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Abstract

We demonstrate that lottery markets can exhibit the “hot-hand” phenomenon, in

which past winning numbers tend to receive a greater share of the bets in future draws,

even though past and future events are independent. This finding is surprising, as works

by Clotfelter and Cook (1993) and Terrell (1994) have previously documented the presence

of an opposite effect—the “gambler’s fallacy”—in the U.S. lottery market. The current

literature also suggests that the gambler’s fallacy prevails when random numbers are

generated by mechanical devices, such as in lottery games (Ayton and Fisher 2004, Burns

and Corpus 2004, Caruso et al. 2010). We use two sets of naturally occurring data to

show that both the gambler’s fallacy and the hot-hand fallacy can exist in different types

of lottery games. We then run online experimental studies that mimic lottery games with

one, two, or three winning numbers. Our experimental results show that the number

of winning prizes impacts behavior. In particular, whereas a single-prize game leads to

a strong presence of the gambler’s fallacy, we observe a significant increase in hot-hand

behavior in multiple-prize games with two or three winning numbers.
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1 Introduction

Studies show that people rely on heuristics or simple mental models to interpret random events

(Oskarsson et al. 2009, Tversky and Kahneman 1974). Although such heuristics ensure fast

decisions that generate reasonably good outcomes under most circumstances, they can trigger

systematic deviations from certain notions of rationality. Among others, the gambler’s and

hot-hand fallacies are cognitive biases that have been commonly observed in the perception of

randomness and they lead us to misjudge probabilities.

The gambler’s fallacy is an erroneous belief in negative correlations of independent outcomes

generated by a random process. For example, when tossing a fair coin, people often mistakenly

believe that a tail is due after a sequence of heads. The gambler’s fallacy has long been observed

in the field, particularly in lottery games (e.g., Clotfelter and Cook 1993, Sundali and Croson

2006, Terrell 1994). The hot-hand fallacy—the counterpart to the gambler’s fallacy—is the

fallacious belief that a person who has experienced a success in one random event is more likely

to succeed in subsequent attempts. This fallacy was first described by Gilovich et al. (1985)

in their research on basketball games; they observed that both players and fans believe that a

player who has made a successful streak of shots will continue to score as if having “hot-hands.”

Later, Camerer (1989) showed that betting markets for basketball games also exhibit a small

hot-hand bias.

Although the two fallacies seem to contradict each other, the current literature shows that

they may coexist in the same individual and/or appear within the same setting. For example,

Croson and Sundali (2005) and Sundali and Croson (2006) found that casino players exhibited

the gambler’s fallacy when they bet on numbers, but the hot-hand fallacy regarding their own

luck. Guryan and Kearney (2008) examined the sales data for lottery outlets that had sold

winning jackpot tickets, and showed that those stores experienced a significant increase in

game-specific ticket sales, exhibiting a “lucky store” effect.

The current literature posits two main explanations for the coexistence of these seemingly

opposite phenomena. One line of research suggests that they both arise from the representative-

ness heuristics or belief in the law of small numbers (e.g., Asparouhova et al. 2009, Rabin 2002,

Rabin and Vayanos 2010, Tversky and Kahneman 1971). These works identify the importance

of streak length in influencing the perception of randomness: The gambler’s fallacy prevails in

short streaks, but as the streaks lengthen, beliefs in the hot-hand fallacy dominate. In the other

line of research, observations that the gambler’s fallacy is more prevalent in lottery games, and

the hot-hand fallacy more prevalent in games that require skill, are often attributed to the

source of the random number generator. That is, we tend to observe the gambler’s fallacy if

the random generator is a mechanical device and the hot-hand fallacy if it is a human being

(e.g., Ayton and Fisher 2004, Burns and Corpus 2004, Caruso et al. 2010).

This paper provides empirical evidence using two sets of naturally occurring data to demon-
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strate that both the gambler’s and the hot-hand fallacies can appear in lottery games. We

collected field data from two fixed-odds lottery games. The first is a 3-digit (3D) lottery game

played daily in China, the scheme of which resembles the Pick 3 lottery game reported by

Clotfelter and Cook (1993); the other game is a 4-digit (4D) lottery game played in Southeast

Asia that picks 23 winning numbers at a time, three times per week. Consistent with previous

studies, we observe the gambler’s fallacy in the 3D lottery game. In contrast to what the liter-

ature would predict, we were surprised to discover the hot-hand fallacy in the 4D game. Upon

reflection, long streaks are unlikely to be observed in lottery games, and, therefore, theories

building on streaks in sequences of random events cannot be applied directly to these envi-

ronments. In addition, because the winning numbers for both the 3D and the 4D games are

machine-generated, theories that focus on the source of randomness would predict the gambler’s

fallacy in both games.

To bridge this gap, our paper proposes an alternative explanation for our field observations:

We suggest that the lottery game design can play a role in shaping the perception of randomness.

Specifically, we show that the number of winning prizes has an impact on the occurrence of the

two fallacies: Single-prize games can lead to the gambler’s fallacy while multiple-prize games,

under appropriate conditions, may result in the hot-hand fallacy. In addition to the number

of winning prizes, the two lottery games differ in other aspects, such as frequency of draw and

sample population. We, therefore, test our conjecture in an experimental study that allows us

to both isolate the effect of the number of prizes and to control for all other differences.

In the experiment, participants are asked to guess the outcome of simulated lottery games

that only differ with respect to the number of prizes. This design contributes to the experimental

literature on the gambler’s fallacy, which mainly focuses on binary choice sets and a single

prize. We expand the choice set beyond the binary case and examine how behavior changes

when multiple prizes are present. Our main results show that, whereas the gambler’s fallacy

still prevails in the single-prize game, the fallacy immediately disappears when the number of

prizes increases to two or three. At the individual level, we observe more hot-hand behavior

with multiple prizes than with a single prize. We infer from our observations that the game

design, in the form of the number of prizes drawn, can systematically influence a player’s betting

behavior.

We further analyze our experimental data to understand why multiple-prize games lead to

more hot-hand behavior. We hypothesize that different game experiences across single and

multiple-prize games may play an important role. Specifically, single and multiple-prize games

differ with respect to how frequently past winning numbers re-occur. In our experimental

data, strong gambler’s fallacy effects emerge in the first few rounds across all lottery games,

suggesting that participants start out with a predisposition to avoid past winning numbers. This

observation is consistent with cognitive evidence on the prevalence of the gambler’s fallacy,
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Table 1: The probability of winning and seeing at least one repetition in subsequent draws

3D game 4D game
1,000 numbers 10,000 numbers

1 winning number 23 winning numbers

Probability of winning 1
1000

= 0.001 1− (1− 1
10000

)23 ≈ 0.0023

Probability of having at least one
repetition in two subsequent draws 1

1000
= 0.001 1− (1− 0.0023)23 ≈ 0.05

which is linked to the belief in negative autocorrelation (see Rabin (2002), Section 2, for a

detailed literature review). Repetitions of winning numbers in two consecutive draws are rather

rare events in our single-prize setup (10% chance of repetition). The subjective game experience

is therefore consistent with a belief in negative autocorrelation as contradicting evidence is

rarely experienced. However, the probability of observing the repetitions of winning numbers

in our multi-prize setups is much higher (37.7% in the two-prize game and 70.8% in the three-

prize game) and participants in multi-prize games frequently experience past winning numbers

being re-drawn. We argue that, when participants are eventually confronted with frequent

repetitions, they can abandon their initial belief in negative autocorrelation (gambler’s fallacy),

and adopt a new belief in positive autocorrelation (hot-hand fallacy), which is consistent with

their subjective game experience. This interpretation is compatible with our observation that

the gambler’s fallacy quickly disappears after playing several rounds of multiple-prize games,

whereas it persists in the single-prize game.

This interpretation can also explain the differences in our field data’s behavior between the

3D and the 4D lottery games. The probabilities are calculated for two different games—one

with 1 in 1,000 numbers winning (the 3D numbers game), and another with 23 in 10,000 num-

bers winning (the 4D numbers game). The second game, with 23 winners, clearly has a higher

chance of seeing a winning number again in the next draw. If players observe that a winning

number (or some related numbers) has a higher chance of appearing again, we ask: How will

such observations affect their choice of lottery numbers to bet on? Our empirical data suggest

that the gambler’s fallacy prevails in the first case (1 prize in 1,000 numbers), whereas the

hot-hand fallacy prevails in the latter (23 prizes in 10,000 numbers).

