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ABSTRACT.

Purpose: To generate percentile curves of axial length (AL) for European

children, which can be used to estimate the risk of myopia in adulthood.

Methods: A total of 12 386 participants from the population-based studies

Generation R (Dutch children measured at both 6 and 9 years of age; N = 6934),

the Avon Longitudinal Study of Parents and Children (ALSPAC) (British

children 15 years of age; N = 2495) and the Rotterdam Study III (RS-III)

(Dutch adults 57 years of age; N = 2957) contributed to this study. Axial length

(AL) and corneal curvature data were available for all participants; objective

cycloplegic refractive error was available only for the Dutch participants. We

calculated a percentile score for each Dutch child at 6 and 9 years of age.

Results: Mean (SD) AL was 22.36 (0.75) mm at 6 years, 23.10 (0.84) mm at

9 years, 23.41 (0.86) mm at 15 years and 23.67 (1.26) at adulthood. Axial length

(AL) differences after the age of 15 occurred only in the upper 50%, with the

highest difference within the 95th percentile and above. A total of 354 children

showed accelerated axial growth and increased by more than 10 percentiles from

age 6 to 9 years; 162 of these children (45.8%) were myopic at 9 years of age,

compared to 4.8% (85/1781) for the children whose AL did not increase by more

than 10 percentiles.

Conclusion: This study provides normative values for AL that can be used to

monitor eye growth in European children. These results can help clinicians detect

excessive eye growth at an early age, thereby facilitating decision-making with

respect to interventions for preventing and/or controlling myopia.
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Introduction

Refractive errors such as myopia,
hyperopia and astigmatism are the

most common ocular disorders
worldwide. The prevalence of these
conditions varies with both age and
geographic location (Laatikainen &

Erkkil€a 1980; Mantyjarvi 1983;
Morgan et al. 2010; Tideman et al.
2016a). Myopia is most prevalent in
Eastern Asia (Pan et al. 2015) and in
the Western world (Vitale et al. 2009;
Williams et al. 2015), whereas hyper-
opia is more prevalent in developing
countries (Morgan et al. 2010).

Refractive error is the result of a
mismatch between the various optical
components of the eye, the most
important of which are the cornea,
the crystalline lens and the eye’s AL. In
the first few years of age, the cornea’s
refractive power is reduced; the lens
also loses refractive power during
childhood (Mutti et al. 1998; Iribarren
et al. 2012). In contrast, AL increases
during childhood and in the teenage
years, leading to myopia if this growth
in AL exceeds the eye’s focal point
(Zadnik et al. 2003). High myopia,
which is defined as spherical equivalent
(SE) of �6 D or worse, generally
corresponds to AL ≥26 mm, which
drastically increases the risk of severe
complications later in life, including
myopic maculopathy, retinal detach-
ment and glaucoma (Curtin & Karlin
1971; Saw 2006; Tideman et al. 2016b).
High myopia in adulthood usually has
a myopia onset before the age of 10,
which progresses during teenage years
and early twenties (M€ott€onen et al.
1995; Fledelius 2000; P€arssinen et al.
2014; Tideman et al. 2017); therefore,
the ability to identify young at-risk
children would provide clinicians the
opportunity to apply preventative
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measures to minimize further increases
in AL (Nordhausen et al. 2015). These
measures can include changes in life-
style (e.g. increasing outdoor exposure
(He et al. 2015)), pharmacological
agents such as atropine (Chia et al.
2016; Polling et al. 2016) and optical
applications such as multifocal contact
lenses (Turnbull et al. 2016).

Normative values as a function of
age are available for a variety of
measurements such as height, weight
and birthweight, and these values are
generally visualized using percentile
curves. These curves are a powerful
tool used by clinicians for sensitively
detecting aberrant growth at an early
age. Percentile curves for most body
measurements, such as height and
weight for gestational age, and height
in childhood, have been generated
using cross-sectional data from extre-
mely large cohorts (Niklasson et al.
1991; Schonbeck et al. 2013); however,
no such normative data currently exist
for ocular biometry components or
refractive error.

The aim of this study was to gener-
ate a growth chart for AL based on
large epidemiological cohorts of Euro-
pean children and adults. We assessed
the risk of developing myopia and/or
high myopia per percentile, and we
examined how growth curves from
Western Europe relate AL measure-
ments in other geographic regions.

