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Abstract: Citrus pomace is a huge agro-food industrial waste mostly composed of peels and
traditionally used as compost or animal feed. Owing to its high content of compounds beneficial
to humans (e.g., flavonoids, phenol-like acids, and terpenoids), citrus waste is increasingly used
to produce valuable supplements, fragrance, or antimicrobials. However, such processes require
sustainable and efficient extraction strategies by solvent-free techniques for environmentally-friendly
good practices. In this work, we evaluated the antimicrobial and antibiofilm activity of water extracts
of three citrus peels (orange, lemon, and citron) against ten different sanitary relevant bacteria.
Both conventional extraction methods using hot water (HWE) and microwave-assisted extraction
(MAE) were used. Even though no extract fully inhibited the growth of the target bacteria, these latter
(mostly pseudomonads) showed a significant reduction in biofilm biomass. The most active extracts
were obtained from orange and lemon peel by using MAE at 100 ◦C for 8 min. These results showed
that citrus peel water infusions by MAE may reduce biofilm formation possibly enhancing the
susceptibility of sanitary-related bacteria to disinfection procedures.

Keywords: citron; lemon; orange; solvent-free extraction; pseudomonads; staphylococci; Escherichia

1. Introduction

Humans contribute to the microbiome biodiversity by being the main reservoirs and carriers
of various microorganisms. As some of these microorganisms may occasionally cause severe
infections [1,2], various prophylaxis measures have to be implemented to reduce the microbial load.
Of particular significance is an approach to reduce the microbial burden in confined environments
such as schools, hospitals, and even general medical devices [3–5]. Among the main microorganisms
with hygienic-sanitary interest are Staphylococcus and Pseudomonas which can cause several human
diseases. They also associated with an increased resistance to a number of antibiotics. Staphylococci
are naturally present as saprophytes on the skin and mucous membranes of mammals and generally
only a few species are pathogenic, causing serious infections to humans [6]. The pathogenicity
of saprophytic bacteria is due to alteration of the microbiome, as in the case of Staphylococcus
epidermidis and S. saprophyticus which may cause atopic dermatitis [7] and urinary tract infections [8],
respectively. Unlike staphylococci, pseudomonads can easily adapt to substrates with poor nutrients
(i.e., cosmetics) or grow on materials (i.e., medical devices) in contact with human skin or mucosae [1].
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Recently, in addition to the most feared pathogen, Pseudomonas aeruginosa, some pseudomonads species
(e.g., P. fluorescens) which are generally considered non-pathogenic are understood to be opportunistic
bacteria as they trigger pathogenesis in debilitated and immunocompromised patients [9].

Most of these pathogenic bacteria form biofilms during their growth through distinct cyclic
phases of attachment and adhesion to the substrate, proliferation and maturation, and finally
a dispersion phase involving detachment of cells that initiate a new biofilm [10]. Biofilm formation
is the cause of increased morbidity and mortality in hospital infections. As it is also closely linked
to infection persistence and resistance to common antimicrobial agents, its relevance to disinfection
strategies is gaining significance [11,12]. Therefore, there is a growing interest in research directed
to the identification of new compounds or innovative control strategies against biofilm formation.
Antimicrobial compounds extracted from cheap natural materials (i.e., agro-food industrial waste)
through sustainable methodologies have been increasingly considered as new sources to meet this need.
Among the known advantages of this strategy is the possibility to hinder microbial growth without
the risk of yielding drug-resistant strains [13]. The sustainable utilization of citrus fruit processing
waste (mostly peels), which at worldwide level may be estimated in about 14 × 106 tons per year [14],
could be a promising strategy in bacterial biofilm control. In fact, citrus waste disposal is not only
burdensome for manufacturing factories but constitutes an environmental threat because of the high
level of fermentable sugars in citrus pomace [14].

