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Abstract  1 

Children with cerebral palsy (CP) commonly present with reduced ankle range of motion (ROM) partly 2 

due to changes in mechanical properties of the muscle-tendon-unit (MTU). Detailed information about 3 

how muscle and tendon interact to contribute to joint rotation is currently lacking, but may provide 4 

essential information to explain the limited effectiveness of stretching interventions in children with CP. 5 

The purpose of this study was to quantify which structures contribute to MTU lengthening and thus 6 

receive the stretch during passive ankle joint rotation. Fifteen children with CP (age:11.4±3y) and 16 7 

typically developing (TD) children (age:10.2±3y) participated. Ultrasound was combined with motion 8 

tracking, joint torque and electromyography to record fascicle, muscle and tendon lengthening of the 9 

medial gastrocnemius during passive ankle joint rotations over the full and a common ROM. In children 10 

with CP, relative to MTU lengthening, muscle and fascicles lengthened less (CP: 50.4%, TD: 63% of MTU 11 

lengthening; p<0.04) and tendon lengthened more (CP: 49.6%, TD: 37% of MTU lengthening, p<0.01) 12 

regardless of the ROM studied. Differences between groups in the amount of lengthening of the 13 

underlying structures during a similar amount of joint rotation and MTU displacement indicate possible 14 

differences in tissue mechanical properties due to CP, which are not evident by assessment on a joint 15 

level. These factors should be considered when assessing and treating muscle function in children with 16 

CP, for example during stretching exercises as the muscle may not receive much of the applied 17 

lengthening stimulus. 18 

New Findings: 19 

What is the central question of this study? 20 

Which structures of the medial gastrocnemius muscle tendon unit contribute to its lengthening during 21 

joint rotation and thus receive the stretching stimulus? 22 

What is the main finding and its importance? 23 
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We show for the first time, that muscle and tendon lengthen differently between children with CP and 1 

TD children during a similar amount of muscle tendon unit lengthening or joint rotation. This indicates 2 

possible differences in mechanical muscle and tendon properties due to CP, which is not evident by 3 

assessment of muscle function on a joint level.  4 

5 
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Introduction 1 

Cerebral palsy (CP) is a non-progressive disorder caused by a brain lesion occurring in the early stages of 2 

development (Graham et al., 2016). Children with spastic CP usually show increased ankle joint stiffness 3 

and reduced range of motion (ROM) compared to typically developing (TD) children (Alhusaini et al., 4 

2010). It has been reported that muscles of children with CP undergo significant changes in their 5 

mechanical properties, which contribute to the reduced ROM (Mathewson & Lieber, 2015). In the 6 

management of CP, treatment is often aimed at maintaining or increasing ankle ROM. Stretching 7 

therapies are commonly used, assuming they can increase muscle length and/or reduce its stiffness 8 

(Zhao et al., 2011; Theis et al., 2015). However, we have recently demonstrated that improvements in 9 

ROM acutely after stretching are not caused by changes in muscle properties, but might be due to an 10 

increase in stretch tolerance (Kalkman et al., 2018). This is corroborated by others who show that the 11 

effectiveness of long term stretching interventions to improve fascicle length and/or passive muscle 12 

stiffness is uncertain (Wiart et al., 2008; Theis et al., 2015; Craig et al., 2016). To understand the reason 13 

for the limited effectiveness of these stretching therapies it is essential to know if the muscle fascicles 14 

are actually lengthening and receiving the stretch stimulus when rotating the joint, or whether other 15 

structures of the MTU take up the stretch.  16 

Previous studies of medial gastrocnemius (MG) muscle architecture in individuals with CP using 17 

ultrasound consistently report shorter muscle bellies compared to TD subjects (Fry et al., 2004; Barrett 18 

& Lichtwark, 2010). In addition, longer Achilles tendon has been reported in children with CP (Wren et 19 

al., 2010; Barber et al., 2012), which could be a compensation for the shorter muscle belly length when 20 

MTU length is similar. Furthermore, some studies have reported smaller resting muscle fascicle lengths 21 

in children with CP than TD children (Mohagheghi et al., 2008; Matthiasdottir et al., 2014), but others 22 

have not detected differences (Shortland et al., 2002; Mathewson et al., 2014). Inconsistencies can be 23 
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attributed to different normalisation procedures, small sample sizes and the heterogeneity of symptoms 1 

associated with CP.  2 

From investigations of muscle lengthening (defined as the displacement of the MG muscle-tendon-3 

junction relative to the origin of the muscle), we know that when passively rotating the joint in children 4 

with CP, the MG muscle belly lengthens less compared to TD children (Matthiasdottir et al., 2014). 5 

