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ABSTRACT

Nonconvex Recovery of Low-complexity Models

Qing Qu

Today we are living in the era of big data, there is a pressing need for efficient, scalable and robust opti-

mization methods to analyze the data we create and collect. Although Convex methods offer tractable solu-

tions with global optimality, heuristic nonconvex methods are often more attractive in practice due to their

superior efficiency and scalability. Moreover, for better representations of the data, the mathematical model

we are building today are much more complicated, which often results in highly nonlinear and nonconvex

optimizations problems. Both of these challenges require us to go beyond convex optimization. While non-

convex optimization is extraordinarily successful in practice, unlike convex optimization, guaranteeing the

correctness of nonconvex methods is notoriously difficult. In theory, even finding a local minimum of a

general nonconvex function is NP-hard – nevermind the global minimum.

This thesis aims to bridge the gap between practice and theory of nonconvex optimization, by devel-

oping global optimality guarantees for nonconvex problems arising in real-world engineering applications,

and provable, efficient nonconvex optimization algorithms. First, this thesis reveals that for certain noncon-

vex problems we can construct a model specialized initialization that is close to the optimal solution, so that

simple and efficient methods provably converge to the global solution with linear rate. These problem in-

clude sparse basis learning and convolutional phase retrieval. In addition, the work has led to the discovery

of a broader class of nonconvex problems – the so-called ridable saddle functions. Those problems possess

characteristic structures, in which (i) all local minima are global, (ii) the energy landscape does not have

any “flat” saddle points. More interestingly, when data are large and random, this thesis reveals that many

problems in the real world are indeed ridable saddle, those problems include complete dictionary learning

and generalized phase retrieval. For each of the aforementioned problems, the benign geometric structure

allows us to obtain global recovery guarantees by using efficient optimization methods with arbitrary ini-

tialization.



Table of Contents

List of Figures vi

Notations xi

I Overview 1
0.1 Contribution of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

0.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

II Finding a Sparse Vector in a Subspace 8

1 Introduction 10

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 Prior Arts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Contributions and Recent Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Problem Formulation and Global Optimality 15

3 Algorithm 17

4 Main Result and Sketch of Analysis 20

4.1 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2 A Sketch of Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Numerical Results 27

5.1 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1.1 Phase Transition on Synthetic Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1.2 Exploratory Experiments on Faces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

i



6 Discussion 32

6.1 Connections and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

7 Proof of Technical Results 34

7.1 Proof of ℓ1/ℓ2 Global Optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

7.2 Good Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

7.3 Lower Bounding Finite Sample Gap G(q) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7.3.1 Lower Bounding the Expected Gap G(q) . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7.3.2 Finite Sample Concentration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7.3.3 Union Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7.3.4 Q(q) approximates Q(q) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7.4 Large |q1| Iterates Staying in Safe Region for Rounding . . . . . . . . . . . . . . . . . . . . . . 50

7.5 Bounding Iteration Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.6 Rounding to the Desired Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

III Complete Dictionary Learning 55

8 Introduction 57

8.1 Theoretical and Algorithmic Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

8.2 An Intriguing Numerical Experiment with Real Images . . . . . . . . . . . . . . . . . . . . . . 59

8.3 Dictionary Recovery and Our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

8.4 Prior Arts and Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

9 Nonconvex Problem Formulation 67

10 The High-dimensional Function Landscape 69

11 Algorithm 76

11.1 Finding One Local Minimizer via the Riemannian Trust-Region Method . . . . . . . . . . . . 77

11.1.1 Some Basic Facts about the Sphere and f . . . . . . . . . . . . . . . . . . . . . . . . . . 77

11.1.2 The Riemannian Trust-Region Algorithm over the Sphere . . . . . . . . . . . . . . . . 80

11.2 Complete Algorithm Pipeline and Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . 83

12 Numerical Simulations 85

12.1 Practical TRM Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

ii



12.2 Simulated Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

12.3 Image Data Again . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

13 Discussion 90

IV Generalized Phase Retrieval 92

14 Introduction 94

14.1 Generalized Phase Retrieval and a Nonconvex Formulation . . . . . . . . . . . . . . . . . . . . 94

14.2 A Curious Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

14.3 A Geometric Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

14.4 Prior Arts and Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

14.5 Notations and Wirtinger Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

15 High Dimensional Geometry of the Objective Function 103

16 Optimization by Trust-Region Method 107

16.1 A Modified Trust-Region Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

16.2 Convergence of the Trust-region Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

17 Numerical Simulations 111

18 Discussion 114

V Convolutional Phase Retrieval 116

19 Introduction 118

19.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

19.2 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

20 Algorithm 124

20.1 Minimization of a nonconvex and nonsmooth objective . . . . . . . . . . . . . . . . . . . . . . 124

20.2 Initialization via spectral method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

21 Main Result and Analysis 127

21.1 Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

21.2 A Sketch of Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

iii



21.2.1 Proof sketch of iterative contraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

21.2.2 Controlling a smoothed variant of the phase term T2 . . . . . . . . . . . . . . . . . . . 130

22 Numerical Results 135

23 Discussion 140

24 Proof of Technical Results 142

24.1 Spectral Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

24.2 Proof of Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

24.3 Bounding ∥Px⊥d(z)∥ and ∥Pxd(z)∥ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

24.4 Proof of Lemma 24.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

24.5 Proof of Lemma 24.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

VI Discussion and Future Directions 163

25 Future Directions in Broad Perspective 164

25.1 Broader Applications of Nonconvex Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 164

25.2 General Methodologies of Nonconvex Modeling and Optimization? . . . . . . . . . . . . . . . 165

26 Potential Problems of Particular Interest 167

26.1 Convolutional Dictionary Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

26.2 Overcomplete Dictionary Learning/Tensor Decomposition . . . . . . . . . . . . . . . . . . . . 170

Bibliography 175

Appendices 191

A Auxillary Results for Finding a Sparse Vector in a Subspace 192

A.1 Technical Tools and Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

A.2 The Random Basis vs. Its Orthonormalized Version . . . . . . . . . . . . . . . . . . . . . . . . 196

B Auxillary Results for Convolutional Phase Retrieval 202

B.1 Elementary Tools and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

B.2 Moments and Spectral Norm of Partial Random Circulant Matrix . . . . . . . . . . . . . . . . 208

B.2.1 Controlling the Moments and Tail of T1(g) . . . . . . . . . . . . . . . . . . . . . . . . 208

B.2.2 Controlling the Moments of T2(g) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

iv



B.2.3 Auxiliary Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

B.3 Concentration via Decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

B.3.1 Concentration of Y (g) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

B.3.2 Concentration of M(g) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

v



List of Figures

1 An illustration of high-dimensional data: hyperspectral data cube. . . . . . . . . . . . . . . . 2

2 An illustration of function landscapes of convex problem (left), general nonconvex problems

(middle), and “nice” nonconvex functions (right). . . . . . . . . . . . . . . . . . . . . . . . . . 2

3 Function landscape of planted sparse vector model . . . . . . . . . . . . . . . . . . . . . . . . 4

4 Function landscape of dictionary learning model . . . . . . . . . . . . . . . . . . . . . . . . . . 4

5 Evidence of global optima on real data problems: the final objective value does not depend

on initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

6 Regions of ridable saddle functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

7 Phase retrieval for coded diffraction imaging, image courtesy of [SEC+15] . . . . . . . . . . . 6

8 Function landscape of (0.1.2) in R2: only global minima and saddle points. . . . . . . . . . . . . . 6

4.1 An illustration of the proof sketch for our ADM algorithm. . . . . . . . . . . . . . . . . . . . . 21

5.1 Phase transition for the planted sparse model using the ADM algorithm: (a) with fixed rela-

tionship between p and n: p = 5n log n; (b) with fixed relationship between p and k: k = 0.2p.

White indicates success and black indicates failure. . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.2 Phase transition for the dictionary learning model using the ADM algorithm: (a) with fixed

relationship between p and n: p = 5n log n; (b) with fixed relationship between p and k: k =

0.2p. White indicates success and black indicates failure. . . . . . . . . . . . . . . . . . . . . . 28

5.3 The first four sparse vectors extracted for one person in the Yale B database under different

illuminations. (Top) by our ADM algorithm; (Bottom) by the speeding-up SOS algorithm

proposed in [HSSS15]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.4 The first four sparse vectors extracted for 10 persons in the Yale B database under normal

illuminations. (Top) by our ADM algorithm; (Bottom) by the speeding-up SOS algorithm

proposed in [HSSS15]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

vi



6.1 Function landscape of f(q) with θ = 0.4 for n = 3. (Left) f(q) over the sphere S2. Note that

near the spherical caps around the north and south poles, there are no critical points and the

gradients are always nonzero; (Right) Projected function landscape by projecting the upper

hemisphere onto the equatorial plane. Mathematically the function g(w) : e⊥3 7→ R obtained

via the reparameterization q(w) = [w;
√
1− ∥w∥2]. Corresponding to the left, there is no

undesired critical point around 0 within a large radius. . . . . . . . . . . . . . . . . . . . . . . 33

8.1 Alternating direction method for (8.2.1) on uncompressed real images seems to always pro-

duce the same solution! Top: Each image is 512 × 512 in resolution and encoded in the

uncompressed pgm format (uncompressed images to prevent possible bias towards standard

bases used for compression, such as DCT or wavelet bases). Each image is evenly divided into

8× 8 non-overlapping image patches (4096 in total), and these patches are all vectorized and

then stacked as columns of the data matrix Y . Bottom: Given each Y , we solve (8.2.1) 100

times with independent and randomized (uniform over the orthogonal group) initialization

A0. Let A∞ denote the value of A at convergence (we set the maximally allowable number

of ADM iterations to be 104 and λ = 2). The plots show the values of ∥A∗∞Y ∥1 across the in-

dependent repetitions. They are virtually the same and the relative differences are less than

10−3! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

8.2 Asymptotic function landscapes when rows of X0 are not independent. W.l.o.g., we again

assume A0 = I . In (a) and (d), X0 = Ω ⊙ V , with Ω ∼i.i.d. Ber(θ) and columns of X0

i.i.d. Gaussian vectors obeying vi ∼ N (0,Σ2) for symmetric Σ with 1’s on the diagonal

and i.i.d. off-diagonal entries distributed as N (0,
√
2/20). Similarly, in (b) and (e), X0 =

Ω ⊙W , with Ω ∼i.i.d. Ber(θ) and columns of X0 i.i.d. vectors generated as wi = Σui with

ui ∼i.i.d. Uniform[−0.5, 0.5]. For comparison, in (c) and (f), X0 = Ω⊙W with Ω ∼i.i.d. Ber(θ)

and W ∼i.i.d. Uniform[−0.5, 0.5]. Here ⊙ denote the elementwise product, and the objective

function is still based on the log cosh function as in (9.0.3). . . . . . . . . . . . . . . . . . . . . 64

9.1 The smooth ℓ1 surrogate defined in (9.0.4) vs. the ℓ1 function, for varying values of µ. The

surrogate approximates the ℓ1 function more closely when µ gets smaller. . . . . . . . . . . . 68

vii



10.1 Why is dictionary learning over Sn−1 tractable? Assume the target dictionary A0 = I . Left:

Large sample objective function EX0
[f (q)]. The only local minimizers are the signed basis

vectors ±ei. Right: A visualization of the function as a height above the equatorial section

e⊥3 , i.e., span{e1, e2} ∩ B3. The derived function is obtained by assigning values of points on

the upper hemisphere to their corresponding projections on the equatorial section e⊥3 . The

minimizers for the derived function are 0,±e1,±e2. Around 0 in e⊥3 , the function exhibits a

small region of strong convexity, a region of large gradient, and finally a region in which the

direction away from 0 is a direction of negative curvature. . . . . . . . . . . . . . . . . . . . . 70

10.2 Illustration of the six symmetric sections on S2 and the exemplar we work with. Left: The

six symmetric sections on S2, as divided by the green curves. The signed basis vectors, ±ei’s,

are centers of these sections. We choose to work with the exemplar that is centered around e3

that is shaded in blue. Right: Projection of the upper hemisphere onto the equatorial section

e⊥3 . The blue region is projection of the exemplar under study. The larger region enclosed by

the red circle is the Γ set on which we characterize the reparametrized function g. . . . . . . 71

11.1 Illustrations of the tangent space TqSn−1 and exponential map expq (δ) defined on the sphere

Sn−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

12.1 Phase transition for recovering a single sparse vector. Top: We fix p = 5n2 log n and vary the

dimension n and sparsity level k; Bottom: We fix the sparsity level as ⌈0.2 ·n⌉ and vary the di-

mension n and number of samples p. For each configuration, the experiment is independently

repeated for five times. White indicates success, and black indicates failure. . . . . . . . . . . 87

12.2 Results of learning complete dictionaries from image patches, using the algorithmic pipeline

in Section 11.2. Top: Images we used for the experiment. These are the three images in

Chapter 8. The way we formed the data matrix Y is exactly the same as in that experiment.

Middle: The 64 dictionary elements we learned. Bottom: Let Â be the final dictionary matrix
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Notations

Rn n-dimensional real space

Cn n-dimensional complex space

Bn, CBn unit ball in Rn, Cn

Sn−1, CSn−1 unit sphere in Rn, Cn

ℜ(z), ℑ(z) real, complex parts (as vectors) of a complex vector z

On orthogonal group of order n

X bold capital letters as matrices

x bold small letters as vectors

xi i-th row of X as column vector

xj j-th column of X as column vector

∥·∥ vector ℓ2 norm or matrix operator norm

∥·∥F matrix Frobenius norm

(·)⊤ transposition without conjugation

(·)∗ conjugate transposition, equivalent to (·)⊤ for real vectors/matrices; preferred over

(·)⊤ when no confusion caused
.
= defined as

[k] the set {1, . . . , k}

col(·), row(·) the column and row spaces of a matrix

Pv , Pv⊥ Pv = vv∗/ ∥v∥2, Pv = I−vv∗/ ∥v∥2, the projections onto the span of the vector v and

its orthogonal complement.

C, c, Ck, ck C, c and all indexed versions for absolute constants with local scopes

X ∼ L random variable X distributed by the law L

N (0, In) standard Gaussian distribution in Rn

CN (n) standard complex Gaussian distribution in Cn

xi



Ber(θ) standard Bernoulli distribution with parameter θ

X ∼i.i.d. L elements in (vector- or matrix-valued) X independent, identically distributed by the

law L

X ∼ BG(θ) X =W · Z with W ∼ Ber(θ) and independently W ∼ N (0, 1)

⊛ circulant convolution

Ca the circulant matrix generated from a vector a

w.h.p. short for “with high probability”

i.i.d. short for “independent, identically distributed”

w.l.o.g. short for “without loss of generality”

w.r.t. short for “with respect to”

(C)DL short for “(complete) dictionary learning”

(C)DR short for “(complete) dictionary recovery”

GPR short for “generalized phase retrieval”

TRM short for “trust region method”
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Part I

Overview
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Today we are living in an era of information explosion. As the sensors and sensing modalities prolifer-

ate, our world is inundated by unprecedented quantities of data, in the form of images and videos, gene

expression data, web links, product rankings and more. For instance, cameras, hyperspectral sensors, etc.,

produce observations with millions, or even billions of dimensions (see Fig. 1 for an illustration). There is

a pressing need for efficient, scalable and robust optimization methods to analyze the data we create and

collect. Classical convex methods offer tractable solutions with global optimality (see Fig. 2). In contrast,

for many applications heuristic nonconvex methods are more attractive due to their superior efficiency and

scalability. Moreover, for better representations of the data, we are building increasingly complicated math-

ematical models, which often naturally results in highly nonlinear and nonconvex optimizations problems.

Both of these challenges require us to go beyond convex optimization.

Figure 1: An illustration of high-dimensional data: hyperspectral data cube.

Figure 2: An illustration of function landscapes of convex problem (left), general nonconvex problems (middle), and
“nice” nonconvex functions (right).

Recent advances in nonconvex optimization show that it has the potential to surmount both of these new

challenges. Phase retrieval [CLS15b, CC15, SQW16], sparse coding [AAN13, SQW15a, AGMM15], deep neu-

ral networks [Kaw16], matrix and tensor factorization [TBSR15, ZL15], and dynamical systems [HMR16] are
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some representative examples, where non-convex methods provide us dramatically more flexible, scalable,

and effective computational tools. While nonconvex optimization is extraordinarily successful in practice,

unlike convex optimization, guaranteeing the correctness of nonconvex methods is notoriously difficult. In

theory, even finding a local minimum of a general nonconvex function is NP-hard [MK87] – nevermind the

global minimum, which is the true object of our interest.

