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Abstract 

Functional reconstructions of extinct animals represent a crucial step towards understanding 

palaeocological interactions, selective pressures and macroevolutionary patterns in the fossil record. 

In recent years, computational approaches have revolutionised the field of ‘evolutionary 

biomechanics’ and have, in general, resulted in convergence of quantitative estimates of 

performance on increasingly narrow ranges for well studied taxa. Studies of body mass and 

locomotor performance of Tyrannosaurus rex – arguably the most intensively studied extinct animal 

– typify this pattern, with numerous independent studies predicting similar body masses and 

maximum locomotor speeds for this animal. In stark contrast to this trend, recent estimates of 

maximum bite force in T. rex vary considerably (> 50%) despite use of similar quantitative 

methodologies. Herein we demonstrate that the mechanistic causes of these disparate predictions 

are indicative of important and underappreciated limiting factors in biomechanical reconstructions 

of extinct organisms. Detailed comparison of previous models of T. rex bite force reveals that 

estimations of muscle fibre lengths and architecture are the principal source of disagreement 

between studies, and therefore that these parameters represents the greatest source of uncertainty 

in these reconstructions, and potentially therefore extinct animals generally. To address the issue of 

fibre length and architecture estimation in extinct animals we present data tabulated from the 

literature of muscle architecture from over 1100 muscles measured in extant terrestrial animals. 

Application of this dataset in a reanalysis of T. rex bite force emphasises the need for more data on 

jaw musculature from living carnivorous animals, alongside increased sophistication of modelling 

approaches. In the latter respect we predict that implementing limits on skeletal loading into 

musculoskeletal models will narrow predictions for T. rex bite force by excluding higher-end 

estimates. Key words: biomechanics; bite performance; evolution; modelling; Tyrannosaurus. 

  



Introduction 

Palaeontologists and evolutionary biologists strive to understand how extinct organisms lived and 

interacted with each other and their environment. Subsequently, they attempt to identify how these 

interactions changed during earth history to shape the evolution of major animal groups. Achieving 

this ‘higher level’ understanding of past life requires reconstructing how individual extinct organisms 

functioned: for example, how they ate, manipulated food and locomoted. Witmer (1995) 

conceptualised this scientific process as a hierarchy of sequential steps in the form of an ‘inverted 

pyramid of inference’, in which progression from actual fossilised hard tissues to ‘higher level’ 

ecological and macroevoluationary conclusions requires extrapolation and inference in the form of 

soft tissue and functional reconstructions (Fig. 1a). Biomechanical assessments of extinct organisms 

therefore represent a crucial stepping-stone to the understanding of ecological and 

macroevolutionary patterns in the fossil record. It is therefore implicit that uncertainty and error in 

functional reconstructions translate directly to imprecision and potentially inaccuracy in higher tiers 

in the pyramid of inference (Fig. 1a). In recent years, functional analyses of extinct organisms have 

been revolutionised by the widespread adoption of quantitative computational approaches, many 

adapted from the field of biomedical engineering (e.g. Hutchinson & Allen, 2009; Hutchinson, 2011; 

Bates, 2013; Maidment et al. 2014). These approaches have many advantages, but one challenging 

aspect in their use on extinct animals is that they require precise specification of numerical values 

for soft tissue parameters that are rarely, or never, preserved in fossils. One approach to gauging 

progress and success in biomechanical reconstructions of extinct organisms is to examine how 

predictions for extensively studied ‘exemplar’ taxa have changed over time and with increased 

research effort. Conceptually, one might predict that with continued research effort and 

methodological refinements predictions of biomechanical performance of well studied taxa would 

begin to converge on an increasingly narrower range, which hopefully lies close to the actual 

functional capabilities of that organism (Fig. 1b).  

Tyrannosaurus rex is a model organism for studies of many aspects of palaeobiology (Brusatte et al. 

2010). Its statusasanexemplarorganismderives from anumberoffactors, most notably extremely 

large body size, seemingly highly adapted and ‘unusual’ morphological features (e.g. large skull, long 

hind limbs, short forelimbs, bipedal) and the fact that the organism is known from a large number of 

near-complete specimens (Larson, 2008; Brusatte et al. 2010). These features make T. rex an ideal 

system for examining questions related to physiology and growth (e.g. Erickson et al. 2004; 

Hutchinson et al. 2011), body size and anatomical scaling (e.g. Currie, 2003; Hutchinson et al. 2007; 

Bates et al. 2009), and various aspects of functional morphology and biomechanics (e.g. Farlow et al. 

1995; Hutchinson & Garcia, 2002; Hutchinson, 2004; Rayfield, 2004; Hutchinson et al. 2005; Sellers & 

Manning, 2007; Lipkin & Carpenter, 2008; Gatesy et al. 2009; Bates & Falkingham, 2012; Gignac & 

Erickson, 2017; Sellers et al. 2017). Collectively, these studies underpin our understanding of the role 

of multi-ton carnivorous animals within dinosaurian ecosystems of the Mesozoic.  

The breadth and depth of this research means that aspects of T. rex palaeobiology have been 

investigated using a wide variety of methods, thereby providing a natural case study to evaluate 

progress and highlight challenges in biomechanical reconstructions (Fig. 1). In many instances, 

notably body mass and locomotor performance, increased use of quantitative mathematical 

approaches has resulted in clear convergence in terms of quantitative estimates of biomechanical 

parameters for T. rex. For example, most computational estimates of body mass for near-complete 

adult specimens of T. rex lie within the range of 6500– 7500 kg (e.g. Henderson, 1999; Hutchinson et 

al. 2007, 2011; Allen et al. 2009; Bates et al. 2009; Sellers et al. 2017), and various biomechanical 

models suggest T. rex was most likely limited to maximum locomotor speeds below 8 m/s (e.g. 



