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A B S T R A C T

Background: Retinal microvessels can be visualized non-invasively and mirror the status of the cerebral mi-
crovasculature.
Aims: To investigate whether in young children born prematurely or at term cognitive performance is related to
retinal microvascular traits.
Study design, subjects: In 93 prematurely born infants (birth weight < 1000 g) and 87 controls born at term, we
measured head circumference (HC) and determined intelligence quotient (IQ) by combining matrix reasoning
and spatial span (Wechsler Non-Verbal test, Dutch version) and post-processed retinal photographs using
Singapore I Vessel Assessment software (version 3.6).
Outcome measures, results: Compared with controls, cases had smaller HC (51.7 vs 53.4 cm; p < 0.001), lower IQ
(93.9 vs 109.2; p < 0.001), smaller retinal arteriolar (CRAE; 162.7 vs 174.0 μm; p < 0.001) and venular (CRVE;
234.9 vs 242.8 μm; p=0.003) diameters and CRAE/CRVE ratio (0.69 vs 0.72; p=0.001). A 1-SD decrease in
CRAE was associated with smaller HC (−0.53 cm; p < 0.001) and lower total IQ (−3.74; p < 0.001), matrix
reasoning (−1.77; p=0.004) and spatial span (−2.03; p=0.002). These associations persisted after adjust-
ment for sex and age and risk factors for cognitive impairment, including blood pressure, body mass index and
parental educational attainment.
Conclusions: HC, total IQ, matrix reasoning and spatial span decrease with smaller retinal arteriolar diameter.
Our findings suggest that maldevelopment of the cerebral microcirculation, as mirrored by the retinal micro-
vasculature, has lasting effects on the growth of the brain and cognitive performance of prematurely born
children.

1. Introduction

The micro- and macrovasculature undergo extensive, organ-specific
perinatal maturation [1,2]. In 1989, the British epidemiologist David
Barker suggested that intrauterine growth retardation, low birth
weight, and premature birth predispose to cardiovascular disease later
in life, including hypertension and coronary heart disease [1]. Around

the same time, Brenner proposed that children at the lower end of the
nephron endowment spectrum, i.e. children with low birth weight
(growth restriction in term infants, preterm or both), have the highest
risk for developing accelerated nephron loss and hypertension [2]. We
designed the PREMATCH case-control study (Prematurity as Predictor
of Children's Cardiovascular-Renal Health) to phenotype the micro- and
macrocirculation of children born prematurely with extremely low
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birth weight (ELBW, below 1000 g) or delivered at term [3]. We pre-
viously demonstrated that at 11 years, ELBW children, compared with
those born at term, had higher blood pressure, a 5- to 9-fold higher risk
of prehypertension or hypertension, and smaller kidney size with lower
glomerular filtration rate as estimated from the serum cystatin C level
[4]. These findings are in line with the hypotheses proposed by Barker
[1] and Brenner [2].

In addition to the kidney, the cerebral microcirculation requires
extensive maturation in the perinatal period [5,6]. Several studies de-
scribe poorer cognitive performance [7–15] or narrower retinal arter-
ioles [16] in 2- to 9-year old children born prematurely. The retinal
microvessels can be visualized and quantified non-invasively and share
embryogenetic and physiological characteristics with cerebral micro-
vasculature [5]. To our knowledge, no previous study investigated
whether there is association of head circumference or cognitive per-
formance with retinal microcirculatory properties in prematurely born
children, suggesting that a persistent microvascular deficit might con-
tribute to the maldevelopment of the brain and poorer cognition. In our
current study, we tested this hypothesis in 11-year old children born
with ELBW or delivered at term, while accounting for blood pressure
and other factors with possible impact on cognition.

2. Methods

2.1. Study participants

The study was conducted in accordance with the Helsinki declara-
tion for investigations in human subjects [17]. The Ethics Committee of
the University Hospitals approved the study. Based on good clinical
practice guidelines and national legislation, parents or custodians pro-
vided written informed consent and the children informed assent. The
study was registered at ClinicalTrials.gov (NCT02147457). We re-
cruited cases from a cohort of 140 children born between 2000 and
2005, who survived after having been born with a birth weight of<
1000 g and after a gestation ranging from 23 to 33weeks [3]. Of 140
invited children, 93 participated (66.4%). The 87 controls were either
friends of the cases (n=41) or recruited at an elementary school close
to the examination center (n=46) [3]. We excluded 10 participants
from analysis, because retinal imaging was of poor quality (7 cases), or
because their IQ levels were> 3 SDs lower than the group mean
among cases (n=2) or controls (n=1). Thus, the number of children
statistically analyzed included 84 cases and 86 controls.