In summary, we provide empirical and experimental evidence that behavior can be altered

through a careful lottery-system design. We believe these results can have important practical

implications for risk management and decision making under uncertainty because they suggest

that the perception of randomness can be manipulated, and hence, behavior can be nudged with

the appropriate design. For instance, several countries have attempted to influence commuters’

behavior by offering incentive schemes in which commuters earn credit for each journey taken

(with triple credit for off-peak journeys) and to enter in weekly cash lotteries. The success of
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these schemes hinges on an insight from behavioral economics: On average, people are risk-

seeking when the stakes are small. Hence, a 1-in-1000 chance to win $100 is more attractive

than a cash award of $0.10. For such low probability events, our results suggest that we could

do better if we can induce the belief that certain choices made by players are more likely to

win. For example, this could be done by designing lottery games that make the hot-hand

fallacy dominate, and our results suggest that increasing the number of prizes is enough to

make what is actually a 1-in-1,000 chance of winning appear to be a much more attractive bet

to commuters.

2 Literature Review

Both the gambler’s and the hot-hand fallacies have long been observed in laboratory experi-

ments and in the field. Among many others, Clotfelter and Cook (1993) observed that lottery

players in 3D numbers games in the United States are subject to the gambler’s fallacy. Figure 1

shows the percentiles of betting ratios (betting volume index over average index on a particular

day) on different days after the winning numbers have been drawn. Once a 3D number is drawn

as the winner, subsequent betting ratios drop immediately and then gradually pick up. The

immediate initial drop provides strong evidence of the gambler’s fallacy at work. In a differ-

ent context, Camerer (1989) showed that betting markets for basketball games exhibit a small

hot-hand bias. Similarly, when examining a set of panel data, Green and Zwiebel (2017) found

strong hot-hand fallacy effects among baseball players in Major League Baseball. Suetens et al.

(2016) found that people playing Lotto games usually avoid numbers that have recently been

drawn, exhibiting the gambler’s fallacy, but tend to bet more on winning numbers in streaks

(i.e., those that have been drawn several times in a row), suggesting the presence of the hot-

hand fallacy. Chen et al. (2016) examined independent data sets from three empirical settings

involving high-stake, sequential decisions: asylum judges, loan officers, and baseball umpires.

They found evidence for negatively correlated decisions, consistent with the gambler’s fallacy.

Importantly, both the gambler’s and the hot-hand fallacies may coexist in the same individ-

ual and appear within the same setting. One line of research posits that they both arise from

a representativeness heuristic or belief in the law of small numbers. Tversky and Kahneman

(1971) coined this term and examined its connection with the gambler’s fallacy. Rabin (2002)

and Rabin and Vayanos (2010) built theoretical models to model the law of small numbers that

directly leads to the gambler’s fallacy. Asparouhova et al. (2009) ran a set of lab experiments

on binary choice games, and their results support the work of Rabin (2002).

These studies built the decision biases (gambler’s fallacy) directly into their models and

showed that other decision biases may emerge as the streaks of winning lengthen. However,

as streaks are unlikely in lottery games, these models cannot be directly applied in these
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Figure 1: Betting Ratios on Previous Winning Numbers in 3-Digit Numbers Games (Clotfelter

and Cook 1993)

environments. Our paper instead examines the role of lottery game design in shaping the

perception of randomness. We show that, due to game design, either the gambler’s or the hot-

hand fallacy can arise under appropriate conditions, and we can thus manipulate the behaviors

through careful system design.

A second stream of research argues that the type of random-event generator—whether an

inanimate device or a human being—determines the occurrence of the gambler’s or hot-hand

fallacy (Ayton and Fisher 2004, Burns and Corpus 2004). Specifically, if the random process

is believed to be generated by a mechanical device, people expect negative recency; if a human

being generates the sequences, however, people expect positive recency. For example, the

experimental study by Caruso et al. (2010) demonstrated that human subjects tend to predict

the continuation of a streak of outcomes when the agents that generate it are perceived to

be intentional. In contrast, when generated by a mechanical device (as in lottery games),

people believe the streak will end; that is, the gambler’s fallacy dominates. These results are

reinforced by field observations made in casinos and lottery stores (Sundali and Croson 2006,

Guryan and Kearney 2008). Green et al. (2010) developed several ingenious arguments to

demonstrate that experimental cues can alter how subjects learn about the generating process

(using optimal Bayesian updating with erroneous beliefs) and thus substantially affect subjects’

choices, without altering the underlying outcome probabilities. Our work complements these

explanations; our empirical evidence shows that either the gambler’s or the hot-hand fallacy

can occur even if the random process is generated by mechanical devices.

In addition, further evidence of cognitive biases also suggests that the gambler’s fallacy
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occurs in situations in which information is experienced sequentially over time (Baron and

Leider 2010). For instance, Militana et al. (2010) found that the bias was stronger when

research subjects had longer time intervals between choices. In contrast, the gambler’s fallacy

decreased when people’s inaccurate assessments of the probability of an outcome imposed costs

(Terrell 1994).

Navarrete and Santamari (2012) showed, in two lab experiments, that the incidence of the

gambler’s fallacy was reduced when the size of the choice set was increased. Our paper has a dif-

ferent focus: We investigate how the number of prizes—the size of the outcome set—influences

player’s betting behavior while fixing the size of the choice set. Our results, consequently, are

different: We observe more hot-hand behavior in multiple-prize games compared to single-prize

games.

3 Field Evidence

In this section, we use field data from two fixed-odds lottery games to demonstrate that both

the gambler’s fallacy and the hot-hand fallacy can exist in lottery games. The first is a 3-digit

(3D) lottery game played in China, the scheme of which resembles the “Pick 3” lottery game

reported in Clotfelter and Cook (1993). The lottery draws a single prize-winning number every

day, seven days a week. The other game, a 4-digit (4D) lottery game played in Southeast Asia,

picks 23 prize-winning numbers at a time, three times a week. In what follows, we describe the

two games in detail and provide evidence that the gambler’s fallacy prevails in the 3D game

while the hot-hand fallacy is the dominant behavior in the 4D game.1

3.1 3D Numbers Game

In the 3D numbers game, a single winning number from 000 to 999 is randomly drawn with

equal probability at 8:30 p.m. each day. Lottery tickets for the day’s draw are sold on the same

day until 8:00 p.m. Each wager costs 2 RMB. There are three types of bets: Straight, Box 3,

and Box 6. In the Straight bet, players bet on a specific 3D number and receive 1,000 RMB per

wager if the number wins. The Box 3 bet allows players to make one wager on the permutation

of any 3D number with two identical digits, and in the Box 6 bet, on the permutation of any

3D number with three unique digits. For example, a player who places a 2 RMB wager on 223

and chooses the Box 3 bet type actually bets 2/3 RMB on each of the 3 numbers 223, 322, and

232. The payout per wager2 and odds of winning are shown in Table 2.

1We ran statistical tests for each lottery game and found no evidence of lag-one autocorrelation among the

winning numbers. The details are in Appendix A.
2There are minor payout variations by areas: In Beijing, the game pays 980 per wager for the Straight bet,

and in Shanghai and Tibet, the payout is 333 for the Box 3 bet and 166 for the Box 6 bet.
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Table 2: Prize Structure and Winning Odds in 3D Numbers Game

Bet Type Match to Win Payout per Wager Odds

Straight Match the exact order 1,000 1 in 1,000

Box 3 Match any order (2 identical digits) 320 1 in 333

Box 6 Match any order (3 unique digits) 160 1 in 167

Testing for the presence of the gambler’s fallacy usually requires a full dataset that includes

the sales of every number in every draw. Such a dataset is not publicly available for the

lottery of interest. Nevertheless, we were able to obtain a rich enough dataset from the official

website of the game operator3, which consists of (i) the winning number drawn; (ii) the number

of winning wagers (of the three types), and (iii) total sales for each draw. We extract this

information from 4,466 draws on a daily basis over a 150-month period—from May 8, 2005, to

October 30, 2017.