Moreover, the recovery of high value products from citrus waste may increase the economic
yield of the citrus processing industries. Recently, Citrus spp. extracts showed several biological
activities [15–17] including antimicrobial effects against pathogenic bacteria and fungi [18]. However,
antimicrobial compounds have been recovered by extraction with organic solvents or as essential
oils. To avoid the use of organic solvents, the processing of citrus waste for obtaining enriched
extracts therefore targeted the water-soluble antimicrobial substances. Innovative “green” strategies
(water extraction, supercritical fluids, microwave assisted extraction (MAE)) have, however,
been shown to overcome such limitations (i.e., organic solvent utilisation) and provide higher
yields and energy savings [19]. Even though solvent-free MAE has been investigated to extract
antimicrobial plant compounds [20], very limited studies have been carried out on citrus extracts [13,21].
Furthermore, the extraction of citrus peels by using water or saline solution allowed antimicrobial
molecules against oral bacteria to be obtained, such as the glycoside phlorin (3,5-dihydroxyphenyl
β-D-glucopyranoside) [22,23] and other flavonoids. To increase the antimicrobial activity of water
extracts of citrus peels, the time and temperature of the extraction process should also be carefully
considered. On the basis of preliminary studies on antibiofilm activity of some citrus extracts [24,25],
further detailed studies must be considered to implement a successful strategy that counteract microbial
persistence. On this basis, the present study assessed aqueous extracts obtained from peels of highly
widespread citrus fruits (lemon and orange) and citron (generally used in drink and candied fruit
manufacturing). The extracts obtained through both prolonged infusion in warm water and MAE at
a high temperature were assayed for their antibacterial and antibiofilm activities against saprophytic
staphylococci and pseudomonads.

2. Experimental Section

2.1. Plant Material

Citrons (Citrus medica [L].cv. Diamante) were kindly provided by “Consorzio del Cedro di
Calabria” Association (Santa Maria del Cedro, Italy); sweet oranges (C. sinensis [L.] Osbeck cv.
Washington Navel) were donated by the organic farm Gabriella Caruso s.r.l. (Corigliano Calabro, Italy);
and lemons (C. lemon [L.] Burm cv. Sfusato di Amalfi) were collected in a personal orchard (Caputo L.,
Cellamare, Italy). After washing twice with distilled water, fruits (ca. 2 kg) were dried at room
temperature for 1 h and peeled. The recovered peels of each fruit sample were immediately cooled on
ice and subsequently freeze-dried. The lyophilized peel samples were finely grounded with Osterizer
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12-speed blender (Osteriz, Boca Raton, FL, USA) to obtain a fine powder and stored at −20 ◦C in air
tight bags for further analyses.

2.2. Hot Water Extraction (HWE)

HWE was performed as reported by Louche et al. [22] with minor modification. Briefly, 2 g of
each lyophilized peel was accurately (±0.01 g) weighed and transferred into 50 mL Falcon™
tubes with screw caps containing 24 mL of pre-heated MilliQ water (Merck Millipore, Darmstadt,
Germany). The extraction mixture was refluxed at 50 ◦C for 24 h in a Thermomixer R (Eppendorf,
Westbury, NY, USA) shaking at 400 rpm. At the end of extraction, samples were centrifuged at
13,000 rpm for 15 min followed by each supernatant sterile-filtered and freeze-dried.

2.3. Microwave-Assisted Extraction (MAE)

Peel powder (1 g) of each citrus peel was dissolved in 12 mL of MilliQ water and extracted using
CEM Discover Microwave (CEM Corporation, Cologno al Serio, Italy) operating at 10 W and under
the following three experimental conditions: 80 ◦C for 20 min (MAE1); 100 ◦C for 8 min (MAE2);
or 100 ◦C for 20 min (MAE3). For each sample was extracted in duplicate and pooled to obtain a total
volume of 24 mL. As with the HWE, samples were centrifuged at 13,000 rpm for 15 min, supernatant
sterile-filtered and freeze-dried. All extractions were performed in triplicate.

2.4. Yield (%) of Peel Extracts and Preparation for Bioassay

The percent yield of different citrus peel extracts from the HWE and MAE was assessed from
comparative freeze-dried extract obtained (in triplicate) with respect to the respective freeze-dried peel
as a starting material. The lyophilized extracts were dissolved in one tenth-volume with MilliQ water
and centrifuged again. The supernatants were sterile-filtered through 0.22 µm cellulose acetate syringe
filters (Whatman Inc., Dassel, Germany) and stored at −20 ◦C until their use.

2.5. Bacteria and Culture Conditions

Target strains used in antimicrobial and antibiofilm assays were obtained from the ISPA-CNR
microbial collection stored at −80 ◦C. Before their use, all strains were freshly cultured overnight
under aerobic conditions as shown in Table 1. Growth media were purchased from Thermo Fisher
Scientific (Rodano, Italy).

Table 1. Target strains, growth media and culture conditions.

