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Abstract
Achieving international food security requires improved understanding of how international trade
networks connect countries around the world through the import-export flows of food commodities.
The properties of international food trade networks are still poorly documented, especially from a
multi-network perspective. In particular, nothing is known about the multi-network’s community
structure. Here we find that the individual crop-specific layers of the multi-network have densely
connected trading groups, a consistent characteristic over the period 2001–2011. Further, the
multi-network is characterized by low variability over this period but with substantial heterogeneity
across layers in each year. In particular, the layers are mostly assortative: more-intensively connected
countries tend to import from and export to countries that are themselves more connected. We also
fit econometric models to identify social, economic and geographic factors explaining the probability
that any two countries are co-present in the same community. Our estimates indicate that the
probability of country pairs belonging to the same food trade community depends more on
geopolitical and economic factors—such as geographical proximity and trade-agreement
co-membership—than on country economic size and/or income. These community-structure
findings of the multi-network are especially valuable for efforts to understand past and emerging
dynamics in the global food system, especially those that examine potential ‘shocks’ to global food
trade.

Introduction

Achieving international food security [1] is undoubt-
edly one of the major challenges of the forthcoming
decades and a globally recognized priority [2]. How-
ever, understanding how and why the availability of
and access to food commodities change across time
and space is a dauntingly difficult task, due to its
inherent multidimensional nature [3]. International
food security may indeed depend on many inter-
twined phenomena [4], including population growth
[5]; agricultural productivity and (over) exploitation
of natural resources [6–8]; climate change [9–11];

regional conflicts andepidemics [12]; and the evolution
of consumption habits [13–15].

The resulting impact of these interacting factors
may generate unexpected volatility and substantial
shocks in the supply and availability of food commodi-
ties, possibly leading to global crises [16]. International
trade, in this respect, may act both as a dampening
force and as an amplifying device to regional shocks
[17]. On the one hand, international trade may pro-
vide new channels to meet increasing food demand
throughthe transferof foodcommodities andresources
to food-scarce regions. Empirical evidence indeed
shows that the amount of traded food has more than
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doubled in the last 30 years, and it now accounts for
23% of global production [3]. Furthermore, whereas
in the past insufficient domestic production generally
implied scarcity in food supplies, production shortfalls
in more recent years have been increasingly dealt with
by increasing food imports [1, 18].

On the other hand, import-export linkages across
countries can boost shock diffusion: increased con-
nectivity in the international trade network (ITN, cf.
[19]) can lead to growing fragility [18, 20, 21]. This
parallels what happened during the 2007–2008 global
financial crisis (GFC henceforth), when seemingly
minor shocks spread quickly in a complex, networked
world, with disastrous effects [22].

In recent years, a substantial amount of work
has been done to explore the network architecture
of the aggregate ITN [23]. Furthermore, commodity-
specific trade networks have been investigated, both
in the case of a set of highly traded commodities, not
necessarily food related [24, 25], and for food-trade
layers separately [18, 26–32]. However, the multi-
network properties of the global food-trade system are
still poorly understood [33–35]. In particular, noth-
ing is known about the community structure (CS) of
food networks [36], where communities are essentially
clusters of vertices characterized by a higher ‘within’
connectivity, but a much sparser connectivity ‘between’
nodes belonging to different clusters.

Lying between the national and global levels,
community-level analyses are inherently valuable. They
can be considered a proxy for geopolitical relations,
which vary depending on the crop of interest [37]
and evolve over time. Unfortunately, our progress on
quantification of these relations has been limited. In
fact, community detection is a very difficult task and
a host of different techniques and definitions have
been recently proposed in the literature for the case
of simple or multi-graphs [36, 38, 39]. Despite the
difficulties, identifying communities in a network is
fundamental for gaining insights about its structure,
its robustness, and the ways in which shocks percolate
through it [40]. Indeed, documenting the CS of the
international food trade multi-network (IFTMN) may
help us better understand how food crises propagate.
For example, if trade across countries is organized into
well-defined clusters, shocks originating within a clus-
ter might spread more readily within that group than
across groups.

Here we start to fill this gap using data on interna-
tional trade flows taken from FAOSTAT, with a focus
on the 16 most internationally traded staple food com-
modities for the period 1992–2011. We document the
evolution of CSs in the IFTMN both across layers (i.e.
when the IFTMN is analyzed as a collection of sepa-
rate layers, each one representing bilateral trade for a
specific food commodity, e.g. wheat) and in the multi-
layer graph (i.e. when the IFTMN is conceived as a
single multi-layer network where countries are con-
nected by multiple import-export relationships, e.g.

Table 1. Top world 16 import commodities in 2013 according to kcal
embodied.

Code Commodity kcala USD % kcal

1 Wheat 6.45× 1014 9.71× 1010 21.11
2 Soybeans 5.93× 1014 1.07× 1011 19.43
3 Maize 4.44× 1014 4.22× 1010 14.54
4 Sugar 2.25× 1014 3.31× 1010 7.38
5 Rice 1.36× 1014 2.61× 1010 4.47
6 Barley 1.32× 1014 2.74× 1010 4.33
7 Oil, Palm 9.74× 1013 4.20× 1010 3.18
8 Oil, Sunflower 7.22× 1013 1.01× 1010 2.37
9 Milk 6.81× 1013 8.23× 1010 2.21
10 Cassava 5.33× 1013 4.07× 109 1.75
11 Pulses 4.64× 1013 1.02× 1010 1.49
12 Cocoa 4.51× 1013 4.22× 1010 1.46
13 Pig Meat 4.47× 1013 4.21× 1010 1.43
14 Poultry Meat 2.82× 1013 3.45× 1010 0.92
15 Nuts 2.61× 1013 2.03× 1010 0.86
16 Sorghum 2.40× 1013 2.01× 109 0.78

a Source: Our computation on FAOSTAT data (see fao.org/faostat).

for maize, wheat, rice, etc.). We then fit economet-
ric models to identify social, economic and geographic
factors explaining the probability that any two country
are co-present in the same community.

