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Abstract  

Chronic obstruction pulmonary disease (COPD) is a major cause of morbidity and mortality 

across the world.  COPD is currently the fourth leading cause of death in the world and is 

predicted to become the third leading cause of chronic illness and death worldwide by 2030. 

There are several therapeutic strategies to reduce COPD symptoms and complications such as; 

bronchodilator medications, antibiotics, inhaled corticosteroids and rehabilitation. However, 

none of the available pharmacological or non-pharmacological treatments for COPD have been 

shown to delay or correct long-term defects in lung function. Small nucleic acids such as non-

coding RNA (ncRNA) and interference microRNA (miRNA) have recently gained attention as 

a new class of therapeutics for various genetic diseases. Modulation of miRNA expression and 

function represents a promising strategy for therapeutic intervention in disorders such as 

inflammatory lung disease including COPD. In this study the aim was to design, formulate and 

characterise polymeric nanoparticles (NPs) containing miR-146a. This was followed by spray-

dying using L-leucine and mannitol to prepare dry powder nanocomposite microparticles 

(NCMPs) for pulmonary delivery.  

Anionic and cationic poly (glycerol adipate-co- ω-pentadecalactone), (PGA-co-PDL), NPs 

were produced using poly (vinyl alcohol) and dioleoyltrimethylammoniumpropane (DOTAP) 

respectively. The particle size of the anionic NPs was 266.10±20.80 nm and the incorporation 

of DOTAP resulted in NPs of 244.80±4.40 nm at 15 % DOTAP concentration. The zeta 

potential (ZP) of 15 % DOTAP NPs was +14.8±0.26 mV. Fluorescently labelled synthetic 

miRNA (miR-146a) was adsorbed onto the surface of the optimum 15 % DOTAP NPs. The 

cell viability studies indicated that over 65 % of A549 cells remained viable after 24 h exposure 

to cationic NPs at a concentration of 1.25 mg/ml.  



 

xvi 
 

The spray drying process was optimised to produce NCMPs with recovered NPs of 

409.7±10.05 nm, yield of 86.05±15.01 % and low moisture content 2.02±0.03 %. The NCMPs 

produced had a spherical shape and corrugated surface. The in vitro aerosolisation analysis 

showed a mass mean aerodynamic diameters (MMAD) of less than 6 µm indicating the NCMPs 

would be deposited in the middle to deep lung region and a fine particle fraction (FPF) of 

51.33±2.90 %.  Internalisation of miR-146a loaded cationic NPs was observed in A549 cell 

lines using both fluorescence and confocal microscopy.  

The miR146a delivered to A549 cells as miR-146a-NPs and miR146a-NCMPs had a dose 

dependent reduction on target gene repression; interleukin 1 receptor-associated kinase 

(IRAK1) expression to 40 % and TNF receptor-associated factor (TRAF6) expression to over 

20 %. Moreover, the miR-146a biological activity was maintained after spray drying. These 

findings demonstrate the promise of miR-146a-NPs/NCMPs as a dry powder pulmonary for 

the treatment of COPD, protecting miR-146a from degradation and enzymatic activity in the 

lung airways.  
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1 General introduction  

1.1 Pulmonary disease; COPD  

Lung inflammation is a common symptom in various lung diseases, which can be either acute 

or chronic in nature. For example, pneumonia is an acute inflammatory disease, whereas 

chronic lung diseases include asthma, cystic fibrosis and chronic obstruction pulmonary 

disease (COPD). COPD is a heterogeneous inflammatory disease characterised by airflow 

limitation, narrowing of the small airways and destruction of alveoli walls, which is considered 

a hallmark of emphysema (Cosio et al. 2009). An additional feature is chronic bronchitis which 

is associated with mucus and inflammation of the airways (Cosio et al. 2009). In a healthy lung, 

when a person inhales and exhales, each air sac fills up and deflates with air and the airflow 

passes through the lung airway smoothly (Fig 1–1). Whereas, in a lung afflicted with COPD, 

there will be less air flow in and out of the airways due to; the air sacs and airways having lost 

their elastic quality, destruction of the walls between air sacs, the walls of airways become 

thick and inflamed, and there is a greater presence of mucus than usual which can prevent air 

entering and leaving the lung (Pauwels et al. 2001).   One of the mechanisms that affect COPD 

pathogenesis is that alveolar epithelial cells start looking fibroblastic, due to epithelial-

mesenchymal transition (Nishioka et al. 2015). 
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Figure 1 – 1. Illustrative diagram of a healthy normal and COPD lung airways. In a 

healthy lung, during inhalation and exhalation airflow passes through the lung airway 

smoothly, whereas, a lung afflicted with COPD, there will be less air flow in and out of 

the airways.  

  

 

1.2 Statistics for COPD  

COPD is a major cause of morbidity and high mortality rates throughout the world.  COPD is 

currently the fourth leading cause of death in the world and is predicted to become the third 

leading cause of chronic illness and death worldwide by 2030 (World Health statistics 2008). 
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The World Health Organization (WHO) estimated that 251 million people were affected by 

COPD in 2016, and the Global Initiative on Obstructive Lung Disease (GOLD) indicated the 

disease is more prevalent among males than females (Global Strategy for the Diagnosis, 

Management and Prevention of COPD and GOLD 2016). A study among participants in 

developed countries found that a healthy male at 40 years of age has a 12.7 % chance of 

contracting COPD in the next forty years of his life, whereas for a healthy female the 

corresponding probability is 8.3 %  (Halbert et al. 2006).  Moreover, similar data in low middle 

income counties indicated almost a quarter of adults aged over 40 years were diagnosed with 

mild airflow obstruction, defined as a reduced post-bronchodilator ratio of  forced expiratory 

volume in 1 second (FEV1) to  forced vital capacity (FVC) (Halbert et al. 2006). Thus, the 

incidence of COPD occurs in both genders and in both developed and low middle income 

countries which indicates the marked global burden of this disease (Afonso et al. 2011).  

1.3 COPD inflammatory causes   

Primarily, COPD is contracted as a consequence of tobacco smoking, which progressively 

damages the lungs through nicotine and tar deposition, consequently leading to airflow 

constriction. Despite smoking being a major risk factor for COPD, only 20 % of smokers 

develop this pathology (Pauwels and Rabe 2004). Bronchial epithelial cells are the first 

anatomical barrier to noxious cigarette smoke particles and are involved in the initiation of 

airway remodelling through the production of proinflammatory mediators (Jeffery 2004).  

The exposure to cigarette smoke releases pro-inflammatory mediators, cytokines, which leads 

to the release of proteases and high oxidant concentrations that damage lung tissue (Heijink et 

al. 2013). Other factors such as exposure to indoor and outdoor air pollutants, bacterial 

infections, occupational hazards and genetic abnormalities contribute towards emphysema in 

the form of alpha-1-antitrypsin (A1AT) deficiency, have also been implicated in the 
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pathogenies of COPD ( (Mannino and Buist 2007). There is also a relationship between 

exposure to indoor biomass fuels and a number of respiratory diseases including COPD (Ezzati 

2005, Orozco-Levi et al. 2006), particularly in low middle income countries that rely on 

biomass fuels as source of everyday domestic energy (Umoh and Peters 2014). The smoke 

released from burning biomass fuels releases toxic substances, and causes extremely high 

levels of air pollution that affects and irritate the respiratory system. Desalu et al. showed the 

increased risk of respiratory symptoms and chronic bronchitis in women using biomass fuels 

in Nigeria  (Desalu et al. 2010). Various studies have revealed that biomass fuel smoke is one 

of the causes of obstructive airway diseases (van Gemert et al. 2011, Oluwole et al. 2013, Zhou 

et al. 2014).  

1.4 Current treatment  

There are several clinically appropriate therapeutic strategies to reduce COPD symptoms and 

frequency for example, bronchodilator medications which are used to reduce bronchial spasms, 

antibiotics to reduce respiratory infections, inhaled corticosteroids which are recommended for 

reducing inflammation, as well as influenza and pneumococcal vaccines to reduce serious 

illness and death. There is also rehabilitation available to reduce symptoms and enhance quality 

of life and oxygen can be administered to keep mucous membranes moist and provide adequate 

hydration. However, none of these pharmacological and non-pharmacological treatments for 

COPD have been shown to delay and correct the long-term defects in lung function (Global 

Strategy for the Diagnosis, Management and Prevention of COPD and GOLD 2016).  

In parallel to inflammatory and pro-inflammatory mediators involved in COPD pathogenesis, 

micro RNA (miRNAs) have recently been attributed to the pathogenesis of COPD (Angulo et 

al. 2012). miRNAs are endogenous and noncoding functional mediators of RNA interference 

(RNAi). They are an essential group of 18-25 single strand nucleotides (Bartel 2004). Almost 
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2,000 human miRNAs that have been discovered, despite some of their biological functions 

being unknown (Li and Belmonte 2015). The first miRNA (Lin-4) for cellular development 

was discovered in 1993 in Caenor-habditis elegans (Lee et al. 1993). Later, Reinhart et al. 

discovered let-7 and its association with cellular development timing (Reinhart et al. 2000). 

The following year Hutvágner et al. performed a similar study which indicated the relationship 

between let-7 and development regulation timing in both humans and animals (Hutvágner et 

al. 2001). The role of these miRNAs is in the post-transcriptional regulation of gene expression 

by binding to targeting messenger RNA (mRNA), promoting translation repression and 

mediating a cleavage and degradation of the mRNA target, and consequently blocking the 

translation of mRNAs into proteins  (Tomankova et al. 2010).  

1.5 Biogenesis of miRNA 

miRNA genes are generally found in intergenic areas, and they tend to be highly concentrated 

in the vicinity of the centromere of each chromosome (Meurant 2012). There are thousands of 

miRNAs that have been identified in various organisms and have been added to miRNA 

databases e.g miRBase (www.miRBase.org), which is a centralized repository for miRNAs and 

miRNA annotation. For example, the hsa-miR-146a entry into miRBase, has a chromosome 

where it is located and the loss of the function of miR-146 leads to an individual suffering from 

chromosome 5q deletion syndrome (Fig. 1–2).  

 

 

 

 

 

http://www.mirbase.org/
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Figure 1 – 2. Example miRNA entry in miRBase, hsa-miR-146 from human genome 

(http://www.mirbase.org/). The mature miRNAs derived from the 5’ and 3’ arms are in 

pink, corresponding to miR-145a-5p and miR-146a-3p. The miR-146 mimic used 

throughout this project corresponds to miR-146a-5p. 

 

http://www.mirbase.org/
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miRNA is transcribed in the nucleus by RNA polymerase II, to produce miRNA primary 

transcripts (pri-miRNAs). The pri-miRNA is cleaved by Drosha which partners with RNA-

binding protein DGRC8 forming pre-miRNA which is then exported to the cytoplasm by 

Exportin-5. In the cytoplasm, the pre-miRNA is cleaved by RNAase type III Dicer to produce 

21-23 nucleotides  long, with two nucleotide 3’ overhanging, called a miRNA/miRNA* duplex. 

This duplex is subsequently incorporated in a RNA-induced Silencing Complex (RISC), which 

contains Argonaute protein (Fig 1–3).  

1.5.1 The RISC Complex 

There are four Argonaute (AGO) proteins that represent a key component of RISC, which 

contains two domains; PIWI and PAZ. PIWI structurally resembles RNaseH, which is essential 

for target cleavage,  and PAZ, recognizes the miRNA 3’ end  (Kuhn and Joshua-Tor 2013). 

Nevertheless, AGO protein is loaded with double stranded miRNA precursors that form the 

RISC loading complex, and forms a passenger strand (miR*) that is degraded. A guide strand 

(miR) then guides the miRNA:AGO protein complex to the target 3’ untranslated region (UTR) 

of mRNA and promotes mRNA transitional inhibition or degradation depending on the 

complementarity between miRNA seed  and 3’UTRs (Brodersen and Voinnet 2009, Rajewsky 

2006, Elkayam et al. 2012, Schirle et al. 2014).  
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Figure 1 – 3. Schematic overview of miRNA biogenesis (adapted from (Winter et al. 2009). 

miRNA biogenesis starts with transcription of miRNA gene by RNA polymerase II to pri-

miRNAs. The pri-miRNA cleaved by Drosha which partners with RNA-binding protein 

DGRC8 forming pre-miRNA. The pre-miRNA is exported to cytoplasm by Exportin-5, 

which cleaved by RNAase type III Dicer in cytoplasm to produce 21-23 nucleotides   long, 

with two nucleotide 3’ overhanging, called a miRNA/miRNA* duplex. This duplex 

incorporated in RISC which contain AGO proteins which forms a passenger strand 

(miR*) that is degraded and a guide strand (miR) that target 3’ untranslated region 

(UTR) of mRNA and promotes mRNA transitional repression. 
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1.6 miRNA as a biomarker for COPD  

miRNAs play an important role in the regulation of gene expression for various normal and 

pathological mechanisms. Hence miRNAs are good candidates to act as potential biomarker 

agents in diagnostic and therapeutic clinics.  

Studies have detected miRNAs in various body fluids, tissue and cell types in both animal 

models and humans, and their involvement in lung development and progression, indicates 

their significant role in inflammatory responses (Fig.  1–4), (Akbas et al. 2012).  These studies 

have shown the presence of miRNA in lung tissue and bodily fluids such as sputum, plasma 

and urine. The stability of miRNAs in sputum and plasma varies with the level of degradative 

enzymes in blood, which reflects the biological importance of miRNA. Chen et al.  found that  

miRNAs levels  in serum are stable and consistent among individuals (Chen et al. 2008).  Akbas 

et al. showed that miR-7 was up-regulated whereas another four miRNAs (miR-20a, -28-

3p,34c-5p, and 100) were down-regulated when comparing COPD patients with a control 

population (Akbas et al. 2012). Similarly a study by Perry et al. showed that the changes in 

expression of miR-146a could regulate the inflammatory response in human alveolar epithelial 

lung cells  (Perry et al. 2008). Therefore, with the presence and stability of miRNA, it is 

possible to differentiate between healthy individuals with healthy lung tissue and those 

suffering from lung inflammation by using miRNA as a diagnostic and therapeutic biomarker.  
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Figure 1–4. Illustration of the main miRNAs involved in COPD. Orange boxes show up-

regulated miRNAs (cell, tissue and body fluids). Blue boxes indicate down-regulated 

miRNAs (cell, tissue and body fluids).   

 

1.7 Role of miRNA in inflammatory response  

In the relationship between miRNA and the inflammatory response in COPD, miR-146a is 

precisely linked to COPD pathogenesis. Sato et al. demonstrated that miR-146a and the down-

regulation involved in pathogenesis increases the abnormal inflammatory cyclooxygenase 

(COX-2) half-life in COPD and enhances production of prostaglandin E2. These expressed 

proteins are considered a hallmark of chronic inflammation in COPD (Sato et al. 2010). These 

findings were evaluated through in vitro studies using a miR-146a mimic and Western Blot 

analysis to determine COX-2 protein expression in cytokine-treated COPD fibroblasts. A 

Quantitative Real- Time Polymerase Chain Reaction (qRT-PCR) assay  was used to quantify 

miR-146a expression and the luciferase reporter assay demonstrated a binding of miR146a to 

COX-2 mRNA  3’UTR  (Sato et al. 2010).  
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miR-146a was shown to be involved in the targeting of interleukin-1 and Toll-like receptor 

(TLR) signalling, of which NF-кB activation is a primary downstream effector, known as 

interleukin 1 receptor-associated kinase (IRAK1) and TNF receptor-associated factor 

(TRAF6). Taganov et al. reported  miR-146a base-pairs with sequences in the 3’ UTRs of 

IRAK1 and TRAF6, and that these UTRs inhibit expression of a linked reporter gene. miR-

146a is capable of controlling TLR and cytokine signalling through negative feedback 

regulation, associating down regulation of IRAK1 and TRAF6 protein levels (Taganov et al. 

2006, Nahid et al. 2009).  Moreover, miR-146a plays a crucial role in the negative feedback 

regulation of interleukins,  IRAK1 and TRAF6  (Fig. 1–5)  (Bhaumik et al. 2009). In addition, 

there are various genes associated with inflammation of COPD airways including intercellular 

adhesion molecules (ICAM)-1 (Papi and Johnston 1999), tumour necrosis factor TNF-α 

(Leeper-Woodford and Detmer 1999),  monocyte chemoattractant  MCP-1 (Ueda et al. 1997), 

endothelin-1 (Quehenberger et al. 2000), and secretory leucocyte proteinase inhibitor   

(Sallenave et al. 1997).  

There are also other miRNAs present, which are not directly related to the inflammatory 

response of COPD. Guo et al. used a murine model to evaluate miR-125b which caused a 

significant reduction in neutrophil counts and pro-inflammatory cytokines corresponding with 

lipopolysaccharide (LPS) induced pulmonary inflammation (Guo et al. 2014). The LPS was 

targeted through the myeloid differentiation factor 88 (My88), which showed the capability of 

miR-203 to regulate inflammation (Wei et al. 2013). In addition, other miRNAs involved in 

COPD inflammation include miR-150, miR-181a and miR-20a.  These were down regulated 

in COPD compared to non-COPD models in vitro and in vivo (Manoharan et al. 2014, Xie et 

al. 2014). Manoharan et al. found that an increase of miR-150 levels correlated with reduced 

chemokine CXCL 1 expression in mice (Manoharan et al. 2014). A study by Xie et al. used 

qRT-PCR to measure expressed miR- 21 and miR-181a levels in enforced smoking rat models 
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to predict the occurrence of COPD. They demonstrated that levels of miR-21 were significantly 

higher, whereas levels of miR-181a were significantly lower, in COPD patients than in healthy 

control subjects. This suggests that levels of miR-21 and miR-181a can be useful for predicting 

the development of COPD in heavy smokers  (Xie et al. 2014). 

 

Figure 1–5. The role of miR-146a in TLR4 and IL-1R mediated signal transduction 

(adapted from (Oglesby et al. 2010, Bhoj and Chen 2009). The TLR4 and IL-1R signalling 

is started after binding with adaptor protein MyD88 which in turn recruits IRAK4 leads 

to activation of IRAK1 and TRAF6. This activates the protein kinases TAK1 and IKK 

complexes as a result allowing NF-кB starts transcriptional regulation and produce pro-

inflammatory cytokines.  miR-146a downregulates IRAK1 and TRAF6 protein levels and 

leads to a change in signalling pathway.  
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1.8 miRNA as a therapeutic agent 

The ability of miRNAs to concurrently target multiple genes involved in inflammatory 

pathways is an advantage over siRNAs, which typically target a single gene transcript 

(Pasquinelli et al. 2005, Rossi 2009) and  miRNAs can also be used  therapeutically to target 

multiple cell types and multiple inflammatory processes  (Conde et al. 2016). For this reason, 

the study of miRNAs may potentially generate new therapies for targeting and treating COPD 

rather than symptomatic relief.  

miRNA replacement therapy can be administered using two distinct approaches. The first 

method, involves introducing double-stranded synthetic mimic miRNA known as anti-miRs. 

These mimics are complementary to the miRNAs of interest and following uptake by cells they 

bind to RISC in the cytoplasm (Bader et al. 2010)  restoring the loss of miRNA function due 

to down expression. This method is more specific for restoring miRNA function, as it is 

associated with decreased off target effect and offers the ability of personalization according 

to the miRNA required, and has less side effects compared to miRNA antagonists (Bader et al. 

2010).  The significant therapeutic action of miRNA mimics enabled miR-34 to be used for the 

treatment of many cancers such as;  colon, ovarian, cervical, non-small cell lung cancer, and 

hepatocellular carcinoma, and miR-34 has been tested in phase I clinical trials (Bouchie 

2013b).  

The second method is known as the miRNA-expression vector where oligonucleotide miRNA 

mimics are combined with a vector. The viral vectors have been employed to deliver let-7 to 

decrease lung tumour and breast cancer cells (Esquela-Kerscher et al. 2008, Yu et al. 2007). 

Moreover, Trang et al. demonstrated the use of a neutral lipid emulsion delivery system of both 

miRNA-34a and let-7 mimics in a xenograft model to reduce tumour growth (Trang et al. 

2011). The use of these mimics has also been explored in lung cancer; Wu et al. therapeutically 



 

14 | P a g e  
 

delivered miR-29b in cationic lipoplexes for lung cancer in both in vitro using A549 cell lines 

and in vivo (Wu et al. 2013c).  This suggests that miRNA mimics could also be successful in 

COPD therapeutics. Although COPD alveolar epithelial cells undergo a epithelial-

mesenchymal transition, miRNA mimics can target this transition and restore their function 

(Nishioka et al. 2015).  

miRNA replacement therapy is considered an attractive target for clinical therapeutic 

development and there are various miRNAs currently in pre-clinical and clinical trials. The 

success of these clinical trials is crucial for the development of strategies for miRNA therapies. 