However, it is the passive stiffness of a muscle relative to its tendon that has implications for treating 6 

impaired joint function, because this determines how these two structures interact when lengthened by 7 

joint rotation. In TD adults it has been shown that when stretched, muscle fascicles undergo much 8 

smaller changes in length than the whole muscle-tendon unit (MTU) and both the tendon and 9 

intramuscular connective tissue contribute significantly to increased MTU length during joint rotation 10 

(Herbert & Moseley, 2002; Morse et al., 2008). It is not known how muscle belly and tendon lengthen 11 

relative to each other during passive joint rotation in children with CP. Furthermore, due to the pennate 12 

nature of the medial gastrocnemius muscle, the lengthening of its muscle belly will depend on both the 13 

properties of the muscle fascicles and the connective tissue that ties them together. A relation that has 14 

not been studied before. 15 

In children with CP, the amount of MG fascicle lengthening during passive joint rotation shows 16 

inconsistent results, with some studies indicating that there is no difference (Matthiasdottir et al., 2014), 17 

while others found less fascicle lengthening (Barber et al., 2011) in CP vs TD. This discrepancy could 18 

possibly be explained by differences in the ROM over which the results are compared between groups. A 19 

decreased ROM in children with CP could confound findings when comparisons are made over the full 20 

ROM. In fact, any comparison between CP and controls over absolute joint angles is inherently limited, 21 

because differences in the muscle’s moment arm (Kalkman et al., 2017) and passive joint torque 22 

(Alhusaini et al., 2010) will influence the joint angle-tissue lengthening relationship.  23 
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Therefore, in contrast to previous investigations, we aim to explore muscle fascicle, muscle belly and 1 

tendon lengthening simultaneously during passive joint rotation in order to understand which tissue 2 

takes up the stretch. Furthermore, we innovatively compare the lengthening of these tissues over 3 

different ranges, accounting for the interaction between joint and underlying structures, and allowing 4 

for more robust conclusions. 5 

Ultrasound has proved a valuable tool to improve understanding of in vivo behaviour of muscle and 6 

tendon during contraction and joint rotation. However, a calculation of the tissues’ mechanical 7 

properties during passive joint rotation is more difficult as several assumptions are inferred. The passive 8 

torque measured at the ankle is a combination of different muscles and passive structures, and the 9 

contribution of each force-bearing structure to the net joint torque cannot be quantified in vivo nor can 10 

it be assumed to remain constant throughout the ROM. Nevertheless, the resulting passive elongations 11 

of muscle and tendon in response to stretch allow drawing conclusions about the relative contribution 12 

of the muscular and tendinous structures to ROM. 13 

In order to explain the lack of change in muscle properties after stretching in children with CP (Kalkman 14 

et al., 2018), the purpose of this study was to quantify which structures contribute to MTU lengthening 15 

and thus receive the stretch stimulus during passive ankle joint rotation. We hypothesized that the 16 

muscle belly and the fascicles would lengthen less in CP compared to TD children and that the tendon 17 

would lengthen more. 18 

Method 19 

Ethical approval  20 

The study was approved by the National Health Service research ethics committee in the UK (project no 21 

15/LO/0856) and the University Hospital’s ethics committee in Leuven, Belgium (project no. S S57384). 22 

The study was conducted in accordance with the Declaration of Helsinki. This study was not registered in 23 
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a database. Written parental consent was obtained and written assent was given by children in 1 

accordance with local regulations. 2 

Participants 3 

Fifteen Children with CP and sixteen TD children aged 6-16 years were recruited for participation 4 

through the gait lab of Alder Hey Children’s NHS Foundation Trust in Liverpool, UK and the University 5 

Hospital in Pellenberg, Belgium. Patient characteristics can be found in table 1. Five of the TD children 6 

were assessed with the same protocol for a second time after a two-hour break to determine reliability 7 

of the full measurement protocol. Children with CP were excluded if they had Botulinum Toxin-A 8 

injection to the lower limb muscles 6 months prior to testing, a baclofen pump, any lower limb neuro- or 9 

orthopaedic surgery or less than 20 degrees of ankle movement in the sagittal plane (to ensure 10 

sufficient stretch in the medial gastrocnemius muscle). Patients had previously received on average 2.3 11 

Botulinum Toxin-A injections All TD children were free from neuromuscular or skeletal disorders.  12 