Patients and Methods

Study population

The study included three population-
based studies: the Generation R study,
the ALSPAC and the RS-III.

The Generation R study

The Generation R study is a popula-
tion-based prospective cohort study of
pregnant women and their subsequent
children, conducted in Rotterdam, the
Netherlands. The complete methodol-
ogy for this study has been described
elsewhere (Jaddoe et al. 2012; Kruithof
et al. 2014). In brief, a total of 9778
pregnant women were included in the
study, and their children were born
from April 2002 through January 2006.
At 6 and 9 years of age, the children
were invited for an examination by
trained nurses at a research centre.
From the initial cohort, 6690 (68.4%)

children participated in the physical
examination at 6 years of age, and
5862 (60.0%) participated at 9 years
of age. Follow-up data regarding AL
were available for 4787 children at both
ages.

The Avon longitudinal study of parents and

children

Avon Longitudinal Study of Parents
and Children (ALSPAC) is a prospec-
tive population-based birth cohort
study based in the former Avon health
authority area in SouthWest England.
This study was designed to investigate
the determinants for development,
health and disease in childhood and
adulthood. Subject recruitment for this
study has been described previously
(Boyd et al. 2013). In brief, pregnant
women with an expected date of deliv-
ery from April 1, 1991, through
December 31, 1992, were eligible to
participate, and 14 541 eligible women
were recruited. These pregnancies
resulted in 14 062 live births, and
13 988 of the infants were still alive at
1 year of age. Eye examinations were
performed in these children from
7 years of age onwards, and ocular
biometry measurements were included
at age 15.

The Rotterdam Study III

Rotterdam Study III (RS-III) is a
prospective, population-based cohort
study of subjects ≥45 years of age
living in Ommoord, a suburb of Rot-
terdam, the Netherlands. In this study,
researchers examined cardiovascular,
endocrine, neurological, respiratory
and ophthalmic outcomes. Baseline
examinations – including best-cor-
rected visual acuity and refractive error
measurements – were performed from
2006 through 2008. Axial length (AL)
was measured in a random subset of
the RS-III cohort at baseline and in a
different random subset during follow-
up examinations in 2011–2012
(Hofman et al. 2013).

Ethical approval

Written informed consent was obtained
from all participants or parents in all
three cohorts.

The study protocols for the Gener-
ation R study and RS-III were
approved by the Medical Ethics

Committee of the Erasmus Medical
Centre, Rotterdam, the Netherlands.
Ethics approval for the ALSPAC study
was obtained from the Law and Ethics
Committee and the respective local
research ethics committees (http://
www.bris.ac.uk/alspac/researchers/da
ta-access/data-dictionary). All research
was conducted in accordance with the
Declaration of Helsinki.

Data collection

In the Generation R and ALSPAC
studies, ocular biometry was measured
using a Zeiss IOLMaster 500 (Carl
Zeiss, Jena, Germany or Welwyn Gar-
den City, UK). In RS-III, AL was
measured using an A-scan ultrasound
device (Pacscan 300AP; Sonomed
Escalon, MEyeTech GmbH, Hardeg-
sen Germany) or LenStar device
(Lam�eris Ootech, Haag-Streit, UK).
Corneal curvature was measured using
a Topcon RM-A2000 autorefractor
(Topcon Optical Company, Tokyo,
Japan). For measuring AL, five mea-
surements were obtained per eye and
were then averaged to obtain a mean
AL value. For the corneal radius, three
measurements of K1 and K2 were
obtained per eye and averaged to
obtain a mean corneal radius of curva-
ture (CR). Axial length (AL)/CR ratio
was calculated by dividing AL (in mm)
by CR (in mm).

