimal Set

PSDR Previous-Solution Displacement Restriction

PSO Particle Swarm Optimization

xv

Abbreviations xvi

ROOT Robust Optimization Over Time

SC Switching Cost

SI Swarm Intelligence

SMsPSO Single Multi swarm Particle Swarm Optimization

sPSO Single-swarm Particle Swarm Optimization

SRA Scheduling and Resource Allocation

TMO Tracking Moving Optima

XDG Extended Differential Grouping

To my family . . .

xvii

Chapter 1

Introduction

Optimization is the heart of many processes that take place in nature. Moreover, it

plays a major role in business and engineering domains. In order to solve optimization

problems, at least an objective function is normally designed based on the problem

parameters first. Then, the goal is to find the input parameters that optimize objective

function(s) under necessary constraints by use of mathematical or intelligent methods.

When optimization problems are too complex, using mathematical methods becomes

extremely difficult or even impossible. For such problems, intelligent methods adopted

from nature can be used.

Optimization problems can be categorized according to different criteria. One criterion

is whether the optimization problem is static or dynamic. In problems with static en-

vironments, the problem remains unchanged in the course of time, whereas in dynamic

problems, the problem changes over time. Since many real-world problems have param-

eters that are time-variant, it can be concluded that dynamic optimization problems

(DOPs) is of paramount importance (Nguyen, 2011).

In view of the importance of DOPs, numerous researchers and scientists have attempted

to design algorithms for solving these problems (Yang and Yao, 2013). In the recent

decade, using evolutionary algorithms and swarm intelligence methods for optimization

in dynamic environments has become the focus of attention of many researchers in the

field of computational intelligence (Nguyen et al., 2012a; Mavrovouniotis et al., 2017).

The reason behind this attention may be found in the nature of these methods, their path

of evolution, and their adaptability when facing changes in the environment. However,

designing optimization algorithms in dynamic environments faces many challenges that

require new algorithms. As a matter of fact, not only that the algorithm should be

able to find optimum position(s) in dynamic environments, it should also be able to

track them. Resolving existing challenges in DOPs, improvement of results, reduction

1

Introduction 2

of computational costs, and especially closing gaps between academic research and real-

world problems in this field are the most important goals in designing optimization

algorithms for dynamic environments.

Despite the large body of literature on DOPs and algorithms, this field still has a lot of

open areas with open research questions, of which perhaps one of the most important

questions is about how well academic research in this area reflects the common char-

acteristics of real-world DOPs and if there are any types of DOPs that have not been

covered by current academic research. The main purpose of this thesis is to investigate

this important question and to propose solutions to close some of the gaps in this issue.

1.1 Scope of the thesis

DOPs’ range is very large and they can be categorized from different aspects. Investi-

gated DOPs in this thesis have the following characteristics

• The search space is continuous.

• The change happens in the objective function. Therefore, the shape of search space

change over time.

• The landscape is multi-modal i.e. there are several peaks whose height, width and

location change over time and the optimizer has to cover several peaks in order to

increase the performance.

• The change is unpredictable i.e. the generated changes do not follow any regular

pattern such as circular relocations and moving on a line.

• They are unconstrained and any solution inside the boundaries is a feasible solu-

tion.

• The boundaries or variable domains do not change over time.

• Variable interactions remain unchanged over time.

• Number of variables is constant over time.

• Number of objective is stationary over time.

• Environmental changes are detectable.

• The environmental changes happen discrete in time.

Introduction 3

Investigated DOPs in this thesis are time-dependent problems in which the optimizer

has to cope with environmental changes (Branke, 2002). This type of DOPs can be

defined as:

F (x) = f(x, θ(t)), (1.1)

where f is the objective function, x is a design vector, θ(t) is environmental parameters

which change over time and t is the time index with t ∈ [0, T] where T is the problem life

cycle or number of environments. θ(t) in the investigated DOPs in this thesis changes

discretely. In this type of DOPs, the environmental parameters change over time with

stationary periods between changes. As a result, for a DOP with T − 1 environmental

changes, there is a sequence of T static environments that can be described as:

F (x) =
[
f(x, θ(1)), f(x, θ(2)), . . . , f(x, θ(T))

]
, (1.2)

where θ(i) represents the environmental parameters in the ith environment.

1.2 Research questions

The approach of this thesis is to start from a general question to get an overview of the

important gaps in the field of DOPs:

• Is there any type of DOP, or any type of problem characteristics that are common

in real-world dynamic optimization problems but have not been studied in the DOP

field by researchers?

Answering the question above requires a literature review on DOPs. After determining

current gaps between academic research and practical situations in DOPs and find prob-

lems with specific characteristics that have been rarely investigated in the past, there

will be more specific questions such as:

• How these problems and characteristics can be captured in academic benchmark

problems?

• How new benchmarks can be designed to generate test instances whose character-

istics are similar to those specific real-world problems?

• What would be the performance of existing methods on these problems?

• How the performance of existing methods can be evaluated?

Introduction 4

• What can be done to improve the performance?

• How these problems can be effectively solved, which have not been solved before?

These specific questions show us the research directions to be done in the rest of the

thesis.

1.3 Contribution of the thesis

Contributions in this thesis can be classified into two main groups:

1.3.1 Considering displacement between successive solutions

Most previous research on DOPs focuses on tracking moving optima (TMO) (Nguyen

et al., 2012a) without considering any limitation or cost for changing solutions. In fact,

changing solutions in real-world problems is costly. Furthermore, larger changes have

more cost and need more resources such as time, human resources and energy. Thus,

lack of switching cost (SC) consideration in TMO algorithms makes them unsuitable

for many real-world problems. Moreover, in many real-world DOPs, changing solutions

frequently is not desirable or it may be very costly. For example, in scheduling, changing

the schedule may have significant impact on suppliers and customers, or, in the design of

telephone networks, sending out engineers to change the physical infrastructure can be

very expensive. In the taking-off/landing scheduling problem, it is desirable to keep the

current implemented solution/schedule after an environmental change (E.Wilkins et al.,

2008; Atkin et al., 2008) to avoid unfavorable disruptions in airport operations.

This thesis investigates DOPs with SC under three different conditions:

1.3.1.1 DOPs with previous-solution displacement restriction

In DOPs with previous-solution displacement restriction (PSDR) (Nguyen, 2011), the

average displacement between successive solutions is an objective which needs to be

minimized. In DOPs with PSDR, the algorithm needs to find a new solution after an

environmental change that is not much different from the previous one (Nguyen, 2011).

Moreover, displacement between consecutive solutions can be seen as the SC in many

problems (Huang et al., 2017) which needs to be minimized as the second objective. In

the field of DOPs, little attention has been given to this type of problems. Investigating

DOPs with PSDR, studying the performance of the current algorithms on them, and

designing a new method for solving them are among the goals of this thesis.

Introduction 5

1.3.1.2 DOPs with very large switching cost

When SC is very large, or frequently changing solutions is undesirable, the algorithm

needs to keep solutions as long as they remain acceptable. Additionally, these cir-

cumstances happens when there are limitations in resources for changing solutions.

For addressing this type of DOPs, an approach called robust optimization over time

(ROOT) (Yu et al., 2010) was proposed in which algorithms search for solutions that

are not necessarily the best but they are acceptable and can remain acceptable after

environmental changes. Therefore, in ROOT, algorithms try to find solutions which are

robust to environmental changes and the main objective is maximizing survival time

of robust solutions over time (Fu et al., 2013). Several state-of-the-art ROOT meth-

ods have been proposed until now, of which the one based on survival time metric (Fu

et al., 2013) is the most successful. However, this method and all other methods such

as (Huang et al., 2017; Guo et al., 2014), which were designed based on survival time

metric, are not capable of finding robust solutions in problems with higher dimensions.

According to (Yazdani et al., 2018a; Huang et al., 2017), these methods completely lose

their efficiency on 10 dimensional problems, which makes them unsuitable for many

real-world problems. As a result, proposing a new framework for addressing the above

mentioned challenges of the current methods is among the goals of this thesis.

This thesis proposes a new framework for ROOT. Its novelty and contribution are as fol-

lows. First, this framework uses multi-population (Mavrovouniotis et al., 2017; Nguyen

et al., 2012a) methods to track and monitor peaks and learn about their characteristics.

Second, in contrast to previous state-of-the-art frameworks which are based on predict-

ing future fitness values of solutions, the proposed framework tries to predict future

behaviors of peaks and then selects the next robust solution based on this information.

Third, this thesis proposes four new strategies to select the next robust solution. Ex-

periments show that the proposed method outperforms previous methods significantly

and can perform very well in problems with higher dimensions.

1.3.1.3 DOPs with varying switching cost

In the presence of SC in DOPs, one important technical question is “When should a

solution be changed?”. TMO and ROOT address two extreme cases. TMO is suitable

for circumstances in which there is no SC or it is very low. On the other hand, ROOT

is suitable for situations in which the SC is very high so the algorithm tries to keep each

solution as long as it remains acceptable after environmental changes.

In this thesis, a new adaptive solution chooser (ASC) algorithm is proposed which acts

in a similar way to TMO algorithms where SC is low and acts like ROOT algorithms

Introduction 6

when the SC is high. However, the main contribution of ASC is where the algorithm

can decide about changing or keeping solutions based on their current fitness values,

the fitness of other found solutions with better quality and their SC from the current

solution. Indeed, although changing solutions in real-world problems is costly, there are

situations in which the algorithm has found a solution whose quality is so high that the

benefit of switching largely outweighs the cost.

1.3.2 Scaling up DOPs

Despite the large body of literature on DOPs and algorithms, little attention has been

given to their scalability. Indeed, the dimension of a typical DOP studied in the litera-

ture hardly exceeds twenty. Motivated by rapid technological advancements, large-scale

optimization has gained popularity in recent years. However, the exponential growth in

the size of the search space, with respect to an increase in the number of the decision

variables, has made large-scale optimization a challenging task. For DOPs, however,

the challenge is twofold. For such problems, not only should an algorithm be capable

of finding the global optimum in the vastness of the search space but should also be

able to track it over time. In this thesis, advances in large-scale global optimization

are investigated and a novel decomposition-based algorithm is proposed for large-scale

dynamic optimization problems.

The Moving Peaks Benchmark (MPB) (Branke, 1999) is the most popular benchmark

in the field of DOPs. In this part of this thesis, first, the standard MPB is formally

analyzed and it is shown that its lack of modularity limits its applicability for the

study of large-scale DOPs. Then a new benchmark is proposed by composing several

MPBs. The proposed benchmark is suitable for generating problem instances in which

the components are heterogeneous in terms of dimension and their contribution to the

fitness function value. More specifically, this part of this thesis has the following major

contributions:

1. A mathematical variable interaction analysis on the MPB benchmark to determine

its interaction structure.

2. A large-scale benchmark suite with a modular heterogeneous structure allowing

for imbalance among its components.

3. A decomposition-based algorithm for solving large-scale DOPs with a novel re-

source allocation mechanism.

Introduction 7

1.4 Outline of the thesis

This Thesis is organized as follows:

Chapter 2 reviews existing research related to the proposed approaches in this thesis.

In Chapter 3, a novel algorithm is proposed for DOPs with PSDR. This algorithm utilizes

a multi-swarm particle swarm optimization (PSO) that is responsible for finding and

tracking peaks based on the optimality objective and a single-swarm PSO (sPSO) whose

task is to find the optimum solution according to both optimality and displacement/SC

objectives. After each environmental change, a new decision maker chooses a peak

according to the fitness values of peaks in the present and some of their characteristics

which can be used to anticipate the future displacement/SC value. Then, sPSO uses

the location information from the decision maker in order to accelerate the optimization

process and improve the performance.

Chapter 4 proposes a new framework for ROOT. In the proposed framework, a multi-

population method is utilized to track and monitor peaks and learn about their behavior.

Then, if the current solution is needed to be changed due to its unacceptable fitness

value, a new decision maker chooses the next solution based on the learned behavior of

peaks. Four different strategies are proposed which choose solutions based on different

characteristics (Yazdani et al., 2018a).

In Chapter 5, a new adaptive solution chooser (ASC) algorithm is proposed which acts

in a similar way to TMO algorithms where SC is low and acts as ROOT algorithms when

the SC is high. ASC is able to decide about changing or keeping solutions based on their

current fitness values, the fitness of other found solutions with better quality and their

SC from the current solution. The main purpose of designing ASC is to minimize the

the cost by maximizing average profit minus switching cost.

In Chapter 6, large-scale DOPs are investigated and a new benchmark and decomposition-

based algorithm for this type of DOPs are proposed. The idea is to first discover and

exploit the underlying structure of a given problem by decomposing it into several com-

ponents of smaller size, and then to tackle the sub-problems simultaneously. The former

can be achieved by a wide range of variable interaction analysis algorithms capable of

identifying the underlying structure of a black-box problem with high efficiency and ac-

curacy (Omidvar et al., 2014a, 2017; Mei et al., 2016; Sun et al., 2017), and the latter can

be achieved by means of cooperative coevolution (Potter and Jong, 2000; Yang et al.,

2008a; Li and Yao, 2012).

In this chapter, a new benchmark based on MPB is proposed for large-scale DOPs.

In addition to the new benchmark, a new algorithm for large-scale DOPs is proposed.

Introduction 8

The proposed algorithm utilizes the state-of-the-art DG2 (Omidvar et al., 2017) as the

decomposition method. After determining variable interactions and components by

DG2, the proposed algorithm uses a swarm for each detected component that works in a

cooperative coevolutionary (CC) manner with other components’ swarms. Each swarm

consists of several sub-swarms to track multiple moving optima in the component’s

search space. Finally, the proposed method benefits from a new resource allocation

approach in which it tries to prevent over exploitation by sub-swarms, and allocates

more computational resource to the best sub-swarm of each component and the swarm

of the component with the highest progress. Four algorithms are empirically evaluated

on a wide range of problem settings to show the individual impact of approaches such as

CC, tracking multiple moving optima and resource allocation on improving performance.

Chapter 7 concludes the thesis. Contributions of the thesis are summarized and future

research directions are also suggested.

Chapter 2

Related work

Using evolutionary algorithms (EA) and swarm intelligence (SI) methods for optimizing

DOPs is a popular and active research area and has increasingly attracted interest from

the community of evolutionary computation (EC). Since the topics in this domain are

very broad and diverse, it is impossible to cover everything in one chapter. Nevertheless,

the topics related to this thesis are covered in this chapter.

A number of studies have been made in the past to review the literature in the field of

DOPs and algorithms. Some first attempts were made by Branke (2002, 1999). The

topic, as a part of the broader area of uncertainty and dynamic environments, was

briefly surveyed and classified by Jin and Branke (2005). Cruz et al. (2011) have made

a detailed review of DOP studies to provide an overview of related works on DOPs

in the last decade. Nguyen et al. (2012a) carried out an in-depth survey of the state-

of-the-art of academic research in the field using SI and EA for DOPs in four areas:

benchmark problems/generators, performance measures, algorithmic approaches, and

theoretical studies. Mavrovouniotis et al. (2017) presented a broad review on SI methods

for optimizing DOPs focused on several classes of problems, such as discrete, continuous,

constrained, multi-objective and classification problems, and real-world applications.

Various aspects of using EA and SI for DOPs were also covered in many PhD theses

and monographs (Weicker, 2003; Morrison, 2004; Nguyen, 2011; Branke, 2002; Younes,

2006; Goh and Tan, 2004).

2.1 Particle swarm optimization

Particle swarm optimization (PSO) is a population based stochastic optimization tech-

nique developed by Kennedy and Eberhart (1995), inspired by social behavior of bird

9

Related Work 10

flocking or fish schooling. PSO is initialized with a group of random particles (solutions)

and then searches for optima by updating generations. In every iteration, each particle

is updated by following two best values. The first one is the best solution (based on

fitness value) it has achieved so far which is called personal best (Pbest). Another best

solution that particles move toward it is defined based on the neighborhood topology

of the algorithm (Zavala, 2013). If the neighborhood topology is global star then this

position is called global best (Gbest) and if the neighborhood topology is local based

topologies like ring topology, then this position is called local best (Lbest). Each particle

updates its velocity and positions with following equations:

vji,t+1 = χ
(
vji,t + c1ri,1(g

∗
i − x

j
i,t) + c2ri,2(p

∗
i − x

j
i,t)
)
, (2.1)

xji,t+1 = xji,t + vji,t+1, (2.2)

where i is the index for the dimension. The constriction factor χ < 1 acts like friction,

slowing the particles, so that finer exploration is achieved (Eberhart and Shi, 2001).

The inclusion of the previous generation’s velocity in the calculation of the new velocity

introduces a momentum into the particle’s movement. c1 and c2 control the relative

attraction to the global best and personal best found solutions, respectively. Finally, r1

and r2 are vectors of random variables drawn with uniform probability from [0, 1].

2.2 Tracking moving optima

TMO is the most popular approach in the DOP domain in which algorithms try to find

the optimum and track it after each environmental change. One of the most important

and challenging DOPs are problems with several competing local optima each having

the potential to become the global optimum after an environmental change (Nguyen

et al., 2012a). A multi-population strategy is one of the most effective approaches for

solving this type of DOPs (Mavrovouniotis et al., 2017). Algorithms using this strategy

have at least two subpopulations handling different tasks or covering different regions in

the problem space.

Self Organizing Scouts (Branke et al., 2000) is a multi-population approach which uti-

lizes a big subpopulation for global search and a number of small subpopulations for

tracking changes of the identified peaks. This strategy has also been used with other

metaheuristics such as PSO (Yazdani et al., 2013a; Li and Yang, 2008) and artificial fish

swarm optimization (Yazdani et al., 2016, 2014).

Related Work 11

Parrott and Li (2006) used a speciation method to split the population into subpop-

ulations. Bird and Li (2007) presented a regression-based approach to enhance the

convergence rate using speciation-based methods. Every subpopulation was confined to

a hypersphere around the best solution.

A multi-population DE method was proposed in (du Plessis and Engelbrecht, 2012)

which locates optima faster. This method was based on allowing subpopulations to

compete for function evaluations based on their performance. This method also bene-

fited from a reinitialization midpoint check mechanism that was aimed at maintaining

subpopulations on different peaks.

Li and Yang (2009) proposed a method based on clustering for developing subpopula-

tions, which was simplified and further improved in (Yang and Li, 2010). In (Du and

Li, 2008), a method called MEPSO was proposed in which the population was divided

into two parts. The first cluster was responsible for exploitation and the second one

for exploration. Gaussian local search and differential mutation were used to improve

diversity in the environment.

Blackwell and Branke (2006) proposed two multi-population methods, called MQSO

and MCPSO. In MQSO, quantum particles appear at random positions, uniformly dis-

tributed around the swarm’s global best. In MCPSO, some or all of the particles in each

swarm have a ‘charge’, and charged particles repel each other, leading to larger diversity.

The population size is equal for every sub-swarm, and the number of sub-swarms is fixed

and pre-determined. An anti-convergence method ensures continued search for possible

better peaks. In addition, a mechanism called exclusion is used to avoid several swarms

converging to the same peak. A version of MQSO with an adaptive number of subpop-

ulations, called AMQSO, was proposed in (Blackwell et al., 2008). AMQSO starts with

one subpopulation and a new subpopulation is created if all previous subpopulations

have converged. This method has significantly improved the performance.

Li et al. (2016) proposed a method to adapt the number of populations based on statis-

tical data on how many populations have found new peaks. If this number is large, more

populations will be introduced and vice versa. Additionally, a new heuristic clustering,

a population hibernation scheme, a population exclusion scheme, a peak hiding method

and two movement methods (to track peaks and avoid stagnation) were proposed.

A PSO with two types of sub-swarms called finder-tracker multi-swarm PSO was pro-

posed in (Yazdani et al., 2013b). The finder swarm finds new uncovered peaks. When it

converges to a peak, it creates a new tracker swarm to track the peak. An exclusion mech-

anism re-initializes the finder swarm if it converges to a peak that already has a tracker

Related Work 12

swarm on it. In addition, a mechanism to schedule tracker swarms called sleeping-

awakening was proposed. It allocates more computational power to more promising

swarms. Furthermore, a new method for re-diversification of tracker swarms (after a

change) was proposed. The method re-initializes all particles randomly around the

global best (Kennedy and Eberhart, 1995) and their velocity vector is randomly set

based on the peak’s shift severity.

Sharifi et al. (2015) proposed a PSO-based method in which a fuzzy social-only model

PSO and local search were combined. In this method, a swarm of a fuzzy social-only

model PSO was responsible for locating peaks in the search space. When a new peak

was discovered by the PSO, a local search agent was created to cover the peak and track

it after environmental changes. For controlling computational resources, three different

methods were proposed to allocate the computational resources to the most promising

areas of the search space.

Recently, in (Luo et al., 2017), for the first time, partially separable DOPs were investi-

gated and a divide and conquer method was used in order to solve them. This method

used differential grouping (Omidvar et al., 2014a) for detecting interactions between

decision variables, then it used a species-based PSO as its optimizer (Parrott and Li,

2006; Preuss, 2010). This method utilized some initial knowledge about the number of

peaks in each subfunction and number of generations between successive environmental

changes which violates the black-box assumption.

2.3 DOP Benchmarks

Cobb and Grefenstette (1993) proposed a switching function method in which two land-

scapes A and B are used to generate the following three types of change: 1) Linear

translation of peaks in A; 2) Changing the location of the optimum randomly while the

rest of the search space remain unchanged; and 3) Switching between landscapes A and

B.

Branke’s Moving Peaks Benchmark (MPB) (Branke, 1999) is the most widely used

benchmark in DOP. The search space generated by this benchmark consists of several

peaks whose width, height, and location change over time. MPB is very flexible to

generate functions with configurable dimensions, number of peaks, and peak dynamics.

In the standard MPB, the widths and heights of peaks are changed by adding Gaussian

noise. In some other studies such as (Huang et al., 2017; Fu et al., 2015), the width

and height of each peak change using different dynamics such as small step, large step,

and recurrence (Li et al., 2008). Similar to MPB, DF1 (Morrison and Jong, 1999)

Related Work 13

generates problem instances in which the width, height, and location of peaks change

over time. The nature of the changes can be controlled by a logistic function to generate

fixed, chaotic, or bifurcated step sizes. Another benchmark whose landscape consists of

several peaks is Gaussian peak (Grefenstette, 1999). In this benchmark, the location

of peaks change in random directions and the step sizes are uniformly distributed over

an interval controlled by two levels of severity called abrupt and gradual (Grefenstette,

1999).

Dynamic rotation is another method for creating dynamic changes (Weicker and Weicker,

2000). In this benchmark, the landscape is combined with a visibility mask which allows

a percentage of the search space to be masked with a predefined fitness value. GDBG (Li

et al., 2008) is another benchmark generator that uses rotation as well as shifting to

generate environmental changes. The magnitude of change in GDBG is defined using a

rotation angle.

2.4 Switching cost in dynamic optimization problems

There are only a few papers that consider SC. In (Huang et al., 2017; Salomon et al., 2013;

Avigad et al., 2010; Yazdani et al., 2018b), SC was considered as an objective in multi-

objective problems. However, all of these works considered the SC as a separable and

independent objective from the optimality objective function and the connection between

these two objectives was not considered. Salomon et al. (2013) investigated SC as

optimization of adaptation. A multi-objective problem was defined which considered the

cost of the adaptation and the optimality while the adaptation takes place. In (Avigad

et al., 2010), the need for rapid, low-cost changes in a design, in response to changes

in performance requirements, within multi-objective problems, was investigated. An

algorithm called ROOT/SC (Huang et al., 2017) was designed for ROOT. ROOT/SC is

a multi-objective algorithm in which the first objective is survival time metric (Fu et al.,

2013) and the second one is SC.

In real-world scenarios, usually SC is very important and needs to be considered. For

example, in scheduling, changing the schedule may have significant impact on suppliers

and customers, or, in the design of telephone networks, sending out engineers to change

the physical infrastructure can be very expensive. In the taking-off/landing scheduling

problem, it is desirable to keep the current implemented solution/schedule after an

environmental change (E.Wilkins et al., 2008; Atkin et al., 2008) to avoid unfavorable

disruptions in airport operations. ROOT methods were designed to avoid changing

solutions as much as current solutions remain acceptable (Yu et al., 2010; Fu et al.,

2013; Jin et al., 2013). Therefore, ROOT methods aim to minimize switching costs.

Related Work 14

2.5 Robust optimization

The term “robust optimization” has come to encompass several approaches to protect-

ing the decision-maker against parameter ambiguity and stochastic uncertainty (Gabrel

et al., 2014). Uncertainty may affect the feasibility of a solution. In such circumstances,

robust optimization seeks to obtain a solution that will be feasible for any realization

taken by the unknown coefficients; however, complete protection from adverse realiza-

tions often comes at the expense of a significant deterioration in the objective. Moreover,

uncertainties may happen in the system output (Beyer and Sendhoff, 2007). These un-

certainties are due to imprecision in the evaluation of the output and performance of the

system. This kind of uncertainty includes measuring errors and all kinds of approxima-

tion errors due to the use of models instead of the real physical objects (model errors).

In addition, uncertainties could be results of environmental changes. These uncertainties

enter the system via the θ-variables in Eq. (1.1) (Jin et al., 2013).

uncertainties in Objective which is called aleatory (Helton, 1997) or random uncertain-

ties, are of intrinsically irreducible stochastic nature. That is, these kinds of uncer-

tainties are of physical nature, e.g., the noise in electrical devices, humidity, wind load,

quantum mechanical effects, temperature, server load, and material parameters. These

uncertainties cannot be removed and must be considered in the optimization. Epistemic

uncertainties are results of the lack of information about the problem of interest during

designing process. These uncertainties are regarded as subjective, because it is due to

a lack of knowledge that could, in principle, be reduced by increased efforts. Epistemic

uncertainties include uncertainties about the model used to describe the reality, its op-

eration conditions and boundary, also referred to as model form errors (Mahadevan and

Rebba, 2006), and also the errors introduced by the numerical solution methods used

(e.g. approximation error, convergence problems, discretization error).

Greiner (1994) used an evolution strategies algorithm for the evolution of robust optical

filter designs. Du et al. (2018) proposed a multi-objective approach for robust order

scheduling problems in the fashion industry by considering the preproduction events

and the uncertainties in the daily production quantity. Pictet et al. (1998) proposed

a genetic algorithm for robust optimization for financial time series prediction. A ro-

bustness measure according to mean value and variance, and a fitness sharing model

were proposed for avoiding a high concentration of individuals in the vicinity of sharp

peaks. In (Peng et al., 2016) a compound differential evolution algorithm was proposed

for flexible robust optimization for hybrid power system for achieving coordination be-

tween reliability and economy. In (Lim et al., 2006) a priori knowledge on the desired

robustness of the final design was used with a multi-objective evolutionary algorithm

that converges to a solution with good nominal performance and maximal robustness.

Related Work 15

Fertis (2009) and Xu (2009) investigated the connection between successful learning

and robustness, and applications of robust decision-making to statistical estimation and

machine learning. (Nguyen and Lo, 2012) investigated robust estimation and regression

and presented computationally efficient methods for robust meancovariance estimation

and robust linear regression using special mathematical programming models and semi-

definite programming. Xu et al. (2009) analyzed regularized support vector machines

and showed an equivalence with a robust optimization formulation, with implications

both for analysis and algorithms. (Caramanis et al., 2011) described robust optimization

in the context of machine learning in detail.

In this thesis, uncertainties resulted by environmental changes are investigated. As

described in Chapter 1.1, Eq. (1.1) is considered as the DOP problem in this thesis.

One widely used definition of robust solutions is a solution’s expected performance over

all possible disturbances Jin et al. (2013). Therefore, the resultant fitness of Eq. (1.1)

is:

F (x) =

+∞∫
−∞

f(x + δ, θ)p(δ)d(δ), (2.3)

or

F (x) =

+∞∫
−∞

f(x, θ + ξ)p(ξ)d(ξ), (2.4)

where δ and ξ show the noise in the design variables and environmental parameters,

respectively. p(δ) and p(ξ) are the probability density functions of δ and ξ, respectively.

2.6 Robust optimization over time

Yu et al. (2010) proposed ROOT as a new perspective on DOPs. A new framework

for ROOT was proposed by Jin et al. (2013) with the algorithm searching for robust

solutions by means of local fitness approximation and prediction. This method consists

of a population-based optimization algorithm, a fitness approximator (to estimate fitness

at any point in the search space), a fitness predictor (to predict future fitness values) and

a database. In (Jin et al., 2013), an adapted radial-basis-function network (RBFN) is the

local approximator and an autoregressive (AR) is the predictor. A database was used for

storing, in each iteration, all of the individuals’ positions alongside their fitness values

and the associated time of storage. This database was then used for approximating

fitness values of solutions in previous environments which in turn was used for training

the predictor.

Related Work 16

It is important to have sufficient samples across the search space in this database to

maintain the accuracy of the approximation. Since optimization algorithms quickly

converge to the most promising region in the search space, there would be regions that

they would not visit (such as regions with bad fitness) which still are necessary for hav-

ing a good training data. On the one hand, in (Jin et al., 2013), the algorithm needs to

have enough information to be able to predict any solution in the search space which is

dependent on the approximator. On the other hand, for having an appropriate approx-

imation model, the training data needs to be properly distributed in the search space.

For achieving this, in (Jin et al., 2013), the authors generate half of the population using

a specific hypercube design after each environmental change. Therefore, for each envi-

ronment, the database can contain at least one solution from each hypercube. However,

in larger environments such as ones with larger search ranges and higher dimensions, the

number of these hypercubes increases exponentially and becomes larger than the popu-

lation size. As a result, the algorithm needs to evaluate a solution for each hypercube

for adding to the database. These additional fitness evaluations become a challenge in

larger problems.

To select a robust solution, (Jin et al., 2013) uses the sum of the solutions’ current fitness

value, its p previous fitness values (provided by the approximator) and its q future fitness

values (provided by the predictor):

F (x) =

t−1∑
l=t−p

f̌(x, θ(l)) + f(x, θ(l)) +

t+q∑
l=t+1

f̂(x, θ(l)), (2.5)

where F is the sum of the approximated (f̌), actual (f), and predicted (f̂) fitness values

of x at time t. The performance of the proposed method in (Jin et al., 2013) depends

on the accuracy of the approximation and prediction methods. In (Jin et al., 2013),

a particle swarm optimization (PSO) (Kennedy and Eberhart, 1995) was used as the

optimizer. In addition, several performance indicators were proposed, of which one

of the most important ones is Eavg, the average error of the robust solution sequence

S = (r1, r2, · · · , rk),

Eavg =
1

k

k∑
i=1

ei, (2.6)

where

ei =
1

ni

ti+ni−1∑
j=ti

∣∣∣opt(j) − f(ri, θ
(j))
∣∣∣ , (2.7)

opt(j) is the optimum fitness value at the jth environment, ri is the ith robust solution,

Related Work 17

ni is the number of environments for which ri remained acceptable, and ti is the time

that ri was chosen.

Another performance indicator is ρ, the robustness rate of the robust solution sequence,

ρ = 1− k − 1

T − 1
, (2.8)

where k is the number of robust solutions. In Eq. (2.8), a smaller k causes ρ to increase

and the ideal situation happens when the first robust solution can remain acceptable

in all environments, i.e. k = 1. In addition, a new condition for checking whether a

robust solution may be kept in a new environment was introduced. According to this

condition, given a user defined threshold δdrop, a robust solution ri may be kept in the

jth environment if: ∣∣∣∣∣f(ri, θ
(j))− opt(j)

opt(j)

∣∣∣∣∣ ≤ δdrop. (2.9)

Since opt(j) is not known usually, it can be replaced by the best position found by the

algorithm in the jth environment.

Fu et al. (2013) proposed two new robustness definitions and metrics, namely survival

time and average fitness. The survival time is the maximum time interval starting from

time t during which the fitness value of the robust solution remains acceptable:

S
(
x, θ(t), V

)
=

0 if f(x, θ(t)) < V

1 + max{l | ∀i ∈ {t, . . . , t+ l} : f
(
x, θ(i)

)
≥ V } otherwise

(2.10)

where V is a user defined threshold. In Eq. (2.10), for each environment, S shows for

how many environments the fitness value of the current solution has remained above V .

Note the threshold V in (Fu et al., 2013) is easier to use than δdrop in Eq. (2.9) from (Jin

et al., 2013) which requires to know the optimum.

The robust solution is selected based on the predicted average fitness over a pre-defined

time window ω as follows:

A
(
x, θ(t), ω

)
=

1

ω

ω−1∑
i=0

f
(
x, θ(t+i)

)
. (2.11)

When equations (2.10) and (2.11) are used as metrics, f(x, θ(i)) for i > t is the predicted

fitness value of x in tth environment (f̂(x, θ(t))) instead of its actual fitness value. In the

experiments in (Fu et al., 2013), the authors assumed that the algorithm benefited from

Related Work 18

an ideal approximator so they used true previous fitness values instead of approximated

fitness values for training the predictor. Consequently, the reported results in (Fu et al.,

2013) were not subject to approximation errors. Additionally, a ROOT performance

indicator was proposed in (Fu et al., 2013) based on Eq. (2.10) and Eq. (2.11) as follows:

P =
1

T

T∑
i=1

F(i), (2.12)

where P is performance of ROOT algorithm, F(i) is either S in Eq. (2.10) or A in

Eq. (2.11). In (Fu et al., 2015), two definitions of ROOT in (Fu et al., 2013) i.e. survival

time and average fitness were analyzed. Also, two different benchmark problems were

proposed.

Guo et al. (2014) proposed a new two-layer multi-objective method to find robust so-

lutions that can maximize both survival time and average fitness. Huang et al. (2017)

proposed another multi-objective method for minimizing switching cost and maximize

survival time. A PSO algorithm was used as the optimizer. Additionally, the algorithm

used the acceptance threshold for robust solutions similar to (Fu et al., 2013). Euclidean

distance between two solutions was used as the switching cost, and three different per-

formance indicators were used:

F =
1

T

T∑
i=1

Fi, (2.13)

R =
1

T

T∑
i=1

Ri, (2.14)

C =
1

T

T∑
i=1

Ci, (2.15)

where T is the number of environments, Fi is the fitness value of robust solutions, Ri

is robustness (calculated by Eq. (2.10)) and Ci is switching cost in ith environment.

Switching cost is the Euclidean distance between robust solutions in successive environ-

ments.

All of the proposed methods by Jin et al. (2013); Fu et al. (2013, 2015); Huang et al.

(2017) used predicted future fitness values of solutions for selecting robust solutions.

Jin et al. (2013) used an RBFN for approximating previous fitness values of solutions

and an AR was used for predicting future values. Fu et al. (2013) removed the ap-

proximation part and used true fitness values in previous environments for training the

Related Work 19

AR in order to remove the negative effect of approximation errors on the performance

of the algorithms. In (Fu et al., 2013), the authors used the same methods as in (Jin

et al., 2013) for approximation and prediction to investigate the performance of the

proposed algorithms in (Jin et al., 2013; Fu et al., 2013). In (Huang et al., 2017), the

authors assumed that algorithms benefited from an ideal predictor without any error,

so in their experiments the true future fitness values were used instead of the predicted

values. However, removing the approximator and predictor from algorithms that work

based on future fitness values of solutions clearly is a substantial simplification and the

performance on a real-world problem where future fitness values are not available may

be very different. Overall, for solving real-world problems, almost all the current ROOT

methods (Jin et al., 2013; Fu et al., 2013, 2015; Guo et al., 2014; Huang et al., 2017) need

to use approximation and prediction methods based on time series (Box et al., 2015).

2.7 Dynamic multi-objective optimization problems

For solving many dynamic real-world problems, the optimizer needs to simultaneously

optimizing several competing objectives. These problems are dynamic multi-objective

optimization problems (DMOOPs). In DMOOPs, the optimization goal is not only to

evolve a near-optimal Pareto optimal front (POF), but also to continually and rapidly

discover the desired one before the next environmental change (Azzouz et al., 2017).

Farina et al. (2004) classified DMOOPs into four different types according to changes

affecting the POF and the Pareto optimal solutions (POS) as follows:

(I). where the POS changes while the POF remains invariant;

(II). Where both POS and POF change;

(III). Where POF changes while POS remains invariant; and

(IV). Where both POS and POF remain invariant.

In (Farina et al., 2004), a baseline algorithm for DMOOPs as well as some test prob-

lems were suggested. The use of evolutionary multi-objective optimization methods in

DOPs were investigated in (Bui et al., 2005). The first objective was the original sin-

gle dynamic objective and the second objective was an artificial objective to promote

diversity. In (Wei and Wang, 2012), a PSO algorithm for tracking the varying POS and

POF obtained at each environment was developed in which a hyper rectangle search was

used for predicting the optimal solutions of the next environment. additionally, a new

crossover operator was designed for handling constraints. Wei and Jia (2013) follows the

Related Work 20

same goals as (Wei and Wang, 2012). The proposed PSO in (Wei and Jia, 2013) used

a new points selection strategy for initializing swarm at each environment. Moreover, a

local search operator was proposed to improve the exploitation.

Deb et al. (2007) proposed a Dynamic NSGA-II in which the diversity is introduced

after each environmental change. After change detection, all parent positions were re-

evaluated. This process allowed both offspring and parents to be evaluated using the

changed objectives and constraints functions. Chen et al. (2009) proposed to a diversity

maintenance method by considering the population diversity as an additional artificial

objective. The goal of the proposed approach was to add a useful selection pressure

addressed towards both the POS and the diversity maintenance.

Hatzakis and Wallace (2006) proposed a forecasting technique called Feed-forward Pre-

diction Strategy for estimating the location of the POS. Then an anticipatory population

called a prediction set is placed in the neighborhood of the forecast for accelerating the

discovery of the POS in the new environment. Zhou et al. (2007) proposed an approach

that predicted the new locations of a number of Pareto solutions in the search space when

an environmental change is detected. At the beginning of each environment, individuals

in the re-initialized population are generated around these predicted points.

A prediction strategy called dynamic predictive gradient strategy was proposed by Koo

et al. (2010) for predicting the magnitude of changes and provide proper search direction

in the changed environment. Moreover, a computational resource-aware memory tech-

nique was proposed for exploiting any periodicity in the dynamic problem. Liu (2010)

proposed a Dynamic Multi-objective EA with core estimation of distribution which in-

corporates a core estimation of distribution model for predicting the location of POS in

the next environment. In (Zhou et al., 2014), an approach called population prediction

strategy was proposed in which a whole population was predicted rather than predicting

some isolated points. This approach, divides the POS into two parts i.e. a center point

and a manifold. (Muruganantham et al., 2016) proposed a dynamic multi-objective

method in which a Kalman Filter-based prediction model was used. After each environ-

mental changes, Kalman Filter is applied to the whole population to direct the search

towards the new POS in the search space.