Target Strain Growth Conditions

Staphylococcus epidermidis UR63

Tryptic Soy Broth (TSB), 37 ◦C, 130 rpmStaphylococcus saprophyticus UR18
Staphylococcus caprae DSM 20608

Staphylococcus xylosus DSM20266T

Pseudomonas fluorescens NCPPB1964

Luria Bertani (LB), 30 ◦C, 130 rpm
Pseudomonas fluorescens ITEM 17298
Pseudomonas fluorescens ITEM 17299
Pseudomonas fluorescens ITEM 84094

Pseudomonas putida ITEM 17297

Escherichia coli K12 Luria Bertani (LB), 37 ◦C, 130 rpm

2.6. Antimicrobial Assay

Extracts were first assayed for antimicrobial activity against the target strains using the agar
disk diffusion assay method according to the EUCAST guidelines [26]. Briefly, a sterile cotton swab
soaked with 0.5 McFarland solution of each strain was spread on Petri dishes with Muller Hinton
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agar (tryptone, 17.5 g/L; beef extract, 2 g/L; soluble starch, 1.5 g/L and Agar, 17 g/L). Then, cellulose
disks (Oxoid) soaked with 20 µL of each concentrated extract were placed on inoculated agar surface.
Disks containing sterile MilliQ water and 30 µg of chloramphenicol (CHF) were included as negative
and positive controls. Plates were incubated at 4 ◦C until they were ready and transferred to 37 ◦C
for 16–20 h incubation. Diameters (nearest millimeter) of inhibition zones around the assayed disks
were measured with a caliper from the back of plate held above a dark background. Subsequently,
the extracts without antimicrobial activity were evaluated for their inhibitory effect by studying the
microbial growth kinetics of the tested strains. Overnight cultures of each strain were centrifuged
at 9000 rpm for 5 min and the pellet was washed twice with sterile saline solution (NaCl 0.95%);
after washing steps, cells were resuspended in sterile NaCl solution to reach the concentrations
of 8 log colony forming unit (cfu)/mL for Escherichia coli and Pseudomonas spp. (corresponding
to the optical density, OD600nm = 0.3) and 7 log cfu/mL for Staphylococcus spp. (OD600nm = 0.147).
Then, each culture solution was inoculated at a final concentration of ca. 3 log cfu/mL in 96-well
flat-bottomed microtiter plates (Corning™, Corning, NY, USA) filled with the appropriate medium
(100 µL; Table 1) supplemented with 20 µL of MilliQ water (control), HWE or MAE extracts. Microtiter
plates were incubated at the optimal growth temperature (Table 1) for 24 h and cell growth was
determined at 10 min-time intervals by measuring OD at 600 nm using an automated Microplate
reader (Varioskan Flash, Thermo Fisher, Milan, Italy). Maximum specific growth rate (µABSmax),
lag time (λABS), and maximum absorbance (ABSmax) were estimated as described by Dalgaard and
Koutsoumanis [27]. All tests were performed in triplicate.

2.7. Static Biofilm Formation

Biofilm formation was assayed in 96-well microtiter plates and quantified as described by
O’Toole [10]. Briefly, control and treated samples, prepared in triplicates as described above,
were incubated at 30 and 37 ◦C for 48 h. After measuring OD at 600 nm after 24 and 48 h incubation,
plates were carefully removed and each well was washed twice with distilled water. The biofilm cells
adhering to the bottom and side of each well were then stained with crystal violet (CV; 0.1%, w/v).
After a second washing step, biofilm-associated crystal violet was solubilized with 30% acetic acid
(v/v) and its optical density was measured at 570 nm using a Microplate reader (Varioskan Flash).

2.8. Statistical Analysis

A two-way analysis of variance (ANOVA) was conducted with SPSS 20.0 IMB–SPSS statistic
software version 20 (IMB corp., Chicago, IL, USA) to examine the effects of citrus peel origin and
extraction methods. The relationship between time and temperature levels with the growth kinetic
parameters of each treated target strains were assessed for the extracts. The same analysis was
performed in order to evaluate the effects on planktonic cell optical density and related biofilm
biomass. Multi-comparison analyses among mean values was performed by using Fisher’s least
significant difference test at 95% Interval Confidence.

