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This thesis concerns the exploration of chemical space in chemical-related literature using text-
mining. We begin this chapter by introducing chemical information extraction as a discipline. We 
continue by defining chemical naming conventions. Following we describe chemical information 
sources. The sources are categorized into chemical databases and chemical-related publications. 
The section continues by introducing methodologies to assess the quality of chemical databases. 
We continue by introducing text-mining as a means to automate the extraction of information 
from chemical-related publications. Furthermore, we present the benefits and challenges to only 
extract relevant information from chemical-related publications. This chapter concludes by 
providing the aim and outline of this thesis. 

The chemistry domain 

The introduction of the internet has resulted into a migration from hardcopy scientific literature 
to digital electronic publications. This migration has dramatically affected the research in both 
scientific and commercial environments [1]. The availability of machine-readable encoding 
systems in the chemistry field (since the 1940s) enabled a faster migration within the chemistry 
field [1]. Similarly, the number of patents published in the chemistry domain has quintupled 
annually since the early 1990s (from 1000 per year to around 5000 per year) [2]. 

Interestingly, researchers in the chemistry field read more scientific publications per person than 
researchers in other domains, except in the life sciences [3]. Due to the complexity and variety 
of chemistry-related literature, they spend the most amount of time on reading scientific 
literature as compared to other researchers [1]. Among the most retrieved information in 
chemistry is the identification of compounds of interest in chemical documents based on the 
structure of the compound [1]. Such information can be used for chemical predictive modelling 
[4] or Quantitative Structure Activity Relationships (QSAR) modelling that can be used in early 
stages of medicinal chemistry activities [2, 5]. The structure of chemical compounds is essential 
for chemical research and in most cases chemists focus on chemical structure or substructure for 
exploring the chemical domain [1]. 

A publication in the chemistry domain (be it a journal article or patent) can contain chemical-
related information in a variety of ways. The information can be stored in the textual part of the 
document using different chemical identifiers (naming conventions). Additionally, the 
information can also be stored in chemical diagrams (chemical scaffolds or images) or tables. In 
some cases, this information can only be extracted by combining information from all of the 
above (such as for Markush compounds in patents) [1]. 

The ever-swelling volume of chemical-related documents in the form of scientific articles and 
patents makes it increasingly hard to manually find and extract relevant information from such 
texts [6]. These sources contain a large set of unstructured information which is cumbersome to 
process manually [1]. In order to overcome this obstacle different approaches can be taken into 
consideration. These approaches include mining currently available commercial or public 
chemical databases, and using techniques such as chemical text-mining to extract information 
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from the textual part of the documents. The different representations of chemical names in text 
make these approaches extremely challenging [7]. 

Chemical entities extracted through text-mining can be valuable for information retrieval systems 
as they can point to documents mentioning the compound. They can also be used along with 
additional relevant information (e.g., biological activities extracted from text) to assess 
specialized search engines with specific well-defined queries [1]. The same information can be 
used to extend or curate available databases [8]. These systems become even more valuable if 
they can identify the relevant compounds within a document from the wide range of extracted 
compounds [9, 10]. Using patent analysis, the information can be used to understand compound 
prior art, or perform novelty checking, and finally identify new starting points for chemical 
exploration [9]. 

Naming conventions of chemical compounds 

A chemical compound consists of two or more atoms of at least two elements which are 
connected via a chemical bond [11]. In chemistry, the compounds are represented in chemical 
diagrams and can be digitally stored in MOL files [12]. In short, a MOL file format digitally stores 
three-dimensional information for a compound based on the orientation of its atoms, bonds and 
additional chemical properties [12]. A MOL file consists of a table with coordinates of the 
elements and may contain additional fields regarding the properties of the compound. 

Due to the presence of isotopes, charges, tautomers, stereochemistry or fragments for a 
compound, a chemical structure can be drawn in different ways. Based on the chemical field of 
study (e.g., organic chemistry vs in-organic chemistry) some of this information can be 
disregarded and the compound can be standardized [13, 14]. Such standardization approach 
maps two similar compounds with differing characteristics (e.g., one has stereochemistry, the 
other not) to one compound. 

Chemical compound identifiers are used to refer to a chemical compound in text. Chemical 
identifiers can be distinguished in two major groups based on how they are generated. 

The first group consists of systematic identifiers. These identifiers are generated algorithmically 
and correspond to the structure of the compound [1]. A set of rules are used for generating these 
identifiers. SMILES notations [15], InChI strings [16], and IUPAC names [17] are examples of 
systematic identifiers. A name-to-structure toolkit can be used to convert chemical compound 
structures to systematic identifiers and vice versa [1]. Systematic identifiers should have a one-
to-one correspondence to the compounds. Despite constant improvements to the naming 
conventions, this is not always the case. For example, IUPAC names suffer from issues for 
converting stereochemistry information [18]. It is important to note that the standardization of 
a compound may affect the systematic naming of the compound. 
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Figure 1: Different representations of Anastrozole as a chemical compound. (a) 
3D and 2D structure of “Anastrozole”. (b) compound naming in non-systematic 
(common names, CAS) and systematic names (IUPAC, SMILES, InChI). (c) part of 
MOL file representing Anastrozole. 

The second group consists of non-systematic chemical identifiers. These identifiers are generated 
at the point of registration within the source. Brand names, generic names, research codes, 
chemical abstracts service (CAS) registry numbers, and database identifiers are examples of such 
non-systematic identifiers [12]. The only approach to identify the structure of a non-systematic 
identifier is to look it up in a database. Figure 1 illustrates the different representations of a 
chemical compound. 

Chemical information sources 

Chemical-related information is available through structured and unstructured resources. 
Structured sources include public and commercial chemical databases. Unstructured sources 
include scientific publications and patents [1]. These sources have different characteristics and 
extraction of information from them (manual or automatic) has its own challenges. 

In the last decade, we have observed a major increase in the number of public and commercial 
chemical databases [19]. Chemical databases are structured data sources that provide a variety 
of chemical information on chemical compounds (e.g., SAR data) [13]. These data can be obtained 
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from different means including data obtained from other databases. Chemical databases are built 
on chemical compound records. Ideally each chemical compound record is dedicated to a unique 
chemical compound based on its structural representation. In chemistry, the most important 
information retrieved from these sources is about compound structures [13]. This structural 
information is then used for different purposes, such as predictive modelling [4]. To retrieve 
information from databases, researchers mostly query by drawing the structure of the compound 
of interest (not available through all sources), or using compound systematic and non-systematic 
identifiers. Examples of such databases are PubChem [20], ChEBI [21], DrugBank [22], and Reaxys 
[23, 24]. Quality is a major aspect when dealing with databases. Scholars have shown errors 
within these sources and errors that proliferate from one database to another database through 
download and reuse of the content [25]. 

Unstructured data sources include scientific publications and patents. Scientific publications are 
available through different repositories such as MEDLINE [26]. Journal publications in the 
chemistry domain usually also contain a section with supplementary information. This section 
also contains a wide range of information valuable for chemistry research. 

Initial public disclosure of new chemical compounds is usually done through patent applications 
in commercial research and development projects [27]. This makes patents extremely interesting 
for knowledge discovery. Analyzing patents is crucial in chemistry research [2, 27, 28]. Patent 
analysis enables the understanding of compound prior art, and provides the means for novelty 
checking and validation. It can also indicate new starting points for chemical research [9, 29–31]. 
Chemical patents are complex legal documents (not scientific). They can contain up to hundreds 
of pages. Patents have uniform structures and consist of title, abstract, claims and description. 
The European Patent Office (EPO) [32], the United States Patent and Trademark Office (USPTO) 
[33], and the World Intellectual Property Organization (WIPO) [34] are the biggest patent 
providers. These sources provide patent full text free of charge. Some patent offices only provide 
the patent through optical character recognition (OCR) format. OCR processing introduces 
spelling errors into the patent documents. As mentioned patents are legal documents, which 
tend to hide interesting chemical information. This results in additional difficulties in extracting 
relevant chemical information from patents both manually and automatically. 

A patent document can contain thousands of mentions of different chemical compounds while 
defining experiments, claims and description. This is to ensure that the patent protects the 
chemical compound of interest (key compound). Key compounds are usually well-hidden within 
the context for commercial purposes [9, 10]. The presence of a large number of compounds in 
patents makes it difficult to manually or automatically identify the key compound. 

Quality of chemical databases 

The correctness of a structure that is extracted from chemical databases has great impact on the 
predictive ability of computational modeling [35]. While this correctness is crucial, qualitative 
studies have indicated that errors exist within chemical databases [25, 35]. Errors can be in the 
form of wrong structure associations or ambiguity within databases [19, 25, 35, 36]. Ambiguity is 
present in cases where an identifier is associated to more than one structure. Presence of such 
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errors in one or multiple databases can also reduce the quality of other databases because 
databases tend to integrate data from one another [35]. Text-mining methods that use these 
databases for identification of chemical compounds or for association of the compound to a 
structure, are also affected by these types of error [1]. 

Identification of structure correctness of chemical compounds mentioned in databases depends 
on the chemical identifier mentioned in the databases. Systematic identifiers (generated 
algorithmically) can be evaluated using name-to-structure toolkits. The correctness of non-
systematic identifiers can only be assessed in a manual manner because no algorithmic 
relationship between non-systematic identifiers and their structures exists [19]. To our 
knowledge, there has been no quantitative assessment of the consistency of systematic chemical 
identifiers and the ambiguity of non-systematic identifiers within and across chemical databases. 

Text-mining on chemical literature 

Exploring the chemical domain in chemical-related publications such as journal articles and 
patents is a challenging task. Text-mining can apply algorithmic, statistical and data management 
methodologies on a large set of chemical-related literature and unstructured free text to extract 
relevant information. In this way text-mining shifts the information overload problem from 
human to computers [37]. The complexity of textual content can influence the performance and 
complexity of a text-mining system. To obtain high performance, text-mining engines usually 
focus on domains (or sub-domains). For example, journal publications and patents have different 
characteristics (e.g., short vs long, scientific vs legal document, digital vs OCR) that need to be 
considered by a text-mining system [1, 37, 38]. 

Different text-mining steps can be taken into account depending on the use case. The 
performance of a text-mining tool relies on the performance of each of the components used in 
these steps [38]. Figure 2 illustrates the steps involved in text-mining. These steps are described 
in more detail below. 
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Figure 2: The main steps involved in text-mining. 

Text normalization 

The first component in text-mining approaches normalizes the input text. Chemical documents 
are available in a wide range of different formats. This can include PDF (portable document 
format), HTML (Hypertext Markup Language), XML (Xtensible Markup Language), or other 
common file formats [39]. The normalization component attempts to convert the data format 
into a suitable format for text-mining (e.g., plain text) [1]. This step is considerably more difficult 
when the input data have been generated with the use of OCR. Any errors made in this step can 
directly influence future steps. The normalization step also takes into account possibly different 
character encodings within the input data. Different character encoding standards can result in 
different digital representations for the same character and result in different interpretation of 
the same character. The use of internationally accepted standard character encodings can 
prevent possible errors. UTF-8 (8-bit Unicode Transformation Format) encoding supports a wide 
range of characters and can represent most chemical names and formulas [40]. This encoding is 
currently widely used for text-mining. 

Document segmentation 

There can be different segments within a journal or patent document (e.g., title, abstract, 
methods, results, claims, references). Document segmentation detects and delineates these 
segments based on the document structure. The extraction techniques of a text-mining tool can 
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differ depending on the segment that is analyzed (e.g., chemical text-mining tools should not look 
for chemicals in references) [1]. 

Sentence splitting 

This step splits the text into sentences. Sentences form the logical units of thought in human 
language. Punctuations are good indicators to define a sentence boundary [38]. Usually rule-
based approaches are used for sentence detection (e.g., a sentence ends if there is a period, 
exclamation mark or question mark) [41]. Automatic identification of sentences in a chemical-
related publication can be challenging. Systematic chemical identifiers such as IUPAC names can 
contain punctuation marks and therefore complicate the sentence splitting [1]. 

Tokenization 

The tokenization step is the process of splitting each sentence into words, or tokens [38]. 
Chemical identifier naming conventions can complicate the tokenization step. Use of punctuation 
and symbols greatly influence the tokenization of chemical names. For example, in common 
English, parentheses are token separators. In chemistry, the parentheses can be part of the token 
(e.g., “(CH3)2CHCH2CH(CH3)2”). 

Part-of-speech tagging 

Part-of-speech (POS) tagging is the process of identifying the part-of-speech information for each 
word (token) based on its meaning and its context (i.e., the relationship of the word to adjacent 
words) [38, 42]. For example, a word can be a verb, a noun, or an article. 

Chunking 

Chunking or shallow parsing is a technique that enables the machine to identify constituent parts 
of a sentence and link them to units with discrete grammatical meaning. Chunking provides the 
machine with an understanding of the sentence structure [38, 43]. This step combines tokens 
into grammatical units such as noun phrases, verb phrases, or prepositional phrases. In chemical 
identifier recognition, we can use chunks such as noun phrases to validate that a term is a 
chemical compound [1]. 

Named-entity recognition and normalization 

Named-entity recognition (NER) is the process of identifying and classifying specific entities 
within a text [38]. An example of chemical NER is the identification of chemical compounds or 
their subclasses such as formulas, CAS numbers and IUPAC names [1]. Named-entity 
normalization is the identification of a relevant database identifier for the recognized named 
entity. This step correlates the extracted named entity to a named entity existing within a 
database. 
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Relation Extraction 

Extraction of knowledge or facts is performed in the last phase of text-mining. Relation extraction 
is the process of identifying relations between pairs of identified entities. Examples of relation 
extraction include the identification of relations between genes and proteins, or between drugs 
and diseases [38, 43]. 

Named-entity recognition approaches in chemistry 

Three text-mining approaches are used for extracting chemical named-entities from text. These 
approaches are dictionary-based, morphology-based (or grammar-based), and statistical-based 
[37]. 

Dictionary-based approaches use dictionaries as a basis to identify matches of the dictionary 
terms in the text [37]. The performance of these methods greatly relies on the quality of the used 
dictionary. These dictionaries are usually produced from chemical identifiers that are contained 
in well-known chemical databases. This approach is limited to the terms located within the 
dictionary. Dictionary-based approaches are valuable to extract non-systematic chemical 
identifiers (non-systematic chemical identifiers are stored in databases) but are less fit to extract 
systematic identifiers because it is nearly impossible to include all systematic chemical identifiers 
in a dictionary (systematic identifiers are algorithmically generated). Dictionary-based 
approaches cannot identify novel chemical compounds (they are not available in the databases 
upon which the dictionaries are based). Its noteworthy to mention that dictionary-based 
approaches can utilize the chemical database that was used to generate the dictionary, to identify 
the structure of the compound [6]. 

Grammar-based approaches capture systematic chemical identifiers by exploiting the rules that 
are used to produce them. Therefore, grammar-based approaches can recognize systematic 
identifiers that are missing from the dictionaries. This also includes new systematic chemical 
identifiers [1, 6, 37]. Through a set of rules a systematic name can be translated into a chemical 
structure. Grammar-based approaches utilize the same rules to provide chemical structures for 
recognized compounds. Building grammar-based systems requires a deep understanding of the 
naming conventions and the domain. These systems also need to be changed based on the 
changes of naming conventions over time. Grammar-based approaches are generally limited in 
identifying non-systematic chemical identifiers, although some of these identifiers may be found 
with regular expressions [1]. 

Statistical-based approaches use manually created resources (a training set of documents with 
annotated chemical identifiers) to automatically train a classifier that can recognize chemical 
identifiers within text [1]. These approaches can identify both systematic and non-systematic 
identifiers. The drawback of statistical approaches is that they need a large annotated corpus to 
train the system. Statistical approaches have no direct means to provide structures for extracted 
chemical entities. 

As mentioned, each of the approaches has its benefits and limitations. An ensemble system that 
combines multiple approaches can help resolve some of the limitations. It is noteworthy that 



Introduction 

 

19 

 

until recently the focus of text-mining systems has mostly been on the biomedical domain, and 
relatively limited research in chemical text-mining has been done [44, 45]. 

Community competitions and tasks for text-mining 

A common approach to improve, enhance, and compare the performance of text-mining systems 
is the introduction of community challenges that address a specific text-mining task [1]. These 
challenges are performed in the form of conferences or workshops (e.g., BioCreative [46]). 
Participants (academia and industry) are challenged to develop systems for the task and provide 
results in a predefined time frame. The outcome of the challenge is a set of systems and 
methodologies that help progress in the task domain. Comparative performance results are 
usually published in scientific literature. 

Chemical gold standard corpora for NER 

The availability of manually annotated corpora is essential for building named-entity recognition 
systems and validating their performance [1, 6, 37]. The annotations in a corpus are regarded as 
the ground truth and should have high quality. To obtain a high-quality corpus, the manual 
annotators must use well-defined annotation guidelines. Preferably, annotations are provided by 
multiple annotators to reduce the influence of an individual annotator’s perspective. The 
annotations of multiple annotators can be harmonized using methods such as voting [1, 6, 37]. 

Producing an annotated corpus is laborious and expensive. Currently only a few non-commercial 
corpora exist for chemical NER [47–49]. These are mostly limited to titles and abstracts from 
scientific publications. A few corpora are available for patents [50, 51] but they are limited in size 
and do not contain all patent sections. Extending the current corpora to cover full-text journals 
and full patents is essential for building text-mining systems that can analyze the full text. 

Performance evaluation 

The availability a gold-standard corpus enables performance evaluation of text-mining systems. 
Typically, three performance measures are used: precision, recall, and F-score. 

Precision and recall were first introduced in the 1950s for the evaluation of information retrieval 
systems [52]. The same measures are also used for text mining. Precision or positive predictive 
value is the percentage of correct system annotations over all annotations made by the system. 
Recall is the percentage of correct system annotations over all gold-standard annotations [52]. 
Later F-score was introduced as an aggregate performance measure [53]. F-score is the harmonic-
mean of precision and recall. 

In order to calculate precision, recall, and F-score three key measurements need to be 
determined based on the manual annotations and the annotations made by the system. These 
measurements are the number of true positives (TP, the number of manual annotations correctly 
identified by the system), the number of false positives (FP, the number of wrong annotations by 
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the system), and number of false negatives (FN, the number of manual annotations that are 
missed by the system). 

Precision, recall and F-score are then calculated as follows: 

!"#$%&%'( = *!
*! + ,! 												.#$/00 =

*!
*! + ,1 																	, − &$'"# = 2 ∗ !"#$%&'( ∗ .#$/00!"#$%&%'( + .#$/00 

  



Introduction 

 

21 

 

Aim and outline of the thesis 

Most chemical research utilizes the structure representation of chemical compounds. The 
naming conventions that enable the translation of chemical identifiers to chemical structures and 
vice versa are unique to the chemical field. The characteristics of these identifiers in chemical-
related text such as journals and patents have made text-mining challenging in the chemical field. 
To enhance text-mining in the chemical field, the quality of chemical-related databases needs to 
be investigated based on their representation of chemical compound structures. The availability 
of high quality association between compounds and their structures provides the means to build 
text-mining solutions that can extract chemical identifiers and their associated structures from 
journals and patents. Analyzing these identifiers based on their relevancy to the field of study 
can provide understanding of compound prior art, novelty checking, validation of biological 
assays, and identification of new starting points for chemical exploration. The aim of this study 
was to use text mining for the identification of chemical identifiers in journal and patent 
documents. For this: 

First, we investigate the quality of chemical-related databases based on their representation of 
chemical compound structures. In Chapter 2, we investigate the consistency of systematic 
identifiers within and between small molecular databases. In Chapter 3, we expand our research 
and focus on the ambiguity of non-systematic chemical identifiers within and between chemical 
databases. 

Second, we develop new resources that can be utilized to further enhance text-mining systems 
in the chemical domain. In particular, we develop an annotated chemical patent corpus based on 
full-text patent documents in Chapter 4. 

Third, we investigate the development of systems for extracting chemical identifiers from journal 
articles and patents. To build efficient text-mining engines for journals and patents we investigate 
a variety of chemical text-mining approaches. In Chapter 5, we focus on mining chemical 
identifiers from journal publications using dictionary-based and grammar-based approaches. In 
Chapter 6, we focus on extraction of chemical entities from patents using dictionary-based and 
machine-learning approaches. 

Finally, we use the methods and techniques studied in previous chapters to identify relevant 
compounds in patents. In Chapter 7, we develop a patent corpus containing relevant compounds 
and use it along with a high-quality chemical database to train and evaluate our text-mining 
system. 
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Abstract 

Background 

Correctness of structures and associated metadata within public and commercial chemical 
databases greatly impacts drug discovery research activities such as quantitative structure–
property relationships modelling and compound novelty checking. MOL files, SMILES notations, 
IUPAC names, and InChI strings are ubiquitous file formats and systematic identifiers for chemical 
structures. While interchangeable for many cheminformatics purposes there have been no 
studies on the inconsistency of these structure identifiers due to various approaches for data 
integration, including the use of different software and different rules for structure 
standardisation. We have investigated the consistency of systematic identifiers of small 
molecules within and between some of the commonly used chemical resources, with and without 
structure standardization. 

Results 

The consistency between systematic chemical identifiers and their corresponding MOL 
representation varies greatly between data sources (37.2%-98.5%). We observed the lowest 
overall consistency for MOL-IUPAC names. Disregarding stereochemistry increases the 
consistency (84.8% to 99.9%). A wide variation in consistency also exists between MOL 
representations of compounds linked via cross-references (25.8% to 93.7%). Removing 
stereochemistry improved the consistency (47.6% to 95.6%). 

Conclusions 

We have shown that considerable inconsistency exists in structural representation and 
systematic chemical identifiers within and between databases. This can have a great influence 
especially when merging data and if systematic identifiers are used as a key index for structure 
integration or cross-querying several databases. Regenerating systematic identifiers starting 
from their MOL representation and applying well-defined and documented chemistry 
standardisation rules to all compounds prior to creating them can dramatically increase internal 
consistency.
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Background 

The past decade has seen a major increase in the availability of public and commercial chemical 
databases [1]. Resources such as PubChem (released in 2004) [2] and ChEMBL (released in 2009) 
[3], with their corresponding web services have gained the trust of many researchers in the fields 
of cheminformatics, bioinformatics, systems biology, and translational medicine. Because large 
numbers of compounds and associated structure-activity relationships (SAR) data are published 
in journals and patents every year, many new data sources have become available, each covering 
different aspects of the connectivity between the SAR-related entities [4]. With the increasing 
usage of these resources by scientists from both academia and the pharmaceutical industry, 
quality control of chemical structures and associated metadata is becoming a necessity [5]. 

Correctness of a structure extracted from databases has a great impact on predictive ability of 
computational models for quantitative structure-activity relationships (QSAR) [6]. A recent study 
by Williams and Ekins [7] on a subset of a chemistry database showed more than 70% errors in 
the absolute structural integrity, a striking difference to the 5-10% level the authors had 
anticipated. In another study of database quality, Oprea et al. [8] have illustrated how errors 
within a database are transferred to other databases following data integration (also mentioned 
by Williams et al. [9]). Quality issues have also been observed in the relationship between 
chemical structures and the corresponding identifiers, such as chemical names referring to 
structures with different stereochemistry or CAS numbers incorrectly associated with a particular 
salt or mixture [9]. Although these problems are known to exist, there have been no studies that 
quantify the consistency between structures and their identifiers. 

Chemical identifiers can be distinguished in two major classes based on how they are generated. 
The first consists of systematic identifiers, which are generated algorithmically and should have 
a one-to-one correspondence with the structure (however, different software could generate 
different flavours, as is the case for SMILES notations [10,11]). The second class comprises non-
systematic chemical identifiers. These are source dependent and usually generated at the point 
of registration within a particular source (e.g. CAS numbers, PubChem compound identifiers 
(CIDs) and substance identifiers (SIDs), generic or drug brand names). 

Structure depictions are the natural language for chemists. In order to convert the images to a 
form usable by computers, several file formats and chemical identifiers have been introduced. 
The MOL file format [12], SMILES notations [10], InChI strings [13], and IUPAC names [14] are 
arguably the most widely used. In the context of this work we will refer to IUPAC names, SMILES 
notations, and InChI strings as systematic identifiers. 

Most chemical databases are built starting from the MOL file representations of chemical 
structures, which are linked to systematic and non-systematic identifiers. It is thus crucial that 
different chemical identifier types represent the same compound. Inconsistencies between 
systematic identifiers and registered chemical structures can occur for several reasons. For 
example, systematic identifiers can be generated with different structure-to-identifier 
conversion tools, with different levels of structure standardisation, or structures and systematic 
identifiers can be integrated without harmonisation from different sources. 
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In this study, we investigate the consistency of systematic identifiers of well-defined structures 
within and between some of the commonly used chemical resources. We also examine the effect 
of standardisation on this consistency. 

Methods 

Databases 

For this study, we selected a set of well-known publicly available small-molecule databases to 
cover a wide range of bioactive compounds: DrugBank [15], Chemical Entities of Biological 
Interest (ChEBI) [16], the Human Metabolome Database (HMDB) [17], PubChem [2], and the 
NCGC Pharmaceutical Collection (NPC) [18]. Table 1 shows the number of structures and 
corresponding systematic identifiers in each database. All data were downloaded on March 14, 
2012. In this study, only compounds that had MOL files were used. Whenever available, we 
collected SMILES notations, InChIs strings and IUPAC names. If several SMILES notations were 
available for a single compound, we selected the isomeric SMILES. 

Table 1: Number of structures (MOLs) and systematic identifier counts for databases in this 
study. 

Database MOL InChI SMILES IUPAC 

DrugBank 6506 6391 6504 6489 

ChEBI 21367 19076 19725 18798 

HMDB 8534 8534 8534 7727 

PubChem 5069294 5069293 5069294 4769031 

NPC 8024 0 8018 0 

In addition to systematic identifiers, cross-references linking records between databases were 
also downloaded. 

The following data were extracted from the resources: 

DrugBank [15]. The set of compounds consisted of approved drugs, experimental drugs, 
nutraceutical drugs, illicit drugs, and withdrawn drugs. Cross-references to other databases were 
extracted from the DrugCards in DrugBank. 

ChEBI [16]. All manually checked and annotated (3 stars) structures with their corresponding 
systematic identifiers were downloaded. For some of these, ChEBI provides several IUPAC names. 
In these cases, we only used the first IUPAC name in the ChEBI record for our analyses. Cross-
references were obtained from the ChEBI ontology file. 
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HMDB [17]. All small-molecule metabolites with their corresponding structures were 
downloaded. Cross-references were extracted from the HMDB MetaboCard files. 

PubChem [2]. Based on criteria described previously [4], a set of compounds likely to have SAR 
and/or other bio-annotations were downloaded from PubChem Compound. PubChem cross-
references are only provided on the substance level, not on the compound level, and therefore 
no PubChem cross-references were used in this study. 

NPC [18]. NPC contains the clinical approved drugs from the USA, Europe, Canada and Japan. 
Compounds and cross-references were downloaded through the NPC Browser 1.1.0 [18]. The 
export option of the NPC Browser was used to extract data in MOL and SMILES formats. NPC does 
not provide InChIs strings and IUPAC names. 

Consistency of systematic identifiers within a database 

To analyse the structural representation consistency of systematic identifiers within a database, 
we took the MOL representation of a compound as the reference point. Ideally all associated 
systematic identifiers should represent the same MOL file. In this work, we have used InChI 
strings for comparisons. InChI (International Chemical Identifier) is a structure-derived tag for a 
chemical compound. It is an algorithmically produced string of characters, which acts as the 
unique digital signature of the compound [19]. InChI software developed by IUPAC and InChI 
Trust, is open-source software and the de facto standard for generating InChI strings [20]. This is 
not the case for SMILES or IUPAC names (Figure 1). Various flavours of SMILES or IUPAC names 
are generated by different software to represent the same molecular structure [11,21,22]. 
Therefore, MOL files and all systematic identifiers were converted into Standard InChIs, using 
InChI version 1.03, which were then used to perform all comparisons (Figure 2). 