In this dataset, 10 numbers were never drawn as prize winners, 59 numbers appeared only

once, and 931 numbers were drawn at least twice. We define our dependent variable, “payout

rate,” as the amount paid to bettors relative to total sales for a given draw. The higher the

payout rate of a winning number the more popular this number was among bettors relative to

the market size of the draw. The overall mean payout rate is 49.2% and the median is 42.7%.

The lowest payout rate of 7.3% occurred on September 18, 2010, when “945” was drawn as the

winning number; the highest payout rate was 530.3%, which occurred on July 18, 2005, when

“353 ” was drawn as the winning number. A Welch’s two sample t-test does not detect any

significant difference (p-value = 0.329) in mean payout rates between numbers that have been

drawn only once (with mean m = 0.526) and numbers that have been drawn at least twice

(m = 0.488).

We seek to estimate the change in subsequent sales of a 3D number after it has been drawn

as the winning number. As we only have sales information for winning numbers, we construct a

subsample of 3,476 draws in which the winning numbers have been drawn previously (repeated)

at least once within the period the full dataset covers. To measure the influence of past wins

on future ticket sales, we define the “Delay” of a winning number as the number of draws that

have elapsed since last time it was drawn. We then bin the draws according to the Delay, with

intervals of a week. Each bin contains around 30 data points (draws). Figure 2a shows the

25th percentile, the median, and the 75th percentile of the payout rates in each bin for the first

eight weeks. The first data point represents the same statistics for the full dataset. We observe

a clear pattern of declining payout rates with a one-week Delay, which then eventually bounce

back to their initial levels. Bettors display a tendency to avoid past winning numbers with

3http://www.zhcw.com/3d/kaijiangshuju/index.shtml.
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short delays, exhibiting strong evidence for the gambler’s fallacy. A more detailed account on

the data underlying Figure 2a is provided in Table 9 in Appendix B.

Our latter interpretation of the data is corroborated by a series of paired t-tests. For each

number, we calculate its average payout rate for all draws that repeat within x weeks (early

repetition) and that repeat in more than x weeks (late repetition). We compare average payout

rates between “early” and “late” repetitions at the intra-number level. We then test the null

hypothesis of equal payout rates between early and late repetitions for varying values of x,

with x = 3, 5, 7, 9, and 11. All tests unanimously show that the mean payout rate for early

repetitions is significantly lower than that for late repetitions, and it is worth noting that all

p-values are in the order of magnitude of 10−5 (see detailed results in Table 10 in Appendix B).

However, one drawback of our approach is that we must exclude numbers that lack either early

or late repetition. As a next step, we will demonstrate the existence of the gambler’s fallacy in

3D games via a regression analysis that takes into account a broader set of winning numbers.

Figure 2: Betting on Previous Winning Numbers in 3D and 4D

All Data [ 1, 7] [8, 14] [15, 21] [22, 28] [29, 35] [36, 42] [43, 49] [50, 56]
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Figure 2a: 3D Game Figure 2b: 4D Game

For the regression analysis, we again consider all numbers that were drawn at least twice, this

time including the first draw so that we can estimate the payout rates at 0 for the horizontal axis.

We use the demeaned payout rate, denoted as DR, as the dependent variable. To obtain the

demeaned payout rates, we first calculate the average payout rate for each number in all draws

of the sample, then subtract this number-specific average from the observed payout rate of the

winning number in each draw. Demeaning mimics a number fixed-effects approach, and allows

us to control for number-specific effects (e.g., superstitions, lucky numbers, etc.).4 For each

4Since winning numbers are drawn identically and independently, demeaning and a fixed-effects approach

should theoretically yield the same estimated effect of past wins on future betting behavior. We decided not
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Table 3: OLS Estimated Regression Coefficients on Payout Ratio in 3D & 4D Numbers Games

3D 4D

log10(T ) -1.817∗∗∗ 0.233∗∗∗

(0.375) (0.078)

( log10(T ))2 3.683∗∗∗ -0.286∗∗∗

(0.954) (0.100)

( log10(T ))3 -2.969∗∗∗ 0.086∗∗∗

(0.942) (0.032)

( log10(T ))4 1.181∗∗∗

(0.446)

( log10(T ))5 -0.231∗∗

(0.101)

( log10(T ))6 0.018∗∗

(0.009)

Intercept 0.014∗ -0.005
(0.009) (0.006)

Observations 4,407 1,103
F-value 7.03 3.06
degrees of freedom F-value (6, 4400) (3, 1099)
Robust std. err. Y Y

Notes: Standard errors are robust and provided in parentheses.

Significance Coding: *** - 1%, ** - 5%, * - 10%.

number in the sample, we calculate the average payout ratio and subtract this number-specific

average from the actual observed payout ratios for this number. By construction, the mean

of the demeaned payout ratio is zero. We use the Delay (denoted as T ) as the independent

variable. We characterize the relationship between DR and log10(T + 1) as a higher-degree

polynomial. Polynomials are functionally flexible, and their curvatures can capture the type of

effects we were expecting to observe in the data: a diminishing effect over time of past wins on

current payout rates. We use an ordinary least squares approach with robust standard errors

to estimate the effect of log10(T + 1) on DR. We start with the quadratic function and add

successively higher-degree polynomial terms, as long as they turn out to be significant. Our

final model for the 3D game is a 6th degree polynomial, and takes the following form:

DRi = β0 +
6∑

k=1

βk × (log10(Ti + 1))k + αi, (1)

in which DRi is the demeaned payout ratio of the i − th draw in the subsample; β0 is the

fixed intercept, βk is the coefficient of the kth order polynomial function, and αi ∼ N(0, σ2
α)

to follow the fixed effects approach, however, as this would have required us to estimate an additional 990

parameters in a model with 4,407 total observations.
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represents unobserved random effects. Estimated model coefficients are shown in Table 3. All

estimated parameters are significant with small p-values.

To visualize our estimation results, we plot the predicted values and their 95% confidence

interval in Figure 3a. We observe a strong gambler’s fallacy effect, in which the demeaned

payout rate significantly drops after a winning draw, gradually picks up, and goes back to its

intial level after around 60 draws. At a delay of one day, payout rates are reduced by almost 30

percentage points. Even at a delay of 10 days, payout rates are down by 10 percentage points.

Figure 3: Estimated Average Payout Rate and 95% CI of Previous Winning Numbers in 3D

and 4D after a Winning Draw
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Figure 3a: 3D Game Figure 3b: 4D Game

3.2 4D Numbers Game

In the 4D lottery game, players bet on numbers 0 to 9,999. In contrast to the 3D game, in

which sales only occur on the day of the draw, 4D sales start one week before each draw and

close at 6 p.m. on the day of the draw. There are three draws every week, on Wednesday,

Saturday, and Sunday. The minimum cost of a bet is one local currency. At each draw, 23

numbers are picked as winning numbers, randomly generated with replacement. There are five

prize categories. The first, second, and third prize categories correspond to the first, second,

and third winning number drawn, and offer a per-wager payout of 2,000, 1,000, and 500 local

currency, respectively. The next ten numbers belong to the so-called “Starters” category, with

a payout of 250 per wager. Lastly, the remaining 10 numbers belong to the “Consolation”

category, with a payout of 60 per wager. Table 4 shows the payout for each prize category and

its winning odds.
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Table 4: Prize Table and Winning Odds in 4D Numbers Games

Prize Category Payout per Wager Odds

1st Prize 2,000 1 in 10,000

2nd Prize 1,000 1 in 10,000

3rd Prize 500 1 in 10,000

10 Starter 250 1 in 1,000

10 Consolation 60 1 in 1,000

We investigate the effect of a winning draw on subsequent betting behavior for the winning

numbers. We aim to demonstrate that a simple change in the game design—from drawing one

winning ball in 3D to drawing 23 winning balls in 4D—substantially impacts betting behavior.

Whereas we have established the gambler’s fallacy as the prevalent behavior in the 3D game,

we will now establish that hot-hand behavior is prevalent in the 4D game.

We obtained data from a game operator in the Southeast Asia region, with information on

156 draws over a 1-year period. The dataset consists of sales volume for each of the 10,000

4D numbers and the 23 winning numbers in each draw. Due to the presence of different prize

categories in the 4D numbers game, we use the betting proportion—defined as the sales volume

on a number divided by total sales in a particular draw—as our measure for the popularity

of a number.5 We examine all winning numbers from draw 1 to draw 100 and calculate their

betting proportions, respectively, on the day they are drawn and the subsequent 56 draws. Sales

increase by about 40% immediately following a winning draw (cf. Figure 2b), suggesting that

the hot-hand fallacy prevails at the aggregate level. Next, we will demonstrate the existence of

the hot-hand fallacy in 4D via rigorous regression analysis.

