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Abstract

There is considerable interest in understanding the demographics of galaxies within the local universe (defined, for
our purposes, as the volume within a radius of 200Mpc or z�0.05). In this pilot paper, using supernovae (SNe) as
signposts to galaxies, we investigate the redshift completeness of catalogs of nearby galaxies. In particular, type Ia
SNe are bright and are good tracers of the bulk of the galaxy population, as they arise in both old and young stellar
populations. Our input sample consists of SNe with redshift �0.05, discovered by the flux-limited ASAS-SN
survey. We define the redshift completeness fraction (RCF) as the number of SN host galaxies with known redshift
prior to SN discovery, determined, in this case, via the NASA Extragalactic Database, divided by the total number
of newly discovered SNe. Using SNe Ia, we find = RCF 78 7

6% (90% confidence interval) for z<0.03. We
examine the distribution of host galaxies with and without cataloged redshifts as a function of absolute magnitude
and redshift, and, unsurprisingly, find that higher-z and fainter hosts are less likely to have a known redshift prior to
the detection of the SN. However, surprisingly, some

*
L galaxies are also missing. We conclude with thoughts on

the future improvement of RCF measurements that will be made possible from large SN samples resulting from
ongoing and especially upcoming time-domain surveys.

Key words: galaxies: distances and redshifts – galaxies: statistics – supernovae: general

1. Transients in the Local Universe

Transients in the local universe provide unique insights into

at least three pressing issues in modern astronomy. First,

nearby events can be studied in great detail, even if their

luminosities are relatively low—enabling insights into their

physics. A classic example is the detection of SN 1987A in the

Large Magellanic Cloud, which enabled the unambiguous

localization of extragalactic neutrinos (e.g., McCray 1993).

Second, nearby events can be studied demographically to high

completeness. This is important both for obtaining a full

understanding of how stars end their lives and for under-

standing the role their explosions play in their environments.

For example, supernovae (SNe), the most commonly observed

extragalactic transients, inject energy, momentum, and heavy

elements into their surroundings. Relating star formation rate

and chemical abundance to SN rates is a fundamental exercise

in modern astronomy. Nearby (volume limited) SN surveys are

needed to provide the latter.
Third, over the last decade or so, exotic explosive sources

have been identified—Ultra High Energy Cosmic Rays

(UHECR), ultra-high energy neutrinos, and Gravitational Wave

(GW) sources. The horizon for detecting these sources is limited

by either physical phenomena (the Greisen–Zatespin–Kuzmin

effect for UHECRs), or set by the sensitivity of GW telescopes.5

The latter consideration leads us to a distance limit of∼200Mpc

(z0.05). As shown by the rich returns from electromagnetic

studies of the neutron star coalescence event, GW170817 (e.g.,

Abbott et al. 2017a, 2017b), the study of transients in the local

universe is not only of wide importance but is also timely.

The primary motivation for this paper is the last point
discussed above, namely the study of electromagnetic counter-
parts to GW sources. For the next few years, the typical
localization of GW sources will be no better than ∼50 deg2.
Naturally, pursuit of such large angle localizations will entail a
deluge of false positives (e.g., Kasliwal et al. 2016; Smartt
et al. 2016). As demonstrated by the steps that led to the
discovery of the optical counterpart of GW170817, a cost-
effective approach to both minimizing the background fog of
false positives and maximizing early identification is to use on-
sky coincidences with catalogs of nearby galaxies (e.g.,
Gehrels et al. 2016).
Additionally, we note that catalogs of nearby galaxies have

other uses. For instance, there is considerable interest in
studying the youngest SNe. SNe take time to brighten to peak
luminosity and are very faint in the first hours to days after the
initial explosion, so the appearance of a new source with an
inferred luminosity much lower than a classical SN at peak is
cause for vigorous pursuit. But determining this luminosity
requires knowledge of the redshift, which will be known in
advance only if the transient coincides with a galaxy with a
cataloged redshift.
As a result of deep wide-field imaging surveys, such as

PanSTARRS-1 (PS1) and the Sloan Digital Sky Survey
(SDSS), all galaxies, particularly in the Northern sky, to
∼23 mag, are “cataloged” (in the sense that multi-band
photometric measurements exist, and the galaxies are assigned
a nominal name).6 However, what matters for the purpose of
this paper is a reliable galaxy redshift measurement, prior to
any transient follow up (such as during a search for EM
counterparts). The fraction of nearby galaxies of a certain type
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5
In this paper, we restrict the discussion of GW sources to those involving

neutron stars, as electromagnetic (EM) counterparts are only expected for such
events.