 

Figure 1: Chemical representation of Anastrozole. 
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Figure 2: Comparison of MOL representation with systematic identifiers. 

 

Several public and commercial cheminformatics toolkits are currently available for structure 
manipulation and molecular editing [23]. We used ChemAxon’s MolConverter 5.9.1 [24], which 
has the necessary functionality and is freely available for academic research. For clarity, we refer 
to Standard InChI strings generated by ChemAxon’s MolConverter as InChI(ca). 

Consistency of systematic identifiers between databases 

To analyse the consistency of systematic identifiers between databases, the cross-reference 
linkage of compounds was examined. Within the constraints of different chemistry business 
rules, the chemical entities linked together via the cross-references should represent the same 
structure based on their MOL representation. We compared the structures using the InChI(ca) 
generated from the MOLs. We did not consider cross-references where conversion to InChI(ca) 
failed for one or both of the MOL files. If a compound had multiple cross-references to a single 
database, each cross-reference was investigated independently. For cross-references to 
PubChem, we only considered compounds within our subset of the PubChem database. 

Standardisation 

Inconsistency between systematic identifiers and their MOL representation may partly relate to 
the different levels of sensitivity in identifier calculation. Currently, different structure 
normalisation rules can be used to define compound uniqueness [25]. Unfortunately, a unified 
and agreed set of rules is still lacking [9]. To assess the effect of structure standardisation on the 
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consistency of systematic identifiers within and between databases, we applied a set of rules 
developed by the Computer-Aided Drug Design group of the National Cancer Institute 
(NCI/CADD) known as FICTS rules [26,27]. These were applied to each structure and its 
corresponding systematic identifier. 

The FICTS rules include removing small organic fragment (F), ignoring isotopic labels (I), 
neutralizing charges (C), generating canonical tautomers (T), or ignoring stereochemistry 
information (S) for a compound. If any of these rules are applied the corresponding upper-case 
letter is replaced with a “u” (standing for “un-sensitive” [26]). We implemented the FICTS rules 
using ChemAxon’s Standardizer [28]. To make the results comparable with our other analyses 
the rules are applied to the InChI(ca) strings. 

Results 

Conversion of systematic identifiers 

Table 2 shows the percentage of successful conversion of the systematic identifiers into InChI(ca) 
strings by ChemAxon’s MolConverter. This is high for MOLs, SMILES notations and InChI strings 
in all databases. The lower (90%) MOL conversion for ChEBI was due to the presence of query 
atom features such as “R” (R-groups) or “*” (= any atom). The main reason for failure in 
conversion of IUPAC names to Standard InChI strings was challenges for the conversion tool to 
handle certain structural classes such as steroids, porphyrins, and carbohydrates. The lowest 
value of IUPAC to InChI(ca) conversion was for HMDB. 

Table 2: Successful conversion (in %) of MOL files and systematic identifiers to InChI(ca). 

Database MOL InChI SMILES IUPAC 

DrugBank 98.9 100 99.1 93.6 

ChEBI 90.6 100 96.8 69.8 

HMDB 100 99.9 100 38.1 

PubChem 100 100 100 92.6 

NPC 99.7 - 100 - 

To investigate whether this could be improved, the same procedure was applied with another 
structure-to-identifier tool, the NCI Chemical Identifier Resolver [29]. This increased successful 
conversions slightly by 8% but still left the majority of IUPAC names in HMDB unconverted. 

Consistency of systematic identifiers within databases 

For each compound in a database, we compared the InChI(ca) derived from the MOL file with the 
InChI(ca) strings from the corresponding systematic identifiers (Figure 2). 
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Table 3 shows, for each database, the consistency between the MOL representation and the 
corresponding systematic identifiers, expressed as percentage agreement of matching InChI(ca) 
strings. If the InChI(ca) could not be generated for a MOL file or a systematic identifier, no 
comparison was done. 

Table 3: Consistency of MOLs and systematic identifiers (in % agreement) within databases. 

Database MOL–InChI MOL–SMILES MOL–IUPAC 

DrugBank 98.2 98.5 90.0 

ChEBI 96.5 96.5 75.3 

HMDB 89.3 37.2 55.7 

PubChem 97.7 97.8 87.2 

NPC - 93.4 - 

In DrugBank there is more than 98% agreement between MOLs and their corresponding InChI 
strings and SMILES, while the consistency drops to around 90% for IUPAC names. PubChem and 
ChEBI have slightly lower agreement than DrugBank for InChI strings and SMILES notations, but 
the IUPAC names in ChEBI show a substantially lower agreement of 75%. The figures are lowest 
in HMDB with agreements of 37% for MOL-SMILES and 56% for MOL-IUPAC names. NPC only 
stores SMILES, which have a 93% agreement with their MOL representations. 

Standardisation 

FICTS rules were applied to the InChI(ca) strings derived from the MOL files and systematic 
identifiers and all comparisons were redone. Table 4 show the results. Stereochemistry has the 
most significant impact. For example, the consistency for MOL-SMILES notations and MOL-IUPAC 
names in HMDB increased with 61 and 29 percentage points. ChEBI and PubChem also show a 
considerable increase in agreement between IUPAC names and MOL files. In addition to 
stereochemistry, the changes made by standardising tautomers also improved the consistency, 
with the largest effect on HMDB. Charges, fragments and isotopic labels had a small or no effect 
on the consistency. 
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Table 4: Effect of different standardisation rules on the consistency between MOL files and 
systematic identifiers (in % agreement). 

Database Comparison FICTS uICTS FuCTS FIuTS FICuS FICTu 

DrugBank MOL–InChI 98.2 99.0 99.0 99.0 99.4 99.8 

MOL–SMILES 98.5 98.6 98.6 98.6 99.5 99.7 

MOL–IUPAC 90.0 90.1 90.0 90.1 93.5 96.2 

ChEBI MOL–InChI 96.5 98.9 98.5 98.4 99.2 99.6 

MOL–SMILES 96.5 96.6 96.6 96.6 99.6 99.8 

MOL–IUPAC 75.3 75.6 75.4 77.1 79.7 91.9 

HMDB MOL–InChI 89.3 89.8 89.7 90.3 89.9 98.5 

MOL–SMILES 37.2 37.3 37.2 38.0 43.1 98.3 

MOL–IUPAC 55.7 55.8 55.8 57.5 58.8 84.8 

PubChem MOL–InChI 97.7 97.9 97.9 97.9 99.3 99.9 

MOL–SMILES 97.8 97.9 97.9 97.8 99.2 99.9 

MOL–IUPAC 87.2 87.7 87.5 87.2 93.7 97.2 

NPC MOL–SMILES 93.4 93.5 93.4 93.4 98.0 99.8 

Consistency of systematic identifiers between databases 

Table 5 shows the agreement between the MOL files for compounds with inter-database cross-
references. This varies from 25.8% to 93.7%, but for most cases is around 60-75%. The low value 
for cross-references from NPC to PubChem can be attributed to 1527 compounds in NPC that 
have more than one (average 5.7, median 3) cross-reference to PubChem CIDs. The agreement 
for the 2475 compounds in NPC that have just one cross-reference to PubChem is 79.3%. Note 
that the agreement for the cross-references in DrugBank or HMDB to ChEBI is about 20% higher 
than the other way around. 
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Table 5: Agreement between MOL files of compounds that have a cross-reference in one 
database (row) to another database (column). The number of cross-references is given in 
parentheses. 

 DrugBank ChEBI HMDB PubChem NPC 

DrugBank - 72.1% (1666) - 93.7% (4723) - 

ChEBI 54.3% (1288) - 45.6% (114) - - 

HMDB - 64.0% (1433) - 76.0% (2217) - 

PubChem - - - - - 

NPC 76.7% (1320) - - 25.8% (9557) - 

Since our results indicate that stereochemistry standardisation may substantially improve the 
consistency of systematic identifiers within databases (Table 4), we also assessed the consistency 
between databases after applying the FICTu rule (Table 6). 

Table 6: Agreement between MOL files of compounds that have a cross-references in one 
database (row) to another database (column) after stereochemistry standardisation. 

 DrugBank ChEBI HMDB PubChem NPC 

DrugBank - 91.4% - 95.6% - 

ChEBI 68.6% - 93.0% - - 

HMDB - 82.0% - 89.8% - 

PubChem - - - - - 

NPC 93.4% - - 47.6% - 

Stereochemistry annotation increases the agreement for most databases by around 15-20%. The 
largest increase (47.4%) is seen for cross-references linking ChEBI to HMDB. 

The agreement between NPC and PubChem also increases but more than half of the cross-
references still link MOL files that do not match. For compounds that have just one cross-
reference the agreement increased from 79.3% to 91.0%.  
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Discussion 

While the importance of data quality control in chemical resources has been discussed previously 
[5-7,9], to our knowledge this is the first study to assess the consistency of structural 
representations of systematic identifiers within and between small-molecule databases. The 
assumption was that systematic identifiers should correspond with the registered MOL file. 
Standard InChI strings were used as a basis for this comparison because of the unique algorithm 
available, unlike for SMILES notations and IUPAC names where multiple strings can represent the 
same compound. 

To provide comparable results and remove the influence of different structure-to-identifier 
software, only ChemAxon’s MolConverter [24] was used for all name conversions. Compounds 
where MOL files or systematic identifiers did not convert to InChI strings were disregarded. To 
quantify the potential influence of different structure-to-identifier software we compared the 
Standard InChI strings generated from the MOL files using ChemAxon’s MolConverter [24] with 
those of Xemistry’s CACTVS chemoinformatics toolkit [30,31]. The comparison showed 98.9% 
agreement for HMDB, 98.3% for PubChem, 97.6% for DrugBank, 96.4% for ChEBI, and 94.2% for 
NPC in cases were both tools managed to convert MOL files to InChI strings. The differences are 
small and likely to be caused by the way the tools handle the MOL files. We consider it unlikely 
that our results would essentially have changed by using another conversion tool. 

The consistency of systematic identifiers with their corresponding MOL representations varies 
widely (Table 3). The highest agreement was obtained for DrugBank and PubChem, the lowest 
for HMDB. The higher consistency values for PubChem may be explained by their procedure for 
generating systematic identifiers [32]: starting from the MOL files, InChI strings are calculated 
based on the IUPAC Standard InChI software and SMILES notations and IUPAC names are 
generated by OpenEye software [33]. Unfortunately, because other databases do not clearly 
describe their procedures it remains unclear how possible differences may have affected 
consistency. 

Application of the FICTS sensitivity rules [26] gave us further insight. We found that disregarding 
stereochemistry and, to a lesser extent, tautomers boosted the consistency, in particular of MOL-
IUPAC names (Table 4). The other sensitivity levels had a much lower or no effect. Thus, 
differences in stereochemistry between MOL files and systematic identifiers appear the single 
most important cause of inconsistencies. For ChEBI and HMDB, the agreement between MOLs 
and IUPAC names remained low even with stereochemistry insensitive matching. 

The consistency of systematic identifiers between databases, as measured by the agreement of 
MOL files in different databases linked by cross-references, ranged from 26% to 94% (Table 5). 
The value of cross-references lies in the consistency of the structural representation of the data 
and our study shows these have many errors. Disregarding stereochemistry on the registered 
MOL files increased the agreement, but a considerable percentage of the cross-references 
remained inconsistent. 

Integration of different chemical databases should consider these problems. Merging databases 
using different structure identifiers as indexes for integration can reduce quality. Instead a unique 



Chapter 2 

 

36 

 

representation such as MOL files can be used as the basis of integration. Other systematic 
identifiers can be generated later on the validated structure within the database. 

Inconsistencies within databases may steer curation efforts, and by combining the information 
on inconsistencies for a specific compound may even suggest which of the names or 
representations are wrong. 

In a recent article by Williams et al. [9] several solutions have been proposed to reduce errors in 
databases. In addition to improved curation the use of structure validation filters for incorrect 
valance, atom labels, aromatic bonds, charges, stereochemistry and duplication was suggested. 
In another recent study, O’Boyle [11] proposed a standard method to generate canonical SMILES 
based on InChI strings, in order to create the same canonical SMILES using different toolkits. Our 
results quantify the issues raised in these studies. We have shown that a set of well-defined 
standardisation rules is essential while constructing systematic identifiers (can gain up to 50% 
increase in consistency), and that stereochemistry has an important contribution to this 
inconsistency. 

Our approach of testing the consistency of systematic identifiers is general and can be applied to 
other databases and may prove valuable in data curation and integration efforts. Using a similar 
approach, we also plan to investigate the consistency of non-systematic identifiers in chemical 
resources. 

Conclusions 

The degree of consistency within systematic chemical identifiers varies between data sources. 
When building a new database, de novo recalculation is superior to recycling and creating 
systematic identifiers starting from the same primary structural representation (e.g. MOL) will 
improve the quality of the final product. Extra consideration should be taken into account if 
systematic identifiers are going to be used as a key index for merging databases. Well-defined 
and documented chemistry standardisation rules applied to all compounds can greatly decrease 
the number of errors and expedite integration. 

Finally, we have shown that inconsistency exists between the structural representations of 
compounds that are linked via cross-references within databases. Inconsistency here can have 
deleterious effects when merging data from or cross-querying multiple databases.  
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Abstract 

Background 

A wide range of chemical compound databases are currently available for pharmaceutical 
research. To retrieve compound information, including structures, researchers can query these 
chemical databases using non-systematic identifiers. These are source-dependent identifiers 
(e.g., brand names, generic names), which are usually assigned to the compound at the point of 
registration. The correctness of non-systematic identifiers (i.e., whether an identifier matches 
the associated structure) can only be assessed manually, which is cumbersome, but it is possible 
to automatically check their ambiguity (i.e., whether an identifier matches more than one 
structure). In this study we have quantified the ambiguity of non-systematic identifiers within 
and between eight widely used chemical databases. We also studied the effect of chemical 
structure standardization on reducing the ambiguity of non-systematic identifiers. 

Results 

The ambiguity of non-systematic identifiers within databases varied from 0.1 to 15.2% (median 
2.5%). Standardization reduced the ambiguity only to a small extent for most databases. A wide 
range of ambiguity existed for non-systematic identifiers that are shared between databases 
(17.7-60.2%, median of 40.3%). Removing stereochemistry information provided the largest 
reduction in ambiguity across databases (median reduction 13.7 percentage points). 

Conclusions 

Ambiguity of non-systematic identifiers within chemical databases is generally low, but ambiguity 
of non-systematic identifiers that are shared between databases, is high. Chemical structure 
standardization reduces the ambiguity to a limited extent. Our findings can help to improve 
database integration, curation, and maintenance. 
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Background 

A wide range of chemical compound databases are currently available for pharmaceutical 
research [1]. They provide a variety of chemical information [2], most importantly compound 
structures, which can be used for different purposes, such as chemical predictive modelling [3] 
or quantitative structure-activity relationships modelling [4]. To retrieve information about a 
compound, researchers can query these chemical databases using one of many available 
compound identifiers. Information retrieval based on automatic extraction of chemical identifiers 
from scientific literature or patents, is becoming increasingly important as the large amount of 
such unstructured texts makes manual extraction and analysis cumbersome [5-7]. Text mining 
methods that extract compound-target or drug-disease relationships from text, can provide 
valuable new insights [8] or support database curation [9, 10]. The correctness of the chemical 
identifiers that link to the chemical structures in the databases can greatly affect the results of 
cheminformatics analyses [11, 12]. 

Chemical identifiers fall into two main classes. The first class consists of systematic identifiers, 
which are algorithmically defined based on the chemical structure of the compound [13]. Among 
the systematic identifiers are IUPAC names [14], SMILES [15], and International Chemical 
Identifiers (InChIs) [16, 17]. We have previously investigated the correctness or consistency of 
systematic identifiers (i.e., whether an identifier matches the associated structure) within and 
across small-molecule databases, and found many inconsistencies [13]. We also checked whether 
the inconsistencies could be reduced by different chemical structure standardizations (e.g., 
removal of fragments, or ignoring isotopes), but this was only the case to a limited extent [13]. 

The second class of chemical identifiers consists of non-systematic identifiers. These are source-
dependent identifiers which are usually assigned to the compound at the point of registration in 
a chemical database [13]. Brand names, generic names, research codes, chemical abstracts 
service (CAS) registry numbers, and database identifiers are examples of such non-systematic 
identifiers. Since there is no algorithmic relationship between non-systematic identifiers and 
structures, the correctness of these identifiers can only be assessed manually, which has proven 
cumbersome [1]. However, it is possible to automatically check the ambiguity of non-systematic 
identifiers (i.e., whether an identifier matches more than one structure). The extent of this 
ambiguity problem is unknown and not yet quantified. 

Here, we investigate the ambiguity of non-systematic identifiers within and between small-
molecular databases, before and after chemical structure standardisation. 

Methods 

Databases 

We selected eight well-known chemical databases covering a wide range of bioactive 
compounds: Chemical Entities of Biological Interest (ChEBI) [18], ChEMBL [19], ChemSpider [20], 
DrugBank [21], the Human Metabolome Database (HMDB) [9, 22], the NCGC Pharmaceutical 
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Collection (NPC) [23], PubChem [24], and the Therapeutic Target Database (TTD) [25, 26]. We 
focused on compound records that had associated chemical structures in the form of MOL files 
[27]. For each record, we extracted the structure file and gathered all chemical identifiers 
(available from possibly different record fields), except for identifiers explicitly tagged as IUPAC 
names, SMILES, or InChIs. For example, identifiers for the antibiotic “ampicillin” included 
“ampicilina”, “ampicillin acid”, “AMP”, “AP”, “ABPC”, “ay-6108”, “DB00415”, “penbritin”, 
“totacillin”, “PEN A/N”, “Prestwick3_000114”, “Ampi-bol”, “Aminobenzylpenicillin” and, “brl 
1341”. Note that extracted identifiers may include database identifiers (such as “DB00415”) that 
appear in the name fields of the chemical records. Typically, for a given chemical database, 
database identifiers in its name fields come from other databases, and local database identifiers 
are only used as record identifiers (and not extracted). All data were downloaded in February 
2013. The identifiers extracted from all databases, except ChemSpider which is a commercial 
database, are made available through www.biosemantics.org. In the following, we briefly 
describe the databases, indicating the version that was used (if versioning was available) and the 
fields from which identifiers were extracted. 

ChEBI is a database of molecular entities, focusing on small chemical compounds [18]. ChEBI 
provides an ontological classification with parent and child relationships. We extracted data for 
all three-star (i.e., manually annotated) compounds from ChEBI SD files. This included synonyms, 
ChEBI names, brand names, and International Non-proprietary Names (INN). 

ChEMBL is a large-scale bioactivity database containing information for drug-like bioactive 
compounds [19]. In addition to literature-derived data ChEMBL also contains Food and Drug 
Administration (FDA) approved drugs. The data available through ChEMBL have been manually 
extracted and standardized [19]. We used a local installation of ChEMBL version 14. Extracted 
fields include preferred name, synonyms, FDA alternative names, trade names, INN, United 
States Adopted Names (USAN), and United States Pharmacopoeia names (USP). 

ChemSpider is a chemical database containing information of compounds gathered from over 
500 different data sources [20]. ChemSpider structures and their corresponding identifiers were 
made available from the Royal Society of Chemistry (RSC) [28]. We focused on compounds that 
have structure-activity relationships or other biological annotations. Similar selection criteria as 
defined by Muresan et al. [29] were provided to the ChemSpider team to extract the ChemSpider 
data. Subsets of chemicals such as “make on demand” chemicals from screening library vendors 
without names other than computationally generated systematic names were excluded, as were 
the datasets that have been deprecated from ChemSpider during curation. We also considered a 
subset of the ChemSpider data that only contained information that was validated with the use 
of crowdsourcing, including curation work performed by members of the ChemSpider technical 
support team (ChemSpider-V) [20, 30]. For each compound, we were provided with all preferred 
terms and synonyms. 

DrugBank provides information regarding drugs, including chemical, pharmacological and 
pharmaceutical drugs and their targets [21]. DrugBank data are curated by a curation team based 
on primary literature sources. During production and maintenance all synonyms and brand 
names within DrugBank are extensively reviewed and only the most common synonyms are kept 
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[31]. We used DrugBank version 3.0, and extracted generic names, synonyms, CAS numbers, and 
brand names from the DrugBank SD files and DrugCards. 

HMDB contains small-molecule metabolites found in the human body. The database links 
chemical, clinical, molecular-biology, and biochemistry data. HMDB is both automatically and 
manually curated [9, 22]. We used HMDB version 3. All generic names, CAS numbers, and 
synonyms were extracted from HMDB SD files and MetaboCards. 

NPC provides clinically-approved drugs from USA, Europe, Canada, and Japan for high-
throughput screening [23]. In addition NPC provides chemical-related information gathered from 
different sources, such as the KEGG database. Using NPC browser 1.1.0, we extracted preferred 
names and synonyms. 

PubChem is a database that provides information on the biological activities of small molecules 
[24]. PubChem consists of three different databases: a compound database (with currently about 
61 million entries), a substance database (about 157 million entries), and a bioassay database 
(more than 1 million entries). The compound database was used to extract structures for a subset 
of compounds that had structure-activity relationships or other biological annotations. This 
subset of compounds was introduced by Muresan et al. [29] and is the same subset of PubChem 
compounds that we used in our previous study on the consistency of systematic identifiers [13]. 
The PubChem compound database does not contain non-systematic identifiers. This information 
is available through the PubChem substance database. The relations between PubChem 
substance identifiers (SIDs) and compound identifiers (CIDs), which have been created by 
PubChem through in-house chemical structure standardization [24], are specified in the 
“PubChem_CID_associations” tag available in the downloadable SD files [32]. We used the 
relations between SIDs and CIDs to extract the non-systematic identifiers (synonyms and 
identifiers) from the substance database and assign them to the corresponding compounds [24]. 

TTD provides therapeutic protein and nucleic acid targets and drug information including 
targeted disease and pathway [25, 26]. We used TTD version 4.3.02. All synonyms, trade names, 
and drug names were extracted. 

Filtering 

The fields with non-systematic identifiers that were extracted from the databases may also 
contain systematic identifiers (e.g., a field with synonyms may not distinguish between the two 
types of identifiers). Systematic identifiers were automatically filtered out from the extracted 
identifiers with the use of two name-to-structure converters, ChemAxon’s MolConverter [33] and 
the open source tool OPSIN (Open Parser for Systematic IUPAC Nomenclature) [34]. Both tools 
are freely available for academic research. We used two different name converters since the 
algorithms that they implement to recognize systematic identifiers may differ slightly (mostly 
when considering IUPAC names). Each extracted identifier was fed into the converters and only 
considered non-systematic if neither tool recognized it as systematic. For example, the term 
“(2S,5R,6R)-6-{[(2R)-2-amino-2-phenylacetyl]amino}-3,3-dimethyl-7-oxo-4-thia-1-
azabicyclo[3.2.0]heptane-2-carboxylic acid” was not labelled as a IUPAC name in DrugBank 
“DB00415” but it was filtered out through this step. 
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Ambiguity within and across databases 

A non-systematic identifier was considered ambiguous within a database if it appeared in 
multiple records in the database, i.e., if multiple structures were provided for the same identifier. 
Ambiguity was measured as the percentage of unique identifiers within a database that are 
ambiguous. 

An identifier was considered ambiguous across two databases if the structures (as defined by 
their MOL files) of the compounds associated with the identifier in the two databases were 
different. If an identifier was ambiguous in one or both of the databases (i.e., the identifier was 
associated with multiple compounds within the database(s)), the identifier was also considered 
ambiguous across databases. Ambiguity was calculated as the percentage of unique shared 
identifiers between databases that are ambiguous. 

To compare two MOL files, we used the same approach as in our previous study [13]. Briefly, 
each MOL file was converted into a Standard InChI with ChemAxon’s MolConverter [33], 
providing a unique textual representation of the MOL file. The two InChI strings were then 
compared to determine whether the corresponding structures were the same. No comparison 
was made if an InChI could not be generated. 

Standardization 

In the process of creating MOL files for compounds, databases can apply different sensitivity 
settings [2]. These settings pertain to including or ignoring fragments, isotopic labels, charges, 
canonical tautomers, or stereochemical information. Different sensitivity settings can result in 
different Standard InChI strings for the same compound, and thus are a potential source of 
ambiguity. Standardization of the MOL files can help to reduce such ambiguities. 

The Computer-Aided Drug Design group of the National Cancer Institute defined a set of rules 
called FICTS to standardize the structural representation of compounds [2, 35]. FICTS rules 
correspond to five standardisation levels that affect structural information. The rules remove 
small fragments (F), disregard isotopes (I) and charges (C), generate canonical tautomers (T), or 
ignore stereochemical information (S). Any combination of the five rules can be applied and is 
expressed by converting the corresponding upper-case letter of the term “FICTS” into a “u” (for 
“un-sensitive”). ChemAxon’s Standardizer [36] was used to execute these standardization rules. 

Results 

Databases 

For each database, Table 1 shows the number of compounds with at least one non-systematic 
identifier, and the total number of non-systematic identifiers (not unique). The databases vary 
greatly in size and in the average number of non-systematic identifiers per compound, ranging 
from 1.3 for ChemSpider-V and ChEMBL to 35.4 for TTD. The large average for TTD can be 
attributed to the presence of a large number of database identifiers for many of the compounds. 
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Table 1: Number of compounds and non-systematic identifiers in different chemical databases. 

Database Compounds Identifiers Identifiers / compound 

PubChem 4,232,875 15,211,133 3.6 

ChemSpider 6,646,902 10,063,709 1.5 

ChemSpider-V 654,052 850,601 1.3 

HMDB 37,761 308,733 8.2 

NPC 14,814 131,290 8.9 

TTD 2,977 105,407 35.4 

ChEBI 15,633 41,956 2.7 

ChEMBL 21,398 28,011 1.3 

DrugBank 3,769 26,780 7.1 

Ambiguity of non-systematic identifiers within databases 

Table 2 shows the ambiguity of non-systematic identifiers and the average number of compounds 
per ambiguous identifier within the databases. HMDB has 15.2% ambiguity, much larger than for 
any of the other databases. On average, an ambiguous identifier in HMDB is associated with 6.1 
compounds, but the distribution is highly skewed. For example, the two most ambiguous 
identifiers in HMDB, “Triglyceride” and “Triacylglycerol”, are each associated with about 14,000 
compounds. Moreover, HMDB contains 176 non-systematic identifiers with more than 100 
structures (100 being an arbitrary number chosen for the purpose of comparison). The only other 
databases that contain identifiers that are associated with more than 100 structures, are 
ChemSpider (39 identifiers) and PubChem (16 identifiers). Some of these identifiers are 
unspecific, e.g., “ester” is linked to 228 structures in ChemSpider. 

TTD is the database with the second-largest ambiguity (4.6%), but none of the ambiguous 
identifiers in TTD are associated with more than three compounds. This is also reflected in the 
low average number of compounds per ambiguous identifier (2.1), close to the minimum of 2 
that would be reached if all ambiguous identifiers were associated with exactly two compounds. 
The ambiguity of ChemSpider-V (0.6%) is much lower than the ambiguity of ChemSpider (2.5%), 
suggesting a positive effect of curation. However, when we recalculated the ambiguity of the 
ChemSpider-V records prior to curation, we found an ambiguity of 0.7%. Therefore, the curation 
effort only slightly reduced ambiguity within ChemSpider-V, possibly because it focused more on 
establishing the correctness of compound structures. DrugBank has the lowest ambiguity of non-
systematic identifiers (0.1%). 
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Table 2: Ambiguity of non-systematic identifiers and the average number of compounds per 
ambiguous identifier, within databases. 