Wang and Li (2009) proposed several memory-based dynamic environment handling

mechanisms to effectively utilizing the information from previous environments for ac-

celerating and improving the optimization process after each environmental change.

These mechanisms, including restart, explicit memory, local-search memory and hybrid

memory, were working based on the stored archive solutions. After each environmental

change, the new population is composed by: 1) random solutions in addition to memory

ones using the explicit memory mechanism, 2) random solutions and solutions obtained

Related Work 21

by performing a Gaussian local search using the local-search memory mechanism or

3) random solutions, memory solutions and solutions generated by application of a local

search using the hybrid memory mechanism.

In (Zheng, 2007), a dynamic multi-objective optimization EA was proposed in which the

population is divided into m+ 1 sub-populations where m is the number of objectives.

Each of m sub-populations are responsible for optimizing one objective and the remained

one subpopulation optimizes the average fitness value of all objectives. (Camara et al.,

2007) proposed a procedure for adapting the Parallel Single Front Genetic Algorithm

to DMOOPs. This approach was a parallel algorithm which used a dispatcher-worker

scheme.

2.8 Dynamic time-linkage optimization problems

According to (Nguyen, 2011), many real-world continuous DOPs have time-linkage char-

acteristics. The time-linkage property in DOPs refers to the fact that any solution

chosen by the optimizer in the current environment could change the future problem

space (Nguyen et al., 2012b). In dynamic time-linkage optimization problems (DTP),

the optimizer should consider both the present and future i.e. it needs to predict the

future behavior of the environment based on the chosen solution. DOPs with SC are

DTPs because choosing a solution for the current environment will change the next

environment’s search space of the displacement/SC objective. In fact, when a solution

is chosen for an environment, all the feasible solutions will be evaluated based on their

distance from it in terms of displacement/SC.

Despite importance of time-linkage in DOPs, a very small number of researchers con-

sider time-linkage property in their investigations and there are only few papers in the

evolutionary dynamic optimization (EDO) academic community that investigate prob-

lems with the time-linkage property (Nguyen and Yao, 2009; Bosman, 2005; Branke and

Mattfeld, 2005; Ursem et al., 2002). For solving online DTPs, Bosman (2005) pointed

out that the optimizer needs to consider the feature of time-linkage, and for evaluating

a solution, take its future influence into account alongside its current fitness value, and

the method of optimizing both the present and the future is suggested to solve DTPs,

instead of the traditional method of optimizing only the present (Bu et al., 2017). A

prediction method EA + predictor (Bosman, 2005), was proposed in which the method

made decisions according to both the current and the predicted fitness. This method

was improved in (Bu et al., 2017) in order to enhance the performance in situations in

which prediction is unreliable.

Related Work 22

Bosman and Poutré (2007) investigated DTPs in stochastic environments in which envi-

ronmental changes are not deterministic and proposed a strategy optimization method.

At the first step, a problem-dependent strategy needs to be designed for the proposed

strategy optimization method which is a decision maker that determines what to do in

any given scenario. Then, the parameters of the strategy will be optimized during the

evolutionary process. Bosman and Poutré (2007) indicated that the strategy optimiza-

tion outperforms traditional expected value approaches and scenario-based optimization

approaches.

Nguyen et al. are among the main pioneers in the field of solving DTPs by EDO (Nguyen,

2011; Nguyen et al., 2012b; Nguyen and Yao, 2013). In Nguyen and Yao (2009), Nguyen

and Yao showed that using prediction cannot be efficient for all problems, because

the information from the past could stand against the future. This type of DTPs is

called prediction-deceptive by Nguyen and Yao (2013). They showed that predictors

that utilize historical data for training, are not suitable for solving prediction-deceptive

DTPs and even could achieve worse results in comparison with predictor-less meth-

ods. In fact, designing an appropriate approach to solve black-box prediction-deceptive

DTPs (Nguyen and Yao, 2009) might be very hard or even impossible. However, in

grey-box prediction-deceptive DTPs where some problem-specific information is pro-

vided, especially the knowledge of switching rules is available, avoiding being deceived

by a prediction method is possible (Nguyen and Yao, 2009).

Scheduling and resource allocation (SRA) is classified as DTPs because the solution

already in use affects the situation when a change happens. In SRA, the problem is

allocating limited resource to tasks over time (Bui et al., 2012). Dynamic factors in

SRA include failure of resources and arrival of new tasks. In (Bui et al., 2012; Branke

and Mattfeld, 2000), it is argued that a suitable but inflexible solution made in the

current environment might deteriorate the system efficiency when a change happens in

the future. Branke and Mattfeld (2000) anticipated the flexibility of a solution and

incorporated it into the objective function. Bui et al. (2012) modeled the dynamic

planning problem as a multi-objective problem. After each environmental change, the

current solution is adapted by information provided by a set of Pareto optimal solutions

produced after each planning cycle.

2.9 Scaling up dynamic optimization problems

Despite the large body of literature on DOPs and algorithms, little attention has been

given to their scalability. Indeed, the dimension of a typical DOP studied in the litera-

ture hardly exceeds twenty. Motivated by rapid technological advancements, large-scale

Related Work 23

optimization has gained popularity in recent years. However, the exponential growth in

the size of the search space, with respect to an increase in the number of the decision

variables, has made large-scale optimization a challenging task. For DOPs, however,

the challenge is twofold. For such problems, not only should an algorithm be capable of

finding the global optimum in the vastness of the search space but should also be able to

track it over time. For multi-modal DOPs, where several optima have the potential to

turn into the global optimum after environmental changes, the cost of tracking multiple

moving optima also adds to the complexity. One of the best ways for solving large-scale

problems is to determine variable interactions and using cooperative coevolution (CC)

methods (Omidvar et al., 2017).

2.9.1 Variable interaction

Variable interaction or linkage refers to the extent to which the optimum of a variable

depends on the values taken by other decision variables. For continuous optimization

problems, variable interaction is defined as follows (Mei et al., 2016):

Definition 2.1 (Mei et al. (2016)). Let f : Rn → R be a differentiable function. Decision

variables xi and xj interact if a candidate solution x? exists, such that

∂2f(x?)

∂xi∂xj
6= 0. (2.16)

Some functions exhibit an underlying interaction structure such that groups of decision

variables can be optimized independently. These functions, which are called partially

separable, are defined as follows:

Definition 2.2 (Omidvar et al. (2015)). A function f(x) is partially separable with m

independent components iff:

arg min
x

f(x)=
(
arg min

x1

f(x1, . . .), . . . , arg min
xm

f(. . . ,xm)
)
,

where x = (x1, . . . , xn)> is a decision vector of n dimensions, x1, . . . ,xm are disjoint

sub-vectors of x, and 2 ≤ m ≤ n.

Additive separability is a special type of partial separability, which is defined as follows:

Definition 2.3 (Omidvar et al. (2015)). A function is additively separable if it has the

following general form:

f(x) =
m∑
i=1

fi(xi), m > 1,

Related Work 24

Algorithm 1: (x?, f?) = CC(f)

1 /*Main Framework of CC*/
2 P← randomized initial population;
3 c← randomized initial context vector;
4 //grouping stage
5 G = Grouping(f);
6 //optimization stage
7 while Termination Condition is Not Satisfied do
8 for κ = 1 to |G| do
9 (P, c) = Optimizer(P, c,Gκ);

10 x? = c ; f? = f(x?) ;
11 return (x?, f?);

where fi(·) is a nonseparable subfunction, and m is the number of nonseparable compo-

nents of f . The definition of x and xi is identical to what was given in Def. 2.2.

Definition 2.4 (Omidvar et al. (2015)). A function f(x) is fully nonseparable if every

pair of its decision variables interact with each other.

2.9.2 Cooperative coevolution

Cooperative coevolution (CC) has been proposed by Potter and Jong (2000) with the

goal of allowing evolutionary algorithms the capacity to solve increasingly complex prob-

lems. The idea is based on decomposing a complex problem into subproblems of lower

complexity which are coadapted within an evolutionary context. Algorithm 1 shows a

high-level representation of CC. In the original implementation of CC, an n-dimensional

problem is decomposed into n 1-dimensional problems each of which is optimized using

a given optimizer in a round-robin fashion. In order to assign a fitness to each partial

solution within a component, the individuals are evaluated within the context of a com-

plete solution often referred to as the context vector (van den Bergh and Engelbrecht,

2004).

The round-robin optimization of components assumes a uniform contribution from each

component which is often not the case for various reasons (Omidvar et al., 2015). The

so-called imbalance among the contribution of components can be attributed to the

following:

1. Nonuniform dimensionality of the underlying component functions.

2. Component functions with different landscapes and output ranges.

3. The dynamics of the optimizer, its convergence behavior, and stagnation.

Related Work 25

Contribution-based cooperative coevolution (CBCC) (Omidvar et al., 2011, 2016) is

an improved CC framework which addresses the imbalance issue by assigning more

resources to components with higher overall contributions. An important aspect of

a contribution-aware coevolutionary framework is maintaining an optimal balance be-

tween an exploration phase in which the contribution of components is updated, and

an exploitation phase in which the most contributing component is optimized. This

has resulted in many attempts to design various exploration/exploitation polices (Yang

et al., 2017; Mahdavi et al., 2017b,a).

The original CC framework and its contribution-based counterpart has no explicit means

of dealing with variable interactions. They only respond to interactions through the

cooperation of individuals in updating the context vector, which acts as a message passing

mechanism. The efficiency of this approach depends on the policy of constructing the

context vector (Wiegand et al., 2001) as well as its update frequency (Omidvar et al.,

2010). To alleviate this problem, many variable interaction analysis algorithms have been

proposed with the aim of decomposing a large-scale problem into smaller independent

components. There have been many attempts (Yang et al., 2008a; Chen et al., 2010)

on this, among which the differential grouping family of algorithms showed the highest

accuracy (Omidvar et al., 2014a; Mei et al., 2016; Sun et al., 2017). Differential grouping

(DG) works on the basis of the following theorem:

Theorem 2.5 (Omidvar et al. (2014a)). Let f(x) be an additively separable function.

∀a, b1 6= b2, δ ∈ R, δ 6= 0, variables xp and xq interact if the following condition holds

∆δ,xp [f](x)|xp=a,xq=b1 6= ∆δ,xp [f](x)|xp=a,xq=b2 , (2.17)

where

∆δ,xp [f](x) = f(. . . , xp + δ, . . .)− f(. . . , xp, . . .), (2.18)

refers to the forward difference of f with respect to variable xp with interval δ.

The quantities in Eq. (2.17) are real-valued numbers; therefore, the equality check cannot

be evaluated exactly over the floating-point number field on computer systems. Conse-

quently, the equality check needs to be converted to an inequality check by introducing

a sensitivity parameter: |∆(1) − ∆(2)| > ε. Here, ∆(1) and ∆(2) denote the left and

right hand side of Eq. (2.17), respectively. In the absence of representation and roundoff

errors, ε can be theoretically set to zero; however, this is not usually the case and the

optimal value of ε is often a nonzero positive number. This parameterization makes DG

sensitive to choices of ε whose optimal value may vary from function to function and is

Related Work 26

difficult to tune by practitioners. To alleviate this problem, Omidvar et al. (2017) pro-

posed DG2, a parameter-free version of DG, which automatically sets ε by estimating

the bounds on the computational roundoff errors to maximize the accuracy of variable

interaction detection.

2.9.3 Decomposition algorithms

Many decomposition algorithms have been proposed to decompose a black-box optimiza-

tion problems into smaller subproblems. Static grouping is the simplest decomposition

strategy in which the decision variables are grouped into arbitrary groups. In its simplest

form, an n-dimensional problem is broken down into s k-dimensional problems. Exam-

ples of such methods are the divide-in-half method by jun Shi et al. (2005), and the

method employed by van den Bergh and Engelbrecht (2004). These methods are obliv-

ious of variable interactions which may have a significant impact on the optimization

performance (Yang et al., 2008a).

Some other decomposition algorithms such as random grouping (Yang et al., 2008a),

adaptive variable partitioning (Ray and Yao, 2009), delta grouping (Omidvar et al.,

2010), and min/max variance decomposition (Liu and Tang, 2013) use various heuristics

in order to form the groups based on variable interaction characteristics of the objective

function. The drawback of these methods is their low grouping accuracy, and the fact

that they presuppose the number and/or the size of components. These algorithms also

divide the decision variables into s k-dimensional components. Improved versions of

random grouping and delta grouping use a so-called multilevel strategy (Omidvar et al.,

2010; Yang et al., 2008b) in which multiple fixed decompositions are used over the course

of optimization.

More sophisticated decomposition methods such as variable interaction learning (Chen

et al., 2010), meta-modelling decomposition (Mahdavi et al., 2017a), statistical learning

decomposition (Sun et al., 2012), and differential grouping (Omidvar et al., 2014a) do not

presuppose the number and/or size of components. Among these algorithms, differential

grouping has shown superior performance with respect to grouping accuracy (Chen et al.,

2010; Mahdavi et al., 2017a). Two major drawbacks of differential grouping are its

sensitivity to the parameter ε and its poor accuracy in detecting interacting variables

on functions with overlapping components. As reported in (Omidvar et al., 2014a),

the grouping accuracy of differential grouping is low on the Rosenbrock function which

has overlapping components with overlap size of one. Also, if differential grouping is

used to find the interaction structure of functions with overlapping variables, the shared

decision variables between two components will be placed in one group and will be

Related Work 27

excluded from other groups. It is not yet clear what an optimal decomposition may be

for an overlapping function; nevertheless, an accurate identification of the underlying

structure is essential to propose a meaningful decomposition.

Global Differential Grouping (GDG) (Mei et al., 2016), extended Differential Grouping

(XDG) Sun et al. (2015), and DG2 Omidvar et al. (2017) are three variants of differential

grouping, which aim at addressing the above shortcomings. XDG focuses on identifying

indirect interactions in order to deal with the Rosenbrock function. The issue with

XDG is that it inherits the sensitivity issue of differential grouping and also its method

of inferring variable interaction may consider separable variables as nonseparable. GDG

addresses the sensitivity issue of differential grouping by taking computational errors

into account. However, the use of a global parameter to detect all interactions makes

it unsuitable for imbalanced functions. GDG also addresses the problem of identifying

overlapping functions by examining all pairs of variables for interaction. DG2 is a

parameter-free version of DG, which automatically sets ε by estimating the bounds

on the computational roundoff errors to maximize the accuracy of variable interaction

detection.

2.9.4 Large-scale dynamic optimization problems

Recently, in (Luo et al., 2017), for the first time, partially separable DOPs were investi-

gated and a divide and conquer method was used in order to solve them. This method

used DG (Omidvar et al., 2014a) for detecting interactions between decision variables,

then it used a species-based PSO as its optimizer (Parrott and Li, 2006; Preuss, 2010).

This method utilized some initial knowledge about the number of peaks in each subfunc-

tion and number of generations between successive environmental changes which violates

the black-box assumption. To the best of our knowledge, (Luo et al., 2017) is the only

attempt to solve large-scale DOPs until now. Using prior knowledge about the problem,

lack of analysis of the problem and uniformity in size of subfunctions in benchmark are

among issues that make the proposed method in (Luo et al., 2017) unrealistic.

2.10 Summary

This chapter reviewed some fields in the optimization by EA and SI approaches. In

this thesis, PSO (Subsection 2.1) is used as the core component optimizer in a multi-

population framework (Subsection 2.2).

Switching cost (SC) is very important in DOPs. As described in Subsection 2.4, despite

the importance of SC in DOPs, most of the academic research in this field have not

Related Work 28

considered it in designing algorithms. Lack of considering SC in designing algorithms

for DOPs makes them unsuitable for many real-world DOPs. In fact, changing solu-

tions in real-world problems is often costly. Furthermore, larger changes have higher

cost and need more resources such as time, human resources and energy. Moreover, in

many real-world DOPs, changing solutions frequently is not desirable or it may be very

costly. Therefore, this thesis investigate DOPs with SC, their characteristics, and their

challenges. Then new approaches for solving them are designed. Proposed algorithms

in Chapters 3, 4 and 5 are designed to perform in dynamic environments under different

conditions based on SC.

Robust optimization over time (ROOT) methods were reviewed in Subsection 2.6. ROOT

is a way to handle DOPs with large SC. Additionally, ROOT is a way to perform robust

optimization for problems with uncertainties in the objective function (Subsection 2.5).

As reviewed in Subsection 2.6, all the previous ROOT methods (Jin et al., 2013; Fu

et al., 2013, 2015; Guo et al., 2014; Huang et al., 2017) need to use approximation and

prediction approaches based on time series (Box et al., 2015). As mentioned in Subsec-

tion 2.6, using algorithms that works based on approximation and prediction methods is

not suitable for DOPs with larger search space. Therefore, a new framework for ROOT

is proposed in Chapter 4 which does not use approximation and prediction methods and

outperforms the state-of-the-art ROOT methods, especially, in larger problems. In Ad-

ditionally, in Chapter 5, a novel adaptive algorithm is proposed which acts in a similar

way to ROOT methods when SC is high.

As described in Subsections 2.4 and 1.3.1.1, DOPs with PSDR have not been investigated

before, therefore, in Chapter 3, this class of DOP is investigated and a new approach

is proposed for solving them. Chapter 3 shows that DOPs with PSDR has time-linkage

property which were reviewed in Subsection 2.8. Furthermore, DOPs with PSDR have

two objectives which categorize them as dynamic multi-objective optimization problems

which were reviewed in Subsection 2.7.

As described in Subsection 2.9, little attention has been given to DOPs’ scalability.

Chapter 6 investigates large-scale DOPs. The moving peaks benchmark is analyzed and

its limits for the study of large-scale DOPs are shown. A new benchmark generator

based on the moving peaks benchmark is proposed for large-scale DOPs. Moreover, a

cooperative coevolutionary multi-swarm PSO (CCMPSO) is proposed for solving this

class of DOPs.

Chapter 3

A multi-objective time-linkage

approach for dynamic

optimization problems with

previous-solution displacement

restriction

In this chapter, DOPs with previous-solution displacement restriction (PSDR) are in-

vestigated. In the investigated DOPs with PSDR, the algorithm needs to find a new

solution after an environmental change that is not much different from the previous one.

For example, in the aircraft taking-off/landing scheduling problem (Atkin et al., 2008),

this type of objective alongside the optimality objective (Nguyen, 2011) can be seen.

Moreover, displacement between consecutive solutions can be seen as the switching cost

(SC) in many problems (Huang et al., 2017) which needs to be minimized as the second

objective. In fact, changing solutions in real-world problems is often costly. Therefore,

larger changes have more cost and need more resources such as time and energy. As a

result, when the optimization algorithms decision maker needs to choose the next so-

lution after environmental changes, the displacement/SC to the new solution must be

considered alongside with its optimality objective’s fitness value. Moreover, DOPs with

PSDR are dynamic time-linkage problems (Nguyen and Yao, 2009), because choosing a

solution for the current environment will change the next environments search space of

the displacement/SC objective. In fact, when a solution is chosen for an environment,

all the feasible solutions will be evaluated based on their distance from it in terms of

displacement/SC.

29

A Multi-Objective Time-Linkage Approach for Dynamic Optimization Problems with
Previous-Solution Displacement Restriction 30

In this chapter, a new hybrid method based on particle swarm optimization (PSO) (Kennedy

and Eberhart, 1995) is proposed for DOPs with PSDR. The proposed algorithm that is

denoted PSDR-hPSO is designed based on a multi-swarm PSO that is responsible for

finding and tracking peaks based on the optimality objective and a single-swarm PSO

(sPSO) whose task is to find the optimum solution according to both optimality and

displacement/SC objectives. After each environmental change, a new decision maker

chooses a peak according to the fitness values of peaks in the present and some of their

characteristics which can be used to anticipate the future displacement/SC value. Then,

sPSO uses the location information from the decision maker in order to accelerate the

optimization process and improve the performance.

3.1 Problem definition

Here, DOPs defined in Eq. (1.1) and (1.2) are investigated. In this chapter, it is assumed

that choosing a solution for each environment is possible and the system is capable of

tolerating frequent changes in solutions. Therefore, for DOPs with PSDR in this chapter,

the optimization algorithm needs to choose a new solution for each environment based

on both optimality and displacement/SC objectives.

Since DOPs with PSDR has two conflicting objectives which need to be optimized con-

currently, they can be categorized as dynamic multi-objective optimization problem

(DMOOP) (Bui et al., 2005). In DMOOP, algorithms need to find a set of solutions

close to the true Pareto-optimal front (POF) for each environment (Farina et al., 2004).

A DMOOP with m objectives can be defined as follows:

F (x) =
{
f1(x, θ

(t)
1), f2(x, θ

(t)
2), · · · , fm(x, θ(t)m)

}
(3.1)

where F is the objective function, fi is the ith objective, x is a design variable vector,

θi is environmental parameters of ith objective which is changing over time and t is the

time index. DMOOPs are classified into different groups based on the POF and Pareto-

optimal set (POS) conditions over time (Farina et al., 2004). The considered PSDR in

this chapter is classified in the group in which both POF and POS change over time.

However, even if the optimization algorithm finds a set of solutions close to POF for

each environment, its decision maker needs to choose a solution from them. As a result,

for solving PSDR, there is no need to find a set of solutions and the algorithm needs

to search for the preferred solution from POS of each environment. One of the easiest

ways to solve a DMOOP in this situation is to convert the problem defined by Eq. (3.1)

A Multi-Objective Time-Linkage Approach for Dynamic Optimization Problems with
Previous-Solution Displacement Restriction 31

to a weighted-sum optimization problem (Chankong and Haimes, 1983):

Fw1,w2,··· ,wm(x) = w1f1(x, θ
(t)
1) + w2f2(x, θ

(t)
2) + · · ·+ wmfm(x, θ(t)m) (3.2)

where wi is the constant value which is multiplied to the fitness value of the ith objective

function. By converting a MDOOP to a weighted-sum optimization problem as Eq. (3.2),

by setting the w values, one of the solutions in POS as the optimum solution is chosen

for each environment.

As mentioned before, DOPs with PSDR have the time-linkage feature. In dynamic time-

linkage optimization problems (DTP), the optimizer should consider both the present

and future i.e. it needs to predict the future behavior of the environment based on the

chosen solution.

3.2 Proposed hybrid method for PSDR

DOPs with PSDR are counted as dynamic multi-objective and time-linkage problems.

Consequently, the proposed algorithm needs to address all of the necessary requirements

of DOPs, MOOPs and DTPs.

3.2.1 Addressing dynamic optimization problems’ requirements

One way to tackle DOPs is using multi-swarm methods (Nguyen et al., 2012a; Mavrovouni-

otis et al., 2017). The proposed algorithm is equipped with a multi-swarm optimizer

whose responsibility is to locate and track peaks. The multi-swarm PSO proposed

in (Yazdani et al., 2013b) (FTmPSO) is used inside the proposed algorithm because it

is competitive and easy to understand.

The aim of FTmPSO is to find all peaks and track them after environmental changes.

However, due to the lack of information about the number of peaks, a free swarm needs

to constantly search for possible uncovered peaks. Once a new optimum is found by a

free swarm, it changes to a tracker swarm. The parameter settings of the finder swarm

is different from trackers because of their different tasks. Yazdani et al. (2013b) showed

that the population size in free-swarm (NPfree) should be higher than of the trackers.

To test the convergence of a free swarm, the algorithm checks the differences between

the f(g?free) at the current iteration itr with its value at itr − k and if the difference is

less than a threshold, then it is assumed that the free swarm has been converged.

After free swarm convergence detection, its better particles create a new tracker swarm

(NPfree ≥ NPtracker). When a new tracker swarm is created, the free swarm will be

A Multi-Objective Time-Linkage Approach for Dynamic Optimization Problems with
Previous-Solution Displacement Restriction 32

reinitialized immediately in the search space in order to search for another uncovered

peak. It is possible that a free swarm converges to a peak already covered by a tracker

swarm. Tracking a peak by multiple swarms wastes a considerable amount of computa-

tional resource. Therefore, a mutual exclusion principle is enforced to avoid more than

one swarm to cover the same peak. To establish the mutual exclusion, the mechanism

proposed by Blackwell and Branke (2006) was utilized in (Yazdani et al., 2013b). Ac-

cording to the exclusion mechanism, when Euclidean distances between the global best

of the free swarm and a tracker swarm is less than a threshold (rexcl), the algorithm

assumes that the free swarm has converged to a covered peak. In this situation, the free

swarm will be re-initialized. The value of rexcl is calculate as follows:

rexcl = 0.5
SR
D
√

m
, (3.3)

where SR is the range of search space and m is the number of peaks. A similar conflict

can also happen to two tracker swarms. This situation happens when a peak is covered

by a larger peak. Therefore, its tracker swarm loses its own peak and starts converging to

the larger peak’s center. A similar situation happens when the free swarm convergence

is detected before it enters into the mutual exclusion area of a covered peak. As a result,

it becomes a tracker swarm and moves toward the peak’s center. This is another case

where the exclusion principle is enforced to control the computational overhead. To

do so, the tracker swarm with worse global best fitness value f(g?) will be removed.

For determining tracker swarms which are under the exclusion condition, the Euclidean

distance between all pairs of tracker swarms’ g? position is calculated and compared

with rexcl based on Eq. (6.12).

Another critical challenge of the population-based optimization algorithms in DOPs

is diversity loss. FTmPSO is a reaction method (Nguyen et al., 2012a) in which the

algorithm increases the diversity of trackers after change detection. When a change is

detected, for each tracker swarm, one of the particles is located on the g∗ position from

the previous environment and other particles are randomized around the g? position

with the radius of shift severity of the peak by Eq. (6.13):

Pi,j = (p · si · r) + g
?(t−1),end
i , (3.4)

where Pi,j is the position of the jth particle of the ith tracker swarm and g
?(t−1),end
i is

its global best position at the end of the previous environment, si is the shift severity

of the peak which is under cover of the ith tracker swarm, p > 0 determines the radius

which the particles should scatter around the g
?(t−1),end
i based on the si, and r is a

uniformly distributed random number vector in range [−1, 1]. In Eq. (3.4), the g∗ from

the end of the previous environment is used instead of the previous peak center position.

A Multi-Objective Time-Linkage Approach for Dynamic Optimization Problems with
Previous-Solution Displacement Restriction 33

Therefore, the diversity is introduced to the population of each tracker swarm as much

as needed. In addition to (3.4), the velocity of particles in trackers is initialized to:

Vi,j = q · si · r, (3.5)

where Vi,j is the velocity vector of the jth particle of the ith tracker swarm, and q

determines the maximum percentage of si by which the velocity components should be

chosen.

For addressing outdated memory challenge which happens after each environmental

change, the fitness values of all p? positions of the free swarm will be re-evaluated after

each environmental change. For tracker swarms, after re-diversification, the fitness values

of particle positions are evaluated and the p? positions are set to particle positions.

For change detection, FTmPSO uses a beacon position. The beacon is evaluated in

each iteration and if the calculated fitness value is different from the stored value, then

the change is detected. Since detecting a change is a separate issue and in most real-

world dynamic environments the occurrence of a change is obvious (e.g., arrival of new

order, change in temperature) (Nguyen, 2011), in this thesis, it is assumed that the algo-

rithm will be informed when an environmental change happens. Furthermore, FTmPSO

utilizes a resource allocation mechanism and a local optimizer for improving the perfor-

mance. In this thesis, for simplicity, these two mechanisms will not be used.

FTmPSO in the proposed algorithm has two main responsibilities: 1) tracking peaks;

2) gathering some information about each peak. For the first task, FTmPSO acts

in the actual problem space without considering the displacement objective. For the

second task, each sub-swarm stores the difference between fitness values of the best

found position g (like Gbest in PSO (Kennedy and Eberhart, 1995)) at the end of each

successive pair of environments inside its own database. The average of these values

indicates the peaks height variance.

The exclusion mechanism (Blackwell and Branke, 2006) used by Yazdani et al. (2013b)

does not allow more than one sub-swarm to cover the same peak. In the standard version

of this mechanism, the swarm with lower f(g) fitness is re-initialized. In the FTmPSO

in this chapter, when the distance between two sub-swarms’ g positions is less than a

threshold rexcl, the older swarm is kept which has the bigger database and remove the

younger one. Additionally, if the younger one’s f(g) is better, then its g information is

copied to the older one. In this chapter, rexcl is calculated based on the one in (Blackwell

et al., 2008) which is as follows:

rexcl = exclfactor ×
SR

TSN
1
D

, (3.6)

A Multi-Objective Time-Linkage Approach for Dynamic Optimization Problems with
Previous-Solution Displacement Restriction 34

where exclfactor is a positive constant less than 1, SR is the search domain, TSN is

the current number of sub-populations and D is the number of dimensions. It is worth

mentioning that the original formula in (Blackwell and Branke, 2006) used number of

peaks instead of TSN which usually is unknown in real-world problems. This was

changed to TSN in (Blackwell et al., 2008).

3.2.2 Addressing multi-objective problems’ requirements

Alongside the above mentioned single-objective FTmPSO, there is a sPSO which has one

swarm and works on both PSDR objectives. Since a solution have to be picked for each

environment, there is no need to find the POS. To handle the multi-objective and find

the suitable solution among the POS, the objectives are combined into a weighted sum

of objectives (Chankong and Haimes, 1983) as Eq. (3.2). In this chapter, the maximizing

optimality objective is used which makes the fitness function of sPSO as follows:

F (x) = f(x, θ(t))− (w ×DC(x,Xt−1)) (3.7)

where f(x, θ(t)) is the optimality fitness function, is the chosen solution for the previous

environment, w is the weight of the displacement cost (DC) function. The DC function

calculates the Euclidean distance between the previous chosen solution and a new design

variable vector as follows (Huang et al., 2017):

DC(x,Xt−1) = ‖x−Xt−1‖ (3.8)

The w parameter in Eq. (3.7), controls the importance of the displacement cost in

the optimization. Therefore, lower values of w result in finding solutions with better

optimality and its higher values lead to finding solutions that are closer to Xt−1. As a

result, with setting of w, a preferred solution can be chosen from the POS. Moreover,

the ratio of both objectives can be controlled in problems in which naturally the ratio

between the two objectives’ fitness values are very large or very small. For example, the

fitness values of the first objective can vary between 1,000 and 2,000 while the maximum

displacement is less than two.

3.2.3 Addressing dynamic time-linkage problems’ requirements

For better performance, the proposed algorithm needs to consider the future environ-

ments alongside the current one. In most of the previous works on DTPs (Bosman, 2005;

Bosman and Poutré, 2007; Bu et al., 2017), a predictor method like Autoregression was

used. However, some of the DTPs can be predictor-deceptive (Nguyen et al., 2012b) and

A Multi-Objective Time-Linkage Approach for Dynamic Optimization Problems with
Previous-Solution Displacement Restriction 35

some other can be too random to be predicted with a reasonable error. In this thesis,

problems with several peaks whose width, height and location change randomly over

time are considered. In such problems, using predictors cannot help the algorithm and

even can deteriorate the performance, because this type of problems are too random

and there is no pattern in the dynamic. As a result, the prediction involves a high error

rate. In these circumstances, if the algorithm considers only the current environment,

the performance would be better than considering the future with a high error rate in

prediction.

To tackle this challenge, a new decision maker is proposed based on the gathered infor-

mation by FTmPSO’s sub-swarms. After each environmental change, FTmPSO reacts

to change in order to update memory, increasing diversity and updating database. Ad-

ditionally, it sends the calculated height variances to the decision maker alongside the

g information of all sub-swarms. Then, the decision maker chooses one of the peaks as

follows:

argmaxSNi=1

([
f(gi, θ

(t))− (w ×DC(gi,Xt−1))
]

+
1

B

B∑
k=1

(
f(gi, θ

(t))−HVk − (w ×DC(gi,gk))
))

(3.9)

where CP is the chosen peak, SN is the number of sub-swarms, HVk is the calculated

height variance by the kth sub-swarm, gk is the kth sub-swarm’s g position, and B is the

number of better peaks based on the f(gk, θ
(t))−HVk i.e. based on the worst expected

fitness values for kth sub-swarm in the next environment. In Eq. (3.9), in the first part

i.e.
[
f(gk, θ

(t))− (w ×DC(gi,Xt−1))
]
, the decision maker considers the current fitness

value of peaks and the displacement cost from Xt−1 to it. Therefore, it tries to maximize

the combined objective by Eq. (3.7) for the current environment. In the second part,

the decision maker tries to take the future of peaks into account by considering average

displacement cost from them to the B best peaks.

By Eq. (3.9), it is tried to choose a peak that is closer to other good peaks. If it is needed

to move the solution to another peak after environmental changes, a lower displacement

cost will be endured. Therefore, the decision maker aims to choose reliable peaks which

along with the good current situation, provide a better future combined objective value.

After choosing the most reliable peak by Eq. (3.9), the gCP is sent to the sPSO.

sPSO initializes its particles around the gCP inside a cloud with a radius of rcloud.

Therefore, sPSO starts optimizing the combined objective by Eq. (3.7), according to

the location determined by the decision maker. The initialization with the controlled

diversity by the rcloud decreases the chance of moving particles to further regions such

as other peaks. In fact, it is possible to have other regions with better fitness in the

A Multi-Objective Time-Linkage Approach for Dynamic Optimization Problems with
Previous-Solution Displacement Restriction 36

Algorithm 2: PSDR-hPSO

1 Initialize Finder swarm of FTmPSO;
2 repeat
3 if an environmental change happens then
4 Update memory;
5 Introducing diversity;
6 Update database;
7 Calculating height variance;
8 Choose a peak by Eq. (3.9);
9 Send information to sPSO;

10 Execute an iteration of PSO on FTmPSO’s sub-swarms;
11 if the Finder swarm is converged then
12 Create a new tracker swarm;
13 Re-initialize finder swarm;

14 Execute exclusion mechanism for FTmPSO;
15 Update rexcl if number of trackers is changed;
16 Execute an iteration of PSO for sPSO;

17 until stopping criterion is met ;

current environment, however, the decision maker in Eq. (3.9) tries to choose a peak by

taking the future displacement cost into account. As a result, the chosen peak may not

be the best peak in the current environment but it is a better option based on current

and future considerations. Pseudo code of the PSDR-hPSO is shown in Algorithm 2.

3.3 Experiments

3.3.1 Benchmark problems

The Moving Peaks Benchmark (MPB) (Branke, 1999) is the most popular benchmark

in the DOP field. The standard baseline function of MPB is as follows:

ft(x) = maxi=mi=1 {hit − (wit · ‖x− cit‖)}, (3.10)

where m is the number of peaks, x is a solution in the problem space, hit, w
i
t and cit

are the height, width and center of the ith peak in the tth environment, respectively. In

the modified version of MPB (mMPB) (Jin et al., 2013; Yazdani et al., 2017) used in

this chapter, each peak has its own height and width severities. The height, width and

center of a peak change from one environment to the next one as follows:

h
(t+1)
i = h

(t)
i + αi ·N(0, 1), (3.11)

A Multi-Objective Time-Linkage Approach for Dynamic Optimization Problems with
Previous-Solution Displacement Restriction 37

w
(t+1)
i = w

(t)
i + βi ·N(0, 1), (3.12)

c
(t+1)
i = c

(t)
i + v

(t+1)
i , (3.13)

where

v
(t+1)
i = s ·

(i− λ) · R+ λ · v(t)
i

‖(i− λ) · R+ λ · v(t)
i ‖

, (3.14)

where N(0, 1) represents a random number drawn from a Gaussian distribution with

mean 0 and variance 1, R is a uniformly generated random vector ∈ [−0.5, 0.5], αi

is height severity ith peak, βi is width severity of ith peak, s is the shift severity and

λ is the correlation coefficient. The parameter settings of the mMPBR are shown in

Table 3.1. The highlighted values in Table 3.1 are default parameter values of mMPB

in this chapter.

Table 3.1: Parameter settings of mMPBR (default values are highlighted).

Parameter Value(s)

Number of peaks, m 10,20,50
Evaluations between changes, f 1000,2500,5000
Shift severity, s 1,2,5
Height severity, α Randomized in [1,10]
Width severity, β Randomized in [0.1,1]
Peaks shape Cone
Correlation coefficient, λ 0
Number of dimensions, D 2,5
Peaks location range, SR [0,100]
Peak height, h [30,70]
Peak width, w [1,12]
Initial height value 50
Initial width value 6
Number of environments 100

3.3.2 Performance indicator

In this chapter, for measuring the performance of the algorithms, Eq. (3.15) is used:

AF =
1

N − 1

N∑
t=2

(
f(Xt, θ

(t))− w ×DC(Xt,Xt−1)
)

(3.15)

where AF is average fitness of chosen solutions for all environments and Xt is the chosen

solution for the tth environment.

A Multi-Objective Time-Linkage Approach for Dynamic Optimization Problems with
Previous-Solution Displacement Restriction 38

3.3.3 Compared algorithms and parameter settings

The proposed algorithm is compared with two TMO algorithms on mPSO. The first

one chooses the best solution according to optimality in each environment (it is called

it optimality TMO (oTMO)) so it does not consider the displacement objective. The

second method uses Eq. (3.7) as fitness function (it is called it combined objective TMO

(cTMO)).

PSDR-hPSO, oTMO and cTMO use a simplified version of the FTMPSO (Yazdani

et al., 2013b) in which the exploiter particle and sleeping awakening mechanisms are

disabled. It is assumed that all algorithms are informed about environmental changes.

The parameter setting of them is shown in Table 3.2. sPSO in PSDR-hPSO is working

based on (Eberhart and Shi, 2001), c1=c2=2.05, χ is 0.729843788 and the population

size is 10. For the PSDR-hPSO, the value of B in Eq. (3.9), is set to half of the sub-

swarm number. rcloud for initializing sPSO is equal to the shift severity of peaks which

is learned by averaging the Euclidean distances between best found position g positions

at the end of successive environments. All experiments are done with different values of

w i.e. 0.5,1 and 2.

Experimental results are obtained by performing 30 independent runs and the best

results based on Wilcoxon signed-rank test with significance level of 0.05 are highlighted

in each table. The Wilcoxon signed-rank test is a non-parametric statistical hypothesis

test used to compare two related samples, matched samples, or repeated measurements

on a single sample to assess whether their population mean ranks differ (Wilcoxon,

1945). It can be used as an alternative to the paired Student’s t-test, t-test for matched

pairs, or the t-test for dependent samples when the population cannot be assumed to

be normally distributed.