3. Results and Discussion

Citrus is an important agricultural crop mainly used in food industries for fresh juice production.
The resulting peel and pomaces in citrus processing are by-products that have been used as a source of
molasses, pectin, and fragrances [21], and antioxidant and antimicrobial compounds such as phenolic
acids and flavonoids [19,28,29]. The conventional extraction of these compounds is usually performed
by refluxing peels in large quantities of organic solvents such as ethanol, methanol, ethyl acetate, and
acetone. Reports on the phytochemical analyses of these extracts have shown the presence of flavonoids,
saponins, tannins, alkaloids, and terpenoids [13]. During the last decade, the extraction of citrus
by-products from dried peels/pomace with hot water has increasingly taken hold to allow improved
recovery (mostly polyphenols and phenolics) and reduce the extraction time [19,30–33]. Accordingly,
we compared herein the antimicrobial and antibiofilm activity of hot water extracts obtained from three
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different citrus peels. The extractions were performed by either MAE (at two temperature settings)
or the conventional extraction method (HWE). MAE methods are faster than conventional heating
processes because microwave energy is delivered efficiently to materials with polar or dipole molecules
(such as polyphenols, glycosides, and minerals) through molecular interaction with the electromagnetic
field; they also offer a rapid transfer of energy to both solvent and raw plant materials [34]. MAE is not
widely used to extract polyphenols from plant tissues in water due to its high dielectric factor and low
dispersion coefficient [29,34,35]. Nevertheless, its application under these conditions could favor the
extraction of flavonoid glycosides, widespread in citrus peels and previously extracted with prolonged
hot infusion [30,32,36].

In the present study, the different extraction methodologies employed did not lead to significant
differences in extraction yield in relation to the citrus peel origin or extraction procedures (Figure 1).
These values, ranging from 18.0% to 21.5% (as dry matter), were consistent with those previously
found by other authors for acetone and ethanol extracts from mandarin peels [37,38] and generally
used for other citrus peels. However, concentrated extracts (corresponding to an average concentration
of 157 ± 14 µg/mL) showed no inhibitory halos on disc diffusion plates, partially in accordance
with data previously reported for aqueous extracts from Brazilian medicinal plants mostly containing
tannins [39,40]. Nevertheless, the standardized inhibitory agar diffusion test relies on endpoint growth
determination and it is not intended for monitoring microbial kinetics with high temporal resolution
in the presence of putative antimicrobial extracts [26]. In fact, inhibitory compounds may exert specific
effects on growing microorganisms by impairing cell wall synthesis or substrate uptake and interfering
with nucleotides and proteins synthesis [41]. Accordingly, MAE- and HWE-extracts were evaluated
for their action on growth kinetics and related primary growth model parameters of target strains in
comparison with the untreated control cultures (Tables 2 and 3). A two-way ANOVA was conducted to
examine the effect of three peel origins and five different peel extracts on growth kinetic parameters of
several bacterial strains. There was a statistically significant interaction (p < 0.001) between the effects
of citrus peel origin and extract types on most growth kinetic parameters. In general, simple main
effects analysis showed that lemon and orange peel MAE-extracts significantly reduced growth rate
and maximum growth levels, and extended lag time of most tested strains compared to the control
and HWE-extracts.
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Figure 1. Mean yield percentages (as dry matter) of water extracts obtained from citron, lemon, and
orange peels upon hot water extraction (HWE) (50 ◦C × 24 h) and microwave assisted extraction (MAE)
(80 ◦C × 20 min, 100 ◦C × 8 min, 100 ◦C × 20 min). Bars represent standard deviations (n = 3).
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For the sake of brevity, only some more significant growth kinetics have been reported for up
to 21 h of incubation in Figure 2. Overall, despite the lush growth of untreated cultures, MAE- and
HWE-extracts exerted an inhibiting action on target strains resulting in a significant (p < 0.01) increase
of lag time (λABS) and reduction of ABSmax (Table 2 and Figure 2). As shown in Figure 2A, citron peel
MAE-extracts (80 ◦C × 20 min and 100 ◦C × 8 min) reduced the maximum E. coli K12 turbidity levels
by an average of 0.180 OD units compared to the remaining samples even though their lag times were
similar (Table 3). All lemon peel extracts were active in efficiently controlling growth rate and the final
microbial turbidity of psychrotrophic P. fluorescens ITEM 17298 (Figure 2B). While all MAE-extracts
from orange peels efficiently kept P. fluorescens ITEM 17298 growth very low (Figure 2D), only extracts
processed by MAE at 100 ◦C for 8 min were significantly (p < 0.001) effective in reducing the final
optical density of S. caprae (Figure 2C). Hence, the optimum condition to extract growth modulators
would be to lower the temperature to 80 ◦C and increase extraction time to 20 min.
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Figure 2. Growth kinetics of some tested strains amended with extracts from citron(A), lemon (B) and
orange (C,D) peels by hot water extraction (50 ◦C × 24 h) and microwave assisted extraction (80 ◦C ×
20 min, 100 ◦C × 8 min, 100 ◦C × 20 min); N.T.: not treated. Bars represent standard deviation.