Database Unique 
identifiers 

Ambiguous 
identifiers 

Ambiguity (%) Compounds / 
ambiguous identifier 

HMDB 173,455 26,430 15.2 6.1 

TTD 100,570 4,607 4.6 2.1 

ChEMBL 26,910 1,050 3.9 2.1 

NPC 112,717 3,455 3.1 2.1 

ChemSpider 9,691,277 245,541 2.5 2.5 

ChEBI 41,023 827 2.0 2.1 

PubChem 14,937,728 201,621 1.3 2.4 

ChemSpider-V 842,128 5,401 0.6 2.3 

DrugBank 26,759 20 0.1 2.1 

Ambiguity of non-systematic identifiers between databases 

Table 3 presents for each pair of databases the number of unique non-systematic identifiers that 
are shared between the databases. The first figure in the parentheses indicates the ambiguity of 
these shared identifiers, i.e., the percentage of shared identifiers for which the corresponding 
structures in the two databases are different. For example, the identifier “floxuridine” occurs in 
ChEBI and in ChEBML, but the corresponding structures in these two databases do not match, 
and thus the identifier is ambiguous. The second figure in the parentheses shows the percentage 
of the shared identifiers that are ambiguous within one or both of the databases, and thus are 
ambiguous across databases by definition. For example, “ofloxacin” is shared between ChEMBL 
and HMDB, but is also ambiguous within HMDB because it is associated with two different 
structures (in records HMDB01929 and HMDB15296). Therefore, the identifier is considered 
ambiguous, even though one of the structures in HMDB (HMDB15296) matches the one in 
ChEMBL.
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Table 3: Number of shared non-systematic identifiers between databases, ambiguity of the shared identifiers (first figure in 
parentheses, in italic), and the percentage of shared identifiers that are ambiguous within at least one of the databases (second figure 
in parentheses). 

Database ChEBI ChEMBL ChemSpider ChemSpider-V DrugBank HMDB NPC PubChem 

ChEMBL 
1,886        

(39.5/18.2)        

ChemSpider 
28,281 23,584       

(30.9/24.1) (29.9/22.3)       

ChemSpider-V 
5,081 4,303       

(39.9/9.8) (43.6/16.6)       

DrugBank 
2,981 4,108 19,222 6,985     

(28.7/3.4) (39.6/14.7) (50.7/32.0) (45.2/6.7)     

HMDB 
4,529 2,325 27,608 11,774 5,515    

(49.6/10.6) (48.4/17.7) (57.3/29.5) (43.9/8.8) (30.7/5.2)    

NPC 
5,516 6,858 62,527 18,709 22,377 6,815   

(40.7/6.1) (46.4/15.1) (60.2/26.8) (48.6/7.4) (21.9/2.0) (44.4/7.4)   

PubChem 
24,331 25,607 2,275,338 99,334 24,929 35,905 68,280  

(36.9/26.1) (33.1/28.9) (17.7/8.5) (41.6/19.2) (46.8/39.4) (43.3/28.3) (49.8/29.6)  

TTD 
4,854 5,019 50,182 8,305 17,232 6,256 23,669 98,853 

(27.7/7.6) (36.9/16.9) (32.3/18.4) (40.3/10.4) (18.2/6.8) (43.0/11.2) (22.4/6.9) (25.4/23.0) 
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Ambiguity between two databases varies widely, from 17.7% (for DrugBank and TTD) to 60.2% 
(for NPC and ChemSpider). Overall, the lowest ambiguity values between a given database and 
the other databases are seen for TTD (median ambiguity over all databases 30.0%), while highest 
values occur for NPC (median 45.4%), and HMDB (median 44.2%). 

The percentage of shared identifiers that are ambiguous within either or both of the databases 
(i.e., are ambiguous across databases by definition) also varies greatly. For instance, 39.4% of the 
shared identifiers between DrugBank and PubChem are also ambiguous within the databases, 
largely accounting for the overall ambiguity of 46.8%. (This means that only 7.4% of the shared 
identifiers are ambiguous across but not within the databases.) Similar values are seen for 
ChEMBL and PubChem (33.1% overall ambiguity and 28.9% ambiguity due to identifiers that are 
ambiguous within the databases) and PubChem and TTD (25.4% and 23.0%, respectively). On the 
other hand, for DrugBank and NPC only 2.0% ambiguity is due to ambiguous identifiers within 
the databases (overall ambiguity 21.9%), and for DrugBank and ChEBI only 3.4% (overall 28.7%). 

Effect of standardisation 

Table 4 shows the effect of different types of standardization on reducing the ambiguity of non-
systematic identifiers within databases. For most databases, standardization has little effect on 
ambiguity (median change for each setting less than 0.5 percentage point). The largest changes 
are seen for TTD and ChEMBL, in particular for removing fragments (uICTS). Overall, removing 
fragments and disregarding stereochemistry (FICTu) gives the largest changes, while disregarding 
isotopes (FuCTS) has the lowest effect. Notably, standardization does not affect HMDB, the most 
ambiguous database. 
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Table 4: Effect of standardization on the ambiguity of non-systematic identifiers (in %) within 
databases. 

Database FICTS uICTS FuCTS FIuTS FICuS FICTu 

HMDB 15.2 15.2 15.2 15.2 15.2 15.2 

TTD 4.6 1.8 2.1 2.0 2.1 2.1 

ChEMBL 3.9 2.0 3.8 3.9 3.9 3.4 

NPC 3.1 2.7 2.7 2.7 2.7 2.7 

ChemSpider 2.5 2.3 2.5 2.5 2.2 1.9 

ChEBI 2.0 1.8 1.9 1.4 1.8 1.6 

PubChem 1.4 1.2 1.3 1.3 0.6 0.6 

ChemSpider-V 0.6 0.6 0.6 0.6 0.6 0.3 

DrugBank 0.1 0.1 0.1 0.1 0.1 0.1 

We also computed the effect of different standardization settings on the ambiguity of non-
systematic identifiers across databases. Table 5 shows the results for removing fragments (uICTS) 
and disregarding stereochemistry (FICTu), which gave the largest reductions in ambiguity. Results 
for the other standardization settings (FuCTS, FIuTS, and FICuS) are available as Additional file 1. 

Overall, ignoring stereochemistry information gave the largest ambiguity reduction (median 
decrease of 13.7 percentage points), but the remaining ambiguity between databases was still 
considerable (median 25.4%). The largest improvements were seen for HMDB and NPC (23.2 
percentage points) and for HMDB and ChemSpider (21.9 percentage points). Removal of small 
fragments resulted in a median reduction in ambiguity of 4.9 percentage points. The highest 
reduction was obtained for ChEBI and ChEMBL (17.5 percentage points). 
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Table 5: Effect of standardization on the ambiguity of non-systematic identifiers (in %) across 
databases. 

Database Standardization ChEBI ChEMBL ChemSpider ChemSpider-V DrugBank HMDB NPC PubChem 

ChEMBL 

FICTS 39.5        

uICTS 22.0        

FICTu 32.6        

          

 FICTS 30.9 29.9       

ChemSpider uICTS 28.4 25.0       

 FICTu 19.5 17.8       

          

ChemSpider-V 

FICTS 39.9 43.6       

uICTS 36.5 34.1       

FICTu 26.1 27.3       

          

DrugBank 

FICTS 28.7 39.6 50.7 45.2     

uICTS 15.5 22.6 41.4 37.2     

FICTu 23.3 32.6 35.9 33.4     

          

HMDB 

FICTS 49.6 48.4 57.3 43.9 30.7    

uICTS 47.4 36.1 54.4 42.4 30.4    

FICTu 32.3 33.0 34.4 23.3 16.1    

          

NPC 

FICTS 40.7 46.4 60.2 48.6 21.9 44.4   

uICTS 31.2 31.1 45.9 37.3 21.3 43.5   

FICTu 26.8 36.2 45.1 31.6 13.5 21.2   

          

PubChem 

FICTS 36.9 33.1 17.7 41.6 46.8 43.3 49.8  

uICTS 32.9 25.2 16.1 37.1 37.6 40.9 38.4  

FICTu 24.1 24.0 9.0 25.4 34.6 26.7 35.1  

          

TTD 

FICTS 27.7 36.9 32.3 40.3 18.2 43.0 22.4 25.4 

uICTS 20.9 24.6 27.8 32.7 16.8 41.1 20.6 21.6 

FICTu 15.2 26.0 17.8 23.0 10.1 22.0 9.2 13.8 
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Discussion  

We quantified the ambiguity of non-systematic identifiers within and between eight widely used 
chemical databases. Our results show an ambiguity between 0.1% and 15.2% (median 2.5%) 
within databases, whereas ambiguity between databases ranged from 17.7% to 60.2% (median 
40.3%). Standardization reduced the ambiguity to some extent. Removal of small fragments gave 
the largest reduction (median 1.8 percentage point) in ambiguity within databases, while 
removing stereochemistry information provided the best improvement in reducing ambiguity 
(median 13.7 percentage point) across databases. Possibly, the addition of three-dimensional 
information to structures either by hand or through automated processes introduces an extra 
complexity that is responsible for the ambiguity. These results complement our findings in a 
previous study, where we investigated the consistency of systematic identifiers (i.e., whether a 
systematic identifier was consistent with the associated MOL file) and showed that this 
consistency varied greatly within and across databases [13]. 

Ambiguity of non-systematic identifiers within databases is generally low, with on average few 
compounds associated with an ambiguous identifier. HMDB was an outlier with 15.2% ambiguity 
and an average of 6.1 compounds per ambiguous identifier. Among the most common 
ambiguous identifiers in HMDB are different classes of Triglyceride (TG, triacylglycerol, TAG, 
tracylglycerol), which is an ester derived from glycerol and three fatty acids, and 
Phosphatidylcholine (PC), a class of phospholipids. The IUPAC-IUB Commission on Biochemical 
Nomenclature discourages the use of “triglyceride” as the ambiguity of this identifier will result 
in inconsistencies [37]. Chemical compound records representing drugs, metabolites, and 
biochemicals of other types are usually records with a higher number of non-systematic 
identifiers, which might lead to a higher ambiguity. However, our results suggest that there is no 
clear association between number of non-systematic identifiers per compound and ambiguity 
within the different databases. Drugbank, for example, has a fairly large average number of 
identifiers per compound (7.1) but showed lowest ambiguity (0.1%), whereas ChEMBL has a low 
number of identifiers per compound (1.3) but relatively high ambiguity (3.9%). 

Another reason for ambiguity is that many databases massively integrate information from other 
databases, but may use different standardization procedures. This can result in different 
compound structures that have the same, but now ambiguous, non-systematic identifiers. 

The ambiguity within databases is much lower than the ambiguity across databases, which varies 
between 17.7% (for PubChem and ChemSpider) and 60.2% (ChemSpider and NPC). Factors that 
may affect the ambiguity between databases are the ambiguity within the separate databases, 
the level of (manual) database curation, and standardization procedures. The ambiguity between 
databases that could be attributed to identifiers that are already ambiguous within one or both 
of the databases, varied between 2.0% (DrugBank and NPC) and 39.4% (DrugBank and PubChem), 
but generally was considerably lower than the overall ambiguity between databases. This 
suggests that reducing the ambiguity within databases will only partly resolve the ambiguity 
across databases. It should also be noted that the ambiguity between two databases is based on 
the number of identifiers that the databases share, which may be much lower than the number 
of identifiers in either database. This explains why the ambiguity between databases for 
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identifiers that are already ambiguous in one of the databases can be much higher than the 
ambiguity within databases. For example, the ambiguity between DrugBank and PubChem is 
39.8%, whereas it is only 0.1% within DrugBank and 1.4% within PubChem. This shows that 
identifiers that are ambiguous within these databases are relatively frequently shared between 
the databases. 

Database curation does not appear to affect the level of ambiguity of shared non-systematic 
identifiers between databases. For instance, DrugBank and ChemSpider-V, which are both 
considered highly curated databases [20, 38], show that 45.2% of the shared identifiers are 
ambiguous (while only 6.7% of the ambiguity between these databases could be attributed to 
identifiers that were already ambiguous in the separate databases). This ambiguity ranks among 
the highest ambiguities between databases. 

The effect of chemical structure standardization on reducing the ambiguity of non-systematic 
identifiers is limited. The largest reductions were seen for disregarding stereochemistry and small 
fragments (median ambiguity reduction of 13.7 and 4.9 percentage points, respectively), but the 
remaining ambiguity was still considerable. The other standardization settings that we tested 
hardly reduced the ambiguity. 

Our study may have several implications for database curation and integration efforts. First, our 
findings indicate that some non-systematic identifiers are very ambiguous within databases (e.g., 
TG, triacylglycerol, ester). These identifiers are more likely to represent classes of chemicals than 
individual compounds, and may be considered for removal from the databases. 

Second, our study suggests that efforts to disambiguate non-systematic identifiers should not 
only pay attention to ambiguity within databases, which is generally low, but also consider 
identifiers that are ambiguous across databases. This will reveal many ambiguous and potential 
problematic identifiers that will not be apparent if only single databases are considered. Our 
method to detect these ambiguous identifiers can provide helpful information to database 
curators to direct their disambiguation efforts. Crowdsourcing approaches that involve the 
chemical community to improve database quality [20, 29, 39], may also benefit from this 
information to resolve ambiguity issues. All ambiguous identifiers in this study, within and 
between databases, are available through www.biosemantics.org. 

Third, our findings are relevant for database integration and maintenance. Many chemical 
databases are increasing their coverage by regularly integrating data from other sources [40], or 
existing databases are merged and made available as a new resource [41]. As mentioned in our 
previous study [13], integration of databases should focus on a unique representation of 
compounds (e.g., MOL files) as their base of integration. InChI strings derived from the MOL files 
have been shown to facilitate the process as they are unique and can encode multiple types of 
information [42], although limitations also exist [43]. Ambiguity of systematic identifiers can be 
reduced by regenerating them from the structures [13], but such an approach is not possible for 
non-systematic identifiers, which are generated at the point of registration. Our results show that 
there is a large ambiguity of non-systematic identifiers across databases, and suggest that the 
integration of these identifiers from different databases without proper manual curation can 
greatly increase their ambiguity. It has previously been proposed to use a voting approach to 



Ambiguity of non-systematic chemical identifiers within and between small-molecule databases 

 

53 

 

disambiguate non-systematic identifiers when integrating multiple databases, assigning the 
identifier to the compound to which it was most frequently associated in the databases [29], but 
this approach may be biased by error propagation when one database includes an erroneous 
identifier from another database. 

Our study has several limitations. First, although we included a variety of commonly used 
chemical databases, the number of databases is not very large and our results may not apply to 
databases that were not considered. Moreover, as the content of the databases evolves over 
time, the ambiguity within and between databases is likely to have changed since we 
downloaded the data. For example, recently an effort has been made to reduce ambiguity within 
the ChemSpider database by using a subset of records with non-systematic identifiers that had 
manually been validated, and automatically removing these identifiers from any record that had 
not been validated. A second limitation is that we quantified the ambiguity of non-systematic 
identifiers within and across databases, but did not determine which of the associations between 
non-systematic identifiers and compounds were correct, and thus could not rank the databases 
on their performance in this respect. A reference set of correctly assigned non-systematic 
identifiers would allow such an analysis, but may be cumbersome to establish. Finally, to assess 
whether two structures were the same, we used one tool to convert MOL files into InChI strings. 
Other tools might occasionally produce different conversions, because of differences in MOL file 
processing, but in our previous study [13] such differences were negligible and did not 
significantly influence the results. 

Conclusions 

Ambiguity of non-systematic identifiers within chemical databases is generally low. A much 
higher ambiguity was observed for non-systematic identifiers that are shared across databases. 
Chemical structure standardization reduces the ambiguity to a limited extent. The largest 
reductions are obtained when disregarding stereochemistry information or removing small 
fragments. The results of our study can help to improve database integration, curation and 
maintenance.  
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Abstract 

Exploring the chemical and biological space covered by patent applications is crucial in early-
stage medicinal chemistry activities. Patent analysis can provide understanding of compound 
prior art, novelty checking, validation of biological assays, and identification of new starting 
points for chemical exploration. 

Extracting chemical and biological entities from patents through manual extraction by expert 
curators can take substantial amount of time and resources. Text mining methods can help to 
ease this process. To validate the performance of such methods, a manually annotated patent 
corpus is essential. 

In this study we have produced a large gold standard chemical patent corpus. We developed 
annotation guidelines and selected 200 full patents from the World Intellectual Property 
Organization, United States Patent and Trademark Office, and European Patent Office. The 
patents were pre-annotated automatically and made available to four independent annotator 
groups each consisting of two to ten annotators. The annotators marked chemicals in different 
subclasses, diseases, targets, and modes of action. Spelling mistakes and spurious line break due 
to optical character recognition errors were also annotated. A subset of 47 patents was 
annotated by at least three annotator groups, from which harmonized annotations and inter-
annotator agreement scores were derived. One group annotated the full set. 

The patent corpus includes 400,125 annotations for the full set and 36,537 annotations for the 
harmonized set. All patents and annotated entities are publicly available at 
www.biosemantics.org. 
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Background 

A substantial number of patent applications are filed every year by the pharmaceutical sector [1]. 
Exploring the chemical and biological space covered by these patents is crucial in early-stage 
medicinal chemistry activities [1,2]. Patent specifications are one of many information sources 
needed to progress drug discovery projects. Patent analysis can provide understanding of 
compound prior art, novelty checking, validation of biological assays, and identification of new 
starting points for chemical exploration [3]. 

Extracting chemical and biological entities from patents is a complex task [4,5]. Different 
approaches are currently used including manual extraction by expert curators, text mining 
supported by chemical and biological named entity recognition, or combinations thereof [6]. 
Chemical patents are complex legal documents that can contain up to hundreds of pages. The 
European Patent Office (EPO) [7], the pharmaceutically relevant patents within the United States 
Patent and Trademark Office (USPTO) [8], and the World Intellectual Property Organization 
(WIPO) [9] can be accessed and queried on-line via their websites. The patents are freely available 
from the patent offices, usually as XML, HTML or image PDFs, although EPO limits the number of 
downloads per week for non-paying users. Using optical character recognition (OCR), the image 
PDFs can be prepared for text mining. In fact, the available HTML and XML documents are mainly 
the OCR output prepared and published by the patent offices. 

However, the text mining itself is a rather challenging task [10,11]. Methods and their output can 
suffer dramatically from the large number of complex chemical names, term ambiguities, 
complex syntactic structures and OCR errors [12]. 

To validate the performance of named entity recognition techniques, the availability of a 
manually annotated patent corpus is essential [13]. Producing such annotated text is laborious 
and expensive. Most of the prior focus on corpora development has been on genes and proteins 
and less effort has been put into creating corpora for chemical terms [14]. Among the latter 
efforts, Kim et al. [15] in 2003 developed the GENIA corpus consisting of several classes of 
chemicals. The BioIE corpus by Kulick et al. [16] was made available in 2004 and included 
annotations of chemicals and proteins. In 2008, Kolárik et al. [17] released a small corpus of 
scientific abstracts annotated with chemical compounds. Recently, the CHEMDNER corpus, 
annotated with different classes of chemicals, was made available as part of the BioCreative 
challenge [18]. All these corpora consist of scientific abstracts from Medline. In a collaborative 
project between the EPO and the Chemical Entities of Biological Interest (ChEBI) in 2009 [19] a 
chemical patent corpus containing annotations of chemical entities and, if possible, their 
mapping to ChEBI chemical compounds [20] was developed. In a later study [21], the updated 
version of ChEBI [22] was used to increase the number of mappings. A larger patent corpus was 
developed in 2012 by Kiss et al. [12] which included name entity recognition of generic chemical 
compounds. 

To our knowledge, the development of a gold standard patent corpus has not been systematically 
tackled before. Among the obvious reasons for this are the length and complexity of the patent 
text. In previous attempts only limited number of chemicals have been annotated and subclasses 
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have not been defined. Other biological entities such as diseases or modes of actions have not 
been included and errors due to misspellings or OCR procedures have not been considered. Most 
previous studies on annotated corpora did not provide insights into inter-annotator agreement. 
This information would be valuable in assessing and comparing the performance of text mining 
applications. 

Here we present a gold standard annotated corpus of 200 full patents for benchmarking text 
mining performance. The patent corpus includes annotation of chemicals with subclasses, 
diseases, targets and modes of action. Also spelling mistakes and spurious line break due to OCR 
errors are annotated within this corpus. The full-text patents and annotated entities are publicly 
available at www.biosemantics.org. 

Methods and Materials 

Corpus development strategy 

The development of the gold standard patent corpus consisted of several phases. First, 
annotation guidelines were developed and a set of 200 diverse patents was chosen. The patents 
were pre-annotated automatically and made available to four independent annotator groups. 
The annotator groups could choose to consider or disregard the pre-annotations. Two patents 
were used to refine the annotation guidelines. The remaining patents were distributed between 
multiple annotator groups in a way that a subset of 47 patents was annotated by at least three 
groups, from which harmonized annotations were derived. Inter-annotator agreement scores 
between the annotator groups and against the harmonized set were computed. One annotator 
group annotated the complete set of patents. 

Patent corpus selection 

The GVK BIO target class database [23] was used as a starting point for patent corpus selection. 
Patents from the EPO [7], USPTO [8], and WIPO [9] are available through this database, which 
includes relationships between documents, assays, chemical structures, assignees and protein 
targets, manually abstracted by expert curators [1]. Within the database, patents are binned 
based on different classes of protein families such as kinases or GPCRs [23]. 

All English language patents containing between 10 and 200 exemplified compounds, with a 
named primary target, were selected from the GVK BIO database. We made sure that all 
compounds had a molecular weight below 1000 to bias towards small-molecule patents. We did 
not specify limits on the time of the application. Overall 28,695 patents fulfilled the above 
criteria. 

Chemical patents are known to include long sentences with complex syntactic structure [12]. 
Individual companies may have different ways of writing patents and we wanted to include 
diversity over assignees in the corpora. Therefore, if assignees had written multiple patents for 
one primary target, only one was randomly kept and the rest was disregarded. 
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Based on these selection criteria we were left with 8,016 patents grouped in 11 target classes. 
To make sure that a collection of well-known patents are included in the corpus, 50 drug patents 
from Sayle et al. [24] were added. Subsequently patents were randomly picked from each target 
group with a minimum of 10 patents per group. The diversity of the final selection is shown in 
Table 1. The final set consists of 121 USPTO, 66 WIPO, and 13 EPO patents, and contains over 
11,500 pages and 4.2 million words. 

Table 1: Target class distribution of the 8,066 patents from which the final set was drawn. 

Target class Number of patents Final selection 

GPCR 3,569 20 

Protease 1,093 17 

Kinase 1,046 12 

Ion-Channel 433 14 

Oxidoreductase 404 17 

Hydrolase 364 15 

NHR 349 15 

Transporters 323 18 

Other 218 11 

Transferase 152 12 

Phosphatase 65 17 

Drugs from Sayle et al. [24] 50 32 

Total 8,066 200 

The patents were downloaded from the sources (EPO, USPTO, and WIPO) in XML format. 
Whenever multiple consecutive line breaks were encountered, they were replaced with a single 
line break. Images were also removed for all patents. 
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Annotated entities 

We annotated all compounds, diseases, protein targets, and modes of actions (MOA) mentioned 
in the patents. Compounds were assigned to a number of subclasses based on how they are 
generated: systematic identifiers and non-systematic identifiers [25]. The following systematic 
identifiers were annotated: IUPAC names [26], such as “ammonium phosphate” or “2-[2-(4-{2-
[ethyl(2-fluorobenzyl)amino]-2-oxoethoxy}phenyl)ethoxy]benzoic acid”; SMILES notations [27], 
such as “n1c[nH]cc1”; and InChI strings [28,29], such as “InChI=1S/C2H6O/c1-2-3/h3H,2H2,1H3”. 
We also annotated the following non-systematic identifiers: trademarks, such as “Aspirin”, 
“Mesupron”, and “Arimidex”; abbreviations, such as “DCM”, “TBTU” and “DMAP”; CAS numbers 
[30,31], such as “7732-18-5”; formulas, such as “MgSO4”; registry numbers, such as “ly256548”; 
and generic names, such as “iodotamoxifen”, “cycloalkylamines” and “racemate”. Any mention 
of diseases, such as “diabetes”, protein targets, such as “trypsin”, and MOAs, such as 
“antagonist”, were also annotated. OCR errors were also annotated in terms of spelling mistakes 
and spurious line breaks. 

Annotation guidelines 

Initial annotation guidelines were developed based on previous work [14,16-18]. Two patents 
(US5023269 [32] and US4659716 [33]) were randomly chosen from the patent corpus for training 
the annotators and fine-tuning the annotation guidelines. The following rules were defined: 

1. When an entity is nested or has an overlap with another entity, annotate the entity that is 
more specific and informative. For example “5-HT1D” should not be annotated as target when it 
is embedded within the target annotation of “5-HT1D Serotonin Receptors”. 

2. Annotate simple IUPAC names such as “water, “ammonia”, and “ethanol”. 

3. Prefixes should be included within annotations, for example “1,4-” in “1,4-butanediol”. 

4. Simple formulas such as “NaOH” and “(NH4)2SO4”, should be annotated as Formulas. 

5. Counterions, such as “acetate”, “oxalate”, “propionate”, should be annotated as IUPAC names. 

6. Generic structures such as “4-halo-phenol” or “xylene”, should be annotated as Generic 
names. 

7. Polymers, e.g., “Polystyrene”, should be annotated as Generic names. 

8. Trivial names, e.g., “Sildenafil”, should be annotated as IUPAC names. 

9. Enumerations, like “hydrochloric” and “hydrobromic” in “include inorganic acids such as 
hydrochloric, hydrobromic”, should be annotated as IUPAC names. 

10. Elements like “N”, “O”, and “C” should not be annotated. 

11. Misspelled terms should be annotated as spelling mistakes (e.g., “hydrobroml:c”). 

12. Annotations spanning over multiple lines because of spurious line breaks should be annotated 
as one term and be tagged with spurious line breaks. 

13. Extra white space should be annotated as spelling mistakes (e.g., “hydro bromic”). 
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14. Do not annotate a term if it is splitted due to reasons other than OCR errors. 

15. All symbols such as comma, charge symbol or brackets, should be included in the annotation 
(e.g., “n1c[nH]cc1”). 

Annotation process 

Each patent was automatically pre-annotated using LeadMine (NextMove Software, UK) [34]. 
LeadMine can identify chemicals, protein targets, genes, species, company names, and also has 
the ability to recognise terms with spelling mistakes and suggest corrections. This increases the 
likelihood of detecting terms with OCR errors by the human annotator. 

A pre-annotation consists of the span of text corresponding with the entity and its location within 
the text file. The following entity types were pre-annotated by LeadMine: IUPAC names, trivial 
names, CAS numbers, registry numbers, generic names, formulas, and targets. We did not pre-
annotate SMILES and InChIs, as they are rarely present in patents. Diseases, and MOAs were also 
not included as this was not possible through our version of LeadMine. 

For the annotation process the Brat rapid annotation tool (version 1.3) was used [35]. Brat allows 
online annotation of text using pre-defined entity types. It can display the pre-annotations and 
annotators can add new annotations and modify or delete the pre-annotated entities. To reduce 
mistakes and increase readability each entity type was marked by a specific color. For 
performance reasons we split the patents into pages with 50 paragraphs for display in Brat. Figure 
1 shows a screenshot of Brat with pre-annotations. 

 

Figure 1: Example patent text with pre-annotations as shown by the Brat 
annotation tool. 