0.1 Contribution of the Thesis

The thesis bridges the gap between practice and theory of nonconvex optimization, by developing global

optimality guarantees for several nonconvex problems arising in real-world engineering applications, and

provable, efficient nonconvex optimization algorithms.

Finding a sparse vector in a subspace One of the fundamental nonconvex problems in signal processing

and machine learning is the dictionary learning problem. Effective solutions to this problem play a crucial

role in Effective solutions to this problem play a crucial role in many applications spanning low-level image

processing to high-level visual recognition [MBP14]. The goal of complete dictionary learning, is to seek a

compact representation

Y︸︷︷︸
Data

= Q︸︷︷︸
Dictionary

X︸︷︷︸
Sparse Coefficients

of input data Y ∈ Rn×p, where Q ∈ Rn×n is a complete dictionary (square and invertible), and X ∈ Rn×p

should be as sparse as possible. Because Q is complete, the row space of Y equals to the row space of X ,

i.e., row(Y ) = row(X): the rows of X are the sparsest vectors in the subspace S = row(Y ) [SWW12a].

Therefore, solving complete dictionary learning problem is equivalent to finding the sparsest non-zero vector

in a given subspace S. Mathematically, can we globally solve a nonconvex problem

min
x
∥x∥1 , x ∈ S, ∥x∥ = 1 ? (0.1.1)

Beyond dictionary learning, variants of the problem (0.1.1) have appeared in the context of applications to

numerical linear algebra [CP86], graphical model learning [ZF13], nonrigid structure from motion [DLH12],

spectral estimation and Prony’s problem [BM05], sparse PCA [ZHT06], and blind source separation [ZP01].

For a simple and idealized planted sparse subspace S, where there is only one sparse vector planted in

an otherwise random subspace, the work in Part II shows that there exist efficient nonconvex methods that



4

Figure 3: Function landscape of planted sparse vector
model

Figure 4: Function landscape of dictionary
learning model

provably find the global solution with special initialization. For the dictionary learning setting, where the

basis of S = row(Y ) are all sparse vectors, Part III shows that the problem (0.1.1) has no spurious local

minima and all local minima correspond to the sparse basis.

Figure 5: Evidence of global optima on real data problems: the final objective value does not depend on initialization.

Moreover, our results have provided new insights into the optimization landscape of the objective (0.1.1)

(see Fig. 3 and Fig. 4): for the idealized planted sparse model, the planted sparse vector is a local minimum

around which the function is local strongly convex (Fig. 3); for complete dictionary learning, the function

landscape is highly symmetric and the sphere can be partitioned into strong convexity, large gradient, and

negative curvature regions (see Fig. 4 and Fig. 6), and all saddle points can be escaped by using negative

curvature information. The geometric analysis provides us new insights to design more efficient nonconvex

optimization methods, and provides better explanations of algorithmic performance on real data. Fig. 5

shows evidence of global recovery in dictionary learning from natural image patches: over many random

initializations, the algorithm yields the same final objective value, and the same dictionary, up to a scaled

permutation of the columns.
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Figure 6: Regions of ridable saddle functions.

Ridable saddle functions The geometric result on complete dictionary learning in Part III leads to the

discovery of a broader class of nonconvex functions, which we call ridable saddle functions1 [SQW15d]. More

concretely, a function f(x) :M 7→ R is ridable saddle if all points x satisfy at least one of the following: (a)

the gradient grad f(x) is large; (b) the Hessian Hess f(x) has a negative eigenvalue that is bounded away

from 0; (c) x is near a local minimum, around which the function is strongly convex (see Fig. 6 for an

illustration). In particular, a function f(x) :M 7→ R is (α, β, γ, δ)-ridable saddle if it satisfies:

Definition 0.1 ((α, β, γ, δ)-ridable saddle function) A function f : M 7→ R is (α, β, γ, δ) ridable saddle,

i.e., any point x ∈M obeys at least one of the following: (TxM is the tangent space ofM at point x)

1) [Strong gradient] ∥grad f(x)∥ ≥ β;

2) [Negative curvature] There exists v ∈ TxM with ∥v∥ = 1 such that ⟨Hess f(x)[v],v⟩ ≤ −α;

3) [Strong convexity around minimizers] There exists a local minimizer x⋆ such that ∥x− x⋆∥ ≤ δ, and

for all y ∈M that is in 2δ neighborhood of x⋆, ⟨Hess f(y)[v],v⟩ ≥ γ for any v ∈ TyM with ∥v∥ = 1, i.e., the

function f is γ-strongly convex in 2δ neighborhood of x⋆.

We remark in passing that requiring a function to be ridable may appear far too restrictive than it actually

is. Indeed, one of the central results in Morse theory implies that a generic smooth function is ridable. This

new geometric insight not only helps us design more efficient nonconvex optimization algorithms [NP06,

GHJY15, LSJR16, JGN+17], but also shed light on solving other nonconvex problems in practice such as the

generalized phase retrieval studied in this thesis.

Phase retrieval The phase retrieval problem tries to recover a signal x ∈ Cn from nonlinear measurements

of the form y = |Ax|, where A ∈ Cm×n represents a linear map. Solving phase retrieval problem has

1It coincides with recent development in orthogonal tensor decomposition [GHJY15], where they discovered similar properties and
call the function strict saddle.
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Figure 7: Phase retrieval for coded diffraction
imaging, image courtesy of [SEC+15]

Figure 8: Function landscape of (0.1.2) in R2: only
global minima and saddle points.

broad applications in X-ray crystallography, microscopy, astronomy, diffraction and array imaging2, and

optics [SEC+15] . To recover x, it is natural to consider minimizing the following nonconvex Gaussian log-

likelihood function [CL14]

min
z∈Cn

f(z)
.
=

1

2m

m∑
k=1

(
y2k − |a∗kz|

2
)2
. (0.1.2)

When the sensing vectorsak are independent and complex Gaussian, Part IV of this thesis reveals that f(z) is

a ridable-saddle function (see Fig. 8 for a visualization of 2D real case) withm ∼ O(n log3 n) samples, which

allows efficient, initialization free nonconvex optimization. In contrast, known convex methods require

solving a huge semi-definite programming (SDP) problem [CSV13]. Again, our success derives from the

benign geometric structure underlying the objective function (0.1.2): under natural data models, the function

has a large sample limit, which (i) has no spurious local minima and (ii) can be optimized efficiently.

In real applications, the sensing matrix A is much more structured than the idealized i.i.d. Gaussian

model. Motivated by applications such as channel estimation and noncoherent optical communication, Part V

of this thesis studied a convolutional model, y = |a⊛ x|. The measurements are generated by passing

the signal x through a filter a ∈ Cm, where ⊛ denotes cyclic convolution. The convolutional structure also

has huge benefits in computation by using fast Fourier transform. However, if we assume a is complex

Gaussian, the statistical dependence across entries of y poses great challenges for analysis. By using tools

of decoupling theory and suprema of chaos processes of random circulant matrices, the result in Part V shows that

by optimizing a nonconvex objective using a simple gradient descent method, it recovers the true target x

with m ∼ O(npoly log n) samples.

2See Fig. 7 for an example of diffraction imaging.
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0.2 Organization

The rest of the thesis is organized as follows. In Part II and Part V, we show that for certain structured

nonconvex problems (i.e., finding the sparsest vector in a subspace and convolutional phase retrieval), we

can construct an model specialized initialization that is close to the optimal solution, so that simple and

efficient methods provably converge to the global solution. In addition, the work in Part III and Part IV have

led to the discovery of ridable saddle (or strict saddle [GHJY15]) functions – a broader class of nonconvex

problems with benign geometric structure, that allows efficient and initialization free global optimization

[SQW15d, GHJY15]. In Part III and Part IV, we show that when data are large and random, many problems

in the real world are indeed ridable saddle, those problems include generalized phase retrieval (Part IV) and

complete dictionary learning (Part III). Finally, in Part VI we conclude the thesis and discuss about future

directions based on the current results. All the basic technical details are deferred to the appendices.
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Part II

Finding a Sparse Vector in a Subspace
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Is it possible to find the sparsest vector (direction) in a generic subspace S ⊆ Rp with dim (S) = n < p?

This problem can be considered a homogeneous variant of the sparse recovery problem, and finds connec-

tions to sparse dictionary learning, sparse PCA, and many other problems in signal processing and machine

learning. In this paper, we focus on a planted sparse model for the subspace: the target sparse vector is embed-

ded in an otherwise random subspace. Simple convex heuristics for this planted recovery problem provably

break down when the fraction of nonzero entries in the target sparse vector substantially exceeds O(1/
√
n).

In contrast, we exhibit a relatively simple nonconvex approach based on alternating directions, which prov-

ably succeeds even when the fraction of nonzero entries is Ω(1). To the best of our knowledge, this is the

first practical algorithm to achieve linear scaling under the planted sparse model. Empirically, our proposed

algorithm also succeeds in more challenging data models, e.g., sparse dictionary learning.

This part is based on our paper [QSW14]. The rest of Part II is organized as follows. In Chapter 2,

we provide a nonconvex formulation and show its capability of recovering the sparse vector. Chapter 3

introduces the alternating direction algorithm. In Chapter 4, we present our main results and sketch the

proof ideas. Experimental evaluation of our method is provided in Chapter 5. We conclude the paper by

drawing connections to related work and discussing potential improvements in Chapter 6. The main proof

details are retained to Chapter 7. Other basic auxiliary results are all deferred to Appendix A.



CHAPTER 1. INTRODUCTION 10

Chapter 1

Introduction

Suppose that a linear subspace S embedded in Rp contains a sparse vector x0 ̸= 0. Given an arbitrary

basis of S, can we efficiently recover x0 (up to scaling)? Equivalently, provided a matrix A ∈ R(p−n)×p with

Null(A) = S , 1 can we efficiently find a nonzero sparse vector x such that Ax = 0? In the language of

sparse recovery, can we solve

min
x
∥x∥0 s.t. Ax = 0, x ̸= 0 ? (1.0.1)

In contrast to the standard sparse recovery problem (Ax = b, b ̸= 0), for which convex relaxations perform

nearly optimally for broad classes of designs A [CT05, Don06], the computational properties of problem

(1.0.1) are not nearly as well understood. It has been known for several decades that the basic formulation

min
x
∥x∥0 , s.t. x ∈ S \ {0}, (1.0.2)

is NP-hard for an arbitrary subspace [McC83, CP86]. In this part of the thesis, we assume a specific random

planted sparse model for the subspace S: a target sparse vector is embedded in an otherwise random subspace.

We will show that under the specific random model, problem (1.0.2) is tractable by an efficient algorithm

based on nonconvex optimization.

1 Null(A)
.
= {x ∈ Rp | Ax = 0} denotes the null space of A.
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1.1 Motivation

The general version of Problem (1.0.2), in which S can be an arbitrary subspace, takes several forms in

numerical computation and computer science, and underlies several important problems in modern signal

processing and machine learning. Below we provide a sample of these applications.

Sparse Null Space and Matrix Sparsification: The sparse null space problem is finding the sparsest matrix

N whose columns span the null space of a given matrix A. The problem arises in the context of solving

linear equality problems in constrained optimization [CP86], null space methods for quadratic program-

ming [BHK+85], and solving underdetermined linear equations [GH87]. The matrix sparsification problem

is of similar flavor, the task is finding the sparsest matrix B which is equivalent to a given full rank ma-

trix A under elementary column operations. Sparsity helps simplify many fundamental matrix operations

(see [DER86]), and the problem has applications in areas such as machine learning [SS00] and in discovering

cycle bases of graphs [KMMP04]. [GN10] discusses connections between the two problems and also to other

problems in complexity theory.

Sparse (Complete) Dictionary Learning: In dictionary learning, given a data matrixY , one seeks an approx-

imation Y ≈ AX , such that A is a representation dictionary with certain desired structure and X collects

the representation coefficients with maximal sparsity. Such compact representation naturally allows sig-

nal compression, and also facilitates efficient signal acquisition and classification (see relevant discussion

in [MBP14]). When A is required to be complete (i.e., square and invertible), by linear algebra, we have2

row(Y ) = row(X) [SWW12b]. Then the problem reduces to finding sparsest vectors (directions) in the

known subspace row(Y ), i.e. (1.0.2). Insights into this problem have led to new theoretical developments

on complete dictionary learning [SWW12b, HD13, SQW15a].

Sparse Principal Component Analysis (Sparse PCA): In geometric terms, Sparse PCA (see, e.g., [ZHT06,

JL09, dEGJL07] for early developments and [KNV+15, MW15] for discussion of recent results) concerns

stable estimation of a linear subspace spanned by a sparse basis, in the data-poor regime, i.e., when the

available data are not numerous enough to allow one to decouple the subspace estimation and sparsification

tasks. Formally, given a data matrix Z = U0X0 +E,3 where Z ∈ Rp×n collects column-wise n data points,

U0 ∈ Rp×r is the sparse basis, and E is a noise matrix, one is asked to estimate U0 (up to sign, scale, and

permutation). Such a factorization finds applications in gene expression, financial data analysis and pattern

2Here, row(·) denotes the row space.
3Variants of multiple-component formulations often add an additional orthonormality constraint on U0 but involve a different

notation of sparsity; see, e.g., [ZHT06, VCLR13, LV+15a, WLL14].
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recognition [dEJL07]. When the subspace is known (say by the PCA estimator with enough data samples),

the problem again reduces to instances of (1.0.2) and is already nontrivial4. The full geometric sparse PCA

can be treated as finding sparse vectors in a subspace that is subject to perturbation.

In addition, variants and generalizations of the problem (1.0.2) have also been studied in applications

regarding control and optimization [ZF13], nonrigid structure from motion [DLH12], spectral estimation

and Prony’s problem [BM05], outlier rejection in PCA [MR15], blind source separation [ZP01], graphical

model learning [AHJK13], and sparse coding on manifolds [HXV13]; see also [NSU15] and the references

therein.

1.2 Prior Arts

Despite these potential applications of problem (1.0.2), it is only very recently that efficient computational

surrogates with nontrivial recovery guarantees have been discovered for some cases of practical interest. In

the context of sparse dictionary learning, Spielman et al. [SWW12b] introduced a convex relaxation which

replaces the nonconvex problem (1.0.2) with a sequence of linear programs:

ℓ1/ℓ∞ Relaxation: min
x
∥x∥1 , s.t. x(i) = 1, x ∈ S, 1 ≤ i ≤ p. (1.2.1)

They proved that when S is generated as a span of n random sparse vectors, with high probability (w.h.p.),

the relaxation recovers these vectors, provided the probability of an entry being nonzero is at most θ ∈

O (1/
√
n). In the planted sparse model, in which S is formed as direct sum of a single sparse vector x0 and a

“generic” subspace, Hand and Demanet proved that (1.2.1) also correctly recovers x0, provided the fraction

of nonzeros in x0 scales as θ ∈ O (1/
√
n) [HD13]. One might imagine improving these results by tightening

the analyses. Unfortunately, the results of [SWW12b, HD13] are essentially sharp: when θ substantially exceeds

Ω(1/
√
n), in both models the relaxation (1.2.1) provably breaks down. Moreover, the most natural semidefinite

programming (SDP) relaxation of (1.0.1),

min
X
∥X∥1 , s.t.

⟨
A⊤A,X

⟩
= 0, trace[X] = 1, X ⪰ 0. (1.2.2)

also breaks down at exactly the same threshold of θ ∼ O(1/
√
n).5

4[HD13] has also discussed this data-rich sparse PCA setting.
5This breakdown behavior is again in sharp contrast to the standard sparse approximation problem (with b ̸= 0), in which it is

possible to handle very large fractions of nonzeros (say, θ = Ω(1/ logn), or even θ = Ω(1)) using a very simple ℓ1 relaxation [CT05,
Don06]
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Table 1.1: Comparison of existing methods for recovering a planted sparse vector in a subspace

Method Recovery Condition Time Complexity6

ℓ1/ℓ∞ Relaxation [HD13] θ ∈ O(1/
√
n) O(n3p log(1/ε))

SDP Relaxation θ ∈ O(1/
√
n) O

(
p3.5 log (1/ε)

)
SOS Relaxation [BKS13b] p ≥ Ω(n2), θ ∈ O(1) ∼ O(p7 log(1/ε)) 7

Spectral Method [HSSS15] p ≥ Ω(n2poly log(n)), θ ∈ O(1) O (np log(1/ϵ))
This work p ≥ Ω(n4 log n), θ ∈ O(1) O(n5p2 log n+ n3p log(1/ε))

One might naturally conjecture that this 1/
√
n threshold is simply an intrinsic price we must pay for

having an efficient algorithm, even in these random models. Some evidence towards this conjecture might

be borrowed from the superficial similarity of (1.0.2)-(1.2.2) and sparse PCA [ZHT06]. In sparse PCA, there

is a substantial gap between what can be achieved with currently available efficient algorithms and the

information theoretic optimum [BR13, KNV+15]. Is this also the case for recovering a sparse vector in a

subspace? Is θ ∈ O (1/
√
n) simply the best we can do with efficient, guaranteed algorithms?