To facilitate a fair comparison with the 3D game, we also construct a subsample of 1,103

draws, consisting of winning numbers that have been drawn at least twice in our dataset. We

denote DR as the demeaned value of the betting proportion and T as the number of draws

elapsed since this winning number last won. We characterize the relationship between DR

and log10(T + 1) as a higher-degree polynomial. The final relationship after adding significant

higher-order polynomial terms is a 3rd-order polynomial, and takes the following form:

DRi = β0 +
3∑

k=1

βk × (log10(Ti + 1))k + αi, (2)

Corresponding regression results are reported in Table 3. All polynomials coefficients are

significant, and the signs are opposite to those of corresponding results in 3D. To visualize our

5The change in the dependent variable from payout rates in 3D to betting proportions in 4D is innocuous.

The payout rate in the 3D game is a simple linear function of betting proportion. All of our 3D results hold

true if we replace payout rates with betting proportions.
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estimated effects, we plot the predicted values and their 95% confidence interval in Figure 3b.

We observe an increase in the demeaned betting proportion for short Delays, which is a clear

manifestation of bettors actively seeking past winning numbers. This effect gradually decreases

as the Delay becomes longer, with betting proportions reaching their initial levels at around 25

winning draws. This result suggests the existence of the hot-hand fallacy in the 4D numbers

games.

In summary, we observe that lottery players’ betting behaviors are significantly affected by

the gambler’s fallacy in the 3D game and the hot-hand fallacy in the 4D game. We conjec-

ture that a plausible explanation is that the game design—in particular, the size of outcome

sets—leads to the different observations in the two fixed-odds lottery games. In the 4D game

there are 23 winning numbers in each draw; repetition of winning numbers across draws there-

fore occurs more frequently and similarities across draws can be easily observed. This observable

repetition fosters the bettors’ belief that the same or similar numbers have a higher chance of

being drawn again, leading them to select past winning numbers. On the other hand, con-

secutive wins or extremely short delays in repetitions are rather rare events in the 3D game.

From the bettors’ perspective, it is therefore the norm not to observe recurring past winning

numbers. This, in turn, can lead bettors to falsely infer that past wins have a lower chance of

being drawn again, which motivates them to avoid past winning numbers.

Nevertheless, we cannot rule out other factors that might be the driving force behind our

observations. For example, cultural differences might exist between the two populations. The

two games also differ in the number of winning prizes, number of digits in the outcome set, and

the frequency with which draws are staged. Due to data limitations, we cannot exclude the

possibility that the observed differences between the games are the result of these structural

differences. We therefore decided to examine how the game design influences betting behavior

via a controlled experimental study. Our goal is to make the causal statement that a ceteris

paribus change in the size of the winning numbers set increases bettors’ tendency to seek

past winning numbers, thereby confirming our conjecture about the mechanism underlying our

empirical observations. In the following section, we report on the details of our experiment.

4 Experimental Studies

Our experimental study investigates how game design—in particular, the size of the set of

winning numbers—affects gambler’s and hot-hand fallacy behaviors via a simulated lottery

game. We have developed an online simulated lottery game that allows us to induce ceteris

paribus changes in the number of winning prizes drawn. This environment presents several

advantages for investigating the mechanisms of human probabilistic predictions. The game
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is widespread in the population, requires little skill, and each draw from the lottery machine

“follows a known, truly random process with a fixed probability for each number” (Suetens et

al. 2016). In our game, a computer randomly draws winning number(s) from an urn containing

10 balls numbered from 0 to 9. Each number is represented by exactly one ball in the urn,

and each ball has an equal chance of being drawn.6 Following Harrison and List (2004), our

experiment can be classified as a framed field experiment. We refer the reader to Al-Ubaydli and

List (2015) for a discussion of various parameters estimated by different types of experiments.

4.1 Method

Participants

We recruited 210 participants via the crowd-sourcing platform Prolific for our online exper-

iment.7 Participants were screened based on English as first language to avoid any linguistic

ambiguity for the instructional aspects of the experiment. Our participants were either U.K.-

or U.S.-based, comprising 89% and 8% of the sample, respectively; 58.6% were female, 12%

were students, and the average age was 36.5 years. Self-reported median household income was

between $35,000 and $49,999, and 66% of the participants reported that they played lottery or

similar betting games less than once a month, with 35% stating that they never played such

games at all. On average, it took participants eight minutes to complete the experiment. They

received a flat completion fee of £0.80 (approx. $1.05). The best-guessing participant within

a treatment was awarded a bonus payment of £15 ($19.80). The expected remuneration per

participant amounted to 1.5 times the recommended remuneration set by Prolific.

Design, apparatus, and procedure

Participants received an invitation link to the simulated lottery game via Prolifc. The

lottery game itself was administered via Qualtrics, an online survey tool that recorded partic-

ipants’ self-paced responses. Screenshots of the decision screens as well as transcripts of the

online instructions are provided in Appendix C. In total, there were 45 rounds with one draw of

winning number(s) in each round (multiple winning numbers were drawn in one draw without

replacement). The first five rounds constituted test rounds and gave participants the opportu-

nity to familiarize themselves with the presentation style. In each of the remaining 40 rounds,

6Our choice for 10 balls is motivated by practical concerns. Our aim is to create an environment in which

winning is less likely than losing, but still occurs frequently enough to make incentives salient. At the same time,

we want enough flexibility to create different experiences with regard to how frequently past winning number

reoccur. Ten has the additional advantage that it allows us to create a natural and homogeneous outcome set

with regard to the number of digits present.
7Prolific is a U.K.-based crowd-sourcing platform that connects researchers with participants for their studies.

In contrast to alternative platforms, such as Amazon’s MTurk, Prolific is specifically geared toward the needs

of researchers; participating in research studies is the only activity in which platform members can engage. The

platform has been shown to produce reliable, high-quality data (cf. Peer et al. 2017).
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participants were asked to guess one number from 0 to 9. If the guess matched either of the

winning numbers drawn, the participant earned one point. Points were accumulated over the

40 guessing rounds, and the final score determined the winner of the prize. We mimicked the

design of lottery websites as observed in 3D and 4D games. In particular, participants always

saw the winning number(s) from the last round on screen and they could click a button to

reveal the results of the five most recent rounds.

Participants were randomly assigned to three experimental conditions, which differed only

with respect to how many winning numbers were drawn in each round. In treatment T = 1, 75

participants played the lottery game with one winning number drawn. In treatments T = 2 and

T = 3, 63 and 72 participants played lottery games with two and three winning numbers drawn

without replacement, respectively8. We implemented a stratified randomization procedure,

which explains the minimal differences in terms of number of participants across games.

4.2 Results

For our analysis of the 40 guessing rounds, we follow the same empirical strategy used by Suetens

et al. (2016) and Wang et al. (2016), who analyze naturally occurring data with the same

information structure as ours. We run probit regressions to estimate the effect of past winning

draws on current betting behavior. Independent observations are taken at the participant-

period-number level. Our dependent variable takes the value one if a participant bets in a

given period on a given number, and zero otherwise. Independent variables include a dummy

for the most recent history (period t − 1) and a count variable for number of wins in earlier

histories (periods t − 5 to t − 2). For brevity of exposition, we only report estimation results

for these two variables. However, all estimated models include fixed effects (FE) at the round

and number level.

We also control for subject-specific “hotness” of lucky numbers. For this, we include a

variable that measures the share of bets a number has received in the past. To control for other

subject-specific effects, we either include subject FE or a set of demographic controls in terms

of gender, age, income, and gambling habits. Standard errors are clustered at the participant

level. Table 5 reports the average marginal effects of our regressions.