To calculate axial elongation and the
change in corneal radius in mm/year,
and the change in AL/CR ratio in mm/
mm/year, the measurement at 6 years
of age was subtracted from the mea-
surement at 9 years of age, and divided
by the number of years between the
two measurements. Refractive error
was available in Generation R at
9 years and in the RS-III. In the
Generation R cohort, automated cyclo-
plegic refraction was measured in a
random subsample at 9 years of age
using a Retinomax-3 device (Bon,
L€ubeck, Germany). At least 30 min-
utes prior to measuring refractive error,
two drops (three with dark irises) of
cyclopentolate (1%) were adminis-
tered, and a pupil diameter ≥6 mm
was required before SE was deter-
mined. Spherical equivalent (SE) was
calculated as the average sphere + 1/2
cylinder for both eyes. In the RS-III
cohort, refraction was measured objec-
tively using a Topcon RM-A2000
(Topcon Optical company), and then
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subjectively adjusted with +0.25 D or
�0.25 D steps, spherically as well as
cylindrically to achieve the best possi-
ble visual acuity (VA). Myopia was
defined as SE of ≤�0.5 D, emmetropia
was defined as SE between �0.5 and
+2.0 D, and hyperopia was defined
SE ≥ +2.0 D. At the age of 6 years in
Generation R, cycloplegic refractive
error was only obtained when VA was
worse than 0.2 LogMAR, detecting
myopia ≤�0.5 but not hyperopia; we
therefore did not use refractive error
data at age 6 for analyses. In contrast,
cycloplegic refractive error was col-
lected in all 9-year-old, and non-cyclo-
plegic refraction was collected in all
adults.

Statistical methods

Average values of AL, CR and AL/CR
were calculated. Differences between
genders were analysed using the Stu-
dent’s t-test or the chi-square test. The
association between biometry variables
and SE were determined using linear
regression models. For the growth
curves of AL and AL/CR, we used
the 2nd, 5th, 10th, 25th, 50th, 75th,
90th, 95th and 98th percentile values
for the children in the Generation R
and ALSPAC studies, with the mea-
surements in the RS-III cohort as the
final refractive state in adults. Axial
length (AL) was plotted against age,
and an interpolation line was created
between the matching percentiles of
each age. Individual percentiles for AL
at 6 and 9 years of age were calculated
relative to the entire cohort, and the
absolute difference between 6 and
9 years was calculated. To test for
concordance of our results with other
studies conducted in other geographic
regions, we extracted data from 13
other population-based and school-
based studies that were conducted in
North America (Zadnik et al. 2003),
Europe (Larsen 1971; Rudnicka et al.
2010; Li et al. 2015b), Asia (Li et al.
2011, 2015a; Iribarren et al. 2012;
Hashemi et al. 2015; Jin et al. 2016;
Lu et al. 2016) and Australia and
Vanuatu (Garner et al. 1988; Ojaimi
et al. 2005; Ip et al. 2008) for which
gender-stratified data were available.
The association between SE and either
AL or AL/CR ratio was determined
using linear regression models and
ordinary least squares linear regression
models, with restricted cubic splines

with three knots (the 10th, 50th and
90th percentiles) in the 9-year-old chil-
dren in the Generation R cohort. All
models were adjusted for both age and
gender. Ordinary least squares linear
regression models were generated using
the program R; all other statistical
analyses were performed using SPSS

version 21.0 (IBM Corp., Armonk,
NY, USA).

Results

Ocular biometry and refractive error

Analyses were performed at the cohort
level. In the Generation R cohort,
complete ocular biometry data were
available for 6084 and 5295 children at
6 and 9 years of age, respectively. In
the ALSPAC cohort, complete ocular
biometry data were available for 2495
children 15 years of age. In the RS-III
cohort, data were available for 2957
adults with a mean age of approxi-
mately 57 years. The general demo-
graphic characteristics of all
participants in all four age categories
are shown in Table 1. In the children 6
and 9 years of age, mean (SD) AL was
22.36 (0.75) and 23.10 (0.84) mm,
respectively. Axial length (AL) was
23.41 (0.86) mm in the 15-year-old
and 23.67 (1.26) mm in the adults.
Among all four cohorts, the minimum
and maximum AL values were 17.54
and 30.12 mm, respectively. Mean
(SD) CR was 7.77 (0.26) and 7.78
(0.26) mm in the 6-year-old and 9-
year-old children, respectively, 7.82
(0.27) mm in the 15-year-old, and 7.74
(0.26) mm in the adults. Among all
four cohorts, the minimum and
maximum CR values were 6.91 and
9.61 mm, respectively. The mean (SD)
AL/CR ratio was 2.88 (0.08) in the 6-
year-old and 3.05 (0.15) in the adults;
among all four cohorts, the minimum
and maximum AL/CR values were 2.38
and 4.07, respectively. On average, the
females in each age group had signif-
icantly shorter AL, steeper CR and
lower AL/CR ratios compared to the
males in their respective age groups
(p < 0.001). The gender-stratified mean
and SD values for general and ocular
characteristics are shown in Table 1.
Height had the strongest correlation
with AL in the 6-year-old group
(b = 0.028; p < 0.001), and this corre-
lation decreased slightly – but remained
significant – in the 9-year-old group