Hutchinson & Garcia, 2002; Hutchinson, 2004; Hutchinson et al. 2005, 2007, 2011; Sellers & 

Manning, 2007; Gatesy et al. 2009; Sellers et al. 2017). This suggests either that different workers 

have converged on similar approaches to soft tissue reconstruction and mechanical assessment or 

that different methods have been used with similar levels of confidence in precision and accuracy. In 

stark contrast to this trend, recent quantitative estimates of maximum bite force in T. rex vary 

considerably despite the use of very similar methodological approaches across studies (Fig. 2). Bates 

& Falkingham (2012, 2018) presented an estimated maximum static or sustained bite force of 44 940 

N at posterior bite positions using a multibody dynamics (or rigid-body) model (Fig. 2). These authors 

conducted a sensitivity analysis on their model in acknowledgement of potential inaccuracies in their 

estimates of unpreserved soft tissue parameters for T. rex (Fig. 2b), which yielded a range of 

predictions for maximum static bite force between 29 510 and 53 735 N at posterior bite positions 

(Bates & Falkingham, 2012, 2018). By contrast, Gignac & Erickson (2017) used a very similar 3D rigid 

body model of the same adult T. rex specimen (BHI 3033) and produced a considerably lower 

estimate of 24 272 N at posterior bite positions (Fig. 2b). This equates to a nearly 50% difference 

between studies, with the lower value of Gignac & Erickson (2017) falling comfortably outside the 

range of predictions that Bates & Falkingham (2012, 2018) presented as a measure of potential error 

in their model construction (Fig. 2b). 

Where quantitative predictions of biomechanical performance vary across studies using identical 

methods it is likely that this reflects a limited ability to constrain input values for soft tissue 

parameters. Confronting and overcoming this uncertainty surrounding soft tissue parameters has 

repeatedly been cited as the major challenge currently facing studies of evolutionary biomechanics 

in recent years (e.g. Hutchinson & Allen, 2009; Bates et al. 2010; Hutchinson, 2011; Bates, 2013; 

Maidment et al. 2014). The magnitude of disparity in recent estimates of T. rex bite force (Fig. 2b) 

emphasises this point and suggests that it may represent an important methodological case study. 

Specifically, understanding the mechanistic causes of differences in model predictions for T. rex bite 

force may identify important limiting factors in biomechanical reconstructions of extinct organisms 

more generally. 

The aim of this study is therefore to investigate systematically the underlying causes of highly 

disparate bite force predictions for T. rex (Bates & Falkingham, 2012; Gignac & Erickson, 2017). In 

summary, a detailed comparison of all model inputs revealed that muscle fibre length and 

architecture are the principal source of disagreement between studies, and therefore that this 

parameter currently represents the greatest source of uncertainty in reconstructions of bite 

performance in T. rex, and indeed extinct animals generally. As a starting point to addressing this 

major issue we subsequently present data tabulated from the literature of muscle architecture from 

over 1100 muscles measured in extant terrestrial animals. We carry out a preliminary analysis of this 

data in the context of T. rex jaw musculature to illustrate the importance of better constraining 

muscle fibre lengths in future biomechanical analyses of extinct animals. 

Models of bite performance in T. rex 

Bates & Falkingham (2012) and Gignac & Erickson (2017) used rigid body models to estimate 

maximum bite force in T. rex. These models require the geometry of the musculoskeletal system 

under study to be defined in mathematical terms, along with the physical and contractile properties 

of the relevant musculotendon units. This basic mathematical framework allows estimation of the 

contractile force of muscle-tendon units, and subsequently the impact of muscle contraction on 

joints (e.g. joint torques) and the external environment (e.g. bite force at a tooth–object contact) to 

be predicted. Rigid body models typically use high-resolution digital skeletal scans (e.g. CT or laser 

scans) as a basis to define the 3D positions of joint centres, bite points and muscle positions. A 



number of calculations are then required to estimate the force-generating capacity of muscles, 

based on their physical and architectural properties. First and foremost, muscle force estimates 

require the physiological crosssectional area of the muscles to be calculated. In non-pennate 

muscles this is typically calculated as: 

Muscle physiological cross-sectional area = muscle volume/muscle fibre length   (1) 

and in pennate muscles: 

Muscle physiological cross-sectional area = (muscle volume/muscle fibre length) * COS(pennation 

angle)  (2) 

These equations dictate that larger muscle volumes will yield larger physiological cross-sectional 

areas for any constant fibre length, while longer fibre lengths will result in smaller physiological 

cross-sectional areas for any constant muscle volume. These basic physical and architectural 

properties thus interact to determine muscle force output, which is directly proportional to 

physiological cross-sectional area. For example, under isometric contraction, such as that broadly 

encountered in a sustained static bite (i.e. at a constant gape angle) muscle force is typically 

calculated according to: 

Muscle force = physiological cross-sectional area * maximum isometric stress (3) 

Gignac & Erickson (2017) carried out a static analysis of bite performance in T. rex using the model of 

muscle contraction shown in Eq. 3. However, having constructed a similar anatomical model, Bates 

& Falkingham (2012) used a dynamic simulation approach to simulate jaw-closure under maximal 

muscle contraction because their goal was to investigate bite speed (hypothesised to be functionally 

and ecological disparate in theropod dinosaurs (e.g. Mazzetta et al. 2009; Sakamoto, 2010)), in 

addition to bite force. This dynamic analysis used a previously published model of muscle 

contraction (Minetti & Alexander, 1997; Sellers et al. 2003) that includes Hill-style velocity-

dependent force generation. This model specifies that for a muscle with a maximum tension of T0 (in 

N), maximum rate of shortening of vmax (in m/s), current rate of shortening of v (in m/s), and 

activation of a, the force (T) is given by: 

 

Bates & Falkingham set the constant k to 0.17, in accordance with Minetti & Alexander (1997), while 

the effects of using values between 4–12 m s                                                          1 for Vmax were tested 

in their sensitivity analysis, although the value of 300 000 N m                                                          2 for 

maximum isometric stress was used throughout (see further details below). In the models of both 

Bates & Falkingham (2012) and Gignac & Erickson (2017) maximal activation of muscles (i.e. a = 

1inEq. 4) was assumed and the resulting linear muscle forces converted to torques by multiplying a 

muscle’s force by its moment arm (Bates & Falkingham, 2012; Gignac & Erickson, 2017). Bite force 

was then calculated by summing muscle torques about the jaw joint and dividing this value by the 

distance between the jaw joint and the bite point. While the dynamic model of Bates & Falkingham 

(2012) simulated jaw closure and tooth-object impact forces, they presented predicted equilibrium 

bite forces, or in other words, static bite forces with the jaw in a sustained biting position, which are 

directly comparable to the scenario modelled by Gignac & Erickson (2017). 



