1	Anterolateral Ligament Reconstruction Protects The Repaired Medial Meniscus: A
2	Comparative Study of 383 ACL Reconstructions from the XXX with a Minimum
3	Follow Up of Two Years
4	
5	Background: The prevalence of osteoarthritis after successful meniscal repair is significantly
6	less than the rate that is observed after failed meniscal repair.
7	Study Design: Cohort study; Level of evidence, 2.
8	Purpose: The aim of this study was to determine whether the addition of anterolateral
9	ligament reconstruction (ALLR) confers a protective effect on medial meniscal repair
10	performed at the time of anterior cruciate ligament reconstruction (ACLR).
11	Methods: Retrospective analysis of prospectively collected data was performed to include all
12	patients who had undergone primary ACLR with concomitant posterior horn medial meniscal
13	repair between January 2013 and August 2015. ACLR autograft choice was either bone-
14	patellar tendon-bone (B-PT-B), quadrupled hamstring tendon (4HT) or quadrupled
15	semitendinosus tendon (4ST) graft with or without ALLR. At the end of the study period, all
16	patients were contacted to determine if they had undergone re-operation. A Kaplan-Meier
17	survival curve was plotted and Cox proportional hazards regression model was used to
18	perform multivariate analysis.
19	Results: 383 patients (mean age 27.4 ± 9.2 years) with a mean follow-up of 37.4 months
20	(range 24-54.9 months) were included. 194 patients underwent an isolated ACLR and 189
21	underwent a combined ACLR+ALLR. At final follow up there was no significant difference
22	in postoperative side-to-side laxity (isolated ACLR group 0.9 ± 0.9 mm (-1 to 3),
23	ACLR+ALLR group 0.8 ± 1.0 mm (-2 to 3) P = .2120) or Lysholm score (isolated ACLR
24	group 93.0 (91.2-94.7), ACLR+ALLR group 93.7 (92.3-95.1), P= .556) between groups.

25	43 patients (11.2%) underwent re-operation for failure of the medial meniscus repair or a new
26	tear. The survival rate of meniscal repair at 36 months in the ACLR+ALLR group was 91.2%
27	(95% IC, 85.4%-94.8) and in the ACLR group it was 83.8% (95% CI, 77.1%-88.7%)
28	(P=.033). The probability of failure of medial meniscal repair was more than two times
29	lower in patients with ACLR+ALLR compared to patients with isolated ACLR (hazard ratio,
30	0.443; 95% CI, 0.218-0.866). No other prognosticators of meniscal repair failure were
31	identified.
32	Conclusion: Combined ACLR and ALLR is associated with a significantly lower rate of
33	failure of medial meniscus repairs when compared to those performed at the time of isolated
34	ACLR.
35	Key words: Anterior Cruciate Ligament, Anterolateral ligament, Medial Meniscal Repair
36	
37	
38	What is known about the subject: Failure rates of meniscal repairs performed at the time of
39	ACLR of up to 30% are reported. Failure of meniscal repair is associated with a significantly
40	higher incidence of osteoarthritis at long term follow-up when compared to successful
41	meniscal repair. Reducing the failure rate of meniscal repair is therefore an important
42	objective in the management of these injuries. It is recently demonstrated that extra-articular
43	tenodeses performed at the time of ACLR reduce residual instability and the rate of residual
44	pivot shift. It is thought that this improvement in knee stability is responsible for the
45	significant reduction in ACL graft rupture rates that is reported following combined ACLR +
46	ALLR when compared to isolated ACLR. To the authors knowledge it has not been
47	previously studied whether ALLR, and the reported improvement in knee kinematics, confers

48 a protective effect on the repaired medial meniscus.

- 50 What this study adds to existing knowledge: This study demonstrates that the addition of 51 anterolateral ligament reconstruction at the time of ACL reconstruction is associated with a 52 significant reduction in the failure rate of medial meniscal repairs when compared to isolated 53 ACL reconstructions. This finding is attributed to improved knee kinematics resulting from 54 concomitant ALLR conferring a protective effect on the medial meniscal repair.
- 49

55 Introduction

56 The reported incidence of meniscal tears associated with an ACL rupture ranges from 16% to 82 % for acute injuries and up to 96 % in chronic injuries.¹⁵ Long-term studies of patients 57 58 following anterior cruciate ligament reconstruction (ACLR) have demonstrated that medial meniscectomy is associated with higher rates of osteoarthritis (OA).^{3,5,32,40} The importance of 59 60 the medial meniscus as a secondary stabilizer for antero-posterior translation has been demonstrated by a number of biomechanical cadaveric studies.^{18,39,41} Medial meniscectomy 61 leads to increased tibial translation and abnormal knee kinematics.^{39,41} It is therefore critical 62 63 to try to repair the medial meniscus whenever possible. However, meniscal repairs have reported failure rates of up to 30%.^{27,52} The high failure rate may, in part, explain why 64 65 meniscectomy is performed 2 to 3 times more frequently than meniscus repair during ACLR.²⁸ Any technique which can increase the success of meniscal repair, performed at the 66 67 time of ACL reconstruction, is therefore likely to be important in improving long-term 68 outcomes. 69 Concomitant reconstruction of the anterolateral ligament (ALL) of the knee with ACLR has 70 recently been demonstrated to be associated with lower ACL graft failure rates than isolated ACLR.⁴⁵ The decrease in failure rates is attributed to increased rotational stability and load-71 sharing which protect the ACL graft from excessive forces.^{36,45} This augmented stability may 72 73 similarly protect the repaired medial meniscus, allowing a reduction in failure rates. 74 75 To the authors' knowledge, the impact of ALLR on the success of meniscal repair has not 76 been previously investigated. The aim of this study was to report the clinical outcomes of

- repair of the medial meniscus in patients undergoing ACLR, with or without ALLR. The
- 78 hypothesis of this study was that significantly decreased rates of failure of medial meniscal

repair would be observed in patients who underwent combined ACLR and ALLR whencompared to those undergoing isolated ACLR.

81

82 Patients and Methods

83 Institutional review board approval was granted for this study and all patients gave valid 84 consent to participate. There were no financial incentives for study participation. A 85 retrospective analysis of prospectively collected data from the XXX database was conducted. 86 All patients who underwent primary ACLR with concomitant medial meniscal repair through 87 a posteromedial portal between January 1, 2013 to August 30, 2015 were included in the 88 study. The rationale for including only repairs performed through a posteromedial portal was 89 based on reports from several authors that different tear morphologies are associated with different failure rates.^{16,25,33,37} In order to minimize any confounding effect of the tear pattern 90 91 and location, only patients with vertical tears of the posterior horn of the medial meniscus, 92 repaired through a posteromedial portal, including ramp lesions, were considered for study 93 eligibility. Those who had meniscal root tears, horizontal or vertical tears more centrally 94 located than the red-white zone were excluded.

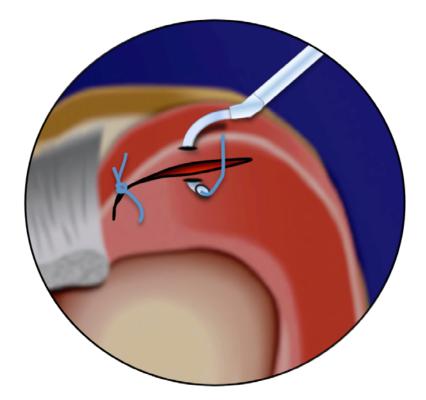
95

96 Pre-operatively, all patients had sustained a knee injury resulting in an ACL tear diagnosed 97 on the basis of clinical examination and magnetic resonance imaging (MRI). All procedures 98 were performed by one of three experienced surgeons (XXX). Patients undergoing major 99 concomitant surgery (e.g. high tibial osteotomy, multiligament reconstruction) and those 100 whose ACLR was performed with a pediatric technique were not included in the study. The 101 decision to use a particular graft type for ACLR was based on patient factors/choice and the 102 authors' evolving indications for concomitant ALL reconstruction during the study period. 103 This decision was taken preoperatively and was independent of the status of the medial

104	meniscus. During the study period, there was a trend towards more frequently performing
105	combined ACLR and ALLR grafts with the progression of time. Indications included one or
106	more of the following criteria: grade 3 pivot shift, high level of sporting activity, participation
107	in pivoting sports, deep lateral femoral notch sign on radiographs, associated Segond fracture,
108	chronic ACL rupture (>3 months after injury), and patients younger than 25 years old.

110

111 Surgical Technique


112 1) Medial Meniscus Repair:^{2,50}

_ . .

.

. . .

113 A standard high lateral parapatellar portal for the arthroscope and a medial parapatellar portal 114 for the instruments was utilized. Arthroscopic exploration of the medial meniscus was 115 performed through the anterolateral portal and exploration of the posteromedial compartment 116 was systematically performed by a trans-notch view. When posterior horn MM tears were 117 identified, debridement and sutures of these lesions were performed through a posteromedial 118 portal using a 25° hook (SutureLasso; Arthrex, Naples, FL) loaded with a No. 0 absorbable 119 monofilament suture (PDS; Ethicon, Somerville, NJ) (figure 1). To improve exposure of 120 more centrally located tears, internal rotation of the tibia was added. When the tear extended 121 to the pars intermedia, in addition to the aforementioned posterior suture, a meniscal suture 122 anchor (FasT-Fix; Smith & Nephew, Andover, MA) was also placed via a standard anterior 123 portal in order to complete the repair. After suture placement an arthroscopic probe was used 124 to evaluate and confirm satisfactory stability of the repair.