We will focus the discussion of our results on the model with subject FE, since differences

across estimation models are minimal. We find that, if a number has won the most recent draw

(period t − 1), the probability of participants’ betting on this particular number is reduced

by 4.3 percentage points in T = 1. This effect lasts beyond the most recent draw. For every

win in the periods t − 2 to t − 5, the betting proportion on that number is reduced by 2.1

8Although the winning numbers in the 4D game are drawn with replacement, we do not observe any repetition

in the winning numbers in our dataset. To avoid confusion among participants, we draw the winning numbers

without replacement in the experiment, which was common knowledge.
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Table 5: Average Marginal Effects of Probit Regression on Historical Wins (Aggregate Level)

T=1 T=2 T=3

Won period t-1=1 -0.043∗∗∗ -0.044∗∗∗ 0.004 0.008 -0.011 -0.009
(0.007) (0.006) (0.014) (0.014) (0.009) (0.009)

Wins in t-2 to t-5 -0.021∗∗∗ -0.017∗∗∗ -0.002 0.002 -0.005 -0.003
(0.005) (0.005) (0.004) (0.003) (0.003) (0.003)

Number of participants 75 75 63 63 72 72
Subject FE Y N Y N Y N
Period FE Y Y Y Y Y Y
Number FE Y Y Y Y Y Y
Demographic controls N Y N Y N Y
Clustered std. err. Y Y Y Y Y Y
Obs 30000 30000 25200 25200 28800 28800

Notes: Cluster robust standard errors are provided in parentheses. Significance Coding: *** -

1%, ** - 5%, * - 10%.

percentage points in T = 1. On the aggregate level, we observe a strong gambler’s fallacy

effect in T = 1. However, aggregate betting behavior is significantly impacted by a change in

the number of winning balls drawn. In treatments T = 2 and T = 3, we do not detect any

significant manifestation of the gambler’s fallacy in aggregate betting behavior.

Next, we analyze participants’ betting behavior conditional on streak length. When a

number is drawn as a winner in consecutive rounds, we say that there is a “streak” of that

winning number. The streak length is then defined as the number of consecutive winning

rounds. For example, a streak length of one means that a number won in the most recent

round (t − 1) but not in (t − 2), whereas a streak length of four means that a number won

in round (t − 4) to (t − 1), but not in (t − 5). As discussed by Rabin (2002) and Rabin

and Vayanos (2010), streak length plays a prominent role in the misperceptions of positive or

negative autocorrelation in i.i.d. processes. We run probit regressions to estimate the impact

of streak length on the betting proportion of a number, following the same empirical strategy

we used in Table 5. Table 6 reports the corresponding average marginal effects. The absolute

frequencies of streak-length occurrences per participant are underlined and provided above the

coefficient estimates (e.g. 36 streaks of length one in T = 1, 28 streaks of length two in T = 3).

In T = 1, we find the gambler’s fallacy to emerge in short streaks (with streak lengths one and

two), but then betting behavior switches and turns into hot-hand fallacy behavior when the

streak length is four. It is worth noting that this pattern of behavior is compatible with the

theoretical predictions derived by Asparouhova et al. (2009). In T = 2, we find only hot-hand

behavior with longer streaks. This behavior has already emerged when streak length is three

and persists when streak length is four. In T = 3, there is no significant impact of streak length

on betting behavior.
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Table 6: Average Marginal Effects of Probit Regression on Streak Length (Aggregate Level)

T=1 T=2 T=3

Length streak=1 36 66 85
-0.051∗∗∗ -0.053∗∗∗ -0.004 0.000 -0.014 -0.012
(0.007) (0.006) (0.013) (0.013) (0.009) (0.009)

Length streak=2 2 10 28
-0.054∗∗∗ -0.044∗∗ 0.013 0.018 -0.002 -0.000
(0.018) (0.019) (0.020) (0.021) (0.012) (0.012)

Length streak=3 1 3 5
0.035 0.051 0.094∗∗ 0.100∗∗∗ -0.004 -0.005

(0.047) (0.047) (0.038) (0.038) (0.017) (0.016)

Length streak=4 1 1 2
0.166∗∗ 0.182∗∗∗ 0.169∗∗ 0.153∗∗ 0.022 0.013
(0.065) (0.064) (0.070) (0.065) (0.029) (0.028)

Number of participants 75 75 63 63 72 72
Subject FE Y N Y N Y N
Period FE Y Y Y Y Y Y
Number FE Y Y Y Y Y Y
Demographic controls N Y N Y N Y
Clustered st. err. Y Y Y Y Y Y
Obs 30000 30000 25200 25200 28800 28800

Notes: Cluster robust standard errors are provided in parentheses. Significance Coding: *** -

1%, ** - 5%, * - 10%.
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So far, our analysis has revealed a strong tendency in aggregate betting behavior to avoid

past winning numbers in T = 1, which then disappears in T = 2 and T = 3. To demonstrate

that this pattern is the result of an increased inclination to bet on past winning numbers in

T = 2 and T = 3, we next focus our analysis on individual-level data.

As a benchmark behavior, we consider i.i.d. betting strategies that conceptualize the ab-

sence of any preference for or against previous winning number(s). We then assess whether or

not observed behavior deviates from this benchmark behavior. Observe that, under any i.i.d.

strategy, the total count of bets on a previous winning number (i.e. to continue an on-going

streak), denoted by x, follows a binomial distribution x ∼ B(n = 40, p = i/10) in treatment

T = i, with i = 1, 2, 3. Figure 4 depicts these theoretically expected density functions. We

then bin participants based on the number of times they bet on a previous winning number and

plot Gaussian kernel density estimates of these bin counts next to the i.i.d. densities in Figure

4. When compared to T = 2 and T = 3, the inclination to follow streaks in T = 1 is skewed to

the left relative to i.i.d. strategies. At the same time, the right-hand tails of the densities for

treatments T = 2 and T = 3 are wider than their i.i.d. expectations, indicating an increased

tendency to bet on previous winning numbers.

Figure 4: The Gambler’s and Hot-Hand Fallacies at the Individual Level
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Figure 4a: Individual Behavior with T = 1
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Figure 4b: Individual Behavior with T = 2 Figure 4c: Individual Behavior with T = 3

We can now classify participants as seeking past numbers if they disproportionately continue

streaks relative to the i.i.d. benchmark. Let nj denote the observed total count of bets on
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previous winning numbers by participant j. We consider two probability thresholds. Under the

10% probability threshold, participant j is classified as a hot-hand player if Pr[x ≥ nj] < 0.1,

i.e. if the probability of observing nj or more bets on previous winning numbers under an i.i.d.

strategy is smaller than 10%. Analogously, we consider a 5% probability threshold and classify

j as a hot-hand player if Pr[x ≥ nj] < 0.05. Under a threshold of 10%, we observe 5.3%,

20.6%, and 16.7% hot-hand players in treatment T = 1, T = 2, and T = 3, respectively. When

measured at a threshold of 5%, there are 0%, 17.5%, and 12.5% hot-hand players in the three

treatments, respectively. Table 7 reports the corresponding p-values of two-sided z-tests of

proportions, using the correction procedure for family-wise error rates introduced in List et al.

(2016). We find evidence that hot-hand behavior significantly increases from T = 1 to T = 2

and T = 3, but no evidence for differences in hot-hand behavior between T = 2 and T = 3.9

Table 7: p-values of Two-Sided Z-Tests of Proportions

Threshold at 10% Threshold at 5%

vs T = 2 T = 3 vs T = 2 T = 3

T = 1 0.008 0.033 T = 1 0.004 0.011

T = 2 0.568 T = 2 0.433

We conclude this subsection with an estimation of how likely it is that our novel empirical

findings are recovering true associations. We hereby follow the formal framework developed

in Maniadis et al. (2014). Specifically, we compute the Post-Study Probability (PSP) of a

declared research finding. The PSP is the conditional probability that a significant finding is

true. The probability itself depends on several parameters. We conventionally set the level

significance at 0.05 and assume that we are the only research team that currently investigates

our hypothesis. Furthermore, we calculate the post-hoc achieved power of our significant z-tests

of proportions. The final parameter—the prior fraction of true scientific association examined

in a research field—is unknown. We therefore consider various priors that represent meaningful

values related to novel findings. Table 8 presents the resulting PSPs. For small and modest

priors, our obtained PSPs are above 50% (marked in bold). We therefore cautiously conclude

that our main findings are likely to represent true associations.

9As an additional robustness check, we ran one-sided, pairwise exact Fisher-Boschloo tests. Even after ac-

counting for family-wise error rates via Holm-Bonferroni, our conclusions from the main text remain unaffected.

