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Abstract—The study and analysis of energy efficiency in Data
Centers (DCs), through a set of globally accepted metrics, is an
ongoing challenge. In particular, the area of productivity metrics
is not completely explored, and there is no existing proposed
metrics, which provides a direct measurement of the useful work
in a DC. This paper proposes a methodology that addresses the
problem of measurement, calculating, and evaluating the energy
productivity assessment in Data Center (DC), which encompasses
both the portion of energy employed for computing and energy
wasted during computational work. It involves the estimation of
productive energy consumption by a DC cluster based on the
following: statistical data collection and interpretation, software
for energy data analysis, and mathematical formulation. This
current work is based on available data extracted through
experiments conducted on the cluster “CRESCO4” from ENEA
Data Center facilities. The dataset covers the power and job
schedule characteristics running on the cluster for one year.
This paper shows how to advance beyond state of the art for
productivity metrics (e.g. useful work). It will also help enhance
server performance and power management since the appropri-
ate statistical data analysis provides a profile on server energy
consumption behavior. Additionally, we make recommendations
on how the productivity assessment could driver a new power
efficiency management strategy, which is specifically targeted at
DC manager and/or operators, and end-users of the facilities.

Keywords—Data Center, Energy Efficiency, Energy Consump-
tion, Metrics, Cluster, Big Data, Data Analysis, Workload Manage-
ment, Computer Application, Policies

I. INTRODUCTION

According to the Berkeley National Laboratory Report [1],
data centers in the US consumed approximately 70 billion
kWh electricity in the year 2014 (i.e. about 1.8% of total US

energy consumption). It is estimated that in the year 2020,
the total energy consumption by the US Data Centers (DCs)
will increase to 73 billion kWh. Initiatives such as the EU
Code of Conduct for Energy Efficiency in DCs [2] have been
established in response to the increasing energy consumption
in DCs and to reduce their environmental impact. Best practice
supplement to the Code of Conduct has been published in
order to support DCs operators in their endeavor to improve
the energy efficiency [3]. Monitoring of energy usage and
consumption is essential to pursue the energy efficiency target
and in the meantime to reduce the waste in the DC operations.
However, metrics are required to provide insight into how
efficient energy is transferred into IT equipment in a DC [4].
Additionally, metrics will enable DC operators to estimate
their efficiency, draw a comparative analysis with others and
also ascertain the need for further energy improvement [5].
PUE has become the de facto industrial “standard” metric for
measuring DC energy efficiency because of its simplicity and
ease of use. However, there are many shortcomings of the PUE
metric related to the black box definition. Indeed, the PUE:
would depict an accurate picture only if the IT equipment
functions at its full capacity [6]; does not reveal the real
energy performance of DCs, for e.g. IT equipment efficiency
[7], [8]. Consequently, productivity metrics (e.g DCeP) have
been created to address these gaps. This category includes
indices related to the quantity of the “useful work” within
a DC from an IT perspective. Hence, these indices should
lead to questions such as: What is the “useful work” of a
DC? and How does one calculate the “useful work” of a DC?



[9]. As an example: the amount of IT equipment necessary
to meet a Service Level Agreement (SLA) within a specified
response time [10]; IT equipment utilization (e.g. Compute
Power Efficiency [11]; Server Compute Efficiency [12]).

This paper aims to demonstrate how productivity metrics
could be applied in a real physical DC context. This will
entail the investigation of productive energy consumption by
the ENEA DC cluster. The following objectives will support
this aim:

a) Analyse the energy consumed to complete each process
within the cluster during a specified period, T;

b) Analyse the energy consumed by each aborted process
within the cluster during the period, T;

c) Analyse idle energy consumed within the cluster during
the period T;

d) Evaluate the load of the DC cluster based on (a–c) during
the period T;

e) Calculate energy efficiency and productive energy effi-
ciency of the data centre cluster during the period T using
the DCeP metric to calculate the useful work and the
EWR metric for knowledge the waste energy (or “non-
work”).

The organisation of this paper is as follows: Section I
— Introduction; Section II — Related Work; Section III —
Methodology; Section IV — Results and Discussion; Sec-
tion V — Conclusions and Future Work.

II. RELATED WORK

The two primary factors for improving data center energy
efficiency are the enhancement of facilities’ infrastructure
efficiency and IT equipment/infrastructure efficiency (note:
this is the focus of this paper). These efficiency measures
can bring about savings concerning reduced electricity bill
due to decreased operational expenditure (OpEx) and capital
expenditure (CapEx) [13]. Diverse efforts have been made to
reduce the energy consumption of IT equipment/infrastructure.
Baccour and colleagues [14] have developed a new simulated
green DC topology (known as PTNet) with power-aware
routing algorithm. Actual server power consumption and uti-
lization are measured to identify opportunities to increase DC
compute capacity [15] and to determine the variation pattern
of Power Usage Effectiveness (PUE) throughout an observed
period [16]. Real-time monitoring for evaluation of DC energy
efficiency has been conducted by [17], [18] through the use of
comprehensive software tool for the acquisition and display of
power consumption of associated IT equipment/infrastructure.
Additionally, physical experiments have also been conducted
to monitor the power consumption of servers followed by a
quantitative analysis to estimate server power at the component
level (i.e. CPU, memory, disk, etc.) [19].

