
Weedon, Martyn, Tsaptsinos, Dimitris and Denholm-Price, James (2017) Random forest explorations for URL
classification. In: ., ., (ed.) 2017 International Conference On Cyber Situational Awareness, Data Analytics And
Assessment (Cyber SA). Institute of Electrical and Electronics Engineers, Inc. ISBN 9781509050604
https://doi.org/10.1109/CyberSA.2017.8073403

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kingston University Research Repository

https://core.ac.uk/display/161525269?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Random Forest Explorations for URL Classification

Martyn Weedon

Faculty of SEC

Kingston University

Penrhyn Road

Kingston Upon Thames

United Kingdom

Dimitris Tsaptsinos

Faculty of SEC

Kingston University

Penrhyn Road

Kingston Upon Thames

United Kingdom

James Denholm-Price

Faculty of SEC

Kingston University

Penrhyn Road

Kingston Upon Thames

United Kingdom

Abstract—Phishing is a major concern on the Internet today

and many users are falling victim because of criminal’s deceitful

tactics. Blacklisting is still the most common defence users have

against such phishing websites, but is failing to cope with the

increasing number.

In recent years, researchers have devised modern ways of

detecting such websites using machine learning. One such

method is to create machine learnt models of URL features to

classify whether URLs are phishing. However, there are varying

opinions on what the best approach is for features

and algorithms.

In this paper, the objective is to evaluate the performance of

the Random Forest algorithm using a lexical only dataset. The

performance is benchmarked against other machine learning

algorithms and additionally against those reported in the

literature. Initial results from experiments indicate that the

Random Forest algorithm performs the best yielding an

86.9% accuracy.

Keywords—Phishing, URL, machine learning, Random Forest,

lexical features

I. INTRODUCTION

Phishing is a method used by criminals to deceive and trick
users into releasing personal and sensitive data, such as their
identity or financial information. Criminals can achieve this by
employing social engineering tactics to spoof the user. For
example, one such tactic is through email. Often a criminal, or
phisher, will send emails to vulnerable users that will request
personal data and lure them into clicking Uniform Resource
Locator (URL) links to malicious web pages [1].

Phishing attacks are growing. The Anti Phishing Work
Group reported that between January 2016 and June 2016 the
number of unique phishing sites was 466,065, which was 61%
higher than the previous quarter [2].

At present, blacklisting is the most common anti-phishing
technique used [3]. Blacklists are populated using various
techniques, such as honeypots, web crawlers combined with
analysis heuristics and user reported URLs [4]. Unfortunately,
not all malicious URLs are in blacklists as they could be too
new, were never found or were never evaluated properly [4].

To deal with the growing number of malicious phishing
URLs, another method of detection is to employ the use of

machine learning algorithms and in this paper, the focus is on
the Random Forest (RF) [5] algorithm to classify URLs as
either malicious or benign.

RF is an ensemble algorithm introduced by Leo Breiman
that generates a vector of decision trees. Each tree is generated
using a bootstrap sample from the dataset and upon each split
in the tree, the algorithm chooses the best feature from a
random subset of features. To select the best feature, a
measure of purity is computed and a feature found to have the
smallest value of purity is selected. When classifying an
instance, the RF algorithm uses the most frequently predicted
class, also known as voting [6].

For this ongoing work, the classification of URLs will be
lexical based, which means features will be extracted directly
from the URL itself, for example, a character count of the
domain. If URLs “look” malicious, such features can assist the
learning process to find the tell-tale signs of what makes those
URLs malicious [4]. The lexical based approach is considered
lightweight when compared to other external features, which
may require the resource of a real-time system. Thus, there is
no delay in the classification [4, 7, 8]. In addition, previous
studies have shown that using lexical features with additional
features has only a slightly better accuracy than just solely
using lexical features [4, 9].

The purpose of this paper is to illustrate how effective the
RF algorithm is at classifying malicious URLs against three
other algorithms, J48, Naïve Bayes and Logistic Regression.
The comparison will be based upon how each algorithm does
in terms of accuracy, sensitivity (recall) and specificity and will
further show that the RF algorithm can produce the lowest false
negatives. This is important because if any algorithm, not just
RF, that classifies a URL as benign when it is malicious can
potentially cause more harm for the user.

II. RELATED WORK

Basnet, Sung and Liu [3] discovered RF to be the best out
of 7 other algorithms in terms of accuracy and speed.
Additionally, they adopt the lexical approach choosing features
believed to be “phishing like” and using solely lexical features
they report an 85.38% accuracy with a false positive rate of
8.22% [3].