Materials and methods

Data and definitions
We use FAOSTAT data on international trade flows,
which contain bilateral export-import yearly figures
for food and agricultural products in the period
1986–2013. (Data are available at fao.org/faostat.)
Of the products available, we select the 16 most-
traded commodities in 2013, ranked according to
the total kilocalories (kcal henceforth) embodied,
so as to account for about 90% of the total
kcal trade for food-related goods. To compute
total kcal embodied we explicitly consider caloric
values of secondary and derivative products, see
table B1 in appendix B for details available at
stacks.iop.org/ERL/13/054026/mmedia. Primary and
secondary products are aggregated after converting
them to kcal.

Table 1 lists the top 16 commodities according
to kcal embodied (in 2013) and their trade value (in
current USD). As expected, the two rankings are not
correlated. For example, there are traded commodities
with an extremely high economic value that contribute
much less in terms of kcal (e.g. meat and animal prod-
ucts). The most traded products on a value basis are
meat; fruits and nuts; and coffee. Notice also that the
distribution of kcal is extremely skewed: more than
55% of total kcal are accounted for by wheat, soybean,
maize and rice, which together form just 23% of total
value in USD.

Selecting commodities according to a mass-to-
kcal conversion—rather than value or volume—allows
us to aggregate primary crops together with their
processed commodities to understand global food
trade from a caloric food-security perspective. Other
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dimensions of the global food system—such as the
economic [41], nutritional [42], or virtual water [32,
43–46] properties—may have distinct characteristics
and may be analyzed in future studies.

In order not to bias our analysis with issues
related to the collapse of the USSR and of the former
Yugoslavia, we do not include the years 1986–1991.
We also remove the two most recent years (2012–
2013) from the sample, as updated bilateral data are
still not available for some products and/or countries6.
We include a country in our sample if it is involved in a
positive bilateral flow for at least one year or one com-
modity, which gives us N = 178 countries (see table A1
in appendix A for a complete list), whose bilateral trade
flows for the16selectedcommodities areobserved from
1992 to 2011 (T = 20).

Network structure
We define the IFTMN as the sequence of T multi-
layer networks, where each layer represents bilateral
trade among our N countries for a specific commodity
c = 1,…,C (C = 16) in a given year. More formally, in
each year t = 1992,…,2011, let X𝑡 be the 3-dimensional
weight matrix whose generic entry x𝑡𝑖𝑗,𝑐 ≥ 0 repre-
sents exports (in kcal) from country i to country j
for commodity c in year t. As usual, we posit that
x𝑡𝑖𝑖,𝑐 = 0 for all i, c and t. We define the IFTMN as
the time sequence of multi-layer networks character-
izedby the time sequenceofweighted-directedmatrices
{X𝑡, t = 1,…,T}. In other words, each snapshot (year)
of the IFTMN is a multi-layer network, where the
nodes are the 178 countries connected by multiple
directed links (or edges), each of which represents
an exporter-importer flow for a particular commod-
ity, weighted by its correspondent intensity in terms
of kcal traded. A directed link (i→ j)𝑡𝑐 is therefore
present for a given commodity-year combination (c,t)
if i exports to j a non-zero volume for commodity c
in year t. All zero off-diagonal entries therefore rep-
resent either a missing value or a sheer zero-trade
flow.7

Prior to performing community detection, we
explore the properties of the time sequence of multi-
networks X𝑡 using a principal component analysis
in the space of network statistics computed over
each single layer. More precisely, given link weights
x𝑡𝑖𝑗,𝑐 of layer (c,t), let W𝑡

𝑐 be the associated log-
transformed weight matrix.8 Also, we define A𝑡

𝑐 as
the correspondent adjacency matrix, which is the
N×N binary matrix whose generic element a𝑖𝑗 equals

6 Note that our selected commodities are still the top-16 most-traded
agricultural products in terms of kcal also in 2011.
7 In the IFTMN, links between any two commodity layers c1 and
c2, c1 ≠ c2 are present only between copies of the same country, i.e.
any country i is connected to itself in all the layers. Two different
countries are not linked across different layers. In this respect, the
IFTMN can be defined as a multiplex or colored network.
8 As it is customary in this literature [19], positive trade levels are
log-transformed in order to reduce the skewness of their distribution.

one if there exists a link from i to j and equals
zero otherwise.