6
Separating stars from galaxies in these photometric catalogs presents a

significant challenge, however.
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(for example, candidate hosts of LIGO GW sources) with a
redshift that is recorded in published catalogs can be defined as
the redshift “completeness.”7

In this paper, we explore the use of SNe to assess the
completeness of nearby galaxy catalogs. SNe are very luminous,
relatively common (in a cosmological sense), and are found
routinely in surveys that now cover the entire sky every few days
(and therefore the entire local volume out to some distance limit,
subject to the limitation of extinction from the Galactic plane).
Thus, they provide an effective way of randomly sampling
galaxies that is not strongly dependent on the observational
properties of those galaxies (in particular, on galaxy luminosity).
Recently, Holoien et al. (2017a) remarked that 24% of nearby
bright SNe were discovered in cataloged host galaxies without
secure redshifts, suggesting that redshift incompleteness may be
significant even today. As a next step, we refine their estimate by
formally restricting their sample to a limited volume and
examine in detail those SNe that occur in galaxies whose
redshifts have been “missed” by spectroscopic surveys.

2. Catalogs of Nearby Galaxies

The construction of redshift catalogs for meaningful
numbers of nearby galaxies can only be accomplished via
large-scale spectroscopic surveys (e.g., Blanton & Moustakas
2009). However, given the more than eight magnitude spread
in galaxy luminosities (Blanton & Moustakas 2009), large
numbers of even very nearby galaxies are likely to be quite
faint, so these catalog(s) will necessarily be incomplete.
Despite this challenge, astronomers have assembled a number
of all-sky galaxy catalogs: the 11Mpc Updated Nearby Galaxy
Catalog (Karachentsev et al. 2013), The Extragalactic Distance
Database (Tully et al. 2009), and Hyperleda (Paturel et al.
2003). These catalogs are linked to the NASA/IPAC
Extragalactic Database (NED).8 Figure 1 of Gehrels et al.
2016 provides a graphical illustration of the bias of inputs to
spectroscopic surveys.

How complete are these catalogs? One approach is to
extrapolate the findings of higher-z surveys (which scrutinize
small areas of the sky down to extremely deep limits) down to
z≈0. However, as shown by deviations of galaxy recession
velocities from the Hubble flow (Jha et al. 2007) and via direct
galaxy catalogs, the local universe is lumpy (10% fluctuations
or more) on length scales as large as 200Mpc.9 Extrapolating a
local catalog believed to be highly complete (e.g., Nearby
Galaxy Catalog, which is complete to MB<−15 mag within
11 Mpc outside the Galactic plane) from the bottom up is even
more problematic given strong fluctuations on these distance
scales (e.g., not a single galaxy cluster lies within 11 Mpc).

3. Assessing Catalog Completeness with SNe

Here, we explore the use of SNe to evaluate the complete-
ness of catalog(s) of the nearby universe. Type Ia SNe are well
suited for this task. These SNe are luminous (only ∼1 mag
fainter than a local

*
L galaxy in the V band) and thus easily

identified. The luminosity function is narrow: in the B band, the
luminosity function can be fit with a Gaussian with a mean

value of −19.4 mag and an rms of 0.14–0.23 mag (Yasuda &
Fukugita 2010). Next, SNe Ia arise from both old and young
populations (Scannapieco & Bildsten 2005; Sullivan et al.
2006). Thus, they sample all types of galaxies and can be used
to study galaxy demographics without missing significant
subpopulations.
In contrast, core-collapse SNe (CC SNe) arise only in star-

forming galaxies and exhibit a wide luminosity function, with
absolute magnitude (SDSS r band) ranging from −18 to −12
(Taylor et al. 2014). Clearly, additional care is necessary in
using CC SNe to measure the RCF.
Our proposal to assess the completeness of nearby galaxies

catalogs is simple: (1) Following the detection of an SN,
measure the redshift of the host galaxy, zhost. (2) Retain those
events with