Pre-clinical studies using miR-34 for hepatocellular carcinoma and lung cancer progressed, in 

2013, to the clinical trial stage where MRX34 was the first miRNA replacement therapy in 

clinical trials (Bouchie 2013a). MRX34 development from the biopharmaceutical company  

Mirna Therapeutics, has completed phase I and the study is ongoing in terms safety, 

pharmacokinetics and pharmacodynamics (Beg et al. 2015).  

1.9 Delivery of miRNA to the lung  

When developing pulmonary delivery systems, it is important to consider the unique 

anatomical and physiological characteristics of the lung. The lung has a large alveolar surface 

area (80 sq. m) and offers a controlled low enzyme environment, ideal for the systemic 

absorption of macromolecules promoting efficient local and systemic delivery of drugs 

(Muralidharan et al. 2014). The lung is divided into two main parts; the central and peripheral 

regions. The former includes the trachea, bronchi and bronchioles, which act as defence 

mechanisms against airborne particles, and these particles are cleared by cilia within the mucus 

layer that lines the epithelia. The peripheral region, contains alveolar sacs whose primary 

function is to enable the lung to perform  gas exchange during the breathing process (Ong et 

al. 2013).  
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When air is inhaled through the nose and mouth it passes through the larynx and trachea, which 

represent generation zero of the airways, proceeding until the sixteenth generations where the 

central bronchi and bronchioles end.  At the beginning of the seventeenth generation of 

bronchioles, the alveoli start to appear which contain the alveoli ducts (20th generation) and 

alveoli sacs end at the 23rd generation of Weibel model (Fig 1–6)  (Effros 2006). The Weibel 

airway model of human lung refers to upper and lower airways regions with respect to 

deposition of inhaled particles of different size  (Weibel 1963).  

The deposition of inhaled particles into the epithelial and alveolar regions or cells of the lung 

is influenced by various parameters such as particle size and shape, airway dimension, flow 

dynamic, breathing rate, respiratory volume and health of the individual. Particle deposition 

occurs through one of the following mechanisms; impaction, sedimentation, interception or 

diffusion (Heyder 2004) and is dependent on the aerodynamic diameter (da). The aerodynamic 

diameter is defined as the diameter of a sphere of a given geometric diameter, which is 

equivalent to the settling velocity of the particle in question and represented by the following 

equation:   

𝑑𝑎 = 𝑑𝑔 √
𝑝

𝑋. 𝑝𝑜
 

da  is the aerodynamic diameter, dg is geometric diameter, p is the particle density, reference 

density (usually from water) and   x is shape factor  (Bailey and Berkland 2009, Carvalho et al. 

2011b).  The inhaled particles would target lung epithelial and alveolar cells.    
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Figure 1–6. Diagram of human lung and deposition of inhaled particles dependent on 

particles size (adapted from (Kunda et al. 2013).  

 

 

Numerous delivery routes for small nucleic acids have been reported, ranging from local 

injection (ophthalmic drops, intradermal injection and intranasal spray) into target tissue to 

systemic applications (intravenous injection), (Fujita et al. 2013). Let-7 miRNA has previously 
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been delivered locally to the mouse lungs by intra-tumour injection into lung cancer tumours 

in vivo in order to improve bio-distribution (Trang et al. 2010). However, this resulted in 

limitations and challenges such as peripheral tumour cells remaining present and relative 

knockdown of let-7 targets by immunohistochemistry (Trang et al. 2010). Nevertheless, each 

route of administration has different pharmacological effects. The pulmonary delivery of small 

nucleic acids e.g siRNA to treat lung disease, asthma and cystic fibrosis, showed significant 

advantages when compared with local injection delivery (Valle et al. 2007, Labiris and 

Dolovich 2003a). ZaBeCor Pharmaceuticals have developed an inhaled siRNA for local 

delivery via the lungs to treat asthma and  phase I clinical trials showed 75 % of patients who 

received the treatment experienced less laboured breathing (Watts and Corey 2010, Xie and 

Merkel 2015). The pulmonary delivery of nucleic acids to the lung is non-invasive and offers 

various advantages over the other non-parenteral oral, buccal, transdermal and nasal routes 

(Table 1–1).  Although much research has been conducted on siRNA there is a limited amount 

of studies that have investigated the inhalation of miRNA. 
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Table 1– 1. Advantages and disadvantages of different routes of delivery of small nucleic acids therapeutics  

Route of 

administration 

Nucleic acid   

 

Advantages Disadvantages 

 

Reference 

 

Pulmonary  

 

siRNA  

 

 

 

 

 

 

 

 

(a) Nucleic acid can be administered in a 

reduced dose thereby decreasing local and 

systemic side effects.   

(b) Rapid clinical response due to locally 

targeting lung cells. 

(c) Avoiding degradation in serum due to 

lower nuclease activity in the airways. 

 Limited lung 

deposition depending 

upon carrier, 

formulation and device.  

 

a-(Patton and Byron 

2007) (Labiris and 

Dolovich 2003a) 

 

b- (Agu et al. 2001) 

 

c- (Takei et al. 2004) 
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Dry powder inhalation   siRNA (d) Higher pharmacokinetics, which in 

association with higher retention time can 

achieve the maximal therapeutic. 

(e) Bypass of the first hepatic metabolism 

Stability of siRNA 

associated with high 

temperature conditions 

and final powder loss in 

spray drying.  

(Jensen et al. 2010) and 

(Jensen et al. 2012) 

 

Intratumoural Injection 

   

Let-7 miRNA  Strong inhibition of tumour distribution Limited gene knock 

down.   

 

(Wiggins et al. 2010) 

miR-34a Clinical trial data showed ability to block 

lung tumour growth.  

None  

 

 

(Bouchie 2013a) 

Intravenous 

(systemically) 

 

 

siRNA  

 

Improved siRNA bio-distribution.  Accumulation in organs 

such as kidney and 

liver.  

(Braasch et al. 2004) and 

(Santel et al. 2006) 

miR-200c Improved radio-sensitivity. None (Cortez et al. 2014) 
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Intraocular  siRNA Reduction in inflammatory cells of 50%.  Invasive, and requires 

specialists such as 

clinicians.  

(Hérard et al. 2006) 
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1.10 Nanocarriers for miRNA delivery 

The delivery of miRNA to a site of action is a major challenge especially in diseased lungs, for 

the development of miRNA therapeutic. The physicochemical properties, such as 

hydrophilicity and negative charge,  make it difficult for these molecules to cross biological 

barriers (Yin et al. 2014). Viral vectors such as lentiviral (Liu et al. 2012, Lian et al. 2012)  and 

adenoviral (Xia et al. 2012, Gu et al. 2013)   vectors  have been used as carriers for the delivery 

of RNAs but they are known to cause immunologic inflammatory responses (Wang et al. 

2012b).  

 During the last few years, there has been a growing interest in nanotechnology for drug 

delivery. Components of living cells are commonly nano-sized, for example membrane 

transporters, ribosomes and receptors (Labhasetwar 2005) so nanoparticles (NPs), defined as 

small particles ranging from 1 to 1000 nm in diameter (Sung et al. 2007), can readily interact 

with intracellular and extracellular components of cells (Borm et al. 2006). NPs  loaded with 

therapeutic agents can be utilised as a drug delivery system (DDS) for systemic and local 

delivery to treat diseases (Labiris and Dolovich 2003b). Inhalation is a favourable non-invasive 

route for lung targeting, providing high bioavailability (Cefalu 2004). Therefore, using NPs is 

an interesting delivery strategy for small nucleic acids to treat respiratory diseases. 

Advantages of inhaled NPs 

NPs have several properties which make them good candidates for nucleic acid delivery, for 

example; the small particle size and positively charged surface. These properties allow the NPs 

to interact with cells, enhance intracellular uptake and release of miRNA to achieve the 

required gene silencing (Anwer et al. 2000, Stuart et al. 2006).  The lung has barriers such as 

lung lining fluid, epithelial cells and enzymes e.g endonucleases. Inhaled miRNA may be 
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degraded by these barriers. NPs, due to their size 200 nm, have the ability to diffuse through 

lining fluid. A study by Patton et al. showed the uptake of smaller particles 200 – 500 nm size 

could efficiently cross the lung barriers  (Patton et al. 2004).  

The surface of NPs can be modified with other molecules and functional groups and can be 

complexed with proteins, carbohydrate and antibodies (Davies et al. 2008). This can  enhance 

NP miRNA delivery  and cellular uptake compared to that of naked miRNA  (Yuba et al. 2008). 

Yin et al. showed the attachment of polyethylene glycol (PEG) to NPs protected nucleic acids 

from degradation and provided greater serum stability (Yin et al. 2014). miRNA complexed 

with cationic NPs protected against degradation, improved circulation and used in treatment of 

pulmonary disease such as cystic fibrosis (Yin et al. 2014, Konstan et al. 2004). Similarly, N-

[(1-(2,3-dioleyloxy)propyl)]-N-N-Ntrimethylammonium chloride (DOTMA), in combination 

with a lipid, formed a complex with plasmid DNA (Anwer et al. 2000).   

As a DDS to treat severe lung disease, poly (D L-lactide-co-glycolide acid), (PLGA), NPs with 

surface coated DOTAP were loaded with siRNA and incorporated into inhalable carrier 

particles by spray drying. The siRNA loaded NPs had a particle size of 216.0±6.0 nm and 

surface charge of +33.1±2.2 mV.  In vitro assays showed reduced gene expression and gene 

silencing of 73 % was achieved (Jensen et al. 2012) indicating that small nucleic acid-loaded 

NPs within a microcarrier can be used efficiently as a DDS in a pulmonary delivery platform 

to enable targeting of lung disease.  

1.11 Polymer based Nanoparticles 

In the last few years, several in vitro and in vivo studies have described different NP DDS used 

in gene delivery including lipid, inorganic materials and polymers (Table 1–2) and some that 

have included delivery technologies using non-viral carriers for appropriate safe delivery of 

miRNAs for different diseases (Fortunato et al. 2014).  
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Table 1– 2: Examples of nanocarriers used for gene delivery  

Type of NPs  Oligonucleotide Disease type  Particle 

size (nm)  

Reference  

 

 

 

Polymer based NPs 

 

 

Polyethylene-imine (PEI) miR-145 and miR-33a Colon cancer N/A (Ibrahim et al. 2011)  

Chitosan siRNA Lung cancer 40-600 (Howard et al. 2006a) 

poly(lactic-co-glycolic 

acid)- Polyethylene-imine 

(PLGA-PEI) 

miR-26a Liver cancer 

 

60 (Liang et al. 2011) 

Dendrimers 

(Poly amidoamine) 

miR-21 Glioblastoma <100 

 

 (Ren et al. 2010) 

 

 

 

Inorganic NPs  

Gold  miR-205 and miR-20a  Prostate Cancer  13 (Hao et al. 2011) 

Quantum dots  miR-491 Breast cancer 10 (Yoon et al. 2010) 

Silicon oxide DNA  Ovary  50 (Liu et al. 2009) 

Iron oxide  siRNA Cancer  15 (Lee et al. 2009) 

Lipid based NPs Cationic lipids  miR-107 Head and neck 

cancer 

150.1 

 

(Piao et al. 2012) 
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1.12  Nanoparticle surface charge and adsorption 

 Treatment of various diseases face hurdles for the efficient delivery of drugs necessary to 

alleviate the associated symptoms and/or eradication such as  cellular uptake, degradation and 

the ability to target specific cells (Pack et al. 2005). A great deal of interest has been shown in 

the viability of NPs for gene delivery and specific cell targeting (Green et al. 2007). However, 

uncoated NPs result in poor bio-compatibility and bio-distribution.  

The physicochemical characteristics of NPs such as the electrostatic charge on their surface 

affects interactions between the particles and the cell’s surface. The modification of NPs’ 

surfaces was shown to have an effect on particle uptake and bio-distribution. Moradi et al. 

modified NPs surface by adsorption of ligand which affects the level of cell internalisation and 

enhanced the NPs cellular uptake (Moradi et al. 2012). Polycationic  NPs with hydrophilic 

polymers containing amine groups, interacted with negatively charged phosphate groups of 

nucleic acids led to neutralisation and increase in bio-distribution (Hwang and Davis 2001) 

(Garnett 1999).  

 Coating NPs with lecithin and albumin can improve cellular uptake due to the electrostatic 

charge, where the positively charged particles bind to a negatively charged membrane and 

undergo endocytosis.  Zeta Potential is considered as an important property in measuring the 

particle surface that helps in particle adsorption, cell interaction and delivery. The electrical 

potential and surrounding surface charge prevents aggregation of NPs (Somasundaran et al. 

2004).  

Nucleic acids can bind and adsorb onto the cationic NPs via electrostatic interactions. Studies 

revealed that additionally attaching molecules such as chitosan, polyethylene-imine (PEI) or 

cationic lipids such as dioleoyltrimethylammonium propane (DOTAP) promote siRNA 

transfection efficacy. These cationic additives can be added to the NPs’ surface pre or post 
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formation. DOTAP has been successfully used for the modification of single-walled carbon 

nanotubes surfaces which lead to efficient small nucleic acid loading which improved cellular 

interactions (Li et al. 2014) and formed lipoplexes with negatively charged small nucleic acids 

when used for siRNA delivery in vitro  (Taetz et al. 2009). The NPs surface modification lead 

to high efficiency accompanied with safe siRNA delivery (Yezhelyev et al. 2008). At LJMU 

we have been investigating adsorption of macromolecules onto polymer based NPs to maintain 

stability and structural activity. An example is PGA-co-PDL NPs adsorbed  bovine serum 

albumin (BSA) onto the surface as proof of successful protein  adsorption  for subsequent 

development as a NP vaccine delivery system (Kunda et al. 2014b).  The coating of NPs with 

macromolecules can control many features such as release rate, cytotoxicity and cellular uptake 

(Yogasundaram et al. 2012).  In fact, the small nucleic acids adsorption on NPs provided an 

effective potential DDS as incorporating siRNA during the chemical synthesis of siRNA-

conjugated NPs may affect small nucleic acid integrity.  The siRNA must remain as a duplex 

to bind to RISC and cause gene silencing (Fire et al. 1998). However, other methods that added 

siRNA directly during synthesis lead to siRNA being affected by high temperature, and strong 

solvents resulting in the loss of function  (Soutschek et al. 2004).   

1.13 Dry powder microcarriers  

Inhaled NPs in the dry powder form smaller than 1 µm (diameter) are not capable of reaching 

the alveolar part of the lung and are likely to be exhaled during inspiration. However,  particles 

larger than 10 µm in diameter are most likely to deposit on  the throat tissue and sediment in 

upper lung mucus  (Heyder et al. 1986). Therefore, the ideal particle size for optimal particle 

deposition in the deep lung ranges from between 1 to 5 µm in diameter (Sakagami 2006). Due 

to these limitations, the NPs required for cellular uptake cannot be aerosolised effectively. 

Hence, NPs require formulation within an aerosolisable micron-sized carrier for efficient 

pulmonary delivery.  
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Spray drying can be used to formulate NPs and naked drugs into micro-sized dry powders 

providing a  mechanism for delivery to the lung via dry powder inhalation (DPI) (Jensen et al. 

2012).  There are three different types of inhalation devices available for pulmonary delivery; 

nebulizers, pressured metered dose inhalers (MDI) and dry powder inhalers (DPIs).  DPIs are 

the most common and offer advantages such as; overcoming issues with solubility, 

bioavailability, and stability, compared to other inhalation modes. Spray-drying parameters can 

be optimised to achieve microparticles with a desirable particle size, particle size distribution 

and aerosolisation properties suitable for pulmonary delivery  (Shoyele and Cawthorne 2006).  

1.13.1 Dry powder inhalers in gene delivery 

Carrier particles containing polymeric NPs have been used to deliver pDNA to the lung. 

Incorporating NPs (mean diameter 100–250 nm) containing pDNA into mannitol 

microparticles was successfully achieved by Takashima et al. and subsequently delivered to 

the bronchial and alveoli segments of the lung using DPI (Takashima et al. 2007).  Spray drying 

of small nucleic acids also showed potential for inhalation (Jensen et al. 2010). Nanocomposite 

microparticles (NCMPs) of PLGA nanospheres containing siRNA were formed by Ditte Marie 

et al. using a variety of excipients including trehalose, mannitol and lactose. The PLGA-siRNA 

NPs were spray dried producing dry powders of low moisture content and a desired inhalable 

aerodynamic particle size for inhalation. Importantly, the siRNA remained biologically active 

(Jensen et al. 2010).  

1.14 Dry powder preparation techniques 

There are several approaches to producing dry powders e.g freeze drying (Abdelwahed et al. 

2006), spray drying (Pilcer and Amighi 2010), spray freeze drying (Shoyele and Cawthorne 

2006) and super critical fluid techniques (Johnson 1997, Kaialy and Nokhodchi 2015, M Al-

fagih et al. 2011).  These methods can be optimised to  provide desirable attributes such as 
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narrow particle size distribution, improved dispensability, enhanced drug stability, optimised 

bioavailability and controlled release (Kunda et al. 2013, Kunda et al. 2015b), The different  

techniques can be  compared in terms of cost, yield, powder particle size and morphology 

(Table 1–3). To date, there are no studies reporting the use of these dry powder techniques with 

miRNA. However, some studies reported using these techniques on other nucleic acids such as 

siRNA (YT Chow and KW Lam 2015) suggesting formulated miRNA will be suitable for 

inhalation.   

1.14.1 Spray drying 

Spray-drying is a one-step drying technique in which dry powder can be produced by 

converting the liquid solution to dry powder through mixing the evaporated liquid with a drying 

hot gas medium. The spray-drying technique has four distinct stages; atomisation, spray air 

contact, drying and separation  (Pilcer and Amighi 2010). The advantage of this technique 

compared with the milling process, is the ability to generate higher respirable particles with a 

spherical shape in terms of decreasing drug and carrier adhesive forces, and more particle size 

distribution homogeneity (Steckel and Brandes 2004). All these characteristics have an effect 

on particle deposition, particle adhesion and drug delivery in respiratory airways. Such 

properties can be achieved by controlling spray-drying parameters such as solvent composition, 

coating excipients, drying and gas feed rate, solute concentration, liquid viscosity, solution feed 

rate and humidity (Johnson 1997).  

Another advantage with this technique is the propensity for laboratory-scale work and the 

higher drug loading ability (Peltonen et al. 2010). Spray drying using different carriers has been 

used widely for the preparation inhalable dry powders for delivering peptides, proteins, genes, 

and small nucleic acid delivery. Jensen et al.  used mannitol as an excipient to prepare dry 

powders containing PLGA NPs  loaded with siRNA to target lung disease (Jensen et al. 2012). 
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The study found that these dry powders released siRNA to lung tissue but didn't alter the gene 

silencing activity. This may be due to the thermal and mechanical stresses during the 

manufacturing process, which may affect the nucleic acid transfecting efficacy. However, DPI 

is still a promising technique for inhaled nucleic acid dependant on choosing the right excipient 

and vector as protective agents (Berghe et al. 2000, YT Chow and KW Lam 2015).     
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Table 1– 3: Different types of techniques to produce dry powder  

Method Cost (commercial) Powder Yield Powder particle size and 

morphology 

 

Spray Drying 

 

Cost-effective (expensive in early stages), 

commercially available (Peltonen et al. 

2010)  

 

Relatively low recovery 

approximately 50%, It may increase 

depending on type of spray dryer (> 

70 %) formulation (Shoyele and 

Cawthorne 2006)  

Small, within range of 

inhalation and spherical 

shape (Liang et al. 2014)  

 

Spray Freeze drying 

High, and time consuming (Shoyele and 

Cawthorne 2006).  

High recovery (YT Chow and KW 

Lam 2015)  

Controllable size, relies on 

the excipients used and 

spherical in shape (Mohri et 

al. 2010, Amorij et al. 2008)    

 

Super Critical fluid drying  

Commercially, less available equipment  

(YT Chow and KW Lam 2015, Gradon 

and Sosnowski 2014)    

High, approximately 80 % 

(Okamoto et al. 2005) 

Controllable, depends on the 

excipients  (M Al-fagih et al. 

2011)  



 

30 | P a g e  
 

1.15 Thesis Aim and objectives  

Aim  

To design, formulate and characterise miRNA-containing NPs formulated as an inhalable dry 

powder microcarrier (Fig 1–7) for the treatment of Chronic Obstructive Pulmonary Disease 

(COPD).  