In each year t, we compute a number of net-
work statistics to fully characterize the weighted and
binary topological properties of the layer. These net-
work statistics are computed over the weight W𝑡

𝑐 and
adjacency A𝑡

𝑐 matrices of each layer (c,t), respectively.
These metrics include: (i) density, defined as the exis-
tencenumberof linksover all possibleN(N−1)directed
edges; (ii) bilateral density, defined as the ratio of recip-
rocated links; (iii) weighted asymmetry as defined in
[47]; (iv) size of largest connected component (LCC),
defined as the number of nodes in the largest connected
subgraph, where connectivity is defined in a weak form
(i.e. disregarding directionality); (v) centralization, see
[23], which measures how much the binary structure is
centralized; (vi) binary/weighted assortativity, defined
as the correlation coefficient between node average
nearest-neighbor degree/strength (ANND/S) and total
node degree/strength, see [23]; (v) binary/weighted
average clustering, defined as the average across
nodes of node total binary/weighted clustering coef-
ficients (see [49]); and (vi) average and standard
deviation of link weights, defined as the arithmetic
average and standard deviation of the log-transformed
export flows in a single layer.

We note that, whereas bilateral density measures
symmetry at a binary level, the weighted-asymmetry
index employs link weights to assess how much reci-
procity is present in the weighted directed graph. Also,
the assortativity metrics are to assess the tendency of
nodes to connect to other nodes with similar proper-
ties. If the indices are positive, the graph is assortative,
meaning that nodes tend to connect to other nodes with
similar properties; conversely, negative indices indicate
that nodes tend to connect to those with dissimilar
properties (i.e. they are disassortative).

This set of 11 metrics can be used to provide
insight into the topological characteristics and poten-
tial vulnerabilities of each layer. However, many of
these metrics are closely related and are possibly
redundant (i.e. too highly correlated with the most
basic statistics like density). We therefore perform a
principal-component analysis to reduce the dimen-
sionality of the space of remaining statistics and then
interpret the results. This allows us both to iden-
tify network measures that better characterize the
topological structure IFTMN in each year and to
explore similarities and differences among commodity
networks.

Community structure detection
Here, we tackle the problem of community detection
by treating the IFTMN as a collection of C different
commodity-specific weighted-directed simple graphs
in any given t and analyzing the CS of each layer
separately. To identify communities, we employ the
modularity optimization approach originally intro-
duced by [50] and subsequently extended to the case
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of weighted directed graphs by [51]. In this case, the
modularity function to be maximized is:

𝑄𝑡
𝑐
= 1

𝑋𝑡
𝑐

∑

𝑖𝑗

(𝑥𝑡
𝑖𝑗,𝑐

− 𝐄[𝑥𝑡
𝑖𝑗,𝑐

])𝛿(𝜉𝑡
𝑖,𝑐
, 𝜉𝑡

𝑗,𝑐
), (1)

where X𝑡
𝑐 is the volume of the layer (c,t) and 𝛿 is a

Kronecker delta function equal to 1 if nodes i and j
are in the same community and 0 otherwise. E is the
expected value of the link weight x𝑡𝑖𝑗,𝑐 , which following
[51] reads:

𝐄[𝑥𝑡
𝑖𝑗,𝑐

] =
𝑠𝑡
𝑖,𝑐
(𝑜𝑢𝑡) ⋅ 𝑠𝑡

𝑗,𝑐
(𝑖𝑛)

𝑋𝑡
𝑐

, (2)

where s𝑡𝑖,𝑐(out) and s𝑡𝑗,𝑐(in) are respectively out-
strength of node i (i.e. the sum of outward link
weights) and in-strength of node j (i.e. the sum of
inward link weights) [52]. To optimize Q𝑡

𝑐 , we employ
the modularity-clustering heuristic developed by [53],
which extends and improves the well-known ‘Louvain’
algorithm pioneered by [54] (see appendix C for more
details). This procedure ends up, for any given year t
and commodity-layer c, with a univocal assignment of
countries into clusters, the number of which is not fixed
ex-ante, in such a way that each country belongs to a
single cluster (i.e. communities are not overlapping).
Clusters can also contain a single country, e.g. if that
country is an isolated node in the network. Note that
we check the results of the above procedure by treating
the IFTMN for any t as a single multi-layer network
(see appendix C for further details).

Econometric models
As mentioned, identifying communities in the IFTMN
treated as a collection of C separate layers, results in
a univocal assignment of countries to clusters for any
given choice of t and c. Clusters are multilateral enti-
ties, as they emerge whenever a group of countries
trades comparatively more among them than they do
with countries outside the cluster. But what are the fac-
tors underlying the emergence of such clusters? Here,
we address this issue fitting probit and logit models
[55] that explain the probability that any two countries
belong to the same cluster (for a given (c,t) slice of the
IFTMN) as a function of economic, socio-political and
geographical, bilateral relationships. More precisely, we
perform two sets of exercises.

First, for all c = 1,…,16 and two selected years
(t0 = 2001 and t1 = 2011)9, we fit to the data the fol-
lowing probit model using a maximum-likelihood
procedure:

𝑃𝑟𝑜𝑏{𝛾𝑡
𝑖𝑗,𝑐

= 1} = Φ(𝛼 + 𝛽𝐙𝑡
𝑖𝑗
), (3)

where 𝛾𝑡𝑖𝑗,𝑐 is a binary indicator for the event that coun-
tries i and j belong to the same community for product

9 These two years have been chosen in order to focus on two time
periods sufficiently far from the GFC.

c and year t ∈ {t0,t1}, 𝜙 is the cumulative distribution
function for the standard normal variate10, 𝛼 is a con-
stant, 𝛽 is a vector of slopes and Z𝑡

𝑖𝑗 is a set of bilateral
covariates (more details below).