Undeniably, power consumption monitoring is beneficial.
However, the lack of appropriate metrics poses a significant
barrier to improving energy efficiency in DCs [20]. Metrics
will help communicate power consumption and also the envi-
ronmental impact of data centers [21]. Several researchers have
collated related environmental metrics for DCs (e.g. Carbon

Usage Effectiveness, CUE; Water Usage Effectiveness, WUE)
[16], [22]. In order to improve the energy efficiency of DCs, it
is necessary to look at metrics related to power, productivity,
and server performance [20] and green metrics, which shall
be further discussed below.

Power Usage Effectiveness (PUE) [4], [5], an example of
the power metric, is currently the de facto industrial DC energy
efficiency standard due to its simplicity. PUE is the ratio of
total power used by the DC facility to the power used by the
IT equipment.

PUE =
Total Facility Power

IT Equipment Power

Several case studies that have been conducted to analyse
the PUE of DCs [16], [23]. The Data Center Infrastructure
Efficiency (DCiE) [4], [5] is a metric initially recommended
by The Green Grid, and it is synonymous with PUE, and it is
the reciprocal of PUE.

DCiE = IT Equipment PowerTotal Facility Power

DC productivity metric is a crucial missing link in the
energy efficiency issue [24]. The Green Grid [25] designed
a family of Data Center Productivity (DCP) metrics for DC
resource optimization. Its first derivative metric is Data Center
Energy Productivity metric (DCeP), used to track the “overall
work product of a data center per unit of energy expended to
produce this work”. It is the ratio of useful work produced
by the DC to the energy that is consumed to perform the
work [26]. A new energy efficiency metrics for data centers
introduced in [27] is based on the first law of thermodynamics
thermal efficiency definition where thermal efficiency equals
the ratio of useful work to total energy expended to operate
and support the execution of useful work. However, the
challenge is to define “useful work” in a meaningful, and
measurable way [28] and in this paper, we demonstrate how
this could be done (further discussed in Section III). Some
productivity measurements related to useful work made by
[29], [30] are the sum of weighted tasks carried out in a period
and are represented in diverse ways: useful work per energy
consumption; useful work per physical space; useful work to
cost of the DC. In summary, it is useful for distinguishing the
different operational states of IT equipment within a DC, and
at the same time, identify IT infrastructure configurations that
could improve energy productivity.

In this paper, we link the server performance metric to
the utilization of servers. Studies show that for the period
2006–2012, the average server utilization remained at 12–18%
[13]. Underutilized resources will not only have a significant
energy draw but also impact on DC capacity. Several examples
of metrics related to server utilization are: IT Equipment
Utilization (ITEU) [31] which is linked to the effective use
of IT equipment; Server Compute Efficiency (SCE) [12] to
determine whether or not a server is being used to provide
primary services and Data Center Compute Efficiency (DCcE)
is calculated by averaging SCE values from all relevant servers
in a period of time; Compute Power Efficiency (CPE) [32]



which is a measure of the computing efficiency of a DC and
is defined as below:

CPE =

=
(IT Equipment Utilization · IT Equipment Power)

(Total Facility Power)

Lastly, green metrics are closely linked to sustainability and
the environment. Typically, the green performance metric is
defined as follows [33]:

Green Performance Metric =
Useful Work

Environmental Cost

Green Energy Coefficient (GEC) metric involves the use of
green or renewable energy [34]. It is the ratio of green energy
consumed by a DC to its total energy consumption. Energy
is dissipated by IT equipment in a data center. Energy Reuse
Factor (ERF) [35], [36] is a metric for tracking the amount
of waste energy reuse for sustainability purposes. The works
[29], [30] have discussed a multi-dimensional approach for
a new family of data center metrics which encompasses the
following: performance-productivity, efficiency, sustainability
and operations; risks. They have also highlighted that “down-
time” (i.e. actual downtime, in terms of length, frequency, and
recovery time) has an impact on productivity and ought to
be measured as “useful work” that is not carried out due to
failure or outage in the system. In the same vein of discussion,
this paper looks into incomplete “useful work” where jobs are
aborted and the measurement that we have created for this will
be “waste energy” assessment.