Objectives 

The aim of the thesis was achieved by the following objectives to; 

1. Formulate and develop polymeric NPs for miRNA delivery. 

a. Design and prepare optimized cationic PGA-co-PDL NPs using the cationic 

surfactant, DOTAP.  

b.  Investigate the influence of particle size and charge on lung cell uptake and 

toxicity.  

c. Adsorb miRNA onto the optimum NP formulation.  

d. Investigate the cellular uptake and the biological functionality of the miRNA-NPs.   

2. Formulate NCMPs for pulmonary delivery.  

a. Incorporate optimum NPs into NCMPs via spray drying with L-leucine and 

mannitol as microcarriers.  

b. Evaluate NCMPs containing miRNA-NPs for inhalation in terms of size, 

morphology, moisture content and aerosol performance.  

3. Evaluate in vitro, miRNA-NP NCMPs.  

a. Investigate miRNA functionality in terms of cellular uptake, interactions and gene 

knockdown. 
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Figure 1 – 7. Illustration of pathway for formulation and pulmonary delivery of miRNA-

NPs incorporated into NCMPs.  

 

 

 

 



 

32 | P a g e  
 

 

 

 

 

 

 

 

2. Materials and General Methods 
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Materials  

Materials and Properties Supplier 

Poly (vinyl alcohol) PVA, Mw of 13- 23 kDa  

87-89% hydrolysed 

 

Clariant GmbH, Frankfurt am Main, 

Germany 

Divinyl adipate (DVA) Fluorochem, UK 

Novozyme 435 (a lipase lipase from Candida 

antartica immobilized on a microporous 

acrylic resin) 

 

Biocatalytics, USA 

Dichloromethane (DCM), 

Tetrahydrofuran (THF) 

Methanol (MeOH), 

Chloroform,  

Dimethyl sulfoxide (DMSO)  

Fischer chemicals (Fischer Scientific, 

UK) 

 

 

 

 

8 well chambered slides 

Opti-MEM® I Reduced Serum Medium 

Anti-actin beta rabbit monoclonal antibody  

Anti-Rb IgG (H+L) cross adsorbed secondary 

antibody HRP conjugates 

 

Thermo Fisher, scientific, UK 
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SuperSignal™ West Dura Extended Duration 

Substrate 

Bicinchoninic acid (BCA) protein assay kit  

Bovine serum albumin (BSA) 

L-glutamine  

6-well and 24-well tissue culture plates  

 25 and 75 cm2 tissue culture flasks 

Dioleoyltrimethylammoniumpropane 

(DOTAP) 

Avanti Polar lipids, Alabaster, AL, USA 

Glycerol  

ω-pentadecalactone (PDL) 

RPMI-1640 medium with L-glutamine and 

NaHCO3, 

Thiazolyl blue tetrazolium bromide (MTT),  

Phosphate Buffered Saline PBS tablets, pH 

7.4,  

 Nile red and 

 RNase-free diethyl pyrocarbonate (DEPC) 

water 

Paraformaldehyde (PFA)  

Sigma Aldrich (now Merck), UK. 
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Triton X-100  

10× TBE buffer (Tris-Borate electrophoresis 

buffer: 108 mg/mL Tris base,  

55 mg/mL Boric acid,  

9.3 mg/mL EDTA)  

9.4 Ethidium bromide (5 mg/mL) (EtBr) 

LB broth (Lennox) powder 

Anti-Mouse IgG (Fab specific) antibody  

Anti-Actin-Beta antibody, Rabbit monoclonal 

Penicillin-Streptomycin 

Trypsin-EDTA  

Sodium deoxycholate  

L-leucine 

D-Mannitol 

Complete™ ULTRA Tablets, Mini, 

EASYpack Protease Inhibitor Cocktail 

Sodium orthovanadate 

ß-mercaptoethanol  

Triton X-100 
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sodium dodecyl sulphate (SDS) 

Tris PH 8.0  

Unlabelled miR146a mimics  

Human adenocarcinomic alveolar basal 

epithelial cell line (A549).  

 Calu-3 cell lines  

Eagle's Minimum Essential Medium (EMEM)  

ATCC (Middlesex, UK) 

A synthetic miR-146a mimic with  6-

carboxyfluorescein ( FAM) -label on the sense 

5’ FAM-CCGGGCAAUUCAGUUUCUACA-

dTdT-3’ with the sequence: sense 5’ FAM-

CCGGGCAAUUCAGUUUCUACA-dTdT-3’, 

antisense 5’ dTdT-

GGCCCGUUAAGUCAAAGAUGU-3’  

Eurogenetec, UK 

Plasmid pMirTarget vector contains Firefly 

Luciferase and empty pMirTarget vector  

(Control) 

cDNA generations, PCR reagents and primers 

(IRAK, TRAF) 

3’-UTR reporter  

Origene  

Luciferase assay kit (cell lysis reagents)  

SOC media 

Promega’s, UK 

https://www.lgcstandards-atcc.org/products/all/30-2003.aspx
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Plasmid maxi prep purification kit 

Interleukin-1 receptor-associated kinase 

1 (IRAK1) RT² qPCR Primer  

 TNF receptor-associated factor 6 (TRAF6) 

RT² qPCR Primer  

RT² qPCR Primer Assay for Human GAPDH  

miScript SYBR® green PCR KIT 

miScript II RT Kit  

RNeasy Plus Mini Kit  

AllPrep DNA/RNA/miRNA Universal Kit  

 Qiagen, UK  

Lipofectamine 3000 and reagents  

 

Invitrogen (Life technology, UK).  

4′,6-diamidino-2-phenylindole, 

dihydrochloride (DAPI) 

Invitrogen, Ltd.,UK.  

Precision Plus Protein™ Kaleidoscope™ 

Protein Standards  

Mini-PROTEAN® TGX Stain-Free™ Precast 

Gels 

Nitrocellulose membranes 

Bio Rad, UK  

Mouse monoclonal Anti-IRAK1 antibody  

Rabbit monoclonal Anti-TRAF6 antibody 

Abcam, UK 

10 X Tris/Glycine/SDS Geneflow Ltd , UK 
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 General Methods 

2.1 Polymer synthesis and characterisation 

Poly (glycerol adipate-co-ω-pentadecalactone), (PGA-co-PDL) was produced using an enzyme 

catalysed condensation and ring opening co-polymerisation reaction of equimolar quantities of 

the three monomers: divinyl adipate, glycerol, and ω-pentadecalactone (Fig. 2–1) as described 

by Thompson et al.  (Thompson et al. 2006). Briefly, a dry 250 ml two-necked round bottom 

flask, equipped with a central stirrer attached to a teflon paddle and open condenser, was 

charged with equal molar amounts (125 mmol) of divinyl adipate (DVA), pentadecalactone 

(PDL), glycerol and 25 ml of Tetrahydrofuran (THF). The flask was immersed in a water bath 

at 50 °C left to stir (210 rpm) for 20 minutes to equilibrate the temperature. Novozyme 435 

(1.25 g) was added, using the remaining THF (10 ml) to wash all the solid into the flask and 

the mixture stirred for 6 hours. Warm dichloromethane (DCM) (300 ml) was added to the flask 

followed by Buchner filtration to remove the solid enzyme. The solvent was then removed by 

rotary evaporation (60 °C) until around 20 ml of DCM remained. Methanol (100 ml) was added 

to precipitate the polymer and leave unreacted monomers and oligomers in solution which were 

Foetal Bovine Serum (FBS) 

 

Biosera, UK. 

96-well tissue culture plates, black,  flat 

bottom 

 

Griener Bio-one, UK 

213 - pIL8/d2EGFP and 269 - pDSRED mono 

promoters 

A kind gift from Dr. Endre Kiss-Toth, 

Sheffield, UK.   

Interleukin 8 (IL8) promoter and tumor 

necrosis factor-a (TNFa)  

Peprotech, UK.  
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filtered using Buchner filtration. The precipitate was broken up and left to dry under vacuum 

for 24 h before grinding into a powder and storing in a desiccator at room temperature.  

For further explanation to Fig. 2–1, the PGA-co-PDL was prepared from co-polymerisation of 

three monomers; PDL, DVA and glycerol with aid of a hydrolytic enzyme (Novozyme 435) to 

produce PGA-co-PDL as a linear polyester. The enzyme chosen for this polymerisation 

reaction has a regio-selectivity for primary hydroxyl (OH) groups (Kline et al. 1998).  

 

 

Figure 2– 1. The reaction scheme for the enzymatic synthesis of PGA-co-PDL (Thompson 

et al. 2006).   

 

The PGA-co-PDL was analysed by Nuclear Magnetic Resonance (1H NMR), using a Bruker 

Avence 300 MHz spectrometer, inverse probe with B-ACS 60 and auto sampler with gradient 

shimming. Gel permeation chromatography (GPC) using a Viscotek TDA Model 300 
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(OmniSEC3 software), the system was fitted with two PLgel 5 µm MIXED-D 300x7.5 mm 

columns (Varian, Polymer Laboratories, UK), stored in the detector oven at 40 °C, and a flow 

rate of 1  ml/min using chloroform as a solvent. The system was pre-calibrated with polystyrene 

standards.  

2.2 Nanoparticle preparation and miR-146a adsorption 

PGA-co-PDL nanoparticles (NPs) were prepared using an oil in water (o/w) single emulsion   

method as previously described (Kunda et al. 2014a). Briefly, 200 mg PGA-co-PDL and 

optimum 15 % dioleoyltrimethylammoniumpropan (DOTAP) were dissolved in 2 ml DCM, 

and upon adding 5 ml 10 % w/v poly (vinyl alcohol) (PVA) (1st aqueous solution ) drop wise 

on ice using probe sonicated (20 μm amplitude) for about 2 minutes to obtain an emulsion. 

This was immediately added drop wise to 20 ml of a 2nd aqueous solution (0.75 % w/v PVA) 

under magnetic stirring at a speed of 500 RPM and stirred at room temperature for 3 h to 

facilitate the evaporation of DCM. The NPs suspensions were collected by ultracentrifugation 

at 35,000 x g, for 40 min at 4 °C using (Beckman L-80 Ultracentrifuge, UK) and washing twice 

with distilled water (4 ml) to remove excess surfactants. 

For adsorption, miR-146a was adsorbed onto the NPs suspension obtained after centrifugation 

following removal of excess surfactant. 6-carboxyfluorescein (FAM) labelled miR-146a, and 

unlabelled miR146a-NPs (for IL-8 Promoter Reporter assay),  (40 µg) was added to a 1 ml 

solution of RNase free water containing 10 mg of NPs (to obtain a final NP:miRNA weight 

ratio of 250:1) and mixed using a HulaMixerTM Sample Mixer (Life technologiesTM, UK) at 

20 rpm and 25 °C for 2 h. RNase free water was then added to a total volume of 4 ml prior to 

separation of non-adsorbed miR-146a by a single ultracentrifugation at 35,000 x g, for 40 min 

at 4 °C using (Beckman L-80 Ultracentrifuge, UK) (Fig 2–2). The concentration of free miR-

146a in the supernatant was analysed by UV prior further use.  
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Figure 2– 2. Adsorption of negatively charged miRNA onto positively charged NPs. 
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2.3 Nanoparticle characterisation 

 2.3.1 Particle size and zeta potential  

The mean particle size and polydispersity index (PDI) were analysed by dynamic laser 

scattering, and the surface charge of the particles was determined by measuring the zeta-

potential (Zetasizer Nano ZS, Malvern Instruments Ltd, UK) in triplicate and for three different 

NPs batches. NPs (10 mgs) were diluted with 4 ml distilled water and 1 ml of the diluted sample 

was loaded into a measuring cuvette and the measurements were recorded at 25 °C.  

2.3.2 miRNA adsorption  

To determine the amount of miRNA adsorbed to the NPs, the concentration of adsorbed miR-

146a determined indirectly from the difference in miR-146a concentration before and after 

loading by UV absorbance at 260 nm using a NanoDrop 2000C (Thermo Fisher Scientific, and 

USA). In addition, the concentration of 6-carboxyfluorescein (FAM) labelled miR-146a was 

determined by fluorescence using a plate reader (CLARIOstar®, BMG) at λEX: 495 nm; λEm; 

520 nm. In both cases, a calibration curve was generated using known concentrations of 

miR146a. Excitation wavelength 496 nm green laser.   

2.4 Real time quantitative polymerase chain reaction RT-qPCR  

 2.4.1 RNA extraction  

miR-146a-NPs/NCMPs in serum free medium were incubated with A549 cells for 1 h. The 

miR146a-NPs/NCMPs mixture was then replaced with complete medium and the cells 

incubated for 24 h. The total RNA was extracted from the cells using the miRNA mini kit II 

according to the manufacturer’s instructions (Qiagen, Manchester, UK). Briefly, cells were 

trypsinised by trypsin-EDTA, washed with PBS twice and collected by adding PBS and serum 

free medium and collecting the cells by centrifugation at 300 x g for 5 minutes. The cells were 

disrupted by adding buffer RLT plus containing β-mercaptoethanol (100:1). The homogenised 
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lysate was vortexed for 30 s and transferred to an AllPrep DNA spin column and centrifuged 

for 30 s at 8000 x g. The aqueous flow-through was mixed by pipetting with 350 µl of 70 % 

ethanol. a 700 µl of sample was transferred to an RNeasy spin column and centrifuged for 15 

s at 8000 x g. The aqueous flow-through was discarded and 700 µl buffer RW1 was added to 

RNeasy spin column and centrifuged for 15 s at 8000 x g. The flow-through was discarded and 

500 µl buffer RPE added to the RNeasy spin column, and centrifuged for 15 s at 8000 x g. The 

RNeasy spin column was washed again with 500 µl buffer RPE and centrifuged for 2 min at 

8000 x g then re-centrifuged again for 1 min at 8000 x g to dry and eliminate any possible 

carryover of buffer RPE. The RNeasy spin column was placed in a new microcentrifuge tube 

and 40 µl RNase-free water added followed by centrifugation for 1 min at 8000 x g to elute the 

RNA. RNase-free water (40 µl) was added and then centrifuged for 1 min at 8000 x g. The 

RNA extract was tested for purity and concentration at 260 nm using a NanoDrop 

spectrophotometry (Thermo scientific). 

 2.4.2 cDNA generation  

Qiagen miRScript reagents were used to convert mature mRNA to cDNA (Fig. 2–3).  miScript 

HiFlex buffer was used with 1 µg RNA and incubated with a master mix of reverse 

transcriptase, dNTPs and both oligo-dT and random primers (Table 2–1). The reaction was 

heated to 37°C for 60 min followed by 5 min incubation at 95°C to inactivate the reverse 

transcriptase. cDNA was stored at -20°C for further experimental work.  
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Figure 2– 3. Conversion RNA into cDNA in miScript HiFlex buffer. In a reverse 

transcription reaction with miScript HiFlex Buffer. mRNAs are converted into cDNA by 

reverse transcriptase using both oligo-dT and random priming. Detection of mRNA can 

be performed using real-time PCR (Qiagen miScript PCR handbook).    
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      Table 2– 1.  Reverse transcription reaction components 

Component Volume 

5x miScript HiFlex Buffer 4 μl 

 10x miScript Nucleics Mix 2 μl 

miScript Reverse Transcriptase Mix 2 μl 

 

 2.4.3 Polymerase chain reaction  

cDNA reaction was diluted with 200 ul of RNAse-free water. Levels of IRAK1 and TRAF6 

transcripts were assessed using RT2 qPCR Primer Assays in 20 µl reactions composed of 10 µl 

SYBR Green PCR master mix, 2 µl primers, 2 µl diluted cDNA and water to 20 µl. The 

reactions were amplified for three-step method (Table 2–2). The expression of IRAK1 and 

TRAF6 was normalised to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) expression.  

Data were analysed using the 2− ∆∆Ct  method  (Livak and Schmittgen 2001).  

 Table 2– 2. Cycling conditions for RT-PCR 

Step Time Temperature 

PCR initial activation step 15 min 95 °C 

Denaturation 15 s 94°C 

Annealing 30 s 55 °C 

Extension 30 s 70 °C 
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2.5 Effect of miR-146a-NPs/NCMPs on protein expression  

2.5.1 Western Blot  

A549 cells were seeded at a density of 3.8× 105 cells per well in a 6 well plate. After 24 h 

growth, the cells were incubated in serum free medium with 1 ml of pre-mixed freshly prepared 

miR146a-NPs and miR146a-NP-NCMPs at a range of concentration (0 – 0.625 mg/ml), (Table 

2–3) for 1 h. The miR-146a-NPs/NCMPs mixture was then replaced with complete medium 

and the cells incubated for 24 h and 48 h respectively. The medium was discarded and the 

plates were rinsed twice with PBS, followed by adding lysis buffer (Radio Immuno 

Precipitation Assay, RIPA) on ice. RIPA buffer contains 150 mM sodium chloride, 1 % Triton 

X-100, 0.5 % sodium deoxycholate, 0.1 % sodium dodecyl sulphate (SDS), 50 mM Tris PH 

8.0, sodium orthovandate and protease inhibitor tablet (Roche), then left to agitate for 15 

minutes at room temperature. A plastic cell scraper was used to scrape and collect the 

homogenate which was then centrifuged at 10,000 x g for 1 min at 4˚C and the supernatant 

collected.  The protein content of the supernatant was determined using a bicinchoninic acid 

assay, BCA (Sigma, UK). Samples (4 parts) were diluted with an equal volume of 1 part 

Laemmli buffer (0.5 M Tris-HCL PH 6.8, glycerol, SDS, 0.25 % bromophenol blue, β-

mercaptoethanol) and boiled for 5 min at 95 ˚C. For each lane protein standards and extracts 

(20 µg) were resolved on 12 % precast gel (Bio-Rad, UK) and transferred to nitrocellulose 

membranes (Bio-Rad, UK) in Tris-glycine buffer with 20 % methanol. After transfer, 

membranes were blocked for 1 h at room temperature in 5 % fat free milk in TBST (TBS and 

Tween-20). The membranes were then washed for 3 x 5 min in TBST before probing overnight 

at 4˚C with antibodies anti-IRAK1 (1:1000, Abcam), anti-TRAF6 (1:1000, Abcam), β-Actin 

(1:1000, ThermoFischer). Membranes were washed for a further 3 x 5 min in TBST then 

incubated with horseradish Peroxidase conjugated secondary antibodies (1:5000, sigma) for 1 

h at room temperature. After a further 3 x 5 min washes in TBS, membranes were exposed in 
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a chemiluminescence Pierce ECL reagents (Thermo Fisher,UK) according to manufacturer’s 

protocol. Densitometry was performed using ImgaeJ software, and protein of interest values 

were used to normalize against β-Actin values. 

 

 Table 2– 3. Shows miR-146a-NPs/NCMPs concentrations used 

Lane NPs/NCMPs 

  concentration (mg) 

miR-146a  

concentration (µg) 

1 Control Control 

2 0.078 0.25 

3 0.156 0.50 

4 0.321 1.00 

5 0.625 2.01 

 

2.6 Statistical analysis  

All statistical analysis was performed using Minitab® 16 Statistical Software. One-way 

analysis of variance (ANOVA) with the Tukey’s comparison was employed for comparing the 

formulations with each other. Statistically significant differences were assumed when p<0.05.  

Statistical analyses were performed in GraphPad Prism 5 (GraphPad Software, Inc., San 

Diego,CA). All values are expressed as their mean ± standard deviation (SD). 
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3.1 Introduction  

Small nucleic acids such as miRNA have recently gained significant attention as a new class 

of therapeutics for various genetic diseases. Modulation of miRNA expression and function 

represents a promising strategy for therapeutic intervention in disorders such as inflammatory 

lung disease, particularly COPD. There is a relationship between miRNA (miR-146a) and 

inflammatory response in COPD pathogenesis (Sato et al. 2010).  

Pulmonary drug delivery is a non-invasive route that can be utilised to deliver molecules to 

lung cells. However, one of the main issues with delivering miRNAs to the inflammatory lung 

tissue is that upon delivery of the naked, negatively charged miRNAs to the site of action, the 

molecules cannot cross the anionic cell membranes, and are degraded by physiological 

enzymes  (Guzman‐Villanueva et al. 2012). Therefore, the challenge is to design a delivery 

system capable of protecting and transporting the miRNA through these biological barriers to 

reach the site of action (Yin et al. 2014).  

Viral vectors have historically been used as carriers for small nucleic acid delivery but have 

the  disadvantagee of causing an immunogenic inflammatory  repsonse (Wang et al. 2012b). 

Consequently, more attention has been given to non-viral delivery vectors such as 

biodegradable polymeric NPs. These NPs have previosuly been considered for delivery small 

mucleic acids (Labiris and Dolovich 2003b).  