Previous explanations for disparate predictions of bite force in T. rex 

Gignac & Erickson (2017) put forward potential explanations for their considerably lower bite force 

estimates for adult T. rex relative to the earlier study of Bates & Falkingham (2012). Specifically they 

state: ‘We suspect the differences stem primarily from previous models not implementing 

archosaurian-specific, jaw-closing musculature and force generation as well as not utilizing 

experimentally validated neontological models’. They carry out no further analysis or present any 

data to confirm or reject these suggested causative factors. Figure 3 demonstrates that none of the 

factors proposed by Gignac & Erickson (2017) explains why their model generated lower bite force 

predictions for T. rex than that of Bates & Falkingham (2012) (see Supporting Information Appendix 

S1 for more detailed discussion of the data presented in Fig. 3). For these suppositions to be correct, 

the model of Bates & Falkingham (2012) would have had to use higher input values for muscle mass 

(Fig. 3a), muscle moment arms (Fig. 3b) and/or muscle isometric stress (Fig. 3c). However, direct 

comparison of these input parameters (Fig 3a–c) reveals that in fact the values used by Bates & 

Falkingham (2012) were universally lower (in some cases nearly 50% lower; Fig 3a) than those of 

Gignac & Erickson (2017) for all these parameters. This demonstrates not only that the potential 

explanations offered by Gignac & Erickson (2017) are incorrect, but that other factors are influencing 

the relative bite force predictions to such an extent that they are reversing the differences one 

would expect to recover from the two studies given the disparities highlighted in Fig. 3. In other 

words, despite reconstructing smaller muscle volumes (Fig. 3a) and moment arms (Fig. 3b), and 

choosing slightly lower values for muscle isometric stress (Fig. 3c), Bates & Falkingham (2012) predict 

considerably higher bite forces for T. rex than Gignac & Erickson (2017). 

New explanations for discrepancies in bite force predictions 

Thorough examination of the reconstructive methods used by the two studies in fact reveals that 

disparate approaches to deriving values for muscle fibre lengths are primarily responsible for the 

difference in bite force estimates. Muscle fibre length influences estimates of static bite force 

because it is used in the calculation of muscle physiological cross-sectional area (Haxton, 1944; 

Carlow & Alexander, 1973) in both studies, as described in Eqs 1 and 2 above. A longer fibre length 

will result in a smaller physiological cross-sectional area than a shorter fibre length for a given 

volume of muscle (Eqs 1 and 2). This is turn will result in lower muscle forces (Eqs 3 and 4) and 

ultimately lower bite forces because both these outputs are proportional to muscle physiological 

cross-sectional area. The two studies of T. rex bite force approached their estimation of muscle fibre 

length and physiological cross-sectional area in different ways, reflecting differences in their chosen 

models of muscle contraction and subjective considerations of likely jaw adductor muscle 

architecture in carnivorous archosaurs. Expanding on their sensitivity analysis of Vmax and muscle 

mass (see above), Bates & Falkingham (2012) estimated physiological cross-sectional area according 

to both Eqs 1 and 2. Initially, Bates & Falkingham (2012) seteachmusclefibrelengthtobe0.25of the 

maximum length of the muscle in their simulations (i.e. 0.25 of the length at the maximum gape 

angle used; Fig. 2b), and calculated physiological cross-sectional area according to Eq. 1. They chose 

this value based on human values stating: ‘FLs of jaw-closing muscles in our human model ranged 

between 10 and 40 per cent of maximum muscle length across the range of joint motion 

investigated’. These authors subsequently investigated the impact of fibre length and pennation 

angle on bite force and velocity predictions by conducting both ‘one-at-a-time’ (OAAT) and Monte 

Carlo-style sensitivity analyses (Bates & Falkingham, 2012, 2018). In the OAAT sensitivity analysis, 

fibre lengths were altered without any compensatory changes to other associated parameters, 

including muscle physiological cross sectional area. As a result, bite velocity predictions were shown 

to vary considerably, but there was relatively little impact on static or sustained bite force (Bates & 



Falkingham, 2012). Pennation effects were tested in both the OAAT and Monte Carlo-style analyses. 

In the former case, Bates & Falkingham (2012, 2018) considered pennation effects (of up to 20°) on 

muscle force output by recalculating muscle physiological cross-sectional area according to Eq. 2, 

with all other parameters constant at the initial model values (including fibre length). The value of 

20° was chosen as an upper bound or maximal value based on direct measurements of jaw-closing 

muscles in Alligator (Porro et al. 2011), which indicate that most are not strictly parallel-fibred. In the 

Monte Carlo analysis, Bates & Falkingham (2012, 2018) attempted to account for the functional 

consequences expected of pennate muscle architecture by simultaneously altering physiological 

cross-sectional areas (again calculated according to Eq. 2) and reducing fibre lengths. However, they 

manipulated cross-sectional area in their model by altering muscle volume (using their minimum and 

maximum volumes estimated for T. rex,Figs 1 and 2), and used constant fibre lengths throughout in 

their calculation of physiological cross-sectional areas. 