Experimental protocol 13 

Participants lay prone on a bed with the lower leg supported on an inclined cushion such that the knee 14 

was ~20° flexed, the leg was positioned in a custom-made orthosis, to control ankle movement in the 15 

sagittal plane (Figure 1A; Part of the experimental protocol has been published previously (Kalkman et 16 

al., 2018). The axis of rotation of the orthosis was aligned with the lateral malleolus. The foot was 17 

secured to a rigid footplate with the help of an adjustable insole that ensured heel contact with the 18 

footplate during ankle rotation. The leg tested was the most affected, defined by clinical spasticity 19 

scores (Tardieu et al., 1954; Bohannon & Smith, 1987), and the left in TD. Each participant underwent 20 

two trials involving three passive movements by manually rotating the foot from maximal plantarflexion 21 

to maximal dorsiflexion aiming for a maximum angular velocity of 15±5 °/sec , which is slow enough to 22 

not elicit a stretch reflex (Bar-On et al., 2013) and at least 10 seconds rest in between individual 23 
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repetitions (Bar-On et al., 2013). The reliability of data measured using the same equipment has been 1 

previously reported (Schless et al., 2015). Forces and torques around the ankle were measured at 200Hz 2 

using a six degrees-of-freedom force sensor load-cell (ATI mini45: Industrial Automation) attached to the 3 

orthosis under the ball of the foot. The point of attachment of the load-cell to the orthosis could be 4 

adjusted according to foot length. 3D kinematics were collected with 3 cameras at 120Hz from 2 clusters 5 

of 3 markers placed on the foot-plate of the orthosis and on the shank and a single marker placed on the 6 

most superficial part of the posterior calcaneal tuberosity (Optitrack, US). Surface electromyography 7 

(sEMG), placed on the middle of the muscle belly as defined with ultrasound, collected signals at 1600Hz 8 

from the lateral gastrocnemius and soleus muscles during all trials and from the MG during the trials 9 

measuring muscle belly lengthening (Zerowire, Cometa, Milan, IT). Raw EMG signals were filtered with a 10 

sixth-order zero-phase Butterworth bandpass filter from 20 to 500 Hz. The root mean square envelope 11 

of the sEMG (RMS-EMG) was extracted by applying a low-pass 30 Hz sixth-order zero phase Butterworth 12 

filter on the squared signal. When, during joint rotation the RMS-EMG signal exceeded 10% of the 13 

maximum voluntary contraction value (collected prior to the stretch trials), the corresponding trial was 14 

discarded (Haberfehlner et al., 2015).  15 

Ultrasound 16 

A B-mode ultrasound scanner (Telemed Echoblaster, Lithuania) with a 59mm linear transducer rigidly 17 

fitted with a cluster of 4 markers was used to identify the location of the medial femoral condyle in a 18 

local reference frame defined by the shank cluster.  19 

To define myotendinous junction (MTJ) displacement, the probe with cluster was securely fixed over the 20 

MG MTJ using a custom-made holder. The long axis of the probe was aligned with the line of action of 21 

the muscle to minimize out of plane movement. The MTJ was tracked at 30Hz in the local reference 22 

frame on the shank during the first three passive movements.  23 
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Then, because MTJ and fascicles of the MG could not be visualized simultaneously, the US probe was 1 

fixed over the MG muscle belly to measure fascicle lengthening at 60Hz during the second three passive 2 

movements. Guidance regarding probe alignment was adhered to for minimising measurement errors 3 

(Bénard et al., 2009).  4 

Data analysis 5 

Data analysis was carried out using custom-made software (Matlab R2015a, Python 2.7.11). Anatomical 6 

calibration of the shank and foot reference frames was applied to obtain ankle angle (Leardini et al., 7 

2007). During movement, displacement of the MTJ was manually tracked (Figure 1B) and muscle and 8 

tendon lengths were defined as the linear distances between the medial femoral condyle and the MTJ; 9 

and between the MTJ and the marker on the calcaneus, respectively. The MTU length was defined as 10 

the summation of muscle and tendon length. A modified semi-automated tracking software (Cronin et 11 

al., 2011; Gillett et al., 2013) was used to track fascicle length (lfas). Both aponeuroses and a fascicle were 12 

manually defined in the first frame of the video. Thereafter, the software automatically tracked and 13 

calculated fascicle length by extrapolating the defined fascicle to the intersection point with the defined 14 

aponeuroses during the movement. Pennation angle (α) was measured as the angle between the 15 

fascicle and the deep aponeurosis. Next, fascicle length resolved along the axis of the MTU was 16 

calculated trigonometrically: 𝑙𝑓𝑎𝑠_𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑑 = 𝑙𝑓𝑎𝑠 cos 𝛼⁄ . The net ankle joint torque was calculated from 17 

the exerted torques and forces on the load-cell, measured external moment arms, and the predicted 18 

torque caused by gravity on the foot and orthotic (Bar-On et al., 2013). All kinematic and kinetic 19 

variables were filtered using a 2nd order Butterworth filter with a cut-off frequency of 6Hz. Starting 20 

length (length at maximal plantar flexion angle) was subtracted from absolute muscle, tendon and 21 

fascicle length to compare lengthening of these structures over the full ROM and over a common ROM 22 

that could be achieved by all participants (-5° to -25°, with negative angles reflecting plantarflexion). 23 