Remarkably, this is not the case. Recently, Barak et al. introduced a new rounding technique for sum-of-

squares relaxations, and showed that the sparse vectorx0 in the planted sparse model can be recovered when

p ≥ Ω
(
n2
)

and θ = Ω(1) [BKS13b]. It is perhaps surprising that this is possible at all with a polynomial

time algorithm. Unfortunately, the runtime of this approach is a high-degree polynomial in p (see Table

1.1); for machine learning problems in which p is often either the feature dimension or the sample size, this

algorithm is mostly of theoretical interest only. However, it raises an interesting algorithmic question: Is

there a practical algorithm that provably recovers a sparse vector with θ ≫ 1/
√
n portion of nonzeros from a generic

subspace S?

1.3 Contributions and Recent Developments

In this thesis, we address the above problem under the planted sparse model. We allow x0 to have up to

θ0p nonzero entries, where θ0 ∈ (0, 1) is a constant. We provide a relatively simple algorithm which, w.h.p.,

exactly recovers x0, provided that p ≥ Ω
(
n4 log n

)
. A comparison of our results with existing methods is

shown in Table 1.1. After publication of this work, Hopkins et al. [HSSS15] proposed a different simple

algorithm based on the spectral method. This algorithm guarantees recovery of the planted sparse vector

6All estimates here are based on the standard interior point methods for solving linear and semidefinite programs. Customized
solvers may result in order-wise speedup for specific problems. ε is the desired numerical accuracy.

7Here our estimation is based on the degree-4 SOS hierarchy used in [BKS13b] to obtain an initial approximate recovery.
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also up to linear sparsity, whenever p ≥ Ω(n2polylog(n)), and comes with better time complexity.8

Our algorithm is based on alternating directions, with two special twists. First, we introduce a special

data driven initialization, which seems to be important for achieving θ = Ω(1). Second, our theoretical

results require a second, linear programming based rounding phase, which is similar to [SWW12b]. Our

core algorithm has very simple iterations, of linear complexity in the size of the data, and hence should be

scalable to moderate-to-large scale problems.

Besides enjoying the θ ∼ Ω(1) guarantee that is out of the reach of previous practical algorithms, our

algorithm performs well in simulations – empirically succeeding with p ≥ Ω(n polylog(n)). It also per-

forms well empirically on more challenging data models, such as the complete dictionary learning model,

in which the subspace of interest contains not one, but n random target sparse vectors. This is encouraging,

as breaking the O(1/
√
n) sparsity barrier with a practical algorithm and optimal guarantee is an important

problem in theoretical dictionary learning [AGM13, AAN13, AAJ+13, ABGM14, AGMM15]. In this regard,

our recent work [SQW15a] presents an efficient algorithm based on Riemannian optimization that guaran-

tees recovery up to linear sparsity. However, the result is based on different ideas: a different nonconvex

formulation, optimization algorithm, and analysis methodology.

8Despite these improved guarantees in the planted sparse model, our method still produces more appealing results on real imagery
data – see Section 5 for examples.
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Chapter 2

Problem Formulation and Global

Optimality

We study the problem of recovering a sparse vector x0 ̸= 0 (up to scale), which is an element of a known

subspace S ⊂ Rp of dimension n, provided an arbitrary orthonormal basis Y ∈ Rp×n for S. Our starting

point is the nonconvex formulation (1.0.2). Both the objective and the constraint set are nonconvex, and

hence it is not easy to optimize over. We relax (1.0.2) by replacing the ℓ0 norm with the ℓ1 norm. For the

constraint x ̸= 0, since in most applications we only care about the solution up to scaling, it is natural to

force x to live on the unit sphere Sn−1, giving

min
x
∥x∥1 , s.t. x ∈ S, ∥x∥ = 1. (2.0.1)

This formulation is still nonconvex, and for general nonconvex problems it is known to be NP-hard to find

even a local minimizer [MK87]. Nevertheless, the geometry of the sphere is benign enough, such that for

well-structured inputs it actually will be possible to give algorithms that find the global optimizer.

The formulation (2.0.1) can be contrasted with (1.2.1), in which effectively we optimize the ℓ1 norm subject

to the constraint ∥x∥∞ = 1: because the set {x : ∥x∥∞ = 1} is polyhedral, the ℓ∞-constrained problem im-

mediately yields a sequence of linear programs. This is very convenient for computation and analysis. How-

ever, it suffers from the aforementioned breakdown behavior around ∥x0∥0 ∼ p/
√
n. In contrast, though the

sphere ∥x∥ = 1 is a more complicated geometric constraint, it will allow much larger number of nonzeros



CHAPTER 2. PROBLEM FORMULATION AND GLOBAL OPTIMALITY 16

in x0. Indeed, if we consider the global optimizer of a reformulation of (2.0.1):

min
q∈Rn

∥Y q∥1 , s.t. ∥q∥ = 1, (2.0.2)

where Y is any orthonormal basis for S, the sufficient condition that guarantees exact recovery under the

planted sparse model for the subspace is as follows:

Theorem 2.1 (ℓ1/ℓ2 recovery, planted sparse model) There exists a constant θ0 > 0, such that if the sub-

space S follows the planted sparse model

S = span (x0, g1, . . . , gn−1) ⊂ Rp,

where gi ∼i.i.d. N (0, 1pI), and x0 ∼i.i.d.
1√
θp
Ber(θ) are all jointly independent and 1/

√
n < θ < θ0, then the

unique (up to sign) optimizer q⋆ to (2.0.2), for any orthonormal basis Y of S, produces Y q⋆ = ξx0 for some

ξ ̸= 0 with probability at least 1− cp−2, provided p ≥ Cn. Here c and C are positive constants.

Hence, if we could find the global optimizer of (2.0.2), we would be able to recover x0 whose number of

nonzero entries is quite large – even linear in the dimension p (θ = Ω(1)). On the other hand, it is not obvious

that this should be possible: (2.0.2) is nonconvex. In the next section, we will describe a simple heuristic

algorithm for approximately solving a relaxed version of the ℓ1/ℓ2 problem (2.0.2). More surprisingly, we

will then prove that for a class of random problem instances, this algorithm, plus an auxiliary rounding

technique, actually recovers the global optimizer – the target sparse vector x0. The proof requires a detailed

probabilistic analysis, which is sketched in Section 4.

Before continuing, it is worth noting that the formulation (2.0.1) is in no way novel – see, e.g., the work

of [ZP01] in blind source separation for precedent. However, our algorithms and subsequent analysis are

novel.
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Chapter 3

Algorithm

To develop an algorithm for solving (2.0.2), it is useful to consider a slight relaxation of (2.0.2), in which we

introduce an auxiliary variable x ≈ Y q:

min
q,x

f(q,x)
.
=

1

2
∥Y q − x∥2 + λ ∥x∥1 , s.t. ∥q∥ = 1. (3.0.1)

Here, λ > 0 is a penalty parameter. It is not difficult to see that this problem is equivalent to minimizing the

Huber M-estimator over Y q. This relaxation makes it possible to apply the alternating direction method to

this problem. This method starts from some initial point q(0), alternates between optimizing with respect

to (w.r.t.) x and optimizing w.r.t. q:

x(k+1) = argmin
x

1

2

∥∥∥Y q(k) − x∥∥∥2 + λ ∥x∥1 , (3.0.2)

q(k+1) = argmin
q

1

2

∥∥∥Y q − x(k+1)
∥∥∥2 s.t. ∥q∥ = 1, (3.0.3)

where x(k) and q(k) denote the values of x and q in the k-th iteration. Both (3.0.2) and (3.0.3) have simple

closed form solutions:

x(k+1) = Sλ[Y q
(k)], q(k+1) =

Y ⊤x(k+1)∥∥Y ⊤x(k+1)
∥∥ , (3.0.4)

where Sλ [x] = sign(x)max {|x| − λ, 0} is the soft-thresholding operator. The proposed ADM algorithm is

summarized in Algorithm 0.

The algorithm is simple to state and easy to implement. However, if our goal is to recover the sparsest

vector x0, some additional tricks are needed.
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Algorithm 1 Nonconvex ADM for solving (3.0.1)
Input: A matrix Y ∈ Rp×n with Y ⊤Y = I , initialization q(0), threshold parameter λ > 0.
Output: The recovered sparse vector x̂0 = Y q(k)

for k = 0, . . . , O
(
n4 log n

)
do

x(k+1) = Sλ[Y q(k)],
q(k+1) = Y ⊤x(k+1)

∥Y ⊤x(k+1)∥ ,
end for

Initialization. Because the problem (2.0.2) is nonconvex, an arbitrary or random initialization may not

produce a global minimizer.1 In fact, good initializations are critical for the proposed ADM algorithm to

succeed in the linear sparsity regime. For this purpose, we suggest using every normalized row of Y as

initializations for q, and solving a sequence of p nonconvex programs (2.0.2) by the ADM algorithm.

To get an intuition of why our initialization works, recall the planted sparse modelS = span(x0, g1, . . . , gn−1)

and suppose

Y = [x0 | g1 | · · · | gn−1] ∈ Rp×n. (3.0.5)

If we take a row yi of Y , in which x0(i) is nonzero, then x0(i) = Θ
(
1/
√
θp
)
. Meanwhile, the entries of

g1(i), . . . gn−1(i) are all N (0, 1/p), and so their magnitude have size about 1/√p. Hence, when θ is not too

large, x0(i) will be somewhat bigger than most of the other entries in yi. Put another way, yi is biased towards

the first standard basis vector e1. Now, under our probabilistic model assumptions, Y is very well conditioned:

Y
⊤
Y ≈ I .2 Using the Gram-Schmidt process3, we can find an orthonormal basis Y for S via:

Y = Y R, (3.0.6)

where R is upper triangular, and R is itself well-conditioned: R ≈ I . Since the i-th row yi of Y is biased

in the direction of e1 and R is well-conditioned, the i-th row yi of Y is also biased in the direction of e1. In

other words, with this canonical orthobasis Y for the subspace, the i-th row of Y is biased in the direction of the

global optimizer. The heuristic arguments are made rigorous in Appendix A.2 and Section 7.2.

What if we are handed some other basis Ŷ = Y U , where U is an arbitary orthogonal matrix? Suppose

q⋆ is a global optimizer to (2.0.2) with the input matrix Y , then it is easy to check that, U⊤q⋆ is a global

1More precisely, in our models, random initialization does work, but only when the subspace dimension n is extremely low compared
to the ambient dimension p.

2This is the common heuristic that “tall random matrices are well conditioned” [Ver10].
3...QR decomposition in general with restriction that R11 = 1.
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optimizer to (2.0.2) with the input matrix Ŷ . Because

⟨
(Y U)⊤ei,U

⊤q⋆
⟩
=
⟨
Y ⊤ei, q⋆

⟩
,

our initialization is invariant to any rotation of the orthobasis. Hence, even if we are handed an arbitrary orthoba-

sis for S, the i-th row is still biased in the direction of the global optimizer.

Rounding by linear programming (LP). Let q denote the output of Algorithm ??. As illustrated in Fig.

4.1, we will prove that with our particular initialization and an appropriate choice of λ, ADM algorithm

uniformly moves towards the optimal over a large portion of the sphere, and its solution falls within a

certain small radius of the globally optimal solution q⋆ to (2.0.2). To exactly recover q⋆, or equivalently to

recover the exact sparse vector x0 = γY q⋆ for some γ ̸= 0, we solve the linear program

min
q
∥Y q∥1 s.t. ⟨r, q⟩ = 1 (3.0.7)

with r = q. Since the feasible set {q | ⟨q, q⟩ = 1} is essentially the tangent space of the sphere Sn−1 at q,

whenever q is close enough to q⋆, one should expect that the optimizer of (3.0.7) exactly recovers q⋆ and

hence x0 up to scale. We will prove that this is indeed true under appropriate conditions.
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Chapter 4

Main Result and Sketch of Analysis

4.1 Main Results

In this section, we describe our main theoretical result, which shows that w.h.p. the algorithm described in

the previous section succeeds.

Theorem 4.1 Suppose that S obeys the planted sparse model, and let the columns of Y form an arbitrary or-

thonormal basis for the subspace S. Let y1, . . . ,yp ∈ Rn denote the (transposes of) the rows of Y . Apply Algo-

rithm ?? with λ = 1/
√
p, using initializations q(0) = y1/

∥∥y1
∥∥ , . . . ,yp/ ∥yp∥, to produce outputs q1, . . . , qp.

Solve the linear program (3.0.7) with r = q1, . . . , qp, to produce q̂1, . . . , q̂p. Set i⋆ ∈ argmini ∥Y q̂i∥1. Then

Y q̂i⋆ = γx0, (4.1.1)

for some γ ̸= 0 with probability at least 1− cp−2, provided

p ≥ Cn4 log n, and 1√
n
≤ θ ≤ θ0. (4.1.2)

Here C, c and θ0 are positive constants.

Remark 4.2 We can see that the result in Theorem 4.1 is suboptimal in sample complexity compared to the global

optimality result in Theorem 2.1 and Barak et al.’s result [BKS13b] (and the subsequent work [HSSS15]). For

successful recovery, we require p ≥ Ω
(
n4 log n

)
, while the global optimality and Barak et al. demand p ≥ Ω(n)

and p ≥ Ω
(
n2
)
, respectively. Aside from possible deficiencies in our current analysis, compared to Barak et al.,

we believe this is still the first practical and efficient method which is guaranteed to achieve θ ∼ Ω(1) rate. The
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lower bound on θ in Theorem 4.1 is mostly for convenience in the proof; in fact, the LP rounding stage of our

algorithm already succeeds w.h.p. when θ ∈ O (1/
√
n).

4.2 A Sketch of Analysis

In this section, we briefly sketch the main ideas of proving our main result in Theorem 4.1, to show that

the “initialization + ADM + LP rounding” pipeline recovers x0 under the stated technical conditions, as

illustrated in Fig. 4.1. The proof of our main result requires rather detailed technical analysis of the iteration-

by-iteration properties of Algorithm 0, most of which is deferred to the appendices.

e1
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1
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p
θn
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p

θ
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θ
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�
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Figure 4.1: An illustration of the proof sketch for our ADM algorithm.

As noted in Section 3, the ADM algorithm is invariant to change of basis. So w.l.o.g., let us assume

Y = [x0 | g1 | · · · | gn−1] and let Y to be its orthogonalization, i.e., 1

Y =

[
x0

∥x0∥
| Px⊥

0
G
(
G⊤Px⊥

0
G
)−1/2]

. (4.2.1)

When p is large, Y is nearly orthogonal, and hence Y is very close to Y . Thus, in our proofs, whenever

convenient, we make the arguments on Y first and then “propagate” the quantitative results onto Y by

perturbation arguments. With that noted, let y1, · · · ,yp be the transpose of the rows of Y , and note that

these are all independent random vectors. To prove the result of Theorem 4.1, we need the following results.

First, given the specified Y , we show that our initialization is biased towards the global optimum:

1Note that with probability one, the inverse matrix square-root in Y is well defined. So Y is well defined w.h.p. (i.e., except for
x0 = 0). See more quantitative characterization of Y in Appendix A.2.
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Proposition 4.3 (Good initialization) Suppose θ > 1/
√
n and p ≥ Cn. It holds with probability at least

1− cp−2 that at least one of our p initialization vectors suggested in Section 3, say q
(0)
i = yi/

∥∥yi∥∥, obeys∣∣∣∣⟨ yi

∥yi∥
, e1

⟩∣∣∣∣ ≥ 1

10
√
θn
. (4.2.2)

Here C, c are positive constants.

Proof See Section 7.2.