In contrast, Gignac & Erickson (2017) chose to make their fibre length equal to muscle length, and to 

reconstruct all muscles as parallel-fibred. As such they calculated physiological cross-sectional area 

using only Eq. 1. As a result of using this approach, the muscle fibre lengths used by Gignac & 

Erickson (2017) are considerably longer than those of Bates & Falkingham (2012). Subsequently, the 

longer fibre lengths chosen by Gignac & Erickson (2017) result in smaller muscle physiological cross-

sectional areas (Fig. 3d) and ultimately lower muscle and bite force estimates for T. rex (Figs 2 and 

3c,d), despite this study reconstructing larger muscle volumes (Fig. 3a). For example, summing the 

muscle physiological cross-sectional areas from Gignac & Erickson (2017) yields a value of 0.23 m2 

vs. 0.46 m2 (Fig. 3d) in Bates & Falkingham (2012), despite muscle volumes being approximately 41% 

lower in the latter study (Fig. 3a). If fibre lengths are set to muscle length in the model of Bates & 

Falkingham (2012) then the summed physiological cross-sectional area of this reconstructions drops 

to around half that of Gignac & Erickson (2017) (Fig. 3d). To support their assumption of universally 

parallel fibred architecture, and thus muscle fibre lengths equal to muscle length, Gignac & Erickson 

(2017) cite their own previous work on Alligator jaw mechanics (Gignac & Erickson, 2016). 

Specifically, they state: ‘As demonstrated by Gignac & Erickson (2016) muscle length can serve as a 

proxy for fascicle length in parallel-fibered muscles when statically modeled’. The terminology used 

here inherently suggests that this previous work (Gignac & Erickson, 2016) quantitatively 

‘demonstrated’ that Alligator jaw closing muscles are universally composed of long parallel fibres, 

with no tendinous component. However, in this previous study of Alligator, Gignac & Erickson (2016) 

state that seven of the eight jaw-closing muscles ‘are tightly bound by the bony adductor chamber 

and by one another, which precluded making direct measurements of fascicle lengths. Each has 

parallel-arranged fibers; therefore, muscle length (Ml) served as a proxy for mean fascicle length in 

each of these cases’. Thus fibre lengths and architecture were not actually directly measured in 

seven of the eight jaw-closing muscles in Alligator. However, Porro et al. (2011) did carry out a full 

quantitative dissection of the jaw-closing musculature of a juvenile Alligator, in which a full suite of 

architectural properties were directly measured for all muscles. Porro et al. (2011) suggest that five 

of the seven muscles are not strictly parallel-fibred, and subsequently that the ratio of fibre length to 

muscle length varies considerably between muscles in the jaw of Alligator, with values ranging from 

0.28 to 0.9 (mean 0.47, SD 0.25). 

Three important points arise from this discussion. First, 

muscle fibre length and architecture are responsible for the highly disparate bite force predictions 

for T. rex (Fig. 2), and the effect of these interlinked parameters can completely drown out the 

impact of other differences in anatomical reconstructions (e.g. disparate muscle volume [Fig. 3a] and 

muscle force production estimates [Fig. 3c]). To our knowledge this is the first time that muscle fibre 



length has been identified as having such a dramatic impact on biomechanical predictions for an 

extinct animal: previous studies have suggested that muscle mass and physiology (isometric stress 

and maximum contraction velocity) are likely to be the most limiting parameters in quantitative 

estimates of biomechanical performance (e.g. Hutchinson & Garcia, 2002; Hutchinson, 2004; Sellers 

& Manning, 2007; Gatesy et al. 2009; Bates et al. 2010; Bates & Falkingham, 2012). Therefore the 

potential for muscle fibre length to impact on biomechanical assessments, and subsequently on our 

ability to make ‘higher-level’ inferences (Fig. 1), of extinct animals has been considerably 

underestimated. This finding that fibre length can exert a major influence on quantitative bite force 

predictions is consistent with conceptual discussions (e.g. Curtis et al. 2010) and recent sensitivity 

studies carried out on models of extant taxa (e.g. Groning et al. 2013). Secondly, the differing 

approaches to fibre length estimation between these studies originate from subjective choices 

related to differences in the methodological (e.g. dynamic vs. static models) and philosophical 

approaches used (e.g. consideration of a range of parallel and pennate architectures vs. only 

parallel-fibred architecture). Thirdly, there has been relatively little research effort directed at 

deriving objective approaches to deliver fibre length estimates for extinct taxa based on available 

quantitative data from living animals. Therefore this parameter represents a major, and under-

appreciated, source of uncertainty in biomechanical predictions for extinct animals generally. 

Herein, we attempt to address these interlinked problems by collating and analysing a large dataset 

of muscle architectural values from the published literature. We make this dataset freely available 

(Supporting Information Appendix S2) so that it can be further interrogated, added to and analysed 

in future biomechanical studies of extant and extinct taxa. 

Muscle fibre length data from extant terrestrial vertebrates 

We amassed published data on the architectural properties of over 1100 muscles from terrestrial 

(i.e. non-marine) vertebrates (Fig. 4, Appendix S2). Specifically, we tabulated data where values for 

muscle fibre length, pennation angle, muscle belly length and overall muscle-tendon unit length 

were measured directly from dissections (Appendix S2). This allowed us to calculate the ratio of fibre 

length to muscle length and subsequently assess what, if any, ratio is empirically supported for the 

estimation of fibre length in extinct animals (Fig. 4). We assessed fibre length relative to both (Fig. 

4a) muscle belly and (Fig. 4b) total muscle-tendon unit length (i.e. muscle belly length + external 

tendon length) because either can be used (depending on the preference of the researcher) to 

estimate fibre lengths in reconstructions of extinct animals. Considering the calculation of 

physiological cross-sectional area purely in theoretical terms, it makes more sense to consider the 

relationship between fibre length and muscle belly length, and to use this ratio predictively in extinct 

animals. However, most reconstructions of fossil animals (e.g. Bates & Falkingham, 2012; Gignac & 

Erickson, 2017) use the three-dimensional distance between origin and insertion as the muscle 

length value against which to estimate fibre length, which is strictly the total muscle-tendon unit 

length. Thus, utilising the fibre length to muscle belly length ratio would require a priori assumptions 

about the presence/absence of external tendon and values for tendon slack length. We therefore 

present both ratios (Fig 4a,b, Appendix S2). We attempted to be maximally inclusive of muscles and 

collated data from all regions of the body (limb, axial and cranial muscles) from as many groups of 

terrestrial vertebrates as possible. 