Patents were annotated by annotators from four groups: AstraZeneca, Fraunhofer, GVK BIO, and 
NextMove. The GVK BIO annotation group consisted of ten annotators, while the other annotator 
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groups had two annotators. One annotator group (Fraunhofer) chose to disregard the pre-
annotations made by LeadMine. The patents were distributed between annotators within a 
group, such that each patent was annotated by only one annotator in a group. In the context of 
this paper, annotator group will refer to any individual annotator within the group. 

Annotators had to correct any misidentified pre-annotation and had to add annotations that 
were missed in the pre-annotation step. Entities containing misspellings or spurious line breaks 
were separately annotated. 

Resolving misannotation of ambiguous terms 

After the completion of the annotations by all groups, a group of annotators reviewed the results 
to reduce the number of ambiguous terms within the corpus. A term is defined as ambiguous if 
different groups annotated it with different entity types throughout the corpus. 

A list of ambiguously annotated terms was compiled and annotators were asked to review the 
list only based on the different entity types assigned to each ambiguous term (i.e., the context of 
the terms was not provided). The annotators had to classify each term in one of three groups: 

1. None of the entity types assigned to the term is applicable. All annotations of the term were 
removed from the corpus. For example, “nitrogen” was annotated as both IUPAC and Generic 
multiple times throughout the corpus. However, either entity type is incorrect since the term is 
an element. Therefore annotations of nitrogen are removed from the corpus. 

2. One entity type is applicable. All occurrences of the term within the corpus were assigned to 
this entity type. For example, the term “DMF” was assigned 43 times as Trademark, 289 times as 
Abbreviation, and once as Formula. Regardless of the context of the text, DMF is an abbreviation 
and therefore the entity type of the term was changed to Abbreviation throughout the corpus. 

3. More than one entity type is applicable. Only term annotations with an entity type that is not 
applicable, were removed throughout the corpus. For example, the term “5-ht” has been 
annotated 17 times as Abbreviation, 25 times as Generic, and 23 times as Target. Depending on 
the context of the text, the term can be either Target or Abbreviation but not Generic. Therefore 
all annotations of the term as Generic were removed from the corpus. 

Harmonization 

To develop the gold standard corpus, the annotations of the 47 patents annotated by more than 
three groups were merged into a harmonized set. The centroid algorithm described by Lewin et 
al. [36] was used for this purpose. 

Briefly, the algorithm tokenizes the annotations of different annotators at the character level and 
counts the number of agreeing annotators over pairs of adjacent annotation-internal characters 
[36]. Calculating votes over annotation-internal character pairs and not individual characters, 
guarantees that boundaries (starting and ending positions of an annotated entity) are considered 
in situations where two terms are annotated directly adjacent to each other [36]. The harmonized 
annotation consists of the characters pairs that have a vote equal to or larger than a specified 
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threshold. In this work, we used a voting threshold of two, i.e., at least two annotators had to 
agree on the annotation. 

The centroid algorithm was executed separately for each entity type. Therefore votes were only 
calculated if at least two annotators annotated a term with the same entity type. 

Inter-annotator agreement 

Similar to Corbett et al. [14] and Kolárik et al. [17], we used the F-score (harmonic mean of recall 
and precision) to calculate the inter-annotator agreement between the annotator groups and 
between each annotator group and the harmonized set. For the comparison of two sets of 
annotations, one set was arbitrarily chosen as the gold standard (this choice does not affect the 
F-score). An annotation in the other set was counted as true positive if it was identical to the gold 
standard annotation, i.e., if both annotations had the same entity type and the same start and 
end location. If a gold standard annotation was not given, or not rendered exactly in the other 
set (i.e., non-matching boundaries or a different entity type), it was counted as false negative; if 
an annotation found in the other set did not exactly match the gold standard, it was counted as 
false positive. 

Results 

Patent distribution among groups 

The number of annotated patents varied between annotation groups. Apart from the two 
patents used for training, 27 patents were annotated by NextMove, 36 by Fraunhofer, 49 by 
AstraZeneca, and 198 by GVK BIO. A total of 47 patents were annotated by at least three of the 
groups (three patents were annotated by all four groups). 

Initial harmonized set 

The initial harmonized set, prior to disambiguation, was generated over the 47 common patents, 
yielding a total of 35,337 annotations (Table 2). The results show that IUPAC names and generic 
names have been annotated significantly more than any other chemical type, as has also been 
shown previously [13]. On the other hand, InChIs, CAS registry numbers and SMILES are rarely 
seen in these chemical patents. Also, a considerable number of diseases, targets, and MOAs have 
been annotated. 
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Table 2: Number of annotated terms and unique terms within the harmonized set prior to 
disambiguation. 

Entity type Annotated terms Unique terms 

IUPAC 14,423 5,365 

Generic 7,959 880 

Disease 3,777 1,257 

Target 3,227 705 

Trademark 2,273 987 

Abbreviation 1,460 153 

Formula 1,069 171 

MOA 1,014 211 

Registry Number 108 90 

SMILES 21 21 

CAS 6 5 

InChI 0 0 

Total 35,337 9,845 

Inter-annotator agreement prior to disambiguation 

Table 3 shows the inter-annotator agreement between the groups and the harmonized set prior 
to disambiguation. There is generally a higher inter-annotator agreement between individual 
annotator groups and the harmonized set than between pairs of groups. The best agreement was 
0.78. The agreement between groups ranged between 0.39 and 0.69. Investigation of the reasons 
for some low agreements suggested that adding a disambiguation step could resolve some of 
these disagreements. 
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Table 3: Inter-annotator agreement (F-score) without ambiguity resolution. 

 AstraZeneca Fraunhofer GVK BIO NextMove 

Fraunhofer 0.42    

GVK BIO 0.60 0.39   

NextMove 0.50 0.69 0.52  

Harmonized 0.78 0.64 0.74 0.72 

Disambiguation 

A set of 2,135 unique ambiguous terms, corresponding to 47,044 annotations, were provided to 
annotators for disambiguation as described above. The annotators were able to make a decision 
for 333 unique ambiguous terms, affecting 9,005 annotations. The results in Table 4 show that 
most difficulties within the annotations were encountered between IUPAC names, Generic 
names and Trademarks. Also 23 elements were found that had been annotated 2,499 times with 
different entity types throughout the corpus. Since elements should not be annotated according 
to the guidelines, these terms were removed from the corpus. 
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Table 4: The effect of the disambiguation process on the annotations. 

Rules Type Affected Terms Affected Annotations 

Add IUPAC 52 2,275 

annotation Abbreviation 29 1,631 

 Generic 67 976 

 Trademark 71 442 

 Disease 4 387 

 MOA 2 203 

 Formula 25 177 

 Registry Number 28 111 

 Target 19 32 

Remove Elements 23 2,499 

annotation IUPAC 7 103 

 Trademark 3 101 

 Generic 2 67 

 Target 1 1 

Total  333 9,005 

Inter-annotator agreement after disambiguation 

After resolving the ambiguous terms, the harmonized set was recalculated. This resulted in an 
increase of inter-annotator agreement scores by 0.01 to 0.09 points (Table 5). 
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Table 5: Inter-annotator agreement after ambiguity resolution. The lower left triangle presents 
the inter-annotator agreement scores (F-score). The upper right triangle shows the 
improvement gained through disambiguation. 

 AstraZeneca Fraunhofer GVK BIO NextMove Harmonized 

AstraZeneca  + 0.04 + 0.09 + 0.08 + 0.06 

Fraunhofer 0.46  + 0.05 + 0.03 + 0.01 

GVK BIO 0.69 0.44  + 0.06 + 0.05 

NextMove 0.58 0.72 0.58  + 0.03 

Harmonized 0.84 0.65 0.79 0.75  

Recalculating the inter-annotator agreement by only considering text boundaries and 
disregarding the entity types, further increases the agreement with up to 0.04 points. To analyze 
the reasons behind some of the low agreements, inter-annotator agreement scores were 
calculated for the main entity types (Table 6). The major difficulty in the annotation was 
encountered for non-systematic identifiers and MOAs, while identification of targets, diseases, 
and systematic identifiers were made with higher agreements. 

Table 6: Inter-annotator agreement (F-score) between the harmonized set and the annotator 
groups for the main entity types. 

 AstraZeneca 
Harmonized 

Fraunhofer 
Harmonized 

GVK BIO 
Harmonized 

NextMove 
Harmonized 

Overall 0.84 0.65 0.79 0.75 

Chemicals 0.89 0.65 0.78 0.75 

Systematic 0.94 0.81 0.91 0.93 

Non-systematic 0.85 0.38 0.68 0.56 

Disease 0.47 0.82 0.87 0.86 

Targets 0.76 0.57 0.81 0.86 

MOA 0.65 0.29 0.67 0.17 

The inter-annotator agreement between the groups and overall, chemicals and systematic names 
were between 0.65 and 0.94. The inter-annotator agreement for non-systematic terms between 
Fraunhofer and the harmonized set was only 0.38. To investigate the reasons behind this low 
agreement, we recalculated the inter-annotator agreement between Fraunhofer and the 
harmonized set by considering cases where one annotation was embedded within the other 
annotation as an agreement. This only increased the inter-annotator score to 0.46. Further 
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analysis showed that counting annotations that overlap as an agreement increased the score to 
0.62. The main reason for the remaining differences was that annotators at Fraunhofer did not 
annotate formulas and had low agreements with others within the generic terms. 

Table 6 shows that apart from AstraZeneca, all groups managed to gain a high inter-annotator 
agreement (0.82 to 0.86) between diseases and the harmonized set. Further analysis showed 
that the low inter-annotator agreement between AstraZeneca and the harmonized set on 
diseases is due to annotation differences in the boundaries. Calculating inter-annotator 
agreement on diseases by also accepting embedded terms increased the agreement to 0.70. 

The inter-annotator agreement between Fraunhofer and the harmonized set for targets was only 
0.57. Additional investigation showed that accepting embedded terms increased the agreement 
to 0.64. 

The annotations of MOA for Fraunhofer and NextMove were also greatly affected by how the 
boundaries were chosen. An example is the term “mixed agonist” for which one group annotated 
the whole term as MOA and the other only annotated “agonist” as MOA. Accepting such cases 
as an agreement increases the agreement between NextMove and the harmonized set from 0.17 
to 0.72, and between Fraunhofer and the harmonized set from 0.29 to 0.62. 

The gold standard patent corpus 

The gold standard patent corpus consists of two sets: the harmonized corpus and the full corpus. 
The harmonized corpus consists of 47 patents with a total of 36,537 annotations for 9,813 unique 
terms (Table 7). In addition, 1,239 OCR errors have been annotated, of which 1,189 are spelling 
mistakes. The full patent corpus of 198 patents contains only the GVK BIO annotations with 
400,125 annotations for 80,977 unique terms. The set includes 5,096 OCR error annotations, of 
which 4,403 are spelling mistakes. 
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Table 7: Number of annotated terms and unique terms in the harmonized set and in the full 
patent set of the gold standard corpus after disambiguation. 

 Harmonized set (47 Patents)  Full set (198 Patents) 

 Unique terms  Annotated terms  Unique terms Annotated terms 

IUPAC 5,325 14,377  50,893 135,603 

Generic 881 8,384  14,305 169,133 

Disease 1,256 3,776  4,503 20,229 

Target 703 3,235  3,514 14,398 

Trademark 994 2,366  3,365 9,574 

Abbreviation 153 2,088  778 21,087 

Formula 169 1,127  3,108 25,716 

MOA 210 1,017  110 3,837 

Registry Number 96 140  188 329 

SMILES 21 21  166 166 

CAS 5 6  47 53 

InChI 0 0  0 0 

Total 9,813 36,537  80,977 400,125 

Discussion and conclusion 

We have produced a gold standard chemical patent corpus consisting of 198 full patents of which 
47 patents have been annotated by at least three annotators. The patent corpus contains a 
selection of patents from WIPO, USPTO and EPO with annotation of compounds, diseases, 
targets, and MOAs. We have also annotated spelling errors for the mentioned entity types. 

We have released the inter-annotator agreements along with the gold standard corpus. Making 
inter-annotator agreement scores available will hopefully prove to be useful for performance 
assessment of automatic annotations of the patent corpus. 

To our knowledge this is the first patent gold standard corpus containing full patents with 
different entity types (chemicals and their sub entities, diseases, MOAs, and targets). Patents are 
one of the richest knowledge sources with high information content and detailed description of 
chemistry and technology. Our annotation process showed the complexity of the annotation 
task. The OCR process added a significant level of noise to the text. A high inter-annotator 
agreement was seen on the annotation of entities such as systematic names. In contrast, we 
observed lower inter-annotator agreements for non-systematic names and MOAs. This 
emphasizes the challenges in identifying named entities from patent text. Annotation of OCR 
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errors may also be helpful to improve patent informatics systems by facilitating the development 
of algorithms to correct such errors. 

The annotated gold standard corpus should prove a valuable resource for developing and 
evaluating patent text analytics approaches.  
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Abstract 

Background 

The past decade has seen an upsurge in the number of publications in chemistry. The ever-
swelling volume of available documents makes it increasingly hard to extract relevant new 
information from such unstructured texts. The BioCreative CHEMDNER challenge invites the 
development of systems for the automatic recognition of chemicals in text (CEM task) and for 
ranking the recognized compounds at the document level (CDI task). We investigated an 
ensemble approach where dictionary-based named entity recognition is used along with 
grammar-based recognizers to extract compounds from text. We assessed the performance of 
ten different commercial and publicly available lexical resources using an open source indexing 
system (Peregrine), in combination with three different chemical compound recognizers and a 
set of regular expressions to recognize chemical database identifiers. The effect of different stop-
word lists, case-sensitivity matching, and use of chunking information was also investigated. We 
focused on lexical resources that provide chemical structure information. To rank the different 
compounds found in a text, we used a term confidence score based on the normalized ratio of 
the term frequencies in chemical and non-chemical journals. 

Results 

The use of stop-word lists greatly improved the performance of the dictionary-based recognition, 
but there was no additional benefit from using chunking information. A combination of ChEBI 
and HMDB as lexical resources, the LeadMine tool for grammar-based recognition, and the 
regular expressions, outperformed any of the individual systems. On the test set, the F-scores 
were 77.8% (recall 71.2%, precision 85.8%) for the CEM task and 77.6% (recall 71.7%, precision 
84.6%) for the CDI task. Missed terms were mainly due to tokenization issues, poor recognition 
of formulas, and term conjunctions. 

Conclusions 

We developed an ensemble system that combines dictionary-based and grammar-based 
approaches for chemical named entity recognition, outperforming any of the individual systems 
that we considered. The system is able to provide structure information for most of the 
compounds that are found. Improved tokenization and better recognition of specific entity types 
is likely to further improve system performance. 
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Background 

The past decade has seen a massive increase in the number of chemical publications in the 
scientific literature. The ever-swelling volume of available documents makes it increasingly hard 
to manually find and extract relevant information from such texts [1,2]. Automatic indexing of 
individual publications by the chemical entities mentioned in them, can make it easier to find 
new information. Ranking these chemical entities by recognition confidence can be helpful in 
judging the relevance of the publication. Also, knowing the location of every mention of chemical 
compounds in these publications is of use to establish relationships with other entities or 
concepts [3]. 

Different text-mining approaches can be taken to extract chemical named entities from text. The 
various approaches have been categorized as dictionary-based, morphology-based (or grammar-
based), and context-based [3]. In dictionary-based approaches, different matching methods can 
be used to detect matches of the dictionary terms in the text [3]. This requires good-quality 
dictionaries. The dictionaries are usually produced from well-known chemical databases. This 
approach may well capture non-systematic chemical identifiers, such as brand or generic drug 
names, which are source dependent and are generated at the point of registration. The drawback 
of a dictionary approach is that it is nearly impossible to also include all systematic chemical 
identifiers, such as IUPAC names [4] or SMILES [5], which are algorithmically generated based on 
the structure of the chemical compound and follow a specific grammar [6]. These predefined 
grammars are sets of rules or guidelines developed to refer to a compound with a unique textual 
representation (systematic term or identifier). These terms should have a one-to-one 
correspondence with the structure of the compound. Grammar-based approaches expand their 
extractions through the capture of systematic terms by utilizing these sets of rules, for example 
by means of finite state machines [7]. Therefore grammar-based approaches can extract 
systematic terms that are missing from the dictionaries. Both dictionary-based and grammar-
based approaches may suffer from tokenization problems [3]. Following the third approach, 
context-aware systems use machine learning techniques and natural language processing (NLP) 
to capture chemical entities. Machine learning techniques utilize the manually annotated 
chemical terms in a training set of documents to automatically learn and define patterns to 
extract terms from text [3]. The drawback of machine learning approaches is the need for a 
sufficiently large annotated corpus for training the system. 

Extraction of chemical entities from text has shown to be difficult. Among the main reasons are 
the large number of terms and synonyms within the chemical domain, the failure to follow 
guidelines when creating systematic terms by authors, the use of characters such as hyphens and 
commas within chemical terms, and the ambiguity and inconsistency within and across chemical 
databases [2,6,8]. Studies have tackled these difficulties using the approaches previously 
mentioned. Hettne et al. [9] extracted chemical terms from text using a dictionary-based 
approach (through a system called Peregrine [10]). Funk et al. [11] evaluated the performance of 
three different dictionary-based systems (MetaMap [12], NCBO Annotator [13], and 
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ConceptMapper [14]) by examining different parameters over multiple ontologies. Lowe et al. 
developed Opsin, which uses a grammar to transfer chemical nomenclature into structures [15]. 

In a later study Lowe et al. [16] further improved dictionary-based approaches by introducing 485 
grammar-based rules to identify systematic terms. Others (e.g., Leaman et al. [17]) have 
investigated machine-learning approaches with a focus on conditional random fields (CRFs) [18], 
hidden mark models (HMMs), and maximum entropy markov models (MEMMs) [19] to extract 
chemical terms from text. In a recent study, Campos et al. [20] developed Neji, an open source 
package that integrates dictionary-based and machine-learning approaches to extract biomedical 
terms from text. 

The BioCreative CHEMDNER challenge [8] intends to encourage the development of systems that 
can index chemical entities (especially the ones that are associated with a chemical structure) in 
scientific journals. Challenge participants were invited to submit results for two different tasks. 
The chemical document indexing (CDI) subtask pursues the creation of a list of the chemical 
entities in a document, ranked according to their confidence of recognition [8]. The chemical 
entity mention recognition (CEM) subtask aims at establishing the location of every mentioned 
chemical entity within a document [8]. The CHEMDNER organizers provided the participants with 
a manually annotated gold standard corpus [21] for training their systems. Overall 65 groups 
registered for the challenge and 27 groups (both academic and commercial) submitted results 
[8]. 

We investigated an ensemble approach where dictionary-based named entity recognition is used 
along with grammar-based recognizers and chemical toolkits to extract compounds from text. 
We analyzed the performance of ten different commercial and publicly available lexical resources 
using Peregrine, an open source indexing system [10,22], along with three different chemical 
compound recognizers. Different combinations of resources and recognizers were explored to 
find the best combination to extract the compounds. 

Methods 

Our approach was to extract non-systematic chemical identifiers using dictionary-based methods 
and systematic identifiers using grammar-based methods. We extracted compound family names 
using a defined ChEBI family dictionary, and database identifiers using a set of manually defined 
regular expressions. We merged the extractions of these systems. We first concentrated on the 
CEM subtask where we carried out chemical entity mention recognition. For the CDI subtask we 
determined confidence scores for all recognized terms and used these to rank the mentions. 

Corpus 

The CHEMDNER corpus [21] was used for the development and the evaluation of our system. The 
corpus consists of 10,000 manually annotated Medline abstracts divided in a training set and a 
development set (3,500 abstracts each), and a test set (3,000 abstracts). An additional sample 
dataset with 30 abstracts was also made available through the corpus. The abstracts in the test 
set were provided as part of a blinded set of 20,000 abstracts (participants did not know which 



Recognition of chemical entities: combining dictionary-based and grammar-based approaches 

 

79 

 

of these abstracts were part of the test set), which the teams had to process in the evaluation 
phase of the challenge. The corpus has been annotated with the following entity types: 
abbreviation (e.g., "DMSO"), family (e.g., "Iodopyridazines"), formula (e.g., "(CH3)2SO"), 
identifier (e.g., "CHEBI:28262"), multiple (e.g., "thieno2,3-d and thieno3,2-d fused oxazin-4-
ones"), systematic (e.g., "2-Acetoxybenzoic acid"), trivial (e.g., "Aspirin"), and undefined (e.g., 
"C4-C-N-PEG9"), concentrating on mentions with practical relevance as to potential target 
applications (focusing on chemical entities with structures) [21]. Therefore general compounds 
not associated with chemical structures were not annotated throughout the corpus. The 
combination of sample set, training set, and development set, collectively called the training 
material further on, was used to develop the ensemble system. 

Lexical resources 

We extracted all the terms (a term denoting a compound and consisting of one or more words) 
from the databases described below, including brand names, synonyms, trade names, generic 
names, research codes, Chemical Abstracts Service (CAS) numbers, and any other compound-
relevant information. Since we wanted to focus on compounds with structures, only records with 
MOL file representations of chemical structures [23] were extracted. 

ChEBI [24] Chemical Entities of Biological Interest (ChEBI) is a freely accessible dictionary of small 
molecular entities. Manually checked and annotated (three star) compounds and their associated 
MOL file representations of chemical structures were extracted, including all synonyms, brand 
names, ChEBI names, and International Nonproprietary Names (INNs). 

ChEMBL [25] ChEMBL is a freely accessible database of bioactive molecules with drug-like 
properties. Chemical records are manually curated and standardized. Relevant information was 
extracted from ChEMBL records with associated MOL files. 

ChemSpider [26] The ChemSpider database is a freely accessible chemical structure database, 
owned by the Royal Society of Chemistry [27]. It contains structures, properties and associated 
information for compounds gathered from more than 470 data sources. The information in the 
database is validated automatically by robot software, and manually by annotators and 
crowdsourcing [26,28,29]. We only used the subset of compounds that were manually validated. 

DrugBank [30] DrugBank is a freely accessible database containing information on drugs and drug 
targets. Most of the data in DrugBank is expertly curated from primary literature sources [31]. All 
synonyms, brand names, CAS numbers, INNs, and generic names were extracted from DrugBank 
records with MOL files. 

HMDB [32] The Human Metabolome Database (HMDB) contains human body-related small 
molecule metabolites information. The database links chemical, clinical and biological data. All 
compounds within HMDB are manually annotated by at least two annotators [33]. 

NPC [34] NIH Chemical Genomics Center Pharmaceutical Collection (NPC) contains clinical 
approved drugs from the USA, Europe, Canada and Japan. The data are automatically screened 
for curation [34]. The NPC browser 1.1.0 was used to extract synonyms, CAS numbers, and 
structure names for compounds with structures. 
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TTD [35] Therapeutic Target Database (TTD) contains known and explored therapeutic targets 
and their corresponding drugs. Targets are only included in TTD if they have been described in 
the literature [36]. All synonyms and drug names were extracted. 

PubChem [37] PubChem is a database that provides information regarding biological activities of 
small molecules. PubChem stores molecular structures and bioassay data from different 
contributors [37]. A subset of compounds likely to have structure-activity relationships and/or 
other biological annotations [38] with all of their corresponding synonyms derived from 
PubChem substances were downloaded. 

In addition to the databases above, which all contain information on compound structure, we 
also explored two large lexical resources that do not provide structure information. 

Jochem [9] The joined lexical resource Jochem is a dictionary of small molecules and drugs, 
containing information from multiple sources. The dictionary is designed for text mining and all 
integrated data have been filtered, curated and disambiguated automatically [9]. All compounds 
and their corresponding information were extracted from Jochem. 

UMLS [39] The Unified Medical Language System (UMLS) is a collection of biomedical concepts 
from different lexical resources grouped by 135 different semantic types [39]. UMLS provides a 
mapping among these lexical resources. Automatic auditing tools are used to discover and 
resolve possible errors [40,41]. Concepts belonging to a subset of 21 chemical-related semantic 
types were selected and extracted from UMLS. 

To capture family names, we also created a dictionary from the ChEBI ontology where we only 
took parent compounds that did not appear in the ChEBI three-star database, assuming that 
these terms have a high likelihood of being a family name. We call this dictionary ChEBI family.  

Table 1 shows the number of compounds and the number of terms for each of the resources. 
The total number of unique (case-sensitive) terms was 25,795,580. 
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Table 1: Number of records and number of terms in the terminological resources. 

Resource Number of compounds Number of terms Structure 

ChEBI 23,240 85,036 Yes 

ChEMBL 22,245 29,488 Yes 

ChemSpider 2,957,105 5,235,393 Yes 

DrugBank 6516 31,991 Yes 

HMDB 40,200 364,541 Yes 

NPC 14,666 131,795 Yes 

TTD 3,196 127,568 Yes 

PubChem 4,235,189 19,420,462 Yes 

Jochem 362,928 2,062,333 No 

UMLS 329,464 743,791 No 

ChEBI Family  22,635 90,166 No 

Stop words 

In a recent study, Funk et al. [11] described the effect of different parameters such as use of stop 
words on automatic extraction of biomedical concepts from text. In this study we investigate the 
influence of stop words on automatic extraction of chemical terms from text. Several stop-word 
lists were analyzed for their ability to improve system performance, viz. English basic words (100 
words) [42], the PubMed stop-word list (133 words) [43], the Jochem stop-word list (258 words) 
[9], and stop-words derived from the CHEMDNER annotation guidelines (116 words) [21]. Terms 
found by dictionary-based or grammar-based matching were disregarded if they were part of the 
stop-word lists. The basic English stop-word list and the PubMed stop-word list contain common 
English words, with 51 shared terms like "about", "all", "most", and "make". The Jochem stop-
word list and the CHEMDNER derived stop-word list focused on more specific ambiguous terms, 
such as "crystal" or "acid" for the Jochem set, and "insulin" or "lead" for the CHEMDNER set. 
These two sets only shared five words. 

Dictionary-based recognition 

We employed the Peregrine tagger [10,22] to analyze the performance of the individual 
terminological resources. Tokenization of text that contains chemical terms can be complicated 
as compound names may include punctuation, such as commas or brackets. We used Peregrine 
with the tokenizer previously developed by Hettne et al. [9]. All the terms from the terminological 
resources were used to index the training material with different settings for case sensitivity and 
noun-phrase (NP) chunking. 
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Case sensitivity To study the effect of case sensitivity of characters within chemical names on the 
performance of the system, we indexed the text in separate runs with different matching 
settings: case insensitive, case sensitive, and partial case sensitive (only case sensitive for 
abbreviations, defined as terms where the majority of characters consists of capitals and digits, 
e.g. "BaTiO3"). 

NP chunking Assuming that chemical compounds will mostly be present in the noun phrases of a 
sentence, the experiments were also repeated by only feeding noun phrases extracted with the 
OpenNLP chunker [44] to Peregrine. The OpenNLP chunker has previously been shown to score 
best in performance and usability on NP recognition in biomedical text [45]. 

Grammar-based recognition 

A number of public and commercial software packages that can find chemical entities in text 
were used for the grammar-based recognition approach. ChemAxon's Document-to-Structure 
toolkit (D2S) [46], NextMove's LeadMine [47], and OSCAR 4 [48] were used for this purpose. 
These tools have also implemented grammar-based recognition of systematic chemical 
identifiers. D2S uses grammars along with dictionaries to extract chemicals from text. D2S can 
also extract information from optical character recognition text and has the ability to recognize 
chemical structures from text (image extraction) [46]. NextMove's LeadMine uses a filtered 
dictionary along with 485 rules (grammars defined for chemical nomenclatures naming) to find 
and extract systematic names. The tool provides automatic spelling correction which allows the 
tool to extract misspelled terms from documents. The tool also supports multiple languages [47]. 
Oscar is an open-source software package for extracting named entities from chemical 
publications. The tool uses different types of models (such as a Bayesian model, pattern 
recognition, and a Maximum Entropy Markov Model) to extract terms from documents [48]. All 
the tools were used with their default settings, without further training, adjustment or tuning. 