(b = 0.024; p < 0.001). No significant
difference in height was found between
the refractive error groups in boys
[one-way analysis of variance (ANOVA)
p = 0.40] as well as girls (ANOVA

p = 0.24).
Refractive error had a relatively

narrow distribution in both the 9-
year-old and the adults (Fig. S1), with
mean SE values of +0.74 D (SD: 1.30;
range: �9.8 D to +8.3 D) and �0.31 D
(SD: 2.53; range: �13.8 D to +9.1 D),
respectively. At 9 years of age, there
was no significant difference in SE
between boys and girls (mean SE was
+0.73 D and +0.75 D, respectively;
p = 0.66); we also found no significant
difference between the adult males and
females (�0.39 D versus �0.26 D,
respectively; p = 0.16). Among the 9-
year-old children, 11.4% (N = 274)
and 8.4% (N = 203) had myopia and
hyperopia, respectively; among the
adults, 37.0% (N = 1093) and 11.9%
(N = 352) had myopia and hyperopia,
respectively.

Table 2 summarizes the differences
in ocular biometry and the association
between SE and the various refractive
error groups in the Generation R and
RS-III cohorts. Our analysis revealed
that SE was inversely correlated with
both AL and the AL/CR ratio in both
the Generation R (Fig. 1) and RS-III
cohorts. Interestingly, the relationship
between SE and AL/CR ratio was non-
linear (quadratic term p < 0.001). The
correlation between SE and both AL
and AL/CR ratio was weakest in the
emmetropic participants and strongest
in the myopic participants (Table 2).

In addition, SE was significantly
correlated with CR. On average, the
myopic children had a steeper CR
(7.73 mm) compared to both the
emmetropic (7.79 mm; p < 0.001) and
hyperopic (7.80 mm; p < 0.001) chil-
dren. Similar results were obtained in
the adult cohort (Table 2).

Longitudinal changes in AL were
also measured in the Generation R
cohort between the 6-year-old and 9-
year-old children. On average, AL
increased by 0.21 mm/year (SD:
0.08 mm/year), and the AL/CR ratio
increased by 0.025 units/year (SD:
0.011 units per year). The myopic chil-
dren had more rapid eye growth rate
(0.34 mm/year) than both the emme-
tropic (0.19 mm/year; p < 0.001) and
hyperopic (0.15 mm/year; p < 0.001)
children. At 9 years of age, the
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increases in AL and AL/CR ratio were
significantly associated with a shift in
refractive error towards increased myo-
pia; this result was present in all
refractive error categories. We found
no significant change in CR from 6 to
9 years of age (Table 2).

AL growth curves

Figure 2 shows the growth chart for
AL versus age in percentiles. From 6 to
9 years of age, all of the percentiles
examined increased in AL; however,
none of the percentiles below the
median increased further after the age
of 15. In particular, the lowest per-
centiles of AL increased relatively little
after the age of 6, and the 5th percentile
values changed by <1 mm with age.

The AL of all of the median and above-
median percentiles increased until
adulthood. The median percentile in
the male participants increased by
1.28 mm (22.59 mm versus 23.87 mm
at 6 years of age and adulthood,
respectively); and the 95th percentile
increased by 2.5 mm [23.65 mm versus
26.18 mm at 6 years of age and adult-
hood, respectively, (Fig. 2 and Table
S1a)]. Similar results were observed for
AL in the female participants (Fig. 2
and Table S1b) and for the AL/CR
ratio in both genders (Fig. S2). The
above-median percentiles of AL were
associated with a >50% risk of devel-
oping myopia in adulthood age; more-
over, the highest 10th percentile was
associated with a 97% risk of myopia
and a 23% risk of high myopia.

Corneal radius of curvature (CR) was
relatively consistent across all age
groups (Fig. S3).