Figure 4 demonstrates that fibre length to muscle length ratios vary enormously within both parallel 

fibre and pennate architectural types. Within parallel-fibred muscles (i.e. pennation = 0°) the fibre 

length to muscle belly ratio rangedfrom0.07to1(Fig. 4a); such variation likely reflects the strong 

functional signal observed in fibre and muscle lengths (e.g. Burkholder et al. 1994) but also the 

mixing of data from highly functionally and phylogenetically disparate taxa and body regions 



(limbs,skulls,axial segments, etc.). Interestingly, we also observed variation across studies in terms of 

how fibre lengths were used to calculate physiological cross-sectional area in strictly parallel-fibred 

muscles. Some studies mirrored the approach of Gignac & Erickson (2017) and substituted muscle 

belly length for fibre length in Eq. 1 to calculate physiological cross-sectional area (e.g. Michilsens et 

al. 2009). Others studies did not take this approach, and although observing a parallel fibre 

architecture they followed Eq. 1 strictly and used their mean measured fibre lengths to derive a 

value for physiological crosssectional area, despite these values often being considerably shorter 

than muscle belly length (e.g. Smith et al. 2006; Williams et al. 2008a,b; Allen et al. 2010). In pennate 

muscles (i.e. pennation > 0) there is a broadly negative relationship between pennation angle and 

the ratio of fibre length to muscle length, as would be expected. In other words, as pennation angle 

increases the ratio of fibre length to (Fig. 4a) muscle belly and (Fig. 3b), total muscle tendon unit 

length tend to decrease. The same relationship, with a near identical slope, is observed when 

pennation angle vs. the ratio of fibre length to muscle-tendon unit length in masticatory muscles is 

considered (Fig. 4b). The fact that a positive relationship is observed between pennation angle vs. 

the ratio of fibre length to muscle belly length in masticatory muscles (Fig. 4a) almost certainly 

reflects the very low sample size (n = 5 muscles) and narrow range of pennation angles (8.5–16.9°) 

currently available in the literature. In all cases there is considerable scatter about RMA regressions 

lines (e.g. all r2 values < 0.4; see Supporting Information Table S1), which as noted above may at 

least partially reflect the mixing of data from different taxa and body regions. 

This new dataset allows us to revisitthe issueofbiteperformance in T. rex to assess both the issue of 

quantitative estimates of bite force, and also the question of which soft tissue parameter currently 

represents the greatest source of uncertainty. This latter consideration is of consequence more 

widely in biomechanical reconstructions of extinct and extant animals (e.g. Hutchinson & Allen, 

2009; Bates et al. 2010; Hutchinson, 2011; Bates, 2013; Maidment et al. 2014). To address both 

issues simultaneously we repeated the simulations of Bates & Falkingham (2012) and recalculated 

static bite force using the input data from Gignac & Erickson (2017) under two scenarios. First, we 

used the assumption of Gignac & Erickson (2017) that all jaw closing muscles are strictly parallel-

fibred with a ratio of fibre length to muscle-tendon unit length equal to one. Second, we re-ran both 

analyses assuming a ‘relatively’ extreme pennate architecture, following Bates & Falkingham (2012). 

Specifically, for this latter scenario we assumed a pennation angle of 20°, which is approximately 3° 

higher than measured in Alligator (Porro et al. 2011), but considerably less than the maximum 

recorded for masticatory muscles from mammals in our dataset (Fig. 4, Appendix S2). To derive an 

average fibre length to muscle length ratio for a muscle with a 20° pennation angle we subsequently 

used the three negative regression slopes in Fig. 3, with the positive slope between pennation angle 

vs. the ratio of fibre length to muscle belly length in masticatory muscles (Fig. 4a) discounted due to 

small sample size (see above). The similarity of these three slopes leads to very similar fibre length to 

muscle length ratios for a muscle with 20° pennation angle (Table S1), and we subsequently used the 

mean slope value of 0.35 in our re-analysis of T. rex bite performance. 

The results of this new analysis are shown in Fig. 5, which reveals a number of notable findings. First, 

standardisation of muscle fibre length and architecture based on our new dataset from living 

vertebrates (Fig. 4) has reversed the qualitative nature of the discrepancy in predicted bite forces 

between the two modelling studies (Fig. 5). If strictly long, parallel-fibred or pennate architectures 

are applied to both models, then the estimates of Gignac & Erickson (2017) are considerably higher 

than those of Bates & Falkingham (2012), which is consistent with the differences in other input 

parameters showninFig. 3.Ifpennate muscle architecture is reconstructed in T. rex, then fibre lengths 

are considerably reduced in the model of Gignac & Erickson (2017), thus muscle physiological cross-

sectional area and subsequently muscle force are greatly increased in this model. As a result the 



predicted force at posterior bite positions using the initial model inputs of Gignac & Erickson (2017) 

has more than doubled, rising from 24 272 N (Fig. 2) to 65 163 N (Fig. 5). Deriving fibre lengths for 

pennate muscles using our new data (Fig. 3) results in an increase in fibre lengths in the model of 

Bates & Falkingham (2012), and therefore a decrease in muscle physiological cross-sectional areas 

and subsequently muscle force. As a result, the predicted force at posterior bite positions using the 

initial model inputs of Bates & Falkingham (2012) has reduced by approximately 45%, from 44 940 N 

to 25 921 N (Fig. 5). If strictly long, parallel-fibred architectures are assumed in T. rex (as per Gignac 

& Erickson, 2017) then an even greater increase in fibre lengths occurs in the model of Bates & 

Falkingham (2012) and as a result, the average predicted bite force drops to just 9598 N (Fig. 5). 

Secondly, when standardised, the choice of muscle architectural type reconstructed for T. rex also 

impacts on the absolute, but not relative, magnitudes of the two studies (Fig. 5). When strictly long, 

parallel-fibred architectures are assumed in T. rex, the absolute difference between mean bite force 

predictions drops to 16 322 N (Fig. 5). If pennate muscle architecture is reconstructed in T. rex, the 

absolute difference between mean bite force predictions increases to 40 891 N (Fig. 5). In both 

instances the mean estimate derived from the model of Bates & Falkingham (2012) equates to 37% 

of that predicted by the model of Gignac & Erickson (2017). This highlights the third notable result 

shown in Figure 5: standardisation of muscle fibre lengths and architecture between these studies 

has actually increased the relative difference between their mean predictions; formerly, the 

estimate of Gignac & Erickson (2017) was 54% that of Bates & Falkingham (2012) (Fig. 1). 