2.2. Clinical measurements

Blood pressure was the average of three consecutive auscultatory
readings obtained according to European guidelines [18] with a stan-
dard mercury sphygmomanometer after the children had rested in sit-
ting position for at least 5 min. Body weight was measured, using the
Omron Karada Scan HBF511 (Omron Health Care, Kyoto, Japan) and
body height by a wall–mounted ruler. Body mass index was weight in
kilograms divided by height in meters squared. We converted the an-
thropometric measurements to Z–scores based on Flemish growth
charts [19]. Retinopathy of prematurity was staged as described else-
where [20].

2.3. Visual acuity

Technicians tested the visual acuity (clearness of vision, i.e. spatial
resolution of the visual processing system) of participants through the
non–invasive adapted Snellen chart (Medical Workshop, Groningen,
The Netherlands) at six meters for the left and right eye separately,
using one–eye blinding glasses. This test was performed without visual
aids. Visual acuity was expressed in decimals based on adaptive Snellen
charts. Calculations were done in logMAR (log Minimum Angle
Resolution). Normal visual acuity is defined as a detailed vision at six

meters expressed as 6/6 or 20/20 or 1.00 in decimals or 0.00 logMAR
[21,22]. Impaired visual acuity was defined as< 0.50 [21]. For sta-
tistical analysis, a vision of< 0.1 was artificially set at 0.1.

2.4. Retinal imaging

Participants were asked to refrain from exercise or caffeinated
beverages for at least 6 h before retinal imaging. We applied a non-
mydriatic approach in a dimly lit room to obtain retinal photographs,
one image per eye in each participant, with the Canon Cr-DGi retinal
visualization system combined with the Canon D-50 digital camera
(Canon Inc., Medical Equipment Group, Utsunomiya, Japan). We de-
termined the central retinal arteriolar (CRAE) and venular (CRVE)
equivalent, which represent the retinal arteriolar and venular dia-
meters. We used the validated computer-assisted program SIVA
(Singapore I Vessel Assessment, version 3.6, Singapore Eye Research
Institute, Singapore) based on formulae published by Parr [23] and
Hubbard [24]. The software returns average vessel diameters according
to the revised Knudtson formula [25]. The arteriole-to-venule diameter
ratio (AVR) was CRAE divided by CRVE. Intra–observer variability (F.-
F.W.) and inter–observer (Z.-Y.Z. and F.-F.W.) variability were assessed
from repeated measurements in 30 children, using intraclass correlation
coefficients [26]. For the intra-observer repeatability, the correlation
coefficients were 0.98 for CRAE, 0.99 for CRVE and 0.98 for AVR and
for inter-observer reproducibility they were 0.94, 0.93 and 0.87, re-
spectively [26].

2.5. Neurocognitive performance

In cases and controls, neurocognitive performance was investigated
by the Wechsler Non–Verbal test, Dutch version (Pearson, The
Netherlands). Matrix reasoning and spatial span were assessed to esti-
mate the intelligence quotient (IQ) equivalent (i.e. total score) [27]. To
score parental education, we applied a standardized questionnaire and
recoded the International Standard Classification of Education Scale
[28] into 4 levels ranging from low (1) to high (4) education [29].

2.6. Statistical analysis

For database management and statistical analysis, we used SAS
software, version 9.4 (SAS Institute, Cary, NC). We applied Shapiro-
Wilk test to test normality of distributions. For comparison of means,
we used a t-test or Wilcoxon-Mann-Whitney test depending on the
distribution and for comparison of proportions the χ2-statistic, re-
spectively. Statistical significance was a two-sided significance level of
0.05. While accounting for the stratification in cases and controls, we
applied linear regression to test the association of head circumference,
total IQ, matrix reasoning and spatial span with the retinal traits, first
unadjusted and next with adjustments applied for sex, age and body
mass index. Models with IQ as outcome were additionally adjusted for
mean arterial pressure. In fully adjusted models we also accounted for
paternal and maternal educational attainment. A missing value of visual
acuity in 1 case was replaced by the cases' mean.