Le, Markopoulou and Faloutsos [9] discuss how effective
lexical features are over using full features for phishing URLs.

Their full feature set includes lexical, but also external features,
where they query the WHOIS and Team Cymru servers for
registration and geolocation data, respectively. They find that
when experimenting with the online learning algorithms
Confidence Weight and Adaptive Regularisation of Weights,
the results show that lexical features are comparable to the full
set with only a 1% difference in accuracy for both
algorithms [9].

Ma, Saul, Savage and Voelker [4] explore the potential of
machine learning on lexical and host based features of URLs.
They state that lexical features tend to “look different”, whilst
host based features describe “where”, “who” and “how” URLs
are managed. Their data are run against 4 machine learning
algorithms: Naïve Bayes, Support Vector Machines (one with a
linear kernel and the other with an RBF kernel) and Logistic
Regression. They report that, when running the lexical features
dataset, using Logistic Regression yields a 98.07% accuracy,
whereas running full features (lexical and host based) using the
same algorithm yields a 98.76% accuracy [4].

Garera, Provos, Chew and Rubin [1] provide a framework
for detecting malicious URLs. They explain that there are 4
types of obfuscation to a URL that can be shown to be
recognised as phishing. These are Type I (obfuscating the host
with an IP address), Type II (obfuscating the host with another
domain), Type III (obfuscating with large host names) and
Type IV (domain unknown or misspelled). They use this
approach with page and domain based features, as well as hand
selecting 8 words they believe to be common amongst phishing
URLs. In their work, the Logistic Regression algorithm was
chosen and following evaluation received an average accuracy
of 97.31% with a true positive rate of 95.8% and a false
positive rate of 1.2% on their testing dataset [1].

Darling, Heileman, Gressel, Ashok and Poornachandran [8]
describe a lexical approach to classifying malicious URLs
using the J48 algorithm in Weka. They state that classification
needs to be lightweight to reduce the delay to real-time
systems. The training dataset used consists of 131,402 URLs
with a 50/50 split between benign and malicious classes and
consists of 87 lexical features, which are categorised into 6
groups: n-grams, lengths, counts, patterns, binaries and ratios.
The results of J48 against the training dataset show a 99.1%
accuracy with a false positive rate of 1.7% and a false negative
rate of 0.5% [8].

III. EXPERIMENTS

A. Data

The data are retrieved from two online sources, one for
benign URLs and the other for malicious URLs.

The benign URL dataset was retrieved from the DMOZ
Open Directory website [10] on the 23rd of February 2016.
The DMOZ Open Directory is a free, open source and
community based website that allows users to browse the
directory and suggest URLs. In addition, other users can
volunteer to edit the directory, which allows for some
validation of URLs prior to them being added, modified or
deleted in the DMOZ [11].

The malicious URL dataset was retrieved from the
PhishTank website [12] on the 24th of February 2016 and all
URLs were verified as malicious at the time of retrieval.
PhishTank is a free community website that allows users to
submit, verify, track and share phishing URL data [13].

The online datasets retrieved were both cleansed by
removing any duplicates and for the experiments both a
training and testing set were created. The training set consists
of 4000 URLs, 3000 from the benign set and 1000 from the
malicious set. The testing set consists of 7000 URLs, 3000
from the benign set and 4000 from the malicious set. All
URLs were selected randomly, except any URLs selected in
the testing set do not include those that were present in the
training set.

The next step was to extract features from the URLs. The
features obtained were those used in the literature [1, 3, 9] and
the reason is twofold. The results published, firstly, proves that
the features are a good baseline and secondly, provides a better
comparison of algorithm results to other researchers. Table I
provides a list of the features used and extracted from the
URLs, and includes the class label.

To ensure equality between features, all numeric values
were normalised, so their values lie between 0 and 1. All
features in Table I are counts and binary values of specific
entities within the URL.