III. METHODOLOGY

The work focuses on the evaluation of Productive Energy
Consumption [9], [37], [38] by the ENEA HPC-DC, on the
Cluster named CRESCO4 (hosted by ENEA-R.C. Portici),
with the aim to explore a quantitative way to measure useful
work (or “work done”) within the DC-Cluster and obtain
qualitative interpretation based on the corresponding energy
consumption. In this work, steps forward have been made
in terms of the energy measurement and policies related to
the power management with respect to the previous study
conducted on the data available on CRESCO4 [32], [39]–[41].
In particular, the authors provide assessment of the useful work
using in a practical way the Data Center energy Productivity
(DCeP) metric and the waste energy estimation in DC, thanks
to repartition of the waste energy. Computations necessary
for the assessment are performed with the help of Python
programming language, suitable for big datasets.

A. Dataset and Data Center Characteristics

Current analysis is based on available data from CRESCO4
that covers power and job schedule characteristics running on
a cluster for 12 months (from February 2017 to February
2018). Hence, the analysis correlates accounting data from
the Platform LSF (Load Sharing Facility) job scheduler and
the corresponding energy consumption (from installed PDUs)
obtained from data stored by Zabbix. LSF is a workload

management platform and job scheduler, for distributed HPC
systems. This platform is concerned with deciding which
process is to be run and is designed to keep CPUs as busy
as possible. It stores a log file that contains all information on
executed jobs and the usage of computing nodes (cores). Our
experiment uses the LSF log file to understand the usage of
the cores by the users and the Zabbix database that contains
consumption values detected by the PDUs of the ENEA DC
during job execution.

In detail, the experimental campaign evaluates the global
energy consumption of the cluster CRESCO4 that consists of
38 Supermicro F617R3-FT chassis, each hosting 8 dual CPU
nodes. Each CPU, specifically an Intel E5-2670, hosts in its
turn 8 cores, for a total number of 4864 cores. These operate
at a clock frequency of 2.6 GHz. Moreover, the system is
provided with a RAM memory of 4 GB per core. Computing
nodes access a DDN storage system, for a total storage
amount of 1 Pbyte. Computing nodes are interconnected via an
Infiniband 4xQDR QLogic/Intel12800-180 switch (432 ports,
40Gbps).

More specifically, two datasets have been available. The first
dataset, Zabbix contains average level of power consumption,
minimum and maximum registered power consumption for
each hour between 12:00, 19th of February 2017 and 14:00,
19th of February 2018. The second set of data, LSF, covers
details about number of cores assigned by the scheduler for
every process, start and end time of the application activity,
names of executable file and directory and the marker of
whether the process has finished successfully (“done”) or with
an error (“exit”). The second dataset covered IT jobs running
within the interval from 21:12, 28th of December 2016 to
04:12, 25th of January 2018. From these datasets the time
intersection was taken and covered 11 months from 12:00,
19th of February 2017, to 12:00, 25th of January 2018, divided
by 19th day, 12:00, of each consecutive month except January
2018. The resulting datasets have covered over 8700 rows in
Zabbix and 530668 rows in LSF datasets.

Regarding the scheduling of tasks in the DC-Cluster, the
jobs are stored in the workload queues where the priority of
each job and recorders them is processes according to the
First Come First Served (FCFS) — a basic scheduling policy
in which tasks are served in the order of their arrival in the
system. This strategy reduces the waiting time of tasks.

The cluster have processed jobs from 18 different queues,
11 of which are composed of jobs to be performed with
parallellization, three are considered with exclusively serial
jobs and the remaining — with both parallel and serial jobs.
Around 92% of all submitted jobs have been processed in
serial mode, which leaves room for only 8% of jobs being
calculated with parallelization techniques. The queues charac-
teristics are reported in Table I.

The plethora of applications (approximately 40 types) that
are running on the CRESCO4 cover several fields of research,
such as materials science, efficient combustion, climate re-
search, nuclear technology, plasma physics, biotechnology,
aerospace, complex systems physics, renewable energies, en-



TABLE I
QUEUES CHARACTERISTICS

Queue namea submitted jobs
Number of

(minutes)
Queue duration

SP: hpc ha h24 455764 1440

SP: cresco4 h6 25210 360

S: cresco4 h144 14738 8640

SP: small h144 6160 8640

P: cresco4 256h24 3660 1440

P: cresco4minni 16h24 3267 1440

P: metinet 2860 1440

S: hpc ha h3 2266 180

S: small 10m 1626 10

SP: system 1576 6000000

P: cresco4 16h24 1565 1440

P: cresco4open 256h24 864 1440

P: combustione4 812 14400

P: fsn4 16h24 657 1440

P: cpu plus 140 1440

P: clima 127 14400

P: chimere 68 20160

P: fsn3 24h24 4 1440

aS: serial, P: parallel, SP: serial and parallel

vironmental issues, HPC technology. Moreover, many other
kinds of applications are embedded in scripts that, through
libraries, recall the functionality of consolidated software
suites.