Polymeric NPs can offer properties such as targeted delivery, sustained release, biodegradation, 

and low toxicity (Panyam and Labhasetwar 2003).  NPs have an electrostatic charge on their 

surface that affects the interaction between the particles and cell membrane surfaces as the 

neutralization of the charge can lead to increased bio-distribution. Furthermore, the surface 

electrostatic charge can enhance particle uptake into cells when positively charged particles 

bind to the negatively charged cell membrane and undergo endocytosis (Somasundaran et al. 
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2004). Additionally, the electrical potential and surrounding surface charge prevent 

aggregation of NPs (Somasundaran et al. 2004) and can interact with negatively charged small 

neuclic acid  leading to particle uptake and increasing bio-distribution (Hwang and Davis 2001, 

Hamdy et al. 2011). Compared to encapsulation of nucleic acids within NPs, which includes 

exposure to solvent, sonication and mechanical stress during processing, the adsorption of 

small nucleic acid s onto the NP surface can provide enhanced stability and activity, (Cun et 

al. 2010). The difficulty in loading of miRNA into NPs can be attributed to the hydrophobic 

nature of NPs and the absence of electrostatic interaction between miRNA and NPs.  

The cationic lipid  dioleoyltrimethylammoniumpropane (DOTAP) has previously been used as 

a transfection agent, forming lipolexes with negatively charged small-interfering RNA and 

increasing their cellular interaction (Li et al. 2014, Ozpolat et al. 2010).  It has also be used to 

preapre cationic NPs  that showed biocompitability with small nuclic acid and genes (Kumar 

et al. 2012, Díez et al. 2009b). Therefore,  cationic NPs  may have the potential to serve as 

small nucleic acid carriers.   

PGA-co-PDL NPs has previously  been investigated as carriers for both small molecules and 

macromolecules by encapsulation of the molecules within the particle (Kallinteri et al. 2005, 

Gaskell et al. 2008, Tawfeek et al. 2013) or adsorption to the surface (Kunda et al. 2014b, 

Tawfeek et al. 2011).  

3.2 Aim  

The aim of this study was to adsorb  miRNA on to the surface of cationic PGA-co-PDL NPs, 

and evaluate  toxicity,  and cell uptake.  

To obtain the aim of the study, the following objectives were considered;  
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1. Design and prepare optimized cationic PGA-co-PDL NPs using cationic surfactants 

(DOTAP).  

2. The influence of particle size and charge on A549 and Calu-3 lung cells, toxicity and 

cell uptake. 

3. Adsorption of miR-146a on to the surface of cationic PGA-co-PDL NPs.  

3.3 Methods 

3.3.1 Polymer synthesis and characterisation  

The PGA-co-PDL was synthesised and characterised as described in section 2.1.  

3.3.2 Nanoparticle preparation and miRNA adsorption  

PGA-co-PDL NPs were prepared using an oil in water (o/w) single emulsion method as 

described in our previously published method, incorporating 0.4 mg Nile red dye in the inner 

organic phase for visualization experiments  (Kunda et al. 2014b) and different concentrations 

of DOTAP to prepare cationic NPs (DOTAP is % w/w of polymer) (Table 3–1).  

Different quantities of miR-146a (10, 20, 30 and 40 µg) were added to a 1 ml solution of RNase 

free water containing 10 mg of NPs (to obtain a final NP:miRNA weight ratio of 250:1 and 

mixed using a HulaMixerTM Sample Mixer (Life TechnologiesTM, UK) at 20 rpm and 25°C 

at different time points (0.5, 1, 2, 4 and 24 h). After adsorption, RNase-free water was added 

to a total volume of 4 ml prior to separation of free miRNA from the adsorbed miRNA by 

ultracentrifugation at 35,000 x g, for 40 mins at 4°C using (Beckman L-80 Ultracentrifuge, 

UK).  
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Table 3– 1. Different DOTAP to PGA-co-PDL concentration. 

DOTAP Conc. 

(%) 

PGA-co-PDL (mg/ml) DOTAP (mg/ml) 

0 200 0 

5 190 10 

10 180 20 

15 170 30 

20 160 40 

25 150 50 

 

3.3.3 Particle size, zeta potential and miRNA adsorption characterisation 

The particle size, zeta potential and miRNA adsorption were characterised as detailed in 

section 2.3.  

3.3.4 In vitro release 

The miR146a-adsorbed PGA-co-PDL NPs (10 mg) were suspended in a tube containing 4 ml 

PBS (pH 7.4) and incubated at 37°C, rotating at 20 rpm on a HulaMixerTM Sample Mixer. At 

various time points, the samples were centrifuged at 35000 x g for 40 min and 1 ml of 

supernatant was collected for quantification, replaced with fresh aliquot (1 ml) of PBS and 

incubation resumed. The supernatant was analysed as described in 2.3.2. The amount of 

released miR146a was calculated as percentage of cumulative released miR146a to the total 

amount of adsorbed miR146a (Eq.1).  

% Cumulative miR146a released = 
Cumulative miR146a released

miR146a loaded
 × 100    (Eq.1) 
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3.3.5 Cell Viability study 

3.3.5.1 Cell culture and toxicity studies 

Adenocarcinomic human alveolar basal epithelial cell lines (A549) were maintained in RPMI-

1640 supplemented with 100 U/ml penicillin, 100 µg /ml streptomycin, 2 mM L-glutamine and 

10% (v/v) fetal bovine serum (FBS). Epithelial cell lines (Calu-3)  were grown in Eagle's 

Minimum Essential Medium (EMEM) containing balanced salt solution, non-essential amino 

acids, 2 mM L-glutamine, 1 mM sodium pyruvate, 1500 mg/L sodium bicarbonate and 

supplemented with 100 U/ml penicillin, 100 µg /ml streptomycin and 10% (v/v) fetal calf 

serum (not heat treated). The cell culture medium was changed every 2 days and the cells were 

checked under a microscope to determine the confluency and to confirm the absence of 

contamination. Both cells were grown in an atmosphere of 5 % CO2 and 95 % O2 at 37°C. The 

cells were trypsinised with trypsin-EDTA once 80-90 % confluency was reached, then, either 

passaged to a new flask or plated in 96 well plates for toxicity and transfection experiments. 

3.3.5.2 MTT toxicity assay 

 

The cytotoxicity of the NPs was determined in vitro with the MTT (3[4, 5-dimethylthiazol- 

2-yl]-2, 5-diphenyl tetrazolium bromide) assay, using A549 and calu-3 cells.  MTT is a 

tetrazolium dye that upon reduction by mitochondrial enzymes changes colour from yellow to 

blue. The colour intensity is directly related to the viability of the cells. The cells were seeded 

in a 96-well plate in growth medium at density of 1.2× 105 cells per well. After 24 h growth 

(80 % confluence), the cells were incubated with 100 µl of pre-mixed freshly prepared  NPs at 

a range of concentration (0 - 2.5 mg/ml) using 10 % dimethyl sulfoxide (DMSO) as a positive 

control. The medium was then removed after 18 h and 40 µl of the MTT solution (5 mg/ml in 

PBS) added to each well and incubated for 2 h. The MTT medium was removed and the 

formazan precipitate dissolved using 100 µl DMSO. The absorbance of each well was 



 

54 | P a g e  
 

measured at 570 nm and the cell viability percentage calculated as the absorbance ratio between 

treated and blank cells (control). The assay was performed on three occasions with three 

replicates for each concentration.  

 

3.3.6 Cell Imaging 

3.3.6.1 Confocal and Fluorescence Microscopy 

A549 cells were seeded on a 8-well chambered slide (Fisher Scientific, UK) at a seeding density 

of 5× 105 cells per well and incubated overnight. The cell culture media was removed and 

replaced with 500 µl of FAM-labelled miR-146a-NPs and Nile Red NPs in serum free medium, 

RPMI-1640 for 1 h (37°C, 5 % CO2). After this time, the media was removed from the cells to 

allow confocal imaging. In brief (Table 3–2), cells were washed with 3 x PBS for 5 min each 

and fixed using 4% paraformaldehyde (PFA) or ice-cold (-20°C) methanol was used for 15 

min. Methanol or PFA was then removed and 0.1% Triton-X 100 was added for 10-15 min at 

room temperature for permeabilization. In order to stain the nucleus, 1 µg/ml DAPI was added 

for 5 min, then removed and washed with PBS and mounting medium was added on coverslip. 

Confocal images were acquired using a Zeiss LSM 710 confocal microscope using an oil 

immersion objective 40x and 60x. Images of FAM labelled miR146a-NPs were captured using 

an excitation wavelength 496 nm (green laser), Nile Red NPs were captured at 543 nm (green, 

red and blue channels). Additionally, the slides were observed under an Olympus BX51 

Fluorescent microscope. Images were collected in a 8-bit format. These procedures were 

performed in the dark.  
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Table 3– 2. Workflow for staining A549 cells for confocal microscope 

Step Treatment Composition 

1. Washing  3 x rinse, Room Temp 

(RT) 

PBS 

2. Fixation  15 min, RT 4% PFA or -20°C 

methanol 

3. Washing  1 x Rinse, RT PBS 

4. Permeabilization 15 min, RT 0.1% Triton-X 100 

5. Washing  1 x Rinse, RT PBS 

6. Nucleus stain  5 min, RT 1 µg/ml DAPI 

7. Washing  1 x Rinse, RT PBS 

 

 

 

3.3.7 Statistical analysis  

All statistical analysis were performed using Minitab® 16 Statistical Software. One-way 

analysis of variance (ANOVA) with the Tukey’s comparison was employed for comparing the 

formulations with each other. Statistically significant differences were assumed when p<0.05.  

Statistical analyses were performed in GraphPad Prism 5 (GraphPad Software, Inc., San 

Diego,CA). All values are expressed as their mean ± standard deviation (SD). 

3.4 Results  

3.4.1 Polymer synthesis and characterisation  

The PGA-co-PDL (a ratio of monomers, 1:1:1) obtained was a white powder with a molecular 

weight of 16 kDa, as determined by GPC. The structure of PGA-co-PDL was determined by 
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1H-NMR as described previously (Thompson et al. 2006) (δH CDCl3, 300 MHz): 1.34 (s, 22H, 

H-g), 1.65 (m, 8H), 2.32 (m, 6H), 4.05 (q)-4.18 (m) (6H), 5.2 (s, H). The Infra-red spectrum 

showed a typical broad shallow –OH band at 3447.0 cm1, –CH2 groups of DVA, PDL, at 

2915.7 cm1, –CH group of glycerol at 2848.4 cm1, the carbonyl group of DVA and lactone 

monomers at 1730.7 cm1, C–O group of lactone, glycerol at 1417.0 and 1164.8 cm1.  

3.4.2 Particle size and Zeta Potential  

NPs with and without DOTAP were prepared using a single emulsion solvent evaporation 

method adding the DOTAP, where relevant, in the organic phase at various DOTAP to PGA-

co-PDL concentration. Varying the concentration of DOTAP incorporated into the PGA-co-

PDL NPs resulted in a change in particle size from 266.10±20.80 nm at 0 % (w/w)  DOTAP to 

197.90±1.70 nm at 20 % (w/w) DOTAP and, a change in surface charge from -18.9±0.9 mV 

to +16.7±0.1 mV as the DOTAP concentration increased (Fig. 3–1). The particle size and zeta 

potential of the DOTAP-NPs varied-only slightly above a concentration of 15 % (w/w) 

DOTAP. Therefore 15 % (w/w) DOTAP was subsequently used in all NPs formulations.  

 

At this DOTAP concentration miR-146a loaded cationic NPs (miR-146a-NP), were the same 

size as unloaded NPs (244.8±4.4 nm and 242.4±0.3 nm, respectively). The charge after 

adsorption of miR-146a onto the NP surface ranged between +5.9 mV to +11.1 mV depending 

on the amount of miR-146a adsorbed, compared to +14.8±0.2 mV for unloaded NPs, showing 

the miR-146a loaded NPs retained a positive charged. The observed reduction in Zeta potential 

confirmed the miR-146a was adsorbed.  

 

 

 

 



 

57 | P a g e  
 

 

 

 

Figure 3 – 1.   (A) The effect of the concentration of DOTAP on particle size of PGA-co-

PDL NPs and  (B) The effect of the concentration of DOTAP on the particle surface 

charge of PGA-co-PDL NPs. Data represented in A and B are Mean ± SD (n=3). 
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3.4.3 miR-146a adsorption 

The 15 % (w/w) DOTAP NPs were used to study miR-146a adsorption by first using a fixed 

miR-146a concentration (40 µg/ml) at different time points 0.5, 1, 2, 4 and 24 h (Fig. 3–2A). 

After 0.5 h, 12.05 ± 1.3 µg of miR-146a (40 µg/ml) was adsorbed onto 10 mg of NPs. The 

maximum miR-146a adsorption was 36.25±0.35 µg miR-146a per 10 mg NPs after 24 h. 

Beyond 2 h there was no significant difference in miR-146a adsorption with a maximum of 

32.25±2.0 µg miR-146a per 10 mg NPs (p <0.05, ANOVA/ Tukey’s comparison). 

Furthermore, adsorption of miR-146a at different concentrations with a fixed time of 2 h was 

investigated. As shown in (Fig. 3–2B) over 50% of the miR-146a was adsorbed at 

concentrations of 20, 30 and 40 µg miR-146a. The positively charged NPs attract the negatively 

charged miR-146a by electrostatic interaction. Therefore, the results indicate that 15 % (w/w) 

DOTAP NPs can be effectively adsorbed with miR-146a.  
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Figure 3 – 2. (A) Adsorption of miRNA (40 µg/ml) at different time points up to 24 h onto 

15 % DOTAP NPs, * is p <0.05, ANOVA/ Tukey’s comparison. (B) miRNA adsorption 

onto 15 % DOTAP NPs at various miRNA concentrations over 2 h, µg miRNA per 10 mg 

NPs.  Data is presented as Mean ± SD (n=2).  
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Confirmation that the miRNA was associated with the NPs was achieved using Fluorescence 

microscopy. Fig. 3–3 indicates the fluorescently labeled NPs (Nile Red dye) with labelled 

FAM-miR-146a (green) were bound and adsorbed.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3 – 3.  Image (A) shows red colour collection of NPs (Nile Red dye), (B) the labelled 

FAM-miRNA (Green) and (C) the merged image of both A and B (scale bar represents 

50 µm). 

 

 

 

3.4.4 In vitro cytotoxicity  

To assess the toxicity profile of the PGA-co-PDL NPs with DOTAP, different DOTAP 

concentrations (0 – 25 %) were investigated using the MTT assay. Fig. 3–4A illustrates that 

decrease in cell viability and an increase in concentration and the 15 % DOTAP particles were 

A B C 
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then further investigated for toxicity based on size (section 3.4.2) and compared with unloaded 

NPs. Blank cells (control) had 100 % cell viability, whereas cell viability at 1.25 mg/ml were 

around 90 % (unloaded NPs) that decreased to 65 % (15 % DOTAP NPs) (Fig. 3–4B), 

indicating the NPs appear to cause cell death with an increase in concentration after 18 h 

exposure (Fischer et al. 2003, Bose et al. 2015). 15 % DOTAP NPs at 1.25 mg/ml concentration 

showed calu-3 cells remained viable following 18 h exposure (Fig. 3–4C). 
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Figure 3– 4.  (A) Cytotoxic effect of cationic PGA-co-PDL NPs (0 % - 25 % DOTAP) after 

18 h incubation. (B) Cytotoxic effect of unloaded NPs (0 % DOTAP) and 15 % DOTAP 

NPs on A549 cells after 18 h incubation. (C) Cell viability of A549 and calu-3 cells with 

15% DOTAP NPs after 18 h incubation. DMSO was used as positive control, the cell 

viability was measured using MTT assay. The experiments were repeated three times and 

data represented as mean ± SD (n=3), (*p<0.05, ANOVA/Tukey’s).   
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3.4.5 In vitro release 

The in vitro release profile of the miR-146a -loaded NPs (40 µg/ml) showed that the release 

could be divided into two stages (Fig. 3–5). The miR-146a was initially rapidly released in the 

first 4 h with a 51±1.5 % cumulative release. Followed by a second stage during which the 

miR-146a was constantly released from 4 h up to 24 h, to a cumulative release of 77±1.5 %.  

 

 

 

 

Figure 3 – 5.  miRNA in vitro release from 15 % DOTAP NPs in phosphate buffer saline 

at pH 7.4. Data presented as Mean ± SD (n=3). 
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3.4.6 Cellular uptake   

To visualise the cellular uptake of the NPs for delivery to A549 cells, NPs encapsulating Nile 

red dye were prepared and added to A549 cells. The NPs were observed to be distributed in the 

perinuclear region, in large populations of cells and single cells, indicating that the NPs were 

taken up by the cells (Fig. 3–6).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 – 6. Fluorescence (A–C) and confocal (D–F) images of Nile Red NPs in A549 

cells. (A&D) Nucleus is stained with DAPI, (B & E) NPs stained with Nile Red dye and 

(C&F) merged image after 1 h of incubation. The scale bars (A–C) represent 20 µm and 

(D–F) represent 10 µm. 
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Furthermore, to visualize the intracellular uptake of FAM-labelled miR-146a-NPs for delivery 

to A549 cells, FAM-labelled miR-146a-NPs were prepared and exposed to A549 cells. Large 

populations of cells were stained with DAPI, and particles were distributed differentially across 

a population of cells with a clear variation (Fig. 3–7 A, B and C). The same results were 

obtained with a single cell where the particles can be observed around perinuclear distribution 

(Fig. 3–7 D, E and F).  

 

 

 

 

 

 

 

 

 

 

Figure 3– 7. Fluorescence (A–C) and confocal (D–F) images in A549 Cells. (A&D) Nucleus 

is stained with DAPI, (B&E) FAM-labelled miR-146a-NPs and (C&F) merged image 

after 1 h of incubation. The scale bars (A–C) represent 20 µm and (D–F) represent 10 µm. 
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3.5 Discussion 

3.5.1 Optimization of cationic NPs 

In this study, the effect of cationic lipid DOTAP on particle size and surface charge of NPs was 

investigated.  The physicochemical properties of cationic NPs were consistent with those 

previously reported in the literature (Jensen et al. 2012). DOTAP has previously been used in 

other studies as a cationic material to modify polymeric NP properties such as particle size, 

charge and improve gene transfection (Kumar et al. 2004). DOTAP is thought to  limit the 

enlargement of polymeric NPs due to its surfactant and condensation characteristics (Jensen et 

al. 2012). Another reason for the change in particle size is that the cationic material has the 

ability to decrease interfacial tension between the particle surface and the aqueous phase during 

formation  (Song et al. 2006a).  This is similar to the effect of PVA on particle size during 

preparation of NPs (Murakami et al. 1997), where the particle size decreased due to an adequate 

amount of surfactant covering the surface of PGA-co-PDL NPs (Kunda et al. 2014b).  

 

The electrostatic interaction between the DOTAP cationic moiety, quaternary amine and the 

negatively charged PGA-co-PDL neutralises the PGA-co-PDL and the remaining amine groups 

cause the positive charge (Hagigit et al. 2008, Campbell et al. 2001, Mura et al. 2011). This 

positive charge on the particle surface can potentially interact with biomolecules. PGA-co-PDL 

NPs have the ability to combine with other cationic compounds leading to a change in particle 

size and charge. Kunda et al. used DMAB as a cationic surfactant to prepare positively charged 

PGA-co-PDL NPs and observed similar results to ours  in which PGA-co-PDL NPs ability to 

become cationic  (Kunda et al. 2014b).  



 

67 | P a g e  
 

The data presented in this study indicate that PGA-co-PDL mixed with DOTAP formed 

cationic NPs using 10 % to 25 % (w/w) DOTAP. It was noted that increasing the concentration 

of DOTAP decreased particle size and caused the zeta potential to become more positive (Fig 

3–1).  

The particle size and zeta potential of the DOTAP-NPs showed only slight differences above 

a concentration of 15 % (w/w) DOTAP. However, there was little change in particle properties 

from 15 % to 20 % (w/w) so given the increased cost and toxicity of using higher DOTAP 

concentrations, 15 % (w/w)  DOTAP was chosen for all future work and was selected for the 

subsequent miRNA adsorption studies. The particle size of 5 % and 10 % (w/w)  DOTAP was 

significantly higher compared with other concentrations (15 % - 25 % (w/w)  DOTAP), 

suggesting that this larger particle size was due to particle aggregation and surface tension (Cui 

and Mumper 2001, Bose et al. 2015). This particle aggregation was due to the electrostatic 

interaction of negatively charged PGA-co-PDL and positively charged DOTAP, which caused 

electrostatic repulsion making the low DOTAP concentrations 5 % and 10 % (w/w) produce 

larger particle sizes. It appears that the particles with higher DOTAP concentrations (15 % - 25 

% (w/w) stabilized PGA-co-PDL more efficiently than at lower concentrations 5 % and 10 % 

(w/w).  Thus, the particle size was proportionally related to the DOTAP concentration (Bose 

et al. 2015).  