The median absolute difference in
AL was 5.6 percentiles (IQR: 2.4–11.2),
indicating that a given child’s percentile
at age 6 is a reliable predictor of that
child’s percentile at age 9. Moreover,
we found a significant correlation in
percentile position between 6 and
9 years of age (Spearman correlation
coefficient: 0.92; p < 0.001). Higher
change in percentile position was
highly correlated to myopia prevalence
(Fig. 3). Of the 354 children who had
an increase in percentile score of ≥10,
45.8% (N = 162) were myopic at
9 years of age; in contrast, only 4.8%
(85/1781) of the children who had an
increase in percentile score <10 were
myopic at 9 years of age.

Support for our growth curves based on

previous publications

Finally, we used gender-stratified AL
measurements obtained from published
population-based and school-based
studies to confirm our growth curves.
As shown in Fig. 4, the median AL
growth rates in studies of European
children were similar to our own
median values. The mean AL value in
Asian populations was larger after
7 years of age. In addition, the mean
AL values in the children measured in
both Vanuatu study and in an older
study of Norwegian children were
smaller than our median value (Larsen
1971; Garner et al. 1988).

Discussion

The aim of this study was to provide
normative growth values for ocular
biometry and the associated risk of
developing myopia in European chil-
dren. Our analysis revealed that med-
ian AL increased with age until
15 years of age, after which AL con-
tinued to increase into adulthood in the
top 50th percentile. Corneal radius of
curvature (CR) was relatively similar
across age groups, with only a slightly
smaller corneal radius in the adult
cohort. At 9 years of age, the children
in the European cohorts were generally
emmetropic, with an average SE of
+0.74 D, and 11.4% of these children
were already myopic. The correlation
between SE and AL/CR ratio and was
not linear as a whole; rather, it was

Table 1. General and ocular characteristics of the four study cohorts.

All Male Female p-value*

Generation R at 6 years of age (N = 6084)

Age in years 6.17 (0.52) 6.18 (0.55) 6.16 (0.50) 0.03

Gender, N (%) 6084 (100) 3033 (49.9) 3051 (50.1) NA

European ethnicity, N (%) 4089 (67.2) 2023 (66.7) 2066 (67.7) 0.41

Height in cm 119 (6) 120 (6) 119 (6) <0.001
AL in mm 22.36 (0.75) 22.63 (0.73) 22.09 (0.7) <0.001
Corneal radius in mm 7.77 (0.26) 7.84 (0.26) 7.70 (0.24) <0.001
AL/CR ratio 2.88 (0.08) 2.89 (0.08) 2.87 (0.08) <0.001

Generation R at 9 years of age (N = 5296)

Age in years 9.79 (0.33) 9.80 (0.36) 9.77 (0.31) 0.02

Gender, N (%) 5296 (100) 2617 (49.4) 2679 (50.6) NA

European ethnicity, N (%) 3770 (71.2) 1842 (70.4) 1928 (72.0) 0.21

Height in cm 142 (6) 142 (6) 141 (7) 0.05

AL in mm 23.10 (0.84) 23.36 (0.82) 22.84 (0.78) <0.001
Corneal radius in mm 7.78 (0.26) 7.85 (0.26) 7.72 (0.24) <0.001
AL/CR ratio 2.97 (0.09) 2.98 (0.10) 2.96 (0.09) <0.001
SE in dioptres† 0.74 (1.30) 0.73 (1.28) 0.75 (1.31) 0.66

ALSPAC cohort (N = 2495)

Age in years 15.47 (0.32) 15.45 (0.29) 15.49 (0.34) 0.001

Gender, N (%) 2495 (100) 1167 (46.7) 1328 (53.3) NA

European ethnicity, N (%) 2447 (98.1) 1145 (98.1) 1302 (98.0) 0.79

Height in cm 169 (8) 175 (7) 165 (6) <0.001
AL in mm 23.41 (0.86) 23.68 (0.88) 23.18 (0.84) <0.001
Corneal radius in mm 7.82 (0.27) 7.88 (0.27) 7.77 (0.25) <0.001
AL/CR ratio 2.99 (0.1) 3.01 (0.1) 2.98 (0.10) <0.001

RS-III cohort (N = 2957)

Age in years 56.8 (6.4) 56.8 (6.3) 56.8 (6.3) 0.83

Gender, N (%) 2957 (100) 1290 (43.6) 1667 (56.4) NA

European ethnicity, N (%) 2745 (92.8) 1215 (94.2) 1530 (91.8) 0.01

Height in cm 170.5 (10) 178 (6) 164 (7) <0.001
AL in mm 23.67 (1.26) 23.99 (1.26) 23.42 (1.20) <0.001
Corneal radius in mm 7.74 (0.26) 7.81 (0.25) 7.69 (0.25) <0.001
AL/CR ratio 3.05 (0.15) 3.07 (0.16) 3.04 (0.15) <0.001
SE in dioptres �0.31 (2.5) �0.39 (2.5) �0.26 (2.5) 0.16

Except where indicated otherwise, all data are presented as the mean (SD).