3. Results

3.1. Characteristics of study participants

Table 1 lists the characteristics of 84 cases and 86 controls. The
number of girls was similar among cases and controls (43 [51.2%] vs 44
[51.2%]; p=0.99). There were no differences in age and body mass
index between cases and controls (p≥ 0.057; Table 1). Compared with
controls, cases were 3.96 cm (95% confidence interval [CI], −6.83 to
−1.08; p=0.007) shorter, 3.84 kg (CI, −6.73 to −0.95; p=0.009)
lighter and had 1.71 cm (CI, 0.95 to 6.73; p=0.009) smaller head
circumference. The corresponding differences for body height, weight,
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body mass index and head circumference derived from Z-scores were
−0.92 (CI, −1.21 to −0.64; p < 0.001), −0.77 (CI, −1.06 to −0.49;
p < 0.001), −0.39 (CI, −0.70 to −0.08; p=0.014) and −1.13 (CI,
−1.44 to −0.82; p < 0.001), respectively. Systolic and diastolic blood
pressure were 7.5 (CI, 4.8 to 10.3; p < 0.001) and 3.6 (CI, 1.7 to 5.5;
p < 0.001) mmHg higher in cases than controls (Table 1). Compared
with controls (Table 1 and Fig. 1), cases had lower levels of total IQ
(93.9 vs 109.2; p < 0.001), matrix reasoning (47.5 vs 53.3; p < 0.001)
and spatial span (46.2 vs 56.1; p < 0.001). Paternal educational levels
were equally distributed among cases and controls (low 6.1 vs 2.4%;
medium-low 46.3 vs 49.4%; medium-high 23.2 vs 32.5% and high 22.0
vs 15.7%; p=0.23) as well as maternal educational levels (low 7.3 vs
1.2%; medium-low 42.2 vs 38.6%; medium-high 35.4 vs 44.6% and
high 17.1 vs 14.5%; p=0.22). Girls had a smaller head circumference
than boys (52.2 vs 53.0 cm; p=0.012). However, there were no

differences between girls and boys in matrix reasoning (50.4 vs 50.5;
p=0.97), spatial span (50.4 vs 52.1 p=0.28) or IQ (100.8 vs 102.5;
p=0.45). Table 2 provides additional information on the perinatal and
postnatal characteristics of the 84 cases. Retinopathy of prematurity
stage 3 or higher was present in 13 (15.5%) cases and treated with laser
therapy in all.

3.2. Retinal phenotypes

Visual acuity was not normally distributed. It was lower in cases
than controls (Table 1): right eye, 0.69 vs 0.92 (p < 0.001) and left
eye, 0.68 vs 0.95 (p < 0.001). In all children combined, central retinal
arteriolar and venular equivalent and their ratio were averaged (± SD)
168.4 ± 13.3 μm, 238.9 ± 17.7 μm and 0.71 ± 0.05. Cases com-
pared with controls (Fig. 1 and Table 1) had lower central retinal

Table 1
Characteristics of cases and controls.

Characteristics Cases (n=84) Controls (n=86) p-value

Anthropometric measurement
Age (years) 11.2 (10.9 to 11.5) 10.9 (10.6 to 11.1) 0.064
Body height (cm) 145.4 (143.4 to 147.3) 149.3 (147.2 to 151.5) 0.007
Z-score for height −0.34 (−0.53 to −0.16) 0.58 (0.36 to 0.80) < 0.001
Body weight (kg) 36.7 (34.6 to 38.8) 40.5 (38.5 to 42.6) 0.009
Z-score for weight −0.44 (−0.65 to −0.22) 0.33 (0.15 to 0.52) < 0.001
Body mass index (kg/m2) 17.1 (16.5 to 17.8) 18.0 (17.4 to 18.5) 0.057
Z-score for body mass index −0.36 (−0.61 to −0.12) 0.02 (−0.18 to 0.22) 0.014
Head circumference (cm) 51.7 (51.3 to 52.1) 53.4 (53.1 to 53.8) < 0.001
Z-score for head circumference −1.06 (−1.30 to −0.83) 0.06 (−0.14 to 0.26) < 0.001