TABLE I. EXTRACTED FEATURES

L_Host_Len L_Semicolon_In_Path L_Hyphen_Count_In_Host

L_Dot_In_Host L_Comma_In_Path L_Host_LongestTokenLen

L_Dot_In_Path L_Has_Query L_Path_NumOfSubDirs

L_Dot_In_URL L_Equals_In_Query L_Path_LongestSubDirTokenLen

L_Path_Len L_Has_Fragment L_Path_NumOfDelimitersNotDots

L_URL_Len L_AtSign_In_URL L_Filename_Len

L_Hyphen_In_Host L_Username_In_URL L_Filename_NumOfDots

L_Digit_In_Host L_Password_In_URL L_Filename_NumOfHyphenAndUnderscores

L_IP_Host L_NonStdPort L_Arguments_Len

L_Hex_Host L_Underscore_In_Path L_Arguments_Count

L_Hyphen_In_Path L_URL_BlacklistedWordAppears L_Arguments_LenOfLongestArgVal

L_ForwardSlash_In_Path L_Host_HasPortNum L_Arguments_NumOfOtherDelimitersInValues

L_Equals_In_Path L_Host_NumOfTokens Class

B. Methodology

For the experiments, 4 machine learning algorithms were
run in Weka [14], these are Naïve Bayes (NB), Logistic
Regression (LR), J48 (also known as the C4.5 algorithm) and
Random Forest (RF). Apart from LR, all algorithms were run
with the default settings. The ridge parameter for LR was set
to prevent the algorithm from placing too much weight on
coefficients. The reason being is that if too much weight is
placed on certain features, the algorithm becomes prone to
overfitting the data.

All models were trained first using 10-fold cross validation.
The results in the next section are for the testing dataset and are
presented in terms of the accuracy, sensitivity and specificity
using the definition in the work by [15]. The measure in each
definition is calculated using values that demonstrate the
performance of a classifier. A contingency table has been used
to define these values in this work (Table II), where TP is the
true positive, TN is the true negative, FP is the false positive
and FN is the false negative.

Accuracy is a measure of how many instances were
correctly classified out of all instances classified, it is defined
in (1) [15].

 (TP + TN) / (TP + TN + FP + FN)

Sensitivity (also known as recall or the true positive rate) is
a measure of the positive instances that have been correctly
classified as positive over all instances declared positive in the
dataset, it is defined in (2) [15].

 TP / (TP + FN)

Specificity (also known as the true negative rate) is a
measure of the negative instances that have been correctly
classified as negative over all instances declared negative in the
dataset, it is defined in (3) [15].

 TN / (TN + FP)

TABLE II. CONTINGENCY TABLE EXAMPLE

 Classification

 Malicious Benign

Actual
Malicious TP FN

Benign FP TN

C. Results

The initial results (Table III) prove that the RF algorithm is
a better choice for the data as it can more accurately classify
the data whilst keeping the false negatives moderately low.
Furthermore, our results agree with the published work of [3].

The main aim of this work is to get the false negatives as
low as possible, as these instances are classified as benign
when in fact they are malicious. RF was the only algorithm to
get this as low as possible when compared to the other three
algorithms. In contrast to this, RF obtained the highest number
of false positives when compared to the other three algorithms.
False positives are instances that are classified as malicious
when in fact they are benign. As such, false positives are an
important measure in classification, but they are not
emphasised in this work because if a benign URL has been
classed as malicious, the level of risk to the user will remain
unchanged. In other words, the user remains protected.

After training the RF model, the feature importance was
obtained to determine what features the algorithm considered
the most important. In this work, the feature importance is
computed by counting the number of nodes used by each
feature listed in Table I, excluding the class. The top 6
important features have been listed in Table IV. In addition,
using the URL in Fig. 1 as an example, the table also illustrates
what text would be extracted and what the computed value
would be from the extraction for each feature.

TABLE III. EXPERIMENT RESULTS (TESTING DATASET)

Algorithm Accuracy Sensitivity Specificity False Positives False Negatives

NB 64.6% 39.7% 97.7% 69 2412

LR 81.5% 70.5% 96.1% 118 1180

J48 83.9% 75.0% 95.8% 126 1002

RF 86.9% 80.5% 95.4% 138 782

http://www.kingston.ac.uk/aboutkingstonuniversity/

Fig. 1. Example URL

TABLE IV. FEATURE IMPORTANCE (TOP 6)

Rank Feature Node Count Extraction Example Value

1 L_Host_LongestTokenLen 5032 www.kingston.ac.uk 8

2 L_Host_Len 4945 www.kingston.ac.uk 18

3 L_URL_Len 4944 (See Fig. 1) 50

4 L_Path_Len 3879 aboutkingstonuniversity/ 24

5 L_Path_LongestSubDirTokenLen 3052 aboutkingstonuniversity/ 23

6 L_Path_NumOfSubDirs 1584 aboutkingstonuniversity/ 2

The first and most important feature is
L_Host_LongestTokenLen, which contains the longest token
length from the hostname. This feature is used by [9] and they
split the hostname into tokens using these characters as
delimiters: a forward slash (/), a question mark (?), a full stop
(.), an equals sign (=), an underscore (_), an ampersand (&) and
a hyphen (-). After splitting the hostname, a search is
performed to find the length of the longest token [9], which in
the example above is 8 because kingston is the longest token.