*
z zhost , where z* is the redshift to which the

completeness is being measured (“tries”). (3) Check the galaxy
catalog(s) to see if the SN host galaxy has a reliable redshift
entry. If present and if zhost is equal to zSN to within
approximately 0.001, then it is a “hit.” The redshift complete-
ness factor (RCF) of the galaxy catalog is given by the ratio of
“hits” to “tries.”
We emphasize that our definition of the RCF is explicitly

tied to SNe and is not the fraction of galaxies with known
redshifts by number. The majority of galaxies within any
volume are very small galaxies, which are also the most
difficult to detect (indeed, new satellites of the Milky Way are
still being uncovered). Previous studies (Scannapieco &
Bildsten 2005; Sullivan et al. 2006) have found that the Ia
propensity (the rate of Ia production within a galaxy),  , is well
represented by a linear combination of the stellar mass of the
galaxy () and the star formation rate ( ). Thus, the RCF (as
defined here) approximately measures the completeness
weighted by  . Other definitions could be used; for example,
had we employed CC SNe instead of SNe Ia, the resulting RCF
would measure the completeness weighted by  alone.
SN-based estimates of the RCF will depend on the

completeness of the parent SN survey(s). An SN survey that
is not complete to the limit of the search volume will find a
larger fraction of low-luminosity events at smaller distances
whereas more luminous events can be found to larger distances
(with concomitant larger volume). Thus, poor control of
completeness in an SN survey will bias the sample toward
galaxies that host more luminous events. In the case of Ia SNe,
a correlation between the luminosity of the SN and the
properties of its host does exist (Sullivan et al. 2010), although
it is relatively weak. A larger concern is whether the properties
of the host directly affect completeness or not, e.g., if SNe are
systematically missed in regions of high galaxy surface
brightness or if the appearance of the host galaxy is a
consideration in decisions about spectroscopic classification.
We emphasize that the SN rate per galaxy is far too low to

provide a practical means of actually discovering new galaxies
in significant numbers. Instead, the approach advocated here
provides a check on the completeness of existing catalogs,
independent of the traditional luminosity function approach.

4. Primary Data

To assess the RCF, we use NED as our input host galaxy
catalog and the first two SNe catalogs (hereafter, A1, A2)
published by the All-sky Automated Survey for SN (ASAS-SN)
project (Holoien et al. 2017a, 2017b; hereafter, H1 & H2,
respectively). ASAS-SN is well suited for our purposes. It is a

7
We will more precisely state our operational definition of “completeness” in

Section 3.
8

https://ned.ipac.caltech.edu/
9

This is not at all surprising given the 150 Mpc Baryon Acoustic Oscillations
(BAO) length scale.
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flux-limited survey, V 17peak mag, that covers the entire sky
and is not targeted to specific galaxies. Additionally, because of
its shallow flux limit, ASAS-SN candidates are bright enough
for worldwide follow up using small telescopes. As a result, the
classification (SN type and zhost) is essentially complete. In
contrast, amateur discoveries (as well as professional surveys
such as LOSS, the Lick Observatory SN Survey; Li et al. 2000)
target well-resolved and bright galaxies and are therefore
biased. Other, recent untargeted surveys (e.g., ATLAS, iPTF,
Gaia) are not likely to be strongly biased in terms of discovery,
but the degree of bias in terms of selecting candidates to follow
up (and classify as SNe) is not well-quantified.

Table 1 provides a top-level summary of the two ASAS-SN
surveys. Catalog A1 lists 91 SNe discovered during the period
2013–2014 (H1). Catalog A2 lists 180 SNe found in the
calendar year 2015. In A2 11, SNe are marginally fainter than
17 mag (H2). The catalogs also include host galaxy data: name,
redshift, SDSS, GALEX , 2MASS, and WISE photometry.