The primary growth model parameters are generally associated with bacterial adaptation
to growth environment, antimicrobial sub-lethal concentrations, and nutrient depletion or toxic
metabolite accumulation, respectively [42,43]. In our work, some target strains (P. fluorescens 84094,
P. fluorescens NCPPB 1964, S. saprophyticus UR18), mostly growing in the presence of MAE extracts,
showed a sharp λABS increase followed by a relevant ABSmax decrease. Conversely, at the same
conditions, other strains (P. fluorescens ITEM 17298 and ITEM 17299, P. fluorescens NCPPB 1964)
recorded a marked delayed growth and higher final turbidity increases than the related untreated
control cultures. This biphasic growth pattern (hormetic effect) resembled that found in bacteria treated
with sub-lethal concentrations of antibiotics generally leading to selective enrichment and overgrowth
of tolerant bacteria and enhancing dissemination of multidrug resistance [44]. On the other hand,
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an evident inhibitory effect was recorded for the cultures of the strains ITEM 17298, NCPPB 1964,
and UR18 grown in the presence of MAE-lemon and -orange extracts that displayed a significant
extension of lag time as well as a reduction of growth rate in comparison with untreated control
cultures. Similar effects were also reported for registered water extracts (mostly containing flavonoid
glycosides, terpenoids, and phenolic acids) from both Stevia rebaudiana and citrus extracts against
Listeria innocua and different spoilage bacteria and yeasts, respectively [45,46].

Table 2. Lag phase (λABS) and maximum optical density (ABSmax) shown by bacterial cultures
amended with different aqueous extracts of citron, lemon, and orange peels.

Bacterial Strain
Citron Lemon Orange LSD Citron Lemon Orange LSD

Extracts λABS (h) ABSmax

E. coli K12

N.T. 7.4 7.3 6.9

n.s.

0.711 0.699 0.664

0.109
HWE 9.1 8.6 7.7 0.642 0.785 1.249
MAE1 10.1 10.8 9.5 0.368 0.733 1.186
MAE2 9.4 9.7 8.9 0.532 0.800 1.000
MAE3 9.1 11.1 13.8 0.679 0.787 1.180

P. fluorescens 84094

N.T. 12.3 12.1 11.5

1.9

0.687 0.676 0.642

0.180
HWE 13.4 7.9 13.8 0.805 0.999 0.611
MAE1 12.0 7.6 12.1 1.141 1.036 0.929
MAE2 13.8 6.8 12.4 0.747 1.042 0.844
MAE3 14.2 8.1 12.2 0.654 0.966 0.909

P. fluorescens ITEM 17298

N.T. 13.5 13.2 12.6

1.5

0.541 0.532 0.506

0.057
HWE 13.8 13.0 10.8 0.678 0.475 0.549
MAE1 15.5 14.3 10.8 0.900 0.298 0.695
MAE2 15.6 15.5 10.7 0.735 0.269 0.559
MAE3 14.9 14.7 10.7 0.800 0.291 0.523

P. fluorescens ITEM 17299

N.T. 13.1 12.8 12.2

1.6

0.549 0.540 0.513

0.189
HWE 14.8 14.0 9.7 1.091 1.174 0.772
MAE1 14.3 14.7 9.8 1.010 0.897 0.557
MAE2 14.3 13.7 11.1 0.956 0.982 0.619
MAE3 15.2 14.2 11.5 0.934 0.823 0.524

P. fluorescens NCPPB 1964

N.T. 13.5 13.2 12.6

2.0

0.41 0.41 0.39

0.034
HWE 20.0 14.0 10.3 0.304 0.516 0.350
MAE1 20.0 15.2 21.6 0.293 0.430 0.176
MAE2 19.4 14.9 25.5 0.304 0.427 0.161
MAE3 16.9 15.0 31.5 0.475 0.420 0.155

P. putida ITEM 17297

N.T. 14.9 14.6 14.1

3.2

0.399 0.392 0.372

0.576
HWE 16.3 9.8 11.9 0.846 0.994 1.528
MAE1 16.5 9.2 13.9 1.592 0.780 1.414
MAE2 16.4 7.8 13.6 1.569 0.877 1.426
MAE3 16.5 5.2 13.2 1.586 0.930 1.402