All p-values for comparisons of T = 2 vs T = 3 are below 0.017. All p-values for comparisons of T = 2 vs T = 3

are above 0.746.
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Table 8: Post-Study Probabilities (PSPs) with Different Priors

Post-hoc power levels

0.95 0.81 0.65

Prior PSP

0.01 0.16 0.14 0.07

0.05 0.50 0.46 0.27

0.15 0.77 0.74 0.55

0.25 0.86 0.85 0.70

0.35 0.91 0.90 0.79

4.3 Additional Analyses

Why do participants exhibit more hot-hand behavior when we increase the number of balls

drawn in a simulated lottery game? We present here a set of observations with regard to

betting behavior that will motivate our answer to this question. For sake of brevity, we only

state our main finding and refer interested readers to Appendix E for details.

First, we explore changes in behavior over the course of 40 rounds. We calculate the

percentage of participants who bet on previous winners in each round over the course of the

experiment, and then the percentage deviation from the treatment-specific base rates (10%,

20%, and 30%, respectively, for T = 1, 2, and 3). Figure 5 plots the adjusted deviation from

the base rates, in which negative (positive) deviations indicate the gambler’s fallacy (hot-hand

fallacy). At the beginning of the experiment, deviations from the base rates are all negative,

suggesting that participants in all treatments show a predisposition for the gambler’s fallacy.

This tendency persists in T = 1, but not in T = 2 or T = 3. Participants in multiple-prize

conditions alter their behavior as the game proceeds; evidence of a game-design induced change

in beliefs about the underlying random process. This observation is corroborated by regression

results on aggregate behavior restricting the sample to the first five rounds and last 35 rounds

in the experiment. See Appendix D for details.

Second, we recorded each individual’s decision time, i.e., the time it took a participant to

enter his or her guess for the winning number. It is well established that decision time is a

reliable indicator of task difficulty and task automaticity, with quicker decision time represent-

ing easier, more automatic decisions (Achtziger and Alós-Ferrer 2014, Alós-Ferrer et al. 2016)).

We ran panel regressions with individual random-effects to explore the intra-subject relation-

ship between decision time and hot-hand behavior (continuing existing streaks); see detailed

regression results in Appendix E. We find that hot-hand behavior is associated with slower

decision times in T = 1. This result suggests that following past winning numbers in T = 1

is a more difficult decision than not betting on past numbers. In T = 2 and T = 3, however,
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Figure 5: Behavioral Change in Multiple-Prize Games
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we observe a strong reversal in our results; betting on past winning numbers in these cases is a

quicker decision than not betting on past winning numbers. These results suggest the existence

of an underlying factor that triggers a change in participants’ behavior and their perception of

randomness when more balls are being drawn.

4.4 Discussion

We examined the role of game design—specifically, multiple outcomes in a random process—on

the emergence of the gambler’s and the hot-hand fallacies in a lottery game prediction task.

Participants were asked to guess the outcome of simulated lottery games with one, two, or

three winning numbers. Results show that, whereas the gambler’s fallacy still prevailed in the

single-prize game, it immediately disappeared when the number of outcomes was increased

to two and three. At the individual level, we observed significantly more hot-hand behavior

in multiple-prize games than in single-prize games. We infer from our observations that the

lottery system design, in the form of the number of prizes drawn, systematically influenced

participants’ perceptions of randomness and, thereby, their betting behavior. These findings

offer new insight into the prevalence of the gambler’s and the hot-hand fallacies.

One plausible explanation for our observations is that different experiences across single

and multiple-prize games can induce differences in beliefs about the random-generating process

and, consequently, in betting behavior. Specifically, single and multiple-prize games differ with

respect to how frequently past winning numbers re-occur. In our experiment, the theoretical

probability of observing at least one repetition in two consecutive draws are, respectively, 10%,

37.8%, and 70.8%, in T = 1, T = 2, and T = 3 (realized relative frequencies are 10%, 32.5%,

and 70%). For example, in round five of the experiment, participants observed no prior round
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with consecutive repetitions of winning numbers in T = 1, but three and five prior rounds with

consecutive winning numbers in T = 2 and T = 3, respectively. In our experimental data,

gambler’s fallacy effects emerge in the first few rounds across all treatments. This pattern

suggests that all participants start out with a predisposition to avoiding past winning numbers,

which is commonly associated with the incorrect belief in negative autocorrelation in i.i.d.

processes. The subjective game experience in the single-prize game does not refute this belief

as repetitions in winning numbers are rather rare events. However, participants in multiple-

prize games experience frequent repetitions in winning numbers, which challenges their prior

belief. Eventually, they may abandon their initial belief in negative autocorrelation (gambler’s

fallacy), and some may adopt a new belief in positive autocorrelation (hot-hand fallacy), which

is more consistent with their subjective game experience.

To lend further credence to our explanation, we conducted a small-scale replication study

with 160 participants randomly assigned to the conditions T = 1 and T = 3. In replicating

our main findings, we added to the design an incentivized belief-elicitation question about

the unconditional probability of observing repetitions of winning numbers in two consecutive

draws. We observe strong evidence that participants underestimate the probability of repetition

in winning numbers in T = 3. Specifically, participants state an average belief of 34.6%, which

falls short of both the theoretically correct probability (70.8%) and the empirically realized one

(70%). These types of misjudgments in probabilities of repetition among multiple outcomes

are common, as famously illustrated by the birthday paradox. Judged upon participants stated

beliefs, the actual occurrence of consecutive winning numbers in T = 3 is unexpected. In

treatment T = 1, participants overestimated the probability of repetition and stated an average

belief of 24.8%. However, the differences in stated beliefs between treatments are much smaller

than theoretically expected and similar in magnitude.

We continue our discussion with some remarks on the validity of our experimental setup.

First, our results with single-outcome games replicate/support some relevant findings in the

literature. Based on Rabin’s (2002) model, Asparouhova et al. (2009) predicted that the gam-

bler’s fallacy prevails when streaks are short, and the hot-hand fallacy emerges when streaks

become longer. To the best of our knowledge, our experiment is the first to observe this pattern

with a clear switching point from the gambler’s fallacy to the hot-hand fallacy. Second, our

experiment also replicates the empirical findings in Suetens et al. (2016), which are based on

real Lotto data from Denmark. We applied the authors’ approach to test for the presence of

the gambler’s fallacy. In line with their results, we find a reduction in bets on past winning

numbers, which is consistent with the gambler’s fallacy. They find a magnitude of between

1.6% and 3.8%, depending on the sample under investigation, while we find a reduction of

4.3% in the treatment in which one ball is drawn. Finally, our findings are also consistent

with observations by Wang et al. (2016), who found that participants avoid numbers that were

22



drawn only once over the last six draws, while numbers that were drawn three or four times

are relatively popular.

A potential confound is introduced by our “winner-take-all” payment scheme. Grand-prizes

were awarded to the best-performing participant within each treatment, thereby inducing in-

centives to outperform others. In particular, sophisticated players could have adopted “anti-

imitation” strategies—that is, betting on numbers they believed others would not bet on. In

this view, behavioral patterns cannot be attributed with certainty to the distortions in par-

ticipants’ perceptions of randomness, but could reflect their beliefs about other participants’

behavior. The replication study we ran also contained a post-lottery-game incentivized rec-

ommendation task. Participants were asked to give strategic recommendations in the form of

free-text to participants of future studies of the same game, earning them a small bonus pay-

ment each time their recommendation is found useful. Manually inspecting all 160 individual

recommendations, we found none to explicitly or implicitly mention “to anti-imitate others”

or something similar. We also found none to mention, in any form, our incentive scheme. We

believe that these responses are sufficient evidence to conclude that an anti-imitate effect is not

a concern with our data.

We conclude this section with a brief discussion on how our current experimental design

came into place. For all experiments discussed below, participants had to guess one winning

number for the next round and the best performing participant within a treatment was rewarded

with a grand-prize. We first ran a batch of two similar experiments, one on Amazon’s MTurk

with 200 participants and a follow-up study with 47 course participants from one of our home

universities. For the experiment on MTurk, a lottery machine randomly drew one or ten winning

numbers from 0 to 99 (between subject design); we found no trace of the gambler’s fallacy or

the hot-hand fallacy in aggregate behavior. In the experiments with our students, one, five, or

ten winning numbers were drawn from 10 to 59 (within subject design); we only found weak

evidence for the hot-hand fallacy after long streaks in treatment T = 1 and T = 5, after playing

treatment T = 10. We concluded that the combination of the size of winning numbers drawn

and the choice set (i.e., potential winning numbers) was sub-optimal for two reasons. First,

we would have required a much bigger sample size for statistical inference with a large choice

set (e.g., many numbers were never bet on, no reasonable baseline for betting frequencies on

non-winning numbers could be established, no streaks with 1 out 100 balls drawn). Second,

correct predictions were rather unlikely, thereby reducing participants’ involvement in the game.