H1 and H2 do not specifically identify host galaxies that lack
a cataloged redshift prior to the discovery of the SN. To remedy
this situation, we wrote a program to query NED and obtained
the redshifts of the putative host galaxies. We refer to the
sample of galaxies with a redshift entry in NED as the “NEDz”

sample and those which lacked an entry as the “!NEDz” sample.
Nine entries (ASAS-SN-15de, 15ji, 15jm, 15lh, 15nh,

15og, 15ts, 15 ua, 14ms) have
*

> =z z 0.05host . These were
deleted from further consideration. Next, we inspected the
difference between the SN redshift, zSN, and the purported
host redshift given in NED, zhost. Bearing in mind the
lower precision of the SN redshift, we made an allowance
and inspected events with - > -∣ ∣z z 10host SN

3. The rationale
for this choice is that the redshift of the host is usually
the systemic velocity of the galaxy (a fiber of the
spectrograph encompasses the central region of the galaxy)
whereas the SN will have additional velocity arising from
the rotation curve. Three events stood out: ASASSN-15jo
has zhost=0.014 (Abell S0753), but zSN=0.011; ASASSN-
13an has zhost=0.02431 (2MASX J13453653−0719350),
but zSN=0.0216; and ASASSN-15ic has zhost=0.0637
(2MASX J06145320−4247357), zSN=0.025. We retain the
first two events and delete the last one from further
consideration. The final sample for the analysis reported below
consists of 261 SNe.

5. Analysis

The redshift distribution of ASAS-SN events is displayed in
Figure 1. SNe Ia peak at »z 0.025 whereas CC events peak at
lower redshift and exhibit long tails (as expected, given their

lower average luminosities and broad luminosity function). The
“completeness” of the SN sample itself is not the primary topic of
this paper.10 What is central to this paper is that the SN sample
not be biased by host galaxies. Thus, we will proceed with the
analysis of the sample we have in hand. The RCF, assuming
NED as the input host galaxy catalog, for zhost0.03 is 80%±
5% (90% confidence interval; see Table 2). The precision of
these estimates is limited by small-number binomial statistics.
The RCF as traced by SNe Ia, furthermore, is somewhat lower

( 78 7
6%) than the RCF traced by CC SNe ( 87 9

5%), suggesting
that galaxy catalogs are more complete for star-forming hosts.
The precision of these estimates is limited by small-number
binomial statistics. For our full sample (zhost0.05), there are 64
!NEDz galaxies, which corresponds to = RCF 75 4

5%.

6. Analysis of Host Galaxy Luminosities

The virtue of the SN RCF is that it is a well-defined and
simple metric, with no free parameters other than the distance
(volume) limit employed. However, within this volume, we
generally expect the completeness to be higher for luminous
galaxies (with high stellar mass, or high star formation rate  )
than less luminous ones. Knowing these parameters for the

Table 1

SN Demographics from the Two ASAS-SN Surveys

Catalog Typea n(SN) n(NEDz)

A1 Ia 66 51

A1 CC 25 22

A2 Ia 141 101

A2 CC 39 27

Note. n(SN) is the number of SNe in each category. n(NEDz) is the number of

host galaxies with a redshift entry in NED (and obtained prior to the SN

discovery).
a
The type Ia encompasses normal Ia and all subtypes such as 91T, 91bg, CSM

and 00cx. All non-Ia SN are called as core collapse (II, IIn, Ibc).

Figure 1. Histogram of z�0.05 SNe of type Ia (top) and core-collapse
(bottom) from the A1 and A2 catalogs.

Table 2

Redshift Completeness Factor of ASAS-SN SNe (z<0.03)

SN n(SN)a n(NEDz)
b n(!NEDz)

c RCFd

All 173 139 34 0.75–0.85

Ia 120 93 27 0.71–0.83

CC 53 46 7 0.78–0.93

Notes.
a
The total number of SNe.

b
The number of SNe with a putative host galaxy with redshift listed in NED,

prior to SN discovery.
c
The number of SNe with a putative host galaxy but whose redshift is not

listed in NED.
d
The Redshift Completeness Factor (RCF; see Section 3) range covers a

confidence range of 5%–95% and is obtained by assuming a flat Bayesian prior.

10
Understanding the completeness of an SN survey is a major project in itself!
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galaxies within our sample, we can subdivide our targets by
or  to answer interesting questions such as, “How complete is
our understanding of /  within the local volume”? For this
purpose, we use the 2MASS Ks-band as a proxy for and the
GALEX NUV band for  and examine the completeness as a
function of these two parameters.