Second, we run a panel-data estimation of the
probit model in equation (3) on the pooled dataset
containing all the years in our sample, for some
selected commodities (i.e. wheat, maize and rice). We
choose wheat, maize, and rice (and their associated
commodities) as they are among the most important
internationally traded grains and are fundamental to
staple food supplies around the world. Panel estima-
tions feature the same covariates of the cross-section
setup, but they now become time-varying. Further-
more, as it is customary in this approach [56], we
control for unobserved heterogeneity and common
trend effects including in panel regressions both time-
invariant country fixed-effects and time dummies.

To choose the covariates, we rely on the literature
on the empirical trade-gravity model [57], see appendix
E and table E1 for details. We employ five classes of
covariates: (1) economic variables (i.e. combined mea-
sures of economic country size and income); (2) trade
policy variables (e.g. whether the two countries belong
to the same preferential trade agreements); (3) geo-
graphical variables (e.g. distance between countries and
whether they share a border); (4) historical/political
variables (e.g. former colonial relationships); and (5)
cultural variables (i.e. whether countries share the same
language).

Despite the fact that our probit specification has
an obvious gravity flavor, it departs from traditional
trade-gravity models in the way we treat directionality
of relationships. Indeed, because the co-presence rela-
tions are symmetric by definition, the binary response
model in equation 3 does not distinguish between
importer and exporter, as, on the contrary, gravity
models with trade flows as dependent variable often
do. Therefore, sign and intensity of the impact of
covariates cannot differ between origin and destination
markets.

Results

We now turn to a description of our main results.
First, we describe some basic network properties of
the IFTMN, both across commodity-layers and time.
Second, we discuss the CS of ITMN considered as
a collection of C separate layers. Third, we explain
co-presence in clusters using probit models. Finally,
we check what happens when CS detection is per-
formed over the IFTMN described as a multi-layer
network.

10 All our econometric results are robust when we employ a logit
specification instead of a probit, i.e. when we let 𝜙 be the cumulative
distribution of a logistic random variate.
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Figure 1. The IFTMN in year 2011. Principal component (PC) analysis in the space of network statistics. The first two PCs explain
83% of total variance.

Overview of network properties
The IFTMN is characterized by substantial heterogene-
ity across commodities (i.e. layers) but low variability
over the time interval under observation. A comparison
of results in tables F1–F2 in appendix F, which report
network statistics in 2001 and 2011, suggests that net-
work structure did not go through dramatic changes
before and after the GFC.

However, our analysis indicates considerable vari-
ation in the topological properties across commodity
layers. For example, the IFTMN is composed of small-
density layers (as compared to the aggregate ITN),
whose link probabilities range from 0.01–0.16. Sub-
stantial variation is also detected in the size of the largest
connected component (LCC)—from 87 to 171—and
manyother statistics.Therefore, aprincipal component
(PC) analysis can help summarize the most impor-
tant dimensions of variability. Results for the year 2011
are reported in figure 1. We use a bi-plot to repre-
sent both the units (i.e. commodities) in the space of
the first two PCs (which together explain 83% of total
variance)andnetwork statistics asvectors (whosedirec-
tion and length indicate how each variable contributes
to the two principal components in the plot).

Starting with the network statistics (in blue),
the first PC is positively correlated with connectiv-
ity measures (i.e. density and size of LCC), network

symmetry, and centralization and is negatively corre-
lated with binary assortativity (i.e. the larger the x-axis
coordinate, the smaller the assortativity coefficient).
The second PC is instead positively correlated with
average and standard deviation of link weights (as well
as assortativity). This means that, overall, commodity
layers tend to have higher density and LCC size and
to be more centralized and symmetric but, at the same
time, less assortative. Additionally, more intense bilat-
eral connections are gained, on average, at the expense
of a larger standard deviation thereof.

Next, we consider the PC analysis for the com-
modities (in red). The position of layers in the bi-plot
suggests the existence of two paradigmatic cases. The
first one is represented by layers such as wheat,
cocoa, and barley, which are characterized by rela-
tively high connectivity, centralization, and symmetry
but a relatively smaller assortativity and a lower inten-
sity and variability of import-export relationships. To
the second one belong layers such as sorghum and
cassava, which are much less connected and sym-
metric, and they are structured over more intense
and less variable trade relationships. Other impor-
tant layers like maize, rice and soybeans play instead
an intermediate role, being less internally connected
than wheat but displaying stronger and more variable
bilateral connections.
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Figure 2. Correlation between logged link weights of commodity layers. Year = 2011. Commodities have been ordered using a (Ward)
hierarchical clustering.

Network statistics in tables F1–F2 and their corre-
lations (see figure F1) reveal two important additional
facts. First, the layers of the IFTMN are mostly assor-
tative: more-intensively connected countries tend to
import from and export to countries which are them-
selves more connected.

Second, the weighted version of statistics such
as asymmetry, clustering and assortativity are almost
linearly correlated with their binary counterpart, sug-
gesting that in the IFTMN, unlike in the aggregate ITN,
the creation of new trade channels are more impor-
tant than increases in trade flows of already existing
connections (i.e. in economics jargon, extensive trade
margins are more important than intensive ones).