- 126 Figure 1. Suture repair of a posterior MM tear using a hook introduced through a
- 127 posteromedial portal. Additional sutures can be placed if required, depending on the length of
- 128 the tear. (Reproduced and modified with permission, M Thaunat, Arthroscopy 2016,⁵⁰
- 129 Elsevier)
- 130

131

- 132 2) ACLR with or without concomitant ALLR:
- 133 ACLR was performed using 3 different types of graft: bone-patellar tendon-bone (B-PT-
- 134 B),¹⁰ quadrupled hamstring tendons (4HT)¹⁹ or quadrupled semitendinosus tendon (4ST).⁴³
- 135 For the ALLR, a gracilis tendon graft was used.⁴⁹

- 137 Outcomes
- 138 Physical examinations were conducted by a sport medicine physician independent of the
- primary surgeons, preoperatively and at the following postoperative intervals: weeks 3 and 6
- and months 3, 6, and 12. Preoperative demographic and clinical data were recorded at the

141	first clinical evaluation. Clinical evaluation including ligament testing and range of motion
142	(ROM) evaluation were recorded at 3, 6 and 12-month follow-up. An isokinetic test was
143	performed at 6 months follow-up. Side-to-side laxity evaluation was performed with the
144	Rolimeter device (Aircast Europa, Neubeuern, Germany) at 12 months follow-up.
145	All patients participated were recommended to follow in the same postoperative
146	rehabilitation protocol. This comprised brace-free mobilization, weight bearing as tolerated
147	and a restricted range of motion from 0° to 90° for the first 4 weeks postoperatively. ³¹ Early
148	rehabilitation was focused on obtaining full extension and quadriceps activation. A gradual
149	return to sport activities was allowed starting at 4 months for non-pivoting sports, at 6 months
150	for pivoting non-contact sports, and at 8 to 9 months for pivoting contact sports. The return to
151	pivoting non-contact sport was delayed if the aforementioned isokinetic testing showed a
152	deficit greater than 20% in eccentric or concentric hamstring strength or any quadriceps
153	deficit. In this situation, repeat testing was performed after a further 2 months of
153 154	deficit. In this situation, repeat testing was performed after a further 2 months of rehabilitation.
154	
154 155	rehabilitation.
154 155 156	rehabilitation. At the end of the study period, an author who was not one of the three primary surgeons,
154 155 156 157	rehabilitation. At the end of the study period, an author who was not one of the three primary surgeons, contacted all patients by e-mail and telephone in order to obtain Lysholm and Tegner scores
154 155 156 157 158	rehabilitation. At the end of the study period, an author who was not one of the three primary surgeons, contacted all patients by e-mail and telephone in order to obtain Lysholm and Tegner scores and to determine whether the patient had undergone ipsilateral re-operation or contralateral
154 155 156 157 158 159	rehabilitation. At the end of the study period, an author who was not one of the three primary surgeons, contacted all patients by e-mail and telephone in order to obtain Lysholm and Tegner scores and to determine whether the patient had undergone ipsilateral re-operation or contralateral knee surgery. If further surgery had been undertaken, then the operative records were
154 155 156 157 158 159 160	rehabilitation. At the end of the study period, an author who was not one of the three primary surgeons, contacted all patients by e-mail and telephone in order to obtain Lysholm and Tegner scores and to determine whether the patient had undergone ipsilateral re-operation or contralateral knee surgery. If further surgery had been undertaken, then the operative records were obtained in all cases (including from other institutions) and reviewed. Failure of the MM
154 155 156 157 158 159 160 161	rehabilitation. At the end of the study period, an author who was not one of the three primary surgeons, contacted all patients by e-mail and telephone in order to obtain Lysholm and Tegner scores and to determine whether the patient had undergone ipsilateral re-operation or contralateral knee surgery. If further surgery had been undertaken, then the operative records were obtained in all cases (including from other institutions) and reviewed. Failure of the MM
154 155 156 157 158 159 160 161 162	rehabilitation. At the end of the study period, an author who was not one of the three primary surgeons, contacted all patients by e-mail and telephone in order to obtain Lysholm and Tegner scores and to determine whether the patient had undergone ipsilateral re-operation or contralateral knee surgery. If further surgery had been undertaken, then the operative records were obtained in all cases (including from other institutions) and reviewed. Failure of the MM

165 Data Analysis

167	All calculations were made with SAS for Windows (Version 9.4; SAS Institute Inc) with the
168	level of statistical significance set at $P < 0.05$. Descriptive data analysis (mean, standard
169	deviation, range, 95% confidence interval and proportion) was conducted for the entire
170	patient population. The baseline characteristics of patients and demographic variables were
171	compared between the groups with the Student t-test for variables, and the chi-square test or
172	exact Fischer test for proportions. A Kaplan-Meier survival curve, with failure of meniscal
173	repair as the endpoint, was plotted. A Cox proportional hazards regression model was used to
174	perform an adjusted analysis of time to failure of the repaired medial meniscus, in order to
175	account for significant demographic differences between the groups.
176	
177	
178	Results
179	Patients
179	Patients
179 180	Patients 418 patients met the inclusion criteria. Thirty-five patients (8.4%) were lost to follow-up. The
179 180 181	Patients 418 patients met the inclusion criteria. Thirty-five patients (8.4%) were lost to follow-up. The final study population comprised 383 patients (Figure 1), divided into two groups: 194
179 180 181 182	Patients 418 patients met the inclusion criteria. Thirty-five patients (8.4%) were lost to follow-up. The final study population comprised 383 patients (Figure 1), divided into two groups: 194 isolated ACLR (33 B-PT-B, 73 4HT, 88 4ST) and 189 ACLR + ALLR (176 HT, 6 B-PT-B, 7
179 180 181 182 183	Patients 418 patients met the inclusion criteria. Thirty-five patients (8.4%) were lost to follow-up. The final study population comprised 383 patients (Figure 1), divided into two groups: 194 isolated ACLR (33 B-PT-B, 73 4HT, 88 4ST) and 189 ACLR + ALLR (176 HT, 6 B-PT-B, 7
179 180 181 182 183 184	Patients 418 patients met the inclusion criteria. Thirty-five patients (8.4%) were lost to follow-up. The final study population comprised 383 patients (Figure 1), divided into two groups: 194 isolated ACLR (33 B-PT-B, 73 4HT, 88 4ST) and 189 ACLR + ALLR (176 HT, 6 B-PT-B, 7 4ST).
179 180 181 182 183 184 185	Patients 418 patients met the inclusion criteria. Thirty-five patients (8.4%) were lost to follow-up. The final study population comprised 383 patients (Figure 1), divided into two groups: 194 isolated ACLR (33 B-PT-B, 73 4HT, 88 4ST) and 189 ACLR + ALLR (176 HT, 6 B-PT-B, 7 4ST).
179 180 181 182 183 184 185 186	Patients 418 patients met the inclusion criteria. Thirty-five patients (8.4%) were lost to follow-up. The final study population comprised 383 patients (Figure 1), divided into two groups: 194 isolated ACLR (33 B-PT-B, 73 4HT, 88 4ST) and 189 ACLR + ALLR (176 HT, 6 B-PT-B, 7 4ST).
179 180 181 182 183 184 185 186 187	Patients 418 patients met the inclusion criteria. Thirty-five patients (8.4%) were lost to follow-up. The final study population comprised 383 patients (Figure 1), divided into two groups: 194 isolated ACLR (33 B-PT-B, 73 4HT, 88 4ST) and 189 ACLR + ALLR (176 HT, 6 B-PT-B, 7 4ST). Patient characteristics are summarized in Table 1. There was no significant difference between the groups with respect to gender distribution, preoperative side-to-side laxity, time interval between the injury and surgery or the number of meniscal sutures placed. Significant

191 Table 1: Patients Demographics (N=383 patients). T-test for variables and chi-square test for

		All Patients N=383	ACLR N=194	ACLR+ALLR N=189	р
Follow-up (months)	mean \pm SD	37.4 ± 9.0	39.2 ± 9.4	36.6 ± 8.2	. 0001
	(min; max)	24.0 ; 54.9	24.0 ; 54.9	24.1;54.7	< .0001
Gender	Male	293 (76.5%)	153 (78.9%)	140 (74.1%)	.2688
Age (years)	$mean \pm SD$	27.4 ± 9.2	30.9 ± 9.9	23.8 ± 6.8	. 0001
	(min; max)	14;60	15;60	14;48	< .0001
BMI (kg/m ²)	mean \pm SD	24.0 ± 2.6	24.5 ± 2.6	23.5 ± 2.5	0002
	(min; max)	17.3 ; 32.7	18.5 ; 32.7	17.3 ; 30.9	.0002
Injury to surgery interval (months)	mean ± SD (min ; max)	13.5 ± 31.7 0;276	14.1 ± 36.4 0;276	12.9 ± 26 0;187	.7116
Preoperative side- to-side laxity (mm)	mean ± SD (min ; max)	7.2 ± 1.7 3;16	7.0 ± 1.6 3;14	7.5 ± 1.8 3;16	.4451 ^a
LM tear		140 (36.6%)	55 (28.4%)	85 (45%)	.0007
Tune of an out ^b	Contact	240 (62.7%)	101 (52.1%)	139 (73.5%)	< 0001
Type of sport ^b	Non-contact	143 (37.4%)	93 (47.9%)	50 (26.5%)	<.0001
Number of meniscal sutures ^c	mean ± SD (min ; max)	$\begin{array}{c} 2.5 \ \pm 0.8 \\ 1 \ ; \ 6 \end{array}$	$\begin{array}{c} 2.5 \ \pm 0.8 \ (1-6) \\ 1 \ ; \ 6 \end{array}$	$\begin{array}{c} 2.5 \ \pm 0.8 \\ 1 \ ; \ 5 \end{array}$.6458

192 proportions unless otherwise indicated.