Second, we define a vector-valued random process Q(q) on q ∈ Sn−1, via

Q(q) =
1

p

p∑
i=1

yiSλ
[
q⊤yi

]
, (4.2.3)

so that based on (3.0.4), one step of the ADM algorithm takes the form:

q(k+1) =
Q
(
q(k)

)∥∥Q (q(k)
)∥∥ (4.2.4)

This is a very favorable form for analysis: the term in the numerator Q
(
q(k)

)
is a sum of p independent

random vectors with q(k) viewed as fixed. We study the behavior of the iteration (4.2.4) through the random

process Q
(
q(k)

)
. We want to show that w.h.p. the ADM iterate sequence q(k) converges to some small

neighborhood of±e1, so that the ADM algorithm plus the LP rounding (described in Section 3) successfully

retrieves the sparse vector x0/∥x0∥ = Y e1. Thus, we hope that in general, Q(q) is more concentrated on the

first coordinate than q ∈ Sn−1. Let us partition the vector q as q = [q1; q2], with q1 ∈ R and q2 ∈ Rn−1; and

correspondingly Q(q) = [Q1(q);Q2(q)]. The inner product of Q(q)/ ∥Q(q)∥ and e1 is strictly larger than

the inner product of q and e1 if and only if

|Q1(q)|
|q1|

>
∥Q2(q)∥
∥q2∥

.

In the following proposition, we show that w.h.p., this inequality holds uniformly over a significant portion

of the sphere

Γ
.
=

{
q ∈ Sn−1 | 1

10
√
nθ
≤ |q1| ≤ 3

√
θ, ∥q2∥ ≥

1

10

}
, (4.2.5)

so the algorithm moves in the correct direction. Let us define the gap G(q) between the two quantities

|Q1(q)| / |q1| and ∥Q2(q)∥ / ∥q2∥ as

G(q)
.
=
|Q1(q)|
|q1|

−
∥Q2(q)∥
∥q2∥

, (4.2.6)
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and we show that the following result is true:

Proposition 4.4 (Uniform lower bound for finite sample gap) There exists a constant θ0 ∈ (0, 1), such

that when p ≥ Cn4 log n, the estimate

inf
q∈Γ

G(q) ≥ 1

104θ2np

holds with probability at least 1− cp−2, provided θ ∈ (1/
√
n, θ0). Here C, c are positive constants.

Proof See Section 7.3.

Next, we show that whenever |q1| ≥ 3
√
θ, w.h.p. the iterates stay in a “safe region” with |q1| ≥ 2

√
θ

which is enough for LP rounding (3.0.7) to succeed.

Proposition 4.5 (Safe region for rounding) There exists a constant θ0 ∈ (0, 1), such that when p ≥ Cn4 log n,

it holds with probability at least 1− cp−2 that

|Q1(q)|
∥Q(q)∥

≥ 2
√
θ

for all q ∈ Sn−1 satisfying |q1| > 3
√
θ, provided θ ∈ (1/

√
n, θ0). Here C, c are positive constants.

Proof See Section 7.4.

In addition, the following result shows that the number of iterations for the ADM algorithm to reach the

safe region can be bounded grossly by O(n4 log n) w.h.p..

Proposition 4.6 (Iteration complexity of reaching the safe region) There is a constant θ0 ∈ (0, 1), such

that when p ≥ Cn4 log n, it holds with probability at least 1 − cp−2 that the ADM algorithm in Algorithm 0,

with any initialization q(0) ∈ Sn−1 satisfying
∣∣∣q(0)1

∣∣∣ ≥ 1
10
√
θn

, will produce some iterate q with |q̄1| > 3
√
θ at

least once in at most O(n4 log n) iterations, provided θ ∈ (1/
√
n, θ0). Here C, c are positive constants.

Proof See Section 7.5.

Moreover, we show that the LP rounding (3.0.7) with input r = q exactly recovers the optimal solution

w.h.p., whenever the ADM algorithm returns a solution q with first coordinate |q1| > 2
√
θ.

Proposition 4.7 (Success of rounding) There is a constant θ0 ∈ (0, 1), such that when p ≥ Cn, the following

holds with probability at least 1− cp−2 provided θ ∈ (1/
√
n, θ0): Suppose the input basis is Y defined in (4.2.1)
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and the ADM algorithm produces an output q ∈ Sn−1 with |q1| > 2
√
θ. Then the rounding procedure with

r = q returns the desired solution ±e1. Here C, c are positive constants.

Proof See Section 7.6.

Finally, given p ≥ Cn4 log n for a sufficiently large constant C, we combine all the results above to com-

plete the proof of Theorem 4.1.

Proof [Proof of Theorem 4.1]

W.l.o.g., let us again first considerY as defined in (3.0.5) and its orthogonalizationY in a “natural/canonical”

form (4.2.1). We show that w.h.p. our algorithmic pipeline described in Section 3 exactly recovers the opti-

mal solution up to scale, via the following argument:

1. Good initializers. Proposition 4.3 shows that w.h.p., at least one of the p initialization vectors, say

q
(0)
i = yi/

∥∥yi∥∥, obeys ∣∣∣⟨q(0)
i , e1

⟩∣∣∣ ≥ 1

10
√
θn
,

which implies that q(0)
i is biased towards the global optimal solution.

2. Uniform progress away from the equator. By Proposition 4.4, for any θ ∈ (1/
√
n, θ0) with a constant

θ0 ∈ (0, 1),

G(q) =
|Q1(q)|
|q1|

−
∥Q2(q)∥
∥q∥

≥ 1

104θ2np
(4.2.7)

holds uniformly for all q ∈ Sn−1 in the region 1
10
√
θn
≤ |q1| ≤ 3

√
θ w.h.p.. This implies that with an

input q(0) such that
∣∣∣q(0)1

∣∣∣ ≥ 1
10
√
θn

, the ADM algorithm will eventually obtain a point q(k) for which∣∣q(k)∣∣ ≥ 3
√
θ, if sufficiently many iterations are allowed.

3. No jumps away from the caps. Proposition 4.5 shows that for any θ ∈ (1/
√
n, θ0) with a constant

θ0 ∈ (0, 1), w.h.p.,

Q1(q)

∥Q(q)∥
≥ 2
√
θ

holds for all q ∈ Sn−1 with |q1| ≥ 3
√
θ. This implies that once |q(k)1 | ≥ 3

√
θ for some iterate k, all the

future iterates produced by the ADM algorithm stay in a “spherical cap” region around the optimum

with |q1| ≥ 2
√
θ.

4. Location of stopping points. As shown in Proposition 4.6, w.h.p., the strictly positive gap G(q) in
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(4.2.7) ensures that one needs to run at most O
(
n4 log n

)
iterations to first encounter an iterate q(k)

such that |q(k)1 | ≥ 3
√
θ. Hence, the steps above imply that, w.h.p., Algorithm 0 fed with the proposed

initialization scheme successively produces iterates q ∈ Sn−1 with its first coordinate |q1| ≥ 2
√
θ after

O
(
n4 log n

)
steps.

5. Rounding succeeds when |r1| ≥ 2
√
θ. Proposition 4.7 proves that w.h.p., the LP rounding (3.0.7) with

an input r = q produces the solution ±x0 up to scale.

Taken together, these claims imply that from at least one of the initializers q(0), the ADM algorithm will

produce an output q which is accurate enough for LP rounding to exactly return x0/∥x0∥2. On the other

hand, our ℓ1/ℓ2 optimality theorem (Theorem 2.1) implies that±x0 are the unique vectors with the smallest

ℓ1 norm among all unit vectors in the subspace. Since w.h.p. x0/∥x0∥2 is among the p unit vectors q̂1, . . . , q̂p

our p row initializers finally produce, our minimal ℓ1 norm selector will successfully locate x0/∥x0∥2 vector.

For the general case when the input is an arbitrary orthonormal basis Ŷ = Y U for some orthogonal

matrix U , the target solution is U⊤e1. The following technical pieces are perfectly parallel to the argument

above for Y .

1. Discussion at the end of Section 7.2 implies that w.h.p., at least one row of Ŷ provides an initial point

q(0) such that
∣∣⟨q(0),U⊤e1

⟩∣∣ ≥ 1
10
√
θn

.

2. Discussion following Proposition 4.4 in Section 7.3 indicates that for all q such that 1
10
√
θn
≤
∣∣⟨q,U⊤e1⟩∣∣ ≤

3
√
θ, there is a strictly positive gap, indicating steady progress towards a point q(k) such that

∣∣⟨q(k),U⊤e1
⟩∣∣ ≥

3
√
θ.

3. Discussion at the end of Section 7.4 implies that once q satisfies
∣∣⟨q,U⊤e1⟩∣∣, the next iterate will not

move far away from the target:∣∣∣⟨Q(q; Ŷ ) / ∥∥∥Q(q; Ŷ )∥∥∥ ,U⊤e1⟩∣∣∣ ≥ 2
√
θ.

4. Repeating the argument in Section 7.5 for general input Ŷ shows it is enough to run the ADM algo-

rithm O
(
n4 log n

)
iterations to cross the range 1

10
√
θn
≤
∣∣⟨q,U⊤e1⟩∣∣ ≤ 3

√
θ. So the argument above

together dictates that with the proposed initialization, w.h.p., the ADM algorithm produces an output

q that satisfies
∣∣⟨q,U⊤e1⟩∣∣ ≥ 2

√
θ, if we run at least O

(
n4 log n

)
iterations.

5. Since the ADM returns q satisfying
∣∣⟨q,R⊤e1⟩∣∣ ≥ 2

√
θ, discussion at the end of Section 7.6 implies

that we will obtain a solution q⋆ = ±U⊤e1 up to scale as the optimizer of the rounding program,
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exactly the target solution.

Hence, we complete the proof.

Remark 4.8 Under the planted sparse model, in practice the ADM algorithm with the proposed initialization

converges to a global optimizer of (3.0.1) that correctly recovers x0. In fact, simple calculation shows such desired

point for successful recovery is indeed the only critical point of (3.0.1) near the pole in Fig. 4.1. Unfortunately,

using the current analytical framework, we did not succeed in proving such convergence in theory. Proposition 4.5

and 4.6 imply that after O(n4 log n) iterations, however, the ADM sequence will stay in a small neighborhood

of the target. Hence, we proposed to stop after O(n4 log n) steps, and then round the output using the LP that

provable recover the target, as implied by Proposition 4.5 and 4.7. So the LP rounding procedure is for the purpose

of completing the theory, and seems not necessary in practice. We suspect alternative analytical strategies, such

as the geometrical analysis that we will discuss in Section 6, can likely get around the artifact.



CHAPTER 5. NUMERICAL RESULTS 27

Chapter 5

Numerical Results

5.1 Experimental Results

In this section, we show the performance of the proposed ADM algorithm on both synthetic and real datasets.

On the synthetic dataset, we show the phase transition of our algorithm on both the planted sparse and

the dictionary learning models; for the real dataset, we demonstrate how seeking sparse vectors can help

discover interesting patterns on face images.

5.1.1 Phase Transition on Synthetic Data

For the planted sparse model, for each pair of (k, p), we generate the n dimensional subspace S ⊂ Rp by

direct sum of x0 and G: x0 ∈ Rp is a k-sparse vector with uniformly random support and all nonzero en-

tries equal to 1, and G ∈ Rp×(n−1) is an i.i.d. Gaussian matrix distributed by N (0, 1/p). So one basis Y of

the subspace S can be constructed by Y = GS ([x0,G])U ,where GS (·) denotes the Gram-Schmidt orthonor-

malization operator and U ∈ Rn×n is an arbitrary orthogonal matrix. For each p, we set the regularization

parameter in (3.0.1) as λ = 1/
√
p, use all the normalized rows of Y as initializations of q for the proposed

ADM algorithm, and run the alternating steps for 104 iterations. We determine the recovery to be success-

ful whenever ∥x0/ ∥x0∥ − Y q∥ ≤ 10−2 for at least one of the p trials (we set the tolerance relatively large

as we have shown that LP rounding exactly recovers the solutions with approximate input). To determine

the empirical recovery performance of our ADM algorithm, first we fix the relationship between n and p as

p = 5n log n, and plot out the phase transition between k and p. Next, we fix the sparsity level θ = 0.2 (or
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k = 0.2p), and plot out the phase transition between p and n. For each pair of (p, k) or (n, p), we repeat the

simulation for 10 times. Fig. 5.1 shows both phase transition plots.

Figure 5.1: Phase transition for the planted sparse model using the ADM algorithm: (a) with fixed relationship between
p and n: p = 5n logn; (b) with fixed relationship between p and k: k = 0.2p. White indicates success and black indicates
failure.

Figure 5.2: Phase transition for the dictionary learning model using the ADM algorithm: (a) with fixed relationship
between p and n: p = 5n logn; (b) with fixed relationship between p and k: k = 0.2p. White indicates success and black
indicates failure.

We also experiment with the complete dictionary learning model as in [SWW12b] (see also [SQW15a]).

Specifically, the observation is assumed to be Y = A0X0, where A0 is a square, invertible matrix, and X0

a n × p sparse matrix. Since A0 is invertible, the row space of Y is the same as that of X0. For each pair

of (k, n), we generate X0 = [x1, · · · ,xn]⊤, where each vector xi ∈ Rp is k-sparse with every nonzero entry

following i.i.d. Gaussian distribution, and construct the observation by Y ⊤ = GS
(
X⊤0

)
U⊤. We repeat

the same experiment as for the planted sparse model described above. The only difference is that here we
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determine the recovery to be successful as long as one sparse row of X0 is recovered by one of those p

programs. Fig. 5.2 shows both phase transition plots.

Fig. 5.1(a) and Fig. 5.2(a) suggest our ADM algorithm could work into the linear sparsity regime for both

models, provided p ≥ Ω(n log n). Moreover, for both models, the log n factor seems necessary for working

into the linear sparsity regime, as suggested by Fig. 5.1(b) and Fig. 5.2(b): there are clear nonlinear transition

boundaries between success and failure regions. For both models, O(n log n) sample requirement is near

optimal: for the planted sparse model, obviously p ≥ Ω(n) is necessary; for the complete dictionary learning

model, [SWW12b] proved that p ≥ Ω(n log n) is required for exact recovery. For the planted sparse model,

our result p ≥ Ω(n4 log n) is far from this much lower empirical requirement. Fig 5.1(b) further suggests that

alternative reformulation and algorithm are needed to solve (2.0.1) so that the optimal recovery guarantee

as depicted in Theorem 2.1 can be obtained.

5.1.2 Exploratory Experiments on Faces

It is well known in computer vision that the collection of images of a convex object only subject to illumina-

tion changes can be well approximated by a low-dimensional subspaces in raw-pixel space [BJ03]. We will

play with face subspaces here. First, we extract face images of one person (65 images) under different illumi-

nation conditions. Then we apply robust principal component analysis [CLMW11a] to the data and get a low

dimensional subspace of dimension 10, i.e., the basis Y ∈ R32256×10. We apply the ADM + LP algorithm to

find the sparsest elements in such a subspace, by randomly selecting 10% rows of Y as initializations for q.

We judge the sparsity in the ℓ1/ℓ2 sense, that is, the sparsest vector x̂0 = Y q⋆ should produce the smallest

∥Y q∥1 / ∥Y q∥ among all results. Once some sparse vectors are found, we project the subspace onto orthog-

onal complement of the sparse vectors already found1, and continue the seeking process in the projected

subspace. Fig. 5.3(Top) shows the first four sparse vectors we get from the data. We can see they correspond

well to different extreme illumination conditions. We also implemented the spectral method (with the LP

post-processing) proposed in [HSSS15] for comparison under the same protocol. The result is presented as

Fig. 5.3(Bottom): the ratios ∥·∥ℓ1 / ∥·∥ℓ2 are significantly higher, and the ratios ∥·∥ℓ4 / ∥·∥ℓ2 (this is the metric

to be maximized in [HSSS15] to promote sparsity) are significantly lower. By these two criteria the spectral

method with LP rounding consistently produces vectors with higher sparsity levels under our evaluation

protocol. Moreover, the resulting images are harder to interpret physically.

1The idea is to build a sparse, orthonormal basis for the subspace in a greedy manner.
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Figure 5.3: The first four sparse vectors extracted for one person in the Yale B database under different illuminations.
(Top) by our ADM algorithm; (Bottom) by the speeding-up SOS algorithm proposed in [HSSS15].

Second, we manually select ten different persons’ faces under the normal lighting condition. Again, the

dimension of the subspace is 10 and Y ∈ R32256×10. We repeat the same experiment as stated above. Fig. 5.4

shows four sparse vectors we get from the data. Interestingly, the sparse vectors roughly correspond to differ-

ences of face images concentrated around facial parts that different people tend to differ from each other, e.g.,

eye brows, forehead hair, nose, etc. By comparison, the vectors returned by the spectral method [HSSS15]

are relatively denser and the sparsity patterns in the images are less structured physically.