Furthermore, all lengthening parameters were assessed over a common joint torque from 0Nm (defined 24 
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as slack length) to 3Nm and over a common amount of MTU lengthening (20mm). Muscle belly, fascicle 1 

and tendon lengthening was additionally expressed as a percentage of MTU lengthening. The 2 

parameters described above were calculated for the individual data curves. For visualization purposes, 3 

average curves were obtained by normalizing the trajectories of all variables to the stretch cycle and 4 

subsequently averaged over trials. These average curves are shown in Figure 2. 5 

Statistics 6 

All parameters were checked to be normally distributed using the Shapiro-Wilk test and by inspection of 7 

the q-q plots. All data were found to be normally distributed. The between session reliability in the TD 8 

children of lengthening parameters was analysed using intra-correlation coefficients (ICC, 3,k) and the 9 

standard error of measurement (SEM), calculated from one-way ANOVA. A 2-sample independent t-test 10 

was used to compare lengthening parameters between CP and TD groups. Relations between muscle 11 

and tendon lengthening, ROM and age were made using Pearsons r2-values. All statistical analyses were 12 

performed in Matlab (Mathworks, R2015). The α-level was set at 0.05. Effect sizes were expressed as 13 

Hedge’s g, values of ≈0.1, ≈0.2 and ≥0.3 may be roughly considered small, medium and large effects 14 

(Hentschke & Stüttgen, 2011). 15 

Results 16 

Intra-correlation coefficients of the inter-session reliability ranged from 0.70-0.90. The full results of the 17 

reliability analysis are shown in table 2. At the starting position of the passive movement (individual 18 

maximal plantarflexion), joint angle was not different between TD and CP groups (mean (SD); CP: -38.3° 19 

(7.2), TD: -36.6° (9.4), p=0.59, CI [-7.85 4.53]). At this angle, torque (CP: -1.5 (0.9) Nm, TD: -1.8 (0.5) Nm, 20 

p=0.25, CI [-0.22 0.81]), absolute muscle (CP: 164.1 (28.8) mm, TD: 174.7 (30.9) mm, p=0.4, CI [-32.47 21 

13.4]), tendon (CP: 166.9 (29.6) mm, TD: 159.6 (24.7) mm, p=0.54, CI [-13.74 25.85]) and fascicle lengths 22 
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(CP: 25.0 (6.6) mm, TD: 28.4 (4.1) mm, p=0.08, CI [-7.34 0.42]) were not significantly different between 1 

children with CP and TD children.  2 

Movements were performed with an average maximal angular velocity of 12.7 (4.2) °/s. No movements 3 

were excluded due to inaccurate movement velocity. In the children with CP, eleven trials were 4 

excluded due to an elevated EMG signal. This equates to 10% of the total number of trials. A minimum 5 

of 2 trials per participant was available or analysis. The full ROM was 13° smaller towards dorsiflexion in 6 

the CP group. Absolute muscle and fascicle lengthening over full ROM were on average 9mm smaller in 7 

CP. Absolute tendon lengthening was similar between groups. Over the common ROM that could be 8 

achieved by all participants (-25° to -5°) absolute muscle and fascicle lengthening was on average 3mm 9 

smaller in CP and absolute tendon lengthening did not differ between groups. At -5°, being the most 10 

dorsiflexed position all participants could achieve, joint torques were significantly larger in children with 11 

CP (2.34 (1.77) Nm) than TD children (0.49 (0.94) Nm). Over a common joint torque (0 Nm to 3 Nm), 12 

absolute muscle and fascicle lengthening was on average 3.2 mm smaller in CP, and absolute tendon 13 

lengthening did not differ between groups. When analysed over a common range of MTU lengthening 14 

(20mm), absolute muscle and fascicle lengthening were on average 2.5mm smaller in CP and absolute 15 

tendon lengthening was on average 2.6 mm larger in CP. Finally, when expressed as a percentage of 16 