ACLR, anterior cruciate ligament reconstruction; ALLR, anterolateral ligament reconstruction; LM, lateral meniscus.

^a Exact Fisher test between proportion of patients included in each IKDC laxity group (normal, nearly normal, abnormal, severely abnormal)

^b Type of sport: pivoting sport with contact (soccer, handball, basketball, rugby, motocross) and pivoting sport without contact (alpine skiing, fitness, gymnastics, tennis).

^c 27 repairs in the ACLR group and 20 in the ACLR +ALLR (P = .3199) group were completed with an additional FastFix suture via anteromedial portal.

193

194

195

196 Postoperative outcomes

197 Postoperative outcomes are summarized in Table 2. Side-to-side laxity was measured in 380

198 patients at 12 months follow-up. Three patients were excluded because of an ACL graft

199 failure or a contralateral ACL injury before the one-year follow-up review.

201 Lysholm and Tegner scores and the rate of return to pre-injury level of sport were evaluated

at the end of the study period, in 324 patients. Patients with failure of MM repair (n=43),

ACL graft failure (n=15) and one patient with spinal cord tumor and lower limb neuropathy

204 (n=1) were excluded.

205

Table 2 : Patients outcomes.

207 For scores and return to pre-injury sport, N=324 patients (154 ACLR, 170 ACLR+ALLR).

208 For Postoperative side-to-side laxity, N=380 patients (193 ACLR, 187 ACLR+ALLR). T-test

209 for variables or chi-square test for proportions unless otherwise indicated.

210

		All Patients	ACLR	ACLR+ALL R	р
Postoperative side-to-	mean \pm SD	0.9 ± 0.9	0.9 ± 0.9	0.8 ± 1.0	.2120 ^a
side laxity (mm)	(min; max)	-2;3	-1;3	-2;3	.2120
Lysholm score	mean (95%CI)	93.4 (92.3- 94.5)	93.0 (91.3- 94.7)	93.7 (92.3- 95.1)	.5556
Tegner score	mean (95%CI)	6.9 (6.7-7.1)	6.5 (6.3-6.9)	7.2 (6.9-7.4)	.0008
Return to pre-injury sport		201 (62.0%)	97 (63.0%)	104 (61.2%)	.7374

ACLR, anterior cruciate ligament reconstruction; ALLR, anterolateral ligament

reconstruction

^a Exact Fisher test between proportion of patients included in normal or nearly normal IKDC laxity group

211

212

- 213 Re-operation
- At latest follow-up, 74 patients (19.3%) underwent at least one re-operation after the index

215 procedure (Table 3). 43 (11.2%) patients underwent re-operation for failure of MM repair

- and this occurred at a mean of 19.0 ± 11.5 months after initial procedure. All of these patients
- 217 underwent a partial medial meniscectomy except for 2 patients who underwent a revision
- 218 MM repair. However, both revision MM repairs failed, leading to meniscectomy. ACL graft

- failure occurred in 15 patients (3.9%) at a mean of 24.4 ± 11.6 months after the index
- procedure. With respect to the contralateral knee, 24 patients (6.2%) presented with an ACL
- rupture at a mean of 24.9 ± 11.7 months after the index procedure.
- 222 Table 3 : Re-operations (N=383 patients)

	All Patients N=383
Overall	74 (19.3%)
Failure of MM repair	43 (11.2%)
ACL graft failure	15 (3.9%)
Arthrofibrosis	3 (0.8%)
Cyclops lesion	9 (2.3%)
Deep infection	2 (0.5%)
Hardware irritation	1 (0.3%)
rative lateral meniscus pathology	1 (0.3%)

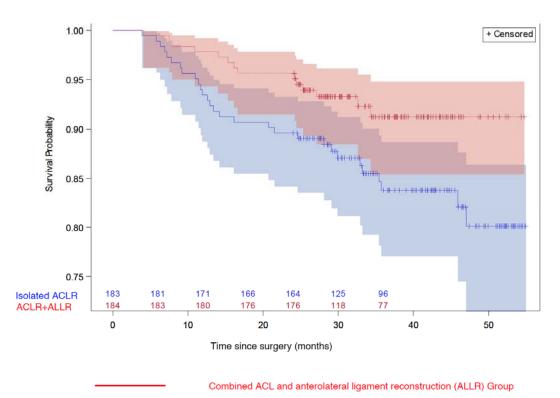
²²³

224 ACLR, anterior cruciate ligament reconstruction; MM, medial meniscus.

225

226 Figure 2 shows the cumulative survivorship of MM repairs derived from Kaplan-Meier

analysis when using re-operation for MM pathology as an endpoint. Analysis was performed


228 on 367 patients; 15 patients with ACL graft failure and one with lower limb neuropathy

secondary to spinal cord tumor were excluded. At both 24 months and 36 months of follow-

230 up, rates of MM suture failure were significantly lower for patients who underwent

ACLR+ALLR than for those who underwent isolated ACLR (P= .033) (Table 4).

232

Isolated ACL Reconstruction (ACLR) Group

235 Figure 2. Kaplan-Meier survivorship using reoperation for medial meniscal pathology as an

- end point. Numbers at risks with 95% Confidence Interval
- 237
- 238
- 239

240 Table 4 : Kaplan-Meier rates of MM repair failure.

241

Surgical	MM Repair Failure ^a			
Procedure		24 month Follow-up	36 month Follow-up	Р
Overall	mean (95%CI)	7.4 (5.1-10.6)	12.6 (9.4-	.033
			16.9)	
isolated ACLR	mean (95%CI)	10.4 (6.8-15.8)	16.2 (11.3-	
			22.9)	
ACLR + ALLR	mean (95%CI)	4.4 (2.2-8.5)	8.8 (5.2-14.6)	

^a values expressed as percentage.

ACLR, anterior cruciate ligament reconstruction; ALLR, anterolateral ligament reconstruction; MM, medial meniscus

244

245

246	Cox proportional hazards regression model analysis showed that combined ACLR+ALLR
247	was the only factor associated with a significant reduction in the risk of re-operation for
248	failure of MM repair. Patients who underwent ACLR + ALLR had a greater than two-fold
249	reduction in the risk of re-operation for failure of MM repair than patients who underwent
250	isolated ACLR (hazard ratio, 0.443; 95%CI, 0.218-0.866; $P = .021$). In contrast, age (≤ 30
251	years or > 30 years), contact sports participation, BMI and the presence of a concomitant LM
252	tear were not determined to be significant factors influencing the risk of re-operation for the
253	MM (Table 5).

Table 5: Effect of ALLR on MM Repair Failure, adjusted on baseline characterics^a

Variable	Adjusted Hazard Ratio N=367	95%CI	Р
ALLR	0,443	0.218-0.866	.021
Age	0,665	0.327-1.296	.249
Type of sport	1,06	0.566-2.034	.858
BMI ^b			.408
Normal vs underweight	1,061	0.008-7.548	
Normal vs overweight	0,967	0.464-1.885	
Normal vs obese	3,101	0.627-9.502	
LM tear	1,119	0.582-2.074	.730
	C D 1' 1 1'	10 11	

^aBolded P values indicate statistical significance. Penalised adjused Cox model.

Covariates were selected by comparison between groups, and a threshold of 20%.

^bWHO BMI classification: underweight (<18.5 kg/m²), normal (18.5-24.9 kg/m²),

overweight (25.0-29.9 kg/m²), obese (30.0-34.9 kg/m²).

MM, medial meniscus; ALLR, anterolateral ligament reconstruction; BMI, body mass

index; LM, lateral meniscus; WHO, world health organization.

254

256 Within the isolated ACLR group, the choice of graft was not associated with a significant

difference in the rate of reoperation for failure of MM repair at 24 and 36 months following

the index procedure (Table 6).

259

260

261

Table 6 : Kaplan-Meier Rates of MM Repair failure in ACLR group.

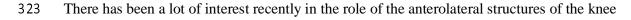
	MM Repair Failure ^a			
Graft type		24-month Follow-	36-month Follow-	Р
		up	up	
Overall	mean (95%CI)	9.4 (6.0-14.5)	15.3 (10.6-21.8)	.996
B-PT-B	mean (95%CI)	12.5 (4.9-30.0)	16.2 (7.0-34.6)	
4HT	mean (95%CI)	9.7 (4.7-19.2)	15.9 (9.1-26.9)	
4ST	mean (95%CI)	8.0 (3.9-16.1)	14.7 (7.5-27.7)	

^a values expressed as percentage.