In sum, our algorithm seems to find useful sparse vectors for potential applications, such as peculiarity

discovery in first setting, and locating differences in second setting. Nevertheless, the main goal of this

experiment is to invite readers to think about similar pattern discovery problems that might be cast as the

problem of seeking sparse vectors in a subspace. The experiment also demonstrates in a concrete way the

practicality of our algorithm, both in handling data sets of realistic size and in producing meaningful results

even beyond the (idealized) planted sparse model that we adopted for analysis.
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Figure 5.4: The first four sparse vectors extracted for 10 persons in the Yale B database under normal illuminations.
(Top) by our ADM algorithm; (Bottom) by the speeding-up SOS algorithm proposed in [HSSS15].
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Chapter 6

Discussion

6.1 Connections and Discussion

For the planted sparse model, there is a substantial performance gap in terms of p-n relationship between

the our optimality theorem (Theorem 2.1), empirical simulations, and guarantees we have obtained via effi-

cient algorithm (Theorem 4.1). More careful and tighter analysis based on decoupling [DlPG99] and chain-

ing [Tal14b, LV15b] and geometrical analysis described below can probably help bridge the gap between our

theoretical and empirical results. Matching the theoretical limit depicted in Theorem 2.1 seems to require

novel algorithmic ideas. The random models we assume for the subspace can be extended to other random

models, particularly for dictionary learning where all the bases are sparse (e.g., Bernoulli-Gaussian random

model).

This work is part of a recent surge of research efforts on deriving provable and practical nonconvex al-

gorithms to central problems in modern signal processing and machine learning. These problems include

low-rank matrix recovery/completion [JNS13, Har13, HW14, Har14, JN14, NNS+14, ZL15, TBSR15, CW15],

tensor recovery/decomposition [JO14, AGJ14b, AGJ14a, AJSN15, GHJY15], phase retrieval [NJS13, CLS14,

CC15, SQW16], dictionary learning [AGM13, AAJ+13, AAN13, ABGM14, AGMM15, SQW15a], and so on.1

Our approach, like the others, is to start with a carefully chosen, problem-specific initialization, and then per-

form a local analysis of the subsequent iterates to guarantee convergence to a good solution. In comparison,

our subsequent work on complete dictionary learning [SQW15a] and generalized phase retrieval [SQW16]

1The webpage http://sunju.org/research/nonconvex/ maintained by the second author contains pointers to the growing list of
work in this direction.

http://sunju.org/research/nonconvex/
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has taken a geometrical approach by characterizing the function landscape and designing efficient algorithm

accordingly. The geometric approach has allowed provable recovery via efficient algorithms, with an arbi-

trary initialization. The article [SQW15d] summarizes the geometric approach and its applicability to several

other problems of interest.

A hybrid of the initialization and the geometric approach discussed above is likely to be a powerful

computational framework. To see it in action for the current planted sparse vector problem, in Fig. 6.1 we

Figure 6.1: Function landscape of f(q) with θ = 0.4 for n = 3. (Left) f(q) over the sphere S2. Note that near the
spherical caps around the north and south poles, there are no critical points and the gradients are always nonzero;
(Right) Projected function landscape by projecting the upper hemisphere onto the equatorial plane. Mathematically the
function g(w) : e⊥

3 7→ R obtained via the reparameterization q(w) = [w;
√

1− ∥w∥2]. Corresponding to the left, there
is no undesired critical point around 0 within a large radius.

provide the asymptotic function landscape (i.e., p→∞) of the Huber loss on the sphere S2 (aka the relaxed

formulation we tried to solve (3.0.1)). It is clear that with an initialization that is biased towards either the

north or the south pole, we are situated in a region where the gradients are always nonzero and points to

the favorable directions such that many reasonable optimization algorithms can take the gradient informa-

tion and make steady progress towards the target. This will probably ease the algorithm development and

analysis, and help yield tight performance guarantees.

We provide a very efficient algorithm for finding a sparse vector in a subspace, with strong guarantee.

Our algorithm is practical for handling large datasets—in the experiment on the face dataset, we success-

fully extracted some meaningful features from the human face images. However, the potential of seeking

sparse/structured element in a subspace seems largely unexplored, despite the cases we mentioned at the

start. We hope this work could inspire more application ideas.
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Chapter 7

Proof of Technical Results

7.1 Proof of ℓ1/ℓ2 Global Optimality

In this appendix, we prove the ℓ1/ℓ2 global optimality condition in Theorem 2.1 of Section 2.

Proof [Proof of Theorem 2.1] We will first analyze a canonical version, in which the input orthonormal basis

is Y as defined in (3.0.6) of Section 3:

min
q∈Rn

∥Y q∥1 , s.t. ∥q∥ = 1.

Let q =

q1
q2

 and let I be the support set of x0, we have

∥Y q∥1 = ∥YIq∥1 + ∥YIcq∥1

≥ |q1|
∥∥∥∥ x0

∥x0∥

∥∥∥∥
1

− ∥G′Iq2∥1 + ∥G
′
Icq2∥1

≥ |q1|
∥∥∥∥ x0

∥x0∥

∥∥∥∥
1

− ∥GIq2∥1 − ∥(GI −G′I) q2∥1 + ∥GIcq2∥1 − ∥(GIc −G′Ic) q2∥1

≥ |q1|
∥∥∥∥ x0

∥x0∥

∥∥∥∥
1

− ∥GIq2∥1 + ∥GIcq2∥1 − ∥G−G′∥ℓ2→ℓ1 ∥q2∥ ,

where G and G′ are defined in (A.2.1) and (A.2.2) of Appendix A.2. By Lemma A.14 and intersecting with

E0 defined in (A.2.3), we have that as long as p ≥ C1n,

∥GIq2∥1 ≤
2θp
√
p
∥q2∥ = 2θ

√
p ∥q2∥ for all q2 ∈ Rn−1,
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∥GIcq2∥1 ≥
1

2

p− 2θp
√
p
∥q2∥ =

1

2

√
p (1− 2θ) ∥q2∥ for all q2 ∈ Rn−1,

hold with probability at least 1− c2p−2. Moreover, by Lemma A.17,

∥G−G′∥ℓ2→ℓ1 ≤ 4
√
n+ 7

√
log(2p)

holds with probability at least 1− c3p−2 when p ≥ C4n and θ > 1/
√
n. So we obtain that

∥Y q∥1 ≥ g(q)
.
= |q1|

∥∥∥∥ x0

∥x0∥

∥∥∥∥
1

+ ∥q2∥
(
1

2

√
p (1− 2θ)− 2θ

√
p− 4

√
n− 7

√
log(2p)

)
holds with probability at least 1− c5p−2. Assuming E0, we observe∥∥∥∥ x0

∥x0∥

∥∥∥∥
1

≤
√
|I|
∥∥∥∥ x0

∥x0∥

∥∥∥∥ ≤√2θp.

Now g(q) is a linear function in |q1| and ∥q2∥. Thus, whenever θ is sufficiently small and p ≥ C6n such that

√
2θp <

1

2

√
p (1− 2θ)− 2θ

√
p− 4

√
n− 7

√
log(2p),

±e1 are the unique minimizers of g(q)under the constraint q21+∥q2∥
2
= 1. In this case, because ∥Y (±e1)∥1 =

g(±e1), and we have

∥Y q∥1 ≥ g(q) > g(±e1)

for all q ̸= ±e1, ±e1 are the unique minimizers of ∥Y q∥1 under the spherical constraint. Thus there exists

a universal constant θ0 > 0, such that for all 1/
√
n ≤ θ ≤ θ0, ±e1 are the only global minimizers of (2.0.2) if

the input basis is Y .

Any other input basis can be written as Ŷ = Y U , for some orthogonal matrix U . The program now is

written as

min
q∈Rn

∥∥∥Ŷ q
∥∥∥
1
, s.t. ∥q∥ = 1,

which is equivalent to

min
q∈Rn

∥∥∥Ŷ q
∥∥∥
1
, s.t. ∥Uq∥ = 1,

which is obviously equivalent to the canonical program we analyzed above by a simple change of variable,

i.e., q .
= Uq, completing the proof.
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7.2 Good Initialization

In this appendix, we prove Proposition 4.3. We show that the initializations produced by the procedure

described in Section 3 are biased towards the optimal.

Proof [Proof of Proposition 4.3] Our previous calculation has shown that θp/2 ≤ |I| ≤ 2θp with probability

at least 1 − c1p−2 provided p ≥ C2n and θ > 1/
√
n. Let Y =

[
y1, · · · ,yp

]⊤ as defined in (3.0.6). Consider

any i ∈ I. Then x0(i) = 1√
θp

, and

⟨
e1,y

i/
∥∥yi∥∥⟩ = 1/

√
θp

∥x0∥ ∥yi∥
≥ 1/

√
θp

∥x0∥ (∥x0∥∞ / ∥x0∥ + ∥(g′)i∥)

≥ 1/
√
θp

∥x0∥ (∥x0∥∞ / ∥x0∥ + ∥gi∥ + ∥G−G′∥ℓ2→ℓ∞)
,

where gi and (g′)i are the i-th rows of G and G′, respectively. Since such gi’s are independent Gaussian

vectors in Rn−1 distributed as N (0, 1/p), by Gaussian concentration inequality and the fact that |I| ≥ pθ/2

w.h.p.,

P∃i ∈ I :
∥∥gi∥∥ ≤ 2

√
n/p ≥ 1− exp (−c3nθp) ≤ c4p−2,

provided p ≥ C5n and θ > 1/
√
n. Moreover,

∥x0∥ =
√
|I| × 1

θp
≤
√
2θp× 1

θp
=
√
2.

Combining the above estimates and result of Lemma A.18, we obtain that provided p ≥ C6n and θ > 1/
√
n,

with probability at least 1− c7p−2, there exists an i ∈ [p], such that if we set q(0) = yi/
∥∥yi∥∥, it holds that∣∣∣q(0)1

∣∣∣ ≥ 1/
√
θp

1/
√
θp+ 2

√
2
√
n/p+

√
2
(
4n/p+ 8

√
2 log(2p)/p+ 21

√
n log(2p)/p

)
≥ 1/

√
θp

1/
√
θp+ 6

√
2
√
n/p

(using p ≥ C6n to simplifiy the above line)

=
1

1 + 6
√
2
√
θn

≥ 1

(1 + 6
√
2)
√
θn

(as θ > 1/
√
n)

≥ 1

10
√
θn
,

completing the proof.

We will next show that for an arbitrary orthonormal basis Ŷ .
= Y U the initialization still biases towards
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the target solution. To see this, suppose w.l.o.g.
(
yi
)⊤ is a row of Y with nonzero first coordinate. We have

shown above that with high probability
∣∣∣⟨ yi

∥yi∥ , e1

⟩∣∣∣ ≥ 1
10
√
θn

if Y is the input orthonormal basis. For Y , as

x0 = Y e1 = Y UU⊤e1, we know q⋆ = U⊤e1 is the target solution corresponding to Ŷ . Observing that∣∣∣∣∣∣∣∣
⟨
U⊤e1,

(
e⊤i Ŷ

)⊤∥∥∥∥(e⊤i Ŷ )⊤∥∥∥∥
⟩∣∣∣∣∣∣∣∣ =

∣∣∣∣⟨U⊤e1, U⊤Y ⊤ei
∥U⊤Y ⊤ei∥

⟩∣∣∣∣ =
∣∣∣∣∣
⟨
e1,

(Y )
⊤
ei

∥Y ⊤ei∥

⟩∣∣∣∣∣ =
∣∣∣∣⟨e1, yi

∥yi∥

⟩∣∣∣∣ ≥ 1

10
√
nθ
,

corroborating our claim.

7.3 Lower Bounding Finite Sample Gap G(q)

In this Section, we prove Proposition 4.4. In particular, we show that the gapG(q) defined in (4.2.6) is strictly

positive over a large portion of the sphere Sn−1.

Proof [Proof of Proposition 4.4] Without loss of generality, we work with the “canonical” orthonormal basis

Y defined in (3.0.6). Recall that Y is the orthogonalization of the planted sparse basis Y as defined in (3.0.5).

We define the processes Q(q) and Q(q) on q ∈ Sn−1, via

Q(q) =
1

p

p∑
i=1

yiSλ
[
q⊤yi

]
, Q(q) =

1

p

p∑
i=1

yiSλ
[
q⊤yi

]
.

Thus, we can separate Q(q) as Q(q) =

 Q1(q)

Q2(q)

, where

Q1(q) =
1

p

p∑
i=1

x0iSλ
[
q⊤yi

]
and Q2(q) =

1

p

p∑
i=1

giSλ
[
q⊤yi

]
, (7.3.1)

and separate Q(q) correspondingly. Our task is to lower bound the gap G(q) for finite samples as defined

in (4.2.6). Since we can deterministically constrain |q1| and ∥q2∥ over the set Γ as defined in (4.2.5) (e.g.,
1

10
√
nθ
≤ |q1| ≤ 3

√
θ and ∥q2∥ ≥ 1

10 , where the choice of 1
10 for q2 is arbitrary here, as we can always take

a sufficiently small θ), the challenge lies in lower bounding |Q1 (q)| and upper bounding ∥Q2 (q)∥, which

depend on the orthonormal basis Y . The unnormalized basis Y is much easier to work with than Y . Our

proof will follow the observation that

|Q1 (q)| ≥
∣∣EQ1 (q)

∣∣− ∣∣Q1 (q)− EQ1 (q)
∣∣− ∣∣Q1 (q)−Q1 (q)

∣∣ ,
∥Q2 (q)∥ ≤

∥∥EQ2 (q)
∥∥ +

∥∥Q2 (q)− EQ2 (q)
∥∥ +

∥∥Q2 (q)−Q2 (q)
∥∥ .
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In particular, we show the following:

• Section 7.3.1 shows that the expected gap is lower bounded for all q ∈ Sn−1 with |q1| ≤ 3
√
θ:

G (q)
.
=

∣∣EQ1 (q)
∣∣

|q1|
−
∥∥EQ2 (q)

∥∥
∥q2∥

≥ 1

50

q21
θp
.

As |q1| ≥ 1
10
√
nθ

, we have

inf
q∈Γ

∣∣EQ1 (q)
∣∣

|q1|
−
∥∥EQ2 (q)

∥∥
∥q2∥

≥ 1

5000

1

θ2np
.

• Section 7.3.2, as summarized in Proposition 7.8, shows that whenever p ≥ Ω
(
n4 log n

)
, it holds with

high probability that

sup
q∈Γ

∣∣Q1 (q)− EQ1 (q)
∣∣

|q1|
+

∥∥Q2 (q)− EQ2 (q)
∥∥

∥q2∥

≤ 10
√
θn

4× 105θ5/2n3/2p
+

10

4× 105θ2np
=

1

2× 104θ2np
.

• Section 7.3.4 shows that whenever p ≥ Ω
(
n4 log n

)
, it holds with high probability that

sup
q∈Γ

∣∣Q1 (q)−Q1 (q)
∣∣

|q1|
+

∥∥Q2 (q)−Q2 (q)
∥∥

∥q2∥

≤ 10
√
θn

4× 105θ5/2n3/2p
+

10

4× 105θ2np
=

1

2× 104θ2np
.

Observing that

inf
q∈Γ

G(q) ≥ inf
q∈Γ

(∣∣EQ1 (q)
∣∣

|q1|
−
∥∥EQ2 (q)

∥∥
∥q2∥

)
− sup

q∈Γ

(∣∣Q1 (q)− EQ1 (q)
∣∣

|q1|
+

∥∥Q2 (q)− EQ2 (q)
∥∥

∥q2∥

)

− sup
q∈Γ

(∣∣Q1 (q)−Q1 (q)
∣∣

|q1|
+

∥∥Q2 (q)−Q2 (q)
∥∥

∥q2∥

)
,

we obtain the result as desired.