 

This data agrees with previous research indicating that the use of DOTAP during particle 

preparation affects the particle size. Jensen et al. used DOTAP with PLGA for siRNA delivery, 

and reported that particle size was decreased from 260.8±14.1 nm to 207.7±0.1 nm after use of 

various DOTAP concentrations, included during preparation (Jensen et al. 2012).  

Also, DOTAP reduced the size of spontaneously-forming PC-containing liposomes, allowing  
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the liposomes to become positively charged and enhance cellular interaction (Campbell et al. 

2001). The particle surface charge is another important factor for miRNA adsorption and 

cellular uptake. The effect of DOTAP concentration on NPs surface charge was investigated 

(Fig 3–1). As DOTAP concentration increased, the surface charge increased changing to a 

positive charge compared with negatively charged NP formulated without DOTAP -18.9±0.90 

mV. 

This electrostatic surface charge affects the adsorption of miR-146a, and addition of negatively 

charged miR-146a lead to a slight charge reduction in cationic NPs. This could be attributed to 

the decreased surface area of cationic NPs and  ionic interactions (Bose et al. 2015, Kumar et 

al. 2012). The charge of cationic NPs remained positive after miR-146a adsorption, and the 

amount of miR-146a adsorbed on cationic NPs (Fig. 3–2A) over different time points indicated 

that the surface of cationic NPs was saturated with miR-146a after 2 h, suggesting the 

maximum adsorption time, which results in good affinity to anionic cell surface.  However, 

when the amounts of miR-146a are added to cationic NPs indicated (Fig. 3–2B) there was an  

equilibrium condition which did not reach the point of saturation and which suggests a positive 

charge of cationic NPs after miR-146a adsorption.  

3.5.2 Toxicity studies and in vitro release 

The MTT assay was used to determine the cytotoxicity of PGA-co-PDL NPs with 15 % (w/w) 

DOTAP concentration on A549 and calu-3 cells. It was previously reported that PGA-co-PDL 

NPs had a little effect on A549 cell viability (>75 % at 1.25 mg/ml) on lung bronchial epithelial 

cells with cell viability studies (Alfagih et al. 2015), whereas our unloaded NPs had 90 % at 

1.25 mg/ml.  

The concentration of optimum 15 % DOTAP NPs caused changes in cell viability, those 

without DOTAP had 96 % viability at 0.312 mg/ml, which decreased to 77 % with 15 % 

DOTAP NPs at 0.312 mg/ml. The toxicity measured here is of a high particle concentration in 
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a relatively small surface area in 96 well plate, whereas in the lungs, the NPs will be more 

dispersed, thus the high level of particle toxicity shown here is unlikely to be seen in lungs 

(Kunda et al. 2015a). These results support previous literature studies that have used A549 and 

calu-3 respiratory cell lines to evaluate the in vitro toxicological effect  of particulate drug 

delivery systems (Foster et al. 2001, Seagrave and Nikula 2001). Grenha et al. used A549 and 

calu-3 cells to study particle toxicity, where chitosan NPs entrapped in mannitol reduced cell 

viability ( ∼ 65 % ) and were in vitro compatible with A549 and calu-3 cells (Grenha et al. 

2007).  

The cationic lipid DOTAP also influences the cytotoxicity, and Bose et al. found that different 

DOTAP concentrations, when added to lipid polymer hybrid nanospheres, affected cell 

viability of HEK293, HeLa, HaCaT, and HepG2 cells but  did not cause severe cytotoxicity > 

70 % cell viability (Bose et al. 2015).  However, our 15 % DOTAP NPs at 0.156 and 0.312 

mg/ml showed lower cell viability > 76 % in both A549 and calu-3 cell lines (Fig. 3–4C).  

The in vitro release profile of miRNA showed release of miR-146a from 15 % DOTAP NPs 

over 24 h which was similar to other in vitro release studies reported by other researchers 

 (Kumar et al. 2015, Sanna et al. 2012, Mohamed and van der Walle 2008). The miR-146a was 

adsorbed on 15 % DOTAP NPs via electrostatic interactions. The in vitro release curve 

suggests the weakly attached miR-146a was liberated rapidly over the first 4 h, while the 

remaining strongly attached miR-146a was slowly released between 4 h up to 24 h. This slow 

release rate of miR-146a is desirable in DDS to allow miR-146a cellular uptake (Huang and 

Brazel 2001, Jagani et al. 2013).   

Polymeric NPs are biodegradable under physiological condition, and PGA-co-PDL degrades 

slower than  PLGA when subjected to in vitro condition (Tawfeek et al. 2011). This particle 

degradation might affect the surface of particles over time, causing a change in miRNA release, 

similar to a study by Jagni et al.  where chitosan coated PLGA NPs were used  to adsorb siRNA, 
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which showed that particle degradation occurred over a period of time, affecting siRNA release 

and this particle degradation was influenced by particle surface charge and polymer 

hydrophobicity (Jagani et al. 2013).  

However, the in vitro release of miR-146a from 15 % DOTAP NPs is affected by the presence 

of DOTAP in NPs, cationic DOTAP has amine group that provide opportunity of 

intermolecular hydrogen bonding with PVA and PGA-co-PDL, so DOTAP forms a network 

on the particle’s surface which affects miR-146a release. Comparing our results with other 

studies that used adsorbed biomolecules such as siRNA, the in vitro release of siRNA from 

cationic PLGA was more than 60 % over 24 h (Jagani et al. 2013) whereas more than 70 % of 

our miR-146a was released from cationic NPs after 24 h. These biomolecules (siRNA and 

miRNA) and their potential in vitro release depends on the polymer hydrophobicity and the 

type of cationic material used, which is likely to result in a lower dose making it possible that 

this delivery system may also result in lower toxicity for the lung. The concept of using NPs 

as biomolecule or drug carrier for a specific targeting cells, the release of drug from particles 

influenced by surface modified particles  (Lin et al. 2001). Kunda et al. conducted a similar in 

vitro release study using PGA-co-PDL NPs adsorbed BSA protein, and found that more than 

90 % of BSA was released because of weaker hydrophobic interactions between BSA and NPs 

(Kunda et al. 2014a).  

 The in vitro release of miR-146a after 24 h was 77±1.5 %, which was the desired concentration 

for release and correlated with the change in gene silencing and protein levels in the Western 

Blot data, suggesting that miR-146a maintained its biological efficacy and was not affected by 

the degradation of NPs where protein level bands were intense at lower miR-146a-NPs 

concentration and the bands of intensity decreased when NPs concentration is increased. The 

difference in protein level bands show that miR-146a-NPs produce intense bands which 

indicates a slight decrease in protein level, whereas the less intense band caused a significant 
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decrease in protein levels, which will be discussed further in chapter 4, section 4.5.1. This 

suggests that miR-146a was successfully released from miR-146a-NPs within 24 h and was 

able to supress the gene expression. A similar study by Li et al. which used DOTAP as a 

cationic lipid to modify single-walled carbon nanotube as non-viral siRNA delivery system, 

found that cationic DOTAP electrostatically interact with negatively charged siRNA, 

protecting siRNA against degradation, siRNA was released from single-walled carbon 

nanotube-DOTAP and was able to fully realise its gene silencing potential in the cancer cells 

(Li et al. 2016a, Gibbings et al. 2009). 

miRNAs that have undergone clinical application have  shown the potential value of miRNA 

therapeutics,  for example, miR-34 for treating lung and prostate cancer, reached phase I 

clinical trial (Wiggins et al. 2010, Liu et al. 2011),  miR-208/499 for chronic heart failure (van 

Rooij et al. 2007) and miR-122 specifically for liver cancer, which has completed phase I and 

is currently in phase II  (Jopling et al. 2005).    

3.5.3 Cellular uptake  

Fluorescence and confocal microscopies are capable of imaging different cellular and 

molecular components  (Lichtman and Conchello 2005, Wang et al. 2012a) and allow for 

imaging fluorescently labelled cells and particles for greater depth of visualisation (Amos and 

White 2003). The rational for using two microscopes is that one microscope (fluorescence) can 

show cellular uptake as shown in Fig. 3–7 A, B and C, whilst the other (confocal) uses 

particular optical components to generate high-resolution 3-D images of material stained with 

fluorescent probes, to allow further uptake study in greater depth, to provide wider knowledge 

of co-localization and the interaction between NPs and cells as shown in Fig. 3–7 D, E and F. 

However, most of the research that has been conducted to study fluorescently labelled NPs and 

their interaction with cells using either microscopes  (Alfagih et al. 2015, Kunda et al. 2014b)  

or both of these microscopes (Böse et al. 2014, Xu et al. 1996, Win and Feng 2005).  Therefore, 
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applying these two valuable tools were used to determine the cellular uptake of NPs and nucleic 

acid loaded NPs.   

Conventionally, miRNA are very limited in their ability to cross the cellular membrane, without 

use of polymer based carrier DDS (Yin et al. 2014). The cationic NPs, with adsorbed miR-

146a, were distributed in perinuclear region in A549 lung fibroblasts. This distribution of FAM 

labelled miR-146a  suggest that miR-146a could interact with RISC complex with AGO2 and 

target mRNA in cytoplasm and achieve a good level of gene silencing (Wu et al. 2013b, Kuhn 

and Joshua-Tor 2013) .  

FAM-labelled miR-146a -NPs and NPs encapsulating Nile red dye were taken up by A549 and 

Calu-3 cells, which were used as model for alveolar and epithelial cells respectively. Nile Red 

NPs were used to show the ability of cationic NPs cellular uptake and to deliver miRNA to the 

cell. The uptake of polymer based NPs had previously been demonstrated in A549 (Kunda et 

al. 2015a),  dendritic cells (Alfagih et al. 2015, Kumar et al. 2012), breast adenocarcinoma 

MCF7 cells (Abulateefeh et al. 2013), liver cancer  cells, HepG2 and Hela cells (Díez et al. 

2009a), lung carcinoma cells, H1299 (Jensen et al. 2012, Howard et al. 2006b) and Chinese 

hamster ovary cells (Katas and Alpar 2006).  In the present study, NPs and FAM-labelled miR-

146a –NPs ended up successfully inside perinuclear region in both A549 and calu-3.  

The NPs were used in cellular uptake study were positively charged and in nano particle size 

(section 3.4.2). The surface charge and particle size, which are reflected by the zeta potential 

and dynamic laser scattering, influences NPs and helped in their cellular uptake (Stuart et al. 

2006). The particles in nanoscale size influence the cell interaction, a study by Jiang et al.  

showed the cellular internalization of Herceptin-gold NPs was size-dependant  (Jiang et al. 

2008) and this size can also  have implication on toxicity (Verma and Stellacci 2010, Nel et al. 

2009, Garnett and Kallinteri 2006). Moreover, the NPs’ surface charge contributes significantly 

to their interaction with cells, and the presence of cationic DOTAP facilitates the positively 
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particle surface interaction to negatively charged cellular membrane allowing NPs cellular 

uptake (Díez et al. 2009a). A study by Kedmi et al. showed the adjusted use of cationic DOTAP 

in the formulation improved NPs’ cellular uptake (Kedmi et al. 2010, Mukherjee et al. 2005).  

Moreover, it is notable that uptake and distribution of FAM labelled miR-1464a-NPs in cells 

that the NPs quantity is sufficient, indicating an active intracellular NPs transport, and miR-

146a reached perinuclear to initiate efficient gene silencing (Portis et al. 2010).    

3.6 Conclusion 

The cationic DOTAP was successfully used to produce cationic NPs with particle size 

244.8±4.4 nm which was similar to unloaded NPs 242.4±0.3 nm. Moreover, cationic NPs offer 

positive surface charge for miR-146a adsorption. The miR-146a adsorption was 32.25±2.0 µg 

miR-146a per 10 mg NPs after 2 h (the optimum conditions were 15 % DOTAP and miR146a 

adsorbed after 2 h). The in vitro release of miR-146a after 24 h was 77±1.5 %, the NPs were 

taken up by the cells and delivered miR-146a into the cell.  
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4. Evaluation of the miR-146a-NPs effect 

on target gene and protein expression 
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4.1 Introduction  

Based on the results of chapter 3, the optimum formulation had shown to successfully adsorb 

miR-146a on NPs, with low toxicity and uptake into cells. However, in this chapter we will 

investigate the functionality and activity of miR-146a from the optimum formulation. 

miR-146a has been associated with inflammatory pathway in the targeting of interleukin-1 and 

Toll-like receptor (TLR) signalling, of which NF-кB activation is a primary downstream 

effector, known as interleukin 1 receptor-associated kinase (IRAK1) and TNF receptor-

associated factor (TRAF6) (Taganov et al. 2006). Taganov et al. described  miR-146a as 

capable of controlling TLR and cytokine signalling through negative feedback regulation, with 

associated down regulation of IRAK1 and TRAF6 protein levels (Taganov et al. 2006). In 

addition, Bhaumik et al. reported that miR-146a showed  significantly downregulated IRAK1 

and TRAF6 in the IL-1 and TLR signalling pathway  (Bhaumik et al. 2008) using Western Blot 

to determine protein expression. Similar studies have been investigated with miRNA for 

inflammatory diseases through controlling signalling pathway. Sato et al. determined 

pathogenesis increase of the abnormal inflammatory cyclooxygenase (COX-2) half-life in 

chronic obstructive pulmonary disease (COPD) and enhanced production of prostaglandin E2, 

Quantitative Real- Time Polymerase Chain Reaction (qRT-PCR) assay was used to quantify 

miR-146a expression (Sato et al. 2010).  

 Post-transcriptional regulation of IRAK1 and TRAF6 by microRNA has been associated with 

the regulation of physiological responses as described by Perry et al. that showed the changes 

in expression of miR-146a could regulate the inflammatory response in human alveolar 

epithelial lung cells  (Perry et al. 2008). The miRNAs could be delivered to the site of action 

using nanocarriers, as a study by Wu et al. showed therapeutically delivered miR-29b in 

cationic lipoplexes for lung cancer in both in vitro using A549 cell lines and in vivo (Wu et al. 

2013c).  
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4.2 Aim 

The aim of this study was to determine the effect of miR-146a loaded NPs on IRAK1, TRAF6 

and protein expression.  

4.3 Methods 

4.3.1 Transformation and Quantification  

In order to assess direct interaction of miR-146a-NP with the 3’ UTR of IRAK1, a firefly 

luciferase plasmid reporter was used (Fig. 4–1) (Origene, UK).The plasmids were replicated 

in DH5-α Escherichia coli strain grown  on Luria-Bertani (LB) agar  supplemented with 

kanamycin at (10 µg/ml). After overnight incubation on the agar, a single colony was 

transferred into LB broth and incubated overnight at 37 °C. The bacterial cells were harvested, 

the plasmid isolated and purified by Qiagen plasmid maxi kit (Qiagen, UK) according to the 

manufacturer’s protocol. The Purified DNA was quantified by UV   spectrophotometry at 260 

nm and 280 nm (NanoDrop).  

The purified reporter plasmid was also characterized by (1 %) agarose gel electrophoresis. The 

agarose gel was run at 60–80 V for 60 min, lane for DNA ladder 200–10,000 bp as standards 

was used (HyperLadder, Bioline), and the DNA bands were visualized under UV light and 

photographed on a UV transilluminator (Syngene®, UK).  
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Figure 4– 1. pMirTarget vector map. Depiction of plasmid with firefly luciferase 

upstream of the 3’ UTR miRNA targeting sequence. Expression is driven by a simian 

virus SV40 promotor and translated with an internal ribosome entering sequence (IRES). 

Vector contains red fluorescent protein (RFP), kanamycin resistance gene and 

cytomegalovirus (CMV) (Jin et al. 2013, Petersen et al. 2006). 
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4.3.2 Transfection and Luciferase assay 

Serum free Opti-MEM medium (Thermo Fisher, scientific, UK) was used for transfection of 

A549 cells seeded in 96-well white plates at a density of 2×105. After 24 h incubation, the cells 

were transfected with 100 ng 3’ UTR reporter plasmid (purified firefly luciferase plasmid 

reporter from section 4.3.1, Fig. 4–1). This vector has 3’UTR of IRAK1 which has two 

conserved binding sites for miR-146a and this 3’UTR was downstream of a firefly luciferase 

gene. The plasmid was designed with an SV40 promoter to drive constitutive expression of a 

selection marker (neomycin/kanamycin) fused to the firefly luciferase gene, with an IRES for 

translation of the luciferase transcript into protein. The exogenous miR-146a binding to the 

3’UTR should lead to a reduction in luciferase output. The vector has a region encoding RFP 

(driven by a CMV promoter) for validation of transfection by fluorescence microscopy. 

Plasmids encoding green fluorescent protein (pmaxGFP; Lonza) or encoding a red fluorescent 

protein endoplasmic reticulum marker (dsRed-ER; Clontech) were used as controls for 

transfection and fluorescence. Plasmids were combined with   0.15 or 0.3 µl Lipofectamine 

3000 reagent (Life technology) in Opti-MEM medium per well and incubated 6 – 48 h (37°C, 

5 % CO2 ) before removal of the complexes and further incubation with complete culture 

medium 24 – 48 h.  

Luciferase expression was performed using the luciferase assay system (Promega) according 

to the manufacturer’s protocol. Briefly, after 48 h incubation the medium was removed and the 

cells washed once with PBS, lysed by adding 20 µl lysis buffer. Then, 100 µl luciferase assay 

reagent was added. Luminescence was detected on a CLARIOstar® plate reader emission 

wavelength was adjusted at 580–80 nm to measure firefly luciferase activity. The luminescence 

values were represented as relative light units (RLU), also used red fluorescent protein (RFP) 

values for transfection monitoring and normalization. Fluorescence microscopy was used to 

visualise GFP and RFP expression.   
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4.3.3 Semi-quantitative reverse transcriptase RT-qPCR 

RT-qPCR was performed as described in section 2.4.  

4.3.4 miR-146a-NPs effect on protein expression 

Immuno western blotting is outlined as in section 2.5.  

4.3.5 IL-8 Promoter Reporter assay  

Cells were seeded on an 8 well chambered slide (Fisher Scientific, UK) at seeding density of 5 

× 105 cells per well and incubated for 24 h prior to transfection. Transfections were performed 

using lipofectamine 3000 reagent following the manufacturer’s protocol (Life technology, UK) 

in serum free DMEM and a total amount of 0.5 µg of DNA per well was used. The DNAs used 

were 213 - pIL8/d2EGFP and 269 - pDsRED mono promoters. The cells were transfected for 

6 h before removal of the mixture and washed twice with PBS. A prepared mixture of 

unlabelled miR146a-NPs (100 µl) was added and incubated for 1 h. After this time, the media 

was removed from cells and washed twice with PBS. Then, cells were stimulated with 1 ng/ml 

Interleukin beta and tumour necrosis factor-a (TNFα) and incubated for further 6 h. Cells were 

washed with PBS and subsequently fixed using ice-cold (-20°C) methanol. Images were 

acquired using an Olympus BX51 Fluorescent microscope.  

4.3.6 Statistical analysis  

All statistical analysis were performed using Minitab® 16 Statistical Software. One-way 

analysis of variance (ANOVA) with the Tukey’s comparison was employed for comparing the 

formulations with each other. Statistically significant differences were assumed when p<0.05.  

Statistical analyses were performed in GraphPad Prism 5 (GraphPad Software, Inc., San 

Diego,CA). All values are expressed as their mean ± standard deviation (SD). 
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4.4 Results  

4.4.1 Effect of miR-146a-loaded NPs on target gene expression 

To confirm miR-146a function after adsorption onto the NPs, the expression of target genes 

IRAK1 and TRAF6 was assessed in A549 cells. Analysis of transcript levels showed that miR-

146a delivered via NPs (miR-146a mimic) led to dose dependent suppression of IRAK1 (Fig. 

4–2) and TRAF6 (Fig. 4–3) compared with untreated cells. The expression of IRAK1 and 

TRAF6 was normalised to GAPDH expression. The average of all concentrations was pooled 

from three independent experiments (Appendix–1 and Appendix–2).  
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Figure 4– 2. Effect of miR-146a loaded NPs on IRAK1 expression. Data were pooled from 

three independent experiments (A, B & C). The highest two concentrations are shown at 

(D) were pooled from the three independent experiments. The expression of IRAK1 was 

normalised to GAPDH expression. Values in graph D are Mean ± SD (n=3). 
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Figure 4– 3.  Effect of miR-146a loaded NPs on TRAF6 expression. Three independent 

experiments (A, B & C). Lowest two concentrations (D) were pooled from the three 

independent experiments. The expression of TRAF6 was normalised to GAPDH 

expression. Values in graph D are Mean ± SD (n=3). 
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4.4.2 Effect of miR-146a-loaded NPs on protein expression 

To confirm the downregulation of IRAK1 and TRAF6 occurred at the protein levels, miR-146a-

loaded NPs were applied to A549 cells and lysates evaluated by immunoblotting. As shown in 

Fig. 4–4, the miR-146a-NPs reduced IRAK1 protein levels in A549 cells after 24 h and 48 h 

treatment. The decrease in protein levels occurred in a dose dependent manner compared to 

untreated cells, suggesting that IRAK1 protein levels reduced in response to miR-146a-NPs.  