MTU lengthening, relative muscle lengthening was smaller and relative tendon lengthening larger in 17 

children with CP over all the studied ROMs (Table 3, Figure 2).  18 

Pennation angle was not different between groups regardless the range over which it was studied 19 

(p>0.05). Fascicle lengthening resolved along the axis of the MTU was 8.2 (3.2) mm and 11.5 (2.0) mm 20 

respectively for CP and TD children over the common ROM (p<0.01). Over the full ROM this was 16.3 21 

(6.3) mm and 26.5 (7.0) mm for CP and TD children (p<0.01). 22 
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Muscle lengthening increased significantly with age in TD children while in children with CP, tendon 1 

lengthening increased with age (Figure 3). Significant correlations were found between muscle and 2 

tendon lengthening with ROM in children with CP (Figure 4).  3 

Discussion 4 

Regardless of whether groups were compared according to common joint angle, joint torque, or relative 5 

to MTU lengthening, muscle and fascicle lengthening were always smaller in children with CP than TD 6 

children (Table 3). This confirms previous findings of smaller muscle and fascicle lengthening during 7 

passive ankle dorsiflexion in children with CP (Barber et al., 2011; Matthiasdottir et al., 2014). By 8 

simultaneously studying the relative contributions of the muscle and tendon to MTU lengthening, we 9 

also found that in TD children the muscle lengthens more than the tendon (63:37%) while in children 10 

with CP they lengthen equally (50:50%). This indicates greater stiffness of the muscle relative to tendon 11 

in children with CP than TD. Our data cannot distinguish whether this difference is caused by a stiffer 12 

MG muscle (Friden & Lieber, 2003), or by a longer tendon (Wren et al., 2010; Barber et al., 2012), 13 

making it more compliant in children with CP. However, the joint moments required to lengthen the 14 

muscle-tendon unit are greater in children with CP (Alhusaini et al., 2010) and others have reported 15 

Achilles tendon stiffness not to be different between CP and TD (Theis et al., 2016). Therefore, it is 16 

reasonable to conclude that an increased muscle stiffness contributes more to a difference in the 17 

relative lengthening between muscle and tendon as observed in this study. However, regardless of 18 

whether the explanation lies in the muscle, tendon or a combination, this reduced stretch at the muscle 19 

relative to the tendon might explain the lack of change in muscle properties both acutely (Kalkman et 20 

al., 2018) and after long term (Theis et al., 2015) stretching interventions.  21 

Previous studies on muscle properties in children with CP analysed fascicle lengthening only over the full 22 

(Barber et al., 2011) or a common ROM (Matthiasdottir et al., 2014). However, due to differences in 23 
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Achilles tendon moment arm (Kalkman et al., 2017) and joint stiffness (Alhusaini et al., 2010) between 1 

TD and CP participants, comparison of lengthening parameters between groups only in terms of joint 2 

angles should be interpreted with caution. When data is analysed over a common ROM, it should 3 

additionally be noted that this common ROM could be at a different position relative to the full ROM in 4 

individual children and that children with CP develop torque earlier in their ROM. In this study the 5 

torque at the limit of the common dorsiflexion range (-5°) was higher in children with CP compared to 6 

TD children. To circumvent these issues, we compared our data in two additional ways. Firstly, over a 7 

common torque range to assure a similar stretching stimulus to the MTU. However, joint torque is also 8 

affected by differences in Achilles tendon moment arm, co-contraction and intrinsic joint stiffness. 9 

Therefore, lengthening values were additionally compared over a common MTU lengthening. 10 

Nevertheless, irrespective of the method used, we always found that relative to MTU lengthening, 11 

muscle lengthening is smaller and tendon lengthening larger in children with CP. This consistency 12 

confirms that the above changes in the mechanical behaviour of the MTU of children with CP are 13 

substantial and independent of the range used. However, when assessing the effect of an intervention 14 

or comparing different subgroups of children with CP, the differences may be less pronounced and the 15 

method of analysis will likely be important. This is a vital consideration when decomposing the causes of 16 

a reduced ROM in the clinical decision-making process.   17 

This study, and others before us (Morse et al., 2008), observed a discrepancy between the amount of 18 

fascicle and muscle belly lengthening during a passive stretch. This decoupling of the elongation of the 19 

fascicles from that of the whole muscle can be explained by deformation of intra-muscular connective 20 

tissue (endomysium and perimysium), extra-muscular connective tissue (epimysium) and the 21 

aponeurosis (Lieber et al., 2017). Additional analysis of the current data to explore fascicle:muscle 22 

lengthening showed that over a common ROM, muscle belly lengthening could be entirely explained by 23 