H1 & H2 took Ks-band magnitudes from 2MASS when
available; otherwise, a Ks-band mag was estimated from WISE
W1 when detected in that band (offset by a typical
Ks−W1=−0.64 mag), or (in the absence of both 2MASS
and WISE) a limit of Ks>15.6 mag was set. We employ the
same approach using their magnitude catalogs, except that for
the last group (three galaxies in catalog A1 and five in catalog
A2), we simply set Ks=15.6 mag.11

In A1, there are 77 SNe with NUV data, 5 with only SDSS ¢u
data and 9 with neither NUV nor ¢u data. In A2, the
corresponding numbers are 138, 17, and 24, respectively. We
took the sample of SNe with both NUV and ¢u data, applied the
Galactic extinction correction, and found the median of

NUV- ¢ »u 1 mag. We use the NUV data when available
and ¢u with the aforementioned offset applied otherwise. We
call this hybrid magnitude the “UV” mag. The 32 SNe with
neither NUV nor ¢u data are not included in the analysis.
For the discussion below, we note that the relevant Schechter

characteristic luminosity parameters are * = - M 24.2 0.03Ks

(Cole et al. 2001) and * = - M 18.23 0.11NUV (Wyder et al.
2005). Below, we examine the missing galaxies with
luminosity

*
>L L in both the Ks and “UV” bands. We then

isolate the sample to just Type Ia SNe to investigate missing
galaxies with

*
<L L .

6.1. Ks-band

The absolute Ks-band magnitude, MK ,hosts
, and redshift, zhost,

of each SN Ia host galaxy in our sample is displayed in
Figure 2.12 We calculate the distance modulus to each host
using CosmoCalc (Wright 2006) and zhost, where we have
assumed W = =L

- -H0.714, 69.6 km s Mpc0
1 1, and Ωm=

0.286. The joint distribution for a host galaxy to have a
previously cataloged redshift given its redshift and M ,Ks

( )z MRCF , Ks , along with the one-dimensional probabilities,
RCF(z) and ( )MRCF Ks , are also shown in Figure 2. Details for

Figure 2. Absolute Ks-band magnitude, MK ,hosts , vs. redshift, zhost, for the host galaxies of SNe Ia in A1 and A2. Galaxies with redshift entries in NED are shown as

red pluses, while those lacking redshifts (!NEDz) are shown as teal circles. The horizontal dashed line shows *MKs
. The shaded background shows the probability of a

host galaxy having a cataloged redshift given its redshift and MKs ( ( )z MRCF , ;Ks see Appendix A for details). The top and right plots show the probability of a host
galaxy having a cataloged redshift given only its redshift, RCF(z), or ( )M M, RCFK Ks s , respectively. In these two plots, the solid lines show the median value of the
RCF, while the shaded area corresponds to the 90% bound on the RCF.

11
We note that catalog magnitudes may sometimes significantly underestimate

the total flux of extended sources due to the presence of significant flux outside
the automatically defined aperture (T. H. Jarrett et al. 2018, in preparation). We
neglect this effect in our pilot study but note that any detailed characterization
of the host population probed by nearby SNe would require careful attention to
this issue.

12
CC SNe are considered in Appendix B.
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these calculations are presented in Appendix A. Figure 2
confirms the intuitive results that the RCF is lower for higher
redshift and intrinsically fainter galaxies.

In total, there are 42 host galaxies brighter than *MKs
, and 2 of

these did not have redshift entries in NED prior to SN
discovery. The first is the host of ASASSN-15ed, MCG+09-
27-087/SDSS J164825.26+505935.5, a bright, large (40″)
spiral galaxy. There is no SDSS spectroscopic redshift but
the SDSS photoz estimate is 0.031±0.01. The host galaxy has
a 10.2±1.1 mJy counterpart in NVSS. The second is the host
of ASASSN-15ub, CGCG 314-006. Nominally, there is no host
redshift in NED. However, a direct inspection of SDSS shows a
pair of strongly interacting galaxies with a spectroscopic
redshift of 0.032 (photoz of 0.027± 0.0076), which can be
compared to zSN=0.032.

We restrict the analysis of sub-luminous galaxies to SNe Ia.
In the Ks band, there are 163 host galaxies with

*
<L L . Of

these, 110 are listed in NED. Thus, as traced by SNe Ia, the
RCF = [67%–73%] (5%–95% confidence range).