 

 

 

Figure 4– 4. Effect of miR-146a on IRAK1 protein levels in A549 cells. Dark triangle 

represents lowest (left) to highest (right) miR-146a-NPs concentrations. The numbers 

under each band represents the densitometric readings relative to control samples that 

are normalized to each band and to its corresponding β -actin control.  
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4.4.3 Transfection and Luciferase assay 

To assess miR146a-NPs biological function, A549 cells were transfected with  luciferase using 

lipofectamine 3000 as a transfection reagent with purified plasmid to identify the transfection 

toxicity and effectivity. However, when Lipofectamine 3000 was used, it did not cause any 

transfection with a longer incubation time of more than 6 h (Fig. 4–5). After 24 - 48 h of 

incubation, the A549 cells died despite using different cell densities of 10,000 and 12,000 cell 

per well which is in line with other studies indicating the toxic behaviour of Lipofectamine 

3000 (Zhong et al. 2008). Therefore, the incubation period of 6 h is considered as the optimum 

incubation time for Lipofectamine 3000.  

 

 

 

 

 

 

 

 

 

Figure 4– 5.  Shows the effect of transfection reagent (Lipofectamine 3000) on A549 cells 

after incubation at different time points (A) un-transfected cells 24 h, (B) transfected and 

incubated for 6 h (C) after 24 h transfection. 
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Further analysis of transfection reagent toxicity, with Lipofectamine 3000 was carried out on 

A549 cells with different concentrations to transfect plasmid. The fluorescence images in Fig. 

4–6A, B and C, showed a transfection expression occurred in GFP and ds-Red. However, there 

was no expression detected of RFP despite the same procedure followed with the GFP and ds-

Red. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4– 6. Fluorescence images of fixed A549 cells.  Expression (A) GFP,   (B) RFP and 

(C) dsRed-ER. The scale bars represent 20 µm. 

 

Gel electrophoresis was used to find the presence of plasmid. The results in Fig. 4–7 showed 

that the presence of plasmid and purity of plasmid also have been confirmed 

A B C 
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spectrophotometrically by NanoDrop that determined A260/280 ratio and the concentration 

was within a ratio of 0.1 – 1.  

 

 

 

 

 

 

 

 

 

 Figure 4– 7. Gel electrophoresis of plasmid after purification using Qiagen plasmid maxi 

kit.  The left band shows the marker and the right band represents pure plasmid (7.9 bp). 

 

4.4.4 Reporter assay  

To determine miR-146a-NPs biological function, the IL-8 promoter reporter assay was used. 

The pIL-8 promoter- GFP reporter was transfected into A549 cells, which are noted to express 

the functional IL-1 receptors (Ding et al. 1998). The promoter’s response after IL-1β 

stimulation produced an intense fluorescent signal Fig. 4–8A, while IL-8 promoter reporter 

output (GFP) was dampened by miR-146a-NPs Fig. 4–8B. 
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Figure 4– 8.  Fluorescence images of (A) response of pIL8 reporter to cells stimulated 

with IL-1β, (B) Cells loaded with miR-146a-NPs prior to stimulation with IL-1β. The scale 

bar represent 20 µm.  

 

4.5 Discussion 

4.5.1 Functional evaluation of miR-146a loaded NPs  

To confirm the functional activity of miR-146a loaded NPs, their impact was assessed on two 

leading miR-146a target genes, IRAK1 and TRAF6. A study by Taganov et al. indicated that 

miR-146a inhibit the expression of  IRAK1 and TRAF6 genes and the significant function of 

miR-146a as negative regulator of inflammation  (Taganov et al. 2006).  The responses varied 

across the three independent experiments performed in each case but reduced expression of the 

IRAK1 (Fig. 4–2) or TRAF6 transcripts was observed in response to most doses (Fig. 4-3). This 

suggest that NPs delivered miR-146a to site of action and produced the expected 

downregulation effect. However, the highest NPs concentrations (Fig. 4–2D), reduced target 

A B 
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gene IRAK1 expression to 40 %. The highest NPs concentrations were used as an overall 

average, as they showed a very strong downregulation effect compared with the lowest NPs 

concentrations. In the case of TRAF6 the lowest NPs concentration (Fig. 4–3D) caused the 

expression to be reduced to over 20 %. The lowest NPs concentrations were used as overall 

average, as they showed a very strong downregulation effect compared with the highest NPs 

concentrations. Thus, low doses of miR-146a-NPs appeared to be more effective at 

downregulating TRAF6 than IRAK1.  

TRAF6 has three conserved miR-146a binding sites in the 3’UTR of mRNA and IRAK1 has 

two conserved sites in the 3’UTR. This suggests that miR-146a-NPs downregulated the TRAF6 

target gene more than IRAK1. There are computational algorithm programmes that provide a 

valuable resource in predicting the biological target of miRNAs in relation to gene regulatory 

networks. The TargetScan programme was used to predict conserved sites for miRNA with 

their target regions (Agarwal et al. 2015). Assessment of the impact of the miR-146a-NPs on 

IRAK1 and TRAF6 protein levels revealed understanding the effect of miR-146a-NPs (Fig. 4–

4). However, protein band intensity decreased when the NPs’ concentration is further 

increased. Thus, it is clear that miR-146a delivery using NPs dependent on miR-146a and NPs 

amount, which indicates the capability of miR-146a loaded NPs ability to control COPD 

disease.  

To determine the difference in IRAK1 expression, and whether the miR-146a-NPs influenced 

protein of interest in lung cell lines. As presented in the results (Fig 4–4), anti-IRAK1 antibody 

appear to bind specifically to the protein of interest. This is in agreement with the results of 

Chen et al. where the anti-IRAK antibody was suitable for WB  (Chen et al. 2012).  

There was no significance difference found between 24 h and 48 h after miR-146a-NPs 

treatment, suggesting that treatment with as little as miR-146a-NPs concentration  were enough 

to exhibit the maximum targeting capacity of cellular environment (Ghosh et al. 2013, Song et 
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al. 2006b), affecting IRAK1 protein levels the physiological pathway (Taganov et al. 2006). 

However, TRAF6 protein expression was not tested, and whether the miR-146a-NPs influenced 

this protein in the lung cell lines we don’t know, but we expect the same modulation as IRAK1 

protein expression in these cell lines, which was confirmed by the functional activity of miR-

146a loaded NPs which inhibit the expression of TRAF6 genes. These functional studies 

confirm that miR-146a-NPs delivered to site of action in the lung cell lines, and miR-146a have 

modulated both genes and protein levels (Ezzie et al. 2011). With these results, miR-146a-NPs 

appeared to be a promising therapeutic approach for treatment of disease by targeting genes 

that involved in unusual pathological way.   

The NPs have played important role in terms of delivery  DNA into dendritic cells and protected 

the DNA from degradation (Yuba et al. 2008). However, miR-146a molecules without delivery 

carrier are rapidly affected by enzymes activity in lung airways  (Takei et al. 2004). Although 

intratumoural injection of Let-7 miRNA into tissue can reduce tumour distribution with some 

limited therapeutic potential, however, miRNA delivery using delivery carrier could 

significantly improve the gene knockdown (Wiggins et al. 2010).  

4.5.2 Transfection and Luciferase assay 

 

 The expression occurred in GFP and dsRed-ER in the transfected cells (Fig. 4–6A and C). 

These two have small size plasmids of approximately 4.7 kb while RFP plasmid size has 7.9 

kb and its expression was not detected (http://www.origene.com/MicroRNA/3-UTR-Clone/). 

The use of luciferase RFP reporter was designed to monitor the transfection and interaction 

with 3’UTR miRNA. Tanganov et al. used luciferase reporter to show the role of miR-146a 

and its target in 3’ UTRs of IRAK1 and TRAF6  (Taganov et al. 2006). Our experimental design 

was to transfect the GFP, dsRed-ER and RFP into lung cell lines (Fig. 4–6A, B and C).  

http://www.origene.com/MicroRNA/3-UTR-Clone/
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If any marked fluorescence in the reporter’s expression were expected, the miR-146a-NPs 

would have been used to determine the expression. Kumar et al. used a fluorescence reporter 

to identify siRNA inhibition of target gene using enhanced GFP and RFP. There was a 

significant reduction in enhanced GFP but not in RFP expression (Kumar et al. 2003). Our data 

indicated there was no expression detected for the required RFP in A549 cell line. 

Consequently, then 3’ UTR luciferase reporter will not be reliable and due to limited funding 

available for the continuation of this project Luciferase assay was not further tested on miR-

146a-NPs. 

4.5.3 Reporter assay 

 

To determine the effect of miR-146a-NPs in the expression of target genes IRAK1, protein 

levels, pIL-8 promoter reporter assay was used. The pIL-8 promoter-GFP reporter was 

stimulated with proteins noted to be involved in IL-1β signalling (Fig. 4–8). The IL-1β has the 

ability to stimulate IRAK1 phosphorylation in cytoplasm of A549 cells. The phosphorylated 

IRAK1 is associated with TRAF6, and this association activates the ligase function of TRAF6 

leading to ubiquitin-mediated activation of NF-кB in Toll-like receptor (TLR) signalling (Bhoj 

and Chen 2009). Kiss-Toth et al. have described the protein functional expression from pIL-8 

promoter that was induced by IL-1 and tumour necrosis factor TNF-α which underlined the 

physiological inflammatory response of the given promoter (Kiss-Toth et al. 2000).  However, 

miR-146a was shown to be involved in targeting of the IL-1 and TLR signalling involving NF-

кB, IRAK1 and TRAF6 (Taganov et al. 2006, Bhaumik et al. 2009). Perry et al. have determined 

the miR-146a action mediated through regulation of proteins involved in IL-1β signalling 

pathway and showed that the changes in expression of miR-146a can regulate the inflammatory 

response in human alveolar epithelial lung cells (Perry et al. 2008). When miR-146a-NPs were 

delivered to A549 cells prior to IL-1 stimulation, this led to a decrease in the fluorescence 
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intensity. As such, miR-146a-NPs’ delivery to cytoplasmic target proteins and regulated 

biological inflammatory process is based on the functional GFP expression which is in line 

with other studies indicating the biological process  (Kiss-Toth et al. 2000, Bhoj and Chen 

2009, MacKenzie et al. 2001).  

4.6 Conclusion 

The miR-146a maintained its functional structure under gene silencing and protein level. The 

high miR-146a-NPs concentration reduced target gene IRAK1 expression to 40 % and TRAF6 

the lowest NPs concentration reduced to over 20 %. We have showed that the optimum 

transfection reagent incubation period of A549 cell is 6 h. The GFP and dsRed expression occur 

in A549 cells.  The miR-146a-NPs reduced IL-8 promoter reporter GFP via IL-1β signalling 

pathway suggestion that miR-146a-NPs can be used to target proteins, regulate the 

inflammatory process. These successful studies and results show the potential of cationic NPs 

for delivery of miR-146a in the treatment and management of COPD. These results can allow 

further research on these NPs to be nanocomposite microparticle and form potential spray dry 

powder and evaluate the cellular functionality.  
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5. Formulation of Dry Powder 

Nanocomposite Microparticles (NCMPs) 

for pulmonary delivery 
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5.1 Introduction 

The treatment of COPD by inhalation to the lungs has emerged as an attractive alternative route 

to oral dosing due to higher concentrations of the drug being administered to a site of action 

avoiding degradation by the strong acids and enzymes in the oral route. The nanoparticles 

(NPs) delivered to the lungs for pulmonary drug delivery essentially require an appropriate size 

that allows the small nucleic acid reach to the target site and correct the faulty genes. In fact, 

NPs in the dry powder form do not deposit efficiently in the alveolar part of the lungs, which 

results in the exhalation of the majority of the inhaled dose (Sung et al. 2007). However, the 

ideal particle size for optimal particle deposition in the deep lung ranges from between 1 to 5 

µm in diameter (Sakagami 2006). Therefore, NPs can be incorporated into dry powder 

microparticles (NCMPs) of aerodynamic particle size 1-5 µm   through spray drying (Alfagih 

et al. 2015).  Spray drying is a  one step process that converts liquid  solution  or suspension to 

dry powder, which are designed to diffuse in the lung lining fluid and release its contents  

(Ungaro et al. 2012). The spray drying process is controlled by different parameters to provide 

desirable particle size and aerosolisation properties (Sakagami 2006). It is important to take 

into consideration, when designing an experiment that aims to determine the influence of 

various parameters on the properties of the dosage formulation being studied and these 

parameters  optimized in order to obtain  desirable results (Yang and Zhu 2002). Liang et al. 

have prepared a powder formulation using pH responsive peptides for influenza treatment, and 

it was found that the integrity and  biological activity of siRNA were well preserved after spray 

drying (Liang et al. 2015).  

Moreover, excipients such as sugars and amino acids can be added to the formulation resulting 

in changes to physical characteristics of powders, including the morphology, moisture content, 

particle size and density (Bosquillon et al. 2001). The selection of appropriate excipients for 

inhalation leads to optimal and functional dry powder formulation, can help preserve NPs and 
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nucleic acid integrity. It is important to maintain NPs integrity that allows recovery of NPs 

size, can cross biological barriers e,g lung lining fluid and be up taken by cells. If particle 

aggregate and become larger can impact on diffusing through lung lining fluid and uptake by 

cells hence reducing miRNA uptake into cells.  

L- Leucine is one of the amino acids that has been used as a cryoprotectant and dispersing 

agent that improves aerosolisation properties for dry powders, reduces contact cohesion 

between the particles and prevents aggregation (Alfagih et al. 2015, Tawfeek et al. 2011, Cruz 

et al. 2011, Lucas et al. 1999, Rabbani and Seville 2005, Kunda et al. 2015a). L-leucine is 

considered as a hydrophobic amino acid that accumulates at the air water interface (Vehring 

2008). Sugar excipients such as mannitol are commonly used in spray drying with good safety 

characteristics, are less hygroscopic than lactose, have muco-adhesive properties and they have 

European approval for dry powder inhalation (Jensen et al. 2010, Pilcer and Amighi 2010, 

Burness and Keating 2012).   

Furthermore, different forms and ratios of amino acids and sugars can be used alone or as a 

combination in the same formulation which produces positive results. You et al. performed a 

study using the  spray drying method by mixing amino acids (L-leucine, glycine and threonine)  

and sugars (trehalose, lactose, dextran and mannitol) , which resulted in these excipients having 

affected the dry powder flow rate, aerosolisation behaviour, median aerodynamic diameters, 

moisture content and yield (You et al. 2007).   

Similarly, these excipients can protect, and stabilize the NPs and encapsulated materials against 

the intense spray-drying process including operational high temperature and mechanical stress 

(Alfagih et al. 2015).  In addition, excipients added to the spray dried formulations induce the 

production of a desirable aerodynamic particle size 1-5 µm  and release of the active ingredients 

after they decompose in the lung lining fluid  (Jensen et al. 2010, Saluja et al. 2010). Taking 



 

95 | P a g e  
 

into account the advantage of the promising biological effects of inhaled siRNA in the lung 

there has been very limited work exploring miRNA spray drying. In this chapter, L-leucine and 

mannitol were mixed together as dispersion enhancer and protective excipients. L- Leucine 

was chosen due to cryoprotectant, dispersing properties and high aerosolisation properties 

(Alfagih et al. 2015, Tawfeek et al. 2011), whereas mannitol was chosen owing to its mucho-

adhesive properties, the fact it is a protective excipient for small nucleic acids, and its good 

safety characteristics and European approval for dry powder inhalation (Jensen et al. 2010, 

Pilcer and Amighi 2010, Bhowmik et al. 2009). This is the first time that miRNA was 

formulated into inhalable dry powder using a mix of amino acid and sugar excipient.   

5.2 Aim 
 

The aim of this chapter was to optimise the production of NCMPs of miR-146a-containing 

PGA-co-PDL NPs for dry powder inhalation in terms of size, morphology, aerosol 

performance, moisture content and miRNA functionality.  

To obtain the aim of the study, the following objectives were considered;  

1. Formulation of NCMPs via spray-drying technique and evaluating;   

a. The influence of L-leucine to mannitol ratio on the NPs recovery size and yield %. 

b.  The influence of spray drying parameters on morphology, aerosol performance, 

and moisture content of NCMPs. 

2. Determining the impact of biological activity of miR-146a loaded NCMPs.  
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5.3 Methods  

5.3.1 Preparation and characterisation of NPs and miRNA adsorption  

PGA-co-PDL NPs were prepared and miRNA adsorbed as described in section 2.2. 

Characterisation of PGA-co-PDL NPs and miRNA adsorption were performed as described in 

section 2.3. The optimum NPs formulation used for NCMPs.  

5.3.2 Preparation of Nanocomposite Microparticles  

The NCMPs preparation were conducted in Department of Pharmaceutical Technology, 

Faculty of Pharmacy with Associate Prof Dr Ayca Yildiz Pekoz during my Erasmus exchange 

at Istanbul University May-July 2016. The NCMPs were prepared by spray drying the NP 

suspension from  different aqueous solutions containing L-leucine and mannitol in various 

ratios (F1; 100:0 % w/w, F2; 75:25 % w/w, F3; 50:50 % w/w, F4; 25:75 % w/w, F5; 0:100 % 

w/w),  with a NP to micro carrier ratio of 1:1.5 w/w (Alfagih et al. 2015) using a Büchi B- 290 

mini spray-dryer (Büchi Labortechnik, Flawil, Switzerland) using the conditions of 

experimental design (section 5.3.3). The optimised condition used for  spray drying was 

performed at feed rate 0.5 ml/min, aspirator capacity 70 %, atomizing air flow rate 480 L/h, 

inlet drying temperature 70 ºC (corresponding outlet temperature of approximately 47 ˚C). Dry 

particles were separated from the airstream by centrifugal forces using a high-performance 

cyclone (Büchi Labortechnik) (Fig 5–1), collected and stored in desiccator at room temperature 

until further use. 
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Figure 5–1 Diagram illustrates miRNA-NPs incorporated NCMPs.  

 

5.3.3 Experimental design  

The experimental design of the current formulation was optimized according to previous 

laboratory work and pre-formulation studies (Alfagih et al. 2015), combined with further 

parameters from the literature (Jensen et al. 2012, Edwards et al. 1998, Ståhl et al. 2002). It 

was composed of five variables and four levels (Table 5–1). The rational for using different 

parameters and levels is that some parameters were used for preparing protein loaded PGA-co-

PDL NCMPs using L-leucine, but these parameters for example use high temperature, which 
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would damage miR-146a biological functionality. However, it was combined with further 

parameters derived from the literature that have used mannitol for siRNA and DNA, assuming 

that that will not affect miR-146a. The use of mannitol also preserves the biological activity 

and identifies the influence of spray drying parameters on recovered NPs size and yield %.   

Table 5– 1. Nanocomposite microparticles process variables  

Parameters Unit Level 1 Level 2 Level 3 Level 4 

Feed Rate ml/min 0.3 0.5 1 1 

Atomized air flow L/h 480 480 400 400 

Aspirator capacity % 70 70 100 100 

Inlet temperature °C 45 70 100 75 

Approximate Outlet 

temp 

°C 30 47 75 60 

 

5.3.4 Characterisation of Nanocomposite Microparticles 

The NCMPs characterisation were conducted in International Turkish pharmaceutical 

company- DEVA with assistance from Prof Dr Ayca Yildiz Pekoz during my Erasmus 

exchange at Istanbul University. 

5.3.4.1 Yield  

The dry powder yield was determined as the percentage mass of expected powder (n=3) 

according to following equation:   

Yield % = 
weight of powder collected after spray drying 

 weight of total dry mass used for the preparation
× 100    
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5.3.4.2 Morphology  

The spray dried powder was examined using a scanning electron microscope (SEM), Quanta 

450, FEI, Oregon, USA). The spray dried samples were mounted on an aluminium stub with 

adhesive, coated with gold (40–60 nm) and then observed at high vacuum.  

5.3.4.3 Particle size  

NCMPs (2 mg) were re-dispersed in 4 ml water to release the NP. The NP size was measured 

as described in section 2.3.1.   