Table 3.2: Parameter setting of FTmPSO, oTMO and cTMO

Parameter Value

C1, C2 2.05
χ 0.729843788
Trackers′ population size 5
Finder′s population size 10
Exclusion fatcor 0.5
P 1
Q 1
Convergence limit 1
k 10
Stop criterion Max fitness evaluation number

A Multi-Objective Time-Linkage Approach for Dynamic Optimization Problems with
Previous-Solution Displacement Restriction 39

3.3.4 Experimental results

Table 3.3 shows the obtained results by PSDR-hPSO, oTMO and cTMO on mMPB with

different numbers of peaks m=10, 20 and 50 (all other mMPB parameters have default

values). The results show that the performance of the PSDR-hPSO is better than that

of oTMO and cTMO in all test instances in Table 3.3. By increasing the number of

peaks, due to increasing the density of peaks in the landscape, the performance of all

methods increased noticeably. Indeed, by increasing peak density, the displacement cost

by Eq. (3.8) would be decreased because the average distance between peaks is smaller.

On the other hand, when the average distance between peaks is larger, the displacement

cost is higher which leads to lower performance.

In all the test instances in Table 3.3, with increasing w, the performance decreases

significantly. In fact, by increasing w, the influence of displacements cost in the combined

fitness function by Eq. (3.7) increased which leads to larger changes in the problem space

made by this fitness function. This issue affects the performance of the cTMO and

PSDR-hPSO directly because both of them use Eq. (3.7). Moreover, although oTMO

acts independently from the displacement objective, it is affected by the value of w

because the performance of algorithms is calculated by Eq. (3.15) that takes the average

displacement cost between successive solutions into account. Higher values of w increase

the distance between the optimum by the optimality objective and the optimum by the

Eq. (3.7) that deteriorates the results of oTMO.

The obtained results by cTMO are better than those of oTMO in Table 3.3. The reason

is that cTMO uses Eq. (3.7) as objective function and considers displacement cost in the

optimization. Moreover, PSDR-hPSOs performance is better than that of cTMO in all

test instances. The first reason is that in PSDR-hPSO, the FTmPSO acts based on the

optimality objective. As a result, its tracker-swarms are able to track peaks more easily

than cTMOs tracker-swarms which need to tolerate larger changes in peaks especially

when the w is larger. In fact, displacement cost can enlarge the relocation distance of

peaks after environmental changes.

The second reason which is the most important one is that the PSDR-hPSO’s decision

maker in Eq. (3.9) considers the future of the search space alongside the current one.

As discussed before, PSDRs are classified as problems with the time-linkage feature.

Therefore, PSDR-hPSO’s performance which considers both present and future is better

than that of cTMO which acts based on “optimizing only the present”.

Figure 3.1 shows the time-linkage property of the PSDR clearly. In this figure, a MPB

with 5 peaks of equal height and width is shown in the sub-figure (I). Other sub-figures

are made by Eq. (3.7) with w=1 and when one of the peak centers is chosen as the

A Multi-Objective Time-Linkage Approach for Dynamic Optimization Problems with
Previous-Solution Displacement Restriction 40

Table 3.3: Results on test instances with different number of peaks P .

Algorithm
P=10 P=20 P=50

w=0.5 w=1 w=2 w=0.5 w=1 w=2 w=0.5 w=1 w=2

oTMO
52.67 50.38 48.48 55.28 51.33 49.55 57.12 51.61 51.59
(0.97) (0.97) (1.02) (0.67) (1.02) (1.25) (0.79) (1.00) (0.96)

cTMO
54.74 50.88 49.11 56.47 53.28 50.44 57.57 54.22 51.89
(0.75) (1.04) (1.42) (0.95) (1.16) (1.21) (0.57) (1.08) (1.11)

PSDR-hPSO
55.78 51.13 49.75 59.27 55.03 53.98 60.53 55.82 54.31
(0.76) (1.48) (2.04) (0.45) (0.67) (0.87) (0.56) (0.68) (0.92)

0 50 100

(I)

0

50

100

0 50 100

(II)

0

50

100

0 50 100

(III)

0

50

100

0 50 100

(IV)

0

50

100

0 50 100

(V)

0

50

100

0 50 100

(VI)

0

50

100

Figure 3.1: Time-linkage property of the PSDR by choosing different peak centers as
the current solution.

current solution (the chosen peak center is illustrated by a red filled circle). According

to Eq. (3.7), when a peak center is chosen as a solution, all the feasible solutions fitness

values in the search space are affected by their distance to it. Therefore, choosing a

solution has influence on the future environments. It is worth mentioning that PSDR-

hPSO will not choose the peak in sub-figure (V) because this peak is far away from other

peaks, so the average displacement cost between it and the B best peaks in Eq. (3.9)

is high which deteriorates its chance to be chosen. Therefore, the algorithm avoids the

high displacement cost in the future.

The results of algorithms on mMPB with different shift severities are reported in Ta-

ble 3.4. Similar to the result of Table 3.3, PSDR-hPSO outperformed cTMO and oTMO

algorithms in all test instances. By increasing shift severities, the performance algo-

rithms is deteriorated. Higher shift severities increase the displacement cost in the

A Multi-Objective Time-Linkage Approach for Dynamic Optimization Problems with
Previous-Solution Displacement Restriction 41

Table 3.4: Results on test instances with different shift severities s.

Algorithm
s=1 s=2 s=5

w=0.5 w=1 w=2 w=0.5 w=1 w=2 w=0.5 w=1 w=2

oTMO
55.28 51.33 49.55 54.29 49.34 48.05 53.53 48.42 43.91
(0.67) (1.02) (1.25) (0.59) (1.04) (0.95) (0.80) (1.19) (0.96)

cTMO
56.47 53.28 50.44 55.62 51.34 49.18 54.64 50.22 46.31
(0.95) (1.16) (1.21) (0.87) (1.03) (1.09) (0.82) (1.35) (1.04)

PSDR-hPSO
59.27 55.03 53.98 58.00 54.43 49.96 57.67 51.85 47.97

(0.0.45) (0.67) (0.87) (0.42) (0.82) (1.16) (0.56) (1.03) (1.12)

Table 3.5: Results on test instances with different change frequencies f .

Algorithm
f=1000 f=2500 f=5000

w=0.5 w=1 w=2 w=0.5 w=1 w=2 w=0.5 w=1 w=2

oTMO
53.31 49.39 46.51 54.45 50.69 48.16 55.28 51.33 49.55
(0.75) (1.13) (1.26) (1.43) (1.49) (1.13) (0.67) (1.02) (1.25)

cTMO
51.66 48.63 46.43 55.13 51.40 49.38 56.47 53.28 50.44
(1.11) (0.92) (1.23) (1.06) (1.39) (1.16) (0.95) (1.16) (1.21)

PSDR-hPSO
55.71 52.55 47.14 57.73 54.48 51.92 59.27 55.03 53.98
(0.57) (0.94) (1.40) (0.70) (0.97) (1.95) (0.45) (0.67) (0.87)

circumstances in which a peak is chosen for more than one successive environment. Fur-

thermore, peaks relocate with larger steps which makes the tracking task harder for

tracker swarms.

Table 3.5 indicates the performance of algorithms on mMPB with different change fre-

quencies. Again, the best results in all problem instances belong to PSDR-hPSO. Lower

values of f means higher change frequencies. In such a situation, there is insufficient

time for algorithms to do a good search because the environments change more rapidly,

which leads to worse performance. In mMPB with f=1000, it exceptionally can be seen

the results obtained by oTMO are better than those of cTMO. As mentioned before, the

displacement causes an additional step size to the shift severity of peaks when Eq. (3.7)

is used as the objective function. Thus, in higher change frequencies and with larger

relocating of peaks after each environmental change, cTMO has a harder job for tracking

peaks which deteriorates its performance. On the other hand, FTmPSO in PSDR-hPSO

uses the optimality objective function and as a result, it is not involved with this issue.

3.4 Summary

In this chapter, DOPs with PSDRs were investigated and a novel multi-objective and

time-linkage based method was proposed. The proposed method utilizes a multi-swarm

A Multi-Objective Time-Linkage Approach for Dynamic Optimization Problems with
Previous-Solution Displacement Restriction 42

PSO for tracking peaks in the optimality objective search space. A new decision maker

was designed which uses the information gathered by sub-swarms of multi-swarm PSO

in order to choose a peak. The information transferred to the decision maker consists

of location, fitness value and height variance of peaks. The proposed decision maker

chooses a peak based on the current environments peaks fitness values, their worst

expected fitness values for the next environment, their distance to a pre-defined number

of better peaks and also the future displacement cost for changing solutions. After each

environmental change, the information of the chosen peak is sent to a single swarm

PSO which works on the combined objectives i.e. optimality and displacement cost

and is responsible for finding a solution for each environment. The single swarm PSO

initializes its particles around the received peak location from the decision maker. The

experimental results showed that the proposed algorithm outperformed other tested

methods which only focus on optimizing the present environment.

The proposed method and the related experimental results in this chapter showed that

considering future in choosing next solution procedure can improve the performance

significantly. However, this context need to be investigated with different methodologies

on different testbeds. Although the multi-objective handling mechanism used in this

chapter is an easy way, it might not be an efficient way. Considering other ways including

non-linear combinations of weighted objectives, and finding POS for each environment

should be investigated in future work.

Chapter 4

Robust optimization over time by

learning problem space

characteristics

As mentioned in Subsection 1.3.1.2, when SC in DOPs is very large, or frequently chang-

ing solutions is undesirable, the algorithm needs to keep solutions as long as they remain

acceptable. To address such a problem, Yu et al. (2010) proposed an approach for solv-

ing DOPs under the above mentioned circumstances: finding solutions that are robust

over the course of time. A robust solution is one that is not necessarily the best in the

current environment, but that remains acceptable over several environments. A found

robust solution can be utilized until its quality degrades to an unacceptable level.

In case the current robust solution becomes unsatisfactory, a new robust solution must

be chosen. The process of finding a sequence of robust solutions is referred to as robust

optimization over time (ROOT) (Yu et al., 2010; Fu et al., 2013; Jin et al., 2013). For

ROOT, the main goal is to minimize the number of times the chosen solution has to

be changed because its performance drops below an acceptable level, or to maximize

the average number of environments in which a robust solution remains acceptable.

Thus, the best case is that the first robust solution remains acceptable for all of the T

environments and the worst case is that the number of robust solutions is equal to the

number of environments (none of the solutions remained acceptable after even a single

environmental change).

In this chapter, a new framework for ROOT is proposed. Its novelty and contribution are

as follows. First, this framework uses multi-population methods to track and monitor

each peak and learn about their characteristics. Second, in contrast to previous state-

of-the-art frameworks which are based on predicting future fitness values of solutions,

43

Robust Optimization Over Time by Learning Problem Space Characteristics 44

the proposed framework tries to predict future behaviors of peaks and then selects the

next robust solution based on this information. Third, four new strategies to select

the next robust solution are proposed. Finally, the proposed framework is empirically

evaluated on a wide range of problem settings (different dimensions, change frequencies,

shift severities and number of peaks), providing a detailed analysis on the performance

of the new framework and demonstrating that it achieves better results than current

state-of-the-art ROOT algorithms.

4.1 The proposed framework

According to Section 2.6, almost all current methods on ROOT need to use approxi-

mation and prediction methods based on time series (Box et al., 2015). The accuracy

of this approach depends on the amount of data available, i.e. past and current fitness

values covering the representative regions of the search space. In problems with a large

number of dimensions and/or large search space and/or high change frequency, a very

large amount of data is required to obtain an accurate approximation. This may be

impossible to achieve.

In this chapter, a new framework for ROOT that does not rely on predicted future

values of solutions is proposed. Consequently, the proposed framework does not require

complicated approximation and prediction methods for predicting solution fitness val-

ues. Instead, a multi-population algorithm is responsible for finding peaks, tracking

them after environmental changes and gathering information about their behavior. This

information will be used to predict the future behavior of peaks. When the current

solution becomes unacceptable, the next robust solution will be selected by a decision

rule based on information collected by sub-populations such as shift severity or height

severity. In this chapter, four such decision rules are proposed.

4.1.1 The multi-population/multi-swarm method

In this section, the necessary characteristics of multi-population (or multi-swarm) meth-

ods that can be used inside the proposed ROOT framework are described. It is assumed

a multi-population algorithm would continuously try to identify new peaks and track

them after an environmental change. Knowledge about the problem such as number

of peaks and their shift severities should not be necessary. Additionally, the algorithm

should be able to adapt to the number of populations as needed. For example, the pro-

posed multi-population methods in (Yazdani et al., 2013b; Blackwell et al., 2008) have

such characteristics.

Robust Optimization Over Time by Learning Problem Space Characteristics 45

The other requirement is preventing overcrowding, i.e., each peak should be covered by at

most one sub-population. Typically, algorithms use an exclusion mechanism (Blackwell

and Branke, 2006) for this purpose. If the distance between the best found positions

of two populations drops below some exclusion radius rexcl, the population with the

worse best found position is re-initialized. One way for calculating rexcl without a need

to know the number of peaks was described in Eq. (3.6). Note that, in the proposed

framework, each sub-population separately records some information about its covered

peak. Therefore, the exclusion mechanism for the proposed framework should allow

such a record to be transferred from one population to another before the population

is re-initialized. If the surviving population is younger (according to the environment

number in which it was created), then before the algorithm re-initializes the older one,

its database will be transferred to the surviving one.

Another characteristic that a compatible multi-population method should have is being

able to track peaks. Therefore, the populations that are responsible to cover and track

peaks need to be able to deal with diversity loss (Nguyen et al., 2012a). Nguyen et al.

(2012a) grouped methods that deal with diversity into two categories: methods that

maintain diversity during the search and the methods that introduce diversity when

changes occur. Additionally, to track peaks, populations need to deal with the outdated

memory issue that happens after environmental changes. In fact, after changes, the

fitness values stored by the algorithm may have changed. This issue can be addressed

by re-evaluating all individuals after environmental changes.

Finally, since the algorithms need to be able to react to an environmental change, e.g.

by updating memory and calculating and storing some information such as shift severity

of peaks, they need to know when a change has occurred. Since detecting a change is a

separate issue and in many real-world dynamic environments the occurrence of a change

is obvious (e.g., arrival of new order, change in temperature) (Nguyen, 2011), in this

chapter, as in all previous algorithms of ROOT (Jin et al., 2013; Fu et al., 2013, 2015;

Guo et al., 2014; Huang et al., 2017), it is assumed the information about environmental

change events is known and does not need to be detected.

4.1.2 New decision making process for choosing robust solutions

The proposed framework acts based on information gathered by sub-populations tracking

peaks. Note that at the tth environment, only sub-populations which were created at

the (t − 2)th environment and before that are considered. There are three types of

information stored in each sub-population’s database:

Robust Optimization Over Time by Learning Problem Space Characteristics 46

1. The Euclidean distance between best found positions (such as Gbest in PSO) at the

end of each successive pair of environments. The average of these distances indicates

peaks Shift Severity.

Si =
1

t− bi − 1
×

t−1∑
k=bi+1

∥∥∥g(k),end
i − g

(k−1),end
i

∥∥∥ , (4.1)

where Si is the estimated shift severity of the peak covered by the ith sub-population,

bi is the environment in which the ith sub-population has been created, t is the current

environment number, and g
(k),end
i is the best found position of the ith sub-population at

the end of the kth environment.

2. The differences between fitness values of its best found positions before and after

each environmental change. The average of these values indicates the variance of fitness

values of the best found position after environmental changes.

FVi =
1

t− bi
×

t−1∑
k=bi

∣∣∣f (g
(k),end
i , θ(k)

)
− f

(
g
(k+1),beginning
i , θ(k+1)

)∣∣∣ , (4.2)

where FVi is the fitness variance of the peak covered by the ith sub-population, f(g
(k),end
i , θ(k))

is the fitness value of the best found position by the ith sub-population at the end of

the kth environment and f(g
(k+1),beginning
i , θ(k+1)) is the re-evaluated fitness value of this

position at the beginning of the next environment.

3. The fitness difference between best found positions at the end of each successive pair

of environments. The average of these (called height variance) indicates a peak’s height

variability.

HVi =
1

t− bi − 1
×

t−1∑
k=bi+1

∣∣∣f (g
(k),end
i , θ(k)

)
− f

(
g
(k−1),end
i , θ(k−1)

)∣∣∣ , (4.3)

whereHVi is the calculated height variance of the peak covered by the ith sub-population.

The database of each sub-population will be updated after each environmental change.

If at tth environment, the fitness value of the current robust solution r is greater than

the threshold V , then it will be kept for at least another environment. Otherwise, after

the computational budget (Fu et al., 2015) η which is usually until the end of the current

environment, the following procedure will be executed:

Step 1: Pre-selection: Remove from consideration each sub-population i if the current

f(gi, θ
(t)) < (FVi + V). FVi shows how much the fitness value of a position on peak

i (covered by ith sub-population) is expected to change after an environmental change.

Robust Optimization Over Time by Learning Problem Space Characteristics 47

Thus, if f(gi, θ
(t)) < (FVi+V), in the next environment f(gi, θ

(t+1)) will likely be below

the threshold so this position is not considered a robust solution.

For the remaining candidates g, the proposed framework executes the second step for

choosing one of the candidates’ g as the next robust solution. If there is no candidate

peak, then the algorithm chooses the g with the highest fitness value.

Step 2: Four different strategies for choosing the next robust solution (NRS) are proposed

as follows:

• The g with the highest fitness value minus its FV is chosen.

NRS = argmaxei=1

(
f(gi, θ

(t))− FVi
)
, (4.4)

where e is the number of candidate g remaining from the first step.

• The g with the lowest calculated shift severity S by Eq. (4.1) is chosen.

NRS = argminei=1(Si), (4.5)

• The g with the lowest height variance calculated by Eq. (4.3) is chosen.

NRS = argminei=1(HVi), (4.6)

• The g with the lowest value obtained by Eq. (4.7) is chosen.

NRS = argminei=1

(
Si
Smax

+
HVi
HVmax

)
, (4.7)

In the 4th strategy, both height variance HV and shift severity S are used. The values

of HV and S of each candidate peak are divided by their maximum values (Smax and

HVmax) to be normalized in the range (0, 1). The proposed framework checks the ac-

ceptability of the current robust solution. If it is not acceptable, it will execute steps

1 and 2 above to choose the next robust solution. If there is no option, the best g is

chosen as NRS. The pseudo code of the proposed framework is shown in Algorithm 3.

4.2 Experiments and analysis

4.2.1 Performance indicators

The most important goal of ROOT i.e. the survival time is considered here. The perfor-

mance indicator in Eq. (2.12) will be used for the survival time definition in Eq. (2.10).

Robust Optimization Over Time by Learning Problem Space Characteristics 48

Algorithm 3: ROOT framework equipped with a multi-population method

1 Initialize multi-population method;
2 repeat
3 if an environmental change is happened then
4 forall sub-population do
5 Update Database;
6 Calculate S, FV and HV by Eq. (4.1), Eq. (4.2) and Eq. (4.3);
7 Update Memory;
8 Other actions for the embedded multi-population method based on its procedure

(such as introducing diversity);

9 if computational budget η is finished then
10 if the robust solution is not acceptable then
11 Identify candidate g by Step 1 in Section 4.1.2;
12 Choose one of the candidates g based on a strategy in Section 4.1.2;

13 Execute an iteration of the multi-population method including finding and tracking peaks;
14 Create or remove sub-populations if needed (based on the procedure of the

multi-population method);
15 forall pair of sub-populations i and j do
16 if ‖gi − gj‖ < rexcl then
17 if f(g, θ(t)) value of the younger one is better then
18 Copy the older ones database to the newer one;

19 Keep the sub-population with better f(g, θ(t)) and remove or the other one;

20 Update rexcl by Eq. (3.6);

21 until stopping criterion is met ;

Furthermore, the performance indicator in Eq. (2.13) is used to show the average fitness

value of robust solutions when the proposed methods are compared with the state-of-

the-art ROOT algorithms.

4.2.2 Benchmark functions

Moving peaks benchmark (MPB) (Branke, 1999) is the most popular benchmark function

in the DOP field. In its standard form, all peaks are behaving identically, so no solution

is more robust than another. This is why in ROOT researchers used various modified

versions (Jin et al., 2013; Fu et al., 2013, 2015; Guo et al., 2014; Huang et al., 2017;

Yazdani et al., 2017).

(Jin et al., 2013) used three different benchmark generators namely the modified MPB

with different height and width severities for each peak; the modified dynamic rotation

generator (Li et al., 2009) with different height and width severities for each peak; and

finally the modified dynamic composition benchmark generator (Li et al., 2009) with

only different height severity for each peak. Each of these three benchmark generators

was used with three different numbers of dimensions which resulted in nine test instances

in total. Fu et al. (2013) and Yazdani et al. (2017) used a modified version of MPB with

Robust Optimization Over Time by Learning Problem Space Characteristics 49

different height and width severities. One problem instance of this version was used for

testing the algorithm on a 2-dimensional search space. Fu et al. (2015) proposed two

different benchmark problems, one specifically designed for maximizing survival time

and another for maximizing average fitness. These two benchmarks used two different

modified versions of the baseline fitness function of MPB. Furthermore, rotation rather

than translation was used to move peaks after environmental changes. The authors used

six different dynamics (Li et al., 2009) on their two benchmarks. Huang et al. (2017)

used a modified MPB with different height and width severities for peaks. For changing

heights and widths of peaks, the benchmark used three different dynamics: small step,

random and recurrent (Li et al., 2009), but they used the standard peak center relocation

also used in the standard MPB (Branke, 1999).

In this chapter, and similar to ROOT papers in (Jin et al., 2013; Fu et al., 2013; Guo

et al., 2014; Huang et al., 2017; Yazdani et al., 2017), the standard baseline function

of MPB as shown in Eq. (3.10) is used. In the modified version of MPB for ROOT

(mMPBR) used in this chapter, each peak has its own height and width severity. This

is similar to the benchmarks in previous ROOT papers (Jin et al., 2013; Fu et al.,

2013; Guo et al., 2014; Huang et al., 2017; Yazdani et al., 2017). Additionally, different

shift severities for different peaks are used, although in the experiments also the effect of

having the same shift severity for all peaks is investigated. The reason for having different

height, width and shift severities for each peak is to have different levels of robustness

among them. The height and width are calculated by Eq. (3.11) and Eq. (3.12). The

center of a peak changes from one environment to the next as follows:

c
(t+1)
i = c

(t)
i + v

(t+1)
i , (4.8)

where

v
(t+1)
i = si ·

(1− λ) · R+ λ · v(t)
i∥∥∥(1− λ) · R+ λ · v(t)
i

∥∥∥ , (4.9)

where si is the shift severity of the ith peak, R is a uniformly generated random vector ∈
[−0.5, 0.5] and λ is the correlation coefficient.

The parameter settings of the mMPBR are shown in Table 4.1. The highlighted values

in Table 4.1 are default parameter values of mMPBR which builds the default scenario of

the benchmark in this chapter. In the experiments, different numbers of peaks, change

frequencies, dimensions and shift severities are used in order to test the sensitivity of

the proposed algorithm. For investigating the impact of different parameter settings of

Robust Optimization Over Time by Learning Problem Space Characteristics 50

mMPBR on the algorithms’ performance, most of the default parameter settings are

kept and 1 or 2 parameters are changed to build each experiment.

Table 4.1: Parameter settings of mMPBR (default values are highlighted)

Parameter Value(s)

Number of peaks, m 2,5,10,20,30,50,100,200
Evaluations between changes, f 1000,2500,5000
Shift severity, s 1,5,randomized in [0.5,1], [0.5,3],[0.5,5]
Height severity, α Randomized in [1,15]
Width severity, β Randomized in [0.1,1.5]
Peaks shape Cone
Correlation coefficient, λ 0
Number of dimensions, D 2,5,10
Peak location range, SR [-50,50]
Peak height range [30,70]
Peak width range [1,12]
Initial height value 50
Initial width value 6
Number of environments 100

4.2.3 Algorithms and parameter settings

In the experiments, FTmPSO proposed by Yazdani et al. (2013b) is used inside the

proposed framework as the multi-swarm method. There are three major reasons for

this choice. First, it is very simple, which makes it easy to analyze the impact of

the framework on performance. Second, it is a competitive TMO algorithm. Third,

with minimal modifications, this method is compatible with the framework according

to Section 4.1.1: (a) it uses Eq. (3.6) for determining the exclusion radius rexcl; (b)

its exclusion mechanism allows the transfer of peak information from one swarm to

another; (c) it uses the learned shift severity by Eq. (4.1) instead of the true shift that

was used in the original paper. Additionally, the exploiter particle and awakening-

sleeping mechanisms proposed in its original paper are not used here. The reason is

that these two mechanisms improve the exploitation on the best peak which is not

useful in ROOT. Readers are referred to (Yazdani et al., 2013b) for more details of this

multi-swarm algorithm. Integrated in the framework, the algorithm has four versions

depending on the chosen strategies (Section 4.1.2). The four versions are RFTmPSO-s1

to RFTmPSO-s4, based on strategies 1 to 4, respectively.

The parameter setting of FTmPSO inside the proposed framework is shown in Table 4.2.

Since the task of the multi-population methods in the proposed framework is similar to

their original purpose (TMO), parameter settings suggested in the original paper can be

used here as well. A sensitivity analysis on RFTmPSO is provided in in the following to

Robust Optimization Over Time by Learning Problem Space Characteristics 51

illustrate the effect of different FTmPSO parameter settings on the ROOT performance.

Based on this analysis, the parameter settings in Table 4.2 have been chosen.

Table 4.2: Parameter settings of FTmPSO

Parameter Value(s)

C1, C2 2.05
χ 0.729843788
Tracker-swarm’s Population Size 5
exclfactor 0.1
rexcl calculated by (3.6)
Finder-swarm’s Population Size 10
P 1
Q 1
Conv − limit 1
k 10
Stop criterion Max fitness evaluation number

For sensitivity analysis, the effect of different parameter settings of FTmPSO (Yazdani

et al., 2013b) are investigated which is the multi-swarm method embedded in the pro-

posed ROOT framework. To test the sensitivity to a particular parameter, this param-

eter is changed while keeping all other parameters as specified in Table 4.2. Moreover,

the effect of different population sizes on the performance of the ROOT-PV method

is investigated. Experiments are done on mMPBR with its default parameter setting

reported in Table 4.1. All experimental results are obtained by performing 30 inde-

pendent runs. Best results based on Wilcoxon signed-rank test with Holm-Bonferroni

p-value correction, α = 0.05 are highlighted in each table.

The first set of experiments examines the effect of the tracker-swarms population size

on the obtained survival time by all four versions of RFTmPSO which is reported in

Table 4.3. Overall, results demonstrate that five-particle tracker-swarms are best. Ac-

cording to Section 4.1.1, the multi-swarm algorithm in the proposed ROOT framework

needs to track multiple optima (TMO), which is similar to its original purpose. If the

multi-swarm method tracks peaks properly, more accurate information can be provided

for the phase of selecting more robust solutions.

Table 4.4 illustrates the obtained results from algorithms with different numbers of

particles in the finder-swarm (a sub-swarm in FTmPSO that is responsible for finding

uncovered peaks). As it can be observed, the best performance overall is obtained when

the finder-swarms population size is 10. Lower values result in decreasing ability of

this sub-swarm to find uncovered peaks. On the other hand, a higher population size

of the finder-swarm results in a waste of computational resources (fitness evaluations).

A deeper analysis using visual plots indicated that a larger finder-swarm leads to a

Robust Optimization Over Time by Learning Problem Space Characteristics 52

Table 4.3: The obtained average survival time (and standard error) from the
RFTmPSO algorithms with different sub-swarm’s population size (TPS) on the de-

fault scenario of mMPBR.

V TPS RFTmPSO-s1 RFTmPSO-s2 RFTmPSO-s3 RFTmPSO-s4

40

3 5.12(0.49) 5.25(0.61) 4.54(0.42) 5.82(0.47)
4 5.53(0.35) 5.56(0.62) 4.53(0.36) 6.16(0.68)
5 5.48(0.60) 5.60(0.82) 4.89(0.81) 6.14(0.85)
7 5.17(0.73) 5.54(0.86) 4.76(0.76) 6.19(0.88)
10 4.95(0.37) 5.02(0.67) 4.52(0.62) 5.16(1.28)

50

3 3.61(0.43) 3.65(0.46) 3.33(0.39) 3.84(0.33)
4 3.90(0.32) 3.59(0.31) 3.52(0.31) 4.05(0.39)
5 3.90(0.34) 3.63(0.33) 3.44(0.34) 4.22(0.41)
7 3.81(0.40) 3.66(0.50) 3.36(0.60) 4.23(0.49)
10 3.34(0.32) 3.41(0.40) 3.26(0.42) 4.17(0.78)

50

3 2.33(0.24) 2.26(0.24) 2.29(0.20) 2.71(0.20)
4 2.36(0.20) 2.12(0.15) 2.36(0.23) 2.77(0.26)
5 2.55(0.21) 2.43(0.26) 2.51(0.28) 2.77(0.31)
7 2.62(0.40) 2.21(0.41) 2.50(0.44) 2.83(0.24)
10 2.19(0.27) 2.42(0.26) 2.14(0.28) 2.66(0.30)

convergence to better peaks, due to an increase in exploration ability. Consequently,

smaller peaks may not be detected until they become larger which leads to a decrease

in the accuracy of the gathered information by FTmPSO.

Table 4.4: The average survival time (and standard error) obtained from the
RFTmPSO algorithms with different finder-swarms population size (FPS) on the de-

fault scenario of mMPBR.

V FPS RFTmPSO-s1 RFTmPSO-s2 RFTmPSO-s3 RFTmPSO-s4

40

5 4.83(0.44) 4.95(0.36) 4.21(0.33) 5.28(0.36)
7 5.01(0.50) 5.35(0.55) 4.71(0.49) 5.90(0.48)
10 5.48(0.60) 5.60(0.82) 4.89(0.81) 6.14(0.85)
12 5.39(0.44) 5.30(0.39) 4.59(0.35) 5.82(0.55)
15 5.26(0.60) 5.18(0.59) 4.47(0.42) 5.45(0.47)

45

5 3.08(0.28) 3.16(0.24) 3.13(0.31) 3.64(0.85)
7 3.52(0.40) 3.49(0.40) 3.40(0.35) 4.29(0.37)
10 3.90(0.34) 3.63(0.33) 3.44(0.34) 4.22(0.41)
12 3.89(0.30) 3.62(0.27) 3.34(0.31) 4.04(0.30)
15 3.34(0.56) 3.40(0.35) 3.29(0.31) 3.90(0.37)

50

5 2.01(0.19) 1.97(0.18) 2.08(0.19) 2.16(0.41)
7 2.63(0.34) 2.33(0.32) 2.65(0.30) 2.56(0.28)
10 2.55(0.21) 2.43(0.26) 2.51(0.28) 2.77(0.31)
12 2.45(0.15) 2.47(0.20) 2.46(0.18) 2.59(0.24)
15 2.25(0.47) 3.10(0.47) 2.58(0.32) 2.57(0.28)

Table 4.5 shows the effect of different values of the Conv-limit, parameter which is

Robust Optimization Over Time by Learning Problem Space Characteristics 53

used for determining finder-swarms convergence. According to the results presented

in Table 4.5, decreasing the values of Conv-limit leads to decreasing the performance

of algorithms because the finder-swarms convergence condition will not be met in an

appropriate time. Therefore, it will take more time for the finder-swarm to create a

tracker-swarm on the peak and continue its search for finding other possible uncovered

peaks. By increasing the value of Conv-limit up to 1, the algorithms’ efficiency increases.

However, increasing its value beyond 1 will deteriorate performance, probably because

a high value of Conv-limit results the finder-swarm being considered converged very

early, which leads to the creation of unnecessary tracker-swarms, wasting computational

resources.

Table 4.5: The average survival time (and standard error) obtained from the
RFTmPSO algorithms with different Conv-limit (CL) on the default scenario of

mMPBR.

V CL RFTmPSO-s1 RFTmPSO-s2 RFTmPSO-s3 RFTmPSO-s4

40

0.1 4.28(0.51) 4.84(0.63) 4.47(0.72) 4.88(0.71)
0.5 4.53(0.45) 5.19(0.47) 4.90(0.44) 5.38(0.47)
1 4.89(0.81) 5.60(0.82) 5.48(0.60) 6.14(0.85)
2 4.85(0.52) 5.63(0.71) 5.42(0.53) 5.80(0.69)
5 4.51(0.54) 5.23(0.50) 5.06(0.77) 5.27(0.57)

45

0.1 3.18(0.29) 3.13(0.37) 3.25(0.42) 3.80(0.43)
0.5 3.23(0.32) 3.39(0.26) 3.51(0.31) 4.04(0.30)
1 3.44(0.34) 3.63(0.33) 3.90(0.34) 4.22(0.41)
2 3.24(0.41) 3.66(0.46) 3.55(0.38) 3.98(0.53)
5 3.01(0.46) 3.06 (0.48) 3.23(0.61) 3.78(0.52)

50

0.1 2.24(0.24) 2.21(0.26) 2.09(0.27) 2.32(0.29)
0.5 2.38(0.21) 2.43(0.20) 2.40(0.27) 2.81(0.24)
1 2.51(0.28) 2.43(0.26) 2.55(0.21) 2.77(0.31)
2 2.32(0.26) 2.40(0.30) 2.51(0.30) 2.75(0.30)
5 2.26(0.33) 2.15(0.32) 1.98(0.40) 2.21(0.43)

Another parameter involved in finder-swarm convergence determination is K. The effect

of its different values on the algorithms’ performance is shown in Table 4.6. Similar

to Conv-limit, lower values of K result in creating more unnecessary tracker-swarms

whereas higher values delay the finder-swarm convergence determination. According to

Table 4.6, best performance is generally obtained with K = 10.

P andQ control the diversity introducing of tracker-swarms after environmental changes.

On the one hand, lower values of P and Q result in a lower initial diversity of tracker-

swarms at the beginning of each environment which leads to a decrease in their tracking

ability. On the other hand, higher values of these parameters cause over-diversification

of tracker-swarms which leads to increasing the possibility of tracker-swarms migrating

to other peaks when peaks are very close to each other. Additionally, over-diversification

Robust Optimization Over Time by Learning Problem Space Characteristics 54

Table 4.6: The average survival time (and standard error) obtained from the
RFTmPSO algorithms with different K on the default scenario of mMPBR.

V K RFTmPSO-s1 RFTmPSO-s2 RFTmPSO-s3 RFTmPSO-s4

40

5 4.71(4.06) 5.24(0.68) 5.29(0.84) 6.00(0.69)
7 4.83(0.37) 5.40(0.45) 5.32(0.41) 6.07(0.50)
10 4.89(0.81) 5.60(0.82) 5.48(0.60) 6.14(0.85)
12 4.90(0.47) 5.31(0.47) 5.53(0.54) 5.90(0.54)
15 4.71(0.45) 5.28(0.52) 5.04(0.40) 5.58(0.66)

45

5 3.06(0.50) 3.35(0.55) 3.31(0.34) 3.95(0.60)
7 3.16(0.27) 3.65(0.29) 3.52(0.27) 3.90(0.41)
10 3.44(0.34) 3.63(0.33) 3.90(0.34) 4.22(0.41)
12 3.26(0.44) 3.45(0.43) 4.05(0.48) 4.03(0.40)
15 3.40(0.32) 3.34(0.27) 3.62(0.23) 3.84(0.51)

50

5 2.32(0.36) 2.33(0.36) 2.37(0.34) 2.75(0.32)
7 2.20(0.20) 2.54(0.21) 2.42(0.21) 2.81(0.20)
10 2.51(0.28) 2.43(0.26) 2.55(0.21) 2.77(0.31)
12 2.29(0.20) 2.59(0.22) 2.51(0.22) 2.75(0.27)
15 1.95(0.14) 2.12(0.16) 1.99(0.17) 2.66(0.30)

decreases the exploitation ability. The results of using different values of P and Q are

reported in Tables 4.7 and 4.8. Note that, although in (Yazdani et al., 2013b) P and

Q work based on the shift severity of peaks was available for FTmPSO as an initial

knowledge, here algorithms have to learn about peaks shift severities by themselves

using (4.1).

Table 4.7: The average survival time (and standard error) obtained from the
RFTmPSO algorithms with different Q on the default scenario of mMPBR.

V Q RFTmPSO-s1 RFTmPSO-s2 RFTmPSO-s3 RFTmPSO-s4

40

0.5 5.20(0.37) 5.55(0.46) 5.15(0.56) 6.00(0.69)
0.75 5.39(0.51) 5.30(0.60) 5.10(0.74) 6.17(0.68)

1 5.48(0.60) 5.60(0.82) 4.89(0.81) 6.14(0.85)
1.5 5.15(0.40) 5.22(0.52) 4.93(0.70) 5.67(0.75)
2 5.02(0.53) 4.97(0.83) 4.59(0.73) 5.14(0.81)

45

0.5 3.65(0.32) 3.48(0.34) 3.21(0.33) 4.14(0.34)
0.75 3.71(0.40) 3.60(0.39) 3.36(0.41) 4.27(0.40)

1 3.90(0.34) 3.63(0.33) 3.44(0.34) 4.22(0.41)
1.5 3.91(0.25) 3.68(0.45) 3.18(0.39) 4.31(0.46)
2 3.45(0.44) 3.25(0.44) 3.19(0.53) 4.12(0.48)

50

0.5 2.36(0.26) 2.29(0.24) 2.25(0.27) 2.38(0.25)
0.75 2.56(0.21) 2.35(0.22) 2.56(0.22) 2.72(0.23)

1 2.55(0.21) 2.43(0.26) 2.51(0.28) 2.77(0.31)
1.5 2.58(0.26) 2.39(0.20) 2.49(0.26) 2.63(0.26)
2 2.28(0.26) 2.23(0.27) 2.20(0.28) 2.26(0.26)

Robust Optimization Over Time by Learning Problem Space Characteristics 55

Table 4.8: The average survival time (and standard error) obtained from the
RFTmPSO algorithms with different P on the default scenario of mMPBR.