The second, third and fourth features are L_Host_Len,
L_URL_Len and L_Path_Len, which are the total lengths of the
hostname, URL and path, respectively.

Similarly, to the first feature, the fifth feature is
L_Path_LongestSubDirTokenLen, also used by [9], which
removes the filename (if present) and the beginning forward
slash (/) from the path. The path is then split into tokens using
the forward slash (/) character. After splitting, a search is
performed to find the length of the longest token [9], which in
the example above is 23 because aboutkingstonuniversity is
the longest and only token.

The last feature is L_Path_NumOfSubDirs, this attribute
uses the path of the URL, which ignores the filename (if
present) and the beginning forward slash (/). The result is split
into tokens using the forward slash (/) character and a count of
tokens is retrieved. In the example, the path
aboutkingstonuniversity/ has 2 tokens:
aboutkingstonuniversity and a blank value, which is where
the filename would normally reside.

IV. FUTURE WORK

The main aim of this work is to lower the false negative
value and the initial results indicate that this could be possible
by introducing a cost matrix, which would penalise the false
negatives, however, this needs further investigation. A
comprehensive review of different levels of penalisation will
need to be performed to evaluate what effect these have on the
RF algorithm in terms of accuracy, false positives and
false negatives.

In addition, a bag-of-words approach will be explored to
evaluate how the RF algorithm will perform when adding
more features.

REFERENCES

[1] S. Garera, N. Provos, M. Chew and A. Rubin D., "A framework for
detection and measurement of phishing attacks," Worm '07, pp. 1-8,
2007.

[2] Anti Phishing Work Group, "Phishing Attack Trends Report - 2Q 2016,"
vol. 2016, 2016.

[3] R.B. Basnet, A.H. Sung and Q. Liu, "Learning to detect phishing
URLs," IJRET: International Journal of Research in Engineering and
Technology, vol. 3, pp. 11-24, 2014.

[4] J. Ma, L. Saul K., S. Savage and G. Voelker M., "Beyond blacklists:
learning to detect malicious web sites from suspicious URLs," Kdd '09,
pp. 1245-1254, 2009.

[5] L. Breiman, "Random forests," Mach.Learning, vol. 45, pp. 5-32, 2001.

[6] A. Cutler, D.R. Cutler and J.R. Stevens, "Ensemble Machine Learning,"
C. Zhang and Y. Ma, Dordrecht: Dordrecht : Springer, 2012, pp. 157-
175.

[7] S. Egan and B. Irwin, "An evaluation of lightweight classification
methods for identifying malicious URLs," in 2011 Information Security
for South Africa, pp. 1-6, 2011.

[8] M. Darling, G. Heileman, G. Gressel, A. Ashok and P. Poornachandran,
"A lexical approach for classifying malicious URLs," in High
Performance Computing & Simulation (HPCS), 2015 International
Conference on, pp. 195-202, 2015.

[9] A. Le, A. Markopoulou and M. Faloutsos, "Phishdef: Url names say it
all," in INFOCOM, 2011 Proceedings IEEE, pp. 191-195, 2011.

[10] AOL, "DMOZ - RDF Data," vol. 2016, 2016.

[11] AOL, "DMOZ Open Directory - About Us," vol. 2016, 2016.

[12] PhishTank, "PhishTank > Developer Information," vol. 2016, 2016.

[13] PhishTank, "PhishTank - FAQ Page," vol. 2016, 2016.

[14] F. Eibe, M.A. Hall and I.H. Witten, The WEKA Workbench. Online
Appendix for "Data Mining: Practical Machine Learning Tools and
Techniques", Morgan Kaufmann, 2016, .

[15] M. Bramer, "Measuring the Performance of a Classifier," in Principles
of Data Mining, SpringerLink (Online service), London : Springer
London : Imprint: Springer, 2016, pp. 178-179.

	Blank Page