Blood pressure
Systolic (mmHg) 112.8 (110.7 to 115.0) 105.3 (103.5 to 107.1) < 0.001
Diastolic (mmHg) 67.6 (66.2 to 69.0) 64.1 (62.7 to 65.4) < 0.001
Mean (mmHg) 82.7 (81.4 to 84.0) 77.8 (76.6 to 79.0) < 0.001

Visual acuity
Right eye 0.69 (0.61 to 0.76) 0.92 (0.86 to 0.98) < 0.001
Left eye 0.68 (0.60 to 0.76) 0.95 (0.89 to 1.01) < 0.001

Retinal phenotypes
Central arteriolar diameter (μm) 162.7 (160.0 to 165.4) 174.0 (171.5 to 176.5) < 0.001
Central venular diameter (μm) 234.9 (231.0 to 238.8) 242.8 (239.2 to 246.4) 0.003
Arteriole-to-venule ratio 0.69 (0.68 to 0.70) 0.72 (0.71 to 0.73) 0.001

Cognitive outcomes
Total IQ 93.9 (91.4 to 96.4) 109.2 (106.4 to 112.1) < 0.001
Matrix reasoning 47.5 (46.1 to 49.0) 53.3 (51.6 to 55.0) < 0.001
Spatial span 46.2 (44.5 to 47.9) 56.1 (54.2 to 58.1) < 0.001

Values are mean (95% confidence interval). Z-scores were based on Flemish growth charts (reference [19]). Head circumference was unavailable in 14 cases and 8 controls.

Fig. 1. Frequency distributions of head circumference (A) total IQ (B) and central retinal arterial equivalent (C) in cases and controls. The red and blue histograms represent cases and
controls, respectively. HC, head circumference; IQ, total intelligence quotient; CRAE, central retinal arteriolar equivalent. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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arteriolar equivalent (−11.3 μm; CI, −15.0 to −7.7; p < 0.001),
central retinal venular equivalent (−7.9 μm; CI, −13.1 to −2.6;
p=0.003) and arteriole-to-venule ratio (−0.03; CI, −0.04 to −0.01;
p=0.001).

3.3. Association with the retinal microcirculation

Fig. 1 shows the overlap in the distributions of head circumference,
IQ and central retinal arteriolar equivalent in cases and controls. In
unadjusted models including all children, head circumference
(r=0.29; p < 0.001) and total IQ (r=0.26; p < 0.001) increased
with central retinal arteriolar equivalent. As shown in Fig. 2, total IQ
(p=0.011) and matrix reasoning (p=0.016) increased with central
retinal arteriolar equivalent independent of mean arterial pressure with
a similar trend for spatial span (p=0.059).

In unadjusted models including all children (Table 3), a 1–SD de-
crement in the central retinal arteriolar equivalent was associated with
a 0.53 cm (p < 0.001) smaller head circumference. With adjustments
applied for sex, age and body mass index, this estimate became 0.57 cm
(p < 0.001) and with additional adjustment for parental educational
attainment 0.58 cm (p < 0.001; Table 3 and Fig. 3). Associations of
head circumference with the arteriole-to-venule ratio mirrored those of

central retinal arteriolar equivalent (Table 3). Results using the Z-score
for head circumference were confirmatory.

In unadjusted models (Table 3), a 1–SD decrement in the central
retinal arteriolar equivalent was associated with lower total IQ, matrix
reasoning and spatial span. The estimates were −3.74 (p < 0.001),
−1.77 (p=0.004) and −2.03 (p=0.002), respectively. With adjust-
ments applied for sex, age, body mass index and mean arterial pressure,
estimates became −3.20 (p=0.007), −1.54 (p=0.029) and −1.72
(p=0.018), respectively. A 1–SD decrease in arteriole-to-venule ratio
was significantly associated with lower IQ (−3.29; p=0.002), matrix
reasoning (−2.04; p=0.001) and spatial span (−1.32, p=0.053) in
unadjusted models. The corresponding estimates in adjusted models
were −2.89 (p=0.013), −1.97 (p=0.004) and −0.99 (p=0.19).
Fully adjusted models additionally accounted for maternal and paternal
educational attainment and produced confirmatory results (Table 3 and
Fig. 3). None of the associations of head circumference, total IQ, matrix
reasoning or spatial span with the central retinal venular equivalent
reached significance in unadjusted or adjusted models.