Fourthly, this analysis provides a new and wider context for the relative importance of individual soft 

tissue parameters on quantitative predictions of biomechanical performance in extinct vertebrates 

(Fig. 5). Indeed, this analysis is also highly informative for studies of extant taxa where it is not 

always logistically or ethically possible to measure all model input parameters directly. While 

previous conceptual discussions (e.g. Curtis et al. 2010) and modelling studies of extant taxa (e.g. 

Groning et al. 2013) have indicated that bite force predictions are sensitive to fibre length values, 

here we show that the absence of an objective and precise means of predicting fibre lengths in the 

absence of direct measurements (as is always the case in extinct animals) represents the single 

greatest source of uncertainty in model outputs. The few previous studies to have examined the 

effect of muscle fibre length on functional predictions for extinct animals have concluded that its 

impact is modest relative to other input parameters, particularly muscle mass and contractile 

properties (e.g. Hutchinson & Garcia, 2002; Hutchinson, 2004; Sellers & Manning, 2007; Gatesy et al. 

2009; Bates et al. 2010; Bates & Falkingham, 2012). This almost certainly results from consideration 

of fibre lengths in isolation, without compensatory changes to physiological cross-sectional area, 

under which circumstances it has a modest effect on muscle force predictions relative to other 

parameters (Hutchinson & Garcia, 2002; Hutchinson, 2004; Bates et al. 2010; Bates & Falkingham, 

2012). However, when its interaction with muscle physiological cross-sectional area is considered, 

muscle fibre length and architecture become the greatest source of uncertainty in quantitative bite 

force predictions (Fig. 5). 

Conclusions and future perspectives 

Overcoming uncertainty in quantitative predictions of functional performance derived from poorly 

constrained input values for unfossilised soft tissue parameters (Figs 3 and 5) currently represents 

the greatest challenge facing the field of evolutionary biomechanics (e.g. Hutchinson & Allen, 2009; 

Bates et al. 2010; Hutchinson, 2011; Bates, 2013; Maidment et al. 2014). Hutchinson & Allen (2009) 

termed this paradigm an ‘interpretive asymptote’, and acknowledged that functional interpretations 

of extinct organisms may one day reach a threshold for quantitative precision beyond which no 

further progress can be made (Fig. 1b). Our case study on bite performance in T. rex is testament to 



the challenges posed by quantitative soft tissue reconstruction; however, like Hutchinson & Allen 

(2009), we would argue that the means of achieving progress and pushing back the ‘interpretive 

asymptote’ are clear. 

Reconstructions of soft tissues in fossils would be more informed, and potentially more tightly 

constrained, with more quantitative anatomical and functional data from living vertebrates. It is our 

hope that the muscle architecture dataset that we have collated here (Fig. 4, Appendix S2) will in this 

way contribute directly, but also indirectly by highlighting where important data are lacking in the 

literature on living animals. For example, the literature we collated on muscle architecture is 

dominated by limb musculature (hind limb 54% and forelimb 41% of the data), with jaw and axial 

musculatures extremely poorly represented (approximately 2% each). This large sample size for limb 

musculature should enable more detailed analyses of the relationship between muscle architecture 

and muscle function within limbs that could guide fibre length estimation on a joint-by-joint or even 

muscle-by-muscle basis in locomotion studies of extinct animals. Indeed, the spread of fibre length 

to muscle length ratios seen in this dataset (Fig. 4) almost certainly represents a functional signal in 

terms of the different or specialised roles that muscles perform within the musculoskeletal system 

(e.g. Burkholder et al. 1994); for example, whether they function as joint ‘motors’, ‘brakes’, 

‘stabilisers’ or ‘springs’ within a limb (e.g. Ahn & Full, 2002; Rankin et al. 2016). That such 

specialisation of muscle function should be manifested in FL : ML has been inferred from anatomical 

and functional experiments (e.g. Burkholder et al. 1994; Biewener, 1998; Biewener & Gillis, 1999; 

Gillis & Biewener, 2001; Ahn & Full, 2002; Wilson & Lichtwark, 2011; Bates & Schachner, 2012) and 

predicted in theoretical and simulation studies of muscle contraction (e.g. Falk et al. 2016). The 

volume of data available that we have collated for limb muscles (Fig. 4) may allow subclassification 

of muscles, leading to assignment of function-specific fibre lengths to limb muscles in models of 

extinct vertebrates. However, clearly such a detailed analysis of jaw and axial musculature is not 

currently possible based on published data (Fig. 4). Without more data on jaw muscle architecture in 

living animals, future biomechanical models of extinct vertebrates will suffer from similar 

magnitudes of uncertainty to those identified here for T. rex (Fig. 5) if researchers are maximally 

inclusive of error estimates in their reconstructions. 

Hutchinson & Allen (2009) also cite the extension, wider validation and development of new 

methodological approaches as being key to refining functional predictions of extinct animals. New 

methodological approaches might act at both the ‘front-end’ and ‘back-end’ of biomechanical 

reconstructions of fossils. At the front-end, new approaches would serve to refine and minimise the 

range of plausible input values for soft tissues. For example, although our dataset (Fig. 4) may enable 

better future estimations of muscle fibre length in extinct animals, there is no evidence at present 

that using the ratio of fibre length to muscle length is the best or most appropriate reconstructive 

method to use, particularly given the considerable scatter about trendlines (Fig. 4). In an alternative 

approach, Sellers et al. (2013) analysed the relationship between fibre length and the length change 

endured by muscles during motion in a small number of living taxa. This subsequently allowed the 

statistically supported mean ratio of fibre length to muscle length change to be used to estimate 

fibre lengths in computer models of extinct taxa (Sellers et al. 2013). One notable benefit of this 

approach is that it allows tuning of individual muscle fibre lengths and tendon lengths with the 

length changes endured by muscles in vivo, thereby ensuring that individual muscles have fibre 

lengths that allow them to function (i.e. generate force) over a wide range of joint angles. This is not 

explicitly guaranteed when fibre length is based solely on a ‘generic’ mean ratio of fibre length to 

muscle length values.  