AL = axial length, CR = corneal radius of curvature, SE = spherical equivalent, RS-

III = Rotterdam Study III.

*p-values were calculated using the Student’s t-test or the chi-square test.
†N = 2408 (1204 males and 1204 females).
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weaker around the emmetropic values.
This was likely due to compensation by
other optical features such as the crys-
talline lens and anterior chamber depth
(Iribarren 2015).

Our study has several strengths.
First, we included more than 12 000
measurements of ocular biometry in
European children and adults in four
discrete age categories. Second, the
studies from which we collected our
data used autorefraction to measure
refractive error. Third, the age ranges
of the children were extremely narrow,
allowing for highly robust analysis.

Finally, the data were stratified by
gender.

Despite these strengths, several pos-
sible weaknesses warrant discussion.
First, the ALSPAC study involving
15-year-old children was conducted in
the UK, whereas the Generation R and
RS-III studies were conducted in the
Netherlands; therefore, geographic
and/or other factors may have affected
our analysis. Second, we lacked a study
population of young adults, and actual
measurements of refractive error for
ages 20–25 years would have corrected
for small alternations of AL changes

from early to late adulthood, whereas
most of the axial elongation will occur
between 15 and 25 years of age
(Hashemi et al. 2016). Third, the birth
years differed among the three cohorts,
and younger cohorts may have a higher
risk of myopia in adulthood compared
to older cohorts (Vitale et al. 2009;
Williams et al. 2015). Such a cohort
effect may have led to an underestima-
tion of the upward trend of the growth
curve at age 15 and older. Fourth,
differences in the instruments used
(e.g. IOLMaster versus keratometry/
A-scan ultrasonography) for the

Table 2. Ocular biometry and correlation with SE in children and adults.

Children at 9 years of age (N = 2408) Adults ≥45 years of age (N = 2957)

Mean (SD; 90% range)

b (95% CI) of association

with SE Mean (SD, 90% range)

b (95% CI) of association

with SE

AL (mm)

All 23.10 (0.81; 21.79 to 24.42) �1.06 (�1.12 to �1.01) 23.67 (1.26; 21.82 to 25.90) �1.61 (�1.66 to �1.56)

Hyperopia 22.08 (0.69; 21.20 to 23.28) �0.82 (�1.02 to �0.62) 22.30 (0.90; 20.70 to 23.72) �1.04 (�1.16 to �0.91)

Emmetropia 23.08 (0.67; 22.02 to 24.23) �0.25 (�0.28 to �0.21) 23.30 (0.85; 21.95 to 24.71) �0.23 (�0.23 to �0.19)

Myopia 23.98 (0.83; 22.75 to 25.37) �0.98 (�1.15 to �0.82) 24.62 (1.19; 22.86 to 26.58) �1.24 (�1.34 to �1.16)

p-value <0.001 <0.001
CR (mm)

All 7.78 (0.25; 7.38 to 8.22) 0.70 (0.49 to 0.91) 7.74 (0.26; 7.33 to 8.18) 1.10 (0.74 to 1.46)

Hyperopia 7.80 (0.26; 7.38 to 8.26) 1.11 (0.52 to 1.69) 7.79 (0.25; 7.39 to 8.23) 0.13 (�0.47 to 0.74)

Emmetropia 7.79 (0.25; 7.39 to 8.22) 0.19 (0.01 to 0.29) 7.75 (0.26; 7.33 to 8.20) 0.12 (�0.13 to 0.24)

Myopia 7.73 (0.25; 7.38 to 8.26) 0.63 (�0.05 to 1.31) 7.72 (0.26; 7.30 to 8.15) 0.44 (�0.05 to 0.93)

p-value <0.001 0.008

AL/CR ratio

All 2.97 (0.09; 2.84 to 3.13) �11.56 (�11.89 to �11.23) 3.05 (1.51; 2.83 to 3.32) �14.43 (�14.73 to �14.13)