ACLR, anterior cruciate ligament reconstruction; B-PT-B, bone-patellar tendonbone; 4HT, quadrupled hamstring tendons; 4ST, quadrupled semitendinosus tendon

265 Discussion

266 The main finding of this study is that the failure rate of MM repairs performed through a 267 posteromedial portal was significantly lower after combined ACLR and ALLR than after 268 isolated ACLR. The combined procedure was associated with a greater than two-fold 269 reduction in the failure rate of MM repair, at a mean follow-up of 37.4 months (P=.033). 270 This demonstrates suggests that ALLR has a protective effect on medial meniscal repairs 271 performed at the time of ACLR. To the authors' knowledge, this is the first clinical study to 272 assess meniscal repair failure rates after ACLR in the presence of an extra-articular tenodesis. 273 274 Numerous authors have investigated failure rates of meniscal repair performed at the time of 275 ACL reconstruction. A systematic review of thirteen studies of meniscal repair outcomes 276 reported a pooled rate of meniscal repair failure in ACL-reconstructed knees of 26.9% (18/67 knees) at greater than 5-years post-surgery.²⁷ Another systematic review of 21 studies 277 278 evaluating all-inside and inside-out meniscal repair with concurrent ACL reconstruction, 279 found pooled failure rates of 14.2% (140/1126 knees) at a mean follow-up of just over 5years.⁵² The failure rate for all-inside meniscal repair was significantly higher at 16% 280 281 (121/744 knees) compared with 10% (39/382 knees) for inside-out repair (P= .016). It is 282 important to note that both of these systematic reviews included a wide range of tear 283 morphologies including those of the lateral meniscus. A number of trials have demonstrated higher failure rates of medial meniscus repair compared to lateral meniscal repairs.^{13,20,21,29} 284 285 This variability in the reported rate of failure demonstrates the importance of precisely 286 defined inclusion criteria and caution in pooling results from different studies. Several 287 authors have recently reported re-operation rates for failure of medial meniscal repairs performed at the time of ACLR. This has varied between 14%⁵³ and 26%.¹⁴ 288


289

290	The importance of successful repair of the medial meniscus to long-term outcomes following
291	ACLR, can be deduced from a number of trials. Claes et al. demonstrated that, at a minimum
292	10-year follow-up post-ACLR, 50% of patients that underwent meniscectomy had
293	osteoarthritis (OA) compared to 16% of patients without meniscectomy (Odds ratio 3.54,
294	95 % CI 2.56–4.91). ⁵ Pernin et al. also reported that medial meniscectomy was a risk factor
295	for development of OA in their long-term follow-up study (mean 24.5 years post-ACLR)
296	with lateral extra-articular augmentation. ³² This finding was recently confirmed by
297	Shelbourne et al. who reported a three times higher risk of developing OA in patients with
298	medial meniscectomy at a mean 22.5 years after ACLR (Odds ratio 2.98, 95 % CI 1.91-
299	4.66). ⁴⁰ Two studies also assessed the difference in the prevalence of radiographic findings of
300	OA between successful and failed meniscal repairs. Both reported higher rates of OA in
301	failed repairs (56% compared with 14% and 57% compared with 15%). ^{6,35}
302	The significantly increased risk of OA associated with meniscal injury relates to the
303	important role of the meniscus in the stability of the knee. ²³ Cadaveric biomechanical studies
304	have shown increased tibial anterior translation and external rotation after posterior
305	meniscocapsular sectioning in the ACL-deficient knee. ^{1,30,46} Furthermore, they have
306	demonstrated restoration of knee biomechanics only after both ACLR and repair of the
307	meniscal lesion. ^{1,46} The medial meniscus also plays a stabilizing role in the ACL deficient
308	knee, where it resists anterior tibial translation. ^{26,34}
309	It is therefore crucial to identify and repair meniscal lesions for successful long-term
310	outcomes from ACLR. In this study, a standardized arthroscopic evaluation was performed in
311	all patients in order to evaluate all MM lesions including hidden meniscal lesions - a
312	substantial number of which may be missed with arthroscopic examination using only
313	standard anterior portal examination. ⁴² The described surgical technique allows the ability to
314	debride and repair lesions of the MM under direct visualization and as a result it has become

the authors standard practice for all MM lesions. Good clinical results have been reported at
 short term follow-up.⁵⁰

Although isolated ACLR reliably restores anteroposterior stability, excessive tibial rotation may persist especially during more demanding activities. This persistent rotational instability can lead to repetitive micro-instability events that may contribute to failure of the meniscal repair.³⁴ It is therefore postulated that the higher failure rate of MM repair observed in the isolated ACLR group is due to failure to fully restore normal knee kinematics.

322

in controlling rotatory laxity and their ability to share loads with the ACL graft.^{5,8,36,44,12}

325 Sectioning of the ALL in biomechanical cadaveric studies has resulted in greater rotational

laxity in both the ACL-deficient knee⁴³ and the ACL-intact knee.⁵¹ Augmentation of ACLR

327 with an extra-articular tenodesis has been demonstrated to decrease rotational laxity and

residual pivot shift.¹¹ Recently published clinical results demonstrate reduced failure of

329 combined ACLR and ALLR when compared to isolated ACLR and this may be attributed to

biomechanical load-sharing properties of the ALL graft.⁴⁵ Combined ACL and ALL

reconstruction has been found to decrease the ACL graft failure rates by as much as 2.5 times

332 compared to isolated ACLR.⁴⁵

333

334 Some of the concerns regarding ALLR relate to the risk of late OA due to potential

overtightening of the lateral compartment with extra-articular reconstruction. This

overconstraint by ALLR was demonstrated in a recent cadaveric study using a supra-

physiological 88N force for the ALL fixation.³⁸ In contrast several clinical series have not

demonstrated a higher incidence of OA in those patients who underwent a lateral tenodesis

339 when compared to isolated ACLR.^{47,54} Similarly, a number of trials have reported excellent

340 results at long-term follow-up for combined ACLR and lateral tenodesis, with no increased risk of OA.^{3,17,22} A systematic review of eight studies concluded that the addition of a lateral 341 tenodesis to ACLR did not result in an increased rate of OA.⁷ Furthermore, Ferretti, et al. 342 343 demonstrated at a minimum 10-year follow-up that patients undergoing extra-articular 344 reconstruction actually had a statistically lower risk (6 of 42; 14%) of OA than the standard ACL group (25 of 49; 51%) (p=0.003).⁹ Although this finding is likely multifactorial it does 345 346 support the concept of the current study which is that extra-articular procedures protect the 347 repaired medial meniscus and therefore have the potential to reduce the rate of osteoarthritis 348 following combined ACL rupture and medial meniscal tear.

349

350 A possible cause for the historical concerns regarding OA and extra-articular tenodesis may 351 have been due to the now abandoned and overly cautious postoperative protocols which 352 included toe-to-groin plaster cast immobilization for up to 2 months, rather than due to lateral overtightening from an extra-articular procedure.⁸ Furthermore, concerns regarding 353 354 complications after combined ACLR and ALLR reconstruction have also recently been 355 assuaged with a study demonstrating the absence of any significant increase in reoperation rates after the combined procedure, in a series of over 500 patients.⁴⁹ Therefore, combined 356 357 ACLR and ALLR can be considered to be a safe and effective surgical procedure. 358

359 Limitations

360 Limitations of our study include its retrospective nature and the absence of clinical evaluation

361 <u>at final follow-up. It is recognized that patients may minimize some symptoms or complaints</u>

362 <u>during a telephone interview that a thorough examination may elucidate. Additionally, it is</u>

363 <u>accepted that the use of re-operation as a definition for medial meniscal repair failure, rather</u>

364 than second look arthroscopy or MRI, would likely result in missed diagnoses of

365 asymptomatic failure. the use of re-operation as a definition for medial meniscal failure rather 366 than second look arthroscopy or MRI. However, in previous studies, failure of meniscal 367 repair has been defined as clinical failure based on patients who are clinically symptomatic or who underwent subsequent meniscal re-operation.^{27,52} Second-look arthroscopy is rarely 368 369 performed due to the unnecessary risk to the patient and some evidence that arthroscopic findings often do not correlate with patient symptoms.^{4,48} A thorough clinical assessment 370 371 including history and examination remains the gold standard for assessment of meniscal 372 repair failure.^{27,52} However, it should be noted that this may overestimate the meniscal 373 healing rate.²⁴ A further limitation is that only vertical, posterior horn tears repaired through a 374 posteromedial portal were included. The results cannot therefore be extrapolated to all medial 375 meniscal tear types but the advantage of this approach has been to avoid confounding by the 376 variable failure rates of different tear morphologies. In addition, this approach has permitted 377 the utilization of a standardized surgical technique for all meniscal repairs which could 378 otherwise also have been an important confounding factor. 379 Further limitations include the potential for selection bias due to the non-randomized study 380 design and the fact that the indications for ALLR evolved during the study period. However, 381 this is somewhat mitigated by the fact that only patients considered at high risk of ACL graft 382 rupture underwent ALLR and that lesions of the medial meniscus did not influence graft 383 choice. Finally, although the length of minimum follow-up may be considered as a potential 384 limitation, it is important to note that the majority of meniscal repair failures are reported to 385 occur within the first two years post-operatively. The minimum follow-up period in this study was therefore considered to be appropriate.^{27,52} 386

387

388 Conclusions

- 389 Combined ACLR and ALLR is associated with a significantly lower rate of failure of medial
- 390 meniscus repairs when compared to those performed at the time of isolated ACLR. It is
- recognized from previous studies that failure of medial meniscal repair is an important
- 392 predictor of OA after ACLR. Further study is required to establish whether the protective
- 393 effect of ALLR on medial meniscal repair is associated with decreased rates of OA at long
- term follow-up.
- 395