V P RFTmPSO-s1 RFTmPSO-s2 RFTmPSO-s3 RFTmPSO-s4

40

0.5 5.24(0.35) 5.62(0.51) 4.58(0.56) 5.91(0.48)
0.75 5.40(0.55) 5.46(0.56) 4.70(0.60) 5.61(0.57)

1 5.48(0.60) 5.60(0.82) 4.89(0.81) 6.14(0.85)
2 5.49(0.46) 5.42(0.60) 5.14(0.66) 6.08(0.92)
5 5.28(0.70) 5.18(0.86) 4.64(0.78) 5.87(0.54)

45

0.5 3.68(0.30) 3.68(0.37) 3.22(0.35) 3.85(0.39)
0.75 3.71(0.36) 3.53(0.37) 3.29(0.28) 4.15(0.34)

1 3.90(0.34) 3.63(0.33) 3.44(0.34) 4.22(0.41)
2 3.88(0.38) 3.69(0.38) 3.31(0.55) 4.14(0.34)
5 3.71(0.41) 3.61(0.45) 3.20(0.67) 3.79(0.54)

50

0.5 2.33(0.29) 2.34(0.31) 2.56(0.26) 2.78(0.24)
0.75 2.36(0.22) 2.49(0.27) 2.19(0.22) 2.39(0.26)

1 2.55(0.21) 2.43(0.26) 2.51(0.28) 2.77(0.31)
2 2.38(0.19) 2.44(0.31) 2.50(0.35) 2.82(0.26)
5 2.25(0.27) 2.32(0.33) 2.40(0.33) 2.75(0.28)

The last investigated parameter is exclfactor which is used in (3.6). According to Ta-

ble 4.9, for embedded multi-swarm methods in the proposed framework, this threshold

needs to be lower (i.e. 0.1) in comparison with its value in the original references (Black-

well and Branke, 2006; Blackwell et al., 2008) (i.e. 0.5), because it is desirable to avoid

losing information about a peak only because it moves close to another peak. There-

fore, sub-swarms need to be closer to be involved in exclusion. In fact, higher values of

exclfactor increase the possibility of involving sub-swarms whose under covered peaks are

close to each other in exclusion condition. Consequently, the algorithm may lose valuable

information about a peak by removing a sub-swarm by the exclusion mechanism.

4.3 Experimental results

This chapter’s experimental results are reported in two parts. In the first part, the

performance of the proposed framework with four strategies from Section 4.1.2 is in-

vestigated on several problem instances with different characteristics. The second part

compares the proposed methods embedded into different multi-swarm methods with

the state-of-the-art ROOT methods and compares their behaviors on different problem

instances.

All experimental results are obtained by performing 30 independent runs. To test the

statistical significance of the reported results, a multiple comparison test is performed

and the best results based on Wilcoxon signed-rank test with Holm-Bonferroni p-value

Robust Optimization Over Time by Learning Problem Space Characteristics 56

Table 4.9: The average survival time (and standard error) obtained from the
RFTmPSO algorithms with different exclfactor (EF) on the default scenario of mMPBR.

V EF RFTmPSO-s1 RFTmPSO-s2 RFTmPSO-s3 RFTmPSO-s4

40

0.05 5.13(0.55) 5.21(0.68) 4.32(0.71) 5.52(0.72)
0.1 5.48(0.60) 5.60(0.82) 4.89(0.81) 6.14(0.85)
0.25 5.23(0.48) 5.26(0.65) 4.58(0.60) 5.70(0.54)
0.5 5.47(0.54) 5.35(0.79) 4.83(0.68) 5.86(0.79)
1 4.86(1.11) 5.08(0.71) 4.39(1.07) 4.47(1.07)

45

0.05 3.63(0.40) 3.67(0.51) 3.31(0.57) 4.27(0.51)
0.1 3.90(0.34) 3.63(0.33) 3.44(0.34) 4.22(0.41)
0.25 3.52(0.31) 3.67(0.36) 3.28(0.38) 3.91(0.39)
0.5 3.55(0.42) 3.70(0.51) 3.62(0.46) 4.07(0.47)
1 3.31(0.69) 3.35(0.71) 3.13(0.60) 3.05(0.60)

50

0.05 2.34(0.28) 2.47(0.29) 2.24(0.37) 2.20(0.31)
0.1 2.55(0.21) 2.43(0.26) 2.51(0.28) 2.77(0.31)
0.25 2.23(0.29) 2.31(0.30) 2.54(0.23) 2.32(0.27)
0.5 2.55(0.24) 2.43(0.32) 2.37(0.20) 2.00(0.32)
1 2.02(0.51) 2.04(0.55) 1.92(0.54) 1.93(0.54)

correction and α = 0.05 are highlighted in each table. If there is more than one high-

lighted result, it means that they are not significantly different.

4.3.1 Analyzing the proposed framework on problems with different

characteristics

Tables 4.10 and 4.11 show the average survival time of RFTmPSO with four different

strategies on mMPBR with different numbers of peaks. All other mMPBR parameters

are set to default values. The worst results are obtained in mMPBR with 2 peaks.

All versions of RFTmPSO perform identically in this instance because the number of

options for choosing the next robust solution is limited. Also, when the number of peaks

is low, there are large areas of low fitness because there are few peaks to cover these

areas. As a result, the average solution quality is lower, and robust solutions can lose

their quality more quickly. By increasing the number of peaks, the average survival time

increases because peaks are likely to overlap and support robust solutions. Increasing the

number of peaks also increases the performance difference between different versions of

RFTmPSO because there are more peaks with different characteristics and RFTmPSO

has more options to choose the best of them based on the robust solution selection

strategies. The best results are obtained on mMPBR with 50 peaks, but when the

number of peaks is increased to 100 and 200, performance decreases. The reason is that

the algorithm can no longer cover all peaks because of their large number. Furthermore,

Robust Optimization Over Time by Learning Problem Space Characteristics 57

the algorithm cannot perform a good local search to track peaks because the number of

tracker swarms is large.

Table 4.10: Average survival time (and standard error) on mMPBR with peak number
m = {2, 5, 10, 20}, f = 2500, s randomized ∈ [0.5, 3] and D = 5.

V Algorithm
Peak Number, m

2 5 10 20

40

RFTmPSO-s1 3.08(0.65) 3.98(0.39) 4.80(0.62) 5.48(0.60)
RFTmPSO-s2 3.41(0.80) 4.13(0.46) 4.53(0.67) 5.60(0.82)
RFTmPSO-s3 3.36(0.80) 3.81(0.45) 4.21(0.61) 4.89(0.81)
RFTmPSO-s4 3.36(0.81) 3.86(0.45) 4.67(0.68) 6.14(0.85)

40

RFTmPSO-s1 2.19(0.52) 2.55(0.31) 3.34(0.40) 3.90(0.34)
RFTmPSO-s2 2.30(0.58) 2.59(0.30) 3.16(0.38) 3.63(0.33)
RFTmPSO-s3 2.29(0.58) 2.40(0.29) 3.00(0.37=) 3.44(0.34)
RFTmPSO-s4 2.30(0.55) 2.48(0.28) 3.23(0.38) 4.22(0.41)

40

RFTmPSO-s1 1.33(0.39) 1.51(0.19) 2.40(0.35) 2.55(0.21)
RFTmPSO-s2 1.35(0.39) 1.51(0.18) 2.10(0.25) 2.43(0.26)
RFTmPSO-s3 1.34(0.39) 1.46(0.17) 2.02(0.24) 2.51(0.28)
RFTmPSO-s4 1.34(0.39) 1.51(0.18) 2.18(0.27) 2.77(0.31)

Table 4.11: Average survival time (and standard error) on mMPBR with different
peak number m = {30, 50, 100, 200}, f = 2500, s randomized ∈ [0.5, 3] and D = 5.

V Algorithm
Peak Number, m

30 50 100 200

40

RFTmPSO-s1 6.46(0.75) 7.41(0.83) 6.19(0.47) 6.26(0.55)
RFTmPSO-s2 8.11(1.18) 7.84(0.99) 5.73(0.47) 6.11(0.60)
RFTmPSO-s3 6.65(1.08) 7.01(0.96) 5.87(0.71) 5.80(0.61)
RFTmPSO-s4 8.21(1.16) 8.23(0.98) 6.51(0.46) 6.89(0.62)

40

RFTmPSO-s1 4.31(0.39) 5.20(0.47) 4.98(0.60) 4.90(0.43)
RFTmPSO-s2 5.23(0.73) 5.73(0.63) 5.05(0.55) 5.07(0.34)
RFTmPSO-s3 4.77(0.57) 5.95(0.76) 4.36(0.55) 4.50(0.39)
RFTmPSO-s4 5.31(0.61) 6.16(0.62) 5.43(0.58) 5.44(0.37)

40

RFTmPSO-s1 3.26(0.46) 3.65(0.40) 3.17(0.25) 3.31(0. 33)
RFTmPSO-s2 3.19(0.34) 3.94(0.46) 3.27(0.40) 3.33(0.30)
RFTmPSO-s3 2.90(0.32) 3.93(0.55) 3.22(0.31) 3.20(0.32)
RFTmPSO-s4 3.67(0.56) 4.10(0.51) 3.39(0.37) 3.57(0.29)

In problems with a higher number of peaks such as 100 and 200, the density of peaks

is high. As a result, it is highly likely that some peaks are covered by higher peaks.

In such a case, the tracker swarm will lose its covered peak, and hence their associated

information, leading to a worse performance. However, the multi-population algorithm

would search for possible uncovered peaks all the time (Section 4.1.1). Therefore, when

a peak hidden by another peak re-appears, the multi-swarm algorithm would be able to

Robust Optimization Over Time by Learning Problem Space Characteristics 58

find it and start gathering information about it again. Although algorithm performances

are worse for 100 and 200 peaks in comparison with 50 peaks, the average survival time

values are still very good. This demonstrates the ability of the proposed methods in

dealing with a higher number of peaks.

When increasing the threshold V , the performance of RFTmPSO decreases because

the survival time of solutions in the problem space decreases. No algorithm can do

anything about this. Also, the performance of RFTmPSO versions is closer when V is

high because the number of options for choosing the next robust solution decreases.

Tables 4.10 and 4.11 show that RFTmPSO-s2 performs better than RFTmPSO-s3. This

illustrates that the effect of shift severity on the life cycle length of robust solutions is

more important than the effect of height variance. However, when both parameters are

considered (RFTmPSO-s4), as in (4.7), the performance is improved. RFTmPSO-s4 per-

forms best overall. RFTmPSO-s1 could rarely outperform other versions of RFTmPSO

which means that considering fitness variance in (4.4) for choosing the next robust so-

lution is not the best way.

Tables 4.12 and 4.13 show the obtained average survival time for RFTmPSO for mMPBR

with different numbers of peaks, different numbers of dimensions and default values for

other parameters. The proposed RFTmPSO algorithms can find robust solutions in

high numbers of dimensions and peaks. When the peak number increases to 50, the

performance improves regardless of the number of dimensions. Increasing the number

of peaks further to 100 or 200 leads to a slight deterioration of results. The average

survival time is also lower because the problems become more complex for algorithms.

Overall, RFTmPSO-s4 maintains its superiority.

Tables 4.14 and 4.15 show the results of testing RFTmPSO on mMPBR with differ-

ent shift severities in 5 and 10 dimensions, with default values for other parameters.

As expected, when shift severity increases, the average survival time decreases because

tracking peaks with higher shift severities is harder for tracker swarms and their ability

of gathering information decreases. More importantly, the maximal possible survival

time decreases due to the increased shift severities. Also, robust solutions become un-

acceptable more quickly because peaks move with larger steps. The worst results are

observed when all peaks have the same high shift severity of 5. When all peaks have the

same severity, information on a peaks shift severity is not useful. Thus, RFTmPSO-s4

does not perform better than other algorithms because it relies on learning the differ-

ence of peak shift severities. On the other hand, RFTmPSO-s3, which does not use

information about shift severity, has the best results on these problems.

Robust Optimization Over Time by Learning Problem Space Characteristics 59

Table 4.12: Average survival time (and standard error) on mMPBR with different
m = {5, 10}, different D, f = 2500 and s randomized in [0.5,3].

V Algorithm
m = 5 m = 10

D=2 D=5 D=10 D=2 D=5 D=10

40

RFTmPSO-s1
4.83 3.98 3.91 6.14 4.80 4.33

(0.87) (0.39) (0.75) (0.92) (0.62) (0.47)

RFTmPSO-s2
4.98 4.13 3.77 7.23 4.53 4.39

(0.86) (0.46) (0.89) (1.59) (0.67) (0.52)

RFTmPSO-s3
4.08 3.81 3.76 6.82 4.21 4.42

(0.44) (0.45) (0.88) (1.41) (0.61) (0.57)

RFTmPSO-s4
4.84 3.86 3.83 8.03 4.67 4.49

(0.86) (0.45) (0.88) (1.62) (0.68) (0.56)

45

RFTmPSO-s1
3.15 2.55 2.45 4.66 3.34 3.23

(0.48) (0.31) (0.43) (0.87) (0.40) (0.41)

RFTmPSO-s2
3.24 2.59 2.46 5.24 3.16 2.95

(0.49) (0.30) (0.43) (1.14) (0.38) (0.34)

RFTmPSO-s3
3.31 2.40 2.36 5.17 3.00 3.02

(0.53) (0.29) (0.42) (1.15) (0.37) (0.38)

RFTmPSO-s4
3.30 2.48 2.46 5.32 3.23 3.00

(0.51) (0.28) (0.42) (1.14) (0.38) (0.38)

50

RFTmPSO-s1
1.99 1.51 1.48 2.40 2.40 1.85

(0.36) (0.19) (0.33) (0.37) (0.35) (0.26)

RFTmPSO-s2
1.92 1.51 1.45 2.57 2.10 1.94

(0.30) (0.18) (0.32) (0.40) (0.25) (0.28)

RFTmPSO-s3
1.87 1.46 1.48 2.46 2.02 1.94

(0.31) (0.17) (0.32) (0.40) (0.24) (0.28)

RFTmPSO-s4
1.95 1.51 1.48 2.68 2.18 1.97

(0.33) (0.18) (0.33) (0.40) (0.27) (0.29)

In instances in which each peak has its own randomly generated shift severity, RFTmPSO-

s4 and RFTmPSO-s2 obtain the best results. In these instances, some peaks have higher

values of shift severity which make them less reliable for carrying robust solutions and

vice versa. Therefore, algorithms that learn about shift severities such as RFTmPSO-s4

and RFTmPSO-s2 can find more robust solutions. RFTmPSO-s4 obtains the best re-

sults due to using both types of information (shift severity and HeightVar). Similar to

Tables 4.12 and 4.13, in Tables 4.14 and 4.15, the average survival time values are lower

in 10-dimensions than in 5-dimensions.

Tables 4.16 and 4.17 show the average survival time by RFTmPSO in mMPBR with

different numbers of peaks and change frequencies, with default values for other param-

eters. Like in previous experiments, RFTmPSO-s4 has better performance overall in

environments with higher change frequencies. In problem instances with fewer evalua-

tions per change (lower f , higher change frequency), the average survival time decreases

Robust Optimization Over Time by Learning Problem Space Characteristics 60

Table 4.13: Average survival time (and standard error) on mMPBR with different
m = {20, 50, 100}, different D, f = 2500 and s randomized in [0.5,3].

V Algorithm
m = 20 m = 50 m = 100

D=2 D=5 D=10 D=2 D=5 D=10 D=2 D=5 D=10

40

RFTmPSO-s1
7.42 5.48 4.35 7.87 7.41 5.37 7.41 6.19 4.97

(1.09) (0.60) (0.35) (1.04) (0.83) (0.44) (2.00) (0.47) (0.43)

RFTmPSO-s2
9.26 5.60 4.22 7.91 7.84 5.60 7.50 5.73 4.62

(1.32) (0.82) (0.34) (0.68) (0.99) (0.50) (1.44) (0.47) (0.44)

RFTmPSO-s3
7.48 4.89 4.05 8.15 7.01 5.46 6.91 5.87 5.21

(1.17) (0.81) (0.43) (0.98) (0.96) (0.78) (0.69) (0.71) (0.46)

RFTmPSO-s4
9.71 6.14 4.22 8.47 8.23 5.93 8.29 6.51 5.30

(1.40) (0.85) (0.38) (1.04) (0.98) (0.69) (1.34) (0.46) (0.39)

45

RFTmPSO-s1
5.11 3.90 3.29 6.52 5.20 4.50 6.42 4.98 3.29

(0.63) (0.34) (0.29) (1.02) (0.47) (0.48) (0.58) (0.60) (0.24)

RFTmPSO-s2
5.67 3.63 3.30 6.10 5.73 4.74 6.06 5.05 3.26

(0.68) (0.33) (0.29) (0.59) (0.63) (0.58) (0.48) (0.55) (0.25)

RFTmPSO-s3
5.03 3.44 3.25 6.27 5.95 4.81 5.72 4.36 3.68

(0.64) (0.34) (0.33) (0.62) (0.76) (0.57) (0.55) (0.55) (0.28)

RFTmPSO-s4
5.65 4.22 3.51 7.03 6.16 5.03 6.48 5.43 3.87

(0.68) (0.41) (0.33) (1.23) (0.62) (0.57) (0.52) (0.58) (0.27)

50

RFTmPSO-s1
3.32 2.55 2.26 4.52 3.65 2.99 4.27 3.17 2.34

(0.39) (0.21) (0.21) (0.86) (0.40) (0.35) (0.36) (0.25) (0.14)

RFTmPSO-s2
3.58 2.43 2.11 4.74 3.94 3.18 4.49 3.27 2.25

(0.45) (0.26) (0.21) (0.83) (0.46) (0.36) (0.40) (0.40) (0.16)

RFTmPSO-s3
3.49 2.51 2.23 4.62 3.93 3.06 3.75 3.22 2.51

(0.46) (0.28) (0.25) (0.65) (0.55) (0.36) (0.37) (0.31) (0.15)

RFTmPSO-s4
3.75 2.77 2.19 4.19 4.10 3.18 4.57 3.39 2.64

(0.45) (0.31) (0.23) (0.54) (0.51) (0.34) (0.39) (0.37) (0.17)

because the accuracy of gathered information and the local search in each peak decrease.

This is due to a lack of time to react to changes. For f = 500, the difference between re-

sults obtained by methods is small due to lower information accuracy. When f increases,

the difference between the methods becomes more noticeable.

The average survival time in problems with a small number of peaks does not decrease

significantly when f is small. The reason is that a small number of peaks means a

small number of sub-swarms, so the algorithm has enough time for exploitation before

the next environmental change. On the other hand, when the number of peaks is high,

the algorithm has many sub-swarms and so can perform fewer iterations of exploiting

before the next environmental change. This leads to less accurate information and lower

performance.

Robust Optimization Over Time by Learning Problem Space Characteristics 61

Table 4.14: Average survival time (and standard error) on mMPBR with different
shift severities s, D = 5, m = 20 and f = 2500.

V Algorithm
5 Dimensional

s=1 s=5 s=r(0.5,1) s=r(0.5,3) s=r(0.5,5)

40

RFTmPSO-s1 7.87(0.80) 1.21(0.10) 10.17(0.64) 5.48(0.60) 5.35(0.58)
RFTmPSO-s2 7.47(0.61) 1.08(0.07) 11.64(1.17) 5.60(0.82) 5.98(0.88)
RFTmPSO-s3 8.26(0.69) 1.20(0.12) 10.40(0.92) 4.89(0.81) 5.45(0.91)
RFTmPSO-s4 8.10(0.81) 1.16(0.10) 11.96(1.14) 6.14(0.85) 5.94(1.00)

40

RFTmPSO-s1 5.98(0.56) 0.78(0.07) 7.63(0.64) 3.90(0.34) 3.59(0.41)
RFTmPSO-s2 5.76(0.56) 0.73(0.05) 6.87(0.60) 3.63(0.33) 3.51(0.46)
RFTmPSO-s3 6.50(0.68) 0.79(0.06) 8.02(0.73) 3.44(0.34) 3.67(0.56)
RFTmPSO-s4 6.42(0.71) 0.77(0.06) 8.38(0.72) 4.22(0.41) 3.85(0.50)

40

RFTmPSO-s1 4.49(0.52) 0.43(0.05) 5.21(0.37) 2.55(0.21) 2.18(0.26)
RFTmPSO-s2 3.82(0.37) 0.41(0.04) 4.72(0.51) 2.43(0.26) 2.43(0.36)
RFTmPSO-s3 4.63(0.50) 0.45(0.04) 5.50(0.60) 2.51(0.28) 2.40(0.36)
RFTmPSO-s4 4.32(0.45) 0.42(0.04) 5.61(0.62) 2.77(0.31) 2.45(0.35)

Table 4.15: Average survival time (and standard error) on mMPBR with different
shift severities s, D = 10, m = 20 and f = 2500.

V Algorithm
10 Dimensional

s=1 s=5 s=r(0.5,1) s=r(0.5,3) s=r(0.5,5)

40

RFTmPSO-s1 5.26(0.37) 1.05(0.07) 9.19(1.11) 4.35(0.35) 3.94(0.46)
RFTmPSO-s2 4.02(0.32) 1.02(0.08) 8.74(1.12) 4.22(0.34) 3.75(0.41)
RFTmPSO-s3 5.68(0.57) 1.08(0.07) 9.63(1.26) 4.05(0.43) 3.70(0.50)
RFTmPSO-s4 5.34(0.39) 1.08(0.07) 9.77(1.13) 4.22(0.38) 3.91(0.44)

40

RFTmPSO-s1 4.02(0.34) 0.73(0.05) 6.65(0.95) 3.29(0.29) 2.68(0.28)
RFTmPSO-s2 3.25(0.28) 0.70(0.06) 6.61(1.12) 3.30(0.29) 2.67(0.28)
RFTmPSO-s3 4.17(0.39) 0.75(0.06) 7.22(1.03) 3.25(0.33) 2.65(0.31)
RFTmPSO-s4 4.10(0.34) 0.74(0.06) 7.62(1.16) 3.51(0.33) 2.79(0.32)

40

RFTmPSO-s1 2.56(0.22) 0.40(0.03) 4.86(1.00) 2.26(0.21) 1.80(0.25)
RFTmPSO-s2 1.99(0.14) 0.40(0.03) 4.75(0.98) 2.11(0.21) 1.80(0.21)
RFTmPSO-s3 2.63(0.22) 0.41(0.03) 5.36(1.09) 2.23(0.25) 1.74(0.27)
RFTmPSO-s4 2.62(0.21) 0.41(0.03) 5.43(1.09) 2.19(0.23) 1.81(0.27)

4.3.2 Comparison with other methods

According to the reported results in Tables 4.10 to 4.17 and based on the multiple com-

parison statistical analysis, the fourth strategy outperforms other strategies of the pro-

posed framework. In this part, three different multi-swarm methods including FTmPSO (Yaz-

dani et al., 2013b), AmQSO (Blackwell et al., 2008) and mNAFSA (Yazdani et al., 2014)

are used inside the proposed ROOT framework in combination with Strategy 4 (s4) to

investigate the effect of the multi-swarm methods performance on the ROOT framework.

Robust Optimization Over Time by Learning Problem Space Characteristics 62

Table 4.16: Average fitness value (and standard error) on mMPBR with m = {5, 10}
and evaluation between changes f , s randomized in [0.5,3] and D=5.

V Algorithm
m = 5 m = 10

f =500 f =1000 f =2500 f =500 f =1000 f =2500

40

RFTmPSO-s1
2.80 3.54 3.98 4.03 4.13 4.80

(0.28) (0.73) (0.39) (0.34) (0.46) (0.62)

RFTmPSO-s2
2.49 3.78 4.13 3.90 4.25 4.53

(0.29) (0.79) (0.46) (0.32) (0.49) (0.67)

RFTmPSO-s3
2.77 3.32 3.81 3.92 4.03 4.21

(0.29) (0.65) (0.45) (0.42) (0.44) (0.61)

RFTmPSO-s4
2.80 3.90 3.86 4.01 4.37 4.67

(0.28) (0.80) (0.45) (0.29) (0.48) (0.68)

45

RFTmPSO-s1
2.04 2.06 2.55 2.80 3.05 3.34

(0.23) (0.44) (0.31) (0.29) (0.33) (0.40)

RFTmPSO-s2
1.94 2.23 2.59 2.82 3.04 3.16

(0.18) (0.49) (0.30) (0.30) (0.35) (0.38)

RFTmPSO-s3
2.05 2.13 2.40 2.77 3.08 3.00

(0.25) (0.48) (0.29) (0.28) (0.38) (0.37)

RFTmPSO-s4
2.07 2.23 2.48 2.85 3.11 3.23

(0.22) (0.48) (0.28) (0.33) (0.38) (0.38)

50

RFTmPSO-s1
1.14 1.37 1.51 1.87 1.95 2.40

(0.10) (0.24) (0.19) (0.22) (0.29) (0.35)

RFTmPSO-s2
1.15 1.42 1.51 1.86 2.03 2.10

(0.10) (0.24) (0.18) (0.20) (0.29) (0.25)

RFTmPSO-s3
1.13 1.33 1.46 1.83 1.96 2.02

(0.11) (0.24) (0.17) (0.20) (0.32) (0.24)

RFTmPSO-s4
1.17 1.48 1.51 1.93 2.10 2.18

(0.10) (0.24) (0.18) (0.21) (0.32) (0.27)

These three algorithms are called RFTmPSO-s4, RAmQSO-s4 and RmNAFSA-s4, and

are compared against three existing methods. The first method is a TMO algorithm

based on FTmPSO (Yazdani et al., 2013b) in which, when the current robust solution

is not acceptable, the algorithm simply chooses the best found position as the next ro-

bust solution. Parameter settings of FTmPSO are the same as reported in Table 4.2

and parameter settings of AmQSO and mNAFSA are as proposed in their original ref-

erences (Blackwell et al., 2008; Yazdani et al., 2014). As mentioned before, since the

task of the multi-swarm methods in the proposed framework is the same as their origi-

nal purpose, i.e, TMO, parameter settings suggested in the original papers can be used

here as well. For RAmQSO-s4 and RmNAFSA-s4, the same exclusion mechanism as

RFTmPSO-s4 with the same exclfactor value is used. Additionally, both of them use the

obtained value for shift severities in Eq. (4.1) instead of the actual value as an initial

knowledge.

Robust Optimization Over Time by Learning Problem Space Characteristics 63

Table 4.17: Average fitness value (and standard error) on mMPBR with m =
{20, 50, 100} and evaluation between changes f , s randomized in [0.5,3] and D=5.

V Algorithm
m = 20 m = 50 m = 100

f =500 f =1000 f =2500 f =500 f =1000 f =2500 f =500 f =1000 f =2500

40

RFTmPSO-s1
4.37 4.89 5.48 5.35 5.61 7.41 5.00 5.27 6.19

(0.28) (0.38) (0.60) (0.38) (0.65) (0.83) (0.43) (0.60) (0.47)

RFTmPSO-s2
4.36 5.10 5.60 5.55 5.86 7.84 4.95 5.52 5.73

(0.30) (0.40) (0.82) (0.39) (0.70) (0.99) (0.51) (0.68) (0.47)

RFTmPSO-s3
4.25 4.44 4.89 5.46 5.63 7.01 4.98 4.75 5.87

(0.35) (0.33) (0.81) (0.40) (0.57) (0.96) (0.49) (0.71) (0.71)

RFTmPSO-s4
4.42 5.00 6.14 5.50 5.94 8.23 5.36 5.63 6.51

(0.27) (0.41) (0.85) (0.41) (0.70) (0.98) (0.56) (0.70) (0.46)

45

RFTmPSO-s1
3.28 3.51 3.90 3.87 4.27 5.20 3.60 3.68 4.98

(0.23) (0.30) (0.34) (0.30) (0.50) (0.47) (0.34) (0.40) (0.60)

RFTmPSO-s2
3.27 3.48 3.63 3.94 4.08 5.73 3.71 3.81 5.05

(0.21) (0.31) (0.33) (0.29) (0.67) (0.63) (0.36) (0.47) (0.55)

RFTmPSO-s3
3.23 3.35 3.44 3.92 4.33 5.95 3.59 4.07 4.36

(0.24) (0.29) (0.34) (0.30) (0.78) (0.76) (0.31) (0.49) (0.55)

RFTmPSO-s4
3.33 3.90 4.22 3.98 4.41 6.16 3.84 4.00 5.43

(0.24) (0.37) (0.41) (0.30) (0.69) (0.62) (0.37) (0.47) (0.58)

50

RFTmPSO-s1
2.04 2.30 2.55 2.42 2.88 3.65 2.31 2.48 3.17

(0.16) (0.23) (0.21) (0.14) (0.32) (0.40) (0.25) (0.33) (0.25)

RFTmPSO-s2
2.04 2.33 2.43 2.42 2.57 3.94 2.40 2.37 3.27

(0.17) (0.19) (0.26) (0.15) (0.25) (0.46) (0.26) (0.35) (0.40)

RFTmPSO-s3
2.02 2.31 2.51 2.42 3.15 3.93 2.29 2.56 3.22

(0.15) (0.20) (0.28) (0.15) (0.34) (0.55) (0.25) (0.41) (0.31)

RFTmPSO-s4
2.09 2.44 2.77 2.44 3.00 4.10 2.44 2.55 3.39

(0.17) (0.21) (0.31) (0.16) (0.28) (0.51) (0.26) (0.37) (0.37)

The other two methods are two reproduced versions of the method proposed by Fu et al.

(2013), which are considered the state-of-the-art in the field of ROOT at the moment (Fu

et al., 2013, 2015; Guo et al., 2014; Huang et al., 2017). The first version is exactly what

was implemented in (Fu et al., 2013), utilizing the true values of previous environments

instead of approximated values for training predictors, i.e., it assumes it does not need to

use an approximator because it has access to the true values of previous environments.

This method will be called ROOT with predicted values (ROOT-PV) and the parameter

settings of PSO and AR are the same as those used in (Fu et al., 2013). The second

version is reproduced from (Huang et al., 2017), in which the ROOT algorithm even had

access to the future true values instead of having to approximate past fitness functions

and predict future values. This method will be called ROOT with true future values

(ROOT-TFV). Note that ROOT-TFV is the ROOT method proposed in (Fu et al.,

2013) using the true future values, and was used in (Huang et al., 2017).

The reason behind choosing ROOT-TFV in the comparisons is to investigate the effect of

prediction error on the performance of the ROOT algorithm. For PSO in ROOT-TFV,

the same parameter setting as ROOT-PV is used. The obtained results of ROOT-PV

will not be considered in environments for which the training datasets are not complete.

Note that ROOT-PV and even more so ROOT-TFV have access to information that is

Robust Optimization Over Time by Learning Problem Space Characteristics 64

Table 4.18: Average survival time (and std. err) on test instances with different
dimension D and peak number m, f = 2500 and s randomized in [0.5,3]. Best results
based on Wilcoxon signed-rank test with Holm-Bonferroni p-value correction, α = 0.05
are highlighted, ignoring ROOT-TFV due to its unrealistic assumption of knowing the

true future fitness.

V Algorithm
Survival time

D=2,P=5 D=2,P=20 D=5,P=5 D=5,P=20

40

ROOT-PV 3.10(0.39) 5.64(0.80) 0.83(0.16) 2.26(0.61)
ROOT-TFV 5.74(0.47) 8.06(0.89) 1.26(0.19) 3.29(0.33)
FTmPSO(TMO) 4.34(0.79) 6.18(1.00) 3.49(0.34) 4.22(0.33)
RAmQSO-s4 5.40(0.91) 6.20(0.56) 4.15(0.87) 5.58(0.63)
RmNAFSA-s4 4.72(0.83) 7.45(1.09) 3.71(0.52) 5.70(0.49)
RFTmPSO-s4 4.84(0.86) 9.71(1.40) 3.86(0.45) 6.14(0.85)

45

ROOT-PV 2.71(0.26) 4.91(1.15) 0.13(0.05) 1.11(0.23)
ROOT-TFV 3.93(0.36) 6.87(0.60) 0.29(0.08) 1.58(0.20)
FTmPSO(TMO) 2.97(0.57) 3.71(0.42) 2.22(0.26) 3.26(0.22)
RAmQSO-s4 3.39(0.67) 4.79(0.56) 2.64(0.59) 4.16(0.55)
RmNAFSA-s4 3.28(0.59) 4.96(0.60) 2.40(0.33) 4.15(0.38)
RFTmPSO-s4 3.30(0.51) 5.65(0.68) 2.48(0.28) 4.22(0.41)

50

ROOT-PV 1.68(0.22) 2.83(0.37) 0.04(0.06) 0.37(0.23)
ROOT-TFV 2.48(0.34) 4.36(0.26) 0.19(0.05) 0.63(0.11)
FTmPSO(TMO) 1.79(0.31) 2.41(0.19) 1.29(0.16) 2.09(0.18)
RAmQSO-s4 2.16(0.38) 3.21(0.50) 1.63(0.46) 2.55(0.28)
RmNAFSA-s4 1.95(0.35) 3.44(0.48) 1.52(0.19) 2.51(0.22)
RFTmPSO-s4 1.95(0.33) 3.75(0.45) 1.51(0.18) 2.77(0.31)

not available in real-world optimization, and thus results can only be taken as an upper

bound of what these methods are able to achieve in practice. As mentioned before, it is

assumed that the algorithms are informed when environmental changes happen.

The experiments in this section are done on four different test instances of mMPBR

on 2 and 5 dimensions with 5 and 20 peaks (all other parameters have default values).

This combination shows how tested methods perform across different dimensions and

numbers of peaks. The results of ROOT-PV, ROOT-TFV, FTmPSO, RFTmPSO-s4,

RAmQSO-s4 and RmNAFSA-s4 are summarized in Tables 4.18 and 4.19.

According to Table 4.18, not surprisingly, the average survival time of ROOT-TFV is

better than that of ROOT-PV in all tests since ROOT-TFV eliminates predictor errors

by assuming perfect knowledge of peak movements. Also, the autoregressive model, used

by ROOT-PV as predictor (Fu et al., 2013), uses true values of solutions fitness values

in previous environments for training. In a practical application where such information

is not available, the performance of both algorithms will likely be worse.

Robust Optimization Over Time by Learning Problem Space Characteristics 65

Table 4.19: Average fitness values (and std. err) on test instances with different
dimension D and peak number m, f = 2500 and s randomized in [0.5,3]. Best results
based on Wilcoxon signed-rank test with Holm-Bonferroni p-value correction, α = 0.05
are highlighted, ignoring ROOT-TFV due to its unrealistic assumption of knowing the

true future fitness.

V Algorithm
Survival time

D=2,P=5 D=2,P=20 D=5,P=5 D=5,P=20

40

ROOT-PV 48.35(0.32) 50.79(0.33) -53.99(15.53) 20.49(3.04)
ROOT-TFV 49.82(0.18) 51.64(0.21) -54.37(13.45) 32.22(1.46)
FTmPSO(TMO) 53.94(0.26) 55.53(0.20) 53.04(0.25) 54.68(0.16)
RAmQSO-s4 52.19(0.32) 52.57(0.28) 51.45(0.32) 50.88(0.36)
RmNAFSA-s4 52.60(0.35) 52.46(0.27) 51.48(0.29) 51.09(0.32)
RFTmPSO-s4 52.52(0.36) 52.40(0.29) 51.02(0.31) 51.26(0.41)

45

ROOT-PV 50.70(0.39) 53.51(0.20) -124.90(17.06) 2.92 (6.80)
ROOT-TFV 51.22(0.24) 54.24(0.23) -133.3(16.58) 16.19(3.92)
FTmPSO(TMO) 56.47(0.18) 58.24(0.16) 56.02(0.21) 57.22(0.15)
RAmQSO-s4 55.00(0.27) 55.93(0.23) 54.90(0.21) 54.23(0.27)
RmNAFSA-s4 54.95(0.26) 55.52(0.25) 54.91(0.23) 54.44(0.29)
RFTmPSO-s4 55.34(0.26) 55.14(0.23) 54.55(0.21) 54.53(0.26)

50

ROOT-PV 51.40(0.60) 56.45(0.12) -190.50(19.76) -37.01(7.55)
ROOT-TFV 51.49(0.61) 56.66(0.09) -116.73(14.48) -11.98(6.18)
FTmPSO(TMO) 58.79(0.19) 61.02(0.13) 58.56(0.23) 60.04(0.14)
RAmQSO-s4 57.47(0.30) 59.15(0.13) 57.73(0.18) 57.94(0.16)
RmNAFSA-s4 57.88(0.24) 58.47(0.17) 57.51(0.22) 57.81(0.19)
RFTmPSO-s4 58.09(0.22) 58.36(0.19) 57.68(0.21) 58.14(0.18)

Figure 4.1 compares the true and predicted landscapes in D=2. Each environment is

produced by 2,500 points, and the parameter setting of mMPBR is based on default

values in Table 4.1 with m=5. The first 15 environments are used to train the predic-

tor (Jin et al., 2013; Fu et al., 2013). Figure 4.1 shows that the error of the predictor

is noticeable even though the true fitness values in previous environments are used to

train it.

As can be seen in Table 4.18, ROOT-TFV has the highest average survival time in test

instances with D=2 but loses its superiority in problems with D=5 and its performance,

as well as that of ROOT-PV, experience a dramatic drop. To understand why these two

methods struggle with even moderately dimensional problems, one has to note that

they use Eq. (2.10) as fitness instead of the true fitness function Eq. (3.10). Figure 4.2

visualizes an example of the search space according to Eq. (2.10) in D=2. Figure 4.2(a)

shows the true fitness landscape according to Eq. (3.10) and Fig. 4.2(b) shows the

corresponding environment based on Eq. (2.10) with V=40 and its true five future

environments. As can be seen, most of the problem landscapes defined by Eq. (2.10) are

Robust Optimization Over Time by Learning Problem Space Characteristics 66

(a) 16th true environment (b) 16th predicted environment

(c) 17th true environment (d) 17th predicted environment

(e) 18th true environment (f) 18th predicted environment

Figure 4.1: An example of mMPBR in dimension D=2 to show the error of the
predictor.

flat with a few narrow peaks. This is really challenging for the optimizer, especially in

higher dimensions.

To investigate the performance of PSO in this type of environments, PSO is used for

optimizing the mMPBR with 5 peaks and 100 environmental changes. This experiment

is done 50 times and at the end of each environment, the Gbest value of PSO based on

the environment made by Eq. (2.10) is saved. The average Gbest values are reported in

Robust Optimization Over Time by Learning Problem Space Characteristics 67

(a) True problem space

(b) Problem space based on survival time metric

Figure 4.2: The search space made by Eq. (2.10) with a threshold V=40, dimension
D=2 and peak number m=5 versus the true problem space.

Table 4.20. Experiments for Table 4.20 are done on mMPBR in 2, 5 and 10 dimensions

and with the number of evaluations per change f of 2500 and 10000 and V = 40.

Table 4.20: Average Gbest value (standard error in parenthesis) of PSO in search
space made by Eq. (2.10) with different dimension D.