4. Discussion

To the best of our knowledge, our study is the first that assessed the
multivariable-adjusted associations of head circumference and cogni-
tive performance with retinal microvascular traits in children born
prematurely or delivered at term. The key findings can be summarized
as follows: (i) compared with those born at term, former ELBW infants
at 11 years had smaller head circumference and narrower retinal ar-
teriolar and venular diameters and a smaller arteriole-to-venule ratio;
(ii) former ELBW children performed less than children born at term in
tests of total IQ, matrix reasoning, and spatial span; (iii) and with ad-
justments applied for risk factors for cognitive impairment, including
mean arterial pressure, body mass index and parental educational at-
tainment, total IQ, matrix reasoning and spatial span remained posi-
tively correlated with the central retinal arteriolar equivalent and ar-
teriole-to-venule ratio. Previous studies did not detect sex differences in
latent general and broad cognitive abilities, which is line with our
current findings [30,31].

In keeping with our current observations, several studies described
poorer cognitive performance in 2- to 9-year old children born pre-
maturely [7–15]. For instance, Anderson and colleagues determined the
cognitive outcome of 298 ELBW (<1000 g) or very preterm infants
(< 28weeks of gestation) born in 1990s compared with 262 normal
birth weight controls. At 8 years, cases had lower full-scale IQ than

Table 2
Characteristics of 84 cases.

Characteristics Values

Perinatal characteristics, n (%)
Tocolysis 25 (29.8)
Pre-eclampsia 26 (30.9)
Chorioamnionitis 4 (4.8)
Antenatal lung maturation 75 (89.3)
Premature rupture of membranes 16 (19.0)

Postnatal characteristics
Gestational age (weeks) 27.5 (25.0 to 31.0)
Birth weight (g) 799.3 (525.0 to 990.0)
Ventilation (days) 11.5 (0 to 35)
Oxygen need (days) 36.6 (1.0 to 103.0)
Ibuprofen, n (%) 39 (46.4)
Postnatal steroids, n (%) 42 (50.0)
Retinopathy of prematurity ≥3, n (%) 13 (15.5)
Intraventricular hemorrhage, n (%) 18 (21.4)

Values are mean (95% confidence interval) or n (%). To accelerate antenatal lung ma-
turation, mothers received intramuscular betamethasone on two consecutive days.

Fig. 2. Associations of indices of IQ with mean arterial pressure and central retinal arteriolar equivalent. The plane shows the independent associations of full scale IQ (A), matrix
reasoning IQ (B) and spatial processing IQ (C) with mean arterial pressure (MAP) and central retinal arteriolar equivalent (CRAE).
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normal controls with a difference averaging 9.4 (CI, 6.7–12.1) [8].
Subsequently, the same research group reported that preterm children
had significant executive dysfunction compared with their healthy
controls [9]. Marlow and colleagues assessed cognitive performance at
a median age of 6.3 years in 241 prematurely born children
(≤25weeks of gestation) and 160 classmates born at term. Each pre-
term child had also been evaluated at 30months of age. By using re-
ference norms, cognitive impairment, defined as results > 2 SDs below
the mean, was present in 21% of the prematurely born children, as
compared with 1% in the standardized data. This proportion rose to
41% when compared with classmates. The mean difference in overall
cognitive ability between cases and controls was 24 (CI, 20 to 27) [10].
Among children with severe disability at 30 months of age, 86% still
had moderate-to-severe disability at 6 years of age, confirming as ob-
served in our current study the lasting influence of prematurity [10].
Along similar lines, of 441 extremely preterm infants (< 27weeks) who
had received active perinatal care in Sweden, 30.4% had mild dis-
ability, 20.2% had moderate disability, and 13.4% had severe dis-
ability. Only 3% of the controls had moderate to severe disability [15].