Wenowexplore across-layer correlation in (logsof)
link-weight distributions w𝑡

𝑖𝑗,𝑐 = log (x𝑡𝑖𝑗,𝑐), cf. figure 2
for year 2011 and figure F3 in appendix F for year 2001.
We notice that almost all commodities are traded as
complements (i.e. all correlations are positive and sig-
nificant). The only exceptions are palm oil, sorghum
and cassava, which are traded in an almost uncorre-
lated way with all the others. This may probably be
due to the fact that these are either markets extremely
concentrated around a handful of producers (i.e.
palm oil) or extremely agglomerated geographically
(i.e. cassava and sorghum).

Finally,we investigate theextent towhichexportper
outward link is associated with imports per inward link,
across years and layers. Figure 3 depicts time-series dis-
tributions for the ratio between layer-average import
intensity vs. export intensity (i.e. the import/export
intensity ratio). Import intensity is defined as total

country imports per importing partner (in network-
science jargon, the ratio between node in-strength
and node in-degree). Likewise, export intensity is
defined as total country exports per exporting part-
ner (i.e, the ratio between node out-strength and
node out-degree). Note how almost all layers have
been characterized by ratios always larger than one
across the years. This means that, on average, countries
tend to have—irrespective of the commodity traded
and its share on the world market—more intensive
import relations than export ones. This result is con-
sistent with the evidence shown by [24] for a more
aggregated set of commodity-specific—not necessarily
food-related—networks (and it is, in particular, true
for coarse cereals). This evidence could be a symptom
of the high dependency of several countries on a small
number (say one or two) import channels for their
staple-food supply.

Layer-by-layer community structure
We now discuss community-detection findings when
the IFTMN is treated, in each year, as a collection of
independent food-staple trade layers. We begin with
results related to two temporal cross sections—for the
individual years 2001and2011—across all layers.Then,
for three selected commodities (wheat, maize and rice),
we document the evidence on community-detection
for the 2001–2011 panel.

As table I1 shows, the first general observation is
that the IFTMN exhibits a very high level of (maxi-
mum) modularity in almost all layers and years. This
suggests that the IFTMN is characterized through-
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Figure 3. Time-series distributions for the average import/export intensity ratio, which is defined as the ratio between layer-average
import intensity vs. export intensity. Import (resp. export) intensity is defined as total country imports (resp. export) per importing
(resp. exporting) partner (each with units of log(kg) per node). The central red mark of each box is the median, the edges of the
box are the 25th and 75th percentiles, the whiskers extend to the most extreme not-outlier observations, and the outliers are plotted
individually (red plus).

out by a strong community structure, with countries
that organize into densely linked groups. Indeed, max-
imum modularity levels typically fall in the range
[0.2,0.5], which, as suggested in [50], is strong evi-
dence for the existence of well-defined clusters. The
only exception to this general rule is cassava, which
displays an almost negligible level of modularity. In
each layer, we identify on average 6 clusters (or com-
munities) with number ranging from 3 (for poultry
meat in 2011, the least dispersed layer on average) to
10 (for sorghum in 2001, the most dispersed layer on
average).

More importantly, our community detection exer-
cises indicate that countries in the IFTMN tend to
cluster into trading blocs that display relevant geopo-
litical and socioeconomic patterns. This can be seen in
figure 4, where we plot choropleth maps with countries
colored according to their community membership in
2011 for selected commodities.

Choropleth maps for year 2011 reveal interesting
across-layer regularities. First, there often exists a North
American cluster (with the US and Canada often linked
to Central and Latin America countries), whereas rel-
evant breadbaskets such as Brazil and Argentina often
set up alternative communities independently. Second,
Russia generally forms a cluster together with Cen-
tral,CaucasianandEast-European(nonEU-members)
states, often absorbing some MENA region countries
(especially Egypt). A unified European cluster often
emerges, sometimes linked with the Russian clus-
ter and rarely linked with the US, confirming that
Europe is not such an open market for many agri-
cultural products. Furthermore, a consolidated and
independent Asian cluster seems to exist only in the

case the region is a net importer for that commodity
(i.e. wheat, milk and diary products, and cocoa). East
Asian (e.g. China, India and Japan) and Southeast
Asian (e.g. Vietnam, the Philippines, and Thailand)
countries instead typically belong to different commu-
nities, orbiting around other clusters such as the North
American and South American ones. Finally, Africa
and the Middle East are often divided—independently
of the commodity examined—and only in a few
cases we can observe a small independent Eastern
Sub-Saharan cluster.

Apart from these macro regularities, sev-
eral cross-sectional differences also emerge among
commodity-specific community structures11, the most
striking of which concerns concentration in their size
distributions (see figure 5 in appendix D for the case of
year 2011). The most concentrated community struc-
tures are those of soybeans, palm oil, poultry meat and
nuts, whereas rice exhibits the most homogeneous size
distribution.12

Similarities and differences among community
structures can be better appreciated computing the
normalized mutual information (NMI) index between
pairs of community structures (see figure 5 and
appendix D for details). The NMI index ranges between
0 and 1 and increases the more the two community
structures are similar. Three groups of commodi-
ties can be identified (outlined by the three squares

11 In appendix G we discuss in details economic factors that can
explain the pattern of each commodity-specific community structure
in 2011.
12 This result is confirmed when one computes the Herfindahl con-
centration index (see description that follows).
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Figure 4. Community detection in year 2011. Choropleth maps display country membership to communities for selected commodities.
In white, countries not belonging to any community or for which no data are available.

in the figure). The first one comprises the most
similar structures, i.e. coarse grains (barley, maize,
wheat), pig meat and milk. The other two consist of
commodities that exhibit quite different trading blocs,
and differ from the other groups. These are: (i) nuts,
pulses, sugar and rice; and (ii) soybeans, poultry meat,
oil, cocoa and sorghum. Note that pig and poultry meat
are very similar in terms of their community structures
but consist of different groups.