Parameter settings D=2 D=5 D=10

Population size=50, f =2500 5.02(0.17) 2.78(0.32) 0(0)
Population size=100, f =10000 5.31(0.16) 3.42(0.27) 0(0)

For f=2500, PSO with 50 particles is used and for f=10000, the population size is

increased to 100. With D=2, although the second PSO benefits from a larger popu-

lation size and more time to do exploration and exploitation in each environment, its

performance is not so much better than the first PSO. With D=5, the performance of

both PSOs decreases significantly and the results show that they are not able to find the

best peak. Furthermore, the difference between the first and the second PSO increases

Robust Optimization Over Time by Learning Problem Space Characteristics 68

relatively to their results in D = 2. This shows that the PSO needs more particles and

time to deal with this type of environment. PSO fails to find peaks in D = 10.

Given the results in Table 4.20 and the fact that the search environment is shaped by

the survival time metric Eq. (2.10) (an example is shown in Fig. 4.2(b)), it is concluded

that with increasing dimension, the search space becomes very challenging for optimizers

using the survival time metric Eq. (2.10). This was confirmed by Huang et al. (2017)

where ROOT methods based on Eq. (2.10) have poor performance in higher dimensions.

The provided analysis indicated an explanation for this behavior.

Table 4.18 shows that the performance of FTmPSO, designed for TMO but used as

ROOT algorithm, is better than ROOT-PV in most test instances and works surpris-

ingly well at finding robust solutions. The only other paper that has investigated the

performance of population-based algorithms designed for TMO in the context of ROOT

is (Jin et al., 2013), and according to the reported results and analysis in this chapter,

some TMO algorithms also succeeded in finding robust solutions in ROOT. The reason

behind the acceptable performance of some TMO based algorithms in ROOT is that in

most research in the DOP domain, researchers have been working on DOPs with small

changes, where the obtained knowledge from the current environment is useful for im-

proving the optimization process in the next environment. In this type of environments

which were also used in most ROOT papers, solutions around the peak centers can be

robust solutions. Indeed, when comparing Fig. 4.2(a) and Fig. 4.2(b), it can be seen

that robust solutions are around peak centers.

As can be seen in Table 4.19, the methods based on the proposed ROOT framework with

strategy four can perform really well in maximizing the average survival time of robust

solutions. All of RFTmPSO-s4, RAmQSO-s4 and RmNAFSA-s4 outperform ROOT-PV

in all test instances in this section and only ROOT-TFV (Fu et al., 2013) (which, as

mentioned before, is an unrealistic version of the ROOT algorithm due to its assumed

knowledge of future environments) has better results in test problems with D=2. The

average fitness value Eq. (2.13) of robust solutions obtained by the TMO algorithm is

the best in all test instances because this algorithm chooses the best found solution in

terms of fitness value.

For all three methods based on the proposed ROOT framework, the average fitness value

of robust solutions in all test instances is better than that of ROOT-PV and ROOT-TFV

because the proposed methods search the problem space with actual fitness values and

choose one of the peaks as a robust solution. On the other hand, ROOT-PV and ROOT-

TFV use the survival time metric and thus can get stuck in flat areas (Fig. 4.2(b)). For

the same reason, their average fitness value can be very poor in problems with higher D

and V (e.g. these two algorithms achieve negative average fitness values in D=5, m=5).

Robust Optimization Over Time by Learning Problem Space Characteristics 69

In this section, three different multi-swarm methods are embedded in the proposed

ROOT framework. The reported results in Table 4.18 show that the proposed algorithms

are able to perform better than previous state-of-the-art survival time metric Eq. (2.10)

based methods especially on the environments with a higher number of dimensions.

By comparing results of RFTmPSO-s4, RAmQSO-s4 and RmNAFSA-s4, it is concluded

that the quality of swarms in finding and tracking peaks can improve the proposed

framework’s performance noticeably. Specifically, better peak finding and tracking per-

formance corresponds to more accurate information (gathered by (4.1), (4.2) and (4.3))

leading to more reliable decision making by (4.4), (4.5), (4.6) and (4.7).

4.4 Summary

A new framework for robust optimization over time (ROOT) was proposed. In the

proposed framework, a multi-swarm/multi-population method is responsible for finding,

tracking and monitoring peaks. Each sub-swarm gathers information about its covered

peak. This information is used to predict the future behavior of the peak and pick

the next robust solution in case the current solution becomes unacceptable. Three

types of information based on shift severity, height variance and fitness variance of

peaks were used and four different solution selection strategies based on this information

were designed. The experimental results showed that the fourth strategy that uses

the information about shift severity as well as height variance of peaks had the best

performance overall and can be used for other problem instances.

A wide range of problem settings is used to investigate the performance of the proposed

framework based algorithms versus the existing state-of-the-art framework based on a

survival time metric. It is shown that the performance of previous methods that use

the survival time metric is substantially worse in problems with higher dimensions. All

previous state-of-the-art methods attempt to predict future fitness values of solutions

based on previous fitness values of solutions. However, this is a difficult task and can

become almost impossible for problems with higher dimensions, larger search space

and higher change frequencies. In the experiments, the effect of predictor errors and

approximation errors on the performance of previous methods are investigated. On

the other hand, the proposed framework does not have to deal with the challenges of

predicting future fitness values. The experimental results show that the performance

of the proposed framework is significantly better than that of state-of-the-art methods

especially in problems with higher dimensions.

Robust Optimization Over Time by Learning Problem Space Characteristics 70

The proposed framework based algorithms are tested on problem instances with different

combinations of parameter settings of mMPBR and provided performance analysis based

on them. The results showed that the problem becomes more challenging when shift

severities of peaks, dimension of problem space, and change frequency are higher. How-

ever, the reported results showed that the proposed methods were capable of performing

very well even in more challenging problems.

Although the experimental results in this chapter showed the effectiveness of using peaks’

behavior information for choosing robust solutions, the proposed framework has several

shortcomings that can limit its applicability in certain situations. In fact, the efficiency

of the proposed framework is depended on the accuracy of the information gathered by

trackers. Therefore, if the performance of the trackers drops, then the performance of

the proposed framework will decrease significantly. One example is when the number of

peaks are high and they do not have overlapping. As a result, the algorithm needs to

create many trackers which leads to consume a large amount of computational resource.

Therefore, trackers will fail to exploit and track efficiently before environmental changes

which results to provide inaccurate information for the strategies of choosing next robust

solution.

Chapter 5

Changing or keeping solutions in

dynamic optimization problems

with switching costs

As described previously, most previous research on DOPs focuses on TMO (Nguyen

et al., 2012a). In TMO, the algorithm assumes that the solution can be changed for each

environment without considering any switching cost and/or any resource limitation for

changing solutions. Thus, lack of switching cost consideration in TMO algorithms makes

them unsuitable for many real-world problems. For addressing this issue, ROOT (Yu

et al., 2010) was proposed in which algorithms search for solutions that can remain

acceptable after environmental changes. In fact, TMO and ROOT address two extreme

cases. TMO is suitable for circumstances in which there is no switching cost or it is very

low. On the other hand, ROOT is suitable for situations in which the switching cost is

very high so the algorithm tries to keep each solution as long as it remains acceptable

after environmental changes.

In this chapter, a new adaptive solution chooser (ASC) algorithm is proposed which

acts in a similar way to TMO algorithms where switching cost is low and acts as ROOT

algorithms when the switching cost is high. However, the main contribution of ASC

is where the algorithm can decide about changing or keeping solutions based on their

current fitness values, the fitness of other found solutions with better quality and their

switching cost from the current solution. Indeed, although changing solutions in real-

world problems is costly, there are situations in which the algorithm has found a solution

whose quality is so high that the benefit of switching largely outweighs the cost.

71

Changing or Keeping Solutions in Dynamic Optimization Problems with Switching
Costs 72

5.1 Proposed algorithm

In this section ASC is described. ASC tries to maintain a trade-off between TMO

and ROOT characteristics based on the switching cost and fitness values of the current

solution and other peaks. In this chapter, the SC is defined based on the Euclidean

distance as follows:

SC(x) = w · ‖x− x∗‖√
D

, (5.1)

where SC is switching cost, x is a design variable, x∗ is the last chosen solution by

the algorithm, D is dimension and w ≥ 0 is a weight which controls the ratio between

switching cost and fitness value. Moreover, by setting different values for w, higher or

lower switching costs can be simulated. Note that increasing the number of dimensions

results in increasing Euclidean distance values between random points in the search

space which would lead to increased SC values. Therefore, the ratio between SC and

fitness value changes depending on the number of dimensions that can be undesirable

in experiments. Consequently, it is divided by
√
D in Eq. (5.1) which makes SC values

independent from the number of dimensions. On the other hand, w can be used for

increasing SC values in higher dimensions if it is desired.

In ASC, a multi-swarm optimizer is responsible to find peaks, track them after environ-

mental changes and calculate their fitness variance. This multi-swarm algorithm needs

to continuously try to identify new peaks and tracks them after each environmental

change. Knowledge about the problem such as number of peaks and their shift sever-

ities should not be necessary. Additionally, the algorithm should be able to adapt the

number of populations as needed. For example, the proposed multi-swarm algorithms

by Yazdani et al. (2014, 2017); Blackwell et al. (2008) have such characteristics. Each

sub-swarm which is tracking a peak needs to store the Euclidean distance between best

found positions (such as Gbest in PSO (Kennedy and Eberhart, 1995)) at the end of

each successive pair of environments. The average of these distances indicates the peak’s

Shift Severity. Moreover, the differences between fitness values of its best found positions

before and after each environmental change. The average of these values indicates the

variance of fitness values of the best found position after environmental changes which

is denoted fitness variance.

Like previous chapters, FTmPSO (Yazdani et al., 2013b) is chosen as the multi-swarm

method embedded in ASC. The major reasons behind this choice are its simplicity,

competitiveness and compatibility with ASC. To make FTmPSO simpler, the exploiter

particle and awakening-sleeping mechanisms proposed in its original paper are not used

hear. Additionally, to make it more realistic, the exclusion radius formula in Eq. (3.6)

Changing or Keeping Solutions in Dynamic Optimization Problems with Switching
Costs 73

is used for it and the learned shift severities is used instead of the true shift that was

used in the original paper.

At each environment, ASC determines the reliable peaks. Reliable peaks are peaks

which are expected to remain acceptable after at least one environmental change. For

determining reliable peaks, ASC uses the following formula:if f(xbest,i, θ
(t))− γi ≥ V reliable

else unreliable,
(5.2)

where xbest,i is the best position found by the ith sub-swarm and γi is the fitness variance

of the peak which is covered by ith sub-swarm.

For each environment, after a predefined computational budget, ASC determines reliable

peaks then there are three different possibilities:

1. If the last chosen solution is not acceptable in the current environment t, i.e.

f(x∗, θ(t)) < V then a new solution must be chosen from the reliable peaks as

follows:

j = argminiSC(xbest,i), (5.3)

then

x∗new = xbest,j , (5.4)

where i ∈ {ReliablePeaks} which are determined by Eq. (5.2). If there is no

reliable peak, ASC chooses the best found solution.

2. If the last chosen solution is still acceptable i.e. f(x∗) ≥ V and if among peaks,

there is at least one peak which has the following condition:

f(x∗, θ(t)) < (f(xbest,i, θ
(t))− SC(xbest,i)) (5.5)

Then, the solution will be changed to xbest,i. If there is more than one reliable

peak that has the condition in Eq. (5.5), the one with the lowest SC(xbest,i) will

be chosen.

3. If f(x∗, θ(t)) ≥ V and there is no peak that has the condition in Eq. (5.5), then

the previous solution will be kept for at least another environment.

Changing or Keeping Solutions in Dynamic Optimization Problems with Switching
Costs 74

Algorithm 4: ASC

1 Initialize multi-swarm method;
2 repeat
3 if an environmental change happens then
4 forall sub-swarms do
5 Update database;
6 Calculating shift severity and fitness variance;
7 Introducing diversity;
8 Update memory;

9 if the computational budget has been used up then
10 Determine reliable peaks by Eq. (5.2);

11 if f(x∗, θ(t)) < V then
12 Choose the next solution by Eq. (5.4);
13 else
14 if there are peaks with condition of Eq. (5.5) then
15 Choose the one with minimum SC(xbest,i);
16 else
17 Keep the current solution;

18 Execute an iteration of the multi-swarm method;

19 until stopping criterion is met ;

5.2 Experiments

5.2.1 Performance indicator

For measuring performance, the following performance indicator is proposed

Performance =
1

T

T∑
t=1

(Ft), (5.6)

where

Ft =

f(x∗, θ(t)) if previous solution is kept

f(x∗new, θ
(t))− SC(x∗new) if a new solution is chosen,

(5.7)

where x∗new is a new chosen solution and T is the number of environments. Therefore,

the value of SC is decreased from the fitness value where the solution is changed. From

another point of view, its cost is decreased from profit. Moreover, it can be seen as a

penalty value.

Changing or Keeping Solutions in Dynamic Optimization Problems with Switching
Costs 75

5.2.2 Benchmark

For experiments in this chapter, mMPBR from Chapter 4.2.2 is used. The parameter

settings of mMPBR in this chapter is shown in Table 5.1.

Table 5.1: Parameter settings of mMPBR

Parameter Value(s)

Number of peaks, m 5,20
Evaluations between changes, f 2500
Shift severity, s Randomized in [0.5,3]
Height severity, α Randomized in [1,15]
Width severity, β Randomized in [0.1,1.5]
Peaks shape Cone
Correlation coefficient, λ 0
Number of dimensions, D 2,5
Peaks location range, SR [-50,50]
Peak height, h [30,70]
Peak width, w [1,12]
Initial height value 50
Initial width value 6
Number of environments, T 100

5.2.3 Algorithms and parameter settings

For comparison, FTmPSO is chosen as a TMO method (TFTmPSO) which changes

solutions to the best found position in each environment. Additionally, a ROOT version

of FTmPSO (RFTmPSO) proposed by Yazdani et al. (2017) is used as a ROOT method.

Since ASC, TFTmPSO and RFTmPSO methods use the same multi-swarm method as

core, the conclusion about performance of their different decision making procedure for

choosing the next solution will not be affected by differences in the quality of finding

and tracking peaks. Since in all of these three methods, the main task of the FTmPSO

is finding and tracking peaks, it seemed appropriate to use the suggested parameter

settings as in its original paper (Yazdani et al., 2013b). The parameter settings of

FTmPSO in all three methods are shown in Table 5.2. All three algorithms choose

solutions (if needed) at the end of each environment meaning the computational budget

is f -1. Moreover, it is assumed that all algorithms will be informed about environmental

changes happening. Change detection is another issue that can be dealt with separately,

see e.g. Nguyen et al. (2012a).

Changing or Keeping Solutions in Dynamic Optimization Problems with Switching
Costs 76

Table 5.2: The parameter settings of FTmPSO inside the ASC, TFTmPSO and
RFTmPSO

Parameter Value

C1, C2 2.05
χ 0.729843788
Trackers′ population size 5
Finder′s population size 10
Exclusion fatcor 0.5
P 1
Q 1
Convergence limit 1
k 10
Stop criterion Max fitness evaluation number

5.2.4 Experimental results

All experimental results are obtained by performing 30 independent runs and the best

results based on Wilcoxon signed-rank test with significance level of 0.05 are highlighted

in each table. All experiments are done for three different fitness acceptance thresh-

olds V ∈ {40, 45, 50} and five different values of w ∈ {0.1, 0.5, 1, 2, 3} in Eq. (5.1) to

simulate the impact of different levels of switching cost on the performance which is

measured by Eq. (5.6). The median, mean and standard error of results are reported in

Tables 5.3 to 5.6.

Tables 5.3 to 5.6 show the obtained results by algorithms on mMPB with 5 and 20

peaks in 2 and 5 dimensional search space. When w=0.1, the amount of switching cost

obtained by Eq.(5.1) is smaller. Therefore, the problem is more suitable to be solved by

TFTmPSO rather than RFTmPSO. As a result, the efficiency of the TFTmPSO which

chooses the best solution for each environment is much better than that of RFTmPSO.

Additionally, obtained results by TFTmPSO are independent of V . Indeed, RFTmPSO

tries to keep solutions as long as they are larger than V which is not useful for problems

with small switching costs. In this situation, with growing V value, the performance

of RFTmPSO improves due to more frequent solution changing to better ones. In this

situation ASC acts like a TFTmPSO because the possibility of having solutions with

condition in Eq. (5.5) is high. Therefore, ASC’s results are almost the same with different

V values.

According to Tables 5.3 to 5.6, increasing w results in decreasing the performance of

algorithms because of higher values of switching cost. However, TFTmPSO suffers more

than the other two methods in this situation and its performance drops dramatically.

The reason is that TFTmPSO changes solution every environment and this is detri-

mental if cost is large. In problems with higher switching cost, RFTmPSO outperforms

Changing or Keeping Solutions in Dynamic Optimization Problems with Switching
Costs 77

Table 5.3: Results obtained by Eq.(5.6) by TFTmPSO, RFTmPSO and ASC on
2-dimensional mMPBR with 5 peaks.

2 Dimensional
V Alg. Stats. w=0.1 w=0.5 w=1 w=2 w=3

40

TFTmPSO
Median 61.32 53.97 46.57 31.11 14.89
Mean 61.04 54.28 45.83 28.93 12.03
StdErr 0.27 0.47 0.87 1.73 2.61

RFTmPSO
Median 52.45 49.93 47.09 41.40 35.92
Mean 52.63 49.99 46.69 40.09 33.49
StdErr 0.23 0.33 0.52 0.97 1.43

ASC
Median 61.29 57.38 54.31 48.79 45.05
Mean 60.68 57.02 54.24 49.04 44.00
StdErr 0.28 0.40 0.54 0.87 1.23

45

TFTmPSO
Median 61.32 53.97 46.57 31.11 14.89
Mean 61.04 54.28 45.83 28.93 12.03
StdErr 0.27 0.47 0.87 1.73 2.61

RFTmPSO
Median 54.92 51.51 47.40 38.95 30.30
Mean 54.89 51.49 47.24 38.74 30.24
StdErr 0.19 0.31 0.56 1.11 1.66

ASC
Median 60.69 57.28 54.32 47.77 39.42
Mean 60.58 56.95 53.36 46.34 39.26
StdErr 0.28 0.43 0.69 1.22 1.77

50

TFTmPSO
Median 61.32 53.97 46.57 31.11 14.89
Mean 61.04 54.28 45.83 28.93 12.03
StdErr 0.27 0.47 0.87 1.73 2.61

RFTmPSO
Median 57.52 52.99 46.98 35.65 24.32
Mean 57.25 52.90 47.46 36.59 25.72
StdErr 0.20 0.30 0.55 1.10 1.66

ASC
Median 61.01 56.52 52.78 42.97 33.09
Mean 60.73 56.54 51.68 41.95 32.25
StdErr 0.27 0.44 0.72 1.32 1.91

TFTmPSO and the gap between their performances become larger as w increases. In

fact, in this situation, the problem become more suitable to be solved by ROOT based

methods in which solutions are kept as much as they remain acceptable.

ASC obtains the best results in comparison with RFTmPSO and TFTmPSO when

switching cost is higher. Indeed, ASC is an adaptive algorithm which with growing

switching cost tries to act in a more similar way to ROOT based methods and less to

TMO based algorithms. According to these tables, ASC outperforms TFTmPSO and

RFTmPSO when w ≥ 0.5. Surprisingly, ASC keeps its superiority over RFTmPSO even

when w=3 in which ASC is expected to act in a similar way to RFTmPSO. The first

reason is that even with large w, it is still possible to have solutions with condition in

Eq. (5.5) which can increase the performance of ASC. The second reason is their different

strategies for choosing a solution when the current one is not acceptable anymore. Both

Changing or Keeping Solutions in Dynamic Optimization Problems with Switching
Costs 78

Table 5.4: Results obtained by Eq.(5.6) by TFTmPSO, RFTmPSO and ASC on
5-dimensional mMPBR with 5 peaks.

5 Dimensional
V Alg. Stats. w=0.1 w=0.5 w=1 w=2 w=3

40

TFTmPSO
Median 61.30 54.58 45.67 29.83 14.12
Mean 61.00 54.41 46.18 29.71 13.25
StdErr 0.31 0.48 0.80 1.51 2.23

RFTmPSO
Median 51.92 48.77 45.87 38.09 31.05
Mean 52.07 49.09 45.37 37.92 30.47
StdErr 0.20 0.35 0.59 1.10 1.62

ASC
Median 60.38 56.79 54.71 50.52 45.83
Mean 60.43 56.61 54.17 49.30 44.08
StdErr 0.34 0.50 0.69 1.15 1.64

45

TFTmPSO
Median 61.30 54.58 45.67 29.83 14.12
Mean 61.00 54.41 46.18 29.71 13.25
StdErr 0.31 0.48 0.80 1.51 2.23

RFTmPSO
Median 54.44 50.76 46.76 38.87 30.10
Mean 54.47 50.73 46.05 36.70 27.35
StdErr 0.18 0.37 0.70 1.40 2.10

ASC
Median 60.43 56.55 52.85 46.22 39.42
Mean 60.47 56.50 52.69 45.12 37.38
StdErr 0.35 0.52 0.82 1.47 2.11

50

TFTmPSO
Median 61.30 54.58 45.67 29.83 14.12
Mean 61.00 54.41 46.18 29.71 13.25
StdErr 0.31 0.48 0.80 1.51 2.23

RFTmPSO
Median 57.11 52.23 46.66 35.73 25.33
Mean 57.00 52.39 46.62 35.08 23.54
StdErr 0.22 0.38 0.71 1.41 2.13

ASC
Median 60.68 56.33 51.07 40.24 29.62
Mean 60.63 56.31 51.22 40.82 30.25
StdErr 0.32 0.56 0.91 1.63 2.33

RFTmPSO and ASC choose solutions from reliable peaks. RFTmPSO chooses the best

reliable peak in terms of fitness function. However, ASC chooses the one with lowest

switching cost which leads to improved performance of ASC under circumstances with

large switching cost.

Different values of V affect the performance of ASC (except where w=0.1) and RFTmPSO.

When w=0.1, ASC acts independent from V but RFTmPSO obtains better results when

V is higher. The reason is that when V is higher, solutions become unacceptable more

frequently and RFTmPSO needs to change solutions to better ones and since switching

cost is low, changing to better solutions improves its performance. On the other hand,

when w is larger, by increasing V the performance of ASC and RFTmPSO get worse

because they need to change solutions more frequently which leads to higher switching

costs.

Changing or Keeping Solutions in Dynamic Optimization Problems with Switching
Costs 79

v

Table 5.5: Results obtained by Eq.(5.6) by TFTmPSO , RFTmPSO and ASC on
2-dimensional mMPBR with 20 peaks.

2 Dimensional
V Alg. Stats. w=0.1 w=0.5 w=1 w=2 w=3

40

TFTmPSO
Median 64.91 54.03 40.40 13.23 -13.95
Mean 64.96 53.94 40.17 12.63 -14.91
StdErr 0.09 0.31 0.62 1.24 1.85

RFTmPSO
Median 54.36 52.49 50.33 46.01 41.39
Mean 54.63 52.78 50.46 45.83 41.21
StdErr 0.22 0.28 0.42 0.73 1.06

ASC
Median 64.72 60.69 58.25 54.92 52.18
Mean 64.73 60.86 58.05 54.83 52.17
StdErr 0.14 0.27 0.37 0.40 0.47

45

TFTmPSO
Median 64.91 54.03 40.40 13.23 -13.95
Mean 64.96 53.94 40.17 12.63 -14.91
StdErr 0.09 0.31 0.62 1.24 1.85

RFTmPSO
Median 56.91 54.19 51.42 45.05 38.44
Mean 56.82 54.26 51.06 44.65 38.25
StdErr 0.14 0.22 0.41 0.84 1.28

ASC
Median 64.68 61.15 58.79 55.86 52.01
Mean 64.63 61.03 58.83 55.20 51.67
StdErr 0.15 0.22 0.25 0.40 0.57

50

TFTmPSO
Median 64.91 54.03 40.40 13.23 -13.95
Mean 64.96 53.94 40.17 12.63 -14.91
StdErr 0.09 0.31 0.62 1.24 1.85

RFTmPSO
Median 59.40 55.70 51.34 42.70 33.60
Mean 59.23 55.51 50.85 41.54 32.23
StdErr 0.13 0.24 0.47 0.95 1.44

ASC
Median 64.76 60.85 58.42 52.47 47.88
Mean 64.69 61.00 58.19 52.76 47.26
StdErr 0.12 0.25 0.43 0.79 1.15

As can be seen in Tables 5.3 to 5.6, the results of all of the algorithms are better in

mMPB with 20 peaks in comparison with 5 peaks. When the number of peaks is higher

in mMPB, the possibility of having taller peaks is higher which leads to improve the

performance when w is smaller, especially for ASC and TFTmPSO . Moreover, when w is

higher, the performance of ASC and RFTmPSO are more dependent on the robustness of

solutions. Therefore, having more peaks increases the possibility of having more reliable

peaks by Eq. (5.2). In addition, when the number of peaks is low, there are large areas

of low fitness because there are few peaks to cover these areas. As a result, the average

solution quality is lower, and robust solutions can lose their quality more quickly. By

increasing the number of peaks, the average survival time of solutions increases because

peaks are likely to overlap and support robust solutions. For ASC, when the number of

peaks is higher, the number of reliable peaks is higher as well. Therefore, the density of

Changing or Keeping Solutions in Dynamic Optimization Problems with Switching
Costs 80

peaks in the landscape is higher, so the possibility of having reliable peaks closer to the

current solution is higher which leads to decrease in switching cost when ASC chooses

a solution by Eq. (5.4).

According to Tables 5.3 to 5.6, all of the algorithms obtain better results in 2-dimensional

problems than in 5-dimensional ones. In fact, in higher dimensions, the problem becomes

more challenging for the optimizer, so the efficiency of finding and tracking peaks is de-

creased which leads to having worse results.

Table 5.6: Results obtained by Eq.(5.6) by TFTmPSO , RFTmPSO and ASC on
5-dimensional mMPBR with 20 peaks.

5 Dimensional
V Alg. Stats. w=0.1 w=0.5 w=1 w=2 w=3

40

TFTmPSO
Median 63.49 53.26 40.10 14.11 -11.85
Mean 63.65 53.50 40.81 15.44 -9.94
StdErr 0.13 0.36 0.68 1.35 2.02

RFTmPSO
Median 53.86 51.75 49.04 43.70 38.53
Mean 53.76 51.59 48.88 43.46 38.05
StdErr 0.17 0.20 0.34 0.68 1.03

ASC
Median 62.66 56.86 55.27 53.40 49.45
Mean 62.94 57.09 55.44 52.54 49.16
StdErr 0.20 0.39 0.44 0.57 0.83

45

TFTmPSO
Median 63.49 53.26 40.10 14.11 -11.85
Mean 63.65 53.50 40.81 15.44 -9.94
StdErr 0.13 0.36 0.68 1.35 2.02

RFTmPSO
Median 56.23 52.92 49.29 41.55 33.97
Mean 56.13 53.19 49.51 42.15 34.80
StdErr 0.16 0.23 0.41 0.82 1.23

ASC
Median 62.71 58.69 56.39 52.15 48.46
Mean 63.00 58.34 56.30 52.14 47.58
StdErr 0.20 0.37 0.47 0.73 1.00

50

TFTmPSO
Median 63.49 53.26 40.10 14.11 -11.85
Mean 63.65 53.50 40.81 15.44 -9.94
StdErr 0.13 0.36 0.68 1.35 2.02

RFTmPSO
Median 58.24 54.44 50.02 41.15 31.94
Mean 58.23 54.33 49.46 39.71 29.96
StdErr 0.08 0.26 0.58 1.24 1.89

ASC
Median 62.97 59.29 56.16 50.44 43.56
Mean 63.08 59.27 56.10 49.53 42.60
StdErr 0.19 0.36 0.60 1.09 1.61

5.3 Summary

SC is an important aspect of dynamic optimization problems (DOPs); however, there

are few works considering the switching cost during the optimization process. Most

Changing or Keeping Solutions in Dynamic Optimization Problems with Switching
Costs 81

investigations in dynamic optimization literature have been focused on tracking moving

optima (TMO), which is usually pursued irrespective of the switching cost. Robust

optimization over time (ROOT) addresses this shortcoming by keeping solutions as long

as they remain acceptable. However, ROOT methods are not suitable for problems with

smaller switching cost.

In this chapter, an adaptive solution chooser (ASC) algorithm for dynamic optimization

problems with switching costs was proposed. ASC behaves in a similar way to TMO

based algorithms where the switching cost is low and similar to ROOT based algorithms

when the switching cost is high. ASC’s core is a multi-swarm method which tracks

peaks and calculates fitness variance of peaks that is used for determining reliable peaks

in terms of robustness of solutions. ASC decides if a new solution is to be chosen or

the previous one can be kept based on the current solution’s fitness values, the fitness

of other found solutions with better quality and their switching cost from the current

solution. The experimental results obtained by a proposed performance indicator on

modified moving peaks benchmark showed that ASC performed significantly better than

two state-of-the-art methods for TMO and ROOT in problems with different levels of

switching cost.

In fact, by proposing ASC, it is tried to bridge a gap between academic research and

real-world problems in the field of DOPs. In contrary to TMO and ROOT which are

addressing two extreme cases i.e. when switching cost is very small or very large, ASC

makes a decision about changing or keeping solutions according to the switching cost at

any range.

Chapter 6

Scaling up dynamic optimization

problems: a divide-and-conquer

approach

Motivated by rapid technological advancements, large-scale optimization has gained pop-

ularity in recent years. However, the exponential growth in the size of the search space,

with respect to an increase in the number of the decision variables, has made large-scale

optimization a challenging task. For DOPs, however, the challenge is twofold. For such

problems, not only should an algorithm be capable of finding the global optimum in the

vastness of the search space but should also be able to track it over time. For multi-

modal DOPs, where several optima have the potential to turn into the global optimum

after environmental changes, the cost of tracking multiple moving optima also adds to

the complexity.

In this chapter, the large-scale global optimization in dynamic optimization problems is

investigated. Moreover, a decomposition-based algorithm for large-scale dynamic opti-

mization problems is proposed. The idea is to first discover and exploit the underlying

structure of a given problem by decomposing it into several components of smaller size,

and then to tackle the sub-problems simultaneously. The former can be achieved by

a wide range of variable interaction analysis algorithms capable of identifying the un-

derlying structure of a black-box problem with high efficiency and accuracy (Omidvar

et al., 2014a, 2017; Mei et al., 2016; Sun et al., 2017), and the latter can be achieved

by means of cooperative coevolution (Potter and Jong, 2000; Yang et al., 2008a; Li and

Yao, 2012).

As described previously, MPB (Branke, 1999) is the most popular benchmark in the field

of DOPs. In this chapter, first, the standard MPB is formally analyzed and it is shown

82

Scaling Up Dynamic Optimization Problems: A Divide-and-Conquer Approach 83

that its lack of modularity limits its applicability for the study of large-scale DOPs. Then

a new benchmark by composing several MPBs is proposed. The proposed benchmark is

suitable for generating problem instances in which the components are heterogeneous in

terms of dimension and their contribution to the fitness function value. In addition to

the new benchmark, a new algorithm for large-scale DOPs is proposed. The proposed

algorithm utilizes the state-of-the-art DG2 proposed by Omidvar et al. (2017) as the

decomposition method. After determining variable interactions and components by

DG2, the proposed algorithm uses a swarm for each detected component that works in a

CC manner with other components’ swarm. Each swarm consists of several sub-swarms

to track multiple moving optima in the component’s search space. Finally, the proposed

method benefits from a new resource allocation approach in which it tries to prevent over

exploitation by sub-swarms, and allocates more computational resource to the best sub-

swarm of each component and the swarm of the component with the highest progress.

All four algorithms are empirically evaluated on a wide range of problem settings to

show the individual impact of approaches such as CC, tracking multiple moving optima

and resource allocation on improving performance.

6.1 The Proposed benchmark generator

MPB generates a landscape containing several peaks whose height, width, and location

change over time. As a result, each peak can become the global optimum after an

environmental change according to its current height and width. Although MPB can be

scaled to any number of dimensions, its lack of modularity limits its capacity for large-

scale DOPs. This limitation comes from the nonseparable nature of the benchmark’s

baseline shown by Eq. (3.10).

Proposition 6.1. An n-dimensional MPB with m > 1 peaks is nonseparable.

Proof. Let,

f (t)(x) = max
{
ξ
(t)
1 (x), ψ(t)(x)

}
, (6.1)

where

ψ(t)(x) = max
{
ξ
(t)
2 (x), . . . , ξ(t)m (x)

}
. (6.2)

The max(·) function can be rewritten as follows:

f (t)(x) =
1

2

(
ξ
(t)
1 (x) + ψ(t)(x) + |ξ(t)1 (x)− ψ(t)(x)|

)
. (6.3)

Scaling Up Dynamic Optimization Problems: A Divide-and-Conquer Approach 84

Now, the first and second order partial derivative of f (t)(x) is as follows:

∂f (t)(x)

∂xi
=

1

2

[
∂ξ

(t)
1 (x)

∂xi
+
∂ψ(t)(x)

∂xi
+(

∂ξ
(t)
1 (x)

∂xi
− ∂ψ(t)(x)

∂xi

)
sgn

(
ξ
(t)
1 (x)− ψ(t)(x)

)]
, (6.4)

∂2f (t)(x)

∂xi∂xj
=

1

2

[
∂2ξ

(t)
1 (x)

∂xi∂xj
+
∂2ψ(t)(x)

∂xi∂xj
+(

∂2ξ
(t)
1 (x)

∂xi∂xj
− ∂2ψ(t)(x)

∂xi∂xj

)
sgn

(
ξ
(t)
1 (x)− ψ(t)(x)

)]
, (6.5)

where sgn(x) = x
|x| is the sign function.

It is clear that ∂f (t)(x)
∂xi

is either a function of
∂ξ

(t)
1 (x)
∂xi

or ∂ψ(t)(x)
∂xi

depending on whether

ξ
(t)
1 (x) > ψ(t)(x) for a given value of xi. In other words, for ∂f (t)(x)

∂xi
to be consistently

a function of
∂ξ

(t)
1 (x)
∂xi

or ∂ψ(t)(x)
∂xi

, ξ
(t)
1 (x) must be strictly smaller or larger than ψ(t)(x)

for every xi. This essentially reduces f (t)(x) to a single peak MPB, which is clearly not

the case simply because the height, the width, and the center of each peak is different.

Therefore, the extremum with respect to the ith dimension cannot be uniquely deter-

mined by xi. It is also clear that the second order partial derivative for arbitrary choices

of i and j (i 6= j) can be made nonzero for various choices of x due to the fact that the

width, the height, and the center of each peak (ξ
(t)
i) is different. This makes every di-

mension interact with every other dimension (Def. 2.1). Therefore, a multi-modal MPB

is fully nonseparable (Def. 2.4).

Proposition 6.2. An n-dimensional MPB with a single peak (m = 1) is additively

nonseparable.

Lemma 6.3 (necessary condition of additive separability). Given an additively sepa-

rable function f(x) (Def. 2.3), for arbitrary choices of xi and xj belonging to different

component functions fp and fq,
∂2f(x)
∂xi∂xj

is equal to zero.

Proof. Assuming that xi belongs to the component function fp and xj belongs to fq,

according to Def. 2.3, ∂f
∂xi

=
fp
∂xi

. Therefore, ∂2f
∂xi∂xj

=
∂2fp
∂xi∂xj

= 0 because fp is not a

function of xj .

Proof of Proposition 6.2. Let the following be the definition of an n-dimensional single-

peak MPB.

Scaling Up Dynamic Optimization Problems: A Divide-and-Conquer Approach 85

(a) 1-dimensional MPB with 3 peaks (b) 1-dimensional MPB with 2 peaks (c) 2-dimensional CMPB made by
composing (a) and (b) resulting in a
a total of 6 peaks.

Figure 6.1: An example of exponentially growing number of peaks by composing
MPBs.

f (t)(x) = h(t) − w(t)‖x− c(t)‖ (6.6)

∂f (t)(x)

∂xi
=
−w(t)

(
xi − c(t)i

)
‖x− c(t)‖

(6.7)

∂2f (t)(x)

∂xi∂xj
=
w(t)

(
xi − c(t)i

)(
xj − c(t)j

)
‖x− c(t)‖3

(6.8)

It is clear that ∂2f
∂xi∂xj

is a function of both xi and xj and is nonzero as long as xi 6= ci

and xj 6= cj . Therefore, according to Lemma 6.3 the necessary condition for additive

separability does not hold. Therefore, an n-dimensional MPB with a single peak is not

additively separable.

The following discussion clarifies why a single-peak MPB is easy to optimize despite its

additive nonseparability feature. It is clear that Eq. (6.7) can be written as g(xi)h(x)

where g(xi) = −w(t)(xi − c(t)i), and h(x) = ‖x − c‖−1. To set Eq. (6.7) to zero, it is

sufficient to force g(xi) to zero by forcing xi = c
(t)
i . This is precisely why according

to Def. 2.2 an n-dimensional MPB with a single peak is fully separable. Another way

of looking at this problem is to realize that the square root function, implicit in the

calculation of the Euclidean norm in the MPB formulation, is a monotonic function

which does not change the location of the global optimum; however its presence removes

additive separability. This observation is also empirically verified with DG2. It should

be noted that this analysis is independent of environmental changes. In other words,

MPB is additively nonseparable and remains so across all environments.

Scaling Up Dynamic Optimization Problems: A Divide-and-Conquer Approach 86

One way of modularizing MPB is through summation of several independent MPBs.

This is customary in many large-scale global optimization benchmarks (Tang et al.,

2009; Li et al., 2013) and has been recently used by Luo et al. (2017) to propose a

modularized MPB. Three major shortcomings of this benchmark are: a lack of imbalance

among components, uniform component sizes, and unrealistic homogeneous structures.

Many real-world problems, however, are heterogeneous in nature which is caused by the

coexistence of separable and nonseparable components, each having a different share in

improving the objective function (Omidvar et al., 2015).

In this chapter, these shortcomings are addressed by proposing a new scalable bench-

mark, Composite MPB (CMPB), through heterogeneous composition of several MPBs.