the resolved fascicle lengthening in both groups. This may imply that the increased resistance to stretch 24 
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of the muscle in children with CP results from similar changes in the lengthening characteristics of both 1 

the fascicles and passive connective tissue. When studied over the full ROM, average muscle belly 2 

lengthening in the CP group was 1.4mm larger than the resolved fascicle lengthening, while in the TD 3 

group muscle belly lengthening was equal to resolved fascicle lengthening. This could suggest that 4 

structures other than the fascicles, such as the perimysium and tissue between the fibres, deform to 5 

provide the additional lengthening required to achieve maximal dorsiflexion angles in children with CP, 6 

while in TD children this is not the case. Consistent with this interpretation, both intramuscular 7 

connective tissue (Malaiya et al., 2007) and the expression of extracellular matrix production-related 8 

genes were found to be dramatically increased in spastic muscles and correlated with muscle 9 

mechanical properties, such as stiffness (Smith et al., 2012). 10 

It has been shown that muscle contractures already start developing at an early age in children with CP 11 

(Willerslev-Olsen et al., 2013) and that growth is an important factor contributing to the development of 12 

contractures (Švehlík et al., 2013). Therefore, it is important to capture the critical age at which 13 

treatment is most effective and consider the changes that occur in muscle-tendon properties with 14 

maturation. It has been reported that gastrocnemius muscle belly length increases with age in TD 15 

children (Bénard et al., 2011; Weide et al., 2015). However, muscle lengthening from 0 to 4Nm 16 

dorsiflexion torque, was not found to increase with age (Bénard et al., 2011; Weide et al., 2015). This is 17 

not supported by our data, since we found a tendency for muscle lengthening to increase with age in TD 18 

children (Figure 3). The inconsistency might be caused by differences in age range and methodology of 19 

applying the dorsiflexion torque. Interestingly, the increase in muscle lengthening with age was absent 20 

in children with CP, for whom tendon lengthening increased with age. This may indicate that muscle 21 

stiffness increases with age in children with CP, which is consistent with the progression of disease 22 

(Graham et al., 2016). This is consistent with previous results showing impaired muscle growth and 23 

increased stiffness with age in children with CP (Willerslev-Olsen et al., 2018) Additionally, it indicates a 24 
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possibility that the Achilles tendon acts as a compensation mechanism to partly preserve ROM, despite a 1 

shorter and stiffer muscle as children with CP grow.  2 

The relative contribution of fascicle, muscle and tendon lengthening to ROM may be important in 3 

determining the best treatment. We show that both muscle and tendon lengthening are related to ROM 4 

in children with CP (Figure 4). A lack of this relationship in TD children shows that the MG does not play 5 

an essential role in determining their ROM. Stretching is often used to increase ROM in children with CP 6 

and is assumed to increase muscle length. However, the smaller muscle belly lengthening, caused by a 7 

change in the relative stiffness between muscle and tendon will lead to a smaller physiological stimulus, 8 

which may possibly explain the lack of effectiveness of stretching therapies (Wiart et al., 2008). Altering 9 

the relative stiffness before starting stretching therapies, either by making the muscle less stiff, or by 10 

increasing the stiffness of the tendon might make stretching exercises more effective. The large 11 

variability amongst participants in the current study and those reported in literature suggests that 12 

patient- and muscle-specific information may be required to facilitate individualized treatment 13 

programs. 14 

This study has some limitations. Currently, it is not possible to measure muscle and tendon stiffness 15 

during passive rotation in an intact joint, because there are no in vivo techniques to quantify forces in 16 

the muscle-tendon unit. However, the results of our study show less MG MTJ displacement in children 17 

with CP compared with TD children. Therefore, it is likely that in children with CP, the reduced 18 

contribution of the MG muscular component to MTU lengthening can, at least partly, be explained by an 19 

increased stiffness in the MG muscle. The SEM values of all parameters were lower than the average 20 

difference between groups, nonetheless, reliability of the calculated parameters was lower than 21 

expected based on Cenni et al., 2018. Future studies could reduce possible sources of error by applying 22 

motorized instead of manual movements and automatic tracking algorithms for feature identification. In 23 

the current study, fascicle and tendon length were represented as straight lines, thus neglecting possible 24 
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effect of curvature. The influence of curvature has been reported to be small for passive fascicle length 1 

measurements in the MG (Muramatsu et al., 2002). Neglecting tendon curvature leads to an 2 

overestimation of tendon lengthening in both groups especially at more plantarflexed ankle angles 3 

where the tendon is below slack length. Since we expect slack length to be at more plantarflexed angles 4 

in children with CP, an overestimation of tendon lengthening would be more likely in the TD children. 5 