New methodological developments acting at the ‘backend’ of functional analyses would act to 

desensitise or even detach the final estimates of biomechanical performance (bite force, running 

speed etc.) from soft tissue input values. For example, Sellers et al. (2017) recently extended their 

evolutionary robotics simulations to include consideration of the bone-loading magnitudes in gait 

reconstructions. This allowed them to demonstrate that although it is plausible to reconstruct large 

theropod dinosaurs like T. rex with sufficient limb musculature to achieve slow-to-moderate running 

speeds, such gaits would lead to unacceptably high loads on the limb bones (Sellers et al. 2017). 

There is obvious potential to extend this approach to other taxa and other regions of the 

musculoskeletal system, including bite force estimation. Indeed, we predict that higher-end muscle 

and bite forces currently predicted for T. rex (Fig. 5) might lead to unacceptably high loads on the 

skull and/or mandible and thus could potentially be excluded through use of the ‘multiphysics’ 

approach of Sellers et al. (2017). 

Acknowledgements 

John Hutchinson and Vivian Allen are thanked for providing further breakdowns of their published 

muscle architecture data. Phil Cox and another anonymous reviewer provided comments and 

suggestions that greatly improved the manuscript. 

References 

Ahn AN, Full RJ (2002) A motor and a brake: two leg extensor muscles acting at the same joint 

manage energy differently in a running insect. J Exp Biol 205, 379–389. 

Allen V, Paxton H, Hutchinson JR (2009) Variation in center of mass estimates for extant sauropsids, 

and its importance for reconstructing inertial properties of extinct archosaurs. Anat Rec 292, 1442–

1461. 

Allen V, Elsey RM, Jones N, et al. (2010) Functional specialisation and ontogenetic scaling of limb 

anatomy in Alligator mississippiensis. J Anat 216, 423–445. 

Bates KT (2013) Dinosaur Locomotion. Encyclopaedia of Life Sciences. London: Macmillan. 

Bates KT, Falkingham PL (2012) Estimating maximum bite performance in Tyrannosaurus rex using 

multi-body dynamics. Biol Lett 8, 660–664. 

Bates KT, Falkingham PL (2018) Correction to ‘Estimating maximum bite performance in 

Tyrannosaurus rex using multi-body dynamics’. Biol Lett 14, 20180160. 

Bates KT, Schachner ER (2012) Disparity and convergence in bipedal archosaur locomotion. J R Soc 

Interface 70, 1339– 1353. 

Bates KT, Manning PL, Hodgetts D, et al. (2009) Estimating mass properties of dinosaurs using laser 

imaging and 3D computer modelling. PLoS ONE 4, e4532. 

Bates KT, Manning PL, Margetts L, et al. (2010) Sensitivity analysis in evolutionary robotic 

simulations of bipedal dinosaur running. J Vertebr Paleontol 30, 458–466.  

Biewener AA (1998) Muscle function in vivo: a comparison of muscles used for elastic energy savings 

versus muscles used to generate mechanical power. Am Zool 38, 703–717.  

Biewener AA, Gillis GB (1999) Dynamics of muscle function during locomotion: accommodating 

variable conditions. J Exp Biol 202, 3387–3396.  



Brusatte SL, Norell MA, Carr TD, et al. (2010) Tyrannosaur paleobiology: new research on ancient 

exemplar organisms. Science 17, 1481–1485.  

Burkholder TJ, Fingado D, Baron S, et al. (1994) Relationship between muscle fiber types and sizes 

and architectural properties in the mouse hindlimb. J Morphol 221, 177–190.  

Carlow LJ, Alexander RM (1973) A mechanical analysis of a hind leg of a frog (Rana temporaria). J 

Zool 171, 293–321. 

Currie PJ (2003) Allometric growth in tyrannosaurids (Dinosauria: Theropoda) from the Upper 

Cretaceous of North America and Asia. Can J Earth Sci 40, 651–665. 

Curtis N, Jones MEH, Evans SE, et al. (2010) Predicting muscle activation patterns from motion and 

anatomy: modelling the skull of Sphenodon (Diapsida: Rhynchocephalia). J R Soc Interface 7, 153–

160.  

Erickson G, Mackovicky PJ, Currie PJ, et al. (2004) Gigantism and comparative life-history parameters 

of Tyrannosaurid dinosaurs. Nature 430, 772–775. 

Falk M, Siebert T, Haufle D (2016) Contraction dynamics and function of the muscle-tendon complex 

depend on the muscle fibre-tendon length ratio: a simulation study. Biomech Model Mechanobiol 

15, 245–258.  

Farlow JO, Smith MB, Robinson JM (1995) Body mass, bone ‘strength indicator’, and cursorial 

potential of Tyrannosaurus rex. J Vertebr Paleontol 15, 713–725.  

Gatesy SM, Baeker M, Hutchinson JR (2009) Constraint-based exclusion of limb poses for 

reconstructing theropod dinosaur locomotion. J Vertebr Paleontol 29, 535–544.  

Gignac PM, Erickson GM (2016) Ontogenetic bite-force modelling of Alligator mississippiensis: 

implications for dietary transitions in a large-bodied vertebrate and the evolution of crocodylian 

feeding. J Zool 299, 229–238. 

Gignac PM, Erickson GM (2017) The biomechanics behind extreme osteophagy in Tyrannosaurus rex. 

Sci Rep 7. https:// doi.org/10.1038/s41598-017-02161-w 

Gillis GB, Biewener AA (2001) Hindlimb muscle function in relation to speed and gait: in vivo patterns 

of strain and activation in a hip and knee extensor of the rat (Rattus norvegicus). J Exp Biol 204, 

2717–2731. 

Groning F, Jones MEH, Curtis N, et al. (2013) The importance of accurate muscle modelling for 

biomechanical analyses: a case study with a lizard skull. J R Soc Interface 10, 20130216.  