CMPB uses the standard MPB (Eq. (3.10)) as its component function and has the

following general form:

F (t)(x) =
k∑
i=1

(
ωif

(t)
i (xi)

)
+

k+l∑
j=k+1

(
ωjγf

(t)
j (xj)

)
, (6.9)

where the first summation term generates k nonseparable components, and the second

summation term generates an l-dimensional separable component. Here fi is the ith

nonseparable subfunction which is a di-dimensional MPB (di > 1), fj is the jth 1-

dimensional MPB, x is the decision vector of D dimensions, xi is a disjoint sub-vector of

x with di ≥ 2, xj is a 1-dimensional scalar variable, ωi and ωj control the contribution

of each component (for generating imbalance), and γ is a regulatory factor control-

ling the dominance of the separable component which is the reciprocal of the average

dimensionality of the nonseparable components:

γ =
k∑k
i=1 di

. (6.10)

According to Eq. (3.10), the contribution of various MPBs is almost identical. This

is because the height and the width parameters are usually sampled from the same

distribution for different instances of MPB and the use of the max function also dampens

the contrasts between various instances of MPB. Therefore, in Eq. (6.9) a large number

of separable variables can easily dominate the final function value, F (t), which limits the

utility of the benchmark to study a wide range of scenarios. To alleviate this issue, γ is

used to regulate the dominance of one component over another. As can be seen, γ is a

function of k and di and is calculated automatically when the number of nonseparable

components and their dimensions are chosen. It is only after this regularization that the

Scaling Up Dynamic Optimization Problems: A Divide-and-Conquer Approach 87

Table 6.1: Parameter settings of CMPB

Parameter Symbol Value

Number of peaks m Randomized between 1 to 10
Dimension D 1-100
Evaluations between changes f 500D
Shift severity s Randomized ∈ [0.5, 3]
Height severity α Randomized ∈ [3, 10]
Width severity β Randomized ∈ [0.5, 1.5]
Peaks shape – Cone
Peaks location range SR [-50,50]
Peak height h [30,70]
Peak width w [1,12]
Initial height value – 50
Initial width value – 6
Number of environments – 100
Weight ω Randomized ∈ [0.5, 2]
Correlation coefficient λ 0

imbalance coefficients (ωi and ωj) make intuitive sense and can be freely picked by the

user to generate different imbalance patterns.

For each MPB in the CMPB, the height, width, and center of a peak change from one

environment to the next similar to the MPB which is described in Subsection 4.2.2. The

parameter settings of CMPB are shown in Table 6.1.

An interesting and natural consequence of CMPB’s design is the exponential growth in

the total number of peaks as the number of multi-modal components increases. This

is a new challenge never addressed in either large-scale global optimization or dynamic

optimization. In CMPB, when several MPBs are composed according to Eq. (6.9), the

number of peaks is calculated as follows:

M =

k+l∏
i=1

mi, (6.11)

where mi is the number of peaks in the ith MPB subfunction (represented by fi and

fj in Eq. (6.9)). It should be noted that M is the maximum number of peaks that can

exist in the landscape, which may change over time due to coverage of smaller peaks

by larger ones. For the sake of clarity, an illustration is provided. In Fig. 6.1(a) and

Fig. 6.1(b), two 1-dimensional MPBs with 2 and 3 peaks are shown. The 2-dimensional

function constructed based on Eq. (6.9) with ω1 = ω2 = 1 results in a total of 2× 3 = 6

peaks. A consequence of this is that even for low-dimensional functions of this form,

variable interaction analysis and problem decomposition can significantly simplify the

problem. Indeed, an ideal decomposition can reduce the maximum number of peaks to

Scaling Up Dynamic Optimization Problems: A Divide-and-Conquer Approach 88

monitor down to
∑k+l

i=1mi which is significantly smaller than Eq. (6.11) for problems

with large number of peaks and components. In the next section a decomposition-based

framework is proposed that has this feature.

6.2 The Proposed algorithm

In this section, a cooperative coevolutionary multi-swarm PSO (CCMPSO) is proposed

for solving large-scale DOPs. First, an overview of the framework with an emphasis on its

high-level structure and the resource allocation policy (Section 6.2.1) is provided. Then,

the details of the multi-swarm optimizer is provided and dynamic issues such as conver-

gence detection of swarms, avoiding mutual convergence of swarms onto the same peak,

diversity control, and detection and handling of environmental changes (Section 6.2.2)

are addressed.

6.2.1 The framework

Algorithm 5 shows the structure of the proposed CCMPSO. The algorithm has three

major parts – decomposition, search and resource allocation, and change management

– which are explained next.

6.2.1.1 Decomposition

The algorithm starts by decomposing a given dynamic optimization problem into its con-

stituent independent components (Algorithm 5, line 1). This is done using a variable in-

teraction analysis algorithm. In this chapter, the state-of-the-art DG2 algorithm (Omid-

var et al., 2017) introduced in Subsection 2.9 is utilized. After problem decomposition, a

multi-swarm dynamic optimizer is initialized for each of the identified components (Al-

gorithm 5, lines 2-3). It should be noted that each component contains partial solutions

which cannot be evaluated directly using the objective function. Due to the black-box

nature of the objective function, these partial solutions can only be evaluated within the

context of a complete solution. This complete solution is called a context vector (van den

Bergh and Engelbrecht, 2004) which is randomly initialized on line 4.

Next, the algorithm enters its main loop and optimizes the identified lower-dimensional

components in an iterative manner (Algorithm 5, lines 5-41). The algorithm has three

major phases: 1) exploration, 2) exploitation, and 3) change management. In the first

phase (Algorithm 5, lines 6-23), the algorithm cycles over all components with the aim

of tracking optima, discovering any emerging optima, and estimating the contribution

Scaling Up Dynamic Optimization Problems: A Divide-and-Conquer Approach 89

of each component in improving the overall objective function value. For this purpose,

the algorithm maintains a free swarm and a set of tracker swarms for each component.

The primary purpose of a free swarm is to find uncovered peaks. When a free swarm

is converged to a peak, it will change to a tracker swarm whose primary purpose is to

do exploitation and track it after each environmental change. For better use of the lim-

ited computational resources between successive environmental changes, the algorithm

detects and deactivates the converged tracker swarms based on a mechanism which will

be explained in the next section.

6.2.1.2 Search and resource allocation

The exploitation phase (Algorithm 5, lines 24-29) is a crucial step in improving the

efficiency of the algorithm. First, the tracking of multiple moving optima is inherently

expensive. Second, the contribution of components is not uniform, making a classic

round-robin optimization policy very inefficient. The imbalance in the contribution

happens for several reasons. Two major factors are nonuniform change severity of com-

ponents after an environmental change, and discrepancy in the convergence behavior of

swarms.

For the best use of the available resources, the exploitation phase occurs at two lev-

els: component level, and swarm level. At the component level, the best contributing

component is selected and all its active tracker swarms are executed for an extra iter-

ation (Algorithm 5, lines 24-26). The amount by which each component improves the

objective value at the end of the exploration phase is taken as its contribution. This

often happens for the component experiencing the most intense environmental change.

Therefore, by allocating more computational resource to such swarms, the algorithm ac-

celerates the optimization process by prioritizing components with higher importance or

higher change severities. Finally, at the swarm level, the best tracker of each component

is executed for one more iteration (Algorithm 5, lines 27-29). This step not only gives

more resources to the best performing tracker, but also keeps the information about the

best partial solutions up-to-date for the purpose of updating the context vector.

6.2.1.3 Change management

Finally, the last phase deals with the environmental changes and updating of the context

vector. Two events trigger the updating of the context vector. The first and the most

obvious case is the detection of an environmental change (Algorithm 5, lines 30-37). The

second is prior to the deployment of a solution (Algorithm 5, lines 38-40). In DOPs,

the algorithm is given a predefined time frame within which it has to respond to an

Scaling Up Dynamic Optimization Problems: A Divide-and-Conquer Approach 90

environmental change. This is denoted with η which is the maximum number of function

evaluations available to the optimizer before providing a solution for deployment. It

should be noted that in classic CC, the context vector is updated at every coevolutionary

cycle. This is a costly operation because all solutions whose fitness were calculated with

a previous version of the context vector have to be re-evaluated. However, owing to the

grouping accuracy of DG2 and the independent nature of the components, this operation

can be delayed until it becomes necessary (due to a dynamic change).

6.2.2 Dynamic considerations

The aim of the algorithm is to find all peaks and track them. However, due to the lack

of information about the number of peaks, and also the coverage of some smaller peaks

by larger ones in some of the environments, a free swarm needs to constantly search for

possible uncovered peaks. Once a new optimum is found by a free swarm, it changes

to a tracker swarm. To test the convergence of a free swarm, the procedure proposed

by Blackwell et al. (2008) is used in which the Euclidean distances between all pairs of

particles are calculated. If all calculated distances are smaller than a given threshold

(rconv), the algorithm assumes that the free swarm is converged. When a free swarm

becomes a tracker swarm, a new free swarm will be initialized immediately in the search

space in order to search for another uncovered peak. It is possible that a free swarm

converges to a peak already covered by a tracker swarm. Tracking a peak by multiple

swarms wastes a considerable amount of computational resource. Therefore, a mutual

exclusion principle is enforced to avoid more than one swarm to cover the same peak.

To establish the mutual exclusion, the mechanism proposed by Blackwell and Branke

(2006) is utilized. According to the exclusion mechanism, when Euclidean distances

between the global best of the free swarm and a tracker swarm is less than a threshold

(rexcl), the algorithm assumes that the free swarm has converged to a covered peak. In

this situation, the free swarm will be re-initialized. The value of rexcl is calculate as

follows:

rexcl = 0.5
SR

D
√

TSN
, (6.12)

where SR is the range of search space and TSN is the number of tracker swarms.

A similar conflict can also happen to two tracker swarms. This situation happens when

a peak is covered by a larger peak. Therefore, its tracker swarm loses its own peak and

starts converging to the larger peak’s center. A similar situation happens when the free

swarm convergence is detected before it enters into the mutual exclusion area of a covered

peak. As a result, it becomes a tracker swarm and moves toward the peak’s center. This

Scaling Up Dynamic Optimization Problems: A Divide-and-Conquer Approach 91

Algorithm 5: CCMPSO

1 G = Grouping(f);
2 forall G do
3 Pfree ← Initialize the free swarm’s population;

4 c← Randomly initialize the context vector;
5 repeat
6 forall G do
7 (Pfree,g

?
free,p

?
free) = PSO(Pfree,g

?
free,p

?
free);

8 if diversity of the free swarm is < rconv then
9 Change its status to tracker swarm;

10 Pfree ← Initialize a new free swarm;

11 foreach tracker swarm i do
12 if ‖g?

free − g?
i ‖ < rexcl then

13 Pfree ← Reinitialize the free swarm;

14 if ith tracker swarm is active then
15 (Pi,g

?
i ,p

?
i) = PSO(Pi,g

?
i ,p

?
i);

16 if the diversity is < rdeact then
17 Deactivate the tracker swarm;

18 foreach tracker swarms j do
19 if ‖g?

i − g?
j ‖ < rexcl then

20 if f(g?
i) < f(g?

j) then

21 Remove ith tracker swarm;

22 else if f(g?
i) > f(g?

j) then

23 Remove jth tracker swarm ;

24 Determine the component H with the highest progress;
25 forall active tracker swarms i in H do
26 (Pi,g

?
i ,p

?
i) = PSO(Pi,g

?
i ,p

?
i);

27 foreach G do
28 Determine the best tracker swarm b;
29 (Pb,g

?
b ,p

?
b) = PSO(Pb,g

?
b ,p

?
b);

30 if an environmental change is happened then
31 c← Update context vector using best found position in each swarm g?;
32 forall G do
33 Re-evaluate all p? of free swarm;
34 forall tracker swarms do
35 Update estimated shift severity by Eq. (4.1);
36 Activate if is deactivated;
37 Increase diversity by Eq. (6.13);

38 if computational budget η is finished then
39 c← Update context vector using best found position in each swarm g?;
40 Re-evaluate all p? in all swarms;

41 until stopping criterion is met;

is another case where the exclusion principle is enforced to control the computational

overhead. To do so, the tracker swarm with worse global best fitness value f(g?) will

be removed. For determining tracker swarms which are under the exclusion condition,

the Euclidean distance between all pairs of tracker swarms’ g? position is calculated and

compared with rexcl based on Eq. (6.12).

Another critical challenge of the population-based optimization algorithms in DOPs is

Scaling Up Dynamic Optimization Problems: A Divide-and-Conquer Approach 92

diversity loss. According to (Nguyen et al., 2012a), there are two main groups of methods

to address this challenge. First is the reaction methods which introduce diversity after

each environmental change, and second is diversity maintenance methods which try to

keep the diversity of population above a certain level over time.

Nguyen et al. (2012a) categorized diversification mechanisms into two groups i.e. di-

versity maintenance and diversity introducing. Nguyen (2011) showed diversity main-

tenance methods decrease the exploitation ability and use additional computational

resource for maintaining diversity. Moreover, diversity maintenance methods are suit-

able for DOPs in which the environmental changes are not detectable which is not in the

scope of this thesis as described in 1.1. On the other hand, diversity introducing meth-

ods consume less computational resource and are suitable for DOPs in which changes

are detectable (Blackwell et al., 2008). Therefore, the proposed multi-swarm PSO is

a reaction type method in which the tracker swarms’ diversities are increased at the

beginning of each environment (diversity introducing). When a change is detected, for

each tracker swarm, one of the particles is located on the g? position from the previous

environment and other particles are randomized around the g? position with the radius

of shift severity of the peak by Eq. (6.13):

Pi,j = (si · r) + g
?(t−1),end
i , (6.13)

where Pi,j is the position of the jth particle of the ith tracker swarm and g
?(t−1),end
i is

its global best position at the end of the previous environment, si is the shift severity of

the peak which is under cover of the ith tracker swarm, and r is a uniformly distributed

random number vector in range [−1, 1]. The reason for using si in Eq. (6.13) is that

the new location of the peak after environmental change is expected to be inside that

radius from the previous peak center. In Eq. (6.13), the g∗ from the end of the previous

environment is used instead of the previous peak center position. Therefore, the diversity

is introduced to the population of each tracker swarm as much as needed. The shift

severity of each peak is estimated by Eq. (4.1).

Another diversity related issue is detection and deactivation of converged tracker swarms

to save computational resources. When a tracker swarm gets sufficiently close to the

center of a peak, it should be deactivated until the next environment. A tracker swarm is

deactivated when its diversity drops below a certain threshold. To measure the diversity

of a tracker swarm the infinity norm distance between all pairs of particles is calcu-

lated. If all distances fall below a predefined value (rdeact), the algorithm deactivates

the tracker swarm which means that its particles freeze until another environmental

change is detected. rdeact is a positive constant number. A positive attribute of using

infinity norm distance here is that it is independent from dimension number.

Scaling Up Dynamic Optimization Problems: A Divide-and-Conquer Approach 93

Another challenge of DOPs is outdated memory which happens after each environmental

change due to the outdated stored fitness values of positions such as g? and personal

best p?. For addressing this issue, after each environmental change, the fitness values

of all p? positions of the free swarm will be re-evaluated. For tracker swarms, after re-

diversification, the fitness values of particle positions are evaluated and the p? positions

are set to particle positions.

Finally, the last main challenge is change detection. Since detecting a change is a sep-

arate issue and in most real-world dynamic environments the occurrence of a change is

obvious (e.g., arrival of new order, change in temperature) (Nguyen, 2011), like previous

chapters in this thesis, it is assumed that the algorithm will be informed when an en-

vironmental change happens. However, it should be noted that environmental changes

can be detected easily in many problems including the ones that is investigated in this

research by re-evaluating some beacons (Nguyen et al., 2012a).

6.3 Experiments and analysis

The experiments in this section are based on different scenarios of CMPB framework de-

scribed in Section 6.1. The statistical results are based on 31 independent runs and their

median, mean, and standard error are reported for comparison. To test the statistical

significance of the reported results, a multiple comparison test is performed based on a

series of pairwise Wilcoxon signed-rank tests with Holm-Bonferroni p-value correction

with α = 0.05. Highlighted entries denote statistically significant results.

6.3.1 Comparison algorithms

The performance of the proposed Cooperative Coevolutionary Multi-swarm PSO (CCMPSO)

is compared with three other methods. The main features of these algorithms are sum-

marized in Table 6.2. As can be seen, each algorithm allows us to test the hypotheses

about the efficacy of the proposed decomposition approach, resource allocation policy,

and the dynamic multi-swarm strategy. The first algorithm uses a single multi-swarm

PSO (SMsPSO) without any decomposition. The multi-swarm PSO approach in SM-

sPSO is the same as the one used in CCMPSO described in Section 6.2.2. The second

algorithm is a CC-based method which uses DG2 to decompose the problem into its

constituent components. This method uses a single-swarm PSO for each component

resulting in multiple single swarms (MSsPSO). In MSsPSO, after each environmental

change, each swarm is re-initialized except g? which is kept from the last environment.

The third method is a multi multi-swarm PSO (MMsPSO), a CC-based algorithm which

Scaling Up Dynamic Optimization Problems: A Divide-and-Conquer Approach 94

Table 6.2: Summery of utilized approaches in the algorithms

Algorithm
Cooperative Tracking multiple Resource

coevolutionary moving optima allocation

CCMPSO 3 3 3

MMsPSO 3 3 5

MSsPSO 3 5 5

SMsPSO 5 3 5

uses a multi-swarm PSO for each component. MMsPSO is identical to CCMPSO ex-

cept that it does not have any resource allocation mechanism and uses the round-robin

allocation policy of the standard CC.

It should be noted that MMsPSO resembles the state-of-the-art GCM-PSO Luo et al.

(2017). In fact, MMsPSO replicates major features of GCM-PSO but unifies the under-

lying decomposition methods and the multi-population peak tracking mechanism for a

fair comparison with CCMPSO.

6.3.2 Performance indicator

To measure the efficiency of algorithms, the average error of the updated context vector

at the time of deployment (determined by η) after each environmental change is used as

the measure of performance:

P =
1

T

T∑
t=1

(
f (t)

(
Optimum(t)

)
− f (t)

(
c(t),η

))
, (6.14)

where c(t),η is the context vector at the tth environment which is updated after η fitness

evaluations since the beginning of the new environment.

6.3.3 Parameter settings

All algorithms use PSO with a constriction factor (Eberhart and Shi, 2001) as their core

optimizer where C1 = C2 = 2.05 and χ = 0.729843788. The value of rconv for CCMPSO,

SMsPSO, and MMsPSO is equal to rexcl as calculated by Eq. (6.12) based on (Blackwell

et al., 2008). Additionally, the context vector in all algorithms is updated only after

environmental changes and when the computational budget η is used. The default value

of η is f − 1 which means the solution is fetched at the end of each environment.

To determine the appropriate population size for tracker and free swarms in MMsPSO,

SMsPSO and CCMPSO, and the population size of swarms in MSsPSO, a sensitivity

Scaling Up Dynamic Optimization Problems: A Divide-and-Conquer Approach 95

analysis is conducted, the result of which can be found in the supplementary document.

According to Table 6.3 of the supplementary document, an appropriate swarm size for

CCMPSO, SMsPSO, and MMsPSO is 5 for d ≤ 5, 7 for 5 < d ≤ 10, and 10 for d > 10.

For MSsPSO, a population size of 50 across all dimensions seems appropriate according

to Table 6.4. Finally, according to Table 6.5, rdeact in CCMPSO is set to 0.1.

For determining appropriate population size for tracker and free swarms, the perfor-

mance of the multi-swarm PSO described in Section 6.2.2 is measured for a single MPB

with 5 peaks and different dimensions (all other parameters are set based on Table 6.1)

and results are shown in Table 6.3. According to this table, it seems that choosing

population size of 5 for d ≤ 5, 7 for 5 < d ≤ 10 and 10 for d > 10 is good.

For MSsPSO, the same sensitivity analysis as Table 6.1 has been done and the results are

shown in Table 6.4 for different population size of MSsPSO. According to the statistical

analysis, results obtained by all the population sizes between 30 to 70 are not significantly

different. However, according to median values, it seems population size of 50 and 60

are the best. 50 is chosen for population size of MSsPSO for the rest of experiments.

Finally, the sensitivity analysis for rdeact in CCMPSO is illustrated in Table 6.5 which is

done on a single MPB with 5 peaks and different dimensions (all other parameters are

set based on Table 6.1). According to this table, CCMPSO’s performance is not sensitive

to different values of this parameter. For the rest of experiments, since rdeact = 0.1 is

in the middle of the highlighted values for almost all dimensions, it is chosen for the

experiments.

6.3.4 Empirical analysis

To compare the performance of the four algorithms,they are tested on 20 instance func-

tions with various characteristics created using the CMPB benchmark generator. The

suite contains functions with five different variable interaction structures tested in 25-,

50-, 100-, and 200-dimensional spaces (Table 6.6). This section contains two sets of ex-

periments. The first set is concerned with investigating the efficacy of decomposition and

resource allocation in CCMPSO (Section 6.3.4.1), and the second set is concerned with

investigating the robustness of the algorithm with respect to various aspects of DOPs,

such as the number of peaks, shift severities, and change frequencies (Section 6.3.4.2).

6.3.4.1 The overall comparison

For the experiments in this section, the dynamic parameters of the functions listed in

Table 6.6 are set according to the default values reported in Table 6.1. The results

Scaling Up Dynamic Optimization Problems: A Divide-and-Conquer Approach 96

T
a
b
l
e
6
.3
:

S
en

si
ti

v
it

y
an

al
y
si

s
on

d
iff

er
en

t
su

b
-s

w
a
rm

’s
p

o
p

u
la

ti
o
n

si
ze

o
f

th
e

m
u

lt
i-

sw
a
rm

P
S

O
fr

o
m

S
ec

ti
o
n

6
.2

.2
(w

h
ic

h
is

u
se

d
in

C
C

M
P

S
O

,
M

M
sP

S
O

an
d

S
M

sP
S

O
)

fo
r

op
ti

m
iz

in
g

M
P

B
s

w
it

h
m

=
5
,

d
iff

er
en

t
d

im
en

si
o
n

s
a
n

d
o
th

er
p

a
ra

m
et

er
s

fr
o
m

T
a
b

le
6
.1

D
im

en
si

o
n

st
at

s.
P

op
u

la
ti

on
S

iz
e

3
4

5
7

10
15

20
25

1
M

ed
ia

n
5
.5

5e
-0

2
5.

96
e-

02
5.

53
e-

02
7.

77
e-

02
1.

24
e-

01
1.

63
e-

01
2.

36
e-

01
3.

22
e-

01
M

ea
n

7.
27

e-
02

6.
27

e-
02

6.
87

e-
02

8.
55

e-
02

1.
42

e-
01

1.
99

e-
01

3.
65

e-
01

3.
76

e-
01

S
tE

rr
8
.5

4e
-0

3
4.

93
e-

03
6.

94
e-

03
1.

09
e-

02
1.

62
e-

02
2.

88
e-

02
7.

25
e-

02
5.

05
e-

02

2
M

ed
ia

n
2
.0

7e
-0

1
1.

33
e-

01
1.

48
e-

01
2.

45
e-

01
3.

86
e-

01
5.

02
e-

01
7.

26
e-

01
8.

54
e-

01
M

ea
n

3
.2

2e
-0

1
2.

04
e-

01
2.

84
e-

01
3.

61
e-

01
4.

81
e-

01
6.

15
e-

01
8.

66
e-

01
9.

15
e-

01
S

tE
rr

4.
76

e-
02

3.
56

e-
02

7.
88

e-
02

5.
84

e-
02

4.
89

e-
02

5.
62

e-
02

1.
03

e-
01

8.
69

e-
02

3
M

ed
ia

n
3
.6

9e
-0

1
1.

56
e-

01
1.

48
e-

01
3.

02
e-

01
3.

79
e-

01
6.

56
e-

01
1.

05
e+

00
1.

26
e+

00
M

ea
n

4.
83

e-
01

3.
01

e-
01

4.
32

e-
01

5.
10

e-
01

6.
83

e-
01

8.
05

e-
01

1.
24

e+
00

1.
41

e+
00

S
tE

rr
6
.4

9e
-0

2
7.

28
e-

02
1.

24
e-

01
9.

57
e-

02
1.

55
e-

01
8.

33
e-

02
1.

30
e-

01
1.

55
e-

01

5
M

ed
ia

n
1.

21
e+

00
3.

45
e-

01
1.

56
e-

01
2.

27
e-

01
4.

20
e-

01
7.

51
e-

01
1.

24
e+

00
1.

61
e+

00
M

ea
n

1
.3

8e
+

00
5.

72
e-

01
3.

03
e-

01
4.

21
e-

01
5.

59
e-

01
9.

16
e-

01
1.

53
e+

00
1.

64
e+

00
S

tE
rr

1
.0

4e
-0

1
1.

32
e-

01
6.

91
e-

02
8.

30
e-

02
8.

23
e-

02
8.

28
e-

02
1.

57
e-

01
9.

52
e-

02

7
M

ed
ia

n
2.

96
e+

00
8.

08
e-

01
3.

63
e-

01
2.

20
e-

01
4.

76
e-

01
8.

04
e-

01
1.

17
e+

00
1.

78
e+

00
M

ea
n

2
.8

0e
+

00
9.

22
e-

01
4.

24
e-

01
4.

77
e-

01
5.

10
e-

01
9.

35
e-

01
1.

37
e+

00
1.

89
e+

00
S

tE
rr

1
.4

9e
-0

1
6.

88
e-

02
3.

66
e-

02
1.

87
e-

01
5.

15
e-

02
8.

38
e-

02
1.

15
e-

01
1.

51
e-

01

1
0

M
ed

ia
n

6.
01

e+
00

2.
24

e+
00

8.
83

e-
01

6.
12

e-
01

6.
24

e-
01

1.
11

e+
00

1.
62

e+
00

1.
79

e+
00

M
ea

n
5.

89
e+

00
2.

30
e+

00
1.

04
e+

00
6.

90
e-

01
7.

43
e-

01
1.

51
e+

00
1.

74
e+

00
1.

96
e+

00
S

tE
rr

2.
35

e-
01

1.
20

e-
01

8.
06

e-
02

7.
02

e-
02

9.
15

e-
02

2.
48

e-
01

1.
25

e-
01

1.
64

e-
01

1
5

M
ed

ia
n

1.
29

e+
01

6.
04

e+
00

3.
16

e+
00

1.
50

e+
00

8.
72

e-
01

1.
37

e+
00

1.
66

e+
00

2.
21

e+
00

M
ea

n
1
.3

4e
+

01
6.

39
e+

00
3.

55
e+

00
1.

82
e+

00
1.

36
e+

00
1.

45
e+

00
1.

89
e+

00
2.

70
e+

00
S

tE
rr

5
.5

3e
-0

1
3.

03
e-

01
2.

59
e-

01
2.

95
e-

01
2.

90
e-

01
1.

51
e-

01
1.

55
e-

01
2.

71
e-

01

2
0

M
ed

ia
n

2.
23

e+
01

1.
12

e+
01

7.
00

e+
00

3.
61

e+
00

1.
67

e+
00

2.
05

e+
00

2.
27

e+
00

2.
92

e+
00

M
ea

n
2.

27
e+

01
1.

12
e+

01
7.

42
e+

00
3.

77
e+

00
2.

15
e+

00
2.

33
e+

00
3.

25
e+

00
3.

44
e+

00
S

tE
rr

6.
72

e-
01

3.
73

e-
01

5.
43

e-
01

2.
89

e-
01

2.
13

e-
01

2.
68

e-
01

4.
49

e-
01

3.
15

e-
01

Scaling Up Dynamic Optimization Problems: A Divide-and-Conquer Approach 97

T
a
b
l
e
6
.4
:

S
en

si
ti

v
it

y
an

al
y
si

s
on

d
iff

er
en

t
sw

ar
m

’s
p

o
p

u
la

ti
o
n

si
ze

o
f

th
e

M
S

sP
S

O
fo

r
o
p

ti
m

iz
in

g
M

P
B

s
w

it
h
m

=
5
,

d
iff

er
en

t
d

im
en

si
o
n

s
a
n

d
o
th

er
p

a
ra

m
et

er
s

fr
o
m

T
a
b

le
6
.1

D
im

en
si

o
n

st
at

s.
P

op
u

la
ti

on
S

iz
e

10
20

30
40

50
60

70

1
M

ed
ia

n
7.

78
e+

00
1.

01
e+

01
7.

78
e+

00
6.

84
e+

00
6.

44
e+

00
6.

56
e+

00
6.

99
e+

00
M

ea
n

8.
38

e+
00

9.
06

e+
00

9.
25

e+
00

7.
78

e+
00

7.
40

e+
00

7.
14

e+
00

7.
80

e+
00

S
tE

rr
5.

35
e-

01
5.

11
e-

01
9.

52
e-

01
7.

50
e-

01
7.

21
e-

01
5.

77
e-

01
6.

12
e-

01

2
M

ed
ia

n
1.

20
e+

01
1.

12
e+

01
1.

22
e+

01
1.

23
e+

01
1.

34
e+

01
1.

18
e+

01
1.

33
e+

01
M

ea
n

1.
24

e+
01

1.
26

e+
01

1.
23

e+
01

1.
25

e+
01

1.
40

e+
01

1.
22

e+
01

1.
22

e+
01

S
tE

rr
8.

86
e-

01
1.

09
e+

00
6.

94
e-

01
7.

74
e-

01
8.

81
e-

01
5.

27
e-

01
8.

05
e-

01

3
M

ed
ia

n
1.

67
e+

01
1.

31
e+

01
1.

40
e+

01
1.

36
e+

01
1.

20
e+

01
1.

31
e+

01
1.

12
e+

01
M

ea
n

2.
01

e+
01

1.
30

e+
01

1.
51

e+
01

1.
35

e+
01

1.
23

e+
01

1.
32

e+
01

1.
12

e+
01

S
tE

rr
1.

87
e+

00
5.

01
e-

01
1.

13
e+

00
8.

29
e-

01
6.

21
e-

01
7.

02
e-

01
5.

44
e-

01

5
M

ed
ia

n
3.

57
e+

01
1.

24
e+

01
1.

44
e+

01
1.

37
e+

01
1.

20
e+

01
1.

34
e+

01
1.

52
e+

01
M

ea
n

3.
76

e+
01

1.
44

e+
01

1.
44

e+
01

1.
58

e+
01

1.
28

e+
01

1.
40

e+
01

1.
49

e+
01

S
tE

rr
1.

94
e+

00
1.

35
e+

00
6.

75
e-

01
1.

26
e+

00
6.

84
e-

01
5.

42
e-

01
8.

68
e-

01

7
M

ed
ia

n
4.

40
e+

01
1.

64
e+

01
1.

20
e+

01
1.

29
e+

01
1.

44
e+

01
1.

25
e+

01
1.

28
e+

01
M

ea
n

6.
24

e+
01

1.
75

e+
01

1.
38

e+
01

1.
33

e+
01

1.
43

e+
01

1.
40

e+
01

1.
34

e+
01

S
tE

rr
8.

26
e+

00
1.

24
e+

00
1.

13
e+

00
8.

22
e-

01
8.

03
e-

01
9.

27
e-

01
8.

15
e-

01

10
M

ed
ia

n
4.

73
e+

01
1.

60
e+

01
1.

58
e+

01
1.

42
e+

01
1.

41
e+

01
1.

49
e+

01
1.

46
e+

01
M

ea
n

5.
34

e+
01

1.
70

e+
01

2.
17

e+
01

1.
76

e+
01

1.
47

e+
01

1.
56

e+
01

1.
62

e+
01

S
tE

rr
3.

61
e+

00
1.

30
e+

00
3.

95
e+

00
2.

41
e+

00
8.

41
e-

01
8.

54
e-

01
1.

41
e+

00

15
M

ed
ia

n
5.

09
e+

01
1.

49
e+

01
1.

51
e+

01
1.

62
e+

01
1.

35
e+

01
1.

71
e+

01
1.

39
e+

01
M

ea
n

6.
31

e+
01

2.
16

e+
01

1.
73

e+
01

1.
91

e+
01

1.
69

e+
01

1.
65

e+
01

2.
17

e+
01

S
tE

rr
8.

94
e+

00
5.

15
e+

00
2.

09
e+

00
2.

20
e+

00
2.

91
e+

00
1.

18
e+

00
5.

57
e+

00

20
M

ed
ia

n
5.

63
e+

01
1.

92
e+

01
1.

91
e+

01
1.

58
e+

01
1.

64
e+

01
1.

40
e+

01
1.

47
e+

01
M

ea
n

7.
61

e+
01

4.
71

e+
01

4.
43

e+
01

2.
46

e+
01

2.
86

e+
01

1.
67

e+
01

2.
34

e+
01

S
tE

rr
1.

14
e+

01
1.

26
e+

01
8.

54
e+

00
4.

15
e+

00
8.

62
e+

00
2.

14
e+

00
4.

63
e+

00

Scaling Up Dynamic Optimization Problems: A Divide-and-Conquer Approach 98

T
a
b
l
e
6
.5
:

S
en

si
ti

v
it

y
an

al
y
si

s
on

d
iff

er
en

t
r d

e
a
c
t

in
C

C
M

P
S

O
fo

r
o
p

ti
m

iz
in

g
M

P
B

s
w

it
h
m

=
5
,

d
iff

er
en

t
d

im
en

si
o
n

s
a
n

d
o
th

er
p

a
ra

m
et

er
s

fr
o
m

T
a
b

le
6
.1

.

D
im

en
si

on
st

a
ts

.
r d

ea
ct

0
.0

1
0.

02
0.

05
0.

1
0.

2
0.

5
1

2

1
M

ed
ia

n
6.

21
e-

02
8.

67
e-

02
1.

09
e-

01
8.

51
e-

02
1.

09
e-

01
1.

43
e-

01
3.

03
e-

01
5.

02
e-

01
M

ea
n

1.
19

e-
01

1.
63

e-
01

1.
61

e-
01

1.
43

e-
01

1.
53

e-
01

1.
82

e-
01

3.
57

e-
01

5.
75

e-
01

S
tE

rr
2.

45
e-

02
3.

27
e-

02
2.

97
e-

02
3.

12
e-

02
2.

98
e-

02
3.

27
e-

02
4.

94
e-

02
7.

41
e-

02

2
M

ed
ia

n
3.

98
e-

01
2.

96
e-

01
3.

80
e-

01
2.

21
e-

01
2.

60
e-

01
2.

20
e-

01
3.

73
e-

01
7.

43
e-

01
M

ea
n

6.
29

e-
01

4.
85

e-
01

5.
50

e-
01

5.
42

e-
01

4.
82

e-
01

4.
83

e-
01

5.
82

e-
01

1.
04

e+
00

S
tE

rr
1.

21
e-

01
9.

76
e-

02
1.

04
e-

01
1.

47
e-

01
9.

77
e-

02
1.

19
e-

01
1.

07
e-

01
1.

85
e-

01

3
M

ed
ia

n
2.

45
e-

01
2.

09
e-

01
1.

31
e-

01
1.

86
e-

01
1.

99
e-

01
2.

81
e-

01
4.

78
e-

01
7.

17
e-

01
M

ea
n

6.
22

e-
01

1.
21

e+
00

4.
85

e-
01

6.
76

e-
01

5.
63

e-
01

7.
10

e-
01

8.
16

e-
01

1.
02

e+
00

S
tE

rr
2.

02
e-

01
6.

91
e-

01
1.

71
e-

01
1.

63
e-

01
1.

44
e-

01
2.

02
e-

01
2.

52
e-

01
1.

91
e-

01

5
M

ed
ia

n
1.

33
e-

01
1.

48
e-

01
9.

95
e-

02
1.

22
e-

01
1.

69
e-

01
1.

83
e-

01
2.

93
e-

01
9.

46
e-

01
M

ea
n

4.
82

e-
01

3.
47

e-
01

3.
44

e-
01

3.
32

e-
01

3.
28

e-
01

3.
40

e-
01

4.
41

e-
01

9.
66

e-
01

S
tE

rr
1.

39
e-

01
9.

10
e-

02
9.

28
e-

02
9.

75
e-

02
7.

48
e-

02
7.

76
e-

02
7.

34
e-

02
1.

29
e-

01

7
M

ed
ia

n
2.

48
e-

01
2.

25
e-

01
2.

40
e-

01
2.

05
e-

01
2.

04
e-

01
1.

77
e-

01
2.

64
e-

01
6.

54
e-

01
M

ea
n

3.
71

e-
01

4.
16

e-
01

4.
16

e-
01

3.
53

e-
01

3.
97

e-
01

2.
73

e-
01

4.
39

e-
01

7.
65

e-
01

S
tE

rr
7.

44
e-

02
8.

27
e-

02
8.

17
e-

02
8.

49
e-

02
8.

05
e-

02
5.

62
e-

02
7.

72
e-

02
9.

21
e-

02

10
M

ed
ia

n
3.

90
e-

01
3.

38
e-

01
4.

89
e-

01
3.

33
e-

01
3.

58
e-

01
4.

01
e-

01
4.

38
e-

01
1.

03
e+

00
M

ea
n

8.
26

e-
01

1.
02

e+
00

6.
41

e-
01

6.
67

e-
01

7.
35

e-
01

5.
20

e-
01

5.
97

e-
01

1.
07

e+
00

S
tE

rr
3.

45
e-

01
3.

46
e-

01
1.

24
e-

01
1.

49
e-

01
1.

94
e-

01
9.

73
e-

02
8.

61
e-

02
1.

29
e-

01

15
M

ed
ia

n
9.

96
e-

01
7.

64
e-

01
8.

79
e-

01
8.

43
e-

01
9.

38
e-

01
7.

22
e-

01
7.

95
e-

01
1.

24
e+

00
M

ea
n

1.
54

e+
00

1.
37

e+
00

1.
40

e+
00

1.
49

e+
00

1.
26

e+
00

9.
14

e-
01

9.
81

e-
01

1.
74

e+
00

S
tE

rr
2.

51
e-

01
2.

47
e-

01
2.

79
e-

01
2.

87
e-

01
1.

84
e-

01
1.

34
e-

01
1.

27
e-

01
2.

61
e-

01

20
M

ed
ia

n
1.

75
e+

00
1.

52
e+

00
1.

58
e+

00
1.

68
e+

00
1.

68
e+

00
1.

37
e+

00
1.

68
e+

00
2.

10
e+

00
M

ea
n

2
.4

1e
+

00
1.

81
e+

00
2.

03
e+

00
1.

95
e+

00
2.

61
e+

00
2.

21
e+

00
1.

94
e+

00
2.

23
e+

00
S

tE
rr

4
.7

1e
-0

1
2.

48
e-

01
3.

21
e-

01
2.

36
e-

01
4.

02
e-

01
4.

43
e-

01
3.

13
e-

01
2.

37
e-

01

Scaling Up Dynamic Optimization Problems: A Divide-and-Conquer Approach 99

Table 6.6: Benchmark Scenarios Based on CMPB.