6.2. NUV/ ¢u Band

As was the case for Ks band, the median !NEDz host galaxy
is ∼2 mag fainter than the median NEDz host galaxy for the

“UV” band (Figure 3). The redshift distribution of NEDz and

!NEDz galaxies is nearly identical in Ks and “UV,” with

higher-z hosts more likely to not be included in NED. The

peak of the !NEDz sample “UV” luminosity is not as biased

toward faint galaxies as it is in the Ks band. This conclusion

bodes well for the PTF Census of the Local universe Hα

survey, which is searching for nearby star-forming galaxies

(Cook et al. 2017).
In the “UV” band, 46 galaxies are brighter than L*, and 5 of

those are !NEDz galaxies. The host of ASASSN-15ed, MCG+09-

27-087; SDSS J164825.26+505935.5, is discussed above. The

ASASSN-15ln host, GALEXASC J225332.83+194232.9, is a 10

spiral galaxy with no SDSS spectroscopic redshift but an SDSS

photoz of 0.022±0.0092. The host of ASASSN-15ho, 2MASXi

J0909234-044327, lies outside the SDSS footprint. The hosts

of ASASSN-15sh and ASASSN-15um, 2MASX J19320827-

6226340 and 2MASX J05395948-8022191, respectively, lie in

poorly studied regions of the sky.
Again, we restrict the analysis of missing sub-luminous

galaxies to SNe Ia hosts. There are 140 galaxies with “UV”

luminosity less than the corresponding L* value. Of these, 98

have redshift entries in NED. Thus, as traced by SNe Ia, the

RCF=[63%–76%].

Figure 3. Absolute “UV”-band magnitude, MUV, host, vs.redshift, zhost, for the host galaxies of SNe Ia in A1 and A2. Galaxies with redshift entries in NED are shown

as magenta pluses, while those lacking redshifts (!NEDz) are shown as blue circles. The horizontal dashed line shows *MUV. The shaded background shows the
probability of a host galaxy having a cataloged redshift given its redshift and MUV (RCF(z, MUV); see Appendix A for details). The top and right plots show the
probability of a host galaxy having a cataloged redshift given only its redshift, RCF(z), or MUV, RCF(MUV), respectively. In these two plots, the solid lines show
the median value of the RCF, while the shaded area corresponds to the 90% bound on the RCF.

5
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7. Increasing the Precision and Accuracy of RCF

The ASAS-SN bright SN sample is attractive for measuring
the RCF due to its host-unbiased approach and the essentially
complete spectroscopic classification of all candidates that
results from its shallow magnitude limit. However, owing to
the small sample size, the RCF estimates are limited by
binomial errors. We undertook a similar analysis for a larger
sample: SNe candidates reported at the Transient Name Server
(TNS)13 portal, during the period between 2016 January and
2017 June. The sample spans a larger peak magnitude range
relative to ASAS-SN, extending as faint as 20 mag. None-
theless, it appears that follow up was obtained for most of the
reported candidate SNe. The resulting sample size is 529
nearby (z�0.05) SNe. We find that the RCF for this sample is
similar to that derived for the ASAS-SN sample (B. Cassese &
S. R. Kulkarni 2018, in preparation).

The field of optical time-domain astronomy is in a boom
period, and much larger samples of nearby SNe can be expected
given the Asteroid Terrestrial-impact Last Alert (ATLAS;
Tonry 2011), PanSTARRS-1 (Wainscoat et al. 2016), Zwicky
Transient Facility (ZTF; Dekany et al. 2016; Bellm &
Kulkarni 2017), and upgraded ASAS-SN surveys. The limiting
V-band magnitudes for these surveys range from 17 to 21 mag.
Below, we consider the gains resulting from large SN samples.

To make this discussion more concrete, we consider a
specific example, the “Celestial Cinematography” survey of
ZTF (Bellm & Kulkarni 2017). This survey aims to system-
atically cover a large fraction of the night sky (12,000 deg2)
every three nights, in the g and R bands. The median 5σ
detection limit for a fixed 30 s exposure time is 20.5 mag. The
annual volumetric rates of z≈0 Type Ia and CC SNe are
 » ´ - -3 10 Gpc yrIa

4 3 1 and  » ´ - -7 10 Gpc yrCC
4 3 1,

respectively (Li et al. 2011). Based on a simulator built for
ZTF, the expected annual yield for the above survey is [230,
460, 892, 1750] for peak magnitude of [17.5, 18, 18.5, 19]mag,
respectively (U. Feindt 2018, personal communication).