In addition, we made important observations that guided our subsequent design choices. In

particular, we observed a first indication of game experience (the order with which games

were played) to influence betting behavior and a vast majority of our students reported never

participating in real-life lottery games.

In response to these lessons learned, we came up with our final design as explained in this
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paper. We increased the level of realism in our presentation of the game and reduced the size of

choice set to 10. This design offered enough flexibility to create different game experiences and

provided higher leverage for statistical inference at both the aggregate and the individual level

behavior. Finally, we run an unreported replication study with 150 participants on Prolific in

which we always revealed winning numbers from the past five rounds on the screen (i.e. no

history button). This design was motivated by Baron and Leider (2010) and all of our main

results obtained. All data-sets are made publicly available on the authors’ home-pages.

5 Conclusion

In this paper, we used data from two different lottery games to demonstrate the impact of

game design in shaping two erroneous beliefs: the gambler’s fallacy and the hot-hand fallacy.

Field data showed that, when there are multiple prizes in a lottery game players tend to favor

previous winning numbers, suggesting that they believe the same outcome will repeat in the

future. We then ran a set of online experimental studies and found that behavior changed

under different game designs; in particular, whereas a single-prize game leads to the gambler’s

fallacy—consistent with the current literature—multiple-prize games lead to more hot-hand

behavior.

The notion that humans can be manipulated to believe in the hot-hand fallacy through

appropriate game design has important ramifications in various fields. First, it provides a

behavioral explanation for the “medium-prizes puzzle” (Haruvy et al. 2001)—that is, for why

lottery-game operators typically offer prize distributions of a few large prizes and a large number

of medium ones. This is surprising, especially if we assume that gamblers are typically risk-

seeking. There are two common explanations for this observation. One relies on prospect

theory: A large number of medium prizes reduces the probability of losing from near certainty

to some smaller probability. The other explanation follows the line of adaptive learning, that is:

Human behavior is best captured by simple adaptive learning models, and actions that did well

in the past tend to be adopted more frequently than those that did not. Thus, the presence of

medium prizes slows down the agent’s inclination to gamble less. Our paper provides another

explanation: A large number of medium prizes can induce more players to believe in the hot-

hand fallacy. This conviction reduces players’ inclination to quit the game, and increases their

desire to bet on those numbers they believe to have a higher probability of winning.

Second, our finding provides guidelines for designing lottery games that induce desirable

behavior, which has important practical implications. A recent trend is for governments to

encourage good civic behavior through the use of lottery games, the merits of which has been

documented by Richard Thaler10. For instance, New Taipei City in Taiwan recently initiated

10See “Making Good Citizenship Fun,” New York Times, February 13, 2012.
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a lottery as an inducement for dog owners (and other citizens) to clean up after their pets,

with a grand prize of gold ingots worth as much as $2,000. The Singapore government is

also experimenting with this approach, and has implemented an incentive scheme in which

commuters earn credit for each journey taken (with triple credit for off-peak journeys) toward

a chance to win cash prizes in weekly lotteries. Our study highlights two features that render

lottery games more effective for influencing behavior: (1) including a sufficiently large number

of medium prizes (to induce more hot-hand believers), and (2) adding some mechanism that

allows players to bet on numbers they believe to have a higher probability of winning(thereby

increasing their incentive to participate in lottery games). One way to achieve the latter is to

use personalized numbers (instead of random numbers) that players can easily relate to. The

Dutch government uses this principle very effectively, by basing one of its state lotteries on

postal codes. The idea is to make use of the near-miss effect, and also to exploit the lucky-store

effect that has been shown to exist in various lottery games. The chances of winning may be

falsely believed to be higher if the postal code has been drawn before (or is a near miss) in the

previous draws, leading to greater participation.
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A Randomness Check of The Lottery Data

We check whether the true data-generating processes of 3D and 4D are indeed random, i.e.,

whether there exists positive or negative autocorrelation in the sequence of winning numbers.

To do so, we use the auto-correlation function defined in Box and Jenkins (1976): Given mea-

surements Y1, Y2, · · · , Yn at time X1, X2, · · · , Xn, the lag k autocorrelation function is defined

as:

rk =

∑N−k
i=1 (Yi − Ȳ )(Yi+k − Ȳ )∑N

i=1(Yi − Ȳ )2
(3)

In 3D, our dataset contains 4,466 consecutive draws from May 8, 2005 to October 30, 2017.

We calculated the autocorrelation among these winning numbers with lag 1, following the

formula presented above. The lag-one autocorrelation is 0.006, showing that these numbers are

not autocorrelated.

In the 4D game, since the 23 winning numbers are drawn with replacement, we can treat

the draw of each number as a data-generating process. However, since the winning numbers

related to the 10 starters and the 10 consolations are presented in increasing order, those wining

numbers have a positive autocorrelation. For this reason, we only test a sub-dataset with

the first three winning numbers across 156 draws during a 1-year period. The autocorrelation

among those numbers is 0.0392, again showing no significant autocorrelation among the winning

numbers.
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B Empirical Evidence

Table 9: Payout Rate Statistics of Winning Numbers in 3D Game

Numbers Repeating in Data Point Mean Stdev 25th Percentile Median 75th Percentile

All data 4466 0.49 0.27 0.32 0.43 0.59

1 week 27 0.34 0.36 0.18 0.23 0.36

1 to 2 weeks 27 0.35 0.12 0.27 0.31 0.42

2 to 3 weeks 22 0.40 0.24 0.26 0.30 0.54

3 to 4 weeks 31 0.42 0.20 0.29 0.40 0.47

4 to 5 weeks 28 0.47 0.26 0.29 0.40 0.53

5 to 6 weeks 34 0.46 0.23 0.31 0.38 0.56

6 to 7 weeks 31 0.43 0.16 0.32 0.41 0.53

7 to 8 weeks 30 0.58 0.32 0.34 0.49 0.76

8 to 9 weeks 37 0.45 0.21 0.33 0.38 0.52

9 to 10 weeks 29 0.45 0.20 0.31 0.39 0.52

More than 10 weeks 3180 0.49 0.24 0.33 0.44 0.59

No Past Win 990 0.50 0.34 0.30 0.42 0.59

Table 10: Matched sample t-tests on payout rates for early vs late repetitions in 3D Game

x sample size t-stat. p-value 95% confidence interval

3 70 -5.07 3.20e-06 [-0.219, -0.095]

5 125 -4.23 4.55e-05 [-0.147 -0.053]

7 176 -4.80 3.48e-06 [-0.120, -0.050]

9 231 -4.13 5.08e-05 [-0.100, -0.035]

11 264 -4.34 2.05e-05 [-0.094, -0.035]
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C Experiment Design

General introduction to the study for all experimental conditions

Thank you for your interest in this study. In this study, you are invited to play a simulated

lottery game and your task is to guess which numbers a lottery-computer will draw. On top of

your fixed earnings of 0.80, you can earn a bonus payment of 10 for this study which will be

awarded to every 50th respondent. More details are provided during the study. Please read all

questions carefully and follow the on-screen instructions. Completing the survey will take about

9 minutes. If you close your browser before completing the survey, your data will be lost and

you will have to start anew. Make sure that javascript is enabled in your browser. The survey

works best on desktops and tablets, but might be inconvenient to complete on smartphones.

Participant IDs and completion codes are automatically transferred. You can open this study

in a new window.

Introduction to the simulated lottery game with T = 1

Welcome to the Simulated Lottery Game! Today, you are invited to play a simulated lottery

game. There will be 40 rounds in total. In each round, a lottery computer will randomly draw

1 numbered ball (0 - 9) from an urn. Each ball in the urn has an equal chance of being drawn.