B. Analysis

As aforementioned, the goal of the work was to estimate
effective energy consumption by the DC’s cluster and identify
levels of energy which IT jobs consumed. For this purpose, a
following system of equations was proposed for each month:

K∑
i=1

∫ t1i,j

t0i,j

ci,j · xj dt = Ej , j = 1, . . . , N, (1)

where xj denotes the power required by any application every
second from one core during the hour j, which is the principal
unknown set of variables. Here i is an id of an active process;
K stands for the number of processes registered to be active
during the month under consideration; ci,j refers to the number
of cores required to process application i during the current
hour j; variables t0i,j , t

1
i,j correspond to the starting and ending

moment of the process i activity; Ej denotes energy consumed
by the cluster during hour j in watt-hour; N is the number of
hours in the extracted month. The left part of (1) represents
a sum of integrals over the time of the processes activity.
Expression under the integral sign represents power consumed
by each process as a multiplication of unknown variable xj

and calculable coefficient ci,j . This equation is then interpreted
from integral to discrete format and is rewritten as follows:

K∑
i=1

ci,j ·
ti,j

3600
· xj = Ej , j = 1, . . . , N, (2)

where ti,j describes the duration of process i activity in
seconds, explaining the need to divide it by the number of
seconds in one hour. Thus, the sequence of linear equations
each having one unknown is formed and can be resolved
simply dividing the right part by the sum from the left part.

Obtained solution is further filtered to exclude the outliers,
which possibly appeared as a result of missing data. The
outliers have been identified by the following formula:

|xj − x̄| > 2 · (Q3 (x)−Q1 (x)) , (3)

where x̄ stands for the mean of the vector x =
(xj , j = 1, . . . , N). Q1(x), Q3(x) denote the firsth and the
third quartiles of the vector x correspondingly, under assump-
tion of x being normally distributed. Since quartiles are forth
quantiles, Q1(x) and Q3(x) values separate a set of x values
into four subsets of equal size. Thus, xj is considered to be an
outlier, if its Euclidian distance from the mean value is greater
than twice the distance between two values of the two densest
subsets, on which quantiles divided the values of vector x.

The sum on the left-hand side of (2) has been checked
for the equivalence to zero. In such cases when the sum∑K

i=1 (ci,j · ti,j) equals zero, the hour j has been assumed to
have insufficient data and is not considered for final inferences.
The decision of excluding such hours from the resulting
dataset is based on the trial of idle power estimation. Average
energy consumption during the hours with active processes
running is 47 kWh, while it equals 42 kWh when no processes
are registered to be active, i.e. when the aforementioned sum
equals zero. Moreover, the range of energy consumed, when no
process has been active, lays within the range of energy con-
sumption when cores have been reported to work on the jobs.
Namely, if all hours with no processes registered to be active
are united into one dataset, the range of energy consumption is
[27.3; 58.8] kWh, whereas in the dataset with non-zero sums of
coefficients for each hour the energy consumption lay within
the interval of [14.4; 65.5] kWh. This inclusion does not allow
making estimation on idle energy consumption, because it lies
within the energy consumption range reported for the hours
with active processes running.

It is also worth mentioning that a more granular data
analysis could take place with the following system:

K∑
i=1

ci,j ·
ti,j

3600
· xi,j = Ej , j = 1, . . . , N. (4)



It differs from the previous system (2), since the unknown
variables xi,j here additionally correspond to each individual
process i power consumption per core each second. The matrix
of SLAE in (4) has the dimension N ×M , where M reflects
the number of processes active during hour j, compared to
the matrix of dimension N × 1 in the previous system (2).
High granularity system has been built to get more precise
values, nevertheless, some characteristics of such system have
prevented from getting expected results.

Exemplar situation could be shown based on the system
for the month of 19th February – 19th February 2017. The
matrix of the system is sparse and has only 3% of non-zero
elements. The SVD analysis of the system has shown that
conditional number of the matrix has the order of 1016. These
properties together with non-negativity constraint for xi,j have
resulted in poor accuracy of the solution obtained with the
help of algorithms for ill-posed problems (Least Squares,
Least Squares with regularization in L2, Least Squares with
regularization in L2 and L1). For this reason, a decision of
decreasing granularity of unknown variables has been made in
order to obtain results, which represent the average multiple
xj of power consumption for all jobs registered for the hour
j. Once the vector xj is obtained, multiplying elements of
this vector and a corresponding weight can derive energy
consumption of individual processes (ci,j · ti,j/3600).

The mathematically formulated analysis will allow investi-
gating on DC energy metrics since its result is expressed in
terms of energy used by every application each month (with
a granularity related to each hour). It is then crucial to assess
what portions of energy have been spent on “useful work”
and have accumulated in “waste energy”. alternatively from
every application to draw a clear picture of energy profiles and
energy waste distribution by identified categories and enable
suitable improvement actions for the DC. This estimation will
be done with productivity related metrics introduced in the
next subsection.