S. caprae DSM 20608

N.T. 14.0 13.8 13.1

1.6

0.713 0.700 0.666

0.210
HWE 13.6 7.3 2.4 1.198 1.293 0.824
MAE1 13.3 4.9 8.1 1.108 1.153 0.693
MAE2 13.1 5.1 9.3 1.163 1.229 0.349
MAE3 13.1 5.7 8.6 1.255 1.206 0.648

S. epidermidis UR63

N.T. 9.3 - -

1.0

0.902 - -

0.125
HWE 8.3 - - 1.224 - -
MAE1 7.0 - - 1.248 - -
MAE2 6.6 - - 1.253 - -
MAE3 7.8 - - 1.217 - -

S. saprophyticus UR18

N.T. - 7.0 6.9

1.3

- 0.354 0.348

0.038
HWE - 11.1 9.5 - 0.362 0.342
MAE1 - 9.3 10.8 - 0.406 0.400
MAE2 - 10.9 10.5 - 0.426 0.318
MAE3 - 9.8 14.2 - 0.420 0.414

S. xylosus DSM20266T

N.T. 11.3 11.1 -

1.2

0.901 0.885 -

0.088
HWE 13.4 3.9 - 1.079 1.063 -
MAE1 12.2 8.8 - 1.108 1.041 -
MAE2 12.2 9.0 - 1.199 0.430 -
MAE3 12.2 8.0 - 1.231 0.807 -

N.T.: Not treated; HWE: Extract obtained at 50 ◦C × 24 h; MAE1: Extract obtained at 80 ◦C × 20 min; MAE2: Extract
obtained at 100 ◦C × 8 min; MAE3: Extract obtained at 100 ◦C × 20 min. Mean values from the same strain were
compared by Fisher’s least significant difference (LSD) multiple-comparison test (95% Confidence Intervals).
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Table 3. Growth rates (µABS) and duplication time (DT) shown by bacterial cultures amended with
different aqueous extracts of citron, lemon, and orange peels.

Header
Citron Lemon Orange LSD Citron Lemon Orange LSD

Extracts µABS (h−1) DT (h)

E. coli K12

N.T. 0.231 0.227 0.216

0.081

4.3 4.2 4.0

1.9
HWE 0.420 0.123 0.206 1.6 5.8 3.5
MAE1 0.294 0.160 0.220 2.3 4.1 3.3
MAE2 0.402 0.220 0.212 1.7 3.5 3.4
MAE3 0.426 0.173 0.394 1.6 3.9 1.8

P. fluorescens 84094

N.T. 0.234 0.230 0.219

0.023

3.3 3.2 3.0

0.5
HWE 0.230 0.166 0.250 2.9 4.3 2.9
MAE1 0.225 0.168 0.254 3.0 4.3 2.8
MAE2 0.214 0.163 0.256 3.1 4.1 2.8
MAE3 0.202 0.165 0.261 3.3 4.0 2.7

P. fluorescens ITEM 17298

N.T. 0.215 0.211 0.201

0.023

3.7 3.6 3.4

0.5
HWE 0.184 0.192 0.167 3.9 3.5 4.3
MAE1 0.309 0.141 0.204 2.3 4.9 3.5
MAE2 0.277 0.135 0.174 2.6 5.0 4.1
MAE3 0.258 0.139 0.169 2.8 5.0 4.2

P. fluorescens ITEM 17299

N.T. 0.213 0.209 0.199

0.056

3.6 3.5 3.3

0.7
HWE 0.313 0.331 0.194 2.3 2.2 3.7
MAE1 0.289 0.314 0.155 2.5 2.3 4.6
MAE2 0.302 0.315 0.194 2.4 2.1 3.7
MAE3 0.293 0.286 0.182 2.4 2.4 3.9

P. fluorescens NCPPB 1964

N.T. 0.162 0.159 0.152

0.015

6.5 3.9 6.3

1.1
HWE 0.113 0.176 0.110 5.6 4.0 12.3
MAE1 0.128 0.164 0.056 7.0 4.2 14.1
MAE2 0.106 0.161 0.049 3.3 4.2 16.4
MAE3 0.215 0.159 0.042 3.8 3.8 3.6

P. putida ITEM 17297

N.T. 0.212 0.208 0.198

0.071

2.0 3.3 2.1

1.3
HWE 0.351 0.219 0.344 1.4 4.0 1.6
MAE1 0.514 0.172 0.438 1.4 4.2 1.7
MAE2 0.513 0.163 0.422 1.4 5.2 1.8
MAE3 0.528 0.141 0.392 2.1 2.0 1.9