396 References397

398	1.	Ahn JH, Bae TS, Kang KS, Kang SY, Lee SH. Longitudinal tear of the medial
399		meniscus posterior horn in the anterior cruciate ligament-deficient knee significantly
400		influences anterior stability. Am J Sports Med. 2011;39(10):2187-2193.
401	2.	Ahn JH, Wang JH, Yoo JC. Arthroscopic all-inside suture repair of medial meniscus
402		lesion in anterior cruciate ligamentdeficient knees: results of second-look
403		arthroscopies in 39 cases. Arthroscopy. 2004;20(9):936-945.
404	3.	Ait Si Selmi T, Fithian D, Neyret P. The evolution of osteoarthritis in 103 patients
405		with ACL reconstruction at 17 years follow-up. Knee. 2006;13(5):353-358.
406	4.	Asahina S, Muneta T, Yamamoto H. Arthroscopic meniscal repair in conjunction with
407		anterior cruciate ligament reconstruction: factors affecting the healing rate.
408		Arthroscopy. 1996;12(5):541-545.
409	5.	Claes S, Hermie L, Verdonk R, Bellemans J, Verdonk P. Is osteoarthritis an inevitable
410		consequence of anterior cruciate ligament reconstruction? A meta-analysis. Knee Surg
411		Sports Traumatol Arthrosc. 2013;21(9):1967-1976.
412	6.	DeHaven KE, Lohrer WA, Lovelock JE. Long-term results of open meniscal repair.
413		Am J Sports Med. 1995;23(5):524-530.
414	7.	Devitt BM, Bouguennec N, Barfod KW, Porter T, Webster KE, Feller JA. Combined
415		anterior cruciate ligament reconstruction and lateral extra-articular tenodesis does not
416		result in an increased rate of osteoarthritis: a systematic review and best evidence
417		synthesis. Knee Surg Sports Traumatol Arthrosc. 2017;25(4):1149-1160.
418	8.	Dodds AL, Gupte CM, Neyret P, Williams AM, Amis AA. Extra-articular techniques
419		in anterior cruciate ligament reconstruction: a literature review. J Bone Joint Surg Br.
420		2011;93(11):1440-1448.

- 421 9. Ferretti A, Monaco E, Ponzo A, et al. Combined Intra-articular and Extra-articular
- 422 Reconstruction in Anterior Cruciate Ligament-Deficient Knee: 25 Years Later.
 423 Arthroscopy. 2016;32(10):2039-2047.
- Garofalo R, Mouhsine E, Chambat P, Siegrist O. Anatomic anterior cruciate ligament
 reconstruction: the two-incision technique. *Knee Surg Sports Traumatol Arthrosc.*
- 426 2006;14(6):510-516.
- 427 11. Hewison CE, Tran MN, Kaniki N, Remtulla A, Bryant D, Getgood AM. Lateral
- 428 Extra-articular Tenodesis Reduces Rotational Laxity When Combined With Anterior
- 429 Cruciate Ligament Reconstruction: A Systematic Review of the Literature.
- 430 *Arthroscopy*. 2015;31(10):2022-2034.
- 431 12. Inderhaug E, Stephen JM, Williams A, Amis AA, Anteroateral Tenodesis or
- 432 Anterolateral Ligament Complex Reconstruction: Effect of Flexion Angle at Graft
- 433 Fixation When Combined With ACL Reconstruction. *Am J Sports Med.* 2017 Sep 1

434 (E.pub ahead of print) PMID: 28898106

- 435 13. Johnson MJ, Lucas GL, Dusek JK, Henning CE. Isolated arthroscopic meniscal
- 436 repair: a long-term outcome study (more than 10 years). *Am J Sports Med.*

437 1999;27(1):44-49.

- 438 14. Karl Eriksson ER, Bjorn Barenius and Bjorn Engstrom Meniscal Sutures are Superior
 439 to Bioabsorbable Arrows: Results After 918 Consecutive Meniscal Repairs in a Dual
- 440 Center Analysis. Orthop J Sports Med. 2017;5.
- 441 15. Kilcoyne KG, Dickens JF, Haniuk E, Cameron KL, Owens BD. Epidemiology of
- 442 meniscal injury associated with ACL tears in young athletes. *Orthopedics*.
- 443 2012;35(3):208-212.

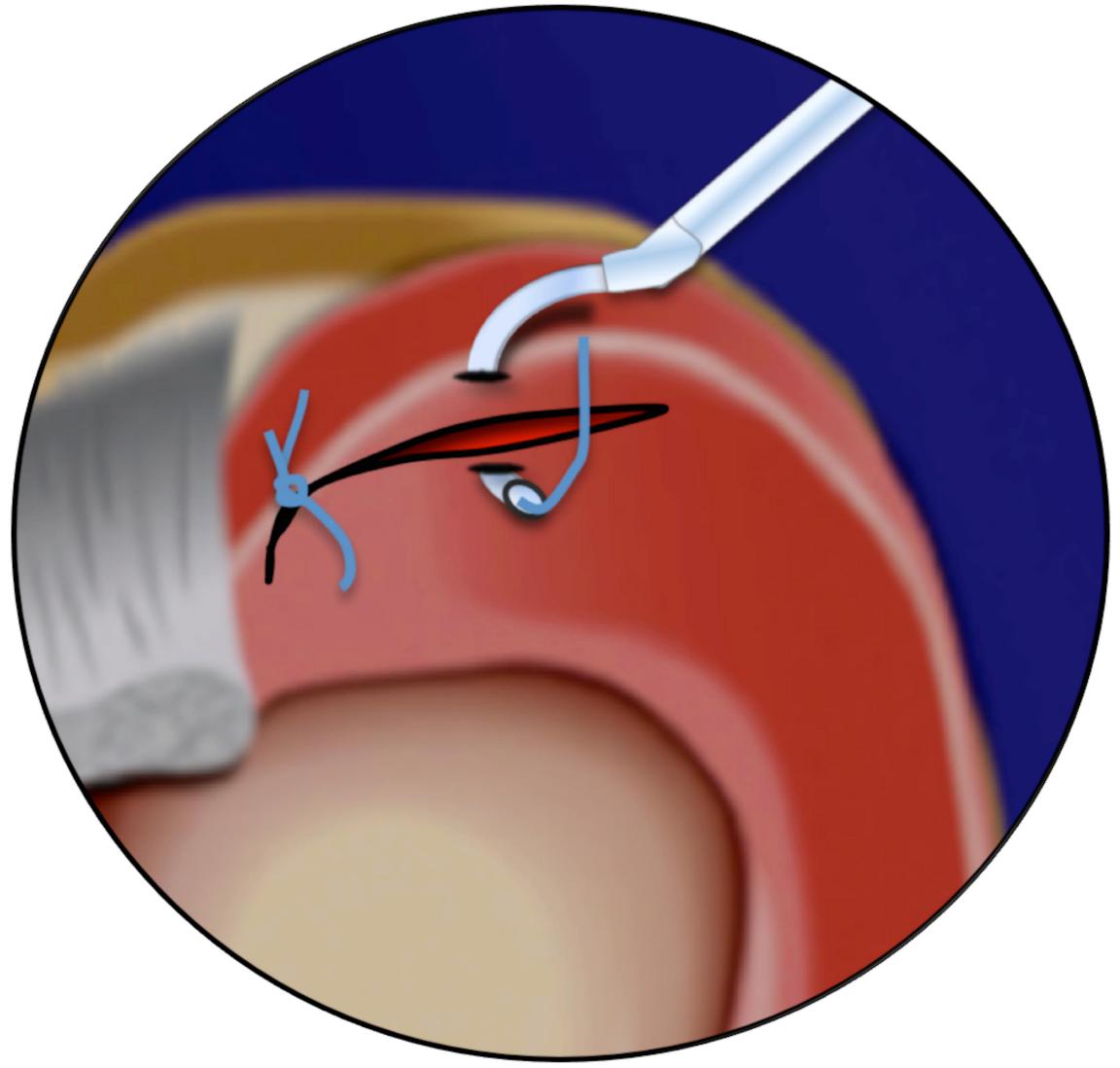
444	16.	Laurendon L, Neri T, Farizon F, Philippot R. Prognostic factors for all-inside
445		meniscal repair. A 87-case series. Orthop Traumatol Surg Res. 2017. Aug 2. pii:
446		\$1877-0568(17)30204-9. doi: 10.1016/j.otsr.2017.05.025.
447	17.	Lerat JL, Chotel F, Besse JL, et al. [The results after 10-16 years of the treatment of
448		chronic anterior laxity of the knee using reconstruction of the anterior cruciate
449		ligament with a patellar tendon graft combined with an external extra-articular
450		reconstruction]. Rev Chir Orthop Reparatrice Appar Mot. 1998;84(8):712-727.
451	18.	Levy IM, Torzilli PA, Warren RF. The effect of medial meniscectomy on anterior-
452		posterior motion of the knee. J Bone Joint Surg Am. 1982;64(6):883-888.
453	19.	Locherbach C, Zayni R, Chambat P, Sonnery-Cottet B. Biologically enhanced ACL
454		reconstruction. Orthop Traumatol Surg Res. 2010;96(7):810-815.
455	20.	Logan M, Watts M, Owen J, Myers P. Meniscal repair in the elite athlete: results of
456		45 repairs with a minimum 5-year follow-up. Am J Sports Med. 2009;37(6):1131-
457		1134.
458	21.	Majewski M, Stoll R, Widmer H, Muller W, Friederich NF. Midterm and long-term
459		results after arthroscopic suture repair of isolated, longitudinal, vertical meniscal tears
460		in stable knees. Am J Sports Med. 2006;34(7):1072-1076.
461	22.	Marcacci M, Zaffagnini S, Giordano G, Iacono F, Presti ML. Anterior cruciate
462		ligament reconstruction associated with extra-articular tenodesis: A prospective
463		clinical and radiographic evaluation with 10- to 13-year follow-up. Am J Sports Med.
464		2009;37(4):707-714.
465	23.	Messner K, Gao J. The menisci of the knee joint. Anatomical and functional
466		characteristics, and a rationale for clinical treatment. J Anat. 1998;193(Pt 2):161-178.
467	24.	Miao Y, Yu JK, Ao YF, Zheng ZZ, Gong X, Leung KK. Diagnostic values of 3
468		methods for evaluating meniscal healing status after meniscal repair: comparison