5.3.4.4 Moisture content  

The water content of the NCMPs powder was determined by thermogravimetric analysis 

(TGA), using a Linseis STA PT 1750 Model Thermo Anaylzer system, Germany. NCMPs 

powder (10 mg) was heated between 25 °C to 650 °C at constant rate 10 °C/min in nitrogen 

gas. The weight loss (%) due to water evaporation, was recorded between 25 °C and 120 °C.  

5.3.4.5 Powder density and Aerodynamic diameter  

The Tapped density of the NCMPs was determined by adding approximately 0.2 g of powder 

to a 5 ml measuring cylinder. The initial bulk volume (Vo) was recorded and then again 

following mechanical tapping ten times (V10), then five hundred times (V500), then after one 

thousand and two hundred fifty (V1250) taps until no reduction in the particle volume was 

noticed. The theoretical aerodynamic diameter (𝑑𝑎𝑒) was determined based on the data 

obtained from geometric particle size (𝑑) and tapped density (𝑝). 𝑝1  is the unit density (1 

g/cm3)                                

                             

𝑑𝑎𝑒 = 𝑑√
𝑝

𝑝1
                                                                              (Sou et al. 2011) 
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5.3.4.6 Flowability and Carr’s index 

The particle flowability was analysed by Carr’s index (compressibility index) and the 

Hausner ratio, using the values obtained for bulk density (Ρ bulk) and tapped density (Ρ tapped) 

(Louey et al. 2004) as follow;  

Compressibility Index = 
𝚸 tapped− 𝚸 bulk  

𝚸 tapped
× 100 

 

Hausner Ratio = 
𝚸 tapped  

𝚸 bulk
                                                                  

5.3.4.7 In vitro aerosolisation studies  

The aerosol performance of the NCMPs was evaluated using a next generation impactor (NGI). 

The powder (10mg) was manually loaded into each of four hydroxypropyl methylcellulose 

HPMC size 3 (Qualicaps, Japan). The capsules were pierced by a needle pierce using a 

Cyclohaler® (Teva pharma) and aerosolised into the NGI that was connected to a pump 

(Copley Scientific, UK). The airflow was measured and adjusted prior to every experiment by 

using a flow meter (Copley Scientific, UK). The flow rate was operated at 60 L/min for 4 

seconds. The plates were coated with polyethylene glycerol (PEG-200) to decrease powder 

bounce (Edwards et al. 1998). The amount of particles deposited in each stage of the impactor 

was evaluated gravimetrically by measuring the difference in mass before and after powder 

deposition (Meenach et al. 2013a, Meenach et al. 2013b). The effective cut-off diameter for 

each impaction stage was calibrated by manufacturer and stated as shown in Table 5–3 (Hess 

2005, Wu et al. 2013a). The fine particle dose (FPD) defined as the mass of the drug deposited 

in the NGI with dae < 4.46 μm, fine particle fraction (FPF %) is the fraction of emitted dose 

deposited in the NGI with dae < 4.46 μm, respirable fraction (RF) is the mass of particles < 4.46 

μm and emitted dose (ED) is the amount of drug exiting the inhaler.  
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Table 5– 2. The effective cut-off diameter for NGI impactor at 60 L/min 

Stage cut-off diameter (µm) 

1 8.06 

2 4.46 

3 2.82 

4 1.66 

5 0.94 

6 0.55 

7 0.34 

 

 

The fine particle dose (FPD), fine particle fraction (FPF), respirable fraction (RF), and emitted 

dose (ED) were calculated as;  

 

Fine particle dose (FPD, mg) = mass of particles < 4.46 µm (stages 2 through 7)   

 

Fine particle fraction (FPF %) = 
Fine particle dose  

initial particle mass loaded into capsules 
× 100% 

 

Respirable fraction (RF %) = 
Mass of particles < 4.46 µm (stages 2 through 7)

Total particle mass on all stages 
× 100% 

 

Emitted dose (ED %) = 
Initial mass in capsules - final mass remaining in capsules  

initial mass in capsules 
× 100 
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The mass mean aerodynamic diameter (MMAD, µm) and geometric standard (GSD, µm) 

were calculated from log probability analysis using the following website 

(http://www.mmadcalculator.com/).  

5.3.5 Effect of miR-146a-NCMPs on target gene and protein expression  

The prepared optimum miR-146a-NPs in section 2.2 were spray dried as described in section 

5.3.2 and biological functionality determined through semi-quantitative reverse transcriptase 

RT-qPCR and Western blot as described in section 2.4 and 2.5 respectively.  

 5.3.6 Statistical analysis  

All statistical analysis were performed using Minitab® 16 Statistical Software. One-way 

analysis of variance (ANOVA) with the Tukey’s comparison was employed for comparing the 

formulations with each other. Statistically significant differences were assumed when p<0.05. 

Statistical analyses were performed in GraphPad Prism 5 (GraphPad Software, Inc., San 

Diego,CA). All values are expressed as their mean ± standard deviation (SD). 

5.4 Results   

5.4.1 Spray drying optimization  

Process parameters (Table 5–1)  adopted from  (Alfagih et al. 2015), for L-leucine NCMPs 

were applied alongside published  parameters related to mannitol (Jensen et al. 2012), to 

identify the influence of spray drying parameters on NPs size and yield % (Table 5–3). The 

recovered NPs had sizes ranging from 175.93 nm to 3252.06 nm and a yield from 20.80 % to 

96.00 % was obtained (Table 5–3). Based on the recovery of the NPs’ size, yield (Table 5–5) 

response, and spray drying outlet temperature of 47 °C, Level 2 parameters were chosen to be 

applied further. 

http://www.mmadcalculator.com/
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Table 5– 3.  Nanocomposite microparticles different levels Influence on particle size and 

yield. 

  Excipient Response 

 Formulations Leucine 

(%) 

Mannitol 

(%) 

Yield 

% 

Recovery 

of NPs 

size (nm) 

 

 

Level 1 

 

F1 100 0 20.80 251.06 

F2 75 25 Non Non 

F3 50 50 84.80 289.80 

F4 25 75 48.00 175.93 

F5 0 100 76.00 319.13 

 

 

Level 2 

F1 100 0 64.00 774.26 

F2 75 25 86.40 1373.33 

F3 50 50 93.60 823.13 

F4 25 75 96.00 327.96 

F5 0 0 85.60 992.53 

 

 

Level 3 

 

 

F1 100 0 36.00 958.30 

F2 75 25 84.00 1810.66 

F3 50 50 91.20 3252.06 

F4 25 75 86.40 471.64 

F5 0 100 80.80 2174.60 

 

 

Level 4 

 

 

F1 100 0 36.00 669.10 

F2 75 25 84.00 600.90 

F3 50 50 91.20 747.10 

F4 25 75 86.40 297.10 

F5 0 100 80.80 682.40 
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5.4.2 Moisture content, powder flow and Carr’s index 

Water content for formulations (F1–F5) were within the range of moisture content 

( 2.02±0.03 % – 5.1±0.37 %) of spray-dried particles intended for lung deposition (Ståhl et al. 

2002, Chew et al. 2005a), (Table 5–4). However, F4 had the lowest moisture content, due to 

the presence of a higher percentage of mannitol (Jensen et al. 2012). 

To measure flow properties of NCMPs, Carr’s compressibility index was used and determined 

from tapped and bulk density (Table 5–4). Values of more than 25 % indicated poor 

followability (Learoyd et al. 2008).  

Table 5– 4. Physical properties of spray-dried nanocomposite microparticles. Mean± SD 

(n=3). 

Formulations Tapped 

density 

(g/cm3) 

Water 

content  

(%) 

Carr’s 

Index 

Hausner 

Ratio 

Flow 

character 

F1 (-) 5.1±0.37 N/A N/A N/A 

F2 0.17±0.01 4.91±0.20 33.30 1.30 Poor 

F3 0.13±0.20 3.8±0.90 0 ( ≤10 ) 1.00 Excellent 

F4 0.14±0.01 2.02±0.03 33.30 1.30 Poor 

F5 0.20±0.05 3.77±0.11 66.60 1.60 V. Very poor 
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5.4.3 In vitro aerosolisation studies 

The in vitro aerosol dispersion properties of NCMPs were determined using NGI.  The mass 

mean aerodynamic diameters (MMAD) ranged from 4.20±0.15 to 6.03±1.08 µm. The NCMPs’ 

formulations (F1-F4) showed that MMAD was less than 6 µm except F5 which was 

significantly greater 6.03±1.08 µm (p<0.05, ANOVA/Tukey’s) (Fig. 5–2B). The 

corresponding geometric standard deviation (GSD) values were approximately similar in size 

from 1.75± 0.31 – 2.15±0.53 µm.  

 FPF % showed that F4 produced significantly higher FPF % (51.33±2.90 %) compared to the 

other formulations (p<0.05, ANOVA/Tukey’s). The highest FPF % means the best 

aerosolization characteristics in term of deposition.  The presence of leucine weight ratio to 

mannitol ratio in F4 resulted in high FPF compared to F1, which has no mannitol. Moreover, 

the incorporation of leucine into formulations has increased FPF %. F4 has 25 % leucine which 

resulted in more than double values of FPF %, 51.33±2.9 % and FPD, 20.53±2.90 mg 

respectively compared to F5, 0 % leucine with FPF %, 19.96±1.2 % and FPD 7.98±1.2 mg 

(Fig. 5–2A and Fig. 5–2E). The ED values were all over 50 % with highest value for F4 

81.81±3.0 % (Fig. 5–2D). 
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Figure 5– 2. (A) The percentage fine particle fraction spray dried powder (B) mass mean 

aerodynamic diameter (µm).  (C)  Respirable fraction percentage. (D) Emitted dose. (E) 

Fine Particle Dose. Data represent mean ±SD (n=3), (*p<0.05, ANOVA/Tukey’s).  
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5.4.4 Recovered particle size and yield 

From Table 5–3, Level 2 is the best in terms of yield percentage (Level 2, 96.00 % of dry 

powder compared with other level 3, 86.40 %) and recovered size of NPs (where level 3 has 

high NPs size after recovery), of which F4 is the optimum and taken forward, based on results 

of moisture content, powder flow (section 5.4.2), and aerosolisation data (section 5.4.3).  The 

results of the recovery of F4 NPs’ size and yield percentage were repeated to gain more 

replicates as shown in (Table 5–5). The particle size for all the levels and formulations were 

different, however, the smaller particle size recovered after spray drying was preferred and 

needs to be similar to prior spray drying (Alfagih et al. 2015).   

Table 5– 5. Optimum Spay dried particles size and yield. Mean± SD (n=3). 

 Particle size (nm)  

Formulation Before spray 

drying 

After spray  

drying 

Yield % 

F4 244.8±4.40 409.7±10.05 86.0±15.01 

 

5.4.5 Morphology, Powder density and Aerodynamic diameter of 

formulation F4 

The formulated NCMPs (F4) were analysed for shape and morphology using SEM (Fig. 5–3) 

and micrographs showed that NCMPs possessed a spherical shape and corrugated surface. The 

tapped density of PGA-co-PDL NCMPs varied between 0.132±0.03 to 0.20±0.01 g cm-3, and 

F4 0.14±0.01 g cm-3 (Table 5–4). The Geometric particle size and tapped density was then used 

to calculate the theoretical dynamic diameter (dae). The optimum formulation (F4) dae was 

0.63±0.01 µm.  
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Figure 5–3.  SEM images of F4 NCMPs, the scale bars represent 5 µm and 10 µm. 

 

5.4.6 Effect of miR-146a-NCMPs on target gene and protein expression 

To confirm miR-146a-NCMPs biological functionality after spray drying, the expression of 

target genes IRAK1 and TRAF6 was assessed in A549 cells. Analysis of transcript levels 

showed that miR-146a expression against targeted genes IRAK1 and TRAF6 (Fig. 5–4). The 

expression of IRAK1 and TRAF6 was normalised to GAPDH expression. These results were 

comparable with the miR-146a-NPs data that was mentioned in section 4.4.1.  

In Western Blot, miR-146a reduced IRAK1 protein levels in A549 cells after 24 h and 48 h 

treatment. The β-actin was used as control. As shown in (Fig. 5–5), the protein level decreased 

in a dose-dependent manner compared to untreated cells.  This suggested that IRAK1 protein 

levels were reduced in response to miR-146a-NCMPs.  
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Figure 5– 4.  MiR-146a-NCMPs reduce miR-146a target expression. Levels of IRAK1 and 

TRAF6 were assessed by sqRT-PCR in A549 cells that had been exposed to miR-146a-

NPs or miR-146a-NCMPs for 1 h washed then incubated for 24 h. The doses yielding the 

most consistent downregulation of the target genes are shown. Mean ± SD (n=3). 
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Figure 5– 5. Western Blot expression of miR-146a reduced IRAK1 protein levels in A549 

cells for 24 h and 48 h. Dark triangle represents lowest (left) to highest (right) miR-146a-

NCMPs concentrations. Numbers under each band represent the densitometric readings 

relative to control samples that normalized each band to its corresponding β -actin 

control.  

 

5.5 Discussion  

5.5.1 Optimization of spray drying process  

The spray drying optimisation process was utilised to incorporate NPs into NCMPs using 

different ratios of L-leucine and mannitol excipients. From Table 5–3, it can be seen that all of 

levels (1–4) had variable yield % and NPs recovered particle size results.  The different spray 

drying parameters (Table 5–1) were used to identify the best level that preserved the recovered 

particle sizes and produced the highest yield % during the spray drying process. Generally, 

levels 1, 3 and 4 produced acceptably high yields as a % and large particle size. However, Level 

2 showed the highest yield  96.00 % accompanied with the smallest particle size < 500 nm 
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(Table 5– 2), which would maintain miRNA biological functionality. Spray drying parameters 

used in level 2 showed, that outlet temperature 47 °C (Table 5–1) was below melting point of 

PGA-co-PDL NPs (Tawfeek et al. 2011, Tawfeek et al. 2017).   Monitoring and maintaining a 

low outlet temperature can reduce agglomeration, as shown by the  study of Mohajel et al. 

using polymer based NPs as dry powder to deliver DNA, where it was found that using a low 

outlet temperature reduced the risk of DNA denaturation and decreased particle aggregation  

(Mohajel et al. 2012).   

It was found that operational parameters such as feed rate, aspirator capacity, atomised air flow, 

spray drying inlet and outlet temperature have a significant impact on recovered particle size 

and yield % of dry powders (Rohani et al. 2014a). The highest yield % of level 2 was relying 

on operation parameters (Table 5–1), Alfagih et al. had optimised for the spray drying process 

of PGA-co-PDL NPs using BSA a model protein incorporated into NCMPs for pulmonary 

delivery. It was found that flow rate was the most significant factor that had an effect on yield 

(Alfagih et al. 2015). Technically, during the spray drying process atomized air was used which 

should penetrate the liquid stream. However, if there was insufficient atomized air due to low 

feed rate, the dry powder sticks on the drying chambers and cannot be collected adequately     

(Motlekar and Youan 2008).  

A similar observation was noted in level 2 inlet 70 °C and outlet 47 °C temperature (Table 5–

1). It was found that the inlet temperature used in level 2 had affected the recovered NPs particle 

size and yield. Comparing the inlet temperature in level 1 and level 2 (Table 5–1) showed an 

increase from 45 °C to 70 °C. This inlet temperature  increase can lead to a reduction in the 

drying time and can inhibit particle aggregation (Mohajel et al. 2012). In addition, the high 

inlet temperature can lead to a decrease of residual moisture by enhancing water evaporation 

which cause less particles to stick in drying chamber walls  (Billon et al. 2000). However, high 

inlet temperature may affect the small nucleic acids stability (Mohajel et al. 2012).  
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5.5.2 Water content and flowability  

Table 5–4 showed the water contents for all the formulations, which were within the spray 

dried powder range. However, F4 had the lowest moisture content, due to a higher percentage 

of mannitol (Jensen et al. 2012). Adding mannitol as an excipient enabled the formulation to 

have less water content, and the powder with the least water content reduces the cohesion 

between particles and therefore increases the powder respirability (Chew and Chan 2002). 

Mannitol has hygroscopic properties enabling the formation of hydrogen bonds with water 

molecules causing water replacement which stabilises the formulation (Clegg et al. 1982, 

Schüle et al. 2008, Sarmento et al. 2006). The high water content may also have a negative 

impact on product stability (You et al. 2007), however by keeping the water content low it is 

likely to result in high storage stability.  Adi et al.  reported that the presence of mannitol in 

spray dried powder reduced water content, which prevented powder recrystallization, where 

the mannitol is thought to have decreased the amount of water bound in spray dried powder 

(Adi et al. 2010). 

As a consequence, adding mannitol to the formulation was successful and kept moisture 

content low, and the optimum ratio of L-leucine to mannitol F4; 25:75, (Table 5–3) was also 

shown to have an effect on water content, which is in accordance with other studies   (Li et al. 

2016b, Chow et al. 2017). Additional research showed that mannitol used in a combination 

with amino acid (L-alanine), a study by Rohani et al. found that the formulation containing 

mannitol and amino acid had a moisture content range between 4 – 6 % (Rohani et al. 2014b) 

compared to our results  2.02±0.03 % – 5.1±0.37 % (Table 5–4). Mannitol is a commonly-used 

excipient in spray drying powders which has a good safety record, which produces NCMPs 

that are compatible, dissolve easily in lung fluid and has regulatory approval (Jensen et al. 

2010, Pilcer and Amighi 2010, Burness and Keating 2012).     
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The NCMPs’ flowability was determined by Carr’s index, which showed F4 formulation has 

poor powder flow 33.30 % (more than 25 %).  This property could be due to powder 

aggregation and the particles could not re-form again. Due to the limited mass of powder, larger 

volume cylinders could not be used, hence a 5 ml measuring cylinder was used instead. This is 

not ideal and may have resulted in poor flow as determined by Carr’s index as this is associated 

with narrow cylinder during tapping that does not allow the powder particles to flow thus they 

become compact and restricted in movement. The F4’s poor powder flow, could be due to 

powder adherence to walls of measuring cylinder compared to other formulation resulted due 

to strong van der Waal force between particles  (Tawfeek et al. 2011). Similar results were 

reported by Alfagih et al. when PGA-co-PDL NPs-NCMPs were used and leucine as an 

excipient, where they found high Carr’s index values and poor powder flowability (Alfagih et 

al. 2015).   However, inhalation of the NCMPs with mannitol and leucine, will results in 

dissolution of the excipients in lung lining fluid, subsequently releasing NPs for uptake by lung 

cells.  NCMPs composed of PLGA NPs and mannitol have been shown to decompose in the 

lung lining fluid and release NPs (Jensen et al. 2010).  

5.5.3 In vitro aerosolisation studies  

Incorporation of L-leucine into the formulations improved both FPF % and FPD. By adding 

leucine to the spray dried formulation, the aerosolisation performance was impacted (Tawfeek 

et al. 2011). F4 of optimum condition containing leucine had the highest FPF ratio 51.33±2.9 % 

(Fig 5–2A), which indicated it had the best aerosolisation properties and improved 

aerosolisation performance (Rabbani and Seville 2005, Li et al. 2005, Seville et al. 2007, Sou 

et al. 2013, Lucas et al. 1999). Thus, adding leucine to the spray dried formulation had a 

positive  impact on the aerosolisation performance (Tawfeek et al. 2011).  
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Adding L-leucine to spray dried powders reduces the forces of attraction due to less contact 

points between particles forming rough particle surface and lower spray dried powder 

aggregation which causes greater dispersibility. This property also affects the shape of spray 

dried powders which will be discussed further in section 5.5.4. Furthermore, the L-leucine 

amount in the spray dried powder has an effect on aerosolisation performance, comparing 

FPF % of F4 and F5 as L-leucine ratio in F4 (25 % L-leucine) was higher than F5 (0 % L-

leucine), difference was observed where, F4 had FPF %, 51.33±2.9 % and F5 had FPF %, 

19.96±1.2 % (Fig 5–2A). This difference was  due to less powder stickiness and cohesiveness, 

which is in line with another study conducted by Gervelas et al. when leucine was added to 

spray dried powder, and it was found that the higher leucine concentration in the formulation 

the better aerosolisation performance (Gervelas et al. 2007).  

As seen in Fig 5–2B, the MMAD results showed that F1-F4 were less than 6 µm whereas, F5 

was 6.03±1.08 µm. The difference here suggests excipient influences MMAD, F1-F4 had 

mannitol percentage of less than F5. A study by Jensen et al. showed that spray dried NPs with 

high concentration mannitol resulted in higher MMAD compared with spray dried NPs with 

lower mannitol (Jensen et al. 2010). The amount of mannitol in formulation and absent of L-

leucine may form aggregated powders and a rougher surface which contributes to higher 

MMAD. Kaialy and Nokhodchi used mannitol as excipient in spray dried powder, and they 

found that the presence of a high mannitol concentration in the formulation increased MMAD, 

and that was reflected by powder cohesive force  aggregation (Kaialy and Nokhodchi 2013).  