We now explore whether community structures
have changed from 2001–2011. Figure I1 in appendix
I shows, for a few commodities, country community
membership in 2001. A qualitative comparison with
figure 4 shows that in 2011 the European trading bloc
became larger, possibly due the Eastern enlargement
of the Union (from 15–27 members). The evidence is
particularly strong in the case of wheat, maize, sugar,
rice, palm oil and cocoa, whereas the finding holds

8
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Figure 5. Normalized mutual information (NMI) index in year = 2011. Higher values of the index suggest that the two community
structures are similar. Commodities have been ordered using a (Ward) hierarchical clustering. Squares identify clusters.

to a lesser extent for barley, milk, pulses and poultry
meat. Overall, this expansion may be interpret as evi-
dence of the effectiveness of the Common Agricultural
Policy (CAP) of the European Union. Furthermore,
comparing 2001 and 2011 maps reveals an increas-
ing influence of Brazil, Russia, India and China (i.e.
the BRIC countries) in the African continent. This
evidence may be partly explained by the increasing
hegemony of Russia and India in Eastern Africa, which
has gradually undermined that of Australia in wheat
and rice trade. Similarly, maps seem to be coherent
with the increasing importance that Brazil gained as
maize supplier inAfricanandMiddleEasterncountries,
at the expense of the North American and the Euro-
pean clusters. (Additional description of community
structures can be found in appendix G.)

More generally, community structures in 2001 dif-
fer from those in 2011, because the size distributions of
the latter are typically more concentrated. Figure I3 in
appendix I plots the normalized Herfindahl concentra-
tion index (H index) computed in 2001 and 2011 for
all commodity networks (except cassava) and shows
that the lion’s share of layers lie above the main diag-
onal. Rice, soybeans, poultry meat and sunflower oil
display the largest increase in concentration. A more
concentrated community structure implies that a larger
share of countries belong to existing trading groups.
Therefore, increases in H index can be interpreted
as a tendency to a more globalized trade network.
Notice that increasing concentration levels are not
necessary associated with a decrease in the number
of detected communities (cf table I1). This suggests

that, when detected, increasing concentration levels
in community size distributions are attained through
country switching among clusters and not due to a
reduction in the number of trading blocs.

To delve further into the time dynamics of commu-
nity structures,we focuson three selected commodities:
wheat, maize and rice. We document how commu-
nity structure for these three commodities evolve
across the whole time sample (1992–2011). Figure
I4 presents the time series of community number
(left) and maximum modularity (right). Note that,
in general, modularity has been increasing over time,
suggesting that the IFTMN, at least in the three lay-
ers considered in the figure, has exhibited a stronger
and stronger tendency to clusterize into well-defined
trading blocs. Furthermore, the three commodities
considered have followed quite distinct time patterns
as far as the number of detected communities is
concerned. Maize trade network has been organizing
itself into an increasing number of clusters, whereas
the number of trading blocs in the wheat network
has decreased and stabilized around four. Finally, the
rice network has experienced turbulence, oscillating
between six and nine trading groups over time.

Econometric models
As visual inspection of figure 4 for 2011 and figure I1
for 2001 shows, community structures in the IFTMN
exhibit clear geopolitical and socioeconomic regular-
ities. In order to quantitatively explore this issue, we
run a set of probit-regression exercises to examine

9
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Figure 6. Probit estimation for year 2011. Marginal effects obtained fitting equation (3) to each commodity layer separately using
maximum-likelihood. x-axis: covariates used in the model. y-axis: marginal effect of the covariate on the probability that two countries
belong to the same community. Dots represent the point estimate of marginal effects and bars are 95% confidence intervals.

the probability that any two countries belong to the
same trade bloc as a function of a host of covariates
(see section 3.3 and table E1), capturing country-pair
(dis)similarity along geographical, economic, social,
and political dimensions.

Covariates employed in the analysis are borrowed
from the trade-gravity literature [57], which sug-
gests that bilateral trade flows typically increase with
importer and exporter market size and income (prox-
ied by country total and per-capita GDP) and decrease
with larger trade friction.The latter is usually proxiedby
geographical distance and a number of bilateral indica-
tors (e.g. dummy variables) that control—among other
things—for whether the importer and the exporter
share a border, a common language, a trade agreement,
any colonial relationship, and whether they belong to
the same geographical macro-area.

We begin by fitting equation (3) cross-sectionally
to year 2001 and year 2011, for all commodity layers.
Results for year 2011 are visually presented in figure 6,
where point estimates of marginal effects of covariates
are plotted together with their 95% confidence intervals
for all commodities (see figure I5 in appendix I for year
2001)13.