Hyperopia 2.83 (0.08; 2.40 to 3.01) �9.77 (�10.91 to �8.62) 2.86 (0.11; 2.69 to 3.02) �9.94 (�10.96 to �8.92)

Emmetropia 2.96 (0.06; 2.87 to 3.06) �4.43 (�4.76 to �4.11) 3.01 (0.08; 2.87 to 3.14) �3.35 (�3.73 to �2.97)

Myopia 3.10 (0.09; 2.97 to 3.25) �11.07 (�12.24 to �9.90) 3.19 (0.14; 3.00 to 3.42) �12.43 (�13.03 to �11.84)

p-value <0.001 <0.001
AL growth (mm/year)

All 0.21 (0.08; 0.11 to 0.37) �10.54 (�11.05 to �10.04) NA NA

Hyperopia 0.15 (0.06; 0.06 to 0.26) �5.01 (�7.31 to �2.71) NA NA

Emmetropia 0.19 (0.05; 0.12 to 0.29) �3.64 (�4.07 to �3.21) NA NA

Myopia 0.34 (0.11; 0.17 to 0.53) �5.86 (�7.30 to �4.44) NA NA

p-value <0.001 NA

CR growth (mm/year)

All 0.004 (0.01; �0.010 to 0.015) 1.46 (�3.60 to 6.52) NA NA

Hyperopia 0.003 (0.01; �0.010 to 0.015) 4.80 (�7.79 to 17.40) NA NA

Emmetropia 0.004 (0.01; �0.009 to 0.015) �0.42 (�2.69 to 1.85) NA NA

Myopia 0.003 (0.01; �0.013 to 0.015) �3.34 (�21.07 to 14.39) NA NA

p-value

0.37 NA

AL/CR change (units per year)

All 0.025 (0.011; 0.012 to 0.046) �72.73 (�76.55 to �68.92) NA NA

Hyperopia 0.018 (0.010; 0.005 to 0.034) �31.97 (�47.33 to �16.60) NA NA

Emmetropia 0.023 (0.008; 0.013 to 0.037) �22.82 (�25.84 to �19.80) NA NA

Myopia 0.043 (0.014; 0.021 to 0.068) �41.31 (�51.99 to �30.63) NA NA

p-value <0.001 NA

Except where indicated otherwise, all data are presented as the mean (SD). Sample size in the refractive error categories at 9-year-old: hyperopia,

N = 203; emmetropia, N = 1926; myopia, N = 279. Sample size in the refractive error categories in the adults: hyperopia, N = 352; emmetropia,

N = 1512; myopia N = 1093. In the regression models, SE was used as the dependent variable, and the ocular biometry measurements were used as

the independent variable. The models were adjusted for age, gender, ethnicity and height. p-values reflect the differences in ocular biometry

measurements between the refractive groups and were calculated using an ANOVA.

AL = axial length, CR = corneal radius of curvature, NA = not applicable (no follow-up data were available), SE = spherical equivalent.
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various cohorts may have generated a
systematic error in biometry measure-
ments. Although AL measurements do
not differ between instruments, CR
values can differ by up to 0.03 mm
between Topcon Keratometry and
IOLMaster (Buckhurst et al. 2009;
Jasvinder et al. 2011; Kolodziejczyk
et al. 2011; Huang et al. 2012; Wang
et al. 2012; Guler et al. 2016). Lastly,
the published studies predominantly

reported mean AL values, rather than
median AL values. However, this likely
had only had a slight effect on the
trajectories, as the difference mean and
median AL values were relatively low
(0.03–0.12 mm) in all of our study
cohorts.

Our findings are similar to other
cohort data in several respects. First,
we observed a gender difference in AL,
CR and AL/CR ratio, which is

consistent with previous observations
(Ojaimi et al. 2005; Rudnicka et al.
2010; Li et al. 2015a,b; P€arssinen &
Kauppinen 2016). In addition, we
found that AL increased more rapidly
in the myopic children than in the
children with hyperopia, a finding
consistent with the Northern Ireland
Childhood Errors of Refraction
(NICER) study (Breslin et al. 2013).
We also compared the AL growth rates

Fig. 1. Association between spherical equivalent (in dioptres) and axial length (AL) (in mm; left) and AL/corneal radius of curvature ratio (right) at

9 years of age. The mean and 95% CI were adjusted for age, gender and height.