Going forward, we will assume a “Bright Transient Survey”
(BTS) whose goal is to classify all extragalactic transients with
peak magnitudes brighter than 18.5 mag. A one-year survey
would result in a sample of nearly 1000 SNe Ia. With this
sample, a regional RCF can be evaluated (e.g., high and
intermediate Galactic latitude regions). Next, the large and
unbiased sample would allow for a number of other applica-
tions, including self-consistent checks of the dependence of the
SN Ia rate on host type, which is frequently formulated as
  µ +a b (Scannapieco & Bildsten 2005); here, a and b
are constants. Deviations will provide us with insight into a
better formulation of the relationship between  and and  .

Such a large survey would, in its own right, be interesting.
For example, determining volumetric SN rates from untargeted,
wide-field surveys requires the identification of all galaxies
within a specified distance. The BTS measurement of the RCF
will provide the correction factors needed to account for missing
galaxies when calculating the volumetric rates. For example, the
relative rate of SN 2002cx-like (SNe Iax) to normal SNe Ia is
wildly uncertain (≈5%–30%; e.g., Li et al. 2011; Foley
et al. 2013; Miller et al. 2017), and the large sample from the
BTS will substantially improve these estimates. Furthermore,
such a large, low-redshift sample would be very valuable for Ia
SN cosmography (e.g., Goliath et al. 2001; Scolnic et al. 2017).

Next, we address CC SNe. As noted in Section 3, CC SNe
exhibit a wide range in peak magnitude: Mr ranging from −12
to about −18 mag (Taylor et al. 2014). The BTS is well suited
to determining the demographics of CC SNe. A survey
complete to a flux limit »V 18 mag will detect SNe peaking
at = -M 12V , −15, and −18 mag to radii of ∼10, 40, and
160Mpc, respectively. The total number of CC SN detections
will sharply depend on the luminosity function. For instance,
Taylor et al. (2014) suggest that the fraction of CC SNe fainter
than −15 mag at peak is at least 24% but can be as high as
50%. In any case, BTS will allow us to measure the luminosity
function of CC events, which is essential to determine the
volumetric rate of CC SNe. In turn, the latter is a key element
in our understanding of stars and the interstellar medium
(Horiuchi et al. 2011). Finally, while CC SNe certainly track  ,
it may be the case that “lesser” parameters, such as metallicity,
change the mix of CC SNe subtypes (Arcavi et al. 2010;
Galbany et al. 2016; Graur et al. 2017). Again large-sample SN
surveys may well have sufficient diagnostic power to ferret out
such connections.
It is increasingly evident that the primary limitation to SN

surveys is limited by our ability to spectrally classify the SN
candidates. This load can be made bearable by the use of two
spectrographs: an ultra-low-resolution spectrometer tuned to
classification and a standard low-resolution spectrometer to
obtain the redshift and gross spectrum of the host galaxies. For
the latter, we note that within a few years not merely highly but
supremely multiplexed spectrographs (e.g., DESI,14 PFS15, and
the planned AS4 project) will be commissioned. These facilities,
at very little cost (small fractional allocation of fibers), can
measure the redshifts of host galaxies of SNe on an industrial
scale. The same highly multiplexed spectrographs will likely be
pressed into surveys more ambitious than SDSS or 6dF, leading
to more complete catalogs of galaxies in the nearby universe.

We thank the anonymous referee as well as A. Goobar, U.
Feindt, C. Pankow, M. Kasliwal, P. Nugent, E. O. Ofek, E. S.
Phinney, K. Taggart, and H. Vedantham for input and helpful
discussions.
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(Foreman-Mackey 2016), matplotlib (Hunter 2007;
Droettboom et al. 2018), scipy (Jones et al. 2001), pandas
(McKinney 2010), CosmoCalc (Wright 2006).