Regular expressions 

Database identifiers of compounds are one of the entity types annotated in the CHEMDNER 
corpus [21], e.g., LY541850 or AMN082. This subset was used to define a set of regular 
expressions that served to index the abstracts for chemical database identifiers. As an example, 
"LY[\ ]{0,1}[1-9][0-9]{5,6}" captures the letters "LY" followed by a space (optional) and six or 
seven digits (the first of which is not 0). 

Ensemble system 

The stop-word lists were employed for both dictionary-based and grammar-based recognition. 
The dictionary-based recognition was applied using different settings for case sensitivity and NP 
chunking. We used the BioCreative evaluation script [49] to calculate precision, recall, and F-
score (using exact matching of entity boundaries without considering entity type). The scores for 
the grammar-based recognizers and the regular expressions were also calculated in the same 
manner. We then heuristically selected different combinations of terminological resources, 
grammar-based recognizers and regular expressions, and assessed the performance of each 
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ensemble. Our strategy was to have at least one system from each approach. The ensemble 
system merged the outputs of the various systems. All combinations of up to three lexical 
resources, the grammar-based recognizers, and the regular expressions were assessed, and the 
ensemble system with the highest F-score was determined. For comparison, we also investigated 
a simple voting scheme, where a term is accepted if the number of resources and systems by 
which the term is found, is at least equal to a voting threshold. 

In the final setup we tried to improve our system by extending our dictionary with all gold-
standard annotations from the training material that our system initially missed. Further 
improvement was reached by singling out indexed terms that overlapped. In these cases, the 
longest term (greater number of characters) was kept. If the terms had the same number of 
characters, they were ranked based on the subsystems that extracted them: regular expressions, 
grammar-based, dictionary-based (decreasing priority). If any or both of the overlapping terms 
were captured by more than one system, the term with highest priority was chosen. In rare cases 
where the overlapping terms had the same size and the same priority, one term was randomly 
chosen. 

Ranking 

To perform the CDI subtask, we needed a sorted list of unique mentions of the chemical terms in 
each document. The terms should be ranked according to an estimated confidence of 
recognition. We therefore determined a "confidence score" for each chemical term as follows. 
Abstracts from the whole of Medline were divided into two subgroups based on subject 
categories from the ISI Web of Knowledge [50] (Table 2). The first group consisted of 1,979,485 
abstracts from chemical journals, employing the same subject categories as described in the 
CHEMDNER guidelines [21]. The second group contained 73,603 abstracts from non-chemical 
journals (e.g., journals in the subject category "Agricultural economics & policy") carefully chosen 
through the ISI Web of Knowledge classification. All abstracts were indexed by Peregrine with all 
lexical resources. We assumed that chemical terms would be present more frequently in 
chemical abstracts than in non-chemical abstracts. For each term, the ratio of the tf*idf (term 
frequency times inverse document frequency) scores for both abstract sets was computed and 
transformed into a confidence score between zero and one: if ratio < 1 then score = ratio * 0.5 
else score = 1 - 0.5/ratio. A term with high confidence is found more frequently in chemical 
abstracts than in non-chemical abstracts and therefore is likely to be a chemical term. Vice versa, 
a term with low confidence is likely to be non-chemical, or highly ambiguous. For example, the 
drug "Indomethacin" (with DrugBank id DB00328) was found 15,421 times in the chemical 
abstracts and only once in the non-chemical abstracts, resulting in a high confidence score of 
0.99. The ambiguous term "Merit" (synonym of "Imidacloprid" with HMDB id HMDB40292) was 
found 779 times in the chemical and 101 times in the non-chemical abstracts and obtained the 
low score of 0.14 after normalization. 
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Table 2: Subject categories in the ISI Web of Knowledge that contain chemical or non-chemical 
related journals. 

Chemical related Non-chemical related 

Biochemistry & molecular 

Biology 

Chemistry, applied 

Chemistry, medicinal 

Chemistry, multidisciplinary 

Chemistry, organic 

Chemistry, physical 

Endocrinology & metabolism 

Engineering, chemical 

Polymer science 

Pharmacology & pharmacy 

Toxicology 

Agricultural economics & policy 

Automation & control systems 

Computer science, information systems 

Computer science, software engineering 

Computer science, theory & methods 

Education, scientific disciplines 

Instruments & instrumentation 

Mathematics 

Mechanics 

Physics, mathematical 

Robotics 

Telecommunications 

The confidence score was taken to rank the term. If it was not available (due to time constraints 
for the challenge we did not compute scores for terms only captured by regular expressions or 
grammar-based recognition, which took much more processing time than dictionary-based 
recognition), the term was ranked according to the precision of the system that indexed the term. 
In cases where multiple systems indexed the term the highest score was applied. 

Results 

Individual systems 

Table 3 shows the baseline performance of the dictionary-based and grammar-based named 
entity recognition with and without stop-word removal on the 7030 abstracts in the training 
material. The dictionary-based named entity recognition was performed with case sensitive 
matching. 
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Table 3: Performance (in %) of individual systems on the training material, before and after stop-
word removal. The highest score in each column is bolded. 

 Baseline  Baseline + stop-word removal 

Precision Recall F-score  Precision Recall F-score 

Dictionary-Based        

    ChEBI 28.3 40.6 33.4  77.7 39.7 52.6 

    ChEMBL 87.9 18.7 30.8  88.8 18.7 30.9 

    ChemSpider 65.4 39.0 48.9  80.4 38.4 51.9 

    DrugBank 63.0 17.2 27.0  78.1 17.1 28.1 

    HMDB 53.2 34.5 41.8  81.3 33.9 47.9 

    NPC 46.8 26.7 34.0  59.7 26.4 36.6 

    TTD 43.9 14.7 22.1  82.9 14.4 24.6 

    PubChem 17.4 59.0 26.9  61.1 57.9 59.5 

    Jochem 64.2 52.5 57.8  67.1 52.5 58.9 

    UMLS 37.7 51.1 43.4  45.4 50.8 47.9 

    ChEBI Family  10.4 16.6 12.8  29.4 16.3 21.0 

Grammar-based        

    Oscar 25.1 63.2 35.9  28.4 62.4 39.0 

    LeadMine 61.3 47.4 53.4  71.1 47.1 56.7 

    ChemAxon 80.9 41.8 55.1  82.5 41.7 55.4 

The baseline F-scores without stop-word removal fluctuate between 12.8% and 57.8%, with 
Jochem, ChemAxon and LeadMine performing the best. ChEMBL obtained a high precision of 
87.9% but with a poor recall of 18.7%. Oscar, PubChem and Jochem had the highest recalls, but 
with moderate to poor precisions. ChEBI Family gained the lowest F-score, which can be 
explained by the fact that its scope was limited to chemical family names. Further analysis 
revealed that 40.3% of the annotated family names were captured by ChEBI Family. The low 
precision of ChEBI Family is mainly due to the presence of terms such as "role", "proteins", 
"inhibitors", "metabolites", which are not blocked as they are not present in the stop-word list. 
The use of the stop-word lists greatly improved the precision and F-score of the majority of 
resources. The performance of ChEMBL and ChemAxon remained nearly constant showing that 
these systems extract few of the stop words in our lists. Use of the stop-word lists hardly affects 
recall, with a largest decrease of only 1.1% for PubChem. 
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Table 4 gives a further breakdown of the performance improvement for the individual stop-word 
lists that were used. Clearly, the largest improvements are seen for the Basic English terms (up 
to 23.7 percentage points with an average of 4.1) and the PubMed stop-word list (up to 22.3 
percentage points with an average of 3.6). Among the terms that had a large effect on precision 
were basic English terms such as "In" (extracted 32367 times of which only 5 are annotated in 
the corpus as Formula) and "As" (extracted 7087 times of which 33 cases are annotated as 
Formula). Many more general terms were also extracted mostly as false positives, such as 
"protein", "DNA", "insulin", and "water".



Recognition of chemical entities: combining dictionary-based and grammar-based approaches 

 

87 

 

 

Table 4: Effect of individual stop-word lists on F-score. 

 Baseline  Basic English  PubMed stop 
words 

 Jochem stop 
words 

 CHEMDNER 
guidelines 

Resource P R F  P R F  P R F  P R F  P R F 

ChEBI 28.3 40.6 33.4  69.0 40.3 50.9  63.0 40.3 49.2  28.5 40.1 33.3  29.3 40.6 34.0 

ChEMBL 87.9 18.7 30.8  87.9 18.7 30.8  87.9 18.7 30.8  88.8 18.7 30.9  87.9 18.7 30.8 

ChemSpider 65.4 39.0 48.9  74.4 38.8 51.0  65.3 38.8 48.7  69.3 38.6 49.6  67.9 39.0 49.5 

DrugBank 63.0 17.2 27.0  63.0 17.2 27.0  63.0 17.2 27.0  78.1 17.1 28.1  63.1 17.2 27.0 

HMDB 53.2 34.5 41.8  74.6 34.4 47.1  72.6 34.4 46.7  55.7 34.0 42.2  55.2 34.5 42.5 

NPC 46.8 26.7 34.0  47.6 26.5 34.0  46.6 26.5 33.7  52.2 26.7 35.3  53.3 26.7 35.6 

TTD 43.9 14.7 22.1  64.9 14.5 23.7  66.0 14.5 23.8  50.6 14.7 22.8  43.9 14.7 22.1 

PubChem 17.4 59.0 26.9  44.5 58.7 50.6  42.4 58.6 49.2  18.9 58.3 28.5  17.9 59.0 27.4 

Jochem 64.2 52.5 57.8  65.2 52.5 58.2  64.2 52.5 57.8  64.1 52.5 57.7  67.1 52.5 58.9 

UMLS 37.7 51.1 43.4  45.4 50.8 43.6  38.0 51.1 43.6  40.0 50.8 44.9  42.4 51.1 46.4 

ChEBI 10.4 16.6 12.8  21.0 16.6 18.5  21.0 16.6 18.5  10.8 16.4 13.1  11.6 16.6 13.7 

Family Oscar 25.1 63.2 35.9  25.4 63.0 36.2  25.3 62.9 36.1  25.7 62.7 36.4  27.7 63.2 38.5 

LeadMine 64.9 47.4 54.8  66.4 47.4 55.3  64.9 47.4 54.8  68.0 47.1 55.7  72.8 47.4 57.4 

ChemAxon 80.9 41.8 55.1  80.9 41.8 55.1  80.9 41.8 55.1  81.1 41.7 55.1  83.3 41.8 55.5 
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Case sensitivity 

To study the influence of case sensitivity on the dictionary-based approach, we indexed the 
training data using case insensitive, case sensitive, and partial case sensitive matching for all 
terminological resources (Table 5). The results did not show a large difference in most of the 
cases although (partial) case sensitive matching improved the F-score of ChEBI by 7.1 percentage 
points and reduced the score of TTD by 2.7 percentage points. 

Table 5: F-score of terminological resources for different case sensitivity matching. 

 Insensitive  Sensitive  Partial sensitive 

Resource P R F  P R F  P R F 

ChEBI 71.2 33.5 45.6  77.7 39.7 52.6  76.7 40.2 52.7 

ChEMBL 91.6 18.9 31.3  88.8 18.7 30.9  88.5 18.8 31.1 

ChemSpider 78.4 40.5 53.4  80.4 38.4 51.9  80.3 39.6 53.0 

DrugBank 76.0 17.5 28.4  78.1 17.1 28.1  78.4 17.5 28.6 

HMDB 79.3 35.1 48.6  81.3 33.9 47.9  81.5 35.1 49.1 

NPC 58.5 26.8 36.8  59.7 26.4 36.6  59.9 27.1 37.4 

TTD 78.3 16.8 27.6  82.9 14.4 24.6  81.1 14.7 24.9 

PubChem 56.4 57.2 56.8  61.1 57.9 59.5  60.4 58.6 59.5 

Jochem 67.1 52.5 58.9  67.1 52.5 58.9  66.4 53.5 59.3 

UMLS 44.7 51.6 47.9  45.4 50.8 47.9  45.3 51.3 48.1 

ChEBI Family 29.4 16.3 21.0  29.4 16.3 21.0  29.4 16.4 21.1 

NP chunking 

To study the possible gain through NP chunking on dictionary-based approaches, we applied the 
OpenNLP chunker to extract noun phrases from the training material. The noun phrases were 
then indexed with Peregrine using all terminological resources. Table 6 shows higher precision 
and F-scores for most of the systems as compared to the baseline values (cf. Table 3), in particular 
for PubChem and ChEBI. As expected, recall drops, but only by 0.3 to 1.9 percentage points. 
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Table 6: Performance (in %) of individual systems in combination with NP chunking, before and 
after stop-word removal. 

 Baseline + NP chunking  Baseline + NP chunking + stop-
words 

ChEBI 56.3 39.4 46.4  77.5 38.5 51.5 

ChEMBL 87.8 18.2 30.1  88.6 18.2 30.1 

ChemSpider 70.1 37.9 49.2  81.5 37.3 51.2 

DrugBank 62.9 16.8 26.5  76.6 16.7 27.5 

HMDB 73.5 33.7 46.2  82.0 33.1 47.2 

NPC 46.8 26.0 33.5  59.1 25.7 35.9 

TTD 66.6 14.4 23.6  83.0 14.0 24.0 

PubChem 32.7 57.0 41.6  61.5 55.9 58.6 

Jochem 64.3 50.6 56.7  67.4 50.6 57.8 

UMLS 36.6 49.2 42.0  44.3 48.9 46.5 

ChEBI Family 18.4 15.9 17.1  28.8 15.6 20.3 

ChEBI 56.3 39.4 46.4  77.5 38.5 51.5 

The removal of stop-words in combination with the NP chunking system gives a further 
improvement of performance, but to a much smaller extent than for the baseline system. This is 
largely because most of the stop-words are not part of the noun phrases and disregarding them 
has no effect. Based on a comparison between the performances in Table 3 and Table 6 we 
decided to dispense with NP chunking as there was no gain. 

Regular expressions 

The regular expressions detected 44.4% of the chemical database identifiers, with a precision of 
90.4%. Further analysis of the false-positive and false-negative detections showed many partial 
extractions, e.g., "LY2090314" was extracted as an identifier while a prefix had also been 
annotated as part of the identifier ("[(14)C]LY2090314"). 

Ensemble system 

We evaluated different combinations of terminological resources (applying different case-
sensitivity settings), grammar-based recognizers, and regular expressions on the training data. 
The ensemble system with the best F-score consisted of the combination of ChEBI, HMDB, 
LeadMine, and the regular expressions, yielding an F-score of 66.6% (Table 7). 
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Table 7: Performance of the ensemble system on the training material. 

Ensemble system 
 

CDI task  CEM task 

Precision Recall F-score  Precision Recall F-score 

ChEBI, HMDB, LeadMine, and RegEx 70.1 63.7 66.7  70.9 62.8 66.6 

+ Missed terms added to dictionary 73.4 91.0 81.3  73.8 89.4 80.9 

+ False-positive terms added to 
stop-word list 

87.6 89.4 88.5  86.4 87.6 87.0 

+ Removal of overlapping terms 91.8 89.1 90.9  91.8 87.4 89.5 

The dictionaries performed best with case-sensitive matching but the differences with partial 
case-sensitive and with case-insensitive matching were marginal. Further addition of 
terminological resources to the ensemble system improved recall but decreased precision to a 
larger extent. For example, the addition of PubChem provided the largest increase in recall (about 
7 percentage points), but decreased precision with about 8.9 percentage points, resulting in a 
drop in F-scores of 2.1 percentage points. Also note that the ensemble system had a better F-
score than any of the individual systems (cf. Table 3). When we applied a voting approach, using 
all our sources and resources and varying the voting threshold between 1 and 15, the best F-
score was 65.3% (precision 76.6%, recall 56.9%) for a threshold of 4. 

We further analyzed the number of unique true positives (TPs) per entity type found by each of 
the systems within the ensemble system (Table 8). From a total of 37469 TPs captured by the 
ensemble system, 4139 cases were unique to ChEBI (mostly formula and abbreviation), 1878 
were unique to HMDB (mostly trivial and abbreviation), 9480 cases were unique to LeadMine 
(mostly systematic terms) and 280 cases were unique to Regular expressions. 
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Table 8: Number of unique true positives found by each system in the ensemble system. 

Entity type Regex LeadMine CHEBI HMDB 

Trivial 8 1655 888 711 

Systematic 0 3945 198 136 

Family 0 2643 79 325 

Formula 0 613 1866 110 

Abbreviation 39 515 1093 596 

Multiple 0 11 2 0 

Identifier 229 98 13 0 

Total 280 9480 4139 1878 

We tried to further improve our system by expanding our dictionary with the gold-standard 
annotations from the training material that were missed by our system. This greatly improved 
the recall and F-score values (Table 7), although these estimates are optimistically biased since 
we evaluated the performance on the same dataset from which the newly added terms were 
derived. We also added all false-positive terms, i.e., terms indexed by our system but not 
annotated within the corpus (e.g., "peptide" and "carcinogen"), to our stop-word list, which 
further improved performance. Furthermore, we removed the shorter of two overlapping terms, 
which added 2.5 percentage points to the F-score, to reach 90.9% for the CDI task and 89.5% for 
the CEM task. 

We submitted various runs to evaluate the system performance on the test set for both the CDI 
task and the CEM task (Table 9). The F-score of the baseline ensemble system improved by 9 
percentage points after adding the false-negative terms of the training material to the dictionary 
and the false-positive terms to the stop-word list. A small further improvement was seen after 
the removal of overlapping terms, corroborating our findings on the training material. The best 
ensemble system obtained F-scores of 77.6% and 77.8% for the CDI and CEM tasks, respectively. 
Additional runs with a more recall-oriented system that included PubChem improved recall only 
slightly (about 3 percentage points) but greatly reduced precision (about 16 percentage points). 
We also tested whether removal of dictionary terms with low confidence scores would further 
improve the results, but this was not the case. 
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Table 9: Performance of the ensemble system on the test set. 

Ensemble system 
 

CDI task  CEM task 

Precision Recall F-score  Precision Recall F-score 

ChEBI, HMDB, LeadMine, and 
RegEx 

70.5 64.8 68.0  73.1 64.6 68.6 

+ Missed terms added & extended 
stop-word list 

81.0 72.1 76.3  82.5 71.6 76.7 

+ Removal of overlapping terms 84.6 71.7 77.6  85.8 71.2 77.8 

Discussion 
Extracting chemical terms from unstructured text has proven to be a difficult task [3]. Here we 
present an ensemble approach that combines a grammar-based approach to capture systematic 
chemical identifiers with a dictionary-based approach and regular expressions to capture non-
systematic names. The ensemble system performed better than any individual system. Stop-
word removal was shown to greatly improve system performance, as did the addition of false-
negative and false-positive terms from the training material to the dictionary and stop-word list, 
respectively. The effect of different types of case-sensitive matching, use of NP chunking, and 
removal of dictionary terms that were likely to be highly ambiguous or non-chemical, did not 
essentially change the performance. 

Our initial assumption about the beneficial effect of NP chunking on compound recognition was 
only partially met, in that the use of NP chunking alone improved performance but there was no 
additional value in combination with stop-word removal (cf. table 6). In a previous study by Kang 
et al. [51] dictionary-based recognition of diseases in scientific abstracts was improved by 
employing NLP techniques, including NP chunking. However, in that study only a small stop-word 
list was used. Also, chunk recognition in disease-related abstracts may be easier than in chemical 
abstracts, which can contain complex chemical names with multiple punctuation marks (e.g., 
hyphens, brackets). 

On the test set, our best ensemble system achieved F-scores of 78% for both challenge tasks. The 
results of our ensemble system on the training material are much better than on the test set (cf. 
Tables 7 and 9), but clearly this is due to the fact that we used the training data to improve the 
system. However, if we compare the baseline ensemble system, for which no training was 
needed, the F-scores on the training and test sets were almost similar for the CDI and CEM tasks. 

From the 27 teams that participated in the BioCreative CHEMDNER challenge, 20 teams used 
machine-learning methods to extract chemical terms from text. The most frequently used 
method was CRF [8]. The best scoring system for the CDI subtask [52] managed to gain a precision 
of 87%, a recall of 89%, and an F-score of 88%. This system uses CRF along with word clustering 
to extract terms. The state of the art system for the CEM subtask [17] obtained 89% precision, 
86% recall, and 87% F-score. This system also uses CRF along with several pre-processing steps 
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to extract chemical terms from text. With an F-score that was about 10 percentage points lower 
than the best systems, our ensemble system ranked eighth for the CDI task and seventh for the 
CEM task. Tuning of the grammar-based systems that we considered, could have resulted in a 
higher F-score. For example, LeadMine also participated in the challenge as a separate software 
system [16]. After tuning, LeadMine achieved an F-score that was nine percentage points higher 
than our ensemble system, and 32 percentage points higher than the baseline LeadMine system 
that we used. Also ChemAxon participated in the challenge and obtained an F-score of 77% (an 
increase of 22 percentage points compared to the version we used). Among the teams who used 
lexical resources, ChEBI, PubChem and DrugBank were most often used; 13 teams also used a 
stop-world list. Irmer et al. [53] used a dictionary-based approach along with modules to 
recognize formulas or handle specific scenarios (such as abbreviation or acronym expansion) and 
obtained an F-score of 77%. They introduced a set of words in a so-called grey list. Terms in this 
list were only annotated in specific circumstances. Some systems (e.g. [54]) also tried to create 
an ensemble system by combining machine learning, dictionary-based approaches and regular 
expressions, but obtained lower F-scores than our ensemble system. Finally, in our approach the 
ensemble system merges the outputs of a selected set of individual systems. Our results indicate 
that this approach produced a better result than a simple voting scheme. However, we did not 
explore more sophisticated approaches, such as weighted voting or integration into a learning 
framework [55]. Application of these techniques may further improve the performance of an 
ensemble system. 

Our approach has several advantages. First, use of the terminological resources and grammar-
based recognizers did not have to be trained. This is an advantage over machine-learning 
approaches that require a large training set, which is laborious and expensive to create. On the 
other hand, our results also indicate that a substantial performance improvement can be gained 
by using the training data to expand the dictionary and the stop-word list. Thus, if training data 
are available, they can straightforwardly be used to improve system performance for both 
dictionary-based and grammar-based approaches. 

A second advantage is that our system can provide structures for most of the found terms. 
Although the supply of information about structures was not required for the CHEMDNER tasks, 
chemists are generally interested in the chemical structure of a chemical identifier recognized in 
text. The terminological resources in the ensemble system (ChEBI and HMDB) contained MOL 
files, and also the grammar-based method (LeadMine) can provide structures for the extracted 
terms. Only the terms extracted with the regular expressions and terms that were added based 
on the training data, are not linked to structure information. 

There are also several limitations. While the precision of our best ensemble system was an 
acceptable 86%, the recall was a more modest 71%. Including other dictionaries in the ensemble 
improved recall, but deteriorated precision to a much larger extent. Also, we noticed that many 
of the missed chemical terms were due to tokenization issues, e.g., the formulas "WC" and "Na" 
were missed in the context of "(nano-WC)" and "(I(Na))", respectively (PMID 22954532). 
Improvement of our tokenizer will further be investigated. 
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Another limitation of the current ensemble system is that some of the entity types were poorly 
recognized, in particular the entity types Multiple and Formulas. Terms of these types are not 
well covered in our dictionary. Better recognition may be possible by the use of regular 
expressions specifically developed for these types. 

Finally, it should be noted that we used the grammar-based recognition tools with their default 
parameter settings, and did not try to tune them to the tasks at hand. Further improvements may 
be possible if such tuning were done. 

Conclusion 
We developed an ensemble system that combines dictionary-based and grammar-based 
approaches to chemical named entity recognition, and obtained F-scores of 78% on the two 
CHEMDNER challenge tasks. The baseline version of the system did not require training, but we 
were readily able to improve performance by making use of the available training data. The 
system is capable of providing structure information for most of the compounds that are found. 
Improved tokenization and better recognition of specific entity types will likely further increase 
system performance.  
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Abstract 
We describe the development of a chemical entity recognition system and its application in the 
CHEMDNER-patent track of BioCreative 2015. This community challenge includes a Chemical 
Entity Mention in Patents (CEMP) recognition task and a Chemical Passage Detection (CPD) 
classification task. We addressed both tasks by an ensemble system that combines a dictionary-
based approach with a statistical one. For this purpose the performance of several lexical 
resources was assessed using Peregrine, our open-source indexing engine. We combined our 
dictionary-based results on the patent corpus with the results of tmChem, a chemical recognizer 
using a conditional random field classifier. To improve the performance of tmChem, we utilized 
three additional features, viz. part-of-speech tags, lemmas and word-vector clusters. When 
evaluated on the training data, our final system obtained an F-score of 85.21% for the CEMP task, 
and an accuracy of 91.53% for the CPD task. On the test set, the best system ranked sixth among 
21 teams for CEMP with an F-score of 86.82%, and second among nine teams for CPD with an 
accuracy of 94.23%. The differences in performance between the best ensemble system and the 
statistical system separately were small. 
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Introduction 
Exploration of the chemical and biological space covered by patents is essential in the early stages 
of activities in the field of medicinal chemistry [1]. Analyzing patents can help to understand 
compound prior art and to pinpoint alternative starting points for chemical research [2]. 
Important tasks in patent analysis are the recognition of chemical names, the identification of 
chemical structure images, and the conversion of the extracted names and images into a 
structure-searchable form [3]. Other types of entities in medicinal chemistry patents, such as 
genes and proteins, diseases, or particular numerical values, may also be relevant to extract and 
to relate to chemical entities [4]. The extracted information is often compiled in structured 
databases that are easy to query and facilitate computational analysis. 

Usually, patent information is manually extracted [5]. This process is laborious and expensive due 
to the length of chemical patent texts, which may take hundreds of pages, and their complexity 
(mixture of scientific, technical and legal language, typographical errors, optical character 
recognition errors, etc.). These problems are aggravated by the sheer number of medicinal 
chemistry patents [1, 6]. Automatic methods to recognize chemicals in patents can help to ease 
this process, but have proven to be elaborate and demanding [7, 8]. One of the impediments is 
that very few large annotated gold-standard corpora for algorithm training and testing are 
available [9]. 

The automatic extraction of chemical and biological data from medicinal chemistry patents was 
addressed in the CHEMDNER-patents track of BioCreative V [10]. The track was organized as a 
community challenge to stimulate the development and comparative assessment of chemical 
and biological entity recognizers, and consisted of three tasks: (i) Chemical Entity Mention in 
Patents (CEMP), focusing on chemical entity recognition in patents; (ii) Chemical Passage 
Detection (CPD), focusing on the classification of patent titles and abstracts according to whether 
they contain chemical entities; and (iii) Gene and Protein Related Object (GPRO), focusing on the 
recognition of gene and protein mentions in patents. Our team participated in the CEMP and CPD 
tasks. 