C. Productivity Related Metrics

The clusters energy consumption is evaluated with energy
efficiency metric as well as categorization of waste energy
sources. DC energy productivity (DCeP) metric [42], [43]
involved in analysis is expressed as follows:

DCeP =
Useful Work Produced

Total DC Energy Consumed over T ime
. (5)

The available data allow defining Useful Work Produced
as energy spent on jobs which processing ended correctly.
Total DC Energy Consumed over T ime is represented
here by the energy used for all jobs, both properly and incor-
rectly ended. Although generally accepted practice is to con-
sider energy, which goes for both cooling and IT systems, un-
der the notion of Total DC Energy Consumed over T ime,
limitations of the data retrieved from the cluster do not provide
sufficient information to study.

D. Waste Energy Analysis

One way to reduce overall energy consumption in DC is to
understand the Energy Waste causes and then to improve the
power management thanks to the workloads analysis. For this
reason, the work also focuses on categorizing submitted jobs
to distinguish between the jobs, which resulted in the effective
work done, and the jobs (or the “not jobs”) that represent only
inefficient work with their inefficient energy use. The latter
jobs can be subdivided into three categories to assess their
contribution to wasted energy:

a) Jobs with maximum running time of 30 seconds;
b) Jobs which exceeded the queue time;
c) Jobs which left the queue with an error for any other

reason.
The a) category comprises jobs namely “not jobs” with such

short running time, which occurred to represent the work of
the scheduler, while the scheduled application itself has not
been started. The value of the threshold at 30 seconds is an
empirical choice due to the knowledge of the preworking time
of the LSF application and then its dataset. The jobs running
during less than 30 seconds represent the preprocessing phase
and they have not produced any useful work in terms of results
for the end-user, who submitted them to the cluster. For this
reason these jobs are considered to cause waste energy. Given
that most of the jobs running time has varied from two seconds
to 221 hours, the average being two hours, the processes from
category a) have consumed small amounts of energy. However,
the presence of such processes affects the cluster work.

The group b) consolidates all jobs the running time of which
exceeded the queue maximum time. The existing policy of
the DC usage states that if a job is submitted to processing
units, and allocated into a specific queue by LSF, the queue
allows this job to run for a certain time. In case of exceeding
the maximum time assigned by the queue, the job is removed
from the queue, being reported as erroneous process, sometime
after the queue time limit is exhausted. However, while the
job is being processed within the queue time, it produces
results and cannot be regarded as a reason for waste energy.
For example, taking into account a job with exit status that
was running on the queue lasting 600 seconds. If it started at
1494316196 (unixtime) and ended at 1494317094 (unixtime)
on this kind of queue, the total job duration (stop-start) is
898 sec and exceeded the max queue time. According to the
empirical data and the cluster workload-policies (related to
some applications), clarification and explanation have been
provided. Hence, in our analysis, we calculate as useful work
the work associated with the part of the job that was running
for total queue duration (600 sec); meanwhile, we consider as
waste energy the part of energy spent to the job running in the
rest of the time (898− 600) = 298 sec. The energy is wasted
only when the job runs after the queue time limit, which is
the focus of the b) category.

The third category c) is composed of jobs with any other
malfunction causing jobs’ interruption both by end-users or
by the system.



The three defined categories are further used to measure
Energy Wasted Ratio (EWR) [42], [44]:

EWR =
Energy Wasted for not Useful Work

Total DC Energy Consumed over T ime
. (6)

This metric assesses ratio of energy spent on the work which
has not provided any useful result, or on the “not jobs” from
the energy waste categories, which will be covered in the next
section.

IV. RESULTS & DISCUSSION

An overview of all computational process present in the
DC Cluster is shown in by the previous section with aims
to provide a further step in the assessment of the DC energy
efficiency scenario. This section is devoted to the discussion
to the results achieved by the experimental campaign based
on the big data set obtained during one year of monitoring.
The power management strategies and policies devoted to
DC operators and costumers — based on the statistical data
analysis — can be identified and suggested. Moreover, the
quality of the power management strategies [45] is suggested
based on both power and performance measurement data
collected during one year of the system operation.

The Fig. 1 provides an indication related to the efficiency
of the workloads management. Indeed, the figure illustrates
amounts of energy consumed by applications working on
various tasks during the overall period in question. The largest
share of cluster’s energy consumption was dedicated for
simulations of particles detection with help of Monte Carlo
algorithms as well as for air quality research (FARM+RAMS,
MINNI) and climate modelling (REGCM4). The smallest
portion of energy was used for a type of Monte Carlo analysis,
genetic analysis and mathematical algorithm (HETERO3D).
All the applications which required less than 1% of annual
energy individually were combined into one group. The ratio
of energy used in total by this group comprises 16% of the
yearly energy, which again reveals an energy pattern when a
considerable number of low-energy consumption applications
are processed on the cluster.