For the general case when the input orthonormal basis is Ŷ = Y U with target solution q⋆ = U⊤e1, a

straightforward extension of the definition for the gap would be:

G
(
q; Ŷ = Y U

)
.
=

∣∣∣⟨Q(q; Ŷ ) ,U⊤e1⟩∣∣∣
|⟨q,U⊤e1⟩|

−

∥∥∥(I −U⊤e1e
⊤
1 U

)
Q
(
q; Ŷ

)∥∥∥∥∥(I −U⊤e1e⊤1 U
)
q
∥∥ .
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Since Q
(
q; Ŷ

)
= 1

p

∑p
k=1 U

⊤ykSλ
(
q⊤U⊤yk

)
, we have

UQ
(
q; Ŷ

)
=

1

p

p∑
k=1

UU⊤ykSλ
(
q⊤U⊤yk

)
=

1

p

p∑
k=1

ykSλ

[
(Uq)

⊤
yk
]
= Q (Uq;Y ) . (7.3.2)

Hence we have

G
(
q; Ŷ = Y U

)
=
|⟨Q (Uq;Y ) , e1⟩|
|⟨Uq, e1⟩|

−
∥∥(I − e1e

⊤
1

)
Q (Uq;Y )

∥∥∥∥(I − e1e⊤1
)
Uq
∥∥ .

Therefore, from Proposition 4.4 above, we conclude that under the same technical conditions as therein,

inf
q∈Sn−1: 1

10
√

θn
≤|⟨Uq,e1⟩|≤3

√
θ
G
(
q; Ŷ

)
≥ 1

104θ2np

with high probability.

7.3.1 Lower Bounding the Expected Gap G(q)

In this section, we provide a nontrivial lower bound for the gap

G(q) =

∣∣E [Q1(q)
]∣∣

|q1|
−
∥∥E [Q2(q)

]∥∥
∥q2∥

. (7.3.3)

More specifically, we show that:

Proposition 7.1 There exists some numerical constant θ0 > 0, such that for all θ ∈ (0, θ0), it holds that

G(q) ≥ 1

50

q21
θp

(7.3.4)

for all q ∈ Sn−1 with |q1| ≤ 3
√
θ.

Estimating the gap G(q) requires delicate estimates for E
[
Q1(q)

]
and E

[
Q2(q)

]
. We first outline the

main proof in Section 7.3.1.1, and delay these detailed technical calculations to the subsequent subsections.

7.3.1.1 Sketch of the Proof

W.l.o.g., we only consider the situation that q1 > 0, because the case of q1 < 0 can be similarly shown by

symmetry. By (7.3.1), we have

E
[
Q1(q)

]
= E

[
x0Sλ

[
x0q1 + q⊤2 g

]]
,

E
[
Q2(q)

]
= E

[
gSλ

[
x0q1 + q⊤2 g

]]
,
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where g ∼ N
(
0, 1pI

)
, and x0 ∼ 1√

θp
Ber(θ). Let us decompose

g = g∥ + g⊥,

with g∥ = P∥g =
q2q

⊤
2

∥q2∥2
g, and g⊥ = (I − P∥)g. In this notation, we have

E
[
Q2(q)

]
= E

[
g∥Sλ

[
x0q1 + q⊤2 g∥

]]
+ E

[
g⊥Sλ

[
x0q1 + q⊤2 g∥

]]
= E

[
g∥Sλ

[
x0q1 + q⊤2 g

]]
+ E [g⊥]E

[
Sλ
[
x0q1 + q⊤2 g

]]
=

q2

∥q2∥2
E
[
q⊤2 gSλ

[
x0q1 + q⊤2 g

]]
,

where we used the facts that q⊤2 g = q⊤2 g∥, g⊥ and g∥ are uncorrelated Gaussian vectors and therefore

independent, and E [g⊥] = 0. Let Z .
= g⊤q2 ∼ N (0, σ2) with σ2 = ∥q2∥2 /p, by partial evaluation of the

expectations with respect to x0, we get

E
[
Q1(q)

]
=

√
θ

p
E
[
Sλ

[
q1√
θp

+ Z

]]
, (7.3.5)

E
[
Q2(q)

]
=

θq2

∥q2∥2
E
[
ZSλ

[
q1√
θp

+ Z

]]
+

(1− θ)q2
∥q2∥2

E [ZSλ [Z]] . (7.3.6)

Straightforward integration based on Lemma A.1 gives a explicit form of the expectations as follows

E
[
Q1(q)

]
=

√
θ

p

{[
αΨ

(
−α
σ

)
+ βΨ

(
β

σ

)]
+ σ

[
ψ

(
−β
σ

)
− ψ

(
−α
σ

)]}
, (7.3.7)

E
[
Q2(q)

]
=

{
2 (1− θ)

p
Ψ

(
−λ
σ

)
+
θ

p

[
Ψ
(
−α
σ

)
+Ψ

(
β

σ

)]}
q2, (7.3.8)

where the scalars α and β are defined as

α =
q1√
θp

+ λ, β =
q1√
θp
− λ,

and ψ (t) and Ψ(t) are pdf and cdf for standard normal distribution, respectively, as defined in Lemma A.1.

Plugging (7.3.7) and (7.3.8) into (7.3.3), by some simplifications, we obtain

G(q) =
1

q1

√
θ

p

[
αΨ

(
−α
σ

)
+ βΨ

(
β

σ

)
− 2q1√

θp
Ψ

(
−λ
σ

)]
− θ

p

[
Ψ
(
−α
σ

)
+Ψ

(
β

σ

)
− 2Ψ

(
−λ
σ

)]

+
σ

q1

√
θ

p

[
ψ

(
β

σ

)
− ψ

(
−α
σ

)]
. (7.3.9)
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With λ = 1/
√
p and σ2 = ∥q2∥2 /p = (1− q21)/p, we have

−α
σ

= − δ + 1√
1− q21

,
β

σ
=

δ − 1√
1− q21

,
λ

σ
=

1√
1− q21

,

where δ = q1/
√
θ for q1 ≤ 3

√
θ. To proceed, it is natural to consider estimating the gap G(q) by Taylor’s

expansion. More specifically, we approximate Ψ
(
−ασ
)

and ψ
(
−ασ
)

around −1− δ, and approximate Ψ
(
β
σ

)
and ψ

(
β
σ

)
around −1 + δ. Applying the estimates for the relevant quantities established in Lemma 7.2, we

obtain

G(q) ≥ 1− θ
p

Φ1(δ)−
1

δp
Φ2(δ) +

1− θ
p

ψ(−1)q21 +
1

p

(
σ
√
p+

θ

2
− 1

)
η2(δ)q

2
1

+
1

2δp

[
1 + δ2 − θδ2 − σ

(
1 + δ2

)√
p
]
q21η1 (δ) +

σ

δ
√
p
η1 (δ)−

5CT
√
θq31

p
(δ + 1)

3
,

where we define

Φ1(δ) = Ψ(−1− δ) + Ψ(−1 + δ)− 2Ψ(−1), Φ2(δ) = Ψ(−1 + δ)−Ψ(−1− δ),

η1(δ) = ψ(−1 + δ)− ψ(−1− δ), η2(δ) = ψ(−1 + δ) + ψ(−1− δ),

and CT is as defined in Lemma 7.2. Since 1−σ√p ≥ 0, dropping those small positive terms q21
p (1− θ)ψ(−1),

θq21
2p η2(δ), and

(
1 + δ2

) (
1− σ√p

)
q21η1 (δ) / (2δp), and using the fact that δ = q1/

√
θ, we obtain

G(q) ≥ 1− θ
p

Φ1(δ)−
1

δp
[Φ2(δ)− σ

√
pη1(δ)]−

q21
p

(1− σ√p) η2(δ)−
√
θ

2p
q31η1 (δ)−

C1

√
θq31
p

max

(
q31
θ3/2

, 1

)
≥ 1− θ

p
Φ1(δ)−

1

δp
[Φ2(δ)− η1(δ)]−

q21
p

η1 (δ)

δ
− q21
θp

(
2θ√
2π

+
3θ2

2
√
2π

+ C1θ
2

)
,

for some constant C1 > 0, where we have used q1 ≤ 3
√
θ to simplify the bounds and the fact σ√p =√

1− q21 ≥ 1 − q21 to simplify the expression. Substituting the estimates in Lemma 7.4 and use the fact

δ 7→ η1 (δ) /δ is bounded, we obtain

G (p) ≥ 1

p

(
1

40
− 1√

2π
θ

)
δ2 − q21

θp

(
c1θ + c2θ

2
)

≥ q21
θp

(
1

40
− 1√

2π
θ − c1θ − c2θ2

)
for some positive constants c1 and c2. We obtain the claimed result once θ0 is made sufficiently small.

7.3.1.2 Auxiliary Results Used in the Proof
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Lemma 7.2 Let δ .
= q1/

√
θ. There exists some universal constant CT > 0 such that we have the follow polyno-

mial approximations hold for all q1 ∈
(
0, 12

)
:∣∣∣∣ψ (−ασ)−

[
1− 1

2
(1 + δ)2q21

]
ψ(−1− δ)

∣∣∣∣ ≤ CT (1 + δ)
2
q41 ,∣∣∣∣ψ(βσ

)
−
[
1− 1

2
(δ − 1)2q21

]
ψ(δ − 1)

∣∣∣∣ ≤ CT (δ − 1)
2
q41 ,∣∣∣∣Ψ(−ασ)−

[
Ψ(−1− δ)− 1

2
ψ(−1− δ)(1 + δ)q21

]∣∣∣∣ ≤ CT (1 + δ)
2
q41 ,∣∣∣∣Ψ(βσ

)
−
[
Ψ(δ − 1) +

1

2
ψ(δ − 1)(δ − 1)q21

]∣∣∣∣ ≤ CT (δ − 1)
2
q41 ,∣∣∣∣Ψ(−λσ

)
−
[
Ψ(−1)− 1

2
ψ(−1)q21

]∣∣∣∣ ≤ CT q
4
1 .

Proof First observe that for any q1 ∈
(
0, 12

)
it holds that

0 ≤ 1√
1− q21

−
(
1 +

q21
2

)
≤ q41 .

Hence we have

−(1 + δ)

(
1 +

1

2
q21 + q41

)
≤ −α

σ
≤ −(1 + δ)

(
1 +

1

2
q21

)
,

(δ − 1)

(
1 +

1

2
q21

)
≤ β

σ
≤ (δ − 1)

(
1 +

1

2
q21 + q41

)
, when δ ≥ 1

(δ − 1)

(
1 +

1

2
q21 + q41

)
≤ β

σ
≤ (δ − 1)

(
1 +

1

2
q21

)
, when δ ≤ 1.

So we have

ψ

(
−(1 + δ)

(
1 +

1

2
q21 + q41

))
≤ ψ

(
−α
σ

)
≤ ψ

(
−(1 + δ)

(
1 +

1

2
q21

))
.

By Taylor expansion of the left and right sides of the above two-side inequality around−1− δ using Lemma

A.2, we obtain ∣∣∣∣ψ (−ασ)− ψ(−1− δ)− 1

2
(1 + δ)2q21ψ(−1− δ)

∣∣∣∣ ≤ CT (1 + δ)
2
q41 ,

for some numerical constant CT > 0 sufficiently large. In the same way, we can obtain other claimed results.
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Lemma 7.3 For any δ ∈ [0, 3], it holds that

Φ2(δ)− η1(δ) ≥
η1 (3)

9
δ3 ≥ 1

20
δ3. (7.3.10)

Proof Let us define

h(δ) = Φ2(δ)− η1(δ)− Cδ3

for some C > 0 to be determined later. Then it is obvious that h(0) = 0. Direct calculation shows that

d

dδ
Φ1(δ) = η1(δ),

d

dδ
Φ2(δ) = η2(δ),

d

dδ
η1(δ) = η2(δ)− δη1(δ). (7.3.11)

Thus, to show (7.3.10), it is sufficient to show that h′(δ) ≥ 0 for all δ ∈ [0, 3]. By differentiating h(δ) with

respect to δ and use the results in (7.3.11), it is sufficient to have

h′(δ) = δη1(δ)− 3Cδ2 ≥ 0⇐⇒ η1(δ) ≥ 3Cδ

for all δ ∈ [0, 3]. We obtain the claimed result by observing that δ 7→ η1 (δ) /3δ is monotonically decreasing

over δ ∈ [0, 3] as justified below.

Consider the function

p (δ)
.
=
η1 (δ)

3δ
=

1

3
√
2π

exp

(
−δ

2 + 1

2

)
eδ − e−δ

δ
.

To show it is monotonically decreasing, it is enough to show p′ (δ) is always nonpositive for δ ∈ (0, 3), or

equivalently

g (δ)
.
=
(
eδ + e−δ

)
δ −

(
δ2 + 1

) (
eδ − e−δ

)
≤ 0

for all δ ∈ (0, 3), which can be easily verified by noticing that g (0) = 0 and g′ (δ) ≤ 0 for all δ ≥ 0.

Lemma 7.4 For any δ ∈ [0, 3], we have

(1− θ)Φ1(δ)−
1

δ
[Φ2(δ)− η1(δ)] ≥

(
1

40
− 1√

2π
θ

)
δ2. (7.3.12)

Proof Let us define

g(δ) = (1− θ)Φ1(δ)−
1

δ
[Φ2(δ)− η1(δ)]− c0 (θ) δ2,
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where c0 (θ) > 0 is a function of θ. Thus, by the results in (7.3.11) and L’Hospital’s rule, we have

lim
δ→0

Φ2(δ)

δ
= lim
δ→0

η2 (δ) = 2ψ(−1), lim
δ→0

η1(δ)

δ
= lim
δ→0

[η2(δ)− δη1(δ)] = 2ψ(−1).

Combined that with the fact that Φ1(0) = 0, we conclude g (0) = 0. Hence, to show (7.3.12), it is sufficient

to show that g′(δ) ≥ 0 for all δ ∈ [0, 3]. Direct calculation using the results in (7.3.11) shows that

g′(δ) =
1

δ2
[Φ2(δ)− η1(δ)]− θη1(δ)− 2c0 (θ) δ.

Since η1 (δ) /δ is monotonically decreasing as shown in Lemma 7.3, we have that for all δ ∈ (0, 3)

η1 (δ) ≤ δ lim
δ→0

η (δ)

δ
≤ 2√

2π
δ.

Using the above bound and the main result from Lemma 7.3 again, we obtain

g′(δ) ≥ 1

20
δ − 2√

2π
θδ − 2c0δ.

Choosing c0 (θ) = 1
40 −

1√
2π
θ completes the proof.

7.3.2 Finite Sample Concentration

In the following two subsections, we estimate the deviations around the expectationsE
[
Q1(q)

]
andE

[
Q2(q)

]
,

i.e.,
∣∣Q1(q)− E

[
Q1(q)

]∣∣ and
∥∥Q2(q)− E

[
Q2(q)

]∥∥, and show that the total deviations fit into the gap G(q)

we derived in Section 7.3.1. Our analysis is based on the scalar and vector Bernstein’s inequalities with mo-

ment conditions. Finally, in Section 7.3.3, we uniformize the bound by applying the classical discretization

argument.

7.3.2.1 Concentration for Q1(q)

Lemma 7.5 (Bounding
∣∣Q1(q)− E

[
Q1(q)

]∣∣) For each q ∈ Sn−1, it holds for all t > 0 that

P
[∣∣Q1(q)− E

[
Q1(q)

]∣∣ ≥ t] ≤ 2 exp

(
− θp3t2

8 + 4pt

)
.

Proof By (7.3.1), we know that

Q1(q) =
1

p

p∑
k=1

X1
k , X1

k = x0(k)Sλ [x0(k)q1 + Zk]
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where Zk = q⊤2 gk ∼ N
(
0,
∥q2∥2
p

)
. Thus, for any m ≥ 2, by Lemma A.4, we have

E
[∣∣X1

k

∣∣m] ≤ θ

(
1√
θp

)m
E
[∣∣∣∣ q1√θp + Zk

∣∣∣∣m]
= θ

(
1√
θp

)m m∑
l=0

(
m

l

)(
q1√
θp

)l
E
[
|Zk|m−l

]
= θ

(
1√
θp

)m m∑
l=0

(
m

l

)(
q1√
θp

)l
(m− l − 1)!!

(
∥q2∥√
p

)m−l
≤ m!

2
θ

(
1√
θp

)m(
q1√
θp

+
∥q2∥√
p

)m
≤ m!

2
θ

(
2

θp

)m
=
m!

2

4

θp2

(
2

θp

)m−2
let σ2

X = 4/(θp2) and R = 2/(θp), apply Lemma A.7, we get

P
[∣∣Q1(q)− E

[
Q1(q)

]∣∣ ≥ t] ≤ 2 exp

(
− θp3t2

8 + 4pt

)
.

as desired.