Our findings indicate that distance has a negative
and statistically significant impact on the probability

13 All models turn out to be nicely specified according to stan-
dard goodness-of-fit tests, e.g. the Akaike information criterion
(AIC).

that two countries belong to the same trade commu-
nity, for all products considered except milk. Other
geographically-related covariates (such as contiguity
and regional membership) have a product-specific
effect, both in terms of significance and sign; never-
theless, they generally boost the co-presence of country
pairs in the same trade bloc. Furthermore, free-trade
agreements almost always promote co-presence, and
their importance has become higher in 2011 as com-
pared to 2001. The role of past colonial relationships
and common language is less relevant in explain-
ing joint membership. Most importantly, regressions
suggest that economic indicators (i.e. absolute and per-
capita GDP) are not significant either in statistical or
economic terms, because of high standard errors and
small marginal effects.

These results are confirmed by panel-data exer-
cises run for the cases of wheat, rice and maize. We
regress co-presence probabilities against the same set
of covariates used in the cross-section setup, but now
employ the entire time sample in a dynamic fashion
and control for common trends and country-specific
unobserved heterogeneity with an appropriate use of
dummy variables. Again, as figure I6 shows, distance
and free trade agreements14 are two important deter-
minants of the co-presence of country pairs in the same

14 More precisely, the EU27 trade agreement and NAFTA seem to
strongly affect co-presence probabilities, as well as AFTA for maize
and EFTA for wheat.
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Figure 7. Multilayer community detection. Distribution of the number of different communities a country belongs to in the multi-layer.
Years 2001 and 2011.

trade community, whereas economic factors are gen-
erally weak or insignificant.

Overall, our econometric estimates are in line with
the trade-gravity literature, as they show that distance,
trade frictions and trade agreements are important
determinants of country co-presence in trade commu-
nities as they are for bilateral trade flows. However,
they strongly depart from traditional gravity exercises
as they indicate a very weak impact of country eco-
nomic size and income in shaping food-trade blocs,
whereas it is well known that these two covariates
explain to a great extent the intensive margins of
aggregate trade [57]. (see appendix H for additional
discussion.)

Multi-layer community detection
In the last subsection,wehaveperformedacommunity-
detection analysis assuming that the IFTMN consists
of independent layers in each time period. Here, we
explore how communities would look if they could
span across layers. More precisely, we suppose that
each country is coupled with itself across commodity
slices. Therefore, in each year, the IFTMN becomes
a multi-layer network, where nodes are country-
commodity pairs. Identifying communities in such
an object means finding clusters where countries and
commodities can possibly repeat themselves many
times: the same country (respectively, commodity)
may belong to different clusters as it can appear
coupled with different commodities (respectively,
countries).

We use this analysis to explore the shape of clus-
ters in the multi-network. To do so, we begin by
studying the distribution of the number of different
communities a country belongs to, which we interpret
as a rough measure of country diversification in the
IFTMN. The intuition is that a country belonging to
a small number of different communities tends to be
mostly connected with instances of ‘itself’ in different

commodity layers and therefore depends on the same
group of other country-commodity pairs for all pos-
sible staple-food products it trades. Conversely, if a
country appears in a large number of different commu-
nities in the multi-network (and thus is never isolated)
then it relies on several different clusters of country-
product pairs depending on the specific product
it trades.

As we show in figure 7, the frequency distribution
of this statistics are markedly bi-modal, with a peak at
1 and another peak around 14–15. This suggests that
community structures in the multi-layer are polarized
into two groups. The first one consists of countries
that—irrespective of the commodity traded—always
belong to the same community in the multilayer. These
are countries that are poorly diversified and are the
least networked in the food-trade system. Countries
in the second group belong instead to several differ-
ent communities depending on the commodity traded
and therefore are highly diversified in the multilayer.
This finding is relevant for food-security issues as it
suggests that countries belonging to the first group
may be more vulnerable than those in the second
group to shocks that put at risk the supply of one
or more food commodities. The geographical distri-
bution of the two groups of countries is depicted in
figure 8. Notice how the first group is mostly located
in Africa but also features countries in the Middle
East and Asia.

Discussion and conclusions

The topology of the international food trade multi-
network is key to understanding vulnerabilities in
the global food system. We show that the IFTMN is
increasingly globalized and characterized by substan-
tial heterogeneity across commodities. These findings
highlight the need to account for each commodity
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network’s unique properties when considering food
policies [37], especially as the multi-network changes
over time. Another key finding is that countries tend
to have more intensive import relations than export
ones. From a food-policy perspective, it highlights
the importance of understanding trade dependences
and their link with robustness or vulnerability
of a country.

Our analyses also show that the individual layers
of the IFTMN have densely connected trading groups,
a consistent characteristic over the period 1994–2011.
At the same time, we show that these trading groups
are evolving. For example, we present evidence that
the European trading block increased in size and that
BRICcountrieshaveexpanded their influence inAfrica.
In addition, the rice network has experienced sig-
nificant turbulence (relative to the other commodity
layers) in terms of community structure, which is
important given the prominence of rice in traditional
Asiandiets. We also uncover important geographic fea-
tures. For example, East Asian and Southeast Asian
countries typically belong to different communities,
orbiting around other clusters, while Africa and the
Middle East are often divided in terms of community
membership.

Our community structure findings are important,
as they fundamentally affects how a shock would
spread within the global food system. If, for exam-
ple, the epicenter of a shock is within a community,
we would expect that countries in this community
would face a two-fold challenge: (1) reduced supply
from domestic production and/or from their usual
import partners and (2) high international prices. To
the extent possible, governments and companies within
these countries would adjust their procurement strate-
gies to find new sources from members of the other
trading communities. Outside of the epicenter com-
munity, network characteristics like inter-community
connectivity and other global dynamics like trade
interventions would be critically important.