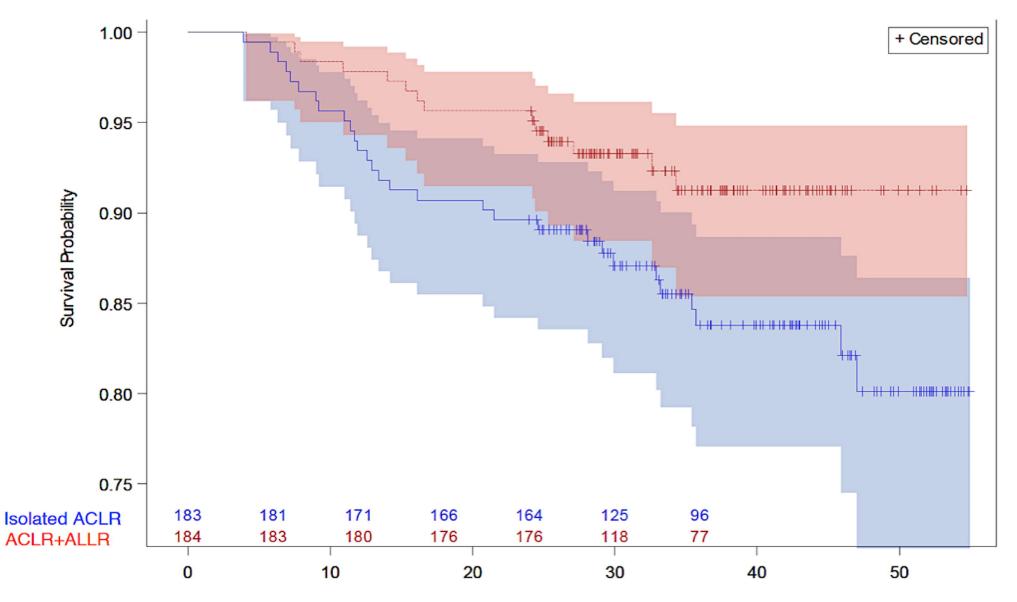
	469		among second-look arthroscopy, clinical assessment, and magnetic resonance
 evaluated by second-look arthroscopy. <i>Am J Sports Med.</i> 1991;19(6):632-637; discussion 637-638. 26. Musahl V, Citak M, O'Loughlin PF, Choi D, Bedi A, Pearle AD. The effect of medial versus lateral meniscectomy on the stability of the anterior cruciate ligament-deficient knce. <i>Am J Sports Med.</i> 2010;38(8):1591-1597. 27. Nepple JJ, Dunn WR, Wright RW. Meniscal repair outcomes at greater than five years: a systematic literature review and meta-analysis. <i>J Bone Joint Surg Am.</i> 2012;94(24):2222-2227. 28. Noyes FR, Barber-Westin SD. Treatment of meniscus tears during anterior cruciate ligament reconstruction. <i>Arthroscopy.</i> 2012;28(1):123-130. 29. Noyes FR, Chen RC, Barber-Westin SD, Potter HG. Greater than 10-year results of red-white longitudinal meniscal repairs in patients 20 years of age or younger. <i>Am J Sports Med.</i> 2011;39(5):1008-1017. 30. Peltier A, Lording T, Maubisson L, Ballis R, Neyret P, Lustig S. The role of the meniscotibial ligament in posteromedial rotational knee stability. <i>Knee Surg Sports Traumatol Arthrosc.</i> 2015;23(10):2967-2973. 31. Perkins B, Gronbeck KR, Yue RA, Tompkins MA. Similar failure rate in immediate post-operative weight bearing versus protected weight bearing following meniscal repair on peripheral, vertical meniscal tears. <i>Knee Surg Sports Traumatol Arthrosc.</i> 	470		imaging. Am J Sports Med. 2011;39(4):735-742.
 discussion 637-638. 26. Musahl V, Citak M, OLoughlin PF, Choi D, Bedi A, Pearle AD. The effect of medial versus lateral meniscectomy on the stability of the anterior cruciate ligament-deficient knee. Am J Sports Med. 2010;38(8):1591-1597. 27. Nepple JJ, Dunn WR, Wright RW. Meniscal repair outcomes at greater than five years: a systematic literature review and meta-analysis. J Bone Joint Surg Am. 2012;94(24):2222-2227. 28. Noyes FR, Barber-Westin SD. Treatment of meniscus tears during anterior cruciate ligament reconstruction. Arthroscopy. 2012;28(1):123-130. 29. Noyes FR, Chen RC, Barber-Westin SD, Potter HG. Greater than 10-year results of red-white longitudinal meniscal repairs in patients 20 years of age or younger. Am J Sports Med. 2011;39(5):1008-1017. 30. Peltier A, Lording T, Maubisson L, Ballis R, Neyret P, Lustig S. The role of the meniscotibial ligament in posteromedial rotational knee stability. Knee Surg Sports Traumatol Arthrosc. 2015;23(10):2967-2973. 31. Perkins B, Gronbeck KR, Yue RA, Tompkins MA. Similar failure rate in immediate post-operative weight bearing versus protected weight bearing following meniscal repair on peripheral, vertical meniscal tears. Knee Surg Sports Traumatol Arthrosc. 	471	25.	Morgan CD, Wojtys EM, Casscells CD, Casscells SW. Arthroscopic meniscal repair
 Musahl V, Citak M, O'Loughlin PF, Choi D, Bedi A, Pearle AD. The effect of medial versus lateral meniscectomy on the stability of the anterior cruciate ligament-deficient knee. Am J Sports Med. 2010;38(8):1591-1597. Nepple JJ, Dunn WR, Wright RW. Meniscal repair outcomes at greater than five years: a systematic literature review and meta-analysis. J Bone Joint Surg Am. 2012;94(24):2222-2227. Noyes FR, Barber-Westin SD. Treatment of meniscus tears during anterior cruciate ligament reconstruction. Arthroscopy. 2012;28(1):123-130. Noyes FR, Chen RC, Barber-Westin SD, Potter HG. Greater than 10-year results of red-white longitudinal meniscal repairs in patients 20 years of age or younger. Am J Sports Med. 2011;39(5):1008-1017. Peltier A, Lording T, Maubisson L, Ballis R, Neyret P, Lustig S. The role of the meniscotibial ligament in posteromedial rotational knee stability. Knee Surg Sports Traumatol Arthrosc. 2015;23(10):2967-2973. Perkins B, Gronbeck KR, Yue RA, Tompkins MA. Similar failure rate in immediate post-operative weight bearing versus protected weight bearing following meniscal repair on peripheral, vertical meniscal tears. Knee Surg Sports Traumatol Arthrosc. 	472		evaluated by second-look arthroscopy. Am J Sports Med. 1991;19(6):632-637;
 versus lateral meniscectomy on the stability of the anterior cruciate ligament-deficient knee. Am J Sports Med. 2010;38(8):1591-1597. 27. Nepple JJ, Dunn WR, Wright RW. Meniscal repair outcomes at greater than five years: a systematic literature review and meta-analysis. J Bone Joint Surg Am. 2012;94(24):2222-2227. 28. Noyes FR, Barber-Westin SD. Treatment of meniscus tears during anterior cruciate ligament reconstruction. Arthroscopy. 2012;28(1):123-130. 29. Noyes FR, Chen RC, Barber-Westin SD, Potter HG. Greater than 10-year results of red-white longitudinal meniscal repairs in patients 20 years of age or younger. Am J Sports Med. 2011;39(5):1008-1017. 30. Peltier A, Lording T, Maubisson L, Ballis R, Neyret P, Lustig S. The role of the meniscotibial ligament in posteromedial rotational knee stability. Knee Surg Sports Traumatol Arthrosc. 2015;23(10):2967-2973. 31. Perkins B, Gronbeck KR, Yue RA, Tompkins MA. Similar failure rate in immediate post-operative weight bearing versus protected weight bearing following meniscal repair on peripheral, vertical meniscal tears. Knee Surg Sports Traumatol Arthrosc. 	473		discussion 637-638.
 knee. Am J Sports Med. 2010;38(8):1591-1597. 27. Nepple JJ, Dunn WR, Wright RW. Meniscal repair outcomes at greater than five years: a systematic literature review and meta-analysis. J Bone Joint Surg Am. 2012;94(24):2222-2227. 28. Noyes FR, Barber-Westin SD. Treatment of meniscus tears during anterior cruciate ligament reconstruction. Arthroscopy. 2012;28(1):123-130. 29. Noyes FR, Chen RC, Barber-Westin SD, Potter HG. Greater than 10-year results of red-white longitudinal meniscal repairs in patients 20 years of age or younger. Am J Sports Med. 2011;39(5):1008-1017. 30. Peltier A, Lording T, Maubisson L, Ballis R, Neyret P, Lustig S. The role of the meniscotibial ligament in posteromedial rotational knee stability. Knee Surg Sports Traumatol Arthrosc. 2015;23(10):2967-2973. 31. Perkins B, Gronbeck KR, Yue RA, Tompkins MA. Similar failure rate in immediate post-operative weight bearing versus protected weight bearing following meniscal repair on peripheral, vertical meniscal tears. Knee Surg Sports Traumatol Arthrosc. 	474	26.	Musahl V, Citak M, O'Loughlin PF, Choi D, Bedi A, Pearle AD. The effect of medial
 477 27. Nepple JJ, Dunn WR, Wright RW. Meniscal repair outcomes at greater than five years: a systematic literature review and meta-analysis. <i>J Bone Joint Surg Am.</i> 2012;94(24):2222-2227. 480 28. Noyes FR, Barber-Westin SD. Treatment of meniscus tears during anterior cruciate ligament reconstruction. <i>Arthroscopy.</i> 2012;28(1):123-130. 482 29. Noyes FR, Chen RC, Barber-Westin SD, Potter HG. Greater than 10-year results of red-white longitudinal meniscal repairs in patients 20 years of age or younger. <i>Am J</i> <i>Sports Med.</i> 2011;39(5):1008-1017. 485 30. Peltier A, Lording T, Maubisson L, Ballis R, Neyret P, Lustig S. The role of the meniscotibial ligament in posteromedial rotational knee stability. <i>Knee Surg Sports</i> 487 <i>Traumatol Arthrosc.</i> 2015;23(10):2967-2973. 488 31. Perkins B, Gronbeck KR, Yue RA, Tompkins MA. Similar failure rate in immediate post-operative weight bearing versus protected weight bearing following meniscal 490 repair on peripheral, vertical meniscal tears. <i>Knee Surg Sports Traumatol Arthrosc.</i> 	475		versus lateral meniscectomy on the stability of the anterior cruciate ligament-deficient
 478 years: a systematic literature review and meta-analysis. J Bone Joint Surg Am. 479 2012;94(24):2222-2227. 480 28. Noyes FR, Barber-Westin SD. Treatment of meniscus tears during anterior cruciate 481 ligament reconstruction. Arthroscopy. 2012;28(1):123-130. 482 29. Noyes FR, Chen RC, Barber-Westin SD, Potter HG. Greater than 10-year results of 483 red-white longitudinal meniscal repairs in patients 20 years of age or younger. Am J 484 Sports Med. 2011;39(5):1008-1017. 485 30. Peltier A, Lording T, Maubisson L, Ballis R, Neyret P, Lustig S. The role of the 486 meniscotibial ligament in posteromedial rotational knee stability. Knee Surg Sports 487 Traumatol Arthrosc. 2015;23(10):2967-2973. 488 31. Perkins B, Gronbeck KR, Yue RA, Tompkins MA. Similar failure rate in immediate 489 post-operative weight bearing versus protected weight bearing following meniscal 490 repair on peripheral, vertical meniscal tears. Knee Surg Sports Traumatol Arthrosc. 	476		knee. Am J Sports Med. 2010;38(8):1591-1597.
 2012;94(24):2222-2227. 28. Noyes FR, Barber-Westin SD. Treatment of meniscus tears during anterior cruciate ligament reconstruction. <i>Arthroscopy</i>. 2012;28(1):123-130. 29. Noyes FR, Chen RC, Barber-Westin SD, Potter HG. Greater than 10-year results of red-white longitudinal meniscal repairs in patients 20 years of age or younger. <i>Am J</i> <i>Sports Med</i>. 2011;39(5):1008-1017. 30. Peltier A, Lording T, Maubisson L, Ballis R, Neyret P, Lustig S. The role of the meniscotibial ligament in posteromedial rotational knee stability. <i>Knee Surg Sports</i> <i>Traumatol Arthrosc</i>. 2015;23(10):2967-2973. 31. Perkins B, Gronbeck KR, Yue RA, Tompkins MA. Similar failure rate in immediate post-operative weight bearing versus protected weight bearing following meniscal repair on peripheral, vertical meniscal tears. <i>Knee Surg Sports Traumatol Arthrosc.</i> 	477	27.	Nepple JJ, Dunn WR, Wright RW. Meniscal repair outcomes at greater than five
 28. Noyes FR, Barber-Westin SD. Treatment of meniscus tears during anterior cruciate ligament reconstruction. Arthroscopy. 2012;28(1):123-130. 29. Noyes FR, Chen RC, Barber-Westin SD, Potter HG. Greater than 10-year results of red-white longitudinal meniscal repairs in patients 20 years of age or younger. Am J <i>Sports Med.</i> 2011;39(5):1008-1017. 30. Peltier A, Lording T, Maubisson L, Ballis R, Neyret P, Lustig S. The role of the meniscotibial ligament in posteromedial rotational knee stability. Knee Surg Sports <i>Traumatol Arthrosc.</i> 2015;23(10):2967-2973. 31. Perkins B, Gronbeck KR, Yue RA, Tompkins MA. Similar failure rate in immediate post-operative weight bearing versus protected weight bearing following meniscal repair on peripheral, vertical meniscal tears. Knee Surg Sports Traumatol Arthrosc. 	478		years: a systematic literature review and meta-analysis. J Bone Joint Surg Am.
 481 ligament reconstruction. Arthroscopy. 2012;28(1):123-130. 482 29. Noyes FR, Chen RC, Barber-Westin SD, Potter HG. Greater than 10-year results of 483 red-white longitudinal meniscal repairs in patients 20 years of age or younger. Am J 484 Sports Med. 2011;39(5):1008-1017. 485 30. Peltier A, Lording T, Maubisson L, Ballis R, Neyret P, Lustig S. The role of the 486 meniscotibial ligament in posteromedial rotational knee stability. Knee Surg Sports 487 Traumatol Arthrosc. 2015;23(10):2967-2973. 488 31. Perkins B, Gronbeck KR, Yue RA, Tompkins MA. Similar failure rate in immediate 489 post-operative weight bearing versus protected weight bearing following meniscal 490 repair on peripheral, vertical meniscal tears. Knee Surg Sports Traumatol Arthrosc. 	479		2012;94(24):2222-2227.
 482 29. Noyes FR, Chen RC, Barber-Westin SD, Potter HG. Greater than 10-year results of red-white longitudinal meniscal repairs in patients 20 years of age or younger. <i>Am J</i> 484 <i>Sports Med.</i> 2011;39(5):1008-1017. 485 30. Peltier A, Lording T, Maubisson L, Ballis R, Neyret P, Lustig S. The role of the meniscotibial ligament in posteromedial rotational knee stability. <i>Knee Surg Sports</i> 487 <i>Traumatol Arthrosc.</i> 2015;23(10):2967-2973. 488 31. Perkins B, Gronbeck KR, Yue RA, Tompkins MA. Similar failure rate in immediate post-operative weight bearing versus protected weight bearing following meniscal repair on peripheral, vertical meniscal tears. <i>Knee Surg Sports Traumatol Arthrosc.</i> 	480	28.	Noyes FR, Barber-Westin SD. Treatment of meniscus tears during anterior cruciate
 red-white longitudinal meniscal repairs in patients 20 years of age or younger. <i>Am J</i> <i>Sports Med.</i> 2011;39(5):1008-1017. 30. Peltier A, Lording T, Maubisson L, Ballis R, Neyret P, Lustig S. The role of the meniscotibial ligament in posteromedial rotational knee stability. <i>Knee Surg Sports</i> <i>Traumatol Arthrosc.</i> 2015;23(10):2967-2973. 31. Perkins B, Gronbeck KR, Yue RA, Tompkins MA. Similar failure rate in immediate post-operative weight bearing versus protected weight bearing following meniscal repair on peripheral, vertical meniscal tears. <i>Knee Surg Sports Traumatol Arthrosc.</i> 	481		ligament reconstruction. Arthroscopy. 2012;28(1):123-130.
 <i>Sports Med.</i> 2011;39(5):1008-1017. 30. Peltier A, Lording T, Maubisson L, Ballis R, Neyret P, Lustig S. The role of the meniscotibial ligament in posteromedial rotational knee stability. <i>Knee Surg Sports</i> <i>Traumatol Arthrosc.</i> 2015;23(10):2967-2973. 31. Perkins B, Gronbeck KR, Yue RA, Tompkins MA. Similar failure rate in immediate post-operative weight bearing versus protected weight bearing following meniscal repair on peripheral, vertical meniscal tears. <i>Knee Surg Sports Traumatol Arthrosc.</i> 	482	29.	Noyes FR, Chen RC, Barber-Westin SD, Potter HG. Greater than 10-year results of
 30. Peltier A, Lording T, Maubisson L, Ballis R, Neyret P, Lustig S. The role of the meniscotibial ligament in posteromedial rotational knee stability. <i>Knee Surg Sports</i> <i>Traumatol Arthrosc</i>. 2015;23(10):2967-2973. 31. Perkins B, Gronbeck KR, Yue RA, Tompkins MA. Similar failure rate in immediate post-operative weight bearing versus protected weight bearing following meniscal repair on peripheral, vertical meniscal tears. <i>Knee Surg Sports Traumatol Arthrosc.</i> 	483		red-white longitudinal meniscal repairs in patients 20 years of age or younger. Am J
 486 meniscotibial ligament in posteromedial rotational knee stability. <i>Knee Surg Sports</i> 487 <i>Traumatol Arthrosc.</i> 2015;23(10):2967-2973. 488 31. Perkins B, Gronbeck KR, Yue RA, Tompkins MA. Similar failure rate in immediate 489 post-operative weight bearing versus protected weight bearing following meniscal 490 repair on peripheral, vertical meniscal tears. <i>Knee Surg Sports Traumatol Arthrosc.</i> 	484		Sports Med. 2011;39(5):1008-1017.
 <i>Traumatol Arthrosc.</i> 2015;23(10):2967-2973. 31. Perkins B, Gronbeck KR, Yue RA, Tompkins MA. Similar failure rate in immediate post-operative weight bearing versus protected weight bearing following meniscal repair on peripheral, vertical meniscal tears. <i>Knee Surg Sports Traumatol Arthrosc.</i> 	485	30.	Peltier A, Lording T, Maubisson L, Ballis R, Neyret P, Lustig S. The role of the
 488 31. Perkins B, Gronbeck KR, Yue RA, Tompkins MA. Similar failure rate in immediate 489 post-operative weight bearing versus protected weight bearing following meniscal 490 repair on peripheral, vertical meniscal tears. <i>Knee Surg Sports Traumatol Arthrosc.</i> 	486		meniscotibial ligament in posteromedial rotational knee stability. Knee Surg Sports
 post-operative weight bearing versus protected weight bearing following meniscal repair on peripheral, vertical meniscal tears. <i>Knee Surg Sports Traumatol Arthrosc.</i> 	487		Traumatol Arthrosc. 2015;23(10):2967-2973.
490 repair on peripheral, vertical meniscal tears. <i>Knee Surg Sports Traumatol Arthrosc</i> .	488	31.	Perkins B, Gronbeck KR, Yue RA, Tompkins MA. Similar failure rate in immediate
	489		post-operative weight bearing versus protected weight bearing following meniscal
491 2017.	490		repair on peripheral, vertical meniscal tears. Knee Surg Sports Traumatol Arthrosc.
	491		2017.