Appendix A
Conditional Probability of the RCF

We aim to characterize the RCF as a function of redshift, z,
and host galaxy luminosity, where we use either MK ,hosts

or
MUV,host as a proxy. To do so, we model the data X with the
Bernoulli distribution

~ ( ) ( )X pBern , 1

where p is parameterized with a logistic function with

dependence on both redshift z and host galaxy luminosity

q =
+ + -

( )
( )

( )p z M
az bM c

, ,
1

1 exp
, 2

13
https://wis-tns.weizmann.ac.il/

14
http://desi.lbl.gov

15
http://pfs.ipmu.jp
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with host-galaxy absolute magnitude M, and θ representing the

model parameters a, b, and c, which need to be determined.

The precise analytic dependence of p on z and M may not be

logistic; however, the purpose of this exercise is to provide a

general sense for how the RCF relies on z and M. The logistic

function is ideal for this general purpose.
From here, it follows that the probability of a host galaxy

having a previously cataloged redshift is

q
q

=
=

- =
⎧
⎨
⎩

( )
( )

( ) !
( )Pr q

p z M q

p z M q

, , , if NED

1 , , , if NED
3

z

z

and the likelihood of the observations given the data and model

parameters is

q q

q

=

´ -
=

-

( ∣ ) ( )

( ( )) ( )

Pr q z M p z M

p z M

, , , ,

1 , , , 4

k k K

k

K

k k
q

k k
q

1

1

k

k

where k represents the individual observations and qk=1 for

NEDz galaxies and qk=0 for ! NEDz galaxies.
From Bayes’ theorem, we can multiply the likelihood by a

prior, Pr(θ), and use Markov Chain Monte Carlo (MCMC)
techniques to sample from the posterior q( ∣ )Pr q z M, ,k k K in
order to constrain the model parameters θ. We use the emcee
package (Foreman-Mackey et al. 2013) to implement our
MCMC sampling of the posterior. For a and b, we adopt flat
priors bounded between 0 and 106. For c, we adopt a flat prior
between −100 and 100. Following the MCMC sampling, we
find that there is a strong covariance between b and c, while a
is relatively independent of b and c. The shading in Figures 2
and 3 shows p(z, M, θ) for the maximum a posteriori sample
from the MCMC sampling.

We additionally wish to constrain the behavior of the RCF as
a function of either the host redshift, z, or host galaxy

luminosity. We do this separately from the analysis above,
while using the same MCMC procedure with p in Equations (3)
and (4) replaced by

q =
+ -

( )
( )

( )p z
az c

,
1

1 exp
, 5

for redshift, and

q =
+ -

( )
( )

( )p M
bM c

,
1

1 exp
, 6

for host galaxy luminosity (where, again, we use absolute

magnitude M as a proxy). The results of this procedure are

shown in the side panels of Figures 2 and 3. In these panels,

the solid lines show the median value of p(z), RCF(z) in the

Figures, and p(M), RCF(M) in the Figures, from all the

posterior samples, while the shaded region shows the 90%

credible regions for p(z) and p(M) from the posterior samples.

We close by noting that the current data set provides weak

constraints on a in Equation (5), but these constraints will be

greatly improved by the BTS, which will include a significantly

larger sample and extend to higher redshifts.

Appendix B
RCF as Traced by CC SNe

The CC SNe samples in A1 and A2 are insufficient to
meaningfully constrain the RCF as a function of redshift or
host galaxy absolute magnitude. Furthermore, CC SNe only
trace star formation, meaning they do not probe passive
galaxies, so we have excluded them from the analysis in the
main text. Nevertheless, for completeness, we show the host
galaxies for CC SNe in Figure 4.

Figure 4. Left panel: absolute Ks-band magnitude, MK ,hosts , vs. redshift, zhost, for the host galaxies of CC SNe in A1 and A2. Galaxies with redshift entries in NED are

shown as red pluses, while those lacking redshifts (!NEDz) are shown as teal circles. The horizontal dashed line shows *MKs
. Right panel: absolute “UV”-band

magnitude,MUV, host, vs. redshift, zhost, for the host galaxies of CC SNe in A1 and A2. Galaxies with redshift entries in NED are shown as magenta pluses, while those

lacking redshifts (!NEDz) are shown as blue circles. The horizontal dashed line shows *MUV.
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