A. Assessment of DCeP

As mentioned in the introduction, until now in the DC
metrics scenario limited attention has been given to the devel-
opment of metrics aimed at clearly defining the “useful work”,
that is, metrics aimed to gauge the real “computing” carried
out by a DC. Generally, the useful work of a DC is represented
by the computing activity of IT (computing, storing and
transferring data — IT Services) and appropriate productivity
metrics can measure it [9], [43]. Productivity metrics differ
from other metrics in their approach to how they assess useful
work, however, even if several attempts have been made to
define the productivity metrics for DCs none of the metrics
have provides the practical way to calculate the effective
work done. In the productivity metrics scenario [46], the most
significant is the DCeP metric, and our data analysis has been
devoted to calculating and using in our experimental campaign.

Fig. 1. Overall energy use by applications.

To calculate the formula we started from the job analysis
because the knowledge of their scheduling and management
is an essential part of the DC configuration and it influences
the energy consumption and the performance a lot.

The estimation of every IT jobs energy consumption has
allowed evaluating the load on the DC cluster, as well as
efficiency of energy use. Monthly energy consumption by each
application with separation on the jobs, which finished with
error and those finished correctly, are obtained for every month
of the final datasets for the 11 months duration.

Based on the estimation of each IT job power consumption
per core during each second from (2) and given the information
about fulfillment status of jobs, it is possible to estimate
DCeP metric. The Fig. 2 represents energy consumption for
processes, which ended with an error and those, which were
successfully completed. The largest portion of energy use was
observed during the month from 19th of March to 19th of April
reaching the point of 35.6 MWh, whereas the smallest portion
energy consumption was reported during the months from 19th

of July to 19th of September. DCeP varies from 0.61 in the
last reported month to 0.84 in June–July period.

In the case when jobs were not categorized on three energy



Fig. 2. Monthly analysis of energy consumed by correctly finished jobs
(“useful work”) and jobs which exited a queue with error status (“energy
waste”) and DCeP. Energy waste categories are considered.

waste groups, but were taken directly from the LSF data, DCeP
was reported to stay at lower level than after preprocessing the
LSF dataset and extracting categories. The DCeP differences
can be observed in the Fig.3 where no categorization has been
done versus the Fig. 2 depicting values when categorization
has been taken into account. These results are explained by
the fact that in the raw LSF dataset all the jobs exceeding
the queue time were marked with “exit” status and counted
as energy waste, whereas as described previously, the energy
used within the queue time had been spent on useful work and
only the remaining part of processing period caused energy
waste. In addition, some jobs with duration time within 30
seconds were marked as useful work which, according to our
assumptions, is not true. Henceforward, the categorized dataset
is used, i.e. the one corresponding to the Fig. 2.

Energy consumption of the processes is found to be un-
evenly distributed. The majority of the processes have con-
sumed less than 100 kWh per month. More granular analysis
shows that from 62% to 93% of overall number of IT jobs
running in the cluster consume less than 10 kWh per month
(Fig. 4).

B. Assessment of Waste Energy

Since the evaluation of the useful work is linked to the
waste energy in computational terms, an assessment of the
“waste” has been made. Hence, job distribution into waste
energy categories is analyzed both from the point of their
energy consumption and their share in submitted jobs number.
In this sub-paragraph, we investigate on the “not useful work”
to calculate how much energy using for computing activities
is wasted and is not used for producing the useful work.

IT jobs, which had been running on the cluster, were
distributed into energy waste categories as explained in section
III. Statistical characteristics are taken from the monthly

Fig. 3. Monthly analysis of energy consumed by correctly finished jobs
(“useful work”) and jobs which exited a queue with error status (“energy
waste”) and DCeP. Jobs are not categorized by causes of energy waste, data
on jobs status is taken directly from LSF.

Fig. 4. Ratio of executed jobs which consumed less than 10 kWh per month
and ended either with or without an error in correspondence to overall number
of jobs.

TABLE II
ENERGY WASTE CATEGORIES

Characteristics
Statistical with Relation to Overall Energy Use (%)

Energy Waste Ratio by Job Categories

time ≤ 30 sec
a) Running

> queue time
b) Running time

reasons
c) Other

Min 7 · 10−3 4 · 10−3 16

Max 6 · 10−2 0.3 39

Mean 3 · 10−2 0.2 23

Standard Deviation 10−2 9 · 10−2 7



Fig. 5. Energy Waste Ratio (EWR) by applications.

samples of data and are shown in Table II, namely minimum,
maximum, mean value and standard deviation of the ratios of
energy used by jobs from each category related to the general
energy use. As might be observed from the Table II, processes
with short running time consumed the least share of energy,
0.03% of overall energy use, whereas jobs exceeding the queue
time used around 0.2% of energy. Both categories have a
small deviation from the mean value, which signifies mod-
erate fluctuation of their energy use. By contrast, processes
malfunctioning for different other reasons used a range of 16
to 39% of energy. The deviation of the latter category is the
highest, which highlights the necessity of closer investigation
of erroneous jobs processing to decrease the number of their
submissions and increase energy productivity of the cluster.
Values of EWR for all the three categories combined together
are associated with applications and represented in the Fig.5
in percents. When compared with the Fig.1, the pattern is
similar: Monte Carlo analysis has consumed the most of the
energy over 11 month causing the largest energy waste of
all applications, as well as applications having required small
amounts of energy create correspondingly low energy loss.