492	32.	Pernin J, Verdonk P, Si Selmi TA, Massin P, Neyret P. Long-term follow-up of 24.5
493		years after intra-articular anterior cruciate ligament reconstruction with lateral extra-
494		articular augmentation. Am J Sports Med. 2010;38(6):1094-1102.
495	33.	Pujol N, Panarella L, Selmi TA, Neyret P, Fithian D, Beaufils P. Meniscal healing
496		after meniscal repair: a CT arthrography assessment. Am J Sports Med.
497		2008;36(8):1489-1495.
498	34.	Robb C, Kempshall P, Getgood A, et al. Meniscal integrity predicts laxity of anterior
499		cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc.
500		2015;23(12):3683-3690.
501	35.	Rockborn P, Gillquist J. Results of open meniscus repair. Long-term follow-up study
502		with a matched uninjured control group. J Bone Joint Surg Br. 2000;82(4):494-498.
503	36.	Roessler PP, Schuttler KF, Heyse TJ, Wirtz DC, Efe T. The anterolateral ligament
504		(ALL) and its role in rotational extra-articular stability of the knee joint: a review of
505		anatomy and surgical concepts. Arch Orthop Trauma Surg. 2016;136(3):305-313.
506	37.	Rubman MH, Noyes FR, Barber-Westin SD. Arthroscopic repair of meniscal tears
507		that extend into the avascular zone. A review of 198 single and complex tears. Am J
508		Sports Med. 1998;26(1):87-95.
509	38.	Schon JM, Moatshe G, Brady AW, et al. Anatomic Anterolateral Ligament
510		Reconstruction Leads to Overconstraint at Any Fixation Angle: Response. Am J
511		Sports Med. 2016;44(10):NP58-NP59.
512	39.	Seon JK, Gadikota HR, Kozanek M, Oh LS, Gill TJ, Li G. The effect of anterior
513		cruciate ligament reconstruction on kinematics of the knee with combined anterior
514		cruciate ligament injury and subtotal medial meniscectomy: an in vitro robotic
515		investigation. Arthroscopy. 2009;25(2):123-130.