Thus, controlling for tendon curvature would only amplify the between-group difference in tendon 6 

lengthening reported here. In addition, the methodology did not allow to visualise muscle belly and 7 

fascicle lengthening in the same trial. However, judged on the angle-time curves of the individual 8 

stretches, repetitions were considered repeatable between the two conditions. Also, in the TD children 9 

the leg tested was not randomized, but instead, always the left leg was assessed, which in most 10 

individuals would be the non-dominant leg. Since it is not known how limb dominance affects muscle 11 

lengthening, the lack of randomization for leg tested could have influenced our results. Furthermore, 12 

the effect of a single stretch on MTU properties has been shown to be negligible (Kalkman et al., 2018). 13 

It is possible that previous treatments, i.e. Botulinum Toxin-A injections, received by the participants 14 

may have influenced the results of this study. Some studies show microstructural changes on the tissue 15 

level in animals (Pingel et al., 2017) or observe an increase in muscle stiffness in in silico experiments 16 

(Wang et al., 2018), while others report no changes in muscle stiffness (Alhusaini et al., 2011) after 17 

Botulinum Toxin-A injections. Unfortunately, it is practically impossible to recruit a representative group 18 

of children with CP who have not had any interventions during their life. However, this does not 19 

confound the validity of the present results for the limited effect of the stretching intervention studied, 20 

as these interventions are applied regardless of Botulinum Toxin-A history. Finally, the exclusion of 21 

movements that showed muscle activation higher than a threshold helped minimize the effects of 22 

reflex-activity on the feature displacement. EMG activity during the analysed stretches was found to be 23 
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around 5% of RMS-MVC. However, small effects of background EMG activity below this threshold 1 

cannot be fully excluded.  2 

In summary, this study demonstrates that when passively rotating the ankle joint to stretch the calf 3 

muscles, the tendon lengthens less than the muscle in TD children, while in children with CP, the muscle 4 

lengthens as much as the tendon. This suggests altered material properties of the muscle and tendon in 5 

children with CP. This should be considered when assessing and treating muscle function at joint level in 6 

children with CP, for example during stretching exercises.  7 
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Figure Legends 

Figure 1. A. Experimental design showing leg placement in a custom-made orthosis. A hand held force 

sensor load-cell was used to measure net joint torque at the foot plate during passive stretch. Two 

clusters of reflective markers on the shank and foot-plate were tracked with motion analysis and used to 

calculate the foot-plate angle in 3D. A single marker was placed on the most distal part of the calcaneus 

and additionally tracked in 3D using motion analysis. The ultrasound probe was placed above the medial 

gastrocnemius muscle-tendon junction (MTJ), or on the muscle belly, and the position and orientation of 

the image was tracked using motion analysis by means of a cluster of markers attached to the probe. B. 

Close-up of the foot attached with an insole to the foot plate of the orthotic. C. The MTJ was identified 

as the most distal insertion of the muscle into the tendon. D. Fascicle length was defined as the straight 

line distance between the upper and lower aponeurosis along the lines of collagenous tissue and 

pennation angle (α) was defined as the angle between the fascicle and the deep aponeurosis. With the 

exception of the ultrasound measurements, the same experimental setup was used in Kalkman et al. 

2018. 

Figure 2 Muscle/tendon length (A) and  fascicle length (B) versus ankle angle with the common ROM 

indicated in shaded grey; Muscle/tendon length  (C) and fascicle length (D) versus muscle-tendon-unit 

(MTU) length; muscle/tendon length (E)  and fascicle length (F) versus ankle torque. 95% Confidence 

Intervals are shown at 4 representative time points.  

Figure 3 Correlations between age and muscle (A, B), tendon (C, D) and fascicle (E, F) lengthening across 

the range of motion (ROM) for children with cerebral palsy (CP) and typically developing (TD) children. A 

regression line is shown for significant relationships.   



Figure 4 Correlations between muscle (A, B), and tendon (C, D) lengthening and range of motion (ROM) 

in children with cerebral palsy (CP) and typically developing (TD) children. A regression line is shown for 

significant relationships. 