Head circumference reflects fetal brain growth [32]. Several pre-
vious studies correlated IQ with anatomical brain characteristics in
children born prematurely [33–36]. A meta-analysis of fifteen studies
[35] included 818 very preterm/very low birthweight children and 450
term-born peers. Effect sizes were determined for each study and ex-
pressed as the difference between very preterm/very low birth weight
children and controls divided by the pooled standard deviation of the
two group. Compared with controls, very preterm/very low birthweight

children had smaller brain volumes amounting to 0.58 (CI, −0.73 to
−0.43; p < 0.001) for the total brain, to 0.53 (CI, −0.67 to −0.40;
p < 0.001) for white matter, to 0.62 (CI, −0.76 to −0.48; p < 0.001)
for grey matter and to 0.74 (CI, −0.92 to −0.56; p < 0.001) for the
cerebellum. Reduced brain volume were associated with decreased
general cognitive functioning [35]. Other studies [37–39] noted asso-
ciations of psychological, neurocognitive or behavioral function or
school performance with brain volumes in adolescents born prema-
turely. In keeping with the aforementioned reports [7,37–40], in our
current study, we correlated cognitive performance with an anatomical
index, i.e. the diameter of the retinal microvessels and showed a posi-
tive multivariable-adjusted correlation.

That prematurely born children have narrower retinal arterioles
than term children is well established [16,41], but to our knowledge no
previous study reported on the correlation between cognitive perfor-
mance and the retinal arteriolar diameters. In a population-based co-
hort study, retinal arteriolar calibers were measured from digitized
retinal photographs in 4122 6-year old children. After adjustment for
image grader, sex, age of the child, maternal lifestyle and socio-
demographic confounders, children born at< 34weeks and at
34–37weeks of gestation, compared with children born at term, had
narrower retinal arteriolar caliber with SD scores amounting to −0.46
(CI, −0.77 to −0.15) and −0.24 (CI, −0.42 to −0.05), respectively
[16]. In the Cardiovascular Risk in Young Finns Study [41], children
aged 3–18 years were randomly selected from five Finnish University
cities. At age 34–49 years, with adjustments applied for sex, age, em-
ployment, marital status and smoking, premature compared with term

Table 3
Association of head circumference and cognitive performance with retinal traits.

Phenotype model Head circumference (n=148) Cognitive performance (n=170)

Absolute value Z-score Total IQ Matrix reasoning Spatial span

CRAE
Unadjusted −0.53 (−0.78 to −0.28)⁎⁎⁎ −0.37 (−0.51 to −0.22)⁎⁎⁎ −3.74 (−5.73 to −1.75)⁎⁎⁎ −1.77 (−2.95 to −0.58)⁎⁎ −2.03 (−3.28 to −0.78)⁎⁎
Adjusted −0.57 (−0.79 to −0.35)⁎⁎⁎ −0.35 (−0.48 to −0.22)⁎⁎⁎ −3.20 (−5.50 to −0.90)⁎⁎ −1.54 (−2.92 to −0.16)⁎ −1.72 (−3.14 to −0.30)⁎
Fully adjusted −0.58 (−0.81 to −0.36)⁎⁎⁎ −0.36 (−0.49 to −0.23)⁎⁎⁎ −3.18 (−5.58 to −0.78)⁎⁎ −1.69 (−3.06 to −0.32)⁎ −1.55 (−3.03 to −0.07)⁎

AVR
Unadjusted −0.35 (−0.61 to −0.09)⁎⁎ −0.20 (−0.36 to −0.04)⁎ −3.29 (−5.36 to −1.22)⁎⁎ −2.04 (−3.28 to −0.80)⁎⁎ −1.32 (−2.67 to 0.02)
Adjusted −0.44 (−0.71 to −0.18)⁎⁎⁎ −0.26 (−0.42 to −0.10)⁎⁎ −2.89 (−5.16 to −0.63)⁎ −1.97 (−3.28 to −0.66)⁎⁎ −0.99 (−2.49 to 0.50)
Fully adjusted −0.41 (−0.68 to −0.14)⁎⁎ −0.24 (−0.41 to −0.08)⁎⁎ −2.57 (−4.96 to −0.17)⁎ −1.83 (−3.20 to −0.46)⁎⁎ −0.81 (−2.38 to 0.76)

Abbreviations: CRAE, central retinal arteriolar equivalent; AVR, arteriole-to-venule ratio. Effect size (95% confidence interval) express the difference associated with a 1-SD decrease in
CRAE or AVR. All models are adjusted for sex, age and body mass index. Adjusted models with cognitive performance as outcome also include mean arterial pressure as covariable. Fully
adjusted models additionally accounted for parental educational level, but because of unavailability of this information only include 165 participants (82 cases and 83 controls). Head
circumference was available in 70 cases and 78 controls.