Function D Dimensionality of Nonseparable Components Separable

f1 25 {2, 4, 6, 8} 5
f2 25 {2, 5} 18
f3 25 {2, 4, 5, 6, 8} 0
f4 25 — 25
f5 25 {25} 0

f6 50 {2, 3, 5, 6, 7, 8, 10} 10
f7 50 {2, 3, 5, 5} 35
f8 50 {2, 2, 3, 5, 5, 5, 5, 5, 8, 10} 0
f9 50 — 50
f10 50 {100} 0

f11 100 {2, 2, 3, 5, 5, 6, 6, 8, 8, 10, 10, 15} 20
f12 100 {2, 2, 3, 3, 5, 5, 10} 70
f13 100 {2, 2, 2, 2, 3, 3, 5, 5, 5, 5, 5, 5, 8, 8, 10, 10, 20} 0
f14 100 — 100
f15 100 {100} 0

f16 200 {2, 2, 3, 5, 5, 6, 6, 8, 8, 10, 10, 15, 20, 20, 30} 50
f17 200 {2, 3, 5, 10, 20, 30} 130
f18 200 {2, 2, 2, 3, 5, 5, 5, 5, 5, 8, 8, 10, 10, 10, 20, 20, 30, 50} 0
f19 200 — 200
f20 200 {200} 0

obtained by CCMPSO, MMsPSO, SMsPSO, and MSsPSO on f1 to f20 are summarized

in Tables 6.7 and 6.8. These tables clearly show that CCMPSO performs significantly

better than all other algorithms in the majority of the functions. Exceptions are the

fully nonseparable functions (f5, f10, f15, and f20) for which no decomposition happens.

It is notable that other decomposition-based algorithms, MMsPSO and MSsPSO, also

perform better than SMsPSO which does not benefit from a decomposition mechanism.

This clearly shows the benefit of problem decomposition for solving large-scale DOPs.

Two reasons can be attributed to the poor performance of SMsPSO in the majority of

the functions. First is the scalability issue. It is clear that in the absence of problem

decomposition, the dimensionality of a given problem can easily exceed the capacity of

the optimizer. Second, there is the exponential growth in the number of peaks when no

decomposition is used (see Fig. 6.1).

In addition to problem decomposition, resource allocation is another major feature

of CCMPSO. The effectiveness of CCMPSO’s resource allocation mechanism can be

checked by comparing it with MMsPSO whose only difference lies within its resource

allocation policy. Tables 6.7 and 6.8 clearly show the superiority of CCMPSO over MM-

sPSO. Although problem decomposition plays a crucial role in simplifying a large-scale

problem, the existence of numerous components can impose a computational overhead on

Scaling Up Dynamic Optimization Problems: A Divide-and-Conquer Approach 100

Table 6.7: Comparative results of CCMPSO, MMsPSO, MSsPSO, and SMsPSO on
f1 to f10. The highlighted entries are significantly better using pair-wise Wilcoxon

signed-rank test with Holm p-value adjustment (α = 0.05).

Function Stats. CCMPSO MMsPSO MSsPSO SMsPSO

f1

Median 2.35e+00 3.95e+00 5.93e+01 6.43e+01
Mean 2.59e+00 4.33e+00 5.94e+01 6.15e+01
StErr 2.74e-01 3.56e-01 2.99e+00 3.18e+00

f2

Median 2.23e+00 3.24e+00 3.17e+01 9.55e+01
Mean 2.38e+00 4.00e+00 3.20e+01 9.72e+01
StErr 1.95e-01 4.27e-01 1.90e+00 2.02e+00

f3

Median 1.19e+00 2.87e+00 5.71e+01 4.30e+01
Mean 1.67e+00 2.96e+00 5.89e+01 4.52e+01
StErr 2.33e-01 2.40e-01 2.82e+00 2.67e+00

f4

Median 3.00e+00 3.19e+00 1.10e+01 3.21e+02
Mean 3.05e+00 3.23e+00 1.10e+01 3.17e+02
StErr 2.13e-01 1.07e-01 2.43e-01 5.75e+00

f5

Median 1.84e+00 2.94e+00 1.38e+01 1.24e+00
Mean 2.34e+00 3.56e+00 1.49e+01 2.13e+00
StErr 3.62e-01 3.87e-01 1.39e+00 4.14e-01

f6

Median 4.56e+00 8.77e+00 1.14e+02 1.77e+02
Mean 5.19e+00 9.09e+00 1.18e+02 1.79e+02
StErr 4.33e-01 4.69e-01 3.96e+00 4.84e+00

f7

Median 4.42e+00 6.53e+00 6.68e+01 2.47e+02
Mean 4.44e+00 6.58e+00 6.62e+01 2.46e+02
StErr 2.51e-01 3.43e-01 2.66e+00 3.63e+00

f8

Median 3.64e+00 5.95e+00 1.14e+02 2.07e+02
Mean 4.20e+00 6.22e+00 1.17e+02 1.96e+02
StErr 3.47e-01 4.86e-01 4.23e+00 6.15e+00

f9

Median 6.08e+00 6.73e+00 2.17e+01 8.16e+02
Mean 6.03e+00 6.48e+00 2.18e+01 8.19e+02
StErr 1.61e-01 1.26e-01 2.73e-01 1.11e+01

f10

Median 7.76e+00 8.38e+00 1.66e+01 8.05e+00
Mean 7.77e+00 9.67e+00 2.01e+01 8.22e+00
StErr 6.11e-01 7.92e-01 2.66e+00 8.00e-01

the algorithm. Additionally, use of a multi-population algorithm to optimize the compo-

nents also adds to the computational complexity. The component-level and swarm-level

resource allocation policies of CCMPSO allow for an economical use of resources while

preserving the simplifying effects of problem decomposition. The swarm-level mech-

anism prevents over-exploitation of tracker swarms and releases more resources to be

used by the best trackers to improve the overall solution quality. The component-level

mechanism accelerates the convergence by allocating more resources to the component

Scaling Up Dynamic Optimization Problems: A Divide-and-Conquer Approach 101

Table 6.8: Comparative results of CCMPSO, MMsPSO, MSsPSO, and SMsPSO on
f11 to f20. The highlighted entries are significantly better using pair-wise Wilcoxon

signed-rank test with Holm p-value adjustment (α = 0.05).

Function Stats. CCMPSO MMsPSO MSsPSO SMsPSO

f11

Median 1.05e+01 2.02e+01 2.13e+02 6.45e+01
Mean 1.46e+01 2.06e+01 2.11e+02 6.14e+01
StErr 3.10e+00 6.99e-01 5.06e+00 3.18e+00

f12

Median 1.19e+01 1.51e+01 1.31e+02 5.71e+02
Mean 1.44e+01 1.63e+01 1.30e+02 5.66e+02
StErr 1.44e+00 1.34e+00 4.90e+00 5.46e+00

f13

Median 1.05e+01 1.70e+01 1.98e+02 5.00e+02
Mean 1.15e+01 1.79e+01 2.02e+02 4.96e+02
StErr 1.04e+00 8.35e-01 4.67e+00 1.06e+01

f14

Median 1.18e+01 1.32e+01 4.35e+01 2.14e+03
Mean 1.19e+01 1.31e+01 4.38e+01 2.14e+03
StErr 2.94e-01 1.64e-01 4.57e-01 2.26e+01

f15

Median 3.61e+01 4.43e+01 3.47e+01 4.80e+01
Mean 3.99e+01 4.38e+01 4.19e+01 4.81e+01
StErr 2.76e+00 3.43e+00 4.99e+00 3.24e+00

f16

Median 3.63e+01 5.20e+01 3.39e+02 9.78e+02
Mean 3.64e+01 5.12e+01 3.38e+02 9.84e+02
StErr 1.22e+00 1.44e+00 9.44e+00 1.98e+01

f17

Median 6.05e+01 5.60e+01 2.92e+02 5.79e+02
Mean 3.64e+01 8.88e+01 3.49e+02 5.67e+02
StErr 1.55e+00 2.25e+01 3.53e+01 1.09e+01

f18

Median 2.79e+01 3.77e+01 2.27e+02 1.17e+03
Mean 3.13e+01 4.05e+01 2.25e+02 1.16e+03
StErr 1.63e+00 1.79e+00 1.65e+01 3.54e+01

f19

Median 2.38e+01 2.29e+01 8.14e+01 5.01e+03
Mean 2.62e+01 2.62e+01 8.96e+01 4.98e+03
StErr 2.51e+00 3.11e+00 7.48e+00 2.24e+01

f20

Median 1.49e+02 1.97e+02 8.92e+01 1.75e+02
Mean 1.70e+02 1.88e+02 1.15e+02 1.71e+02
StErr 5.00e+01 1.27e+01 1.54e+00 1.48e+01

with maximum impact on the overall solution quality. On the fully nonseparable func-

tions however (f5, f10, f15, and f20), the only active resources allocation mechanism

is the swarm level. The relative high dimensionality of the only available component

causes the swarm-level mechanism to lose its efficiency because of slow convergence and

existence of many active swarms.

Another interesting observation is a sharp contrast between the performance of multi-

swarm methods (CCMPSO and MMsPSO) and the only single-swarm method (MSsPSO).

Scaling Up Dynamic Optimization Problems: A Divide-and-Conquer Approach 102

T
a
b
l
e
6
.9
:

O
b

ta
in

ed
re

su
lt

s
b
y

al
go

ri
th

m
s

on
f 6

to
f 1

0
w

it
h

d
iff

er
en

t
n
u

m
b

er
o
f

p
ea

k
s
m

fo
r

ea
ch

co
m

p
o
n

en
t

ra
n

d
o
m

iz
ed

in
th

e
fo

ll
ow

in
g

ra
n

g
es

{1
,.
..
,5
},
{1
,.
..
,1

0
},

an
d
{1
,.
..
,2

0
}.

O
th

er
p

a
ra

m
et

er
s

o
f

C
M

P
B

a
re

se
t

a
s

sh
ow

n
in

T
a
b

le
6
.1

.

m
∈
{1
,.
..
,5
}

m
∈
{1
,.
..
,1
0
}

m
∈
{1
,.
..
,2
0
}

F
(x

)
S
ta
ts
.

C
C
M
P
S
O

M
M
sP

S
O

M
S
sP

S
O

S
M
sP

S
O

C
C
M
P
S
O

M
M
sP

S
O

M
S
sP

S
O

S
M
sP

S
O

C
C
M
P
S
O

M
M
sP

S
O

M
S
sP

S
O

S
M
sP

S
O

f 6

M
ed

ia
n

2
.5
4
e+

0
0

5
.5
7
e+

0
0

1
.0
3
e+

0
2

1
.9
0
e+

0
2

4
.5
6
e+

0
0

8
.7
7
e+

0
0

1
.1
4
e+

0
2

1
.7
7
e+

0
2

9
.5
2
e+

0
0

1
.3
3
e+

0
1

1
.1
2
e+

0
2

2
.0
2
e+

0
2

M
ea
n

2
.6
8
e+

0
0

6
.2
1
e+

0
0

1
.0
2
e+

0
2

1
.9
3
e+

0
2

5
.1
9
e+

0
0

9
.0
9
e+

0
0

1
.1
8
e+

0
2

1
.7
9
e+

0
2

1
.0
1
e+

0
1

1
.3
3
e+

0
1

1
.1
6
e+

0
2

2
.0
8
e+

0
2

S
tE

rr
2
.0
6
e-
0
1

4
.9
4
e-
0
1

3
.3
3
e+

0
0

4
.5
9
e+

0
0

4
.3
3
e-
0
1

4
.6
9
e-
0
1

3
.9
6
e+

0
0

4
.8
4
e+

0
0

6
.3
6
e-
0
1

6
.9
7
e-
0
1

3
.9
7
e+

0
0

5
.8
0
e+

0
0

f 7

M
ed

ia
n

2
.3
6
e+

0
0

4
.6
1
e+

0
0

6
.0
1
e+

0
1

2
.6
3
e+

0
2

4
.4
2
e+

0
0

6
.5
3
e+

0
0

6
.6
8
e+

0
1

2
.4
7
e+

0
2

7
.0
4
e+

0
0

9
.3
2
e+

0
0

6
.7
3
e+

0
1

2
.6
2
e+

0
2

M
ea
n

2
.7
5
e+

0
0

5
.2
2
e+

0
0

6
.1
3
e+

0
1

2
.6
2
e+

0
2

4
.4
4
e+

0
0

6
.5
8
e+

0
0

6
.6
2
e+

0
1

2
.4
6
e+

0
2

7
.6
0
e+

0
0

9
.1
0
e+

0
0

6
.5
6
e+

0
1

2
.5
6
e+

0
2

S
tE

rr
1
.9
5
e-
0
1

5
.2
7
e-
0
1

2
.7
1
e+

0
0

3
.5
9
e+

0
0

2
.5
1
e-
0
1

3
.4
3
e-
0
1

2
.6
6
e+

0
0

3
.6
3
e+

0
0

3
.8
2
e-
0
1

3
.2
9
e-
0
1

2
.3
1
e+

0
0

4
.6
1
e+

0
0

f 8

M
ed

ia
n

2
.1
4
e+

0
0

3
.0
1
e+

0
0

1
.0
4
e+

0
2

2
.0
8
e+

0
2

3
.6
4
e+

0
0

5
.9
5
e+

0
0

1
.1
4
e+

0
2

2
.0
7
e+

0
2

8
.0
7
e+

0
0

1
.2
1
e+

0
1

1
.2
9
e+

0
2

2
.5
5
e+

0
2

M
ea
n

2
.1
5
e+

0
0

3
.1
6
e+

0
0

1
.0
1
e+

0
2

2
.1
1
e+

0
2

4
.2
0
e+

0
0

6
.2
2
e+

0
0

1
.1
7
e+

0
2

1
.9
6
e+

0
2

8
.5
3
e+

0
0

1
.2
8
e+

0
1

1
.2
6
e+

0
2

2
.5
7
e+

0
2

S
tE

rr
1
.7
7
e-
0
1

2
.0
8
e-
0
1

2
.6
3
e+

0
0

4
.3
3
e+

0
0

3
.4
7
e-
0
1

4
.8
6
e-
0
1

4
.2
3
e+

0
0

6
.1
5
e+

0
0

6
.0
3
e-
0
1

6
.7
1
e-
0
1

3
.8
0
e+

0
0

6
.5
3
e+

0
0

f 9

M
ed

ia
n

3
.4
1
e+

0
0

3
.6
4
e+

0
0

1
.9
2
e+

0
1

8
.6
1
e+

0
2

6
.0
8
e+

0
0

6
.7
3
e+

0
0

2
.1
7
e+

0
1

8
.1
6
e+

0
2

9
.5
5
e+

0
0

1
.1
1
e+

0
1

2
.4
7
e+

0
1

8
.3
8
e+

0
2

M
ea
n

3
.3
9
e+

0
0

3
.6
7
e+

0
0

1
.9
1
e+

0
1

8
.6
9
e+

0
2

6
.0
3
e+

0
0

6
.4
8
e+

0
0

2
.1
8
e+

0
1

8
.1
9
e+

0
2

1
.1
9
e+

0
1

1
.1
5
e+

0
1

2
.5
1
e+

0
1

8
.2
9
e+

0
2

S
tE

rr
1
.3
9
e-
0
1

7
.3
6
e-
0
2

3
.2
2
e-
0
1

1
.0
6
e+

0
1

1
.6
1
e-
0
1

1
.2
6
e-
0
1

2
.7
3
e-
0
1

1
.1
1
e+

0
1

2
.1
7
e+

0
0

4
.0
1
e-
0
1

8
.2
2
e-
0
1

4
.7
0
e+

0
0

f 1
0

M
ed

ia
n

6
.1
7
e+

0
0

8
.0
8
e+

0
0

1
.4
5
e+

0
1

7
.7
5
e+

0
0

7
.7
6
e+

0
0

8
.3
8
e+

0
0

1
.6
6
e+

0
1

8
.0
5
e+

0
0

6
.9
9
e+

0
0

8
.4
2
e+

0
0

1
.8
9
e+

0
1

8
.3
6
e+

0
0

M
ea
n

7
.3
0
e+

0
0

8
.6
3
e+

0
0

1
.6
1
e+

0
1

8
.5
1
e+

0
0

7
.7
7
e+

0
0

9
.6
7
e+

0
0

2
.0
1
e+

0
1

8
.2
2
e+

0
0

7
.7
6
e+

0
0

9
.1
9
e+

0
0

2
.1
1
e+

0
1

9
.1
9
e+

0
0

S
tE

rr
7
.5
2
e-
0
1

7
.2
4
e-
0
1

1
.6
4
e+

0
0

7
.2
7
e-
0
1

6
.1
1
e-
0
1

7
.9
2
e-
0
1

2
.6
6
e+

0
0

8
.0
0
e-
0
1

6
.2
4
e-
0
1

6
.9
0
e-
0
1

1
.8
8
e+

0
0

7
.0
9
e-
0
1

Scaling Up Dynamic Optimization Problems: A Divide-and-Conquer Approach 103

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

×10
5

10
0

10
2

10
4

CCMPSO MMsPSO MSsPSO SMsPSO

(a) Convergence plot for f6

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

×10
5

10
0

10
2

10
4

CCMPSO MMsPSO MSsPSO SMsPSO

(b) Convergence plot for f7

Figure 6.2: Convergence plot of CCMPSO, MMsPSO, MSsPSO and SMsPSO based
on the average current error of 31 runs on f6 and f7 for the first 20 environments.

These are all decomposition based where each component is optimized independently.

CCMPSO and MMsPSO use multiple swarms for each component whereas MSsPSO

uses a single swarm for each component. All these methods benefit from an ideal de-

composition which eliminates the issue of an exponentially growing number of peaks.

However, the comparison clearly shows that a special mechanism for tracking multiple

moving optima should be in place to obtain acceptable results. In other words, simple

mechanism such as re-initialization and injection of the best found solution into the

swarm are not sufficient for efficient handling of environmental changes.

Figure 6.2 shows the convergence plot of the four algorithms on f6 and f7. The conver-

gence plots are based on current error of the context vector after each function evaluation

for the first 20 environments. The figure shows that the algorithms try to find better

solutions until the end of an environment where the error jumps due to an environmen-

tal change. CCMPSO and MMsPSO which are decomposition-based and track multiple

optima outperform SMsPSO and MSsPSO across all environments. CCMPSO has a

Scaling Up Dynamic Optimization Problems: A Divide-and-Conquer Approach 104

clear advantage over MMsPSO due to its efficient resource allocation mechanism. As

can be seen in Fig. 6.2, for the first environment, the algorithms try to find uncovered

peaks to track them after environmental changes. That is why the results obtained

in the first environment are worse. This circumstance is more obvious for MMsPSO

and CCMPSO which suffer from uncovered peaks until the fifth environment. After this

phase, the algorithms are more stable and their results are improved because most peaks

are identified and the tracker swarms can converge faster to the new optimum after each

environmental change.

6.3.4.2 Robustness to dynamic changes

Table 6.9 shows the results obtained by the four algorithms on f6-f10 with different num-

bers of peaks. The results show that the performance of all algorithms deteriorates as the

number of peaks increases. However, CCMPSO maintains the best performance across

all three cases. For the multi-swarm algorithms (CCMPSO, MMsPSO, and SMsPSO)

the increase in the number of peaks results in more tracker swarms, which increases the

computational overhead of these algorithms. Among these methods, SMsPSO has the

worst performance and experiences an exponential growth in the number of peaks due

to its lack of decomposition (see Fig. 6.1). CCMPSO performs better than MMsPSO

thanks to its resource allocation mechanism, which makes it less susceptible to an in-

crease in the number of peaks (hence more tracker swarms). MSsPSO, which maintains

a single population, also suffers from an increase in the number of peaks. The reason

is that the increased number of peaks adds to the complexity of the landscape and

increases the likelihood of a premature convergence.

Table 6.10 shows the results obtained by the four algorithms on f6-f10 with different

shift severities. It is clear that stronger shift severities, i.e. large displacement in the

location of a peak, makes tracking more difficult and time consuming. Table 6.10 shows

that CCMPSO has the best overall performance across all three severity levels. The

results clearly show that CCMPSO has a better competitive advantage on problems with

stronger shift severities. The resource allocation mechanism of CCMPSO allows it to

prioritize its limited computational resources for tracking of important peaks. On simpler

problems with a smaller shift magnitude, other algorithms with no resource allocation

mechanism such MMsPSO can also track the peaks with a relatively good efficiency

and accuracy. This is because the number of available function evaluations between

successive environmental changes is large enough to track all the peaks accurately.

Table 6.11 shows the results obtained by the four algorithms on f6-f10 with different

change frequencies0. The results show that the performance of all methods declines

Scaling Up Dynamic Optimization Problems: A Divide-and-Conquer Approach 105

T
a
b
l
e

6
.1
0
:

R
es

u
lt

s
ob

ta
in

ed
b
y

al
go

ri
th

m
s

on
f 6

to
f 1

0
w

it
h

d
iff

er
en

t
sh

if
t

se
ve

ri
ty

va
lu

es
fo

r
ea

ch
p

ea
k

in
ea

ch
co

m
p

o
n

en
t.

T
h

e
va

lu
es

a
re

ra
n

d
om

iz
ed

in
th

e
fo

ll
ow

in
g

ra
n

ge
s

[0
.5
,1

],
[0
.5
,3

],
a
n

d
[0
.5
,5

].
O

th
er

p
a
ra

m
et

er
s

o
f

C
M

P
B

a
re

se
t

a
s

sh
ow

n
in

T
a
b

le
6
.1

.

S
∈
[0
.5
,1
]

S
∈
[0
.5
,3
]

S
∈
[0
.5
,5
]

F
(x

)
S
ta
ts
.

C
C
M
P
S
O

M
M
sP

S
O

M
S
sP

S
O

S
M
sP

S
O

C
C
M
P
S
O

M
M
sP

S
O

M
S
sP

S
O

S
M
sP

S
O

C
C
M
P
S
O

M
M
sP

S
O

M
S
sP

S
O

S
M
sP

S
O

f 6

M
ed

ia
n

3
.6
7
e+

0
0

6
.7
4
e+

0
0

1
.1
0
e+

0
2

1
.5
0
e+

0
2

4
.5
6
e+

0
0

8
.7
7
e+

0
0

1
.1
4
e+

0
2

1
.7
7
e+

0
2

6
.2
0
e+

0
0

1
.1
4
e+

0
1

1
.1
3
e+

0
2

2
.4
9
e+

0
2

M
ea
n

3
.8
2
e+

0
0

7
.2
7
e+

0
0

1
.1
5
e+

0
2

1
.5
3
e+

0
2

5
.1
9
e+

0
0

9
.0
9
e+

0
0

1
.1
8
e+

0
2

1
.7
9
e+

0
2

7
.1
5
e+

0
0

1
.1
8
e+

0
1

1
.1
9
e+

0
2

2
.4
7
e+

0
2

S
tE

rr
2
.8
5
e-
0
1

5
.2
7
e-
0
1

4
.3
0
e+

0
0

3
.1
2
e+

0
0

4
.3
3
e-
0
1

4
.6
9
e-
0
1

3
.9
6
e+

0
0

4
.8
4
e+

0
0

5
.5
1
e-
0
1

5
.7
2
e-
0
1

3
.9
4
e+

0
0

5
.6
6
e+

0
0

f 7

M
ed

ia
n

3
.7
9
e+

0
0

4
.2
6
e+

0
0

6
.2
6
e+

0
1

2
.1
2
e+

0
2

4
.4
2
e+

0
0

6
.5
3
e+

0
0

6
.6
8
e+

0
1

2
.4
7
e+

0
2

5
.8
4
e+

0
0

7
.7
5
e+

0
0

7
.0
1
e+

0
1

3
.1
2
e+

0
2

M
ea
n

4
.3
9
e+

0
0

4
.3
5
e+

0
0

6
.2
4
e+

0
1

2
.1
3
e+

0
2

4
.4
4
e+

0
0

6
.5
8
e+

0
0

6
.6
2
e+

0
1

2
.4
6
e+

0
2

6
.0
1
e+

0
0

7
.9
8
e+

0
0

6
.8
0
e+

0
1

3
.1
3
e+

0
2

S
tE

rr
3
.0
2
e-
0
1

2
.2
1
e-
0
1

2
.6
4
e+

0
0

2
.3
9
e+

0
0

2
.5
1
e-
0
1

3
.4
3
e-
0
1

2
.6
6
e+

0
0

3
.6
3
e+

0
0

4
.1
2
e-
0
1

4
.0
5
e-
0
1

2
.5
8
e+

0
0

3
.9
6
e+

0
0

f 8

M
ed

ia
n

3
.5
3
e+

0
0

4
.0
2
e+

0
0

1
.2
0
e+

0
2

1
.7
3
e+

0
2

3
.6
4
e+

0
0

5
.9
5
e+

0
0

1
.1
4
e+

0
2

2
.0
7
e+

0
2

5
.0
5
e+

0
0

7
.6
0
e+

0
0

1
.2
4
e+

0
2

2
.8
9
e+

0
2

M
ea
n

3
.4
3
e+

0
0

4
.6
8
e+

0
0

1
.1
9
e+

0
2

1
.7
4
e+

0
2

4
.2
0
e+

0
0

6
.2
2
e+

0
0

1
.1
7
e+

0
2

1
.9
6
e+

0
2

5
.3
0
e+

0
0

7
.8
0
e+

0
0

1
.1
8
e+

0
2

2
.8
6
e+

0
2

S
tE

rr
3
.3
3
e-
0
1

4
.4
9
e-
0
1

4
.0
8
e+

0
0

4
.3
5
e+

0
0

3
.4
7
e-
0
1

4
.8
6
e-
0
1

4
.2
3
e+

0
0

6
.1
5
e+

0
0

3
.7
8
e-
0
1

4
.8
9
e-
0
1

4
.1
4
e+

0
0

7
.1
4
e+

0
0

f 9

M
ed

ia
n

7
.6
3
e+

0
0

5
.0
4
e+

0
0

1
.8
7
e+

0
1

7
.0
2
e+

0
2

6
.0
8
e+

0
0

6
.7
3
e+

0
0

2
.1
7
e+

0
1

8
.1
6
e+

0
2

5
.9
3
e+

0
0

7
.9
7
e+

0
0

2
.2
5
e+

0
1

9
.5
3
e+

0
2

M
ea
n

7
.9
5
e+

0
0

5
.0
4
e+

0
0

1
.8
7
e+

0
1

7
.0
0
e+

0
2

6
.0
3
e+

0
0

6
.4
8
e+

0
0

2
.1
8
e+

0
1

8
.1
9
e+

0
2

6
.0
7
e+

0
0

7
.7
6
e+

0
0

2
.2
4
e+

0
1

9
.6
1
e+

0
2

S
tE

rr
2
.2
8
e-
0
1

1
.2
7
e-
0
1

2
.0
3
e-
0
1

5
.6
1
e+

0
0

1
.6
1
e-
0
1

1
.2
6
e-
0
1

2
.7
3
e-
0
1

1
.1
1
e+

0
1

1
.2
9
e-
0
1

1
.7
6
e-
0
1

1
.9
2
e-
0
1

8
.5
6
e+

0
0

f 1
0

M
ed

ia
n

6
.0
5
e+

0
0

6
.4
3
e+

0
0

1
.6
5
e+

0
1

6
.5
3
e+

0
0

7
.7
6
e+

0
0

8
.3
8
e+

0
0

1
.6
6
e+

0
1

8
.0
5
e+

0
0

9
.4
8
e+

0
0

1
.0
3
e+

0
1

1
.6
6
e+

0
1

9
.4
8
e+

0
0

M
ea
n

6
.7
2
e+

0
0

7
.3
6
e+

0
0

2
.0
5
e+

0
1

7
.5
9
e+

0
0

7
.7
7
e+

0
0

9
.6
7
e+

0
0

2
.0
1
e+

0
1

8
.2
2
e+

0
0

9
.5
5
e+

0
0

1
.1
5
e+

0
1

1
.9
9
e+

0
1

1
.0
3
e+

0
1

S
tE

rr
4
.8
2
e-
0
1

5
.4
4
e-
0
1

2
.6
6
e+

0
0

7
.5
3
e-
0
1

6
.1
1
e-
0
1

7
.9
2
e-
0
1

2
.6
6
e+

0
0

8
.0
0
e-
0
1

7
.8
5
e-
0
1

9
.2
9
e-
0
1

2
.1
0
e+

0
0

8
.1
1
e-
0
1

Scaling Up Dynamic Optimization Problems: A Divide-and-Conquer Approach 106

T
a
b
l
e
6
.1
1
:

R
es

u
lt

s
ob

ta
in

ed
b
y

al
go

ri
th

m
s

on
f 6

to
f 1

0
w

it
h

d
iff

er
en

t
ch

a
n

g
e

fr
eq

u
en

ci
es

:
2
0
0D

,
5
0
0
D

,
a
n

d
1
0
0
0D

.
O

th
er

p
a
ra

m
et

er
s

o
f

C
M

P
B

a
re

se
t

a
s

sh
ow

n
in

T
a
b

le
6
.1

.

f
=

2
0
0
D

f
=

5
0
0
D

f
=

1
0
0
0
D

F
(x

)
S
ta
ts
.

C
C
M
P
S
O

M
M
sP

S
O

M
S
sP

S
O

S
M
sP

S
O

C
C
M
P
S
O

M
M
sP

S
O

M
S
sP

S
O

S
M
sP

S
O

C
C
M
P
S
O

M
M
sP

S
O

M
S
sP

S
O

S
M
sP

S
O

f 6

M
ed

ia
n

1
.8
3
e+

0
1

2
.9
0
e+

0
1

1
.9
3
e+

0
2

2
.7
6
e+

0
2

4
.5
6
e+

0
0

8
.7
7
e+

0
0

1
.1
4
e+

0
2

1
.7
7
e+

0
2

1
.9
0
e+

0
0

2
.8
4
e+

0
0

9
.0
8
e+

0
1

1
.6
2
e+

0
2

M
ea
n

1
.9
8
e+

0
1

2
.9
1
e+

0
1

2
.0
3
e+

0
2

2
.7
6
e+

0
2

5
.1
9
e+

0
0

9
.0
9
e+

0
0

1
.1
8
e+

0
2

1
.7
9
e+

0
2

2
.2
5
e+

0
0

3
.0
0
e+

0
0

8
.8
4
e+

0
1

1
.6
2
e+

0
2

S
tE

rr
8
.6
2
e-
0
1

1
.1
7
e+

0
0

6
.5
9
e+

0
0

5
.6
5
e+

0
0

4
.3
3
e-
0
1

4
.6
9
e-
0
1

3
.9
6
e+

0
0

4
.8
4
e+

0
0

2
.5
9
e-
0
1

2
.4
4
e-
0
1

2
.9
0
e+

0
0

3
.8
0
e+

0
0

f 7

M
ed

ia
n

1
.6
1
e+

0
1

2
.0
0
e+

0
1

1
.0
5
e+

0
2

3
.3
2
e+

0
2

4
.4
2
e+

0
0

6
.5
3
e+

0
0

6
.6
8
e+

0
1

2
.4
7
e+

0
2

2
.1
6
e+

0
0

1
.9
1
e+

0
0

4
.5
5
e+

0
1

2
.3
0
e+

0
2

M
ea
n

1
.6
0
e+

0
1

1
.9
6
e+

0
1

1
.0
3
e+

0
2

3
.3
4
e+

0
2

4
.4
4
e+

0
0

6
.5
8
e+

0
0

6
.6
2
e+

0
1

2
.4
6
e+

0
2

2
.3
9
e+

0
0

2
.1
9
e+

0
0

4
.7
0
e+

0
1

2
.2
5
e+

0
2

S
tE

rr
6
.0
1
e-
0
1

7
.7
9
e-
0
1

3
.4
7
e+

0
0

3
.8
8
e+

0
0

2
.5
1
e-
0
1

3
.4
3
e-
0
1

2
.6
6
e+

0
0

3
.6
3
e+

0
0

2
.0
3
e-
0
1

1
.7
9
e-
0
1

2
.1
5
e+

0
0

2
.8
6
e+

0
0

f 8

M
ed

ia
n

1
.3
3
e+

0
1

2
.3
4
e+

0
1

1
.7
3
e+

0
2

3
.1
8
e+

0
2

3
.6
4
e+

0
0

5
.9
5
e+

0
0

1
.1
4
e+

0
2

2
.0
7
e+

0
2

2
.2
4
e+

0
0

2
.1
3
e+

0
0

9
.8
9
e+

0
1

1
.8
4
e+

0
2

M
ea
n

1
.4
4
e+

0
1

2
.3
9
e+

0
1

1
.7
6
e+

0
2

3
.2
0
e+

0
2

4
.2
0
e+

0
0

6
.2
2
e+

0
0

1
.1
7
e+

0
2

1
.9
6
e+

0
2

2
.4
7
e+

0
0

2
.5
2
e+

0
0

1
.0
3
e+

0
2

1
.8
9
e+

0
2

S
tE

rr
6
.5
0
e-
0
1

1
.1
8
e+

0
0

5
.2
9
e+

0
0

8
.2
6
e+

0
0

3
.4
7
e-
0
1

4
.8
6
e-
0
1

4
.2
3
e+

0
0

6
.1
5
e+

0
0

2
.7
8
e-
0
1

3
.0
0
e-
0
1

3
.8
8
e+

0
0

4
.7
3
e+

0
0

f 9

M
ed

ia
n

1
.7
4
e+

0
1

2
.7
9
e+

0
1

5
.8
2
e+

0
1

1
.0
5
e+

0
3

6
.0
8
e+

0
0

6
.7
3
e+

0
0

2
.1
7
e+

0
1

8
.1
6
e+

0
2

3
.5
4
e+

0
0

1
.3
3
e+

0
0

1
.1
6
e+

0
1

7
.3
0
e+

0
2

M
ea
n

1
.7
5
e+

0
1

2
.7
9
e+

0
1

5
.8
3
e+

0
1

1
.0
4
e+

0
3

6
.0
3
e+

0
0

6
.4
8
e+

0
0

2
.1
8
e+

0
1

8
.1
9
e+

0
2

3
.6
5
e+

0
0

1
.3
8
e+

0
0

1
.1
4
e+

0
1

7
.1
8
e+

0
2

S
tE

rr
2
.5
3
e-
0
1

4
.8
5
e-
0
1

5
.5
4
e-
0
1

9
.7
3
e+

0
0

1
.6
1
e-
0
1

1
.2
6
e-
0
1

2
.7
3
e-
0
1

1
.1
1
e+

0
1

1
.3
2
e-
0
1

6
.4
5
e-
0
2

1
.9
8
e-
0
1

4
.4
2
e+

0
0

f 1
0

M
ed

ia
n

1
.2
0
e+

0
1

1
.5
1
e+

0
1

1
.9
7
e+

0
1

1
.3
6
e+

0
1

7
.7
6
e+

0
0

8
.3
8
e+

0
0

1
.6
6
e+

0
1

8
.0
5
e+

0
0

6
.0
3
e+

0
0

6
.1
2
e+

0
0

1
.7
7
e+

0
1

6
.7
5
e+

0
0

M
ea
n

1
.2
1
e+

0
1

1
.5
6
e+

0
1

2
.2
1
e+

0
1

1
.4
4
e+

0
1

7
.7
7
e+

0
0

9
.6
7
e+

0
0

2
.0
1
e+

0
1

8
.2
2
e+

0
0

5
.9
5
e+

0
0

6
.2
5
e+

0
0

1
.8
5
e+

0
1

7
.5
8
e+

0
0

S
tE

rr
8
.6
7
e-
0
1

1
.1
5
e+

0
0

2
.1
4
e+

0
0

1
.1
2
e+

0
0

6
.1
1
e-
0
1

7
.9
2
e-
0
1

2
.6
6
e+

0
0

8
.0
0
e-
0
1

4
.1
4
e-
0
1

4
.2
3
e-
0
1

2
.3
1
e+

0
0

6
.8
8
e-
0
1

Scaling Up Dynamic Optimization Problems: A Divide-and-Conquer Approach 107

when the change frequency is high (i.e., when the number of fitness evaluations between

successive environmental changes is lower). A high change frequency means that the

algorithm has limited time to do an accurate global and local search, which leads to

degraded performance. Despite this, a desired property of CCMPSO is its good per-

formance on problems with a high change frequency. The results clearly show that the

CCMPSO gains a significant competitive edge over other algorithms on such problems.

This can be attributed to its resource allocation mechanism which allows it to benefit

from the saved resources to respond to rapid environmental changes more efficiently.

This property is less crucial for problems with low change frequencies, due to the avail-

ability of sufficient time between environmental changes for accurate tracking of all the

peaks.

6.4 Summary

In this chapter, a thorough investigation of large-scale dynamic optimization problems

(DOPs) was presented. A formal analysis of the moving peaks benchmark showed that

its lack of modularity limits its applicability for the study of large-scale DOPs. A new

benchmark generator based on the moving peaks benchmark was proposed for large-

scale DOPs. The proposed benchmark was made by composing several weighted MPBs

in which an automated weight regulates the equilibrium between fully separable com-

ponents and the nonseparable ones. Additionally, a manual weight is used to artificially

create imbalance between contribution of different components. Moreover, a cooperative

coevolutionary multi-swarm PSO (CCMPSO) was proposed which benefits from a com-

putational resource allocation mechanism capable of saving resources on both component

level and swarm level. A wide range of problem settings were used to investigate the

performance of the proposed algorithm against two other divide-and-conquer methods.

The algorithms were tested on problem instances with different dimensions, variable

interaction structures, shift severities, number of peaks, and change frequencies. The

results showed that the problem becomes more challenging when shift severities of peaks,

dimension of problem space, number of peaks, and change frequency are higher. How-

ever, the reported results showed that the proposed CCMPSO algorithm outperforms

other algorithms on more challenging problems with a wider margin.

Despite improving the baseline with up to two orders of magnitude, the proposed frame-

work has several shortcomings that can limit its applicability in certain situations. The

decomposition algorithm used in this chapter cannot exploit the structure of problems

Scaling Up Dynamic Optimization Problems: A Divide-and-Conquer Approach 108

with overlapping components. Many overlapping problems have sparse interaction ma-

trices (Omidvar et al., 2015); however, the proposed framework does not have the nec-

essary mechanisms to exploit this sparsity; therefore, treating them as fully nonsepara-

ble. Optimal decomposition of overlapping functions is an open question even in static

optimization, which becomes a greater challenge in dynamic environments. Another de-

composition related issue is optimal grouping of separable variables. Although one may

consider a full decomposition of separable variables into a series of 1-dimensional sub-

problems an obvious choice, empirical evidence suggests that such decomposition is sub-

optimal and increases the computational overhead of cooperative coevolution (Omidvar

et al., 2014b). Grouping of separable variables may decrease this computational over-

head; however, imbalance considerations and the phenomenon of exponentially growing

“pseudo” peaks discussed in Section 6.1 makes finding an effective decomposition a

nontrivial task. Finally, dealing with fully nonseparable problems with no apparent

exploitable modularity is another important issue missing form the current study.