516	40.	Shelbourne KD, Benner RW, Gray T. Results of Anterior Cruciate Ligament
517		Reconstruction With Patellar Tendon Autografts: Objective Factors Associated With
518		the Development of Osteoarthritis at 20 to 33 Years After Surgery. Am J Sports Med.
519		2017 Aug 1:363546517718827. doi: 10.1177/0363546517718827.
520	41.	Shoemaker SC, Markolf KL. The role of the meniscus in the anterior-posterior
521		stability of the loaded anterior cruciate-deficient knee. Effects of partial versus total
522		excision. J Bone Joint Surg Am. 1986;68(1):71-79.
523	42.	Sonnery-Cottet B, Conteduca J, Thaunat M, Gunepin FX, Seil R. Hidden lesions of
524		the posterior horn of the medial meniscus: a systematic arthroscopic exploration of
525		the concealed portion of the knee. Am J Sports Med. 2014;42(4):921-926.
526	43.	Sonnery-Cottet B, Freychet B, Murphy CG, Pupim BH, Thaunat M. Anterior Cruciate
527		Ligament Reconstruction and Preservation: The Single-Anteromedial Bundle
528		Biological Augmentation (SAMBBA) Technique. Arthrosc Tech. 2014;3(6):e689-693.
529	44.	Sonnery-Cottet B, Lutz C, Daggett M, et al. The Involvement of the Anterolateral
530		Ligament in Rotational Control of the Knee. Am J Sports Med. 2016;44(5):1209-1214.
531	45.	Sonnery-Cottet B, Saithna A, Cavalier M, et al. Anterolateral Ligament
532		Reconstruction Is Associated With Significantly Reduced ACL Graft Rupture Rates
533		at a Minimum Follow-up of 2 Years: A Prospective Comparative Study of 502
534		Patients From the SANTI Study Group. Am J Sports Med. 2017;45(7):1547-1557.
535	46.	Stephen JM, Halewood C, Kittl C, Bollen SR, Williams A, Amis AA. Posteromedial
536		Meniscocapsular Lesions Increase Tibiofemoral Joint Laxity With Anterior Cruciate
537		Ligament Deficiency, and Their Repair Reduces Laxity. Am J Sports Med.
538		2016;44(2):400-408.

- 539 47. Strum GM, Fox JM, Ferkel RD, et al. Intraarticular versus intraarticular and
- 540 extraarticular reconstruction for chronic anterior cruciate ligament instability. *Clin*541 *Orthop Relat Res.* 1989(245):188-198.
- 542 48. Tachibana Y, Sakaguchi K, Goto T, Oda H, Yamazaki K, Iida S. Repair integrity
 543 evaluated by second-look arthroscopy after arthroscopic meniscal repair with the
 544 FasT-Fix during anterior cruciate ligament reconstruction. *Am J Sports Med.*
- 545 2010;38(5):965-971.
- 546 49. Thaunat M, Clowez G, Saithna A, et al. Reoperation Rates After Combined Anterior
- 547 Cruciate Ligament and Anterolateral Ligament Reconstruction: A Series of 548
- Patients From the SANTI Study Group With a Minimum Follow-up of 2 Years. *Am J Sports Med.* 2017:363546517708982.
- 550 50. Thaunat M, Jan N, Fayard JM, et al. Repair of Meniscal Ramp Lesions Through a
 551 Posteromedial Portal During Anterior Cruciate Ligament Reconstruction: Outcome
- 552 Study With a Minimum 2-Year Follow-up. *Arthroscopy*. 2016;32(11):2269-2277.
- 553 51. Vap AR, Schon JM, Moatshe G, et al. The Role of the Peripheral Passive Rotation
- 554 Stabilizers of the Knee With Intact Collateral and Cruciate Ligaments: A


555 Biomechanical Study. *Orthop J Sports Med.* 2017;5(5):2325967117708190.


556 52. Westermann RW, Duchman KR, Amendola A, Glass N, Wolf BR. All-Inside Versus

557 Inside-Out Meniscal Repair With Concurrent Anterior Cruciate Ligament

- 558 Reconstruction: A Meta-regression Analysis. *Am J Sports Med.* 2017;45(3):719-724.
- 559 53. Westermann RW, Wright RW, Spindler KP, Huston LJ, Group MK, Wolf BR.
- 560 Meniscal repair with concurrent anterior cruciate ligament reconstruction: operative
- success and patient outcomes at 6-year follow-up. *Am J Sports Med.*
- 562 2014;42(9):2184-2192.

- 563 54. Zaffagnini S, Marcacci M, Lo Presti M, Giordano G, Iacono F, Neri MP. Prospective
- and randomized evaluation of ACL reconstruction with three techniques: a clinical
- and radiographic evaluation at 5 years follow-up. *Knee Surg Sports Traumatol*
- 566 *Arthrosc.* 2006;14(11):1060-1069.

Time since surgery (months)

Combined ACL and anterolateral ligament reconstruction (ALLR) Group

Isolated ACL Reconstruction (ACLR) Group