7.3.2.2 Concentration for Q2(q)

Lemma 7.6 (Bounding
∥∥Q2(q)− E

[
Q2(q)

]∥∥) For each q ∈ Sn−1, it holds for all t > 0 that

P
[∥∥Q2(q)− E

[
Q2(q)

]∥∥ > t
]
≤ 2(n+ 1) exp

(
− θp3t2

128n+ 16
√
θnpt

)
.

Before proving Lemma 7.6, we record the following useful results.

Lemma 7.7 For any positive integer s, l > 0, we have

E
[∥∥gk∥∥s ∣∣q⊤2 gk∣∣l] ≤ (l + s)!!

2
∥q2∥l

(2
√
n)
s(√

p
)s+l .

In particular, when s = l, we have

E
[∥∥gk∥∥l ∣∣q⊤2 gk∣∣l] ≤ l!

2
∥q2∥l

(
4
√
n

p

)l

Proof Let P
q
∥
2
=

q2q
⊤
2

∥q2∥2
and Pq⊥

2
=
(
I − 1

∥q2∥2
q2q
⊤
2

)
denote the projection operators onto q2 and its orthog-

onal complement, respectively. By Lemma A.4, we have

E
[∥∥gk∥∥s ∣∣q⊤2 gk∣∣l] ≤ E

[(∥∥∥Pq
∥
2
gk
∥∥∥ +

∥∥∥Pq⊥
2
gk
∥∥∥)s ∣∣q⊤2 gk∣∣l]



CHAPTER 7. PROOF OF TECHNICAL RESULTS 46

=

s∑
i=0

(
s

i

)
E
[∥∥∥Pq⊥

2
gk
∥∥∥i]E [∣∣q⊤2 gk∣∣l ∥∥∥Pq

∥
2
gk
∥∥∥s−i]

=

s∑
i=0

(
s

i

)
E
[∥∥∥Pq⊥

2
gk
∥∥∥i]E [∣∣q⊤2 gk∣∣l+s−i] 1

∥q2∥s−i

≤ ∥q2∥l
s∑
i=0

(
s

i

)
E
[∥∥∥Pq⊥

2
gk
∥∥∥i]( 1

√
p

)l+s−i
(l + s− i− 1)!!.

Using Lemma A.5 and the fact that
∥∥∥Pq⊥

2
gk
∥∥∥ ≤ ∥∥gk∥∥, we obtain

E
[∥∥gk∥∥s ∣∣q⊤2 gk∣∣l] ≤ ∥q2∥l s∑

i=0

(
s

i

)(√
n
√
p

)i
i!!

(
1
√
p

)l+s−i
(l + s− i− 1)!!

≤ ∥q2∥l
(

1
√
p

)l
(l + s)!!

2

(√
n
√
p
+

1
√
p

)s
≤ (l + s)!!

2
∥q2∥l

(2
√
n)
s(√

p
)s+l .

Now, we are ready to prove Lemma 7.6,

Proof By (7.3.1), note that

Q2 =
1

p

p∑
k=1

X2
k , X2

k = gkSλ [x0(k)q1 + Zk]

where Zk = q⊤2 g
k. Thus, for any m ≥ 2, by Lemma 7.7, we have

E
[∥∥X2

k

∥∥m] ≤ θE
[∥∥gk∥∥m ∣∣∣∣ q1√θp + q⊤2 g

k

∣∣∣∣m]+ (1− θ)E
[∥∥gk∥∥m ∣∣q⊤2 gk∣∣m]

≤ θ

m∑
l=0

(
m

l

)
E
[∣∣q⊤2 gk∣∣l ∥∥gk∥∥m] ∣∣∣∣ q1√θp

∣∣∣∣m−l + (1− θ)E
[∥∥gk∥∥m ∣∣q⊤2 gk∣∣m]

≤ θ

(
2
√
n

√
p

)m m∑
l=0

(
m

l

)
(m+ l)!!

2

(
∥q2∥√
p

)l ∣∣∣∣ q1√θp
∣∣∣∣m−l + (1− θ)m!

2
∥q2∥m

(
4
√
n

p

)m
≤ θ

m!

2

(
4
√
n

√
p

)m(∥q2∥√
p

+
q1√
θp

)m
+ (1− θ)m!

2
∥q2∥m

(
4
√
n

p

)m
≤ m!

2

(
8
√
n√
θp

)m
.

Taking σ2
X = 64n/(θp2) and R = 8

√
n/(
√
θp) and using vector Bernstein’s inequality in Lemma A.8, we

obtain

P
[∥∥Q2(q)− E

[
Q2(q)

]∥∥ ≥ t] ≤ 2(n+ 1) exp

(
− θp3t2

128n+ 16
√
θnpt

)
,
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as desired.

7.3.3 Union Bound
Proposition 7.8 (Uniformizing the Bounds) Suppose that θ > 1/

√
n. Given any ξ > 0, there exists some

constant C (ξ), such that whenever p ≥ C (ξ)n4 log n, we have

∣∣Q1(q)− E
[
Q1(q)

]∣∣ ≤ 2ξ

θ5/2n3/2p
,∥∥Q2(q)− E

[
Q2(q)

]∥∥ ≤ 2ξ

θ2np

hold uniformly for all q ∈ Sn−1, with probability at least 1− c(ξ)p−2 for a positive constant c(ξ).

Proof We apply the standard covering argument. For any ε ∈ (0, 1), by Lemma A.12, the unit hemisphere

of interest can be covered by an ε-netNε of cardinality at most (3/ε)n. For any q ∈ Sn−1, it can be written as

q = q′ + e

where q′ ∈ Nε and ∥e∥ ≤ ε. Let a row of Y be yk =
[
x0(k), g

k
]⊤, which is an independent copy of

y = [x0, g]
⊤. By (7.3.1), we have

∣∣Q1(q)− E
[
Q1(q)

]∣∣
=

∣∣∣∣∣1p
p∑
k=1

{
x0(k)Sλ

[⟨
yk, q′ + e

⟩]
− E

[
x0(k)Sλ

[⟨
yk, q′ + e

⟩]]}∣∣∣∣∣
≤

∣∣∣∣∣1p
p∑
k=1

x0(k)Sλ
[⟨
yk, q′ + e

⟩]
− 1

p

p∑
k=1

x0(k)Sλ
[⟨
yk, q′

⟩]∣∣∣∣∣+
∣∣∣∣∣1p

p∑
k=1

x0(k)Sλ
[⟨
yk, q′

⟩]
− E [x0Sλ [⟨y, q′⟩]]

∣∣∣∣∣
+ |E [x0Sλ [⟨y, q′⟩]]− E [x0Sλ [⟨y, q′ + e⟩]]| .

Using Cauchy-Schwarz inequality and the fact that Sλ [·] is a nonexpansive operator, we have

∣∣Q1(q)− E
[
Q1(q)

]∣∣ ≤ ∣∣Q1(q
′)− E

[
Q1(q

′)
]∣∣+(1

p

p∑
k=1

|x0(k)|
∥∥yk∥∥ + E [|x0| ∥y∥]

)
∥e∥

≤
∣∣Q1(q

′)− E
[
Q1(q

′)
]∣∣+ ε

1√
θp

(
2√
θp

+max
k∈[p]

∥∥gk∥∥ + E [∥g∥]
)
.

By Lemma A.10, maxk∈[p]
∥∥gk∥∥ ≤√n/p+2

√
2 log(2p)/p with probability at least 1− c1p−3. Also E [∥g∥] ≤(

E
[
∥g∥2

])1/2
≤
√
n/p. Taking t = ξθ−5/2n−3/2p−1 in Lemma 7.5 and applying a union bound with ε =
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ξθ−2n−2(log 2p)−1/2/7, and combining with the above estimates, we obtain that

∣∣Q1(q)− E
[
Q1(q)

]∣∣ ≤ ξ

θ5/2n3/2p
+

ξ

7θ5/2n2
√
log(2p)p

(
4
√
n+ 2

√
2 log(2p)

)
≤ 2ξ

θ5/2n3/2p

holds for all q ∈ Sn−1, with probability at least

1− c1p−3 − 2 exp
(
−c3 (ξ) p/(θ4n3) + c4 (ξ)n log n+ c5(ξ)n log log(2p)

)
.

Similarly, by (7.3.1), we have

∥∥Q2(q)− E
[
Q2(q)

]∥∥ =

∥∥∥∥∥1p
p∑
k=1

{
gkSλ

[⟨
yk, q′ + e

⟩]
− E [gSλ [⟨y, q′ + e⟩]]

}∥∥∥∥∥
≤
∥∥Q2(q

′)− E
[
Q2(q

′)
]∥∥ +

(
1

p

p∑
k=1

∥∥gk∥∥ ∥∥yk∥∥ + E [∥g∥ ∥y∥]

)
∥e∥

≤
∥∥Q2(q

′)− E
[
Q2(q

′)
]∥∥ + ε

[
max
k∈[p]

∥∥gk∥∥ ( 1√
θp

+max
k∈[p]

∥∥gk∥∥)+

√
n√
θp

+
n

p

]
.

Applying the above estimates for maxk∈[p]
∥∥gk∥∥, and taking t = ξθ−2n−1p−1 in Lemma 7.6 and applying

a union bound with ε = ξθ−2n−2 log−1(2p)/30, we obtain that

∥∥Q2(q)− E
[
Q2(q)

]∥∥ ≤ ξ

θ2np
+

ξ

30θ2n2 log(2p)

4

(√
n

p
+

√
2 log(2p)

p

)2

+
2n

p


≤ ξ

θ2np
+

ξ

30θ2n2 log(2p)

{
16 log(2p)

p
+

10n

p

}
≤ 2ξ

θ2np

holds for all q ∈ Sn−1, with probability at least

1− c1p−3 − exp
(
−c6 (ξ) p/(θ3n3) + c7(ξ)n log n+ c8(ξ)n log log(2p)

)
.

Taking p ≥ C9(ξ)n
4 log n and simplifying the probability terms complete the proof.

7.3.4 Q(q) approximates Q(q)

Proposition 7.9 Suppose θ > 1/
√
n. For any ξ > 0, there exists some constant C (ξ), such that whenever

p ≥ C (ξ)n4 log n, the following bounds

sup
q∈Sn−1

∣∣Q1(q)−Q1(q)
∣∣ ≤ ξ

θ5/2n3/2p
(7.3.13)
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sup
q∈Sn−1

∥∥Q2(q)−Q2(q)
∥∥ ≤ ξ

θ2np
, (7.3.14)

hold with probability at least 1− c(ξ)p−2 for a positive constant c(ξ).

Proof First, for any q ∈ Sn−1, from (7.3.1), we know that

∣∣Q1(q)−Q1(q)
∣∣

=

∣∣∣∣∣1p
p∑
k=1

x0(k)Sλ
[
q⊤yk

]
− 1

p

p∑
k=1

x0(k)

∥x0∥
Sλ
[
q⊤yk

]∣∣∣∣∣
≤

∣∣∣∣∣1p
p∑
k=1

x0(k)Sλ
[
q⊤yk

]
− 1

p

p∑
k=1

x0(k)Sλ
[
q⊤yk

]∣∣∣∣∣+
∣∣∣∣∣1p

p∑
k=1

x0(k)Sλ
[
q⊤yk

]
− 1

p

p∑
k=1

x0(k)

∥x0∥
Sλ
[
q⊤yk

]∣∣∣∣∣
≤ 1

p

p∑
k=1

|x0(k)|
∣∣Sλ [q⊤yk]− Sλ [q⊤yk]∣∣+ 1

p

p∑
k=1

|x0(k)|
∣∣∣∣1− 1

∥x0∥

∣∣∣∣ ∣∣Sλ [q⊤yk]∣∣ .
For any I = supp(x0), using the fact that Sλ[·] is a nonexpansive operator, we have

sup
q∈Sn−1

∣∣Q1(q)−Q1(q)
∣∣ ≤ 1

p
sup

q∈Sn−1

∑
k∈I

|x0(k)|
∣∣q⊤ (yk − yk

)∣∣+ ∣∣∣∣1− 1

∥x0∥

∣∣∣∣ 1p sup
q∈Sn−1

∑
k∈I

|x0(k)|
∣∣q⊤yk∣∣

=
1√
θp3/2

(∥∥Y I − YI
∥∥
ℓ2→ℓ1 +

∣∣∣∣1− 1

∥x0∥

∣∣∣∣ ∥YI∥ℓ2→ℓ1) .
By Lemma A.15 and Lemma A.17 in Appendix A.2, we have the following holds

sup
q∈Sn−1

∣∣Q1(q)−Q1(q)
∣∣ ≤ 1√

θp3/2

(
20

√
n log p

θ
+

4
√
2

5

√
n log p

θ2p
× 7
√
2θp

)
≤ 32

θp3/2

√
n log p,

with probability at least 1 − c1p−2, provided p ≥ C2n and θ > 1/
√
n. Simple calculation shows that it is

enough to have p ≥ C3 (ξ)n
4 log n for some sufficiently large C1 (ξ) to obtain the claimed result in (7.3.13).

Similarly, by Lemma A.17 and Lemma A.18 in Appendix A.2, we have

sup
q∈Sn−1

∥∥Q2(q)−Q2(q)
∥∥

= sup
q∈Sn−1

∥∥∥∥∥1p
p∑
k=1

gkSλ
[
q⊤yk

]
− 1

p

p∑
k=1

g′kSλ
[
q⊤yk

]∥∥∥∥∥
≤ sup

q∈Sn−1

∥∥∥∥∥1p
p∑
k=1

gkSλ
[
q⊤yk

]
− 1

p

p∑
k=1

g′kSλ
[
q⊤yk

]∥∥∥∥∥ +

∥∥∥∥∥1p
p∑
k=1

g′kSλ
[
q⊤yk

]
− 1

p

p∑
k=1

g′kSλ
[
q⊤yk

]∥∥∥∥∥
≤1

p
sup

q∈Sn−1

p∑
k=1

∥∥gk − g′k
∥∥ ∣∣q⊤yk∣∣+ 1

p
sup

q∈Sn−1

p∑
k=1

∥∥g′k∥∥ ∣∣q⊤ (yk − yk
)∣∣

≤1

p

(
∥G−G′∥ℓ2→ℓ∞

∥∥Y ∥∥
ℓ2→ℓ1 + ∥G

′∥ℓ2→ℓ∞
∥∥Y − Y

∥∥
ℓ2→ℓ1

)
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≤1

p

(
120max(n, log(2p))

√
p

+
300
√
n log(2p)max(

√
n,
√

log(2p))√
θp

)
≤

420
√
n log(2p)max(

√
n,
√
log(2p))

θ1/2p3/2

with probability at least 1− c4p−2 provided p ≥ C4n and θ > 1/
√
n. It is sufficient to have p ≥ C5 (ξ)n

4 log n

to obtain the claimed result (7.3.14).

7.4 Large |q1| Iterates Staying in Safe Region for Rounding

In this appendix, we prove Proposition 4.5 in Section 4.

Proof [Proof of Proposition 4.5] For notational simplicity, w.l.o.g. we will proceed to prove assuming q1 > 0.

The proof for q1 < 0 is similar by symmetry. It is equivalent to show that

∥Q2 (q)∥
|Q1 (q)|

<

√
1

4θ
− 1,

which is implied by

L (q) .=
∥∥E [Q2(q)

]∥∥ +
∥∥Q2(q)− E

[
Q2(q)

]∥∥
E
[
Q1 (q)

]
−
∣∣Q1 (q)− E

[
Q1 (q)

]∣∣ <

√
1

4θ
− 1

for any q ∈ Sn−1 satisfying q1 > 3
√
θ. Recall from (7.3.7) that

E
[
Q1(q)

]
=

√
θ

p

{[
αΨ

(
−α
σ

)
+ βΨ

(
β

σ

)]
+ σ

[
ψ

(
β

σ

)
− ψ

(
−α
σ

)]}
,

where

α =
1
√
p

(
q1√
θ
+ 1

)
, β =

1
√
p

(
q1√
θ
− 1

)
, σ = ∥q2∥ /

√
p.