Chapter 7

Conclusion

The thesis has tried to investigate two missing links between academic DOPs research

and real-world problems i.e. DOPs with switching cost and large-scale DOPs. These

two classes of DOPs are commonly found in real-world scenarios but have rarely been

studied in the literature. The results of this thesis in continuous large-scale DOPs and

DOPs with switching cost, which are among the first in these areas, provide a deeper

understanding of the unknown characteristics and the solvability of these problems, and

suggest some promising ways to solve these challenging problems using multi-swarm

PSO methods.

7.1 Summary of major contributions

Details of the contributions in this thesis have been described at the end of each chapter.

Here the most significant contributions are summarized as follows:

1. DOPs with PSDRs were investigated and their characteristics were identified.

These problems have two objectives i.e. the optimality objective and the displace-

ment between the consecutive solutions. Therefore, these problems are categorized

as multi-objective problems with dynamic search space. On the other hand, the

displacement objective has time-linkage feature because choosing a solution for

each environment affects the future problem space. After identifying the charac-

teristics of these problems, a novel multi-objective and time-linkage based method

was developed for solving them. The algorithm used a simple linear weighted sum

of objectives for handling multi-objective characteristic. Moreover, it used the

information gathered by sub-swarms for anticipating the future situations of the

chosen solutions. The performance of the proposed method were compare with

109

Conclusion 110

of the current methods. Experimental results indicated the poor effectiveness of

the current methods on these problems and superiority of the proposed algorithm.

However, a weakness of the proposed algorithm is its multi-objective handling

mechanism which is not efficient in many problems.

2. The shortcomings of the current ROOT methods were investigated. It was shown

that using predictors and approximators is not efficient for large problems i.e.

problems with larger number of dimension and the ones with wider boundaries.

Additionally, the drawbacks of the state-of-the-art survival time metric were in-

dicated for ROOT. In fact the produced search space by this metric is very hard

for optimization methods, especially in higher dimensions. A new framework was

proposed in which the robust solutions were chosen by a decision making strategy.

This strategy used the gathered information by sub-populations for choosing the

next solution. Four different strategies were proposed which used different types

of information. The experimental results showed that choosing robust solutions by

learning the environmental behavior is significantly more efficient than the state-of-

the-art methods. However, the proposed framework was a reaction based method

which means that it is not capable of working in DOPs in which the changes are

not detectable. Additionally, if peaks change very severely, the multi-population

method loses its efficiency which deteriorates the performance of the framework.

3. An adaptive solution chooser (ASC) algorithm was proposed for DOPs with switch-

ing costs. ASC decided if a new solution is to be chosen or the previous one can be

kept based on the current solution’s fitness values, the fitness of other found solu-

tions with better quality and their switching cost from the current solution. ASC

is the first method that considered switching cost in the decision making process

for changing or keeping solutions. In addition, a new performance indicator was

proposed in which the switching cost was considered as a penalty value. Therefore,

ASC monitored covered peaks and checked if there was any peak that the benefit

from changing solution to it outweighed the penalty related to the switching cost.

ASC used the same approach as the proposed framework in Chapter 4 i.e. finding

robust solutions based on the learned behavior of peaks. The experimental results

on a wide range of problem instances showed that ASC outperforms ROOT and

TMO methods with the same multi-population approach.

4. large-scale DOPs were investigated in this thesis which rarely have been studied

before. This thesis investigated this class of problems and identified its particu-

lar challenges. Scalability issues and exponentially growing number of peaks were

the most important identified challenges. Additionally, in the experiments, the

Conclusion 111

results indicated the poor performance of the current DOPs algorithms for opti-

mizing large-scale DOPs. Moreover, it was shown that although the previous DOP

benchmarks are scalable, lack of modularity makes them unsuitable for large-scale

studies. A formal analysis for the moving peaks benchmark was provided to prove

its lack of modularity. Then, a new benchmark generator based on the MPB

was proposed for large-scale DOPs. The proposed benchmark was capable of

generating problem instances with real-world characteristics including modularity,

heterogeneity, imbalance and high dimensionality. Furthermore, a cooperative co-

evolutionary multi-swarm PSO (CCMPSO) was proposed which benefited from a

bi-level computational resource allocation mechanism capable of saving resources

on both component level and swarm level. The experimental results showed the

effectiveness of the proposed algorithm.

7.2 Future work

There are many related research topics in DOP domain that can be pursued in the

future. Among these topics, some possible interesting future research directions are:

• Focusing on dynamic constrained optimization problems (DCOPs). Many real-

world DOPs are constrained. In the DCOPs, there are still significant gaps between

academic research and real-world DOPs which need to be addressed.

• Focusing on dynamic multi-objective optimization problems (DMOOPs). Al-

though this class of DOPs has been studied considerably, from the dynamic aspect

of problems, there are still noticeable gaps between academic research and real-

world DOPs which needs to be considered in the future works.

• Focusing on incremental optimization problems (IOPs). IOPs are a class of DOPs

in which decision variables will be added to the problem over time. Therefore, the

number of dimensions and variable interactions change over time. Additionally,

the shape of problem landscape for previous dimensions may be changed after

adding new variables to the problem.

As to the particular research topics that have been studied in this thesis, because the

works that have been done in the thesis are only among the first steps in these topics,

there are a lot of future works to be addressed. Some possible directions for future

extensions are discussed below:

Conclusion 112

• In the ROOT area, future work will include a study of other peak’s behavioral

information and design of new strategies for choosing robust solutions.

• Working on ROOT in dynamic constrained optimization problems will be an im-

portant topic since many real-world problems are constrained. Therefore, the

algorithm needs to consider robustness based on feasibility of solutions along with

their fitness.

• In the large-scale domain, future work will include a study of large-scale dynamic

optimization problems whose number of components, dimensions, and strength

of interactions change over time. Additionally, working on the grouping fully

separable dimensions and decomposing fully nonseparable subfunctions are other

important research topics.

Appendices

113

Appendix A

Publications resulting from this

thesis

A.1 Refereed or submitted journal papers

1. D. Yazdani, T. T. Nguyen, and J. Branke, “Robust optimization over time by

learning problem space characteristics,” IEEE Transactions on Evolutionary Com-

putation, (Accepted), 2018

2. D. Yazdani, M. N. Omidvar, J. Branke, T. T. Nguyen, and X. Yao, “Scaling up

dynamic optimization problems: A divide-and-conquer approach,” IEEE Transac-

tions on Evolutionary Computation, Under review (Past the first round), 2018

A.2 Refereed conference papers

3. D. Yazdani, J. Branke, M. N. Omidvar, T. T. Nguyen, and X. Yao, “Changing

or keeping solutions in dynamic optimization problems with switching costs,” in

The Genetic and Evolutionary Computation Conference (GECCO). ACM, , pp.

1095-1102, 2018

4. D. Yazdani, T. T. Nguyen, J. Branke, and J. Wang, “A multi-objective time-linkage

approach for dynamic optimization problems with previous-solution displacement

restriction,” in Applications of Evolutionary Computation, K. Sim and P. Kauf-

mann, Eds. Lecture Notes in Computer Science, 2018, vol. 10784, pp. 864-878

(Nominated for the best paper award)

114

Appendix 115

5. D. Yazdani, T. T. Nguyen, J. Branke, and J. Wang, “A new multi-swarm particle

swarm optimization for robust optimization over time,” in Applications of Evolu-

tionary Computation, G. Squillero and K. Sim, Eds. Springer Lecture Notes in

Computer Science, 2017, vol. 10200, pp. 99-109

The following lists materials (or part) of the publications presented in the thesis:

• Chapter 2 : publications [1,2,3,4,5]

• Chapter 3 : publication [4]

• Chapter 4 : publications [1,5]

• Chapter 5 : publication [3]

• Chapter 6 : publication [2]

Bibliography

J. A. D. Atkin, E. K. Burke, J. S. Greenwood, and D. Reeson. On-line decision support

for take-off runway scheduling with uncertain taxi times at london heathrow airport.

Journal of Scheduling, 11(5):323–346, 2008. doi: 10.1007/s10951-008-0065-9.

G. Avigad, E. Eisenstadt, and O. Schuetze. Handling changes of performance require-

ments in multi-objective problems. Journal of Engineering Design, 23(8):597–617,

2010. doi: 10.1080/09544828.2011.630656.

R. Azzouz, S. Bechikh, and L. B. Said. Dynamic multi-objective optimization using

evolutionary algorithms: A survey. Recent Advances in Evolutionary Multi-objective

Optimization, 20:31–70, 2017.

H. G. Beyer and B. Sendhoff. Robust optimization - a comprehensive survey. Computer

Methods in Applied Mechanics and Engineering, 196(33-34):3190–3218, 2007.

S. Bird and X. Li. Using regression to improve local convergence. In IEEE Congress

on Evolutionary Computation, pages 592–599. IEEE, 2007. doi: 10.1109/CEC.2007.

4424524.

T. Blackwell and J. Branke. Multiswarms, exclusion, and anti-convergence in dynamic

environments. IEEE Transactions on Evolutionary Computation, 10(4):459–472, 2006.

doi: 10.1109/TEVC.2005.857074.

T. Blackwell, J. Branke, and X. Li. Particle swarms for dynamic optimization problems.

In C. Blum and D. Merkle, editors, Swarm Intelligence: Introduction and Applications,

pages 193–217. Springer, 2008.

P. A. N. Bosman. Learning, anticipation and time-deception in evolutionary online dy-

namic optimization. In Annual Workshop on Genetic and Evolutionary Computation,

GECCO ’05, pages 39–47. ACM, 2005. doi: 10.1145/1102256.1102264.

P. A. N. Bosman and H. L. Poutré. Learning and anticipation in online dynamic opti-

mization with evolutionary algorithms: The stochastic case. In Annual Conference on

Genetic and Evolutionary Computation, GECCO ’07, pages 1165–1172. ACM, 2007.

doi: 10.1145/1276958.1277187.

116

Bibliography 117

G. E. P. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung. Time series analysis:

forecasting and control. Wiley, 2015.

J. Branke. Memory enhanced evolutionary algorithms for changing optimization prob-

lems. In IEEE Congress on Evolutionary Computation, pages 1875–1882. IEEE, 1999.

doi: 10.1109/CEC.1999.785502.

J. Branke. Evolutionary Optimization in Dynamic Environments. Springer US, 2002.

J. Branke and D. C. Mattfeld. Anticipation in dynamic optimization: The scheduling

case. In M. S. et al, editor, Parallel Problem Solving from Nature, volume 1917, pages

253–262. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 2000.

J. Branke and D. C. Mattfeld. Anticipation and flexibility in dynamic scheduling. In-

ternational Journal of Production Research, 43(15):3103–3129, 2005.

J. Branke, T. Kaussler, C. Smidt, and H. Schmeck. A multipopulation approach to

dynamic optimization problems. In Evolutionary Design and Manufacture, pages 299–

307, 2000. doi: 10.1007/978-1-4471-0519-0 24.

C. Bu, W. Luo, T. Zhu, and L. Yue. Solving online dynamic time-linkage problems

under unreliable prediction. Applied Soft Computing, 56:702–716, 2017. doi: 10.1016/

j.asoc.2016.11.005.

L. Bui, H. Abbass, and J. Branke. Multiobjective optimization for dynamic environ-

ments. In IEEE Congress on Evolutionary Computation (CEC), pages 2349–2356.

IEEE, 2005. doi: 10.1109/CEC.2005.1554987.

L. T. Bui, Z. Michalewicz, E. Parkinson, and M. B. Abello. Adaptation in dynamic

environments: A case study in mission planning. IEEE Transactions on Evolutionary

Computation, 16(2):190–209, 2012.

M. Camara, J. Ortega, and F. J. Toro. Parallel processing for multi-objective opti-

mization in dynamic environments. In IEEE International Parallel and Distributed

Processing Symposium, pages 1–8, 2007.

C. Caramanis, S. Mannor, and H. Xu. Robust optimization in machine learning. In S. S.

et al., editor, Optimization in machine learning, page 369402. MIT Press, Cambridge,

MA, USA, 2011.

V. Chankong and Y. Y. Haimes. Multiobjective decision making theory and methodology.

New York: North-Holland, 1983.

H. Chen, M. Li, and X. Chen. Using diversity as an additional-objective in dynamic

multi-objective optimization algorithms. In International Symposium on Electronic

Commerce and Security, volume 1, pages 484–487, 2009.

Bibliography 118

W. Chen, T. Weise, Z. Yang, and K. Tang. Large-scale global optimization using coop-

erative coevolution with variable interaction learning. In International Conference on

Parallel Problem Solving from Nature, pages 300–309. Springer, 2010.

H. G. Cobb and J. J. Grefenstette. Genetic algorithms for tracking changing environ-

ments. In International Conference on Genetic Algorithms, pages 523–530. Morgan

Kaufmann Publishers Inc., 1993.

C. Cruz, J. R. Gonzlez, and D. A. Pelta. Optimization in dynamic environments– a

survey on problems, methods and measures. Soft Computing, 15(7):14271448, 2011.

K. Deb, U. B. R. N., and S. Karthik. Dynamic multi-objective optimization and decision-

making using modified nsga-ii: A case study on hydro-thermal power scheduling. In

S. O. et al., editor, Evolutionary Multi-Criterion Optimization, volume 4403, pages

803–817. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 2007.

W. Du and B. Li. Multi-strategy ensemble particle swarm optimization for dynamic

optimization. Information Sciences, 178(15):3096–3109, 2008. doi: 10.1016/j.ins.

2008.01.020.

W. Du, Y. Tang, S. Y. S. Leung, L. Tong, A. V. Vasilakos, and F. Qian. Robust or-

der scheduling in the discrete manufacturing industry: A multiobjective optimization

approach. IEEE Transactions on Industrial Informatics, 14(1):253–264, 2018.

M. C. du Plessis and A. P. Engelbrecht. Using competitive population evaluation in

a differential evolution algorithm for dynamic environments. European Journal of

Operational Research, 218(1):7–20, 2012. doi: 10.1016/j.ejor.2011.08.031.

R. Eberhart and Y. Shi. Comparing inertia weights and constriction factors in particle

swarm optimization. In IEEE Congress on Evolutionary Computation, volume 1,

pages 84–88. IEEE, 2001. doi: 10.1109/CEC.2000.870279.

D. E.Wilkins, S. F.Smith, L. A.Kramer, T. J.Lee, and T. W.Rauenbusch. Airlift mission

monitoring and dynamic rescheduling. Engineering Applications of Artificial Intelli-

gence, 21(2):141–155, 2008. doi: 10.1016/j.engappai.2007.04.001.

M. Farina, K. Deb, and P. Amato. Dynamic multiobjective optimization problems: test

cases, approximations, and applications. IEEE Transaction on Evolutionary Compu-

tation, 8(5):425–442, 2004. doi: 10.1109/TEVC.2004.831456.

A. Fertis. A robust optimization approach to statistical estimation problems. PhD thesis,

Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer

Science., 2009.

Bibliography 119

H. Fu, B. Sendhoff, K. Tang, and X. Yao. Finding robust solutions to dynamic optimiza-

tion problems. In Applications of Evolutionary Computation, volume 7835, pages 616–

625. Lecture Notes in Computer Science, 2013. doi: 10.1007/978-3-642-37192-9 62.

H. Fu, B. Sendhoff, K. Tang, and X. Yao. Robust optimization over time: problem dif-

ficulties and benchmark problems. IEEE Transactions on Evolutionary Computation,

19(5):731–745, 2015. doi: 10.1109/TEVC.2014.2377125.

V. Gabrel, C. Murat, and A. Thiele. Recent advances in robust optimization: An

overview. European Journal of Operational Research, 235(3):471–483, 2014.

C.-K. Goh and K. C. Tan. Evolutionary Multi-objective Optimization in Uncertain

Environments. Springer: Studies in Computational Intelligence, 2004.

J. J. Grefenstette. Evolvability in dynamic fitness landscapes: a genetic algorithm

approach. In Congress on Evolutionary Computation-CEC99, volume 3, pages 2031–

2038, 1999.

H. Greiner. Robust filter design by stochastic optimization. In SPIE 2253, Optical

Interference Coatings, volume 2253, 1994.

Y. Guo, M. Chen, H. Fu, and Y. Liu. Find robust solutions over time by two-layer

multi-objective optimization method. In IEEE Congress on Evolutionary Computation

(CEC), pages 1528–1535. IEEE, 2014. doi: 10.1109/CEC.2014.6900241.

I. Hatzakis and D. Wallace. Dynamic multi-objective optimization with evolutionary

algorithms: A forward-looking approach. In Annual Conference on Genetic and Evo-

lutionary Computation, pages 1201–1208, 2006.

J. Helton. Uncertainty and sensitivity analysis in the presence of stochastic and sub-

jective uncertainty. Journal of Statistical Computation and Simulation, 57(1-4):3–76,

1997.

Y. Huang, Y. Ding, K. Hao, and Y. Jin. A multi-objective approach to robust optimiza-

tion over time considering switching cost. Information Sciences, 394-395:183–197,

2017. doi: 10.1016/j.ins.2017.02.029.

Y. Jin and J. Branke. Evolutionary optimization in uncertain environments-a survey.

IEEE Transactions on Evolutionary Computation, 9(3):303–317, 2005.

Y. Jin, K. Tang, X. Yu, B. Sendhoff, and X. Yao. A framework for finding robust

optimal solutions over time. Memetic Computing, 5(01):3–18, 2013. doi: 10.1007/

s12293-012-0090-2.

Bibliography 120

Y. jun Shi, H. fei Teng, and Z. qiang Li. Cooperative co-evolutionary differential evolu-

tion for function optimization. In L. W. et al., editor, Advances in Natural Compu-

tation, volume 3611, pages 1080–1088. Lecture Notes in Computer Science, Springer,

Berlin, Heidelberg, 2005.

J. Kennedy and R. Eberhart. Particle swarm optimization. In International Conference

on Neural Networks, volume 04, pages 1942–1948. IEEE, 1995. doi: 10.1109/ICNN.

1995.488968.

W. T. Koo, C. K. Goh, and K. C. Tan. A predictive gradient strategy for multiobjective

evolutionary algorithms in a fast changing environment. Memetic Computing, 2(2):

87110, 2010.

C. Li and S. Yang. Optimization in dynamic environments utilizing a novel method

based on particle swarm optimization. In 4th International Conference on Natural

Computation, pages 624–628. IEEE, 2008. doi: 10.1109/ICNC.2008.313.

C. Li and S. Yang. A clustering particle swarm optimizer for dynamic optimization.

In IEEE Congress on Evolutionary Computation, pages 439–446. IEEE, 2009. doi:

10.1109/CEC.2009.4982979.

C. Li, S. Yang, T. T. Nguyen, E. L. Yu, X. Yao, Y. Jin, H.-G. Beyer, and P. N. Suganthan.

Benchmark generator for cec’2009 competition on dynamic optimization. Technical

report, Center for Computational Intelligence, 2008.

C. Li, T. T. Nguyen, E. L. Yu, X. Yao, Y. Jin, and H. G. Beyer. Benchmark generator

for cec 2009 competition on dynamic optimization. Technical report, Department of

Computer Science, University of Leicester, UK, 2009.

C. Li, T. T. Nguyen, M. Yang, M. Mavrovouniotis, and S. Yang. An adaptive multi-

population framework for locating and tracking multiple optima. IEEE Transac-

tions on Evolutionary Computation, 20(05):590–605, 2016. doi: 10.1109/TEVC.2015.

2504383.

X. Li and X. Yao. Cooperatively coevolving particle swarms for large scale optimization.

IEEE Transactions on Evolutionary Computation, 16(2):210–224, 2012.

X. Li, K. Tang, M. N. Omidvar, Z. Yang, , and K. Qin. Benchmark functions for the

CEC2013 special session and competition on large-scale global optimization. Technical

report, RMIT University, 2013.

D. Lim, Y.-S. Ong, Y. Jin, B. Sendhoff, and B. S. Lee. Inverse multi-objective robust

evolutionary design. Genetic Programming and Evolvable Machines, 7(4):383–404,

2006.

Bibliography 121

C. Liu. New dynamic multiobjective evolutionary algorithm with core estimation of

distribution. In 2010 International Conference on Electrical and Control Engineering,

pages 1345–1348, 2010.

J. Liu and K. Tang. Scaling up covariance matrix adaptation evolution strategy using

cooperative coevolution. In H. Y. et al., editor, Intelligent Data Engineering and

Automated Learning, volume 8206, pages 350–357. Lecture Notes in Computer Science,

Springer, Berlin, Heidelberg, 2013.

W. Luo, B. Yang, C. Bu, and X. Lin. A hybrid particle swarm optimization for high-

dimensional dynamic optimization. In Y. Shi, K. C. Tan, M. Zhang, K. Tang, X. Li,

Q. Zhang, Y. Tan, M. Middendorf, and Y. Jin, editors, Simulated Evolution and

Learning, volume 10593, pages 981–993. Springer Lecture Notes in Computer Science,

2017. doi: 10.1007/978-3-319-68759-9 81.

S. Mahadevan and R. Rebba. Inclusion of model errors in reliability-based optimization.

Journal of Mechanical Design, 128(4):936–944, 2006.

S. Mahdavi, S. Rahnamayan, and M. E. Shiri. Cooperative co-evolution with sensitivity

analysis-based budget assignment strategy for large-scale global optimization. Applied

Intelligence, 47(3):888–913, 2017a.

S. Mahdavi, S. Rahnamayan, and M. E. Shiri. Multilevel framework for large-scale global

optimization. Soft Computing, 21(14):4111–4140, 2017b.

M. Mavrovouniotis, C. Li, and S. Yang. A survey of swarm intelligence for dynamic

optimization: Algorithms and applications. Swarm and Evolutionary Computation,

33:1–17, 2017. doi: 10.1016/j.swevo.2016.12.005.

Y. Mei, M. N. Omidvar, X. Li, and X. Yao. A competitive divide-and-conquer algo-

rithm for unconstrained large-scale black-box optimization. ACM Transactions on

Mathematical Software (TOMS), 42(2):13, 2016.

R. W. Morrison. Designing Evolutionary Algorithms for Dynamic Environments.

Springer: Natural Computing Series, 2004.

R. W. Morrison and K. A. D. Jong. A test problem generator for non-stationary environ-

ments. In Congress on Evolutionary Computation-CEC99, volume 3, pages 2047–2053,

1999.

A. Muruganantham, K. C. Tan, and P. Vadakkepat. Solving the ieee cec 2015 dynamic

benchmark problems using kalman filter based dynamic multiobjective evolutionary

algorithm. In K. L. et al., editor, Adaptation, Learning and Optimization, volume 5,

pages 239–252. Intelligent and Evolutionary Systems, Springer, 2016.

Bibliography 122

T.-D. Nguyen and A. W. Lo. Robust ranking and portfolio optimization. European

Journal of Operational Research, 221(2):407–416, 2012.

T. T. Nguyen. Continuous dynamic optimisation using evolutionary algorithms. PhD

thesis, University of Birmingham, Birmingham, UK, 2011.

T. T. Nguyen and X. Yao. Dynamic time-linkage problems revisited. In M. G.

et al., editor, European Conference on the Applications of Evolutionary Computa-

tion, volume 5484, pages 735–744. Lecture Notes in Computer Science, 2009. doi:

10.1007/978-3-642-01129-0 83.

T. T. Nguyen and X. Yao. Dynamic time-linkage evolutionary optimization: Definitions

and potential solutions. In E. Alba, A. Nakib, and P. Siarry, editors, Metaheuristics

for Dynamic Optimization, volume 433, pages 371–395. Studies in Computational

Intelligence, 2013.

T. T. Nguyen, S. Yang, and J. Branke. Evolutionary dynamic optimization: A survey

of the state of the art. Swarm and Evolutionary Computation, 6:1–24, 2012a. doi:

10.1016/j.swevo.2012.05.001.

T. T. Nguyen, Z. Yang, and S. Bonsall. Dynamic time-linkage problems - the challenges.

In Computing and Communication Technologies, Research, Innovation, and Vision for

the Future (RIVF), pages 1–6. IEEE, 2012b. doi: 10.1109/rivf.2012.6169823.

M. N. Omidvar, X. Li, Z. Yang, and X. Yao. Cooperative co-evolution for large scale

optimization through more frequent random grouping. In Evolutionary Computation

(CEC), 2010 IEEE Congress on, pages 1–8. IEEE, 2010.

M. N. Omidvar, X. Li, and X. Yao. Smart use of computational resources based on

contribution for cooperative co-evolutionary algorithms. In Annual conference on

Genetic and evolutionary computation, pages 1115–1122. ACM, 2011.

M. N. Omidvar, X. Li, Y. Mei, and X. Yao. Cooperative co-evolution with differential

grouping for large scale optimization. IEEE Transactions on Evolutionary Computa-

tion, 18(3):378–393, 2014a.

M. N. Omidvar, Y. Mei, and X. Li. Effective decomposition of large-scale separable

continuous functions for cooperative co-evolutionary algorithms. In IEEE Congress

on Evolutionary Computation, pages 1305–1312. IEEE, 2014b.

M. N. Omidvar, X. Li, and K. Tang. Designing benchmark problems for large-scale

continuous optimization. Information Sciences, 316:419–436, 2015. doi: 10.1016/j.

ins.2014.12.062.

Bibliography 123

M. N. Omidvar, B. Kazimipour, X. Li, and X. Yao. CBCC3 – a contribution-based coop-

erative co-evolutionary algorithm with improved exploration/exploitation balance. In

Evolutionary Computation (CEC), 2016 IEEE Congress on, pages 3541–3548. IEEE,

2016.

M. N. Omidvar, M. Yang, Y. Mei, X. Li, and X. Yao. DG2: A faster and more accurate

differential grouping for large-scale black-box optimization. IEEE Transactions on

Evolutionary Computation, 21(6):929–942, 2017.

D. Parrott and X. Li. Locating and tracking multiple dynamic optima by a particle

swarm model using speciation. IEEE Transactions on Evolutionary Computation, 10

(04):440–458, 2006. doi: 10.1109/TEVC.2005.859468.

C. Peng, P. Xie, L. Pan, and R. Yu. Flexible robust optimization dispatch for hybrid

wind/photovoltaic/hydro/thermal power system. IEEE Transactions on Smart Grid,

7(2):751–762, 2016.

O. V. Pictet, M. M. Dacorogna, B. Chopard, M. Oussaidene, R. Schirru, and

M. Tomassini. Using genetic algorithms for robust optimization in financial appli-

cations. available at ssrn. Technical report, Center for Computational Intelligence,

1998.

M. A. Potter and K. A. D. Jong. Cooperative coevolution: An architecture for evolving

coadapted subcomponents. Evolutionary computation, 8(1):1–29, 2000.

M. Preuss. Niching the CMA-ES via nearest-better clustering. In 12th Annual Confer-

ence Companion on Genetic and Evolutionary Computation, pages 1711–1718. ACM,

2010. doi: 10.1145/1830761.1830793.

T. Ray and X. Yao. A cooperative coevolutionary algorithm with correlation based

adaptive variable partitioning. In IEEE Congress on Evolutionary Computation, pages

983–989, 2009.

S. Salomon, G. Avigad, P. J. Fleming, and R. C. Purshouse. Optimization of adap-

tation - a multi-objective approach for optimizing changes to design parameters. In

R. Purshouse, P. Fleming, C. Fonseca, and J. S. S. Greco, editors, Evolutionary Multi-

Criterion Optimization, volume 7811, pages 21–35. Springer Lecture Notes in Com-

puter Science, 2013.

A. Sharifi, J. K. Kordestani, M. Mahdaviani, and M. R. Meybodi. A novel hybrid

adaptive collaborative approach based on particle swarm optimization and local search

for dynamic optimization problems. Applied Soft Computing, 32:432–448, 2015. doi:

10.1016/j.asoc.2015.04.001.

Bibliography 124

L. Sun, S. Yoshida, X. Cheng, and Y. Liang. A cooperative particle swarm optimizer

with statistical variable interdependence learning. Information Sciences, 186(1):20–39,

2012.

Y. Sun, M. Kirley, and S. K. Halgamuge. Extended differential grouping for large

scale global optimization with direct and indirect variable interactions. In Annual

Conference on Genetic and Evolutionary Computation, GECCO 2015, pages 313–320,

New York, NY, USA, 2015. ACM.

Y. Sun, M. Kirley, and S. K. Halgamuge. A recursive decomposition method for large

scale continuous optimization. IEEE Transactions on Evolutionary Computation,

2017.

K. Tang, X. Li, P. N. Suganthan, Z. Yang, and T. Weise. Benchmark functions for the

CEC2010 special session and competition on large-scale global optimization. Technical

report, Nature Inspired Computation and Applications Laboratory, 2009.

R. K. Ursem, T. Krink, M. T. Jensen, and Z. Michalewicz. Analysis and modeling of

control tasks in dynamic systems. IEEE Transactions on Evolutionary Computation,

6(4):378–389, 2002.

F. van den Bergh and A. P. Engelbrecht. A cooperative approach to particle swarm

optimization. IEEE Transaction on Evolutionary Computation, 8(3):225–239, 2004.

doi: 10.1109/TEVC.2004.826069.

Y. Wang and B. Li. Investigation of memory-based multi-objective optimization evolu-

tionary algorithm in dynamic environment. In 2009 IEEE Congress on Evolutionary

Computation, pages 630–637, 2009. doi: 10.1109/CEC.2009.4983004.

J. Wei and L. Jia. A novel particle swarm optimization algorithm with local search for

dynamic constrained multi-objective optimization problems. In IEEE Congress on

Evolutionary Computation, pages 2436–2443, 2013. doi: 10.1109/CEC.2013.6557861.

J. Wei and Y. Wang. Hyper rectangle search based particle swarm algorithm for dynamic

constrained multi-objective optimization problems. In IEEE Congress on Evolutionary

Computation, pages 1–8, 2012. doi: 10.1109/CEC.2012.6256137.

K. Weicker. Evolutionary algorithms and dynamic optimization problems. PhD thesis,

University of Stuttgart, Stuttgart, Germany, 2003.

K. Weicker and N. Weicker. Dynamic rotation and partial visibility. In Congress on

Evolutionary Computation, page 11251131, 2000.

Bibliography 125

R. P. Wiegand, W. C. Liles, and K. A. D. Jong. An empirical analysis of collaboration

methods in cooperative coevolutionary algorithms. In Annual Conference on Genetic

and Evolutionary Computation, pages 1235–1242. Morgan Kaufmann Publishers Inc.,

2001.

F. Wilcoxon. Individual comparisons by ranking methods. Biometrics Bulletin, 1(6):

80–83, 1945.

H. Xu. Robust Decision Making and Its Applications in Machine Learning. PhD thesis,

Montreal, Que., Canada, Canada, 2009. AAINR61804.

H. Xu, C. Caramanis, and S. Mannor. Robustness and regularization of support vector

machines. The Journal of Machine Learning Research, 10:1485–1510, 2009.

M. Yang, M. N. Omidvar, C. Li, X. Li, Z. Cai, B. Kazimipour, and X. Yao. Efficient re-

source allocation in cooperative co-evolution for large-scale global optimization. IEEE

Transactions on Evolutionary Computation, 21(4):493–505, 2017.

S. Yang and C. Li. A clustering particle swarm optimizer for locating and tracking

multiple optima in dynamic environments. IEEE Transactions on Evolutionary Com-

putation, 14(06):959–974, 2010. doi: 10.1109/TEVC.2010.2046667.

S. Yang and X. Yao, editors. Evolutionary Computation for Dynamic Optimization

Problems. Springer-Verlag Berlin Heidelberg, 2013.

Z. Yang, K. Tang, and X. Yao. Large scale evolutionary optimization using cooperative

coevolution. Information Sciences, 178(15):2985–2999, 2008a.

Z. Yang, K. Tang, and X. Yao. Multilevel cooperative coevolution for large scale

optimization. In 2008 IEEE Congress on Evolutionary Computation (IEEE World

Congress on Computational Intelligence), pages 1663–1670, 2008b.

D. Yazdani, B. Nasiri, R. Azizi, A. Sepas-Moghaddam, and M. R. Meybodi. Opti-

mization in dynamic environments utilizing a novel method based on particle swarm

optimization. International Journal of Artificial Intelligence, 11:170–192, 2013a.

D. Yazdani, B. Nasiri, A. Sepas-Moghaddam, and M. R. Meybodi. A novel multi-

swarm algorithm for optimization in dynamic environments based on particle swarm

optimization. Applied Soft Computing, 13(04):2144–2158, 2013b. doi: 10.1016/j.asoc.

2012.12.020.

D. Yazdani, B. Nasiri, A. Sepas-Moghaddam, M. R. Meybodi, and M. Akbarzadeh-

Totonchi. mNAFSA: A novel approach for optimization in dynamic environments

with global changes. Swarm and Evolutionary Computation, 18:38–53, 2014. doi:

10.1016/j.swevo.2014.05.002.

Bibliography 126

D. Yazdani, A. Sepas-Moghaddam, A. Dehban, and N. Horta. A novel approach for

optimization in dynamic environments based on modified artificial fish swarm algo-

rithm. International Journal of Computational Intelligence and Applications, 15(02):

1650010–1650034, 2016. doi: 10.1142/S1469026816500103.

D. Yazdani, T. T. Nguyen, J. Branke, and J. Wang. A new multi swarm particle swarm

optimization for robust optimization over time. In G. Squillero and K. Sim, editors,

Applications of Evolutionary Computation, volume 10200, pages 99–109. Springer Lec-

ture Notes in Computer Science, 2017.

D. Yazdani, T. T. Nguyen, and J. Branke. Robust optimization over time by learn-

ing problem space characteristics. IEEE Transactions on Evolutionary Computation,

2018a.

D. Yazdani, T. T. Nguyen, J. Branke, and J. Wang. A multi-objective time-linkage

approach for dynamic optimization problems with previous-solution displacement re-

striction. In European Conference on the Applications of Evolutionary Computation.

Lecture Notes in Computer Science, 2018b.

A. Younes. Adapting Evolutionary Approaches for Optimization in Dynamic Environ-

ments. PhD thesis, University of Waterloo, Waterloo, Canada, 2006.

X. Yu, Y. Jin, K. Tang, and X. Yao. Robust optimization over time - a new perspective

on dynamic optimization problems. In IEEE Congress on Evolutionary Computation

(CEC), pages 1–6. IEEE, 2010. doi: 10.1109/CEC.2010.5586024.

A. E. M. Zavala. A comparison study of pso neighborhoods. In EVOLVE - A Bridge

between Probability, Set Oriented Numerics, and Evolutionary Computation), volume

175, pages 251–265. Advances in Intelligent Systems and Computing, 2013.

B. Zheng. A new dynamic multi-objective optimization evolutionary algorithm. In

International Conference on Natural Computation (ICNC 2007), volume 5, pages

565–570, 2007.

A. Zhou, Y. Jin, Q. Zhang, B. Sendhoff, and E. Tsang. Prediction-based population

re-initialization for evolutionary dynamic multi-objective optimization. In S. O. et al.,

editor, Evolutionary Multi-Criterion Optimization, volume 4403, pages 832–846. Lec-

ture Notes in Computer Science, Springer, Berlin, Heidelberg, 2007.

A. Zhou, Y. Jin, and Q. Zhang. A population prediction strategy for evolutionary

dynamic multiobjective optimization. IEEE Transactions on Cybernetics, 44(1):40–

53, 2014.

	Declaration
	Abstract
	Acknowledgements
	Declaration of Authorship
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Scope of the thesis
	1.2 Research questions
	1.3 Contribution of the thesis
	1.3.1 Considering displacement between successive solutions
	1.3.1.1 DOPs with previous-solution displacement restriction
	1.3.1.2 DOPs with very large switching cost
	1.3.1.3 DOPs with varying switching cost

	1.3.2 Scaling up DOPs

	1.4 Outline of the thesis

	2 Related work
	2.1 Particle swarm optimization
	2.2 Tracking moving optima
	2.3 DOP Benchmarks
	2.4 Switching cost in dynamic optimization problems
	2.5 Robust optimization
	2.6 Robust optimization over time
	2.7 Dynamic multi-objective optimization problems
	2.8 Dynamic time-linkage optimization problems
	2.9 Scaling up dynamic optimization problems
	2.9.1 Variable interaction
	2.9.2 Cooperative coevolution
	2.9.3 Decomposition algorithms
	2.9.4 Large-scale dynamic optimization problems

	2.10 Summary

	3 A multi-objective time-linkage approach for dynamic optimization problems with previous-solution displacement restriction
	3.1 Problem definition
	3.2 Proposed hybrid method for PSDR
	3.2.1 Addressing dynamic optimization problems' requirements
	3.2.2 Addressing multi-objective problems' requirements
	3.2.3 Addressing dynamic time-linkage problems' requirements

	3.3 Experiments
	3.3.1 Benchmark problems
	3.3.2 Performance indicator
	3.3.3 Compared algorithms and parameter settings
	3.3.4 Experimental results

	3.4 Summary

	4 Robust optimization over time by learning problem space characteristics
	4.1 The proposed framework
	4.1.1 The multi-population/multi-swarm method
	4.1.2 New decision making process for choosing robust solutions

	4.2 Experiments and analysis
	4.2.1 Performance indicators
	4.2.2 Benchmark functions
	4.2.3 Algorithms and parameter settings

	4.3 Experimental results
	4.3.1 Analyzing the proposed framework on problems with different characteristics
	4.3.2 Comparison with other methods

	4.4 Summary

	5 Changing or keeping solutions in dynamic optimization problems with switching costs
	5.1 Proposed algorithm
	5.2 Experiments
	5.2.1 Performance indicator
	5.2.2 Benchmark
	5.2.3 Algorithms and parameter settings
	5.2.4 Experimental results

	5.3 Summary

	6 Scaling up dynamic optimization problems: a divide-and-conquer approach
	6.1 The Proposed benchmark generator
	6.2 The Proposed algorithm
	6.2.1 The framework
	6.2.1.1 Decomposition
	6.2.1.2 Search and resource allocation
	6.2.1.3 Change management

	6.2.2 Dynamic considerations

	6.3 Experiments and analysis
	6.3.1 Comparison algorithms
	6.3.2 Performance indicator
	6.3.3 Parameter settings
	6.3.4 Empirical analysis
	6.3.4.1 The overall comparison
	6.3.4.2 Robustness to dynamic changes

	6.4 Summary

	7 Conclusion
	7.1 Summary of major contributions
	7.2 Future work

	Appendices
	A Publications resulting from this thesis
	A.1 Refereed or submitted journal papers
	A.2 Refereed conference papers

	Bibliography