Previous text-mining research mostly concentrated on chemical name recognition in scientific 
literature [4, 11]. Recently, a large-scale patent resource, SureChEMBL [12], has become 
available, which contains compounds extracted from the full-text, images and attachments of 
patents, and provides comprehensive search capabilities. Chemical entity recognition is the first 
step in the SureChEMBL data extraction pipeline, but performance figures have not been 
presented as yet [12]. A variety of systems to extract chemicals from Medline abstracts were 
developed and evaluated as part of the previous BioCreative IV CHEMDNER task [11]. The top-
ranking systems in that challenge used machine-learning techniques based on conditional 
random fields (CRFs) [11]. However, some systems that combined dictionary-based and rule-
based approaches also achieved competitive results [13, 14]. For the current challenge, we 
combined a dictionary-based approach with a statistical, CRF-based approach, and investigated 
the performance of the ensemble system for the CEMP and CPD tasks on the CHEMDNER-patents 
data. 
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Materials and methods 

Data 

The CHEMDNER-patent corpus [10] was used for the development and evaluation of our system. 
The corpus comprises a training corpus of 14 000 manually annotated patent records (each 
record consisting of a title and an abstract), divided into a training set and a development set of 
7000 records each, and a test set of 40 000 patent records, of which only 7000 were manually 
annotated. The annotation process and guidelines were largely similar to the ones used for the 
BioCreative IV CHEMDNER corpus, and have been described extensively [10, 15]. Table 1 
summarizes the number of annotated chemicals and chemical-related titles and abstracts. Only 
the annotations of the training and development sets were made available to the participants in 
the challenge. For evaluating the performance of their system on the test set, teams could submit 
up to five runs. To produce the evaluation results, we used the BioCreative evaluation software 
(www.biocreative.org/resources/biocreative-ii5/evaluation-library/) and focused on micro-
averaged recall, precision and F-score to assess system performance for the CEMP task, and on 
sensitivity (=recall), specificity and accuracy for the CPD task. Given the number of true-positive 
(TP), false-positive (FP), false-negative (FN) and true-negative (TN) detections, these metrics were 
computed as follows: 

recall = TP/(TP + FN), precision = TP/(TP + FP), F-score = 2*precision*recall/(precision + recall), 
specificity = TN/(TN + FP) and accuracy =  (TP + TN)/(TP + FN + FP + TN). 

We also used the Markyt prediction analysis toolkit (www.markyt.org/biocreative/analysis) to 
visualize the results. 

Table 1: Characteristics of the CHEMDNER patent corpus. 

 Training Development Test Total 

Patent records 7,000 7,000 7,000 21,000 

Manual chemical annotations 33,543 32,142 33,949 99,634 

Unique chemical annotations 11,977 11,386 11,433 34,796 

Chemical-related titles and abstracts 9,152 8,937 9,270 27,359 

Dictionary-based approach 

We used Peregrine, our open-source indexer [16], to analyze the performance of the different 
chemical dictionaries. Tokenization was done with a tokenizer previously developed by Hettne et 
al. [17]. Term matching was carried out by partial case-sensitive matching: case-sensitive for 
abbreviations (defined as terms of which the majority of characters consists of capitals and 
digits), case-insensitive for all other terms. 
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Dictionaries  

To construct our dictionaries, we selected seven well-known, publicly available chemical 
databases covering a wide range of compounds, namely: Chemical Entities of Biological Interest 
(ChEBI) [18], ChEMBL [19], DrugBank [20], the Human Metabolome Database (HMDB) [21], the 
NCGC Pharmaceutical Collection (NPC) [22], PubChem [23] and the Therapeutic Target Database 
(TTD) [24]. For each database record, we gathered all chemical terms (available from possibly 
different record fields). Chemical terms were only extracted from records that had associated 
chemical structures in the form of MOL files [25]. In the following, we briefly describe the 
databases and the fields from which identifiers were extracted. 

ChEBI is concerned with molecular entities, focusing on small chemical compounds [18]. It 
provides an ontological classification with parent and child relationships. We extracted data for 
all three-star (i.e. manually annotated) compounds from ChEBI SD files. This included synonyms, 
ChEBI names, brand names, International Nonproprietary Names (INNs) and International Union 
of Pure and Applied Chemistry (IUPAC) names. 

ChEMBL contains information on drug-like bioactive compounds [19]. In addition to literature-
derived data, ChEMBL also contains Food and Drug Administration (FDA) approved drugs. The 
data available through ChEMBL have been manually extracted and standardized [26]. Extracted 
fields include preferred names, synonyms, FDA alternative names, INNs, United States Adopted 
Names (USANs) and United States Pharmacopoeia (USP) names. 

DrugBank provides information regarding drugs, including chemical, pharmacological and 
pharmaceutical data, and their targets [27]. DrugBank data are curated by a curation team, which 
relies on primary literature sources. During production and maintenance, all synonyms and brand 
names within DrugBank are extensively reviewed and only the most common synonyms are kept 
[20]. We extracted brand names, generic names, synonyms, Chemical Abstracts Service (CAS) 
numbers, and IUPAC names from the DrugBank SD files and DrugCards. 

HMDB lists small-molecule metabolites found in the human body [21]. The database links 
chemical, clinical, molecular-biology and biochemistry data. HMDB is both automatically and 
manually curated [21]. All generic names, synonyms, CAS numbers and IUPAC names were 
extracted from the HMDB SD files and MetaboCards. 

NPC provides information on clinically approved drugs from USA, Europe, Canada and Japan for 
high-throughput screening [22]. We extracted preferred names and synonyms using the NPC 
browser 1.1.0. 

PubChem provides information on the biological activity of small molecules [23]. It consists of 
three different databases: a compound database, a substance database and a bioassay database. 
We extracted structures and all corresponding IUPAC identifiers and synonyms for a subset of 
compounds that had structure–activity relationships or other biological annotations. This subset 
of compounds was introduced by Muresan et al. [1] and is the same subset of PubChem 
compounds that we used in our previous study on chemical entity recognition [13]. The PubChem 
compound database does not contain synonyms. This information is available through the 
PubChem substance database. The relations between PubChem substance identifiers (SIDs) and 
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compound identifiers (CIDs), which have been created by PubChem through in-house chemical 
structure standardization [23], are specified in the ‘PubChem_CID_associations’ tag available in 
the downloadable structure data files. We used the relations between SIDs and CIDs to extract 
the synonyms from the substance database and assign them to the corresponding compounds. 

TTD contains information about therapeutic protein and nucleic acid targets of drugs, 
corresponding pathways and targeted diseases [24]. All trade names, drug names, CAS numbers 
and synonyms were extracted. 

Dictionary construction and combination 

For each database, a dictionary consisting of the extracted chemical terms was constructed. Each 
term was linked to one or possibly more (in case of ambiguity) compounds, represented by their 
MOL files. Dictionaries were combined by merging the identifiers of all compounds in the 
dictionaries. To determine which compounds in different dictionaries were the same, we used 
the same approach as in previous studies [28, 29]. Briefly, we compared MOL files by converting 
them into InChI strings, which provide unique textual representations of the MOL files. 
Compounds with identical InChI strings were considered the same, and the corresponding 
identifiers were merged. 

Term exclusion 

To improve the precision of the dictionary-based approach, we applied an exclusion list of terms 
as previously described [13]. Briefly, the list contains common English words, like ‘about’, ‘all’ 
and ‘make’, and ambiguous terms, such as ‘acid’, ‘crystal’ and ‘lead’. We expanded this list with 
exclusion terms mentioned in the annotation guidelines for the CEMP task. 

We also removed terms that were false-positive detections in the training data, but only if the 
ratio of true-positive to false-positive detections was lower than 0.3. This threshold was 
heuristically set based on the training data in order to prevent erroneous removal of overall 
correctly recognized terms because of an occasional false-positive detection. When testing on 
the development set, exclusion ratios were calculated for all false-positive terms in the training 
set; when evaluating on the test set, ratios were computed for all false-positive terms in the 
combined training and development sets. 

Term inclusion 

We identified all missed terms (false negatives) in the training set and re-indexed the texts for 
these terms. Only those terms that, after re-indexing, did not result in false-positive detections 
in the training set or had an exclusion ratio larger than 0.5 were added to the dictionary. When 
evaluating on the test set, the combined training and development sets were used to collect the 
false negatives and to determine whether they should be included in the dictionary. 



Chemical entity recognition in patents by combining dictionary-based and statistical approaches 

 

105 

 

Machine-learning approach 

We used the tmChem chemical recognizer system [30], one of the best performing systems in 
the previous BioCreative CHEMDNER challenge [11]. The tmChem system is an ensemble system 
that combines the output of two CRF-based systems. The first system is a modified version of the 
BANNER system [31], the second is based on the tmVar system [32], which employs 
CRF ++ libraries (https://taku910.github.io/crfpp/). Previous results of tmChem showed that the 
second system outperformed the first as well as the ensemble system [30]. We therefore only 
used the second system. 

Pre-processing 

The tmChem system transliterates non-ASCII Unicode characters to a similar ASCII equivalent. As 
some non-ASCII Unicode characters were not handled (causing a system crash when encountered 
in text), we expanded the transliteration capacities as necessary. We also replaced a vertical bar 
enclosed by parentheses or brackets (e.g. [|]), because these combinations caused tmChem to 
crash as well. 

Features 

Our initial feature set consisted of all features extracted by tmChem, including stemmed words, 
prefixes and suffixes, character counts (digit, uppercase, lowercase), semantic affixes (such as 
trivial rings) and chemical elements [30]. 

Three additional types of features were determined and used to train tmChem: part-of-speech 
(POS) tags, lemmas and word-vector clusters. We used the BioC natural language processing 
pipeline [33] to generate POS tags with MaxentTagger [34] and lemmas with BioLemmatizer [35]. 
Recent studies have shown that features based on clusters of word vectors can improve 
classification performance [36, 37]. We used the word2vec tool 
(https://code.google.com/p/word2vec/) to generate clusters of word vectors. Word2vec 
employs K-means clustering. The number of the cluster to which a word belonged was taken as 
a feature. 

We generated separate word clusters during the development phase and the test phase of the 
challenge. During development, the clusters were generated from the 14 000 titles and abstracts 
in the training and development sets. These data were extended with 200 full-text chemical 
patents that had been used in a previous study [9]. We experimented with different numbers of 
clusters (K = 300, 500, 1000). For testing our final system, clusters were generated using all 54 000 
records in the corpus plus the 200 full-text patents, with K = 1000. 

Post-processing 

For the machine-learning approach, the tmChem post-processing steps were applied [30]. These 
include enforcing tagging consistency (for each term that was found by the CRF at least twice 
within an abstract, any term mention in the abstract that the CRF had not identified was also 
tagged), abbreviation resolution (tagging corresponding abbreviations and long forms), boundary 
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revision (adding or removing unbalanced brackets or parentheses) and finding chemical database 
identifiers (through regular expressions). 

We experimented with different sets of dictionaries for the dictionary-based approach and 
different sets of features for the machine-learning approach. All terms recognized by the 
dictionary-based system or the statistical system were taken as the output of the final ensemble 
system. 

Text classification 

For the CPD task (classification of patent titles and abstracts as chemical-related or not), we used 
a straightforward approach based on the output of the CEMP task. If our system recognized any 
chemical term in a text (title or abstract), the text was categorized as a chemical-related. Note 
that the title and abstract of each record were classified separately. 

Results 
Table 2 shows the number of compounds and the number of unique identifiers in the chemical 
databases. Clearly, PubChem is by far the largest database. 

Table 2: Number of compounds and unique identifiers in chemical databases. 

Database No. of compounds No. of identifiers 

ChEBI 23,240 82,612 

ChEMBL 22,245 28,411 

DrugBank 6,516 31,948 

HMDB 40,199 228,907 

NPC 14,666 128,153 

PubChem 4,235,189 19,049,175 

TTD 3,196 121,744 

The number of identifiers that are shared between pairs of databases is shown in Table 3. 
Although PubChem contains >90% of the identifiers in ChEMBL, DrugBank and TTD, the other 
databases are much less well covered by PubChem. The majority of identifiers in DrugBank is 
covered by NPC and TTD, but the overlap between all other pairs of databases is relatively low.
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Table 3: Number of unique identifiers that overlap between pairs of chemical databases. The percentage coverage of the identifiers 
in the smallest sized database of each pair is given in parentheses. 

Database ChEBI ChEMBL DrugBank HMDB NPC PubChem 

ChEMBL 1,209 (4.3)      

DrugBank 2,444 (7.6) 3,931 (13.8)     

HMDB 4,885 (5.9) 2,293 (8.1) 5,946 (18.6)    

NPC 3,406 (4.1) 6,508 (22.9) 23,865 (74.7) 7,444 (5.8)   

PubChem 45,021 (54.5) 26,251 (92.4) 28,943 (90.6) 52,533 (22.9) 69,873 (54.5)  

TTD 4,481 (5.4) 4,507 (15.9) 18,028 (56.4) 6,503 (5.3) 23,901 (19.6) 119,819 (98.4) 
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Table 4 shows the performance of the dictionary-based approach on the development set, with 
and without use of the list of exclusion terms. Use of the exclusion list gives a substantial precision 
improvement for most dictionaries. The PubChem dictionary demonstrates the highest recall 
among the individual dictionaries, which may be explained by the large size of the PubChem 
dictionary and the fact that it contains the majority of terms from the other dictionaries. The 
dictionaries from ChEMBL and DrugBank had the highest precision, which is likely due to the fact 
that these databases are highly curated. The low recall of the dictionaries can be explained by 
their low coverage of systematic names and chemical family names. Of the 9194 systematic 
names that were annotated in the development corpus, recognition rates ranged from 7.5% for 
TTD to 53.8% for PubChem (median 31.0%). For family names, which form the largest annotation 
group (n = 11 710), recognition rate varied between 3.3% and 20.4% (median 9.1%). 

Table 4: Performance of different dictionaries and dictionary combinations with and without 
removal of exclusion terms. 

 Without exclusion  With exclusion 

Dictionary Precision Recall F-score  Precision Recall F-score 

ChEBI 56.51 29.47 38.74  78.87 28.42 41.79 

ChEMBL 84.53 20.46 32.94  85.11 19.87 32.22 

DrugBank 68.20 17.28 27.58  85.15 16.89 28.19 

HMDB 66.11 29.38 40.68  79.59 28.19 41.63 

NPC 30.90 44.85 36.59  55.23 30.61 39.39 

TTD 66.89 14.07 23.24  80.90 13.89 23.71 

PubChem 34.30 47.11 39.69  67.03 45.64 54.30 

All combined 30.85 50.32 38.25  53.66 48.59 51.00 

ChEBI-HMDB 55.46 36.98 44.37  78.12 35.45 48.77 

ChEMBL-DrugBank 70.51 23.94 35.74  83.02 23.16 36.21 

Table 4 also shows the performance of several combinations of dictionaries. As to be expected, 
the combination of all dictionaries after term exclusion has the highest recall (49%), but the 
lowest precision (54%). The combination of dictionaries from ChEBI and HMDB, which we used 
in the previous BioCreative CHEMDNER task (13), gave a recall of 35% and a precision of 78%. 
The combination of ChEMBL and DrugBank resulted in the highest precision (83%). 

Table 5 shows the incremental performance of the ensemble system trained on the training 
corpus and evaluated on the development corpus, when different feature sets and term-
processing steps were added. We only present dictionary-based results for the combination of 
ChEMBL and DrugBank as this combination produced the highest F-score on the training data 
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when combined with the CRF. For the CEMP task, all incremental steps improved the F-score, 
except when terms that were missed in the training set were included in the dictionary. The best 
ensemble system attained an F-score of 85.21% with a precision of 84.88% and a recall of 85.55%. 
For the CPD task, the system that comprised all processing steps, including the addition of missed 
terms, achieved the best performance with an accuracy of 91.84% (sensitivity 97.00%, specificity 
82.74%). 

When we only used the CRF-based system (trained on all features) to process the development 
set, we obtained an F-score of 84.78% (precision 86.14%, recall 83.47%) on the CEMP task, and 
an accuracy of 90.96% (sensitivity 94.23%, specificity 85.19%) on the CPD task. 

Table 6 shows the performance for both tasks on the test set. We submitted runs of the ensemble 
systems with and without the addition of missed terms. For comparison, we also submitted a run 
for the statistical system alone (including all features and post-processing). 

For the CEMP task, the statistical system performed best (F-score 86.82%), slightly better than 
the ensemble system without the addition of missed terms (F-score 86.55%). For CPD, the 
ensemble system with missed terms reached the best performance (accuracy 94.23%), slightly 
better again than the system without missed terms (93.93%). Our best systems ranked sixth 
among 21 participating teams for the CEMP task, and second among nine teams for the CPD task.
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Table 5: Performance of the ensemble system trained on the training set and tested on the development set. 

 CEMP task CPD task 

System Precision Recall F-score Sensitivity Specificity Accuracy 

Dictionary-based (ChEMBL-DrugBank) 70.51 23.94 35.74 50.63 88.41 64.29 

+ Exclusion list 83.02 23.16 36.21 44.29 94.37 62.40 

+ Term removal (exclusion ratio 0.3) 88.85 23.09 36.65 42.14 97.12 62.02 

+ CRF original features 84.96 83.83 84.39 95.11 85.33 91.57 

+ Post-processing (CRF) 84.50 84.91 84.70 95.39 85.01 91.64 

+ POS and lemmatization features 84.72 85.09 84.90 95.40 85.25 91.73 

+ Word-vector cluster features 84.88 85.55 85.21 95.31 84.87 91.54 

+ Missed terms (exclusion ratio 0.5) 75.88 88.63 81.76 97.00 82.74 91.84 

Table 6: Performance of different systems on the test set. 

 CEMP task CPD task 

System Precision Recall F-score Sensitivity Specificity Accuracy 

Statistical 86.83 86.81 86.82 96.13 88.67 93.61 

Statistical + dictionary without missed terms 84.92 88.25 86.55 97.00 87.91 93.93 

Statistical + dictionary with missed terms 77.76 90.84 83.79 98.03 86.79 94.23 
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Discussion 
We investigated the combination of dictionary-based and statistical approaches for chemical 
entity recognition in patents. Our results show that the recall of the chemical dictionaries on the 
CEMP task is low, and even a combination of all dictionaries gives a recall and precision of only 
around 50%. The low recall can be explained by the fact that many systematic chemical terms 
and chemical family names were lacking in our lexical resources. Meanwhile, the machine-
learning approach yielded a much higher precision and recall (86% and 83%, respectively). In 
order to maintain the high precision of the ensemble system, we used the dictionary combination 
with the highest precision (ChEMBL and DrugBank). For the CEMP task, this supplied us with a 
system that slightly improved machine-learning performance on the development set, but not 
on the test set. Thus, there was no performance gain for this task by the use of a combined 
dictionary-based and statistical approach over a statistical approach alone. For the CPD task, the 
ensemble system performed better than the statistical system alone, both on the development 
set and on the test set. This may be explained by the 1.9 percentage point higher sensitivity of 
the ensemble system, in combination with a similar decrease in specificity. As the majority of 
titles and abstracts in the development and test sets are chemical-related (see Table 2), 
sensitivity weighs more heavily than specificity in the accuracy. For both tasks, our results on the 
test set were better than those on the development set, indicating that overtraining did not 
occur. 

Contrary to our expectation, the inclusion of false-negative terms in the dictionary decreased the 
performance for the CEMP task, both on the development set and on the test set. This may partly 
be explained by tokenization issues that split chemical terms in multiple parts. Some of these 
parts were then erroneously matched with the newly added dictionary terms, resulting in a drop 
in precision. For the CPD task, the increase in sensitivity more than compensated for the decrease 
in specificity, yielding a slightly improved accuracy of the ensemble system using the missed 
terms. 

Although furnishing structure information about the recognized chemicals was not part of the 
challenge, this information is often important in practical applications. We are able to readily 
associate dictionary terms with structures because we only extracted terms from chemical 
records with structure information. Of the chemical terms in the development set, 23% is found 
by the dictionary-based approach and can be linked to structures. For the machine-learning 
approach, the mapping of recognized terms to structures is less straightforward, but part of these 
terms will consist of systematic chemical identifiers. These can also be converted into chemical 
structures using chemical naming conversion software (28, 29). 

Considering that annotated patent corpora are scarce, the CHEMDNER corpus of annotated 
patent titles and abstracts is a highly valuable and important resource for further development 
and comparative assessment of algorithms. Recently, we have reported on the creation of 
another corpus of 200 annotated full-text patents, which is publicly available (9). We plan to use 
this corpus to evaluate and possibly improve the performance of our systems on full-text patents.  
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Abstract 

Background 

In commercial research and development projects, public disclosure of new chemical compounds 
often takes place in patents. Only a small proportion of these compounds are published in 
journals, usually a few years after the patent. Patent authorities make available the patents but 
do not provide systematic continuous chemical annotations. Content databases such as Elsevier’s 
Reaxys provide such services mostly based on manual excerptions, which are time-consuming 
and costly. Automatic text-mining approaches help overcome some of the limitations of the 
manual process. Different text-mining approaches exist to extract chemical entities from patents. 
Majority of them have been developed using sub-sections of patent documents and focus on 
mentions of compounds. Less attention has been given to relevancy of a compound in a patent. 
Relevancy of a compound to a patent is based on the patent’s context. A relevant compound 
plays a major role within a patent. Identification of relevant compounds reduces the size of the 
extracted data and improves the usefulness of patent resources (e.g., supports identifying the 
main compounds). Annotators of databases like Reaxys only annotate relevant compounds. In 
this study, we design an automated system that extracts chemical entities from patents and 
classifies their relevance. To develop and evaluate the system, a patent corpus with annotations 
for chemical entities and their relevance was constructed. 

Results 

The gold-standard set contained 18,789 chemical entity annotations. Of these, 10% were 
relevant compounds, 88% were irrelevant, and 2% were equivocal. The performance (F-score) of 
the system on compound recognition was 84% on the development set and 86% on the test set. 
The relevancy classification system had an F-score of 86% on the development set and 82% on 
the test set. 

Conclusions 

Our system can extract chemical compounds from patents and classify their relevance with high 
performance. This enables the extension of the Reaxys database by means of automation.
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Background 
The number of chemistry-related publications has massively increased in the past decade [1]. 
These publications are mainly in the form of patent applications and scientific journal articles. A 
crucial step in early stages of medicinal chemistry activities is the exploration of the chemical 
space covered by these sources [1–4]. In commercial research and development projects, initial 
public disclosure of new chemical compounds often takes place in patent applications [4, 5]. On 
average, it takes an additional one to three years for a small fraction of these chemical 
compounds to appear in journal publications [5]. Therefore, a large selection of these chemical 
compounds are only available through patent documents [6]. Additionally, chemical patent 
documents contain unique information such as reactions, experimental conditions, mode of 
action [7], bioactivity data, and catalysts [1, 3]. Analysing such information becomes crucial [1, 4, 
5, 8] as it allows the understanding of compound prior art, it provides a means for novelty 
checking and validation, and it points to starting points for chemical research in academia and 
industry [3, 7, 9, 10]. 

Patent data is freely available through different patent offices. Major patent authorities include 
the European Patent Office (EPO) [11], the United States Patent and Trademark Office (USPTO) 
[12], and the World Intellectual Property Organization (WIPO) [13]. Depending on the patent 
authority, the data are made available in the form of XML, HTML, text PDF, Optical Character 
Recognition (OCR) PDF, or image PDF. Patent documents usually follow a systematic structure 
consisting of title, bibliographic information (such as patent number, dates, inventors, assignees, 
International Patent Classification (IPC) classes), abstract, description, and claims. Most of the 
chemical data are available in the experimental section of the description, while chemical 
compounds that are claimed (i.e., will become protected by the patent) are available in the claim 
section [4]. Drawings, sequences, or other additional information will normally be found at the 
very end of the patent. 

While patent authorities make available the patent documents, they do not provide systematic 
continuous chemical annotations and full-text searching capabilities [3], so manual or automatic 
excerption processes have been considered [1, 5, 7, 14]. Manual excerption processes result in 
high-quality content but are costly and time-consuming, and are therefore limited to commercial 
content providers [5]. Examples of content databases are Elsevier Reaxys [15, 16], CAS SciFinder 
[17], and Thomson Reuters Pharma [18]. These commercial resources provide high-quality 
content, such as compounds and their associated structures, facts associated to compounds, and 
reactions. Automatic approaches to extract information from patents have recently come into 
existence to overcome some of the aforementioned cost and time limitations. Examples of such 
resources include SureChEMBL [3], SCRIPDB [19], ChEBI database [20], IBM database [21], 
NextMove Software’s reaction database [22], and databases that combine data from different 
sources (e.g., PubChem [23]). SureChEMBL provides continuous, up-to-date chemical 
annotations with structures derived from USPTO, EPO, WIPO, and the Japanese Patent Office 
(JPO) [24]. The information is extracted from full-text patents (except JPO), images, and 
attachment files [3]. This information is mostly derived by text mining and image mining. SCRIPDB 
is a chemical structure database from compounds and reactions. This information is built based 
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on the digital chemical structure files provided by USPTO for a subset of its patents (grant patents, 
from 2001 until 2011) [19]. ChEBI database provides chemistry compounds and structures 
extracted from a subset of patent documents from the EPO office [20]. IBM database provides 
chemical compounds and structures derived from a subset of EPO, WIPO, and USPTO patents 
[21]. This information is derived by text-mining approaches. The reaction database of NextMove 
Software is also automatically generated by text mining the relevant experimental sections of 
patents covering the period 1976 - 2013 [22]. It proves difficult to maintain public databases and 
many of the above have become outdated. 

Some of the automatic resources mentioned above incorporate the textual data content supplied 
by the content providers to build their database (such as SCRIPDB). Others use image mining and 
text mining approaches to extract data from the patent full-text document (e.g., SureChEMBL 
and IBM). Image-mining approaches convert images attached to patents into structures using 
image-to-structure tools (e.g., CLiDE Pro [25] in SureChEMBL) [4]. These tools have limitations in 
the interpretation of individual drawing features (such as chemical bonds) found in the structure 
diagrams of some images [25], and will not further be considered in this study. Text-mining 
approaches focus on the recognition of chemical compounds in patents [4]. Each recognised 
small compound should also be associated with a chemical structure. Different text-mining 
approaches exist to extract chemical entities from patents. The approaches can be categorized 
as dictionary-based, morphology-based (or grammar-based), or statistical [26–29]. Dictionary-
based approaches use matching methods to identify compounds mentioned in a dictionary (e.g., 
generic drug names) within patents. This approach is limited by the compounds contained in the 
dictionary. Addition of all systematic compound identifiers to a dictionary is almost impossible as 
they are algorithmically generated based on the structure of a compound and a set of rules [30]. 
Grammar-based approaches use these rules to overcome this limitation and provide functionality 
to recognize systematic identifiers [26]. Statistical approaches use machine-learning techniques 
to recognize chemical compounds. These statistical-based recognizers are trained on manually 
annotated chemical terms [7]. Among the three approaches, statistical approaches have shown 
to perform the best [4, 31, 32] but they require a large annotated corpus for training [26, 33] and 
cannot associate compounds with structures. Correctness of the associated chemical structure 
to a recognized compound is essential in the field of chemistry [34, 35]. Often a combination of 
the methods above in the form of an ensemble system is used for chemical compound 
recognition [31, 36]. All systems require a gold-standard corpus for training, developing, and 
testing performance [30]. Producing such a corpus is laborious and expensive [7]. It involves 
development of well-defined annotation guidelines, selection and training of domain experts for 
annotation, selection of the data, annotation of the data by multiple annotators, and finally 
harmonization of the annotations [7]. 

Extracting information from patents automatically is fast but has limitations [7, 29, 37]. The 
majority of patent text-mining systems have been developed, trained, and tested using the title 
and abstract of the patent documents. Therefore their usage is not evaluated on full-text 
documents [31, 36]. More importantly, automatic extraction is mostly focused on extraction of 
all chemical compounds mentioned. In manually excerpted databases, the focus is on relevant 
compounds [5, 38]. A compound is relevant to a patent when it plays a major role within the 
patent application (e.g., starting material or a product in a reaction specified in the claim section). 
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Relevant compounds are a small fraction of all the compounds mentioned within the patent 
document [9, 39]. Automatic identification of the relevant compounds would greatly reduce the 
amount of extracted data from patents and can improve the usefulness of patent resources. 
Furthermore, these compounds can be used in predictive analyses to identify the key compounds 
within the patent (key compounds are the main compounds protected by the patent application 
and are usually well-hidden within the context) [9, 39]. To our knowledge, automatic 
identification of relevant compounds within patents has not yet been investigated. 