Monthly analysis dealing with the categories of jobs having
caused energy waste is characterized by Fig. 6 representing
numbers of submitted jobs which resulted in a) and b) cate-
gories concerning the number of all active jobs. A considerable
amount of jobs which were only processed by the scheduler
and had a maximum running time of 30 seconds (category
a)) is reported throughout the whole period of investigation,
composing from 14 to 56% of all submitted jobs. On contrary,
jobs, which exceeded the queue time limit, formed less than
1% during the majority of reported period. Seasonal steep
rise of jobs submission from both categories happened in the
month of November-December, which might be associated
with users working from home during Christmas vacations
and failing to conform to the DC policies.

To summarize, results obtained through the analysis reveal
the energy consumption patterns within the cluster. Firstly,
the least energy was consumed during the summer months
of annual vacations, whereas the most significant amount of

Fig. 6. Ratio of jobs causing energy waste because of processing time
conflicts.

wasted energy was observable in December-January when
end users might have worked remotely due to the Christmas
holidays. Secondly, a high percentage of jobs consume less
than 10 kWh per month, which results in the energy being
spent on small jobs rather than resource-consuming processes.
Also, the cluster wastes the most energy for erroneously
ended jobs for unknown reasons, which should be further
examined. Regarding the waste energy categories, some jobs
that were only preprocessed by the scheduler and did not
provide any results, is considerably higher than the number
of jobs removed from the queue because of the time limit
conflicts.

C. Definition of General Policies & Strategies

The power management strategies presented in this sub-
paragraph, could significantly reduce the energy consumption
in the CRESCO4 cluster but also can be generalized for a
typical HPC DC workload with the same characteristics.

At the beginning to improve the energy consumption and
then the power management we decide to start and distin-
guish three fundamental component related to the resource
management and scheduling policies from the DC operator
side: 1) scheduling, 2) resource allocation and 3) resource
management.

The scheduling is responsible for defining the order of
execution for the active tasks, and as aforementioned the
strategy used in our case study is based on the FCFS algorithm.
However, taking into account, the results obtained and the
potential of LSF platform for job-scheduler other strategies
can be adapted to define the order in which tasks are placed
in the queues. In literature, some widely used algorithms and
related policies can be applied to the scheduling of tasks in
DCs [8]. For example, the Last Come First Served (LCFS)
— the Largest Job First (LJF) with the aim to optimize the
utilization of the system — the Smallest Job First (SJF) to
increases the throughput of the system. The policies referred



to scheduling algorithms can be extended with one of he
backfilling approaches (such as, Aggressive Backfill, Relaxed
Backfill, Conservative Backfill) which exchange the positions
of the jobs in the queue based on the availability of the
resources and the priorities of the tasks.

The current resource allocation used by the costumers is
based on the “free queue using” and then on the “on time”
strategy: “the first user entry in the system using the first
available requested queue”. However, to define the manner in
which tasks are assigned to resources — since the tasks are
submitted by different users over time — deciding of where to
execute each arriving task is usually made in an online manner
without knowledge of the future task arrivals is needed. The
performance-energy combination is the driver of the allocation
strategy which aim is to minimize the average task response
time, the overall energy consumption. The tasks can also
be assigned to resources to consolidate the workload in a
predefined allocation manner. The primary strategy regarding
the Energy Usage Optimization thanks to each job is assigned
to a node that minimizes the energy consumed by the task.

The latter point regarding the resource management policies
that specify a set of operations performed on the resources
during the scheduling process. They usually require support
from the underlying hardware layer and their effectiveness
is closely related to the managed IT equipment. The most
popular policies are the Switching nodes ON/OFF and the
Dynamic Voltage and Frequency Scaling (DVFS).

According to the CRESCO4 results, the previous three
components (scheduling, resource allocation and resource
management) can be combined in ad-hoc policies for the
power management. There are several ways to follow to get
“workload driven” power management. First of all, the authors
pursue the power cost optimization. From LSF information it
can be seen that the majority of job requests arrived in the
morning during working hours. Generally, it is the time when
energy cost is high due to power cost changes throughout
a day. To high demand corresponding to a high price vice-
versa, low demand suggests a low price. The power cost
optimization strategy is used to minimize power cost by
shifting the workload to low-cost periods (when it is possible
or when company policies allow it). In the case where system
utilization is close to 100%, an alternative strategy is to
schedule only high priority work during the highest power
cost period and prevent workload which can wait (i.e. low
priority) from consuming power when it is most expensive.