S. caprae DSM 20608

N.T. 0.378 0.372 0.353

0.060

2.1 1.9 1.9

0.3
HWE 0.334 0.375 0.349 2.4 2.4 1.7
MAE1 0.305 0.277 0.399 2.3 2.3 1.9
MAE2 0.306 0.292 0.359 2.3 2.1 1.9
MAE3 0.315 0.315 0.402 1.3 -

S. epidermidis UR63

N.T. 0.549 - -

0.057

1.5 - -

0.4
HWE 0.494 - - 1.7 - -
MAE1 0.414 - - 1.7 - -
MAE2 0.419 - - 2.0 - -
MAE3 0.352 - - - - -

S. saprophyticus UR18

N.T. - 0.155 0.153

0.025

- 4.8 4.7

0.5
HWE - 0.169 0.206 - 4.2 3.5
MAE1 - 0.164 0.220 - 4.4 3.3
MAE2 - 0.148 0.212 - 4.9 3.4
MAE3 - 0.163 0.394 - 4.4 1.8

S. xylosus DSM20266T

N.T. 0.341 0.336 -

0.032

2.1 2.0 -

0.30.5
HWE 0.234 0.332 - 3.1 2.0 -
MAE1 0.203 0.407 - - 4.8 4.7
MAE2 0.220 0.272 - - 4.2 3.5
MAE3 0.221 0.274 - - 4.4 3.3

N.T.: Not treated; HWE: Extract obtained at 50 ◦C × 24 h; MAE1: Extract obtained at 80 ◦C × 20 min; MAE2: Extract
obtained at 100 ◦C × 8 min; MAE3: Extract obtained at 100 ◦C × 20 min. Mean values from the same strain were
compared by Fisher’s least significant difference (LSD) multiple-comparison test (95% Confidence Intervals).

As widely reported, pseudomonads and staphylococci are able to form biofilm on biotic and
abiotic surfaces. Biofilm phenotypes are resistant to common control strategies and consequently
showed an increased persistence in the environment. In order to find novel antibiofilm agents,
each extract was then assayed for their ability to counteract biofilm formation. Overall, untreated
cultures produced high amounts of biofilm biomass (0.4 < OD570nm < 4), except for E. coli that produced
a low amount of biofilm (OD570nm < 0.150; Figure 3F). Two-way ANOVA analysis highlighted that
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the interaction between the experimental factors, plant origin of the peels, and the extraction method
applied, significantly (p < 0.001) affected the biofilm biomass of all tested strains except for E. coli K12
and S. saprophyticus UR18 strains. By contrast, biofilm formation by NCPPB 1964, ITEM 17297, and
DSM 20608 strains were reduced regardless of the assayed extract (Figures 3 and 4). The combined
treatment (peel origin × extraction procedure) resulted in higher than 50% reduction on only five
tested strains that are also considered strong biofilm producers (Figures 3 and 4). Indeed, all extracts
fully counteracted ITEM 17297 biofilm formation, whereas orange peel MAE-extracts and citron
peel HWE-extracts were similarly active against P. fluorescens ITEM 17298, S. epidermidis UR63, and
S. saprophyticus UR18, respectively. Comparable biofilm reduction values were registered only in
the cultures of the strains ITEM 17298, ITEM 17299, UR63, and UR18 treated with the citron peel
HWE-extracts; by contrast citron extract obtained at 100 ◦C by MAE was highly active against ITEM
17299 and UR63 (Figures 3 and 4).