Your task is to guess, at the beginning of each round, which number will be drawn by the

computer. If you guess it correctly, you earn 1 point. Roughly 70 respondents will play this

game and the one with the highest points score will earn a bonus payment of 15. It is therefore

important that you read on-screen instructions carefully. Please click on NEXT to proceed.

The computer will randomly draw 1 ball from an urn of 10 balls. The balls are numbered

consecutively from 0 to 9. That is, each number is represented by exactly one ball (one ball

with 0, one ball with 1, ..., one ball with 9). Guess one number from 0 to 9. If your number

matches the number drawn, you earn 1 point. This game is repeated for 40 rounds.

Introduction to the simulated lottery game with T = 2

Welcome to the Simulated Lottery Game! Today, you are invited to play a simulated lottery

game. There will be 40 rounds in total. In each round, a lottery computer will randomly draw

2 numbered balls (0 - 9) from an urn. Each ball in the urn has an equal chance of being drawn.

Your task is to guess, at the beginning of each round, which number will be drawn by the

computer. If you guess it correctly, you earn 1 point. Roughly 70 respondents will play this

game and the one with the highest points score will earn a bonus payment of 15. It is therefore

important that you read on-screen instructions carefully. Please click on NEXT to proceed.

The computer will randomly draw 2 balls from an urn of 10 balls. The balls are numbered

consecutively from 0 to 9. That is, each number is represented by exactly one ball (one ball

with 0, one ball with 1, ..., one ball with 9). Guess one number from 0 to 9. If your number

matches one of the numbers drawn, you earn 1 point. This game is repeated for 40 rounds.

Introduction to the simulated lottery game with T = 3
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Welcome to the Simulated Lottery Game! Today, you are invited to play a simulated lottery

game. There will be 40 rounds in total. In each round, a lottery computer will randomly draw

3 numbered balls (0 - 9) from an urn. Each ball in the urn has an equal chance of being drawn.

Your task is to guess, at the beginning of each round, which number will be drawn by the

computer. If you guess it correctly, you earn 1 point. Roughly 70 respondents will play this

game and the one with the highest points score will earn a bonus payment of 15. It is therefore

important that you read on-screen instructions carefully. Please click on NEXT to proceed.

The computer will randomly draw 3 balls from an urn of 10 balls. The balls are numbered

consecutively from 0 to 9. That is, each number is represented by exactly one ball (one ball

with 0, one ball with 1, ..., one ball with 9). Guess one number from 0 to 9. If your number

matches one of the numbers drawn, you earn 1 point. This game is repeated for 40 rounds.

Figure 6 shows two screen shots from the experiment.

Figure 6: Screenshots from the experiment

Figure 6a: Treatment T = 1 Figure 6b: Treatment T = 3
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D Regression Results Experiment Conditioning on the

First 5 Rounds and the Last 35 Rounds

Table 11: Average Marginal Effects of Probit Regression on Streak Length (Aggregate Level)

- First 5 Rounds
T=1 T=2 T=3

Length streak=1 -0.050∗∗∗ -0.056∗∗∗ -0.037∗∗ -0.034∗∗ -0.031∗∗ -0.032∗∗

(0.000) (0.000) (0.012) (0.021) (0.013) (0.012)

Length streak=2 -0.003 0.001 -0.007 -0.007
(0.944) (0.987) (0.684) (0.692)

Length streak=3 -0.021 -0.021
(0.572) (0.563)

Number of participants 75 75 63 63 72 72
Subject FE Y N Y N Y N
Period FE Y Y Y Y Y Y
Number FE Y Y Y Y Y Y
Demographic controls N Y N Y N Y
Clustered std. err. Y Y Y Y Y Y
Obs 3750 3750 3150 3150 3600 3600

Notes: Cluster robust standard errors are provided in parentheses. Significance Coding: *** - 1%,

** - 5%, * - 10%.
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Table 12: Average Marginal Effects of Probit Regression on Streak Length (Aggregate Level)

- Last 35 Rounds
T=1 T=2 T=3

Length streak=1 -0.051∗∗∗ -0.052∗∗∗ 0.001 0.006 -0.012 -0.009
(0.000) (0.000) (0.925) (0.671) (0.214) (0.320)

Length streak=2 -0.053∗∗∗ -0.044∗∗ 0.015 0.021 -0.001 0.001
(0.004) (0.021) (0.459) (0.329) (0.969) (0.928)

Length streak=3 0.034 0.051 0.094∗∗ 0.101∗∗∗ -0.000 -0.001
(0.462) (0.274) (0.012) (0.009) (0.995) (0.978)

Length streak=4 0.166∗∗ 0.182∗∗∗ 0.168∗∗ 0.152∗∗ 0.022 0.013
(0.011) (0.004) (0.016) (0.017) (0.453) (0.640)

Number of participants 75 75 63 63 72 72
Subject FE Y N Y N Y N
Period FE Y Y Y Y Y Y
Number FE Y Y Y Y Y Y
Demographic controls N Y N Y N Y
Clustering Y Y Y Y Y Y
Obs 26250 26250 22050 22050 25200 25200

Notes: Cluster robust standard errors are provided in parentheses. Significance Coding: *** -

1%, ** - 5%, * - 10%.
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E Regression Results on Decision Time

We followed the empirical strategy in Achtziger and Alós-Ferrer (2014) and Alós-Ferrer et al.

(2016) and adopted a GLS panel approach with random effects at the individual level to analyze

the impact of various variables on decision times. Our dependent variable in all models is the

logarithm of Decision Time measured from the onset of presentation of the decision screen

until submission of a guess for a winning number. Independent observations are taken at

the individual-guess-period level. The estimation results are reported in Table 13. We include

dummies for our multiple-prize treatments T = 2 and T = 3 and a dummy for whether the guess

of an individual continues an ongoing streak (Hot Hand). As reported in the main text, hot-

hand behavior was slower than non-hot-hand behavior in T = 1, whereas hot-hand behavior

was quicker in than non-hot-hand behavior in multiple-prize games. We include additional

control variables to validate decision times and to control for possible confounding factors.

Participants guessed faster in later periods of the experiment, evidence of learning and task-

experience effects. Decisions were slower when the history button was clicked. Naturally, it is

time consuming to click the button and process the resulting additional information displayed.

We also observe that older participants were slower than younger ones, and that women and

participants associating themselves to as Trans gender were slower than men. The lotto playing

habits of participants had no influence on the speed of decisions.
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Table 13: GLS panel regression with random effects at the individual level and cluster robust

standard errors (reported in parentheses). Significance coding: *** - 1%, ** - 5%, * - 10%.

Dependent Var
Log(Decision Time) Model (1) Model (2) Model (3)

Hot Hand 0.127∗∗∗ 0.083∗ 0.083∗

(0.048) (0.043) (0.043)

T=2 0.160∗∗∗ 0.091 0.069
(0.062) (0.061) (0.056)

T=3 0.061 -0.001 -0.018
(0.068) (0.060) (0.059)

Hot Hand × T=2 −0.201∗∗∗ −0.183∗∗∗ −0.181∗∗∗

(0.058) (0.050) (0.050)

Hot Hand × T=3 −0.162∗∗∗ −0.125∗∗∗ −0.125∗∗∗

(0.052) (0.047) (0.047)

Period −0.017∗∗∗ −0.014∗∗∗ −0.014∗∗∗

(0.001) (0.001) (0.001)

Hotness Number −0.602∗∗∗ −0.595∗∗∗

(0.044) (0.044)

Click History Button 1.073∗∗∗ 1.075∗∗∗

(0.052) (0.052)

Age 0.012∗∗∗

(0.002)

Female 0.101∗∗

(0.048)

Trans* 0.527∗∗∗

(0.094)

Playing Lotto Monthly 0.095
(0.070)

Playing Lotto < Monthly 0.022
(0.060)

Playing Lotto Never -0.027
(0.062)

Income -0.009
(0.010)

Constant 1.579∗∗∗ 1.613∗∗∗ 1.164∗∗∗

(0.052) (0.047) (0.104)

Number of participants 210 210 210
Obs 8400 8400 8400
Clustered std. err. Y Y Y
Overall R2 0.098 0.264 0.313
Wald χ2 p 0.000 0.000 0.000

Notes: Cluster robust standard errors are provided in parentheses. Significance

Coding: *** - 1%, ** - 5%, * - 10%.
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