 

Table 1. Participant characteristics 
Participant characteristics CP (n=15) TD (n=16) 

Age (years, months) 11y 5m (3y) 10y 4m (3y) 
Male/female (n) 10/5 7/9 
Height (cm) 142 (20.3) 138.1 (19.1) 
Mass (kg) 36 (18) 35 (15) 
Tibia length (mm) 339.7 (54.3) 329.4 (52.7) 
GMFCS (I-IV) (n) 9 I, 6 II n/a 
Diagnosis (n) 8 Diplegia, 7 Hemiplegia n/a 
*Modified Ashworth Score(Bohannon and Smith, 
1987) (n=7) and Average Modified 
Tardieu(Tardieu et al., 1954) (n=8) 

MAS: 1.5 (n=6); 3 (n=1) 
Tardieu: 2 (n=5); 3 (n=3) 

n/a 

Botulinum toxin-A injections >6 months prior to 
the study date. Mean (range) 

2.3 (0-11) n/a 

Data are mean (SD) unless otherwise stated. CP: cerebral palsy; TD: typically developing; GMFCS: gross 
motor functional classification system (Palisano et al., 1997); n/a: not applicable. 
*Tardieu scores from children recruited at centre 2. MAS from children recruited at centre 1.  



 

Table 2. Mean (SD) of lengthening values in a subgroup (n=5) of TD children for repeatability 
analysis. 

 Session 1 Session 2 ICC SEM 

Over common ROM (-25° to -5°)  
Fascicle  10.3 (1.9) 8.9 (1.4) 0.753 2.0 
Muscle  10.4 (3.6) 9.2 (2.7) 0.822 1.7 
Tendon 7.0 (2.6) 5.3 (3.3) 0.663 2.1 
Over common MTU     
Fascicle 6.9 (2.5) 6.5 (4.1) 0.74 1.6 
Muscle 10.9 (1.8) 10.1 (2.4) 0.739 2.3 
Tendon 9.0 (1.8) 9.9 (2.4) 0.908 0.9 
Over common torque     
Fascicle 20.9 (5.2) 19.9 (4.4) 0.926 1.8 
Muscle 22.9 (2.8) 22.6 (3.5) 0.737 3.1 
Tendon 15.8 (4.6)  14.5 (5.5) 0.799 2.8 



 

Table 3. Mean (SD) lengthening values in children with cerebral palsy (CP) and typically developing (TD) children 
during passive ankle rotation. 
 Absolute lengthening (mm) % of MTU lengthening 

 CP TD ES Hedge’s g  CP TD 

Over the full ROM Over the full ROM 

ROM (°) 48.0 (12.8) 60.6 (11.0) * -1.03    

Fascicle 15.9 (6.2) 26.0 (4.3) ** -1.27  40.7 (10.7) 58.1 (14.3) ** 

Muscle 18.2 (5.4) 26.5 (7.0) ** -1.87  48.1 (9.2) 62.4 (9.2) ** 

Tendon 20.7 (8.1) 16.8 (6.7) 0.51  52.5 (8.8) 37.6 (9.2) ** 

Over common ROM (-25° to -5°)  Over common ROM (-25° to -5°)  

Fascicle 7.9 (3.2) 11.1 (2.1) ** -1.32  50.6 (20.4) 59.3 (14.6) 

Muscle 8.5 (2.3) 11.4 (2.8) ** -1.20  53.9 (9.0) 64.9 (9.9) ** 

Tendon 7.6 (3.1) 6.45 (2.3) 0.32  46.1 (9.0) 35.1 (9.9) ** 

From maximum 0 to 3Nm From maximum 0 to 3Nm 

ROM (°)  14.2 (3.2)  17.4 (5.6) -0.81     

Fascicle  4.1 (1.6)  7.6 (3.2)** -1.29  37.5 (9.6) 56.3 (14.9) ** 

Muscle  3.5 (1.9)  5.7 (2.5) * -0.91  50.4 (9.3) 63.4 (8.5) ** 

Tendon  3.8 (2.9)  2.8 (1.3) 0.38  49.6 (9.3) 36.6 (8.5) ** 

Over a common MTU range (0-20mm) Over a common MTU range (0-20mm) 

ROM (°) 17.7 (5.5) 18.7 (5.7) -0.33    

Fascicle 5.7 (2.1) 7.6 (3.9) * -0.52  25.4 (12.3) 39.1 (19.5) * 

Muscle 9.9 (2.3) 12.1 (2.5) ** -1.08  49.3 (11.5) 61.4 (12.9) ** 

Tendon 10.1 (2.2) 7.9 (2.5) ** 1.08  50.5 (11.2) 38.6 (12.8) ** 

ROM: range of motion; PF: plantar flexion; MTU: muscle-tendon unit; CI: confidence interval; SEM: inter-session 
standard error of measurement in TD children; ES: effect size. 
* Significant difference between CP and TD at p < 0.05 (** p < 0.01) 
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