One straightforward application of the knowledge
generated from understanding commodity specific
community structures is that we can improve our
understanding of potential vulnerabilities to various
disruption scenarios. First let us consider a major dis-
ruption to rice production. In a scenario where China
experiences a major negative production shock, how
would the community structure of the rice network
modulate global impacts? China would look to the
international markets to make up for any shortfall
that its food reserve system could not handle. Four
of the top five exporters—Thailand, Vietnam, India
and Pakistan—are co-located in Asia, where Thai-
land is in the same community as China, Vietnam is
part of a predominantly Southeast Asian community,
and India and Pakistan are both in another com-
munity. Therefore, the burden of making up for the
Chinese production shortfall would fall primarily on
Asian countries, with perhaps the US also contributing

(considering that it is the fifth largest rice exporters).
Countries like those in western Africa (e.g. Ghana
and Ivory Coast) would be highly vulnerable, as they
are part of the same community as China (figure 4)
and would face the task of competing with China
on the global rice markets. International rice prices
would increase, assuming that rice production does
not increase substantially elsewhere, there is no major
release of rice reserves to the international markets (e.g.
as Japan did in 2008), and that there major changes to
the other global grain markets. In this situation, low-
and lower-middle-income countries that are depen-
dent on imports for their staple food supply will be at a
severe disadvantage.

The community structure of the soybean network
is quite different from the structure of the rice net-
work (figure 5), so we might expect a priori that
there are differences in shock vulnerability. The soy-
bean network reveals one of the most concentrated
community structure, composed by only three large
clusters without a clear regional scheme (figure 4).
The most important bloc—in terms of trade volume—
includes the US and Brazil from the producing and
exporting side, which together account for over 70% of
global soybean exports, and China from the importing
side, which alone accounts for 56% of global soybeans
imports. If one of these main producers experiences
a sharp decline in production, the global implications
of the shock will largely depend on the capacity of
few other major producing countries to make up for
the production shortfall.

The global wheat market has a community struc-
ture that falls in-between the structures found in the rice
and soybean markets. Major producers are grouped
together in three separate communities: (1) the US,
Canada, and Australia, (2) Argentina and Brazil, (3)
Russia and Ukraine. Interestingly, Europe belongs to
yet another separate cluster, in which France is the
notable producer and exporter. One might hypoth-
esize that this geographic diversity is advantageous
for dealing with a disruption, particularly if it has as
spatial component (e.g. crop disease spreading over
an area, a regional conflict, or regional-scale extreme
weather). Of course, community structure alone is
not sufficient for understanding the impacts of shocks
on these global markets.

Knowledge of community structure can be linked
to the latest efforts to understand non-equilibrium
conditions in the global food system. For example,
recent models of food shock propagation [18, 58,
59] would benefit from these community-structure
insights. Improved disruption scenarios can be gen-
erated to analyze potential responses and identify
vulnerabilities of the food system, at scales rang-
ing from the individual country to the global
system.

More generally, the role of food price shocks in
shaping the community structure of global food-trade
system should be better understood [60, 61]. Food
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price shocks can alter global trade patterns as they
typically encourage countries both to rise export bar-
riers and to lower import tariffs, which may in turn
exacerbate price spikes. Such protectionist measures
are often combined with other frequent responses
such as panic buying, large-scale governmental inter-
vention, hoarding and precautionary purchase. These
common short-term remedies associated with price
spikes are poorly understood although they may have
pervasive consequences on less developed countries,
generally extremely dependent on imports, thus alter-
ing the way in which they locally form their trade
networks.

Along similar lines, one may investigate more
deeply the importance of other determinants of bilat-
eral import-export flows in explaining the formation
of clusters in the international web of food trade. For
example, exchange rate volatility has grown signifi-
cantly after the GFC. This can correlate with trade
growth, as typically the more a country undergoes
currency devaluation, the slower the growth in its
trade [41]. Other determinants to be explored include
climate-related shocks, which are especially relevant
because of crop sensitivity to weather extremes [10,
11], regional conflicts, epidemics, agro-terrorism and
crop pests [12].

From a more methodological perspective, this
study could be improved through additional tests
aimed at checking the robustness of the main
results against alternative parameterizations of (and
assumptions about) the community-detection algo-
rithms employed. For example, the well-known
resolution-limit bias affecting many existing meth-
ods may be explored using the multiple-resolution
community detection strategy by introduced in [62].
Likewise, additional analyses on shortcomings of FAO-
STAT bilateral trade data (e.g. possible underreporting
of intra-Africa trade) should examine how sensitive
community detection and analysis are to systematic
trade-data biases. Furthermore, despite the fact that
the foregoing analysis was focused on the identifica-
tion of non-overlapping communities, this work can
be extended using community-detection algorithms
that look for clusters that may partly overlap [63, 64].
This is important, as knowing the degree of over-
lap among communities may shed more light on the
way in which food crises may spread across clusters.
Finally, when analyzing the IFTMN as a multi-layer
network, we have implicitly assumed that any pair
of layers are linked by fictional edges connecting the
same country in the two layers, and that the weights
of this edge are homogeneous across countries and
equal to one. Such a system parameter, however, may
affect the emerging community structure [65]. There-
fore, experimentingwithdifferent parameter values can
give interesting insights into the emergence of clusters
in the product-country space.
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