The objective of this study is to identify relevant chemical compounds in patents using an 
automatic approach. To develop and evaluate our approach, a patent corpus with named-entity 
and relevancy annotations was built. 

Methods 
Figure 1 shows the relevancy classification workflow. The chemical patents are pulled through 
patent offices. The patent source documents are first normalized into a unified format. They are 
then fed into the chemical entity recognition system that consists of two different named-entity 
extraction systems, Chemical Entity Recognizer (CER) (Elsevier, Frankfurt, Germany) [40] and 
OCMiner (OntoChem, Halle, Germany) [41]. CER extracts chemical entities and tags them in the 
normalized input document. OCMiner further enriches the output of CER by extracting additional 
chemical entities and assigning confidence scores to all extracted entities of both systems. The 
associated structures of chemical compounds extracted by CER or OCMiner are generated, 
validated, and standardized using the Reaxys Name Service [42]. The chemical annotations in the 
patent corpus are used to train and test the chemical entity recognition system. The relevancy 
annotations in the corpus are used to train and test the relevancy classifier, which labels the 
chemical entities extracted by the chemical entity recognition system as relevant or irrelevant. 
Below we describe each of the components in more detail. 
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Figure 1: Workflow of the relevancy classification. 

Normalization 

The variety of input sources and file types need to be normalized into a unified text 
representation [4]. The normalization step is performed by converting all input files (e.g., XML, 
HTML, pdf) into a unified XML representation format. Predefined XML tags corresponding to 
heuristic information such as document sections (title, abstract, claims, description, and 
metadata) are used within this unified representation. The normalization also converts all 
character encodings into UTF-8 (8-bit Unicode Transformation Format). 

During normalization, we store a one-to-one mapping between each character in the original text 
and the corresponding character in the normalized document. This provides us with the 
possibility to go back to the original document from the normalized text and vice versa. It also 
minimizes the efforts to update the annotations in the patent corpus in case of changes in 
normalization methodology (note that the documents in the corpus have also been normalized). 

Patent corpus development 

The development of the chemical patent corpus with chemical entity and relevancy annotations 
was done in two phases. Figure 2 illustrates the corpus creation process. The first phase focuses 
on building a corpus with chemical entity annotations. In phase two the corpus obtained from 
phase one is used to assign relevancy annotations to the entities annotated in phase one. In this 
phase, annotators also flagged any compounds with spelling mistakes. For each phase, a set of 
well-defined guidelines was developed that helped achieve annotation consistency. 
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Figure 2: Patent corpus development. 

Chemical entity annotation guideline 

The chemical entity annotation guideline was developed based on our previous patent corpus 
development guideline [7], previous work by other scholars [32, 43–46], and the help of subject 
matter experts in Elsevier. The guidelines define the entities to be annotated. For each entity, 
positive and negative examples were provided. Additionally, any exception was defined and 
illustrated through examples. The guideline also defined how the annotation should be 
performed within the brat rapid annotation tool [47, 48]. Brat allows online annotation of text 
using pre-defined entity types. Annotators were asked to annotate chemical compounds (e.g., 
tetrahydrofuran), chemical classes (e.g., zirconium alkoxide), and suffixes or prefixes of these 
compounds (e.g., “stabilized” as prefix in “stabilized zirconia”, “nanoparticles” as suffix in “silver 
nanoparticles”). 

Chemical compounds could be annotated in three categories: mono-component-compound 
(pure chemical compounds, e.g., systematic identifiers, trivial names, elements, chemical 
formulas); compound-mixture-part (e.g., “Magnesiaflux”, which scientifically is a mixture of 30% 
MgF2 and 70% MgO); or prophetic-compound (specific compounds that are uncharacterized 
within the text and are mentioned in claims or descriptions only for intellectual property 
protection). 

Compound classes could be annotated in six categories: chemical-class (natural products or 
substructure names, e.g., heterocycle); biomolecules (e.g., insulin); polymers (e.g., 
polyethylene); mixture-classes (e.g., opium); mixture-part-classes (e.g., quinupristin), or Markush 
(textual description of a Markush formula, e.g., HaXbC-C-H). 
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Relevancy annotation guideline 

For the relevancy annotation, a new set of guidelines were developed, which defined how 
relevant compounds should be identified. The relevancy annotation did not include suffixes and 
prefixes of compounds. In brief, relevancy is assigned as follows: 

1. Prophetic compounds and Markush classes are relevant. 

2. Compound-mixture-parts, mixture-part-classes, mixture-classes, polymers, and biomolecules 
are irrelevant. 

3. Mono-component-compounds and chemical-classes are assigned relevance based on the 
context of the full patent text. They are considered relevant to the patent if: (a) the entity is 
present in the title or abstract section of the patent; (b) the entity is part of a reaction context 
(e.g., product, intermediate product, catalyst or starting material used in synthetic procedures); 
or (c) the entity or its measured property belongs to the invention in the claim section and is 
connected to the core invention of the patent. The mono-component-compounds and chemical-
classes are irrelevant if: (a) the entity is only introduced for further explanation and is described 
beyond the invention; (b) the entity is described for reference or comparison; or (c) the entity is 
involved in a chemical reaction but not a starting material, product or catalyst. 

Data selection 

Patent documents are long and extensive. Annotation of full-text documents is time-consuming 
and expensive. Complexity was reduced by selecting snippets of patent text from a large set of 
patent documents that represented the diversity of the data. We downloaded all EPO patents 
with IPC class A or C (corresponding to chemistry) from a three-month period in 2016 [15, 16]. 
This yielded 19,274 patents, which were divided into snippets as follows. First, each patent was 
divided into six snippets containing title, abstract, claims, description, metadata, and non-English 
section of the patent. Second, since the performance of the brat toolkit drops on long files [7], 
snippets of more than 50 paragraphs were further divided into multiple snippets. From this set 
of snippets, a small set was selected for annotation. We performed random stratified sampling 
based on the sub-classes of IPC A and C (list available at 
http://web2.wipo.int/classifications/ipc/ipcpub). In addition, the following conditions were 
satisfied: 10% of the snippets were from titles, 10% from abstracts, 40% from claims, and 40% 
from descriptions, and all snippets were from different patents. 

We selected a total of 131 snippets, which constitute our patent corpus. The IPC sub-classes that 
occurred most frequently were A61K, A61B, C07D, A61F, A61M, C12N. 

Chemical entity annotation process 

We selected ten chemistry graduates as annotators. The annotators were located in different 
European countries. To train the annotators, 11 of the 131 patent snippets were distributed 
among the annotators using the brat annotation tool [47, 48]. The snippets were pre-annotated 
with an untuned version of the chemical entity recognition software that is used in this study (see 
next section for the description of this software). The pre-annotations were displayed in brat and 
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annotators were asked to modify incorrect pre-annotated entities (wrong boundary or entity 
type) and add missing entities according to the guideline (see Figure 3). 

 

 

Figure 3: Annotations in a patent snippet with the brat annotation tool. 

The 11 snippets were also annotated by two Elsevier Subject Matter Experts (SMEs) who defined 
the guidelines. The SMEs had PhDs in chemistry and around 15 years of professional experience 
in the field. Any discrepancies between the annotations of the two SMEs were resolved in 
consensus discussions. The resulting annotations were used as a reference and compared to the 
annotations of each of the other annotators by inter-annotator agreement (IAA) scores. We used 
the F-score (harmonic mean of recall and precision) as a measure of IAA, similar to other studies 
[7, 43, 46]. Several review sessions were held to compare annotations and resolve 
inconsistencies, and the annotation guideline was updated for clarity if needed. For each 
annotator, training continued until the IAA between the annotator and the SMEs was at least 
85%. 

After successful completion of the training, the remaining 120 snippets of the corpus were 
distributed between the annotators. Each snippet was annotated by three annotators, after 
which the annotations were harmonized. The harmonization was done for each entity as follows: 
if at least two annotators agreed on the entity boundaries and the entity type, that annotation 
was added to the gold-standard set, otherwise an SME adjudicated the disagreement. 
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Relevancy annotation process 

The same training set of 11 snippets was also annotated for relevant compounds by the 
annotators and the SMEs. They were provided with the reference annotations of the chemical 
entities, and had to indicate whether the annotations were relevant or not. For every snippet, 
we also delivered the corresponding full patent text to the annotators and the SMEs. This allowed 
them to determine relevance based on the complete document which included title, abstract, 
description, and claims. The relevancy annotations of the annotators and SMEs were compared, 
and questions were resolved. 

After training, the 120 snippets of the chemical entity corpus created in the previous step were 
distributed between the annotators. Each snippet was annotated by five annotators. If more than 
three annotators annotated the chemical entity as relevant it was considered relevant. If three 
annotators annotated the chemical entity as relevant it was considered equivocal. If less than 
three annotators annotated the chemical entity as relevant it was considered irrelevant. The 
equivocal category was introduced since relevance determination is sometimes complex and 
judged differently by different experts (as relevance is decided based on the full text). To capture 
this complexity, we did not try to resolve ambiguity by enforcing a decision by the SMEs. As per 
the guidelines, relevance is document-based. As a result, if a compound is considered relevant at 
one occurrence in the snippet, it is marked automatically relevant at any other occurrence. 
Finally, the annotators were also asked to annotate any spelling errors. This annotation can be 
helpful for improvement of chemical entity recognition systems. As spelling errors can be hard 
to detect, we decided to accept each spelling-error annotation, irrespective of the number of 
annotators that made that annotation. The corpus was divided into a development and test set 
consisting of 50 and 70 snippets, respectively. 

Chemical Entity Recognition 

We focused on non-statistical approaches for chemical entity recognition as we wanted to 
associate a chemical structure to extracted chemical compounds. A dictionary-based approach 
was used in combination with a morphology-based approach to identify chemical entities. The 
structures of these compounds were produced, validated, and standardized using Reaxys Name 
Service [42]. Since the gold-standard annotations showed that only a small set of relevant entities 
are from compound class categories (see results), we decided to reduce our chemical entity 
recognition scope to the identification and classification of chemical compounds. 

Name Service 

The Reaxys system uses a name-to-structure toolkit (Reaxys Name Service [42]) and a set of 
standardization rules (e.g., eliminate hydrogen bounds when constructing structures) when new 
compounds are inserted into the database. In this study, the Name Service was used to convert 
names to structures and standardize those structures as well as the structures in different 
dictionaries based on the Reaxys standardization rules, and to validate the structures assigned to 
chemical compounds. 
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Chemical Entity Recognizers 

An ensemble system was used for chemical entity recognition. First, we used Elsevier’s Chemical 
Entity Recognition (CER) software [40]. CER identifies and tags chemical compounds and their 
physical properties (e.g., colour, melting point and boiling point) within a text document and 
converts extracted compounds into a chemical structure (using Name Service). In addition, CER 
also identifies chemical reactions and chemical properties within the patent. The software uses 
a combination of dictionary-based and morphology-based approaches to extract chemical 
compounds from patents. CER was loaded with a dictionary derived from the manually curated 
compounds in the Reaxys database. Similar to previous studies [27, 28], an exclusion list was used 
to filter out any noise (e.g., frequent compounds such as oxygen) from the extracted compounds. 
The morphology-based approach in CER identifies different elements within a compound and 
combines them to create the final compound only if it can validate the compound based on its 
structural chemistry (e.g., can two elements bind with each other in this manner). This validation 
is done on the structural level and through a set of pre-defined rules processed by the Name 
Service. CER cannot assign the extracted compounds to the different compound groups that are 
defined in the guidelines. 

Second, we used and improved OCMiner [41] to identify chemical entities. OCMiner also uses a 
dictionary-based approach along with a morphology-based approach to extract chemical 
compounds. The dictionary used for OCMiner was generated from a compound database built 
from various publicly available sources such as PubChem [23], DrugBank [49], ChEMBL [50], 
among others [41]. The Name Service was used to standardize the compounds within these 
dictionaries based on the same standardization rules applied by CER and Reaxys. In comparison 
to CER, OCMiner has additional functionality, such as abbreviation expansion and spelling-error 
correction [41]. The software also has post-dictionary modules to identify systematic names. In 
a separate module built for this study, OCMiner cleans up the chemical entities identified by both 
CER and OCMiner (e.g., overlapping annotations and combination of simple annotations to 
complex entities) and assigns compounds to the different compound groups. Finally, OCMiner 
generates a confidence score for all recognized chemical entities extracted by CER or OCMiner. 

Relevancy Classification 

Relevance of a chemical compound is defined based on the context of the full patent. To identify 
the relevance of a unique entity in a snippet, the complete patent should be analysed for that 
entity. We therefore gathered statistical information for each unique entity (recognised in the 
snippet) from the whole patent text and used that information to classify the extracted entity. 
Relevancy classification was based on a continuous relevance score that can vary between zero 
(irrelevant) and one (relevant). We divided the corpus into a training and a test set to find the 
best threshold for relevancy classification. The training set was used along with the relevance 
score to define the best cut-off point for the relevancy classification. The results were then tested 
on the test set. 
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Relevance score 

Several features derived from the full text are used to calculate the relevance score. These 
features are combined to calculate the relevance score. Based on the feature type, features are 
normalized between zero and one. These features include: 

A - Compound frequency: Frequency of the compound within the document. Usually compounds 
that occur frequently in a patent document are less relevant (due to the nature of patents), unless 
the compound is unique to the patent. 

B - Compound section: Occurrence of the compound within specific sections of a patent (e.g., 
title, claim). A compound in a claim section is more relevant than a compound in a description 
section of a patent. If a compound appears in multiple sections we prioritize it in the following 
order: Title, Abstract, Claim, and Description. 

C - Compound length: Length of the extracted term. We have noticed that longer names are more 
likely to be IUPAC names and hence have a higher chance of being relevant. 

D - Surrounding characters: Occurrence of the compound within special characters (e.g., “[“ , “(” 
). Examples are usually mentioned between special characters and they will be less relevant. 

E - Compound section uniqueness: Compound single occurrence within a section of the patent. If 
a compound is mentioned once in the claims and a few times in the description it has higher 
probability to be relevant than the other way around. 

F – Compound with solvent: If the compound contains solvents or laboratory chemicals, there is 
a higher chance of the compound being relevant. 

G – Compound wide usage: Presence of the compound in one of a number of predefined groups 
representing the frequency of compounds in a large set of chemistry patents. To create the 
groups, all chemical entities from a large set of patent documents (selection of chemical patents 
in 2015, excluding patents from the patent corpus) were extracted using OCMiner and ranked 
according to their frequency of occurrence. The resultant compound list was divided in 16 
equally-sized groups. Note here that we are extending our calculation to data derived from a 
larger set of patents. If a compound is frequently mentioned in other patents, then there is a 
lower probability of it being relevant. 

Performance evaluation 

The performance of the system against the gold-standard annotations was evaluated using recall, 
precision and F-score, given the number of true positives (TP), false positives (FP), and false 
negatives (FN). For the entity recognition task, TP represents the total number of correctly 
identified chemical entities by the system (based on starting and ending position of the entity in 
text), FP the number of entities wrongly identified by the system, and FN the number of entities 
that are missed by the system. Recall, precision and F-score metrics are calculated as follows: 
recall = TP / (TP + FN), precision = TP / (TP + FP), F-score = 2*precision*recall / (precision + recall). 

For the relevancy classification task, TP, FP, and FN are determined at the document level and 
only take into account the unique entities identified in each of the documents. TP represents the 
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number of compounds correctly classified as relevant, FP the number of compounds wrongly 
classified as relevant by the system, and FN the number of relevant compounds missed by the 
system. The compounds in the corpus that were annotated as equivocal, were disregarded from 
relevancy calculation. This is done since true judgment cannot be made on the relevance of these 
compounds. 

Results 

Chemical entity annotation 

The average IAA between the annotators on the 11 training documents initially was 72%, and 
reached 92% after two rounds of training. On the gold-standard set of 120 snippets, the average 
IAA between the annotators and the harmonized annotations was 87%. Table 1 provides the 
frequency of entities within the corpus. Overall, 18,789 chemical entities were annotated, of 
which 15,199 chemical compounds and 3,590 chemical classes. The majority of the annotations 
consisted of mono-component compounds (13,564). In addition, the corpus contains 1,848 
relationships from chemical compound or classes to 628 suffix or prefixes annotations (a suffix 
or prefix can have a relationship with one or more chemical compounds or classes). 
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Table 1: Number of annotation in the gold-standard set. 

Annotation type Annotation 
Subtype 

Annotation Relevant Equivocal Irrelevant 

Compound Mono Component 13,564 883 362 12,319 

Mixture Part 1,010 0 0 1,010 

Prophetic 625 625 0 0 

Classes Chemical Class 1,848 249 30 1,569 

Biomolecule 1,039 0 0 1,039 

Markush 17 17 0 0 

Mixture 286 0 0 286 

Mixture Part 174 0 0 174 

Polymer 226 0 0 226 

Total chemical 
entities 

 18,789 1,774 392 16,623 

Additional annotation Suffix & Prefix 628 - - - 

Relations 1,848 - - - 

Relevancy Annotation 

All 18,789 chemical entities were annotated for relevance (Table 1). Of the 15,199 compounds, 
1,508 (9.9%) were considered relevant and 362 (2.4%) equivocal. Of the 3,590 chemical classes, 
266 (7.4%) were relevant, while 30 (0.8%) were equivocal. Thus, the majority of entities were 
considered irrelevant (87.7% of the compounds and 91.8% of the classes). 

Chemical Entity Recognition 

The performance of the ensemble system on compound recognition is shown in Table 2 for 
different thresholds of the confidence score. On the development set, a threshold of 0.2 yielded 
the best F-score of 83.7% (precision 89.1%, recall 78.9%). For this threshold, the best result was 
also obtained on the test set (F-score 86.2%, precision 90.1%, recall 82.3%). Error analysis of the 
results indicated that the performance of the system may further be improved by better 
recognizing prophetic compounds, reactants, and products of synthesis procedures. 
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Table 2: Performance of the ensemble system on compound recognition for different confidence 
score thresholds. 

Confidence score Development  Test 

Precision Recall F-score  Precision Recall F-score 

0.0 88.5 79.3 83.6  86.5 82.3 84.3 

0.1 88.6 79.1 83.6  89.1 82.3 85.6 

0.2 89.1 78.9 83.7  90.1 82.3 86.2 

0.3 89.1 78.6 83.5  90.1 81.6 85.7 

0.4 89.1 78.4 83.4  90.1 81.5 85.6 

0.5 89.1 78.4 83.4  90.1 81.5 85.6 

0.6 89.1 78.4 83.4  90.1 81.3 85.5 

0.7 87.2 60.6 71.5  90.7 69.4 78.6 

0.8 82.0 36.2 50.3  96.2 39.8 56.3 

0.9 100.0 0.1 0.2  96.4 0.8 1.7 

1.0 100.0 0.1 0.2  97.2 0.8 1.7 

Relevancy Classification 

Figure 4 shows the performance of the relevance system for different relevance score thresholds 
on the training set. The best performance (in terms of F-score) was obtained for a relevance score 
threshold of 0.53, with a precision of 85%, a recall of 87%, and an F-score of 86%. For the same 
threshold, the performance on the test set was slightly lower with 81% precision and 82% recall, 
resulting in an F-score of 82%. Further investigation into the compounds that the system 
classified as relevant, showed that 97% of these compounds were annotated as chemical 
compounds in the chemical entity corpus. Therefore, only 3% of the compounds classified by the 
system as relevant were not chemical entities. 
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Figure 4: The performance of the relevance system based on precision, recall 
and F-score. 

The relevancy classification is dependent on the performance of the chemical entity recognition 
system in two ways. First, only compounds that are found by the chemical entity recognizer can 
be classified as relevant. Second, the relevance-score features for a given chemical entity are 
based on the full patent text. The recognizer needs to correctly identify all occurrences of that 
entity in the full text. To assess the effect of the first dependency on the performance of the 
relevance system, we fed the gold-standard chemical entities as input to the relevance system 
(simulating a scenario where the chemical entity recognition system has a precision and recall of 
100%). Apart from the patent snippet, all other parts of the full patent document were analyzed 
with the original system because gold-standard annotations were not available. When evaluated 
on our test set, the relevance classification system obtained 93% precision, 88% recall, and 91% 
F-score. Further investigation into these scores indicated that the system could have performed 
better if we could also eliminate the second dependency. 

We also investigated the contribution of individual relevancy features to the performance of the 
relevancy classification system. For this we removed each feature in turn from the relevance 
score and adjusted the relevance-score threshold for optimal performance. Table 3 shows that 
the length of the compound is a major indicator of the relevance of the compound (10 percentage 
points added value). Additionally, the patent section in which the compound was found and 
compound wide usage in other publications are also good indicators of the relevance of the 
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compound (around 5 percentage points added value respectively). The other features contribute 
between 1 to 2 percentage points to the relevancy classification performance. 

Table 3: The added value of individual features based on “leave-one-out” methodology. 

Setting Threshold Precision Recall F-Score Added 
value 

All features 0.53 84.8 86.8 85.8 - 

A- Compound frequency 0.47 82.8 86.2 84.5 1.3 

B - Compound section 0.40 95.5 70.0 80.8 5.0 

C - Compound length 0.40 75.9 75.5 75.7 10.1 

D - Surrounding characters 0.53 85.1 82.9 84.0 1.8 

E – Compound section uniqueness 0.53 84.8 82.9 83.9 1.9 

F – Compound with solvent 0.53 85.1 82.9 84.0 1.8 

G – Compound wide usage 0.63 83.9 76.4 80.0 5.8 

As can be seen from Table 3, leaving out a feature can affect the optimal value of the relevance-
score threshold. Figure 5 shows the performance of the relevancy classification system as a 
function of the threshold value when a feature is left out. 
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Figure 5: Performance of the relevancy classification system as a function of the 
relevance-score threshold when one of relevancy features A-G is removed (see 
Table 3 for feature legend). 

 

Discussion and Conclusion 
Extraction of chemical compounds from chemical-related patents has recently been studied, 
focussing on patent titles and abstracts [28, 31, 51] or full texts [3, 20, 21, 27]. The majority of 
these studies concentrated on identifying chemical compounds in text while disregarding the 
structures of the extracted compounds [31, 51]. Some have also looked at associating structures 
to extracted compounds (e.g., [3, 20, 21]), and have resulted in products and databases of 
chemical compounds in patents [3, 20, 21]. To our knowledge, ours is the first attempt to narrow 
down the focus to relevant compounds and their structures within a chemical patent. Relevance 
of a chemical compound is based on the context of the full patent document. Generally, a 
relevant compound is a compound that plays a major role in the patent (e.g., a product of a 
reaction that is mentioned in the Claim section of a patent). We have shown that these 
compounds are a small subset (less than 10 percent) of all compounds mentioned in the textual 
part of a patent. 

We have presented a two-step approach to identify relevant compounds in patent documents: 
compound identification (first step) followed by compound classification (second step). This 
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approach allows the use of the output of the first step for additional purposes (such as indexing 
chemical compounds mentioned in patents) but at the same time introduces dependencies. 
Obtaining high precision and recall values in the first step is essential for the success of the second 
step. Based on the findings of our previous studies [27, 28], we used an ensemble approach 
combining dictionary-based and morphology-based approaches to obtain high precision and 
recall. These approaches require a small annotated corpus [26, 33] and can provide a structural 
representation of the extracted compounds. Associating correct chemical structures to 
compounds is essential when extracting chemical compounds. To reduce the possibility of 
associating a compound with the wrong structure [34, 35] we regenerated the structures of 
compounds in different databases with our name to structure toolkit (Name Service) and 
standardized the structures based on standardization rules used for Reaxys [15]. 

The structures of non-systematic identifiers associated with a compound within Reaxys are 
manually drawn by excerpters and are later validated and standardized using Name Service. 
Adding such structures to the Name Service database allowed us to generate structures for non-
systematic identifiers. We used the same toolkit with the same standardization functionalities to 
validate compounds extracted using the grammar-based approach. This ensures high quality and 
consistency of the extracted compounds. 

To build the chemical entity recognition and relevancy classifier system, a patent corpus 
annotated with chemical entities and their relevance was needed. To our knowledge, such a 
corpus did not exist [7]. Currently available patent corpora are either limited to subsections of 
the patents, mostly title and abstract (e.g., the BioCreative corpus [36]), or had other limitations 
that prevented their use, such as different guideline definitions (focus on different entity types), 
harmonization approaches (manual using SMEs vs automation), low or unidentified IAA scores, 
and limited scope of coverage (only one chemical IPC class or one section of a document) [7]. We 
developed the corpus in two steps. First, we constructed a chemical entity corpus using random 
stratified sampling for content selection and manual harmonization to ensure high quality. Later 
we extended this corpus with relevancy annotation. We took into account the inherent difficulty 
of classifying relevance of some compounds by introducing “equivocal” as a classification in the 
corpus. Chemical compounds identified as equivocal can be classified as both relevant and 
irrelevant. The system can assign relevant or irrelevant for compounds extracted in this area. Any 
compound identified as equivocal was disregarded from our evaluation. Using five annotators for 
relevancy annotation, we showed that the equivocal label is only limited to about 2% of the 
compounds. 

Normalized patent documents were used to develop the corpus and the system. Any change in 
the normalization approach will lead to changes to the corpus and might result in a need for 
retraining the system. We reduced this dependency by finalizing the normalization before 
developing the corpus and the software. We also introduced a one-to-one mapping between the 
original patent document and the normalized patent document to allow possible changes to the 
corpus with limited efforts. The relevancy classification system has lower dependency to the 
normalization step as its performance is calculated on unique mentions of compounds within a 
patent. The dependency to the normalization step relies on the quality of the patent source file. 
Digital patents (e.g., from EPO [11] or USPTO [12]) have a higher quality than OCR patents (e.g., 
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from WIPO [13]). Therefore, the system is more dependable on the normalization when dealing 
with OCR patents. 

The chemical entity recognition software showed a precision of 90.1% and a recall of 82.3% for 
compound recognition on EPO patents. State-of-the-art statistical systems (tested on patent title 
and abstract) have obtained higher recall (precision of 87.5% and recall of 91.3%) [31]. These 
systems do not generate structures for the identified chemical compounds. Error analysis of our 
system indicated that the loss in recall in our system is mainly due to the fact that reactants and 
products of synthesis procedures are not recognized, and prophetic compounds are missed. 
Identification of prophetic compounds may be improved by taking into account trigger phrases 
(e.g., “The compound of claim is:”, “A compound selected from”), or negative triggers for these 
compounds (e.g. “catalysts”). 

Our current process only investigates the identification of relevant compounds in the textual part 
of non-OCR patents. Expanding this approach to chemical classes (such as Markush) can further 
improve the software. A large proportion of relevant compound information is only available 
through scaffolds, pictures, and tables. Successful identification of these compounds can result 
in a higher coverage. Since 2001, some patent offices including the USPTO [12] are requesting 
applicants to submit chemical structures and reactions (as MDL Molfiles or ChemDraw CDX files 
[30]) when submitting their patent applications. Note that in many cases these are not drawn by 
authors or chemists, and are presented usually with defects in the connection table of chemical 
structure). This can be a good starting point for future research. 