Another reason for the difference between F1-F4 and F5 MMAD, was due to F5 had no L-

leucine and 100 % concentration of mannitol, and it was observed that there was a decrease in 

FPF % and an increase in MMAD > 6 µm. Similar results were obtained by Chow et al. when 

various concentrations of L-leucine were used with mannitol in inhaled powder formulation, 



 

115 | P a g e  
 

and they found that absence of L-leucine in powder reduced FPF % and increased MMAD 

(Chow et al. 2017).   

The MMAD values were less than 6 µm, which means within the range of 1 – 5 µm, is 

necessary for it to be deposited in the middle to deep lung regions by sedimentation due to 

gravity (Carvalho et al. 2011b), whereas those particles with MMAD of more than 6 µm are 

considered to deposit in the upper conducting airways  (Carvalho et al. 2011a). Although F4 

MMAD is within 1 – 5 µm, the deposition profile from NGI data showed that 20 % of the 

formulation deposited in NGI stage is less than 5 µm. This can predict the amount of miR-146a 

that will be deposited in the regions of the lungs and have potential cell uptake, and can also 

produce change in targeted gene expression as shown in section 5.4.6.  

The FPF, ED, and MMAD values obtained  would suggest very good aerosolisation properties 

and a deep lung deposition profile which is in agreement with other studies that used PGA-co-

PDL NPs-NCMPs  (Kunda et al. 2013).  Hence, NCMPs when inhaled, L-leucine and mannitol 

will dissolve the lung lining fluid, subsequently releasing miR-146a-NPs to be taken up by lung 

cells and cause the required biological expression. This mechanism was also proposed by 

Kunda et al. and Alfagih et al. (Kunda et al. 2014b, Alfagih et al. 2015).  

5.5.4 Morphology, yield and recovered NPs particle size 

The surface morphology of NCMPs was carried out using SEM, and the micrographs showed 

that NCMPs were corrugated, which suggested this shape was due to the reduction in the 

cohesion between particles  (Chew et al. 2005b, Chew and Chan 2001). This occurred due to 

water evaporation that happened during the spray drying process causing high vapour pressure. 

In addition, the presence of L-leucine in spray-dried particles, which has low density was 

capable of forming space thereby filling and packing particle’s structure (Sou et al. 2013, 

Alfagih et al. 2015, Lucas et al. 1999). These corrugated surface particles would have a larger 
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surface area, leading to an increase in the particles’ capability to diffuse and disperse in lung 

fluid thus releasing miR-146a-NPs.  The formulation was more controlled by choosing sugar 

excipient such as mannitol rather than lactose, which interacts with certain amine groups and 

affect the particle’s morphology (Vehring 2008, Bharate et al. 2016).  

Analysis of F4, produced a high yield 86.05±15.01 (Table 5–5) of dry powder accompanied 

with the desired small particle size recovery < 500 nm. The high yield was due to reduced loss 

of dry powder during the collection process which also affected on recovered particle size that 

relies on centrifugal forces for collection of final dry powder due effective separation capacity 

of cyclone. Another reason for producing a high yield is that the spray dryer used (section 

5.3.2) in preparing spray dried powder can produce high yield, when the process and 

formulation parameters e,g flow rate, inlet temperature, atomized air flow, aspiratory capacity 

undergo appropriate optimisation (Motlekar and Youan 2008, Sosnik and Seremeta 2015).  

Hence, F4 was chosen as optimum to use level 2 parameters. There was an inverse correlation 

observed between increased mannitol concentration and yields. The increase of mannitol 

concentration lead to an increase in particle size from 244.8±4.4 nm before spray drying 

(Section 3.4.2) to 409.7±10.05 nm (Table 5–5) and 327.96 nm (Table 5–3) after spray drying. 

This particle size increase after spray drying may be a result of change in the conformation 

under operating conditions of spray drying, and similar results were also found by Sham et al.  

for spray dried powder prepared with sugar as excipient for gelatine NPs, and the size after 

spray drying which were in nano-sized (Sham et al. 2004).  

The NCMPs’ yield obtained a good production yield for all the formulations. However, spray-

dried microparticles’ yield was changeable and affected by the ratio of excipients. When the 

optimum parameters were applied with no mannitol, there was a lesser yield % (64 %). The 
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optimum parameters used for the production of the  highest yield % of dry powder resulted in 

reasonable yield  of NCMPs 86.0±15.01 % (Table 5–5) (Jensen et al. 2010).  

F4 was chosen as the optimum formulation despite its poor flowability comparing to F3 that 

had showed better flow character, (Table 5–4) but the recovered NPs’ size of F3 was almost 1 

µm (823.13 nm), (Table 5–3) which was too large. Alfagih  et al. have obtained results with 

poor flowability when added leucine to NCMPs but managed to achieve a significantly higher 

FPF % and the smallest recovered particle size (Alfagih et al. 2015). As mentioned above, F4 

was selected as the optimum formulation according to the high yield, lower moisture content, 

good aerosol properties and the recovered NPs’ size which was similar to the starting NPs’ size 

(Table 5–5). It can be noted from Tables 5–2 and 5–4 the NCMPs reported here have high yield 

values, which indicate the significant potential of using a mixture of mannitol and L-leucine 

properly, with effective parameters. However, the yield values reported in previous studies 

were to be from 40 – 50 % (Alfagih et al. 2015, Tawfeek et al. 2011, Kunda et al. 2015a). 

Therefore, the prepared formulation would effectively deliver the small nucleic acid to the lung 

as inhaled dry powder.  

5.5.5 Impact of miR-146a on target expression 

 The miR-146a-NCMPs lowered expression of t target genes IRAK1 and TRAF6. As shown in 

Fig. 5–4 that miR-146a activity was maintained after spray drying, indicating the ability of 

miR-146a-NCMPs. There were different apparent sensitivities of IRAK1 and TRAF6 to the 

miR-146a-NCMPs, where TRAF6 was significantly reduced with a relatively low dose due to 

miR-146a-binding sites in their 3'UTR. This suggests that the dry powder particles combining 

amino acid and sugar did not affect the miR-146a silencing activity despite aggregation of 

recovered NPs and also protected biological activity of miR-146a.  
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 Immunoblotting (Fig. 5–5) supports that miR-146a activity was maintained after spray drying,  

with protein level changes after 24 h and 48 h of miR-146a-NCMPs’ treatment occurring in a 

dose dependent manner. Despite nucleic acid being exposed to high temperatures of 47 ˚C 

during the drying process, and the use of the delivery formulation and excipients, the biological 

activity of miR-146a appears to have been preserved.   

It appears that NCMPs delivered miR146a to site of action, and produced the required gene 

knockdown by inhibiting IRAK1 and TRAF6 genes, which is in  line with other studies that 

indicated miR-146a role in inhibiting expression of IRAK1 and TRAF6 genes (Taganov et al. 

2006). The local pulmonary delivery of miR-146a had played important role by targeting 

multiple genes after inhalation the dose that spread over various parts in lung (Rossi 2009, He 

et al. 2005, Bhardwaj et al. 2009). In fact, various studies have investigated siRNA and DNA 

delivery intended for inhalation (Jensen et al. 2010, Liang et al. 2015, Liang et al. 2014), but 

limited research has been performed on miRNA pulmonary delivery. The miRNA-based 

therapy has showed interesting progress for treating different diseases, the MRX34 using miR-

34 hepatocellular carcinoma and lung cancer have entered phase I clinical trials (Beg et al. 

2015). In addition, miRagen using miR-29 to treat pulmonary fibrosis, through intravenous 

injection in vivo has reached the pre-clinical studies (Montgomery et al. 2014). Therefore, the 

current study provides the feasibility of using miR-146a-NCMPs for therapeutic purposes as 

pulmonary drug delivery that manages COPD rather than other medications. 

5.6 Conclusion  

The results indicated that the method has been optimised for the spray drying of NCMPs. The 

selected PGA-co-PDL NPs were incorporated into L-leucine and mannitol as a carrier to 

improve the powder’s aerosolisation properties. Five different formulations were prepared with 

various excipients ratios.  
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The NPs’ size has been recovered after spray drying (409.7±10.05 nm) and geometric particle 

size is suitable for targeting the respiratory bronchiole. Moreover, the optimum formulation 

had a high yield (86.0±15.01 %), and low moisture content (2.02±0.03 %) which is essential 

for powder aerosolization and formulation stability. The aerosolization performance showed 

high FPF 51.33±2.9 %. The biological activity of miR-146a persevered after spray drying 

process and miR-146a loaded NCMPs caused gene silencing.   
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6.General Discussion  
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6.1 Overview  

 

Chronic obstructive pulmonary disease COPD is heterogeneous inflammatory disease and is a 

major cause of morbidity and higher mortality rates throughout the world. COPD is currently 

the fourth leading cause of death in the world and is predicted to become the third leading cause 

of chronic illness and death worldwide by 2030 (World Health statistics 2008). The current 

therapeutic strategies including pharmacological and non-pharmacological treatments for 

COPD have not been shown to delay and correct the long-term defects in lung function (Global 

Strategy for the Diagnosis, Management and Prevention of COPD and GOLD 2016).  

However, the expression of small non-coding RNA molecules known, as microRNAs 

(miRNAs) has been associated with neoplastic and inflammatory lung disease. Recent work 

suggests cytokine-dependent induction of miR-146a is impaired in COPD fibroblasts, leading 

to overexpression of cyclooxygenase (COX)-2 and enhanced production of PGE2 (Sato et al. 

2010). miR-146a is capable of controlling the Toll-like receptor and cytokine signalling 

through negative feedback regulation, associated with down regulation of IRAK1 and TRAF6 

protein levels (Taganov et al. 2006, Nahid et al. 2009).   

The ideal route of the pulmonary delivery of nucleic acid is non-invasive and offers various 

advantages over the more conventional oral, buccal, transdermal and nasal routes. miRNA can 

be administered in reduced doses for lung cell targeting, avoiding degradation by serum, and 

bypass of the first hepatic metabolism (Patton and Byron 2007, Takei et al. 2004) 

The promise of RNA interference mediated miRNA has provided a novel strategy to formulate 

non-viral intracellular carriers to knock down target messenger RNA (mRNA). Various studies 

have investigated the delivery of siRNA and DNA to target lung cells (Takashima et al. 2007, 

Jensen et al. 2010, Cherng et al. 1997, Andersen et al. 2008) but there is a very limited research 

has been investigated on miRNA delivery, which has the benefit of being able to regulate and 
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inhibit protein expression without interfering with other proteins. The aim of this project was 

to formulate and characterise miRNA containing NPs formulated as an inhalable dry powder 

microcarrier for the treatment Chronic Obstructive Pulmonary Disease (COPD). 

6.2 Optimisation of cationic nanoparticles 

 

The NPs size and surface charge play an important role in interaction with intracellular and 

extracellular components of cells. The interaction between the positive NPs charge and the 

negative cellular charge help in the particle uptake (Borm et al. 2006). Incorporation of DOTAP 

to NPs during NPs preparation methods was successful and produced cationic NPs. The use of 

DOTAP to produce cationic material have been previously explored, resulting in modified 

particle size and charge (Kumar et al. 2004, Jensen et al. 2012) 

It was found that DOTAP concentrations affected particle size and charge, the increase of 

DOTAP concentration reduced the particle size and increased surface charge to a more positive 

value. Similar results were reported by Kunda et al. when DMAB was used as a cationic 

surfactant, to prepare positively charged PGA-co-PDL NPs. They found that polymeric NPs 

have the ability to combine with other cationic compounds (Kunda et al. 2014b). The particle 

size decreased when the concentration of DOTAP increased to 30 mg/ml DOTAP (15 % w/v). 

The decrease of particle size has been associated with the ability of cationic material to reduce 

the interfacial tension between particle surface and aqueous phase, as well as DOTAP 

properties to restrain the enlargement of polymeric NPs (Song et al. 2006a, Jensen et al. 2012).  

When DOTAP incorporation to NPs applied for the preparation of cationic NPs, the adsorption 

of miR-146a occurred. The optimum adsorption condition and parameters on surface has ability 

to protect miR-146a over encapsulation, due to preventing from contact with solvent, 
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sonication and mechanical stress used during NPs preparation process (Cun et al. 2010, 

Soutschek et al. 2004).  

The positive charge formed on the NPs allowed the negatively charged miR-146a  for 

electrostatic interaction (Li et al. 2014). The adsorption of negatively charged miR-146a on the 

cationic NPs slightly decreased the surface charge. The cationic NPs charge remained positive 

after the miR-146a adsorption, the maximum level of miR146a adsorption was after 2 h, 

suggesting the saturation time, which help in effective ability to bind to anionic cell surface 

(Yuba et al. 2008).  

6.3 Spray drying of miRNA-containing NPs into NCMPs 

 

Spray drying has been shown to be a potential technique for small nucleic acids intended for 

inhalation with the use of excipients such as mannitol, trehalose, L-leucine and lactose alone 

or in combination (Jensen et al. 2010, Takashima et al. 2007, YT Chow and KW Lam 2015). 

The spray drying optimisation process was used to incorporate NPs into NCMPs using a mix 

of L-leucine and mannitol excipients. The optimum level 2 produced highest yield percentage 

96.00 % and smallest recovered particle size. 

 It was noted that the operational parameters such as feed rate, spray drying inlet, outlet, 

aspirator capacity, and atomised airflow have a significant effect on the yield and recovered 

particle size. Rohani et al. have optimised spray dry powder intended for pulmonary delivery, 

they found that the processing parameters affected particle size and achieved high yield  

(Rohani et al. 2014a). Others reported similar observations (Alfagih et al. 2015, Motlekar and 

Youan 2008, Mohajel et al. 2012, Billon et al. 2000). 

 The NPs were successfully spray dried using a mix of L-leucine and mannitol. The NCMPs 

showed a corrugated surface shape this occurred due to the reduction in cohesion between 
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particles, water evaporation that happened during spray drying process causing high vapour 

pressure. In addition, the presence of L-leucine in spray-dried particle, which has low density 

was capable of forming space filling thereby and packed particle structure (Chew et al. 2005b, 

Lucas et al. 1999, Sou et al. 2013, Alfagih et al. 2015).   

Moreover, the NCMPs formulations produced high values of FPF % and FPD. This could be 

attributed to L-leucine excipient in the formulation, which improved aerosolisation 

performance (Kunda et al. 2014b, Tawfeek et al. 2011, Li et al. 2005). FPF, ED, MMAD values 

would suggest very good aerosolisation properties that should allow NCMPs formulation to 

deposit in the middle to deep lung regions.  

Others reported similar results when L-leucine was used in the formulation (Kunda et al. 2013, 

Alfagih et al. 2015, Kunda et al. 2014b). The NCMPs formulation has low moisture content, 

which reflects the efficient spray drying conditions performed leading to helping in powder 

storage. This provides an indication of the use of mannitol as an excipient in the formulation 

that increases the powder respirability (Chew and Chan 2002). Therefore, the optimum spray 

dried parameters   achieved high yield good recovery of NPs and maintained miRNA 

functionality.  

6.4 The biological activity of miR-146a  

The highest miR-146a loaded NPs concentration showed a reduction in target gene IRAK1 

expression to 40 %. While, target genes TRAF6 were determined and the lowest NPs 

concentration caused reduction in expression to over 20 %. The miR-146a showed activity as 

a negative regulator of inflammation by inhibiting the expression of IRAK1 and TRAF6 genes 

(Taganov et al. 2006). Another a study by Zhao et al. showed miR-146a implicated as a 

negative feedback regulator of NF-кB and important component of immune cell gene 

regulation (Zhao et al. 2011).  
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 In addition, the miR-146a-NPs affected IRAK1 protein levels, and decreased the protein levels. 

This suggest that miR-146a released in the cell successfully targets IRAK1 mRNA, and leads 

to translational repression (Kuhn and Joshua-Tor 2013). These results show the promising NPs 

delivery carrier, protecting miR-146a from degradation and enzymatic activity in the lung 

airways  (Lam et al. 2015, Yuba et al. 2008). Similar results were reported by Liang et al. they 

showed that polymer based NPs used as carrier to deliver miR-26a to HepG2 cells  (Liang et 

al. 2011).  

The miR146a biological activity maintained after spray drying. The miR-146a-NCMPs 

knockdown the targeted IRAK1 and TRAF6 genes, accompanied with protein level changes in 

a dose dependent manner. This could be attributed to the appropriate use of the delivery 

formulation and excipients   (Jensen et al. 2010, Liang et al. 2015).  
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7. Future work 
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7.1 Future work  

Further studies will evaluate the biological studies of miR-146a in terms of pro-inflammatory 

cytokine such as pIL-8 and TNF-α.  ELISA assay indicate the measurement of  pIL-8 promoter- 

GFP reporter protein level  (MacKenzie et al. 2001). The optimum miR-146a-NPs incorporated 

NCMPs which would be helpful to examine the biochemical response, as well as the activity 

and stability of miR146a. To further expand the delivery potential of miR-146a-NCMPs for in 

vivo applications the promising in vitro studies need to move to animal models. The best 

experimental animal models for miR-146a-NCMPs administrated via inhalation for COPD 

studies are mice, guinea pigs and rats (Ghorani et al. 2017).  

 The stability of NCMPs will be determined using X-ray powder diffraction and differential 

scanning calorimeter (DSC) to evaluate changes in the crystallinity of the particles. Further 

studies should also examine the long-term stability of NCMPs at various temperature and 

humidity conditions. 

Further immunoblotting studies will also evaluate the effect of miR-146a-NPs/NCMPs on 

protein expression of TRAF6. If these results could be acquired in addition to the obtained 

findings that showed the effect of miR-146a-NPs/NCMPs on target genes and protein 

expression of IRAK1, this will help provide full insight into miR-146a-NPs/NCMPs biological 

function activity. Further optimised studies to evaluate luciferase reporter, monitor the 

transfection and interaction with 3’UTR miRNA and determine the expression effect of miR-

146a-NPs.  

miR-146a regulate Toll-like receptor (TLR) biological signalling through interleukin-1 

receptor-associated kinase 1 (IRAK1) and TNF receptor-associated factor 6 (TRAF6). 

However, there are likely to be other targets for miR-146a (Taganov et al. 2006). Transcriptome 

analyses will enable large-scale identification genes modulated by miR-146a-NCMPs.  



 

128 | P a g e  
 

The delivery of miRNAs offer an exciting field for NPs, inhalation and inflammatory diseases. 

There are various studies in literature linked to miRNAs role being used as biomarkers for 

diagnosis and regulation. This highlight the importance of miRNAs to be useful and reach the 

clinical trial stage. The significant therapeutic action of miRNA mimics enabled miR-34 to be 

used for the treatment of many cancers such as;  colon, ovarian, cervical, non-small cell lung 

cancer, and hepatocellular carcinoma, and miR-34 has been tested in phase I clinical trials 

(Bouchie 2013b).  

In order to align the present work to the pre-existing literature, the cationic DOTAP was 

successfully used to produce cationic NPs that offer positive surface charge for miR-146a 

adsorption. The selected PGA-co-PDL NPs were incorporated into L-leucine and mannitol as 

a carrier to improve the powder’s aerosolisation properties. The biological activity of miR-

146a persevered after spray drying process and miR-146a loaded NCMPs caused gene 

silencing. The use of polymeric NPs/ NCMPs in the delivery of miR-146a to lung cells offers 

important therapeutic potential to cellular dysregulations with less off-target effects. However, 

taking into account the advantage of the promising biological effects of inhaled siRNA in the 

lung there has been very limited work exploring miRNA spray drying. In the field of COPD 

and inhaled miRNA there is need of more future work to be done of using more miRNA spray 

drying due to their therapeutic potential as pulmonary drug delivery that manages COPD rather 

than other medications. 

 

It is important to take into consideration, the practical considerations of patient compliance 

with repeated doses and the probability of using combination of miR-146a-NCMPs with other 

chemotherapy or immunotherapy. In the future, NPs containing miR-146a will gain importance 

in lung diseases and other human disease. 
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Appendices  
 

 

 

Appendix–1. Effect of miR-146a loaded NPs on IRAK1 expression. Data of all concentrations 

were pooled from three independent experiments. The expression of IRAK1 was normalised 

to GAPDH expression. Values are Mean ± SD (n=3). 
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Appendix–2. Effect of miR-146a loaded NPs on TRAF6 expression. Data of all concentrations 

were pooled from three independent experiments. The expression of TRAF6 was normalised 

to GAPDH expression. Values are Mean ± SD (n=3). 
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