From the results obtained it is easy to understand that
the system is not always 100% charged and a lot of time
passes with the system loaded only in half or even less.
It is also deduced that the objective of concentrating the
load is not pursued because waiting time for the jobs is
minimized in the first place leaving the energy consumption
minimization as lower priority. The power consumption of a
node depends on its operational mode. When the node is off,
and in sleep/standby mode, it consumes very little power. If
a node is idle, it consumes 40–50% of power compared to
a fully loaded node. For the power efficiency optimization

strategy to work, we first have to understand the performance
of a particular class of server per kilowatt. Such an efficiency
metric can be application-dependent and therefore should be
considered carefully. Using tools such as Platform LSF one
can easily manage the distribution of loads on the various
nodes.

During the analysis, we detected some applications requir-
ing heavy I/O or, applications that wait for MPI messages,
can be classified as low load or cooling load because the CPU
tends to go idle and consume less power during these waiting
periods. The strategies mentioned above can be replicated in
the other DCs Cluster with the same; hence, it is possible to
redistribute the jobs to optimize the energy consumption and
also taking into account the thermal awareness [47].

D. Sustainability

As observed in Section IV.C, the DC cluster experiences
peaks of energy consumption in the morning hours, which,
apart from increasing energy cost affect the amount of carbon
emitted as a consequence of electricity generation. Two ways
of reducing the harmful impact of energy consumption peaks
might be brought into action: 1) executing only “high priority
work during the highest power cost period” 2) equip DC
with their sources of renewable energy like solar panels and
windmills to further adapt the execution of works regarding
the local renewable energy production [48].

Further considering the sustainable issue, the ISO standard
30134 being developed for sustainable IT and DCs includes
a renewable energy factor as a key performance indicator
for DCs [49]. However, others ISO regarding IT and en-
ergy efficiency and sustainable topics in DC are currently
in development. Even if the ongoing innovation actions (Re-
duce/Reuse/Recycling) help to drive the DC towards becoming
genuinely sustainable, poorly utilized of the defined metrics
related to the IT and then the useful work, will impede business
innovation and prevent meeting environmental sustainability
goals. Also, for this reason, in this work, the authors have
investigated the practical application to the case study of
the EWR metric (6). In detail, the analysis allows precisely
to pinpoint the non-computing and non-useful work within
the energy waste. Therefore, based on the knowledge of the
energy waste, it is possible to improve the power management
regardless of the job consumption and to pursue the sustainable
issue concerning the IT reduction action for the job.

V. CONCLUSIONS & FUTURE WORK

Analysis and measurement of the DC energy data are the
baselines to achieve the energy efficiency goal; the metrics
are essential tools for the monitoring of energy use and
environmental conditions at a DC scale. These metrics make it
possible to quantify the consumption, evaluate the performance
of a DC and compare different technologies and strategies.
De facto, a highly efficient DC is valuable regarding owners
and operators and appeal to customers. Moreover, the need to
invest in energy efficiency is becoming a priority in the Smart



Cities context. In this paper, we have presented the methodol-
ogy and assessment of a specific class of power/energy metrics
for DC, the productivity metrics with the aim of making
the computation of IT useful work (related to the computing
work in DC) more profound and real knowledge. Even if
the results on productivity metrics for predicting energy IT
consumption are ongoing to develop, however, their adoption
and application to the real case is a challenge. For this reason,
this work highlights the importance of the enactment of pro-
ductivity metrics related to useful work and investigate on the
energy consumption when the applications were running. The
assessment of the productivity metrics and the waste energy
evaluation carry out from a big data set (that cover 12 months)
of ENEA DC, Cluster. We have presented workload profiles,
application-workloads, power and energy model approach to
identify the useful work and non-work in the cluster. Besides,
productivity and waste energy metrics at the application level
of analysis were proposed. Various resource management
and scheduling policies, including performance, energy and
consolidation policies were presented. It can be easily seen
that introducing waste energy assessment to suggest the power
management strategies which will improve the DC’ efficiency
significantly. The real data set allows validating the metrics
and the assessment to improve the QoS of DC. Additional
insight into the sustainability issue is considered concerning
the reduction to the non-work coming from to the estimates
factor of energy that is wasted in the cluster.

In future works, the prediction models based on energy
consumption of applications and thermal data set at room and
node level will be conducted. We will also use the power
management strategies to reduce the energy consumption will
apply. To validate the policy and the prediction models the real
case will be conducted on the new ENEA Cluster, CRESCO6.
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