We have successfully managed to identify relevant compounds in chemical-related patents. The 
resulting relevant compounds can be used to predict key compounds within a patent [9, 39, 52, 
53]. In future research, we want to extend this work to chemical classes, increase the coverage 
by dealing with OCR patents (that contain many spelling errors), and utilize data from tables, 
scaffolds, and images.  
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The chemical domain has seen a massive increase in the number of databases and scientific 
literature in the past decade. Analyzing these data can provide understanding of compound prior 
art, novelty checking, validation of biological assays, and identification of new starting points for 
chemical exploration. Applying natural language processing (NLP) techniques such as text-mining 
can significantly simplify these analyses. In this thesis, we investigate text-mining for chemical 
identifiers in scientific articles and patents. This chapter discusses our findings. The chapter is 
divided into the following sections: quality of chemical databases, corpora development for 
chemistry, chemical text mining, and detection of relevant compounds in patents. The chapter 
ends by providing concluding remarks and discussing possible future work. 

Quality of Chemical Databases 
In Chapter 1, we noted that the quality of chemical databases has been debated based on 
qualitative studies [1, 2]. High-quality chemical databases are essential for chemical research and 
text-mining. We assessed the quality of chemical databases using a quantitative approach 
(Chapter 2 and Chapter 3). For this we evaluated consistency and ambiguity of chemical 
identifiers within and across chemical databases. We used MOL files (a digital representation of 
a chemical structure) as the foundation of a chemical record in a chemical database and analyzed 
if all systematic identifiers assigned to this record represent the same structure as defined in the 
MOL file (consistency within database). We also investigated the ambiguity of non-systematic 
identifiers within and across databases based on their structural representation (available within 
the MOL file). 

Our results indicated that considerable inconsistency exists for systematic identifiers within and 
across chemical databases. We showed that non-systematic identifiers are very ambiguous 
across chemical databases. We also showed that standardization of chemical compounds prior 
to their inclusion in databases can improve the consistency and reduce the ambiguity. 

To improve the quality of chemical databases we can regenerate systematic identifiers based on 
the MOL files available within the chemical databases (using well-defined standardization rules). 
Integration of databases also improves if the same set of standardization rules are applied to the 
MOL files prior to integration. The importance of chemical structures makes it crucial not to 
integrate data based on the textual similarities of the identifiers. 

Improving the quality of non-systematic identifiers is more challenging in chemical databases. 
This includes considerable manual curation efforts. Nevertheless, identifying ambiguous 
identifiers within and across databases (using the structural representation of a compound) can 
help pinpoint problematic identifiers and guide curation efforts. Manual curation steps can be 
further simplified by using approaches such as crowd sourcing (an approach applied by 
ChemSpider [3]). Applying rule-based approaches such as voting schemes can help predict the 
correct structures based on how the non-systematic identifier is linked to a structure in different 
databases. It is also essential to apply a well-defined standardization method prior to registering 
a chemical compound structure of a non-systematic identifier within a database. 
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The standardization of chemical compound structures depends on the use case. For example, the 
importance of the presence of stereochemistry information varies between the fields of 
chemistry research. Therefore, we find it crucial for chemical databases to clearly describe their 
procedures of name-to-structure conversion and standardization. 

Finally, it is important to note that chemical name-to-structure rules have limitations. Some of 
these rules are ambiguous and may result in similar systematic identifiers for different 
compounds. For this reason, updates are made to these rules through time. These updates may 
result in different identifiers that need to be updated within a chemical database. This adds an 
extra complexity also for linking data points between databases (if focus is on the textual 
representation). Name-to-structure toolkits are designed based on these rules but the 
implementation and methodology may vary. These variations and possible updates should be 
considered while using the toolkits. To overcome these limitations standardized structures 
(represented in MOL files) should be used for integration of databases. Any systematic identifier 
can be recreated based on the MOL file at any point of time. 

Annotated Chemical Corpora 
The availability of an annotated corpus is essential for training and evaluating text-mining 
systems. The performance of text-mining systems is sensitive to the corpus used for training 
them. A study by Habibi et al. [4] reported that applying a chemical text-mining system trained 
on scientific articles directly to patent abstracts resulted on average in about 10 percentage 
points lower performance. When Habibi et al. applied the same study on patent full text using 
the corpus developed in Chapter 4 they noticed that the performance of the systems trained on 
journal titles and abstracts dropped about 18 percentage points on patent full text. This study 
and many others [5] pinpoint the importance of availability of high-quality representative 
corpora. 

In our study in Chapter 4, we annotated a full-text chemical patent corpus. The corpus consists 
of 200 patent documents. Multiple annotators were used to annotate the corpus. These 
annotators were in various locations (across Europe and India). The availability of a web-based 
annotation tool (brat [6]) greatly eased this step. 

Developing a well-defined annotation guideline is a crucial step in creating a corpus. These 
guidelines should be strictly followed by the annotators. Considerable size of the patent 
document and the corresponding guidelines can make the annotation process challenging for 
annotators. Automatically generated pre-annotations were used to help speed up the annotation 
process. Annotators had to accept, modify or add additional annotations to the pre-annotations. 
Use of pre-annotations eases the annotation process only if the system that provides the pre-
annotations has a good performance. If the performance of the system is low more time is spent 
on modifying the pre-annotations. 

In our study in Chapter 4, we noticed that annotators often disagreed on the boundaries of 
annotated terms. In the development of the chemical relevant full-text patent corpus described 
in Chapter 7, we tried to mitigate this limitation by creating a small training corpus with the help 
of chemical experts. We then used this corpus to train the annotators using an extensive 
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guideline. We only moved to corpus development after we made sure that our annotators had a 
high inter-annotator agreement (IAA). If needed the guidelines were also updated to resolve 
ambiguity. We also re-evaluated the annotators’ IAA during the project. This was done to make 
sure that the quality of the corpus did not drop due to the extensiveness of the task. In case of a 
drop in IAA, annotators were notified and if needed guidelines were updated. In Chapter 4, the 
IAA varied between 64% to 95% F-score depending on the annotated entities and annotators. 
The training step applied in Chapter 7 allowed us to reach a consistent IAA of about 87% F-score. 

Some patent offices such as the World Intellectual Property Organization only provide their 
documents in OCR format. In the patent corpus described in Chapter 4, errors that are introduced 
by OCR, were also annotated. Text-mining systems can use this information to further improve 
their performance. For instance, Lowe et al. [7] used the corpus developed in Chapter 4 to 
improve the identification of chemical entities in patents by resolving spelling errors. 

Chemical Text Mining 
The vast amount of chemical-related literature makes it essential to use text-mining approaches 
to extract information from text. In Chapter 5 and Chapter 6, we applied a variety of chemical 
named-entity methodologies (dictionary-based, morphology-based, and statistical-based) to 
identify chemical compounds in journal articles (titles and abstracts) and patents (abstracts). For 
this we took advantage of the BioCreative community challenges [8]. The outcome of these 
studies was used to develop a text-mining system applied on patent full text (described in 
Chapter 7). 

Our studies showed several challenges for text-mining in the chemical domain. First, tokenization 
of the text was particularly cumbersome as chemical identifiers may contain hyphens, 
parentheses, brackets, dashes, dots, and commas. Second, non-systematic identifiers appearing 
in the text contained a range of ambiguous terms (due to chemical acronyms, abbreviations, and 
trivial names). Third, the correct identification of chemical boundaries was difficult in the 
chemical documents. This is mostly due to the presence of systematic identifiers in the text 
(containing punctuations within the identifier). This can result in recognizing partial mentions or 
breaking long chemicals into multiple mentions. Finally, there were spelling mistakes in chemical 
identifiers. This can be due to OCR errors or mistakes made by the author when writing long 
systematic names (in some cases in patents deliberate mistakes are made to further hide the 
chemical compound in the text). Addressing spelling mistakes is most challenging in systematic 
identifiers. These terms are long and result in a chemical structure. In most cases spelling 
mistakes may be assumed present if a term fails to translate to a structure using name-to-
structure toolkits. Modification of the identifier (to solve the spelling error) may appear to have 
solved the problem (the name can be translated after modification) but may result in a wrong 
structure. Analyzing the surrounding context such as reactions or compound characteristics or 
properties can help evaluate the modified compound based on the chemical structure 
characteristics. 

The results of our study and of the BioCreative challenges illustrate that among the three text-
mining approaches for named entity recognition, statistical-based approaches (mostly using 
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conditional random fields (CRFs)) perform better than dictionary-based or grammar-based 
approaches. 

We applied dictionary-based approaches on journal articles and patents. The dictionaries were 
obtained from well-known chemical databases. Our study illustrates a substantial difference 
between the coverage of these databases. The best combination of these databases was used 
for the dictionary-based approach. Our study shows that, in journal articles, dictionaries yield a 
maximum recall of 60% of the chemical compounds. In patents this figure stands at 50%. The 
lower coverage in patents is due to the large presence of systematic names in patents. Case 
sensitive or insensitive matching of dictionary terms did not influence the results. We also found 
that our dictionaries contain common English terms, such as “Result” (also the brand name for a 
drug). Removing these terms using exclusion lists improved the performance (F-score) up to five 
percentage points. 

We also tested grammar-based systems on journal and patents. These systems have a lower 
recall compared to dictionary-based approaches (around 10 percentage points less). The main 
advantage of grammar-based approaches is the ability to identify systematic identifiers. We have 
shown that the addition of this approach to dictionary-based or statistical-based approaches 
improves the final performance of the systems. 

Although statistical-based approaches generally perform better than the other approaches (also 
shown in the BioCreative challenges), these systems need large training sets and are sensitive to 
the type of document they have been trained on. Therefore, a statistical-based approach trained 
on journals can perform significantly worse when applied on patents. Feature engineering is 
crucial in statistical-based system development. We have shown that in chemistry a set of 
features such as n-grams, prefixes and suffixes, word length, semantic affixes (such as trivial 
rings) and heuristic features can help identify chemical compounds (see Chapter 6). 

Each of the approaches mentioned above have their advantages and drawbacks. Combining 
these approaches in an ensemble system might yield to a system with better performance. In our 
studies in Chapter 5 and Chapter 6, we have developed ensemble systems that perform better 
than the individual systems. 

Identifying the structural representation of the recognized chemical compounds is essential in 
the chemistry domain. Among the three approaches, statistical-based approaches cannot 
provide structural representation for the identified compound identifiers. This is a big limitation 
for these approaches. For this reason, in Chapter 7, we disregarded the statistical-based 
approach when applying text-mining on patent full text. 

Pre-processing of documents was necessary for all of our studies. In Chapter 6 and Chapter 7, we 
showed that fixing character encodings improves the chemical text-mining solution. In Chapter 
7, we also normalized the patent documents based on the document structure. 

Detection of Relevant Compounds in Patents 
Patents are unique sources of information in the chemistry field. For example, a study showed 
that only 6% of bioactive compounds mentioned in patents are later defined in journal 
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publications [9]. Patents are written as legal documents to protect one or a few compounds (the 
key compounds). These compounds are hidden within the context of the patent [10, 11]. In some 
cases, the key compound is not directly mentioned in the patent document [12]. Identification of 
key compounds in a patent is usually performed by medicinal chemists through the analyzes of 
available information (e.g. biological data, scale of reaction) [11]. To identify the key compounds, 
researchers study other compounds (mostly compounds relevant to the patent document) 
mentioned in the patent. Relevancy of a compound to a patent is based on the patent’s context. 
A compound is relevant to a patent when it plays a major role within the patent application (e.g., 
starting material or a product in a reaction specified in the claim section). 

In Chapter 7, we developed a system that can identify relevant compounds in patents. For this 
we built a patent corpus with relevancy classification of compounds in snippets selected from 
patent full text. We showed that relevant compounds (mentioned in text) constitute less than 
ten percent of the total number of compounds. 

To develop this system, we used findings from all previous chapters. We used a well-defined 
manually created chemical database to ensure the quality of systematic and non-systematic 
identifiers (based on findings of Chapter 2 and Chapter 3). We developed a corpus with relevancy 
annotations (based on the process we investigated in chapter 4). We used an ensemble system 
with a dictionary-based and grammar-based approach to identify relevant compounds and 
provide structure information for the identified compounds (based on findings of Chapter 5 and 
Chapter 6). 

Relevancy determination is difficult and sometimes judged differently by annotators. In our 
study, we introduced the compound relevancy class “equivocal” (meaning that for this 
compound annotators cannot agree on relevancy annotation). We found that only two percent 
of the compounds fall in this category. 

A comparison of our study results with manually excerpted compounds from patents (in the 
Reaxys database) showed that relevant compounds also exist in chemical diagrams (images), 
tables, or are embedded in R-groups of Markush structures. Expanding research to extract this 
type of information can further ease the patent analysis process. 

Special Attention Areas and Concluding Remarks 
In this thesis, we provided a methodology to evaluate the quality of chemical databases based 
on the structural representation of chemical identifiers. We showed that considerable 
inconsistencies and ambiguities exist within and between chemical databases. Additionally, our 
methodology can be used to systematically integrate chemical identifiers from databases or from 
mined text into chemical databases. 

We also developed corpora for chemical text-mining. While these corpora are essential for text-
mining it is notably important to extend these corpora with structural representation of 
compounds. Our developed systems provide structural information for identified compounds, 
but these structures need to be validated using a corpus with structural representations. We 
strongly suggest that future community challenges also focus on this aspect of chemical research. 
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Furthermore, as chemical documents are very heterogeneous we also suggest the development 
of more focused corpora (e.g., focus on patents about organic or inorganic compounds). 

We have studied the identification and classification of chemical identifiers within chemical-
related text (i.e., journal documents and patents). While these systems can extract information 
with acceptable performance it is important to note that they should be further improved on 
OCR text. For this the detection of spelling errors needs considerable attention. Future studies 
could use surrounding information in the document to validate the spelling corrections. The 
annotated corpus developed in this thesis can be a good starting point for these investigations. 

As we have shown in this thesis, an ensemble system performs better than individual text-mining 
approaches. To create an ensemble system, previously developed systems by academia or 
commercial venders can be used. Interoperability and scalability of available systems developed 
in the domain can ease the process of building ensemble systems. Community challenges such 
as BioCreative can play a major role in defining standards to cover these technical aspects. In 
recent challenges, BioCreative has been requiring teams to provide a web service for their 
system. While this is a good starting point, additional measures to improve scalability and 
interoperability are needed. 

In this thesis, we have shown that relevant compounds can be identified in textual parts of 
patents. While this is a good starting point, future research should investigate the detection of 
relevant compounds in chemical diagrams (scaffolds and images) and tables within patents. 
Having the ability to perform analysis on images and tables provides us with the means to 
investigate Markush structures, identify R-groups within the structure (using the image), and find 
corresponding groups based on textual information from tables or corresponding text. Future 
research should also investigate approaches to find the key compounds among relevant 
compounds. Identification of key compounds has a significant value in fields such as drug 
discovery. 

Finally, integrating chemical text-mining with other data types such as pharmacological, 
toxicological, and biological attributes extracted through means of text-mining can significantly 
expand the research domain. For example, within the Open PHACTS project, databases of 
compounds, targets, pathways, diseases, and tissues have been integrated to allow complex 
queries that enhance drug discovery [13]. It is essential for any development in integrating 
chemistry with other domains to pay considerable attention to the structural representation of 
chemical compounds.  
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Summary of the main findings 
The aim of this study was to use text mining for the identification of chemical identifiers in journal 
and patent documents. For this we addressed the lack of quality measurements for assessing the 
correctness of structural representation within and across chemical databases; lack of resources 
to build text-mining systems; lack of high performance systems to extract chemical compounds 
from journals and patents; and lack of automated systems to identify relevant compounds in 
patents. 

The consistency and ambiguity of chemical identifiers was analyzed within and between small-
molecule databases in Chapter 2 and Chapter 3. In Chapter 4 and Chapter 7 we developed 
resources to enable the construction of chemical text-mining systems. In Chapter 5 and Chapter 
6, we used community challenges (BioCreative V and BioCreative VI) and their corresponding 
resources to identify mentions of chemical compounds in journal abstracts and patents. In 
Chapter 7 we used our findings in previous chapters to extract chemical named entities from 
patent full text and to classify the relevancy of chemical compounds. 

A summary of the main findings discussed in each chapter can be found below: 

In Chapter 2, we analyzed the consistency of systematic identifiers within and between 
databases. The consistency within a database was analyzed by comparing the structural 
representation of a compound (based on the MOL file) and the compound structure derived 
automatically (through a set of predefined rules) from its assigned systematic identifier. The 
consistency across databases was calculated based on the cross-reference linkage of compounds 
available via databases (through MOL files). Our results show a considerable inconsistency in 
structural representation of systematic identifiers within (37.2%-98.5%) and between (25.8%-
93.7%) widely known chemical databases (DrugBank, ChEBI, HMDB, PubChem, NPC). 
Standardizing the chemical compound improved this consistency to 84.8%-99.9% within and 
47.6%-95.6% between databases. To improve this consistency, we proposed that databases 
should regenerate systematic identifiers starting from their MOL representation and apply well-
defined and documented chemistry standardization rules to all compounds prior to integration. 

In Chapter 3, we analyzed the ambiguity of non-systematic chemical identifiers within and 
between small-molecule databases (ChEBI, ChEMBL, ChemSpider, DrugBank, HMDB, NPC, 
PubChem). A non-systematic identifier is ambiguous if it has been assigned to multiple structural 
representations within or between databases. Our results show that the ambiguity of non-
systematic identifiers within chemical databases is generally low (0.1%-15.2 %), but the ambiguity 
of non-systematic identifiers that are shared between databases, is high (17.7%–60.2%). 
Standardizing the chemical structures hardly reduced the ambiguity (average reduction of less 
than 0.5 percentage point) within databases. The effect of standardization was higher across 
databases (average reduction of 13.7 percentage points). 

In Chapter 4, we developed an annotated chemical patent corpus for text-mining. This corpus 
was developed in collaboration with four commercial partners and sixteen annotators. To 
develop the corpus, we selected 200 full-text patents from the World Intellectual Property 
Organization, the United States Patent and Trademark Office, and the European Patent Office. 
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The patents were pre-annotated automatically. During a manual revision phase by the 
annotators, the pre-annotations were examined and potentially corrected or removed, while 
missing mentions were added. The annotations consist of chemicals in different subclasses 
(IUPAC, Generic, Trademark, Abbreviation, Formula, Registry Number, SMILES, CAS, InChI), 
diseases, targets, and modes of action. We also annotated spelling mistakes and spurious line 
breaks due to optical character recognition errors. From the 200 full-text patents, 47 were 
annotated by three annotators and later harmonized. The patent corpus contains 400,125 
annotations for the full set and 36,537 annotations for the harmonized set. 

In Chapter 5, we investigated named-entity recognition in titles and abstracts of scientific 
journals. For this we developed an ensemble system that combines dictionary-based and 
grammar-based approaches. The dictionary-based approach was used along with dictionaries 
derived from well-known chemical databases. Our analyses showed that our dictionaries only 
contain 60% of the compounds mentioned in journals. The ensemble system outperformed the 
individual systems that were considered. Application of this approach allowed us to provide 
structure representations of compounds for the recognized mentions. Our system could also rank 
the recognized compounds at the document level. The system provides a recall of 71% and a 
precision of 86%. Correct tokenization and identification of chemical formulas were the most 
challenging aspects in chemical named-entity recognition in journals. 

In Chapter 6, we investigated the named-entity recognition in patent abstracts. For this we 
developed an ensemble system that combines dictionary-based and statistical-based 
approaches. The dictionary-based approach was used along with dictionaries derived from well-
known chemical databases. The system had a recall of 86% and a precision of 85%. The difference 
in performance between the ensemble system and the statistical-based system was small. Our 
analyzes showed that dictionaries only contain 50% of the compounds mentioned in patents. 
Correct tokenization was one of the most challenging aspects in this approach. The limitation of 
the statistical-based approach was that chemical structures could not directly be defined for 
compounds recognized only by this approach (77% of the named entities). 

Finally, in Chapter 7, we investigated the identification of relevant chemical compounds in 
patents. For this we used dictionary-based and grammar-based approaches to extract named 
entities from patent full text. This decision was made so that we could directly provide chemical 
structures for all recognized chemical compounds. We derived the dictionaries from a manually 
created high-quality database (Reaxys database). We also developed a chemical named-entity 
corpus with relevancy annotations for training and testing the system. We used the corpus to 
identify different features that can be used to classify the relevant compounds, which comprised 
only 10% of the total number of compounds within a patent (on average 2000 compounds in a 
patent). The system obtained a recall of 82% with precision of 90% for chemical named-entity 
recognition and a recall of 82% and a precision of 81% for relevancy classification. 
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Samenvatting van de belangrijkste bevindingen 
Het doel van deze studie was het herkennen van chemische namen in wetenschappelijke 
artikelen en patenten door gebruik van tekstmining. Hiervoor hebben we de volgende problemen 
onderzocht: het ontbreken van kwaliteitsmaten om de correctheid van structurele 
representaties van chemische stoffen binnen en tussen databases te bepalen; het ontbreken van 
geannoteerde corpora voor de ontwikkeling van tekstminingsystemen; het ontbreken van 
nauwkeurige systemen om chemische stoffen in wetenschappelijke artikelen en patenten te 
herkennen; het ontbreken van geautomatiseerde systemen waarmee de meest relevante 
chemische stoffen in patenten bepaald kunnen worden. 

In hoofdstuk 2 en hoofdstuk 3 zijn de consistentie en ambiguïteit van chemische namen binnen 
en tussen databases voor kleine moleculen onderzocht. In hoofdstukken 4 en 7 zijn 
geannoteerde corpora ontwikkeld voor de constructie van chemische tekstminingsystemen. 
Hoofdstukken 5 en 6 beschrijven onze ontwikkeling van tekstminingsystemen om chemische 
stoffen in samenvattingen van artikelen en patenten te herkennen in het kader van publieke 
competities (BioCreative V en BioCreative VI). In hoofdstuk 7 worden de bevindingen uit 
voorgaande hoofdstukken gebruikt om chemische stoffen te herkennen in complete patenten, 
en om de relevantie van chemische stoffen te classificeren.  

Hieronder worden de belangrijkste bevindingen uit elk hoofdstuk samengevat. 

In hoofdstuk 2 analyseerden we de consistentie van systematische chemische namen binnen en 
tussen databases. De consistentie binnen databases werd geanalyseerd door de structurele 
representatie van een chemische stof (gebaseerd op zijn MOL file) te vergelijken met de structuur 
die automatisch kan worden afgeleid van de toegekende systematische naam. De consistentie 
tussen databases werd bepaald op basis van kruisverwijzingen voor een chemische stof. Onze 
resultaten laten een aanzienlijke variatie zien in de consistentie van systematische namen binnen 
(37,2%-98,5%) en tussen (25,8%-93,7%) een aantal bekende chemische databases (DrugBank, 
ChEBI, HMDB, PubChem, NPC). Standaardisatie van de systematische namen verbeterde de 
consistentie tot 84,8%-99,0% binnen databases en tot 47,6%-95,6% tussen databases. Om de 
consistentie verder te verbeteren, stellen we voor om systematische namen op basis van MOL-
representaties te genereren en goed-gedocumenteerde standaardisatieregels toe te passen 
voordat ze in een database worden opgenomen.  

In hoofdstuk 3 analyseerden we de ambiguïteit van niet-systematische chemische namen zowel 
binnen als tussen chemische databases (ChEBI, ChEMBL, ChemSpider, DrugBank, HMDB, NPC, 
PubChem). Een niet-systematische naam is ambigu als hij is toegewezen aan verschillende 
structurele representaties binnen of tussen databases. Onze resultaten tonen aan dat de 
ambiguïteit van niet-systematische namen binnen chemische databases over het algemeen laag 
is (0,1%-15,2%), maar tussen databases hoog (17,7%-60,2%). Standaardisatie van de chemische 
structuren verminderde de ambiguïteit binnen databases nauwelijks (gemiddeld minder dan 0,5 
procentpunt). Het effect van de standaardisatie was hoger tussen databases (gemiddelde 
vermindering 13,7 procentpunt).  
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In hoofdstuk 4 ontwikkelden we een geannoteerd corpus van chemische patenten voor 
tekstmining. Dit corpus werd ontwikkeld in samenwerking met vier commerciële partners en 
zestien annotatoren. De volledige teksten van 200 patenten van de World Intellectual Property 
Organization, het United States Patent and Trademark Office, en het European Patent Office 
werden geselecteerd. Eerst werden de patenten automatisch geannoteerd. Daarna werden deze 
annotaties bekeken door de annotatoren en waar nodig verbeterd of verwijderd, terwijl 
ontbrekende annotaties werden toegevoegd. De annotaties bestonden uit chemische stoffen in 
verschillende subklassen (IUPAC, Generic, Trademark, Abbreviation, Formula, Registry Number, 
SMILES, CAS, InChI), ziekten, aangrijpingspunten, en werkingsmechanismen. Ook spelfouten en 
problemen door foutieve optische karakterherkenning werden geannoteerd. Van de 200 
volledige patenten werden er 47 door drie annotatoren onafhankelijk van elkaar geannoteerd en 
later geharmoniseerd. Het patent-corpus bevat 400.125 annotaties in de volledige set, en 36.537 
annotaties in de geharmoniseerde set. 

In hoofdstuk 5 onderzochten we de herkenning van chemische namen in titels en 
samenvattingen van artikelen in wetenschappelijke tijdschriften. Hiervoor ontwikkelden we een 
ensemblesysteem dat methodes combineert die op chemische vocabulaires en op 
grammaticaregels gebaseerd zijn. De vocabulaires werden afgeleid van bekende chemische 
databases. Onze analyses laten zien dat de vocabulaires slechts 60% van de in tijdschriften 
vermelde chemische stoffen bevatten. Het ensemblesysteem presteerde beter dan de 
individuele systemen afzonderlijk. Toepassing van deze methode maakt het mogelijk structurele 
representaties voor de herkende chemische namen te verschaffen. Het systeem behaalde een 
sensitiviteit van 71% en een precisie van 86%. Correct tokeniseren en identificeren van chemische 
formules behoorden tot de meest uitdagende aspecten bij het herkennen van chemische termen 
in wetenschappelijke tijdschriften. 

In hoofdstuk 6 onderzochten we het herkennen van chemische namen in patentsamenvattingen. 
Hiervoor ontwikkelden we een ensemblesysteem dat een vocabulaire-gebaseerde methode 
combineert met een statistische methode. De vocabulaire was gebaseerd op chemische namen 
in bekende chemische databases. Het systeem herkende 86% van de chemische namen in de 
patenten, met een precisie van 85%. Het prestatieverschil tussen het ensemblesysteem en het 
statistische systeem was klein. Onze analyses lieten zien dat chemische vocabulaires slechts 50% 
van de chemische namen in patenten bevatten. Het correct tokeniseren was een van de meest 
uitdagende problemen. Een beperking van de statistische methode was dat structurele 
representaties niet direct konden worden bepaald voor de chemische stoffen die alleen door 
deze methode werden herkend (77% van de namen). 

Tot slot hebben we in hoofdstuk 7 de identificatie van de relevante chemische stoffen in 
patenten onderzocht. Hiervoor combineerden we vocabulaire- en grammatica-gebaseerde 
methodes om chemische namen in de volledige tekst van patenten te herkennen. De reden voor 
deze keuze van methodes was dat daarmee direct structurele representaties konden worden 
aangeleverd voor de herkende chemische stoffen. De vocabulaire was gebaseerd op een 
handmatig samengestelde database van hoge kwaliteit (Reaxys). Ook ontwikkelden we een 
corpus waarin de relevantie van chemische stoffen was geannoteerd om het systeem te trainen 
en te testen. We gebruikten dit corpus om verschillende variabelen te identificeren waarmee de 
relevantie van chemische stoffen in een patent geclassificeerd kan worden. Van het totale aantal 
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chemische stoffen die in de patenten vermeld werden (gemiddeld 2000 stoffen in een patent), 
waren slechts 10% relevant. Het systeem had 82% sensitiviteit en 90% precisie voor het 
herkennen van chemische namen, en 82% sensitiviteit met 81% precisie voor de classificatie van 
relevantie.
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