Fig. 2. Growth chart depicting axial length (in mm) versus age for European study subjects, males (left) and females (right), with the risk of myopia in

adulthood. The myopia percentage represents the proportion of myopia in halfway above and below the percentage line.
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in our study with data obtained from
other geographic regions and found
several interesting ethnic and cohort
effects. For example, children in East
Asia generally have higher AL after the
age of 6 years compared to both Euro-
pean and Iranian children, reflecting
higher risk for developing myopia
(Ojaimi et al. 2005; Rudnicka et al.

2010; Hashemi et al. 2015; Li et al.
2015b). Compared to the 6-year-old
children in our Dutch study, 3-year-old
Asian children have shorter AL and
lower AL/CR ratios but similar CR
values (Foo et al. 2016). At 5 years of
age, children in Singapore had similar
AL values as the 6-year-old children in
our study (Li et al. 2011); however, at

8 years of age, the children in Singa-
pore had longer AL values and higher
AL/CR ratios than our 9-year-old
children. In contrast, compared with
our results, Northern European chil-
dren in a study conducted in 1971 had
lower AL values at all ages (Larsen
1971), which can be caused by a lower
myopia prevalence as well as a lower
body height, or a combination of these.

The prevalence of myopia among
European children has only been
examined in relatively few studies
(Laatikainen & Erkkil€a 1980; Manty-
jarvi 1983; P€arssinen 2012). The multi-
ethnic Child Heart and Health Study in
England (CHASE) study in the UK
reported a prevalence of 11.9%
(≤�0.50 D) at approximately 11 years
of age (Rudnicka et al. 2010), and the
NICER study in Northern Ireland
reported a prevalence of 17.7%
(≤�0.50 D) at approximately 13 years
of age (O’Donoghue et al. 2015). The
multi-ethnic Collaborative Longitudi-
nal Evaluation of Ethnicity and Refrac-
tive Error (CLEERE) study conducted
in the US found a prevalence of 11.6%
(≤�0.75 D in both meridians) in 10-
year-old (Zadnik et al. 2003), and the
Australian SydneyMyopia Study found
a prevalence of 11.9% (≤�0.50 D) in 13-
year-old (Ip et al. 2008). These values
are similar to the prevalence of 11.4%
that we found in our Dutch cohort of 9-

Fig. 3. The change in percentile score of axial length between 6 and 9 years of age (x-axis) and the

percentage of myopia at 9 years of age (y-axis).

Asia
Asia (Shandong)
United States of America
Europe/Australia
Norway
Vanuatu
Iran

AdultsAdults

Fig. 4. Axial length is plotted against age for male (left) and female (right) children from various geographic locations. For comparison, the data from

the present study are copied from Fig. 2 and are shown here in grey. Gender-stratified data were collected from Australia, Europe, the United States,

Iran, Vanuatu and Norway. The European and Australian children were clustered as being predominantly of European descent. Solid lines are single

studies, dashed line multiple studies from the same geographic regions and irregular dashed lines single studies published before 1990.
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year-old.We and others have found that
height is associated with AL, and this
needs to be taken into account when
interpreting the growth curves.

Interestingly, our analysis revealed a
large difference in eye growth between
children at risk for developing myopia
and children with low risk; specifically,
the rate of eye growth was twice as
high in the children who developed
myopia compared to the children who
remained hyperopic. Follow-up studies
are needed to determine whether chil-
dren born after 2010 have a steeper
growth curve than suggested by our
growth chart. In addition, the growth
curves can be improved further by
focussing on children who differ in
ages from those in our study, thereby
providing complementary data.

Conclusions

Our normative data regarding AL may
serve as a key instrument for monitor-
ing eye growth in children with pro-
gressive myopia in European and other
populations. Paediatric ophthalmolo-
gists, optometrists and orthoptists can
use these charts to determine whether a
child’s AL is above average for his/her
age, and this information can be used
to estimate the risk of developing high
myopia. In addition, children with a
rate of AL growth higher than expected
based on their percentile line can be
identified relatively early, allowing
these children to benefit from the
increasing number of therapeutic
options for preventing myopia.
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