⁎ p≤ 0.05, significance of the associations.
⁎⁎ p≤ 0.01, significance of the associations.
⁎⁎⁎ p≤ 0.001, significance of the associations.

Fig. 3. Multivariable-adjusted associations of head cir-
cumference (A) and total IQ (B) with central retinal arter-
iolar equivalent (CRAE). The partial regression coefficients
were standardized as in Table 3 and adjusted for sex, age,
body mass index and parental educational level. The model
for IQ was additionally adjusted for mean arterial pressure.
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birth was associated with narrower retinal arteriolar diameters (19.9 vs
20.3 pixels; p=0.034) [41]. In none of these studies [16,41], in-
vestigators described an association between cognitive performance
and retinal arteriolar diameter. In our view two studies approached our
current findings and support our interpretation [6,32]. Yau and col-
leagues observed associations between subclinical white matter pa-
thology and retinal vessel alterations among obese adolescents with
metabolic syndrome (mean age, 17.5 years) and suggested that subtle
white matter pathology in adolescents with metabolic syndrome has a
vascular origin [6]. In a longitudinal study of 58 preterm infants born
after 30–32weeks of gestation [32], head circumference was measured
twice weekly from birth until discharge from the hospital up to
31 weeks later. The postnatal deficit in head circumference paralleled
the degree of retinopathy of prematurity and in the authors' view was
consistent with a disease process common to the brain and the eye [32].

Observational studies cannot ascertain mechanisms. However, some
investigators hypothesized that retinal vascular abnormalities in chil-
dren born preterm reflect generalized vascular changes [42], which
provide an explanation of why preterm children appear to have an
increased risk of cardiovascular disease later in life [42,43]. The retina
shares similar embryological origin, anatomical features and physiolo-
gical properties with the brain and hence offers a unique and accessible
“window” to study the correlates and consequences of subclinical pa-
thology [5,44]. While these concepts have been introduced into clinical
research in adults in the fields of stroke and dementia [5,45], our lit-
erature search did not reveal any previous study linking cognitive
performance in young children born prematurely or at term to the
retinal microvasculature. Our findings suggest that the difference be-
tween cases and controls in head circumference, IQ, spatial span and
matrix reasoning in 11-year old children results from microvascular
maldevelopment or dysfunction in the perinatal period and in line with
the literature is persistent from birth onwards [10,15,41]. In addition,
our multivariable-adjusted analyses revealed that other risk factors for
cognitive impairment, in particular high blood pressure, metabolic
dysregulation as reflected by body mass index, and parental educational
attainment were of minor influence compared with the maldevelop-
ment or malfunction of the intracerebral microcirculation. Limitations
of our current study are its cross-sectional case-control design, the ab-
sence of a longitudinal follow-up of cognitive performance from early
childhood onwards, its relatively small sample size. The relatively small
number of children with retinopathy of prematurity or intraventricular
hemorrhage might explain the null association of cognitive perfor-
mance at 11-years with these traits in unadjusted and multivariable-
adjusted analyses. Furthermore, the control group in our study scored
nearly 10 standard points above the age-expected mean based on the
normative sample of the Wechsler Intelligence Scale for Children [46].
The high performance in the control group might have inflated the
effect sizes in the comparison with the preterm group.

In conclusion, with adjustments applied for covariables of cognitive
function, including sex, age, mean arterial pressure, body mass index
and parental educational attainment, head circumference, total IQ,
matrix reasoning and spatial span decreased with smaller retinal ar-
teriolar diameter. Our findings suggest that maldevelopment of the
cerebral microcirculation, as mirrored by the retinal microvasculature,
has lasting effects on the cognitive performance of prematurely born
children. The clinical corollary of our findings is that, in view of the life-
long lasting ramifications of premature birth on public health and
education [12], the timely identification of those infants who are the
largest risk for cognitive impairment and who may benefit from early
intervention, should rise on the research agenda.
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