Haxton HA (1944) Absolute muscle force in the ankle flexors of man. J Physiol 103, 267–273. 

Henderson DM (1999) Estimating the mass and centers of mass of extinct animals by 3D 

mathematical slicing. Paleobiology 25,88–106.  

Hutchinson JR (2004) Biomechanical modeling and sensitivity analysis of bipedal running. II. Extinct 

taxa. J Morphol 262, 441–461. Hutchinson JR (2011) On the inference of function from structure 

using biomechanical modelling and simulation of extinct organisms. Biol Lett 8, 115–118.  

Hutchinson JR, Allen V (2009) The evolutionary continuum of limb function from early theropods to 

birds. Naturwissenschaften 96, 423–448.  

Hutchinson JR, Garcia M (2002) Tyrannosaurus was not a fast runner. Nature 415, 1018–1021. 



Hutchinson JR, Anderson FC, Blemker SS, et al. (2005) Analysis of hindlimb muscle moment arms in 

Tyrannosaurus rex using a three-dimensional musculoskeletal computer model: implications for 

stance, gait and speed. Paleobiology 31, 676–701.  

Hutchinson JR, Ng-Thow-Hing V, Anderson FC (2007) A 3D interactive method for estimating body 

segmental parameters in animals: application to the turning and running performance of 

Tyrannosaurus rex. J Theor Biol 246, 660–680.  

Hutchinson JR, Bates KT, Molnar J, et al. (2011) A computational and comparative analysis of limb 

and body proportions in Tyrannosaurus rex with implications for locomotion and growth. PLoS ONE 

6, e26037. 

Larson NL (2008) One hundred years of Tyrannosaurus rex: the skeletons. In: Tyrannosaurus rex, The 

Tyrant King. (eds Larson P, Carpenter K), pp. 1–56, Bloomington, Indiana, USA: Indiana University 

Press. 

Lipkin C, Carpenter K (2008) Looking again at the forelimb of Tyrannosaurus rex. In: Tyrannosaurus 

rex, The Tyrant King. (eds Larson P, Carpenter K), pp. 167–192. Bloomington, Indiana, USA: Indiana 

University Press. 

Maidment SCR, Bates KT, Falkingham PL, et al. (2014) Locomotion in ornithischian dinosaurs: an 

assessment using threedimensional computational modelling. Biol Rev 89, 588–617.  

Mazzetta GV, Cisilino AP, Blanco ER, et al. (2009) Cranial mechanics and functional interpretations of 

the horned carnivorous dinosaur Carnotaurus sastrei. J Vertebr Paleontol 29, 822–830.  

Michilsens F, Vereecke EE, D’Aout K, et al. (2009) Functional anatomy of the gibbon forelimb: 

adapations to a brachiating lifestyle. J Anat 215, 335–354.  

Minetti AE, Alexander RM (1997) A theory of metabolic costs for bipedal gaits. J Theor Biol 186, 467–

476. 

Porro LB, Holliday CM, Anapol F, et al. (2011) Free body analysis, beam mechanics and finite element 

modelling of the mandible of Alligator mississippiensis. J Morphol 272, 910– 937. 

Rankin JW, Rubenson J, Hutchinson JR (2016) Inferring muscle functional roles of the ostrich pelvic 

limb during walking and running using computer optimization. J R Soc Interface 13. 

https://doi.org/10.1098/rsif.2016.0035  

Rayfield EJ (2004) Cranial mechanics and feeding in Tyrannosaurus rex. Proc R Soc B 271, 1451–1459. 

Sakamoto M (2010) Jaw biomechanics and the evolution of biting performance in theropod 

dinosaurs. Proc R Soc B 277, 3327–3333. 

Sellers WI, Manning PL (2007) Estimating dinosaur maximum running speeds using evolutionary 

robotics. Proc R Soc B 274, 2711–2716. 

Sellers WI, Dennis LA, Crompton RH (2003) Predicting the metabolic cost of bipedalism using 

evolutionary robotics. J Exp Biol 206, 1127–1136. 

Sellers WI, Margetts L, Coria RA, et al. (2013) March of the Titans: the locomotor capabilities of 

sauropod dinosaurs. PLoS ONE 8, e78733. 

Sellers WI, Pond SB, Brassey CA, et al. (2017) Investigating the running abilities of Tyrannosaurus rex 

using stress-constrained multibody dynamic analysis. PeerJ 5, e3420. 

https://doi.org/10.1098/rsif.2016.0035


Smith NC, Wilson AM, Jespers KJ, et al. (2006) Muscle architecture and functional anatomy of the 

pelvic limb of the ostrich (Struthio camelus). J Anat 209, 765–779.  

Williams SB, Wilson AM, Rhodes L, et al. (2008a) Functional anatomy and muscle moment arms of 

the pelvic limb of an elite sprinting athlete: the racing greyhound (Canis familiaris). J Anat 213, 373–

382.  

Williams SB, Wilson AM, Daynes J, et al. (2008b) Functional anatomy and muscle moment arms of 

the thoracic limb of an elite sprinting athlete: the racing greyhound (Canis familiaris). J Anat 213, 

373–382.  

Wilson A, Lichtwark G (2011) The anatomical arrangement of muscle and tendon enhances limb 

versatility and locomotor performance. Philos Trans R Soc Lond B Biol Sci 366, 1540– 1553.  

Witmer LM (1995) The Extant Phylogenetic Bracket and the importance of reconstructing soft tissues 

in fossils. In: Functional Morphology in Vertebrate Paleontology. (eds Thomason JJ), pp. 19–33. New 

York: Cambridge University Press. 

Supporting Information  

Additional supporting information may be found online in the Supporting Information section at the 

end of the article: 

Appendix S1. Additional discussion, data and model code. Table S1. Reduced major axis statistics for 

analysis of relationship between fibre length and muscle belly and muscle-tendon unit length (Fig. 4 

in main text).  

Appendix S2. Raw muscle architecture data 

  



Figures 

 

 



 

 



 