These results were partially consistent with those observed on growth patterns described in
the first 21 h of incubation. Indeed, it is noteworthy that biofilm formation of the strain ITEM
17297 was fully inhibited by all extracts among which those from lemons affected bacterial lag
phase and growth rate (Tables 2 and 3, and Figure 3). On the other hand, NCPPB 1964 displaying
a significant extension of lag time as well as a reduction of growth rate in the presence of lemon
and orange MAE-extracts (Tables 2 and 3, and Figure 2D) showed a scarce but significant (p < 0.05)
inhibition of biofilm formation (25% on average; Figure 3A). In addition, even though DSM 20608
biofilm was moderately inhibited by all extracts (by about 29%), its growth rate and final growth
level were negatively affected only by lemon peel extracts (80 ◦C × 20 min and 100 ◦C × 8 min)
and orange peel extract (100 ◦C × 8 min), respectively (Figure 2C and Table 3). Likewise, in the
presence of citron peel HWE-extract and orange and lemon peel MAE-extracts ITEM 17298 showed
a sharp reduction in growth rate compared to not treated control culture (Table 3 and Figure 2B),
whereas biofilm biomass was highly lowered by all orange extracts (Figure 3C). Conversely, all
lemon extracts counteracting the growth of the same strain did not show any inhibitory effect on
its biofilm formation. Interestingly, citron extracts negatively affected both growth rate and biofilm
formation of S. epidermidis UR63 (Table 3 and Figure 4B). Even though all tested citrus peel water
extracts had no bactericidal effect against several strains, some of them (mostly MAE-extracts) can
control bacterial growth parameters and negatively affect biofilm formation of the susceptible strains.
Several studies have shown that plant-derived compounds and antimicrobials at sub-lethal doses
impair adhesion and bacterial biofilm formation while inducing planktonic growth of a hypermotile
phenotype [47–49]. This strategy can be used to disarm microorganisms of sanitary interest without
killing them or opposing a selective pressure on them but reducing their virulence or increasing
susceptibility [50]. Likewise, polyphenols have received some attention regarding their antimicrobial
effect upon biofilms produced by S. epidermidis [31]; tannins from water-extracts of some Brazilian
medicinal plants allowed a bacteriostatic behaviour of pathogen Pseudomonas aeruginosa but strongly
reduced its biofilm biomass [40]. Considering coumarins, Villa and Cappitelli [51] have recently
proposed them as alternative therapeutic strategies based on their ability to block the quorum sensing
signalling systems and to inhibit the formation of biofilms in clinically relevant pathogens. Similar
evidence was also found for flavonoids abundant in citrus peels, like naringenin against Streptococcus
mutans and phenolic acids like cinnamic acid against drug multi-resistant P. aeruginosa PAO1 [52].
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P. fluorescens ITEM 17298 (C), P. fluorescens ITEM 17299 (D), P. putida ITEM 17297 (E), and E. coli
K12 (F) in the presence of different citrus peel water extracts. Mean values (bars ± standard deviation)
from the same strain were compared by Fisher’s least significant difference (LSD) multiple-comparison
test (95% Confidence Intervals); N.T.: not treated.
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to conventional HWE, the application of MAE performed at 100 °C significantly affect the number of 
strains susceptible mostly to orange and lemon citrus peel extracts by significantly reducing growth 
rate and lag phase. Nevertheless, only some treated susceptible strains (i.e., ITEM 17297 and UR63) 
formed significantly lesser biofilm amounts than those found in untreated control cultures. 
Importantly, very high reductions in biofilm biomass were registered in bacterial cultures with at 
least one growth parameter impaired by the citrus peel extracts. These results, beyond suggesting a 
possible methodology to screen high numbers of extracts using turbidimetry data, pave the way for 
a sustainable usage of citrus peel extracts to hinder bacterial biofilm formation. 
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Figure 4. Biofilm biomass produced by S. caprae DSM 20608 (A), S. epidermidis UR63 (B), S. saprophyticus
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Mean values (bars ± standard deviation) from the same strain were compared by Fisher’s least
significant difference (LSD) multiple-comparison test (95% Confidence Intervals); N.T.: not treated.

4. Conclusions

In this study, aqueous extracts obtained from lemon, orange, and citron peels by either HWE
or three MAE procedures were assayed for their antimicrobial and antibiofilm activities against
several human skin commensal bacteria and opportunistic pathogens correlated with nosocomial
infections. Even though bactericidal effects were not observed, citrus water extracts showed inhibitory
activity by negatively affecting lag time, growth rate, and final growth level of most target strains.
Compared to conventional HWE, the application of MAE performed at 100 ◦C significantly affect the
number of strains susceptible mostly to orange and lemon citrus peel extracts by significantly reducing
growth rate and lag phase. Nevertheless, only some treated susceptible strains (i.e., ITEM 17297 and
UR63) formed significantly lesser biofilm amounts than those found in untreated control cultures.
Importantly, very high reductions in biofilm biomass were registered in bacterial cultures with at
least one growth parameter impaired by the citrus peel extracts. These results, beyond suggesting
a possible methodology to screen high numbers of extracts using turbidimetry data, pave the way for
a sustainable usage of citrus peel extracts to hinder bacterial biofilm formation.
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Abbreviations

ABSmax Maximum absorbance
DT Duplication time
HWE Hot water extraction
λABS Lag time
LSD Least significant difference
HWE Hot water extraction
MAE Microwave-assisted extraction
µABSmax Maximum specific growth rate
N.T. Not treated
CFH Chloramphenicol
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