Noticing the fact that

ψ

(
β

σ

)
− ψ

(
−α
σ

)
≥ 0,

Ψ

(
β

σ

)
= Ψ

(
1√

1− q21

(
q1√
θ
− 1

))
≥ Ψ(2) ≥ 19

20
for q1 > 3

√
θ,

we have

E
[
Q1 (q)

]
≥
√
θ

p

{
q1√
θ

[
Ψ
(
−α
σ

)
+Ψ

(
β

σ

)]
+Ψ

(
−α
σ

)
−Ψ

(
β

σ

)}
≥ 2
√
θ

p
Ψ

(
β

σ

)
≥ 19

10

√
θ

p
.
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Moreover, from (7.3.8), we have

∥∥E [Q2 (q)
]∥∥ = ∥q2∥

{
2 (1− θ)

p
Ψ

(
−λ
σ

)
+
θ

p

[
Ψ
(
−α
σ

)
+Ψ

(
β

σ

)]}
≤ 2 (1− θ)

p
Ψ(−1) + θ

p
[Ψ (−1) + 1] ≤ 2

p
Ψ(−1) + θ

p
≤ 2

5p
+
θ

p
,

where we have used the fact that −λ/σ ≤ −1 and −α/σ ≤ −1. Moreover, from results in Proposition 7.8

and Proposition 7.9 in Appendix 7.3, we know that

sup
q∈Sn−1

∣∣Q1(q)− E
[
Q1(q)

]∣∣ ≤ sup
q∈Sn−1

∣∣Q1(q)−Q1(q)
∣∣+ sup

q∈Sn−1

∣∣Q1(q)− E
[
Q1(q)

]∣∣ ≤ 1

2× 105θ5/2n3/2p
,

sup
q∈Sn−1

∥∥Q(q)− E
[
Q(q)

]∥∥ ≤ sup
q∈Sn−1

∥∥Q(q)−Q(q)
∥∥ + sup

q∈Sn−1

∥∥Q(q)− E
[
Q(q)

]∥∥ ≤ 1

2× 105θ2np

hold with probability at least 1 − c1p−2 provided that p ≥ Ω
(
n4 log n

)
. Hence, with high probability, we

have

L (q) ≤ 2/(5p) + θ/p+ (2× 105θ2np)−1

19
√
θ/(10p)− (2× 105θ5/2n3/2p)−1

≤ 3/5

18
√
θ/10

≤ 1

3
√
θ
<

√
1

4θ
− 1,

whenever θ is sufficiently small. This completes the proof.

Now, keep the notation in Appendix 7.3 for general orthonormal basis Ŷ = Y U . For any current iterate

q ∈ Sn−1 that is close enough to the target solution, i.e.,
∣∣⟨q,U⊤e1⟩∣∣ = |⟨Uq, e1⟩| ≥ 3

√
θ, we have∣∣∣⟨Q(q; Ŷ ) ,U⊤e1⟩∣∣∣∥∥∥Q(q; Ŷ )∥∥∥ =

∣∣∣⟨UQ
(
q; Ŷ

)
, e1

⟩∣∣∣∥∥∥UQ
(
q; Ŷ

)∥∥∥ =
|⟨Q (Uq;Y ) , e1⟩|
∥Q (Uq;Y )∥

,

where we have applied the identity proved in (7.3.2). Taking Uq ∈ Sn−1 as the object of interest, by Propo-

sition 4.5, we conclude that

|⟨Q (Uq;Y ) , e1⟩|
∥Q (Uq;Y )∥

≥ 2
√
θ

with high probability.

7.5 Bounding Iteration Complexity

In this appendix, we prove Proposition 4.6 in Section 4.

Proof [Proof of Proposition 4.6] Recall from Proposition 4.4 in Section 4, the gap

G(q) =
|Q1(q)|
|q1|

−
∥Q2(q)∥
∥q∥

≥ 1

104θ2np



CHAPTER 7. PROOF OF TECHNICAL RESULTS 52

holds uniformly over q ∈ Sn−1 satisfying 1
10
√
θn
≤ |q1| ≤ 3

√
θ, with probability at least 1− c1p−2, provided

p ≥ C2n
4 log n. The gap G(q) implies that∣∣∣Q̃1 (q)

∣∣∣ .= |Q1(q)|
∥Q (q)∥

≥
|q1| ∥Q2(q)∥
∥q∥ ∥Q (q)∥

+
|q1|

104θ2np ∥Q (q)∥

⇐⇒
∣∣∣Q̃1 (q)

∣∣∣ ≥ |q1|∥q2∥
√

1−
∣∣∣Q̃1 (q)

∣∣∣2 + |q1|
104θ2np ∥Q (q)∥

=⇒
∣∣∣Q̃1 (q)

∣∣∣2 ≥ |q1|2(1 + ∥q2∥2

108θ4n2p2 ∥Q (q)∥2

)
.

Given the set Γ defined in (4.2.5), now we know that

sup
q∈Γ
∥Q (q)∥ ≤ sup

q∈Γ

∣∣EQ1(q)
∣∣+ sup

q∈Sn−1

∣∣EQ1(q)−Q1 (q)
∣∣+ sup

q∈Sn−1

∣∣Q1(q)−Q1 (q)
∣∣

+ sup
q∈Γ

∥∥EQ2(q)
∥∥ + sup

q∈Sn−1

∥∥EQ2(q)−Q2 (q)
∥∥ + sup

q∈Sn−1

∥∥Q2(q)−Q2 (q)
∥∥

≤ sup
q∈Γ

∣∣EQ1(q)
∣∣+ sup

q∈Γ

∣∣EQ2(q)
∣∣+ 1

pn

with probability at least 1−c3p−2 provided p ≥ C4n
4 log n and θ > 1/

√
n. Here we have used Proposition 7.8

and Proposition 7.9 to bound the magnitudes of the four difference terms. To bound the magnitudes of the

expectations, we have

∣∣EQ1(q)
∣∣ = ∣∣∣∣∣E1

p

p∑
k=1

x0(k)Sλ
[
x0(k)q1 + q⊤2 g

k
]∣∣∣∣∣ ≤ 1√

θp

(
1√
θp

+ E∥g∥
)
≤ 3
√
n√
θp
≤ 3n

p
,

∥∥EQ2(q)
∥∥ =

∥∥∥∥∥E1

p

p∑
k=1

gkSλ
[
x0(k)q1 + q⊤2 g

k
]∥∥∥∥∥ ≤ 1√

θp
E∥g∥ + E∥g∥2 ≤ 3n

p

hold uniformly for all q ∈ Γ, provided θ > 1/
√
n. Thus, we obtain that

sup
q∈Γ
∥Q (q)∥ ≤ 3n

p
+

3n

p
+

1

np
≤ 7n

p

with probability at least 1− c3p−2 provided p ≥ C4n
4 log n and θ > 1/

√
n. So we conclude that∣∣∣Q̃1 (q)

∣∣∣
|q1|

≥
√

1 +
1− 9θ

108 × 72 × θ4n4
.

Thus, starting with any q ∈ Sn−1 such that |q1| ≥ 1
10
√
θn

, we will need at most

T =
2 log

(
3
√
θ/ 1

10
√
θn

)
log
(
1 + 1−9θ

108×72×θ4n4

) =
2 log (30θ

√
n)

log
(
1 + 1−9θ

108×72×θ4n4

) ≤ 2 log (30θ
√
n)

(log 2) 1−9θ
108×72×θ4n4

≤ C5n
4 log n

steps to arrive at a q ∈ Sn−1 with |q̄1| ≥ 3
√
θ for the first time. Here we have assumed θ0 < 1/9 and used
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the fact that log (1 + x) ≥ x log 2 for x ∈ [0, 1] to simplify the final result.

7.6 Rounding to the Desired Solution

In this appendix, we prove Proposition 4.7 in Section 4. For convenience, we will assume the notations we

used in Appendix A.2. Then the rounding scheme can be written as

min
q
∥Y q∥ , s.t. ⟨q, q⟩ = 1. (7.6.1)

We will show the rounding procedure get us to the desired solution with high probability, regardless of the

particular orthonormal basis used.

Proof [Proof of Proposition 4.7] The rounding program (7.6.1) can be written as

inf
q
∥Y q∥1 , s.t. q1q1 + ⟨q2, q2⟩ = 1. (7.6.2)

Consider its relaxation

inf
q
∥Y q∥1 , s.t. q1q1 + ∥q2∥ ∥q2∥ ≥ 1. (7.6.3)

It is obvious that the feasible set of (7.6.3) contains that of (7.6.2). So if e1/q1 is the unique optimal solution

(UOS) of (7.6.3), it is also the UOS of (7.6.2). Let I = supp(x0), and consider a modified problem

inf
q

∥∥∥∥ x0

∥x0∥

∥∥∥∥
1

|q1| − ∥G′Iq2∥1 + ∥G
′
Icq2∥1 , s.t. q1q1 + ∥q2∥ ∥q2∥ ≥ 1. (7.6.4)

The objective value of (7.6.4) lower bounds the objective value of (7.6.3), and are equal when q = e1/q1. So

if q = e1/q1 is the UOS to (7.6.4), it is also UOS to (7.6.3), and hence UOS to (7.6.2) by the argument above.

Now

−∥G′Iq2∥1 + ∥G
′
Icq2∥1 ≥ −∥GIq2∥1 + ∥GIcq2∥1 − ∥(G−G′) q2∥1

≥ −∥GIq2∥1 + ∥GIcq2∥1 − ∥G−G′∥ℓ2→ℓ1 ∥q2∥ .

When p ≥ C1n, by Lemma A.14 and Lemma A.17, we know that

− ∥GIq2∥1 + ∥GIcq2∥1 − ∥G−G′∥ℓ2→ℓ1 ∥q2∥

≥ −6

5

√
2

π
2θ
√
p ∥q2∥ +

24

25

√
2

π
(1− 2θ)

√
p ∥q2∥ − 4

√
n ∥q2∥ − 7

√
log(2p) ∥q2∥

.
= ζ ∥q2∥
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holds with probability at least 1− c2p−2. Thus, we make a further relaxation of problem (7.6.2) by

inf
q

∥∥∥∥ x0

∥x0∥

∥∥∥∥
1

|q1|+ ζ ∥q2∥ , s.t. q1q1 + ∥q2∥ ∥q2∥ ≥ 1, (7.6.5)

whose objective value lower bounds that of (7.6.4). By similar arguments, if e1/q1 is UOS to (7.6.5), it is

UOS to (7.6.2). At the optimal solution to (7.6.5), notice that it is necessary to have sign(q1) = sign(q1) and

q1q1 + ∥q2∥ ∥q2∥ = 1. So (7.6.5) is equivalent to

inf
q

∥∥∥∥ x0

∥x0∥

∥∥∥∥
1

|q1|+ ζ ∥q2∥ , s.t. q1q1 + ∥q2∥ ∥q2∥ = 1. (7.6.6)

which is further equivalent to

inf
q1

∥∥∥∥ x0

∥x0∥

∥∥∥∥
1

|q1|+ ζ
1− |q1| |q1|
∥q∥

, s.t. |q1| ≤
1

|q1|
. (7.6.7)

Notice that the problem in (7.6.7) is linear in |q1| with a compact feasible set. Since the objective is also

monotonic in |q1|, it indicates that the optimal solution only occurs at the boundary points |q1| = 0 or

|q1| = 1/ |q1| Therefore, q = e1/q1 is the UOS of (7.6.7) if and only if

1

|q1|

∥∥∥∥ x0

∥x0∥

∥∥∥∥
1

<
ζ

∥q2∥
.

Since
∥∥∥ x0

∥x0∥

∥∥∥
1
≤
√
2θp conditioned on E0, it is sufficient to have

√
2θp

2
√
θ
≤ ζ =

24

25

√
2

π

√
p

(
1− 9

2
θ − 25

6

√
π

2

√
n

p
− 175

24

√
π

2

√
log(2p)

p

)
.

Therefore there exists a constant θ0 > 0, such that whenever θ ≤ θ0 and p ≥ C3(θ0)n, the rounding returns

e1/q1. A bit of thought suggests one can take a universal C3 for all possible choice of θ0, completing the

proof.

When the input basis is Ŷ = Y U for some orthogonal matrix U ̸= I , if the ADM algorithm produces

some q = U⊤q′, such that q′1 > 2
√
θ. It is not hard to see that now the rounding (7.6.1) is equivalent to

min
q
∥Y Uq∥1 , s.t. ⟨q′,Uq⟩ = 1.

Renaming Uq, it follows from the above argument that at optimum q⋆ it holds that Uq⋆ = γe1 for some

constant γ with high probability.
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Part III

Complete Dictionary Learning
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We consider the problem of recovering a complete (i.e., square and invertible) matrix A0, from Y ∈ Rn×p

with Y = A0X0, provided X0 is sufficiently sparse. This recovery problem is central to theoretical under-

standing of dictionary learning, which seeks a sparse representation for a collection of input signals and

finds numerous applications in modern signal processing and machine learning. We give the first efficient

algorithm that provably recovers A0 when X0 has O (n) nonzeros per column, under suitable probability

model for X0. In contrast, prior results based on efficient algorithms either only guarantee recovery when

X0 has O(
√
n) zeros per column, or require multiple rounds of SDP relaxation to work when X0 has O(n)

nonzeros per column.

Our algorithmic pipeline centers around solving a certain nonconvex optimization problem with a spheri-

cal constraint. In this paper, we provide a geometric characterization of the objective landscape. In particular,

we show that the problem is highly structured: with high probability, (1) there are no “spurious” local min-

imizers; and (2) around all saddle points the objective has a negative directional curvature. This distinctive

structure makes the problem amenable to efficient optimization algorithms. We design a second-order trust-

region algorithm over the sphere that provably converges to a local minimizer from arbitrary initializations,

despite the presence of saddle points.

This part is organized as follows. In Chapter 8 we motivate the dictionary learning problem and overview

main ingredients of our nonconvex approach. In Chapter 9 we present the nonconvex formulation of the

complete dictionary learning problem. In Chapter 10 we present our main geometric results that confirm the

central nonconvex problem is a ridable saddle function. In Chapter 11 we present the results for convergence

of the Riemannian trust-region algorithm over the sphere. In Chapter 12, we present simulations on both

synthetic and real data to corroborate our theory. Finally, we conclude this part of thesis in Chapter 13.

All the detailed proofs are omitted in this part of thesis. We refer the readers to our paper [SQW15b]

and [SQW15c] for detailed proofs.
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Chapter 8

Introduction

Given p signal samples from Rn, i.e., Y .
= [y1, . . . ,yp], is it possible to construct a “dictionary” A

.
=

[a1, . . . ,am] with m much smaller than p, such that Y ≈ AX and the coefficient matrix X has as few

nonzeros as possible? In other words, this model dictionary learning (DL) problem seeks a concise represen-

tation for a collection of input signals. Concise signal representations play a central role in compression, and

also prove useful to many other important tasks, such as signal acquisition, denoising, and classification.

Traditionally, concise signal representations have relied heavily on explicit analytic bases constructed

in nonlinear approximation and harmonic analysis. This constructive approach has proved highly success-

ful; the numerous theoretical advances in these fields (see, e.g., [DeV98, Tem03, DeV09, Can02, MP10a] for

summary of relevant results) provide ever more powerful representations, ranging from the classic Fourier

basis to modern multidimensional, multidirectional, multiresolution bases, including wavelets, curvelets,

ridgelets, and so on. However, two challenges confront practitioners in adapting these results to new do-

mains: which function class best describes signals at hand, and consequently which representation is most

appropriate. These challenges are coupled, as function classes with known “good” analytic bases are rare.
1

Around 1996, neuroscientists Olshausen and Field discovered that sparse coding, the principle of en-

coding a signal with few atoms from a learned dictionary, reproduces important properties of the receptive

fields of the simple cells that perform early visual processing [OF96, OF97]. The discovery has spurred a

flurry of algorithmic developments and successful applications for DL in the past two decades, spanning

1As Donoho et al [DVDD98] put it, “...in effect, uncovering the optimal codebook structure of naturally occurring data involves
more challenging empirical questions than any that have ever been solved in empirical work in the mathematical sciences.”
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classical image processing, visual recognition, compressive signal acquisition, and also recent deep architec-

tures for signal classification (see, e.g., [Ela10, MBP14] for review of this development).

8.1 Theoretical and Algorithmic Challenges

In contrast to the above empirical successes, theoretical study of dictionary learning is still developing. For

applications in which dictionary learning is to be applied in a “hands-free” manner, it is desirable to have

efficient algorithms which are guaranteed to perform correctly, when the input data admit a sparse model.

There have been several important recent results in this direction, which we will review in Section 8.4, after

our sketching main results. Nevertheless, obtaining algorithms that provably succeed under broad and

realistic conditions remains an important research challenge.

To understand where the difficulties arise, we can consider a model formulation, in which we attempt to

obtain the dictionary A ∈ Rn×m and coefficients X ∈ Rm×p which best trade-off sparsity and fidelity to the

observed data:

minimizeA,X λ ∥X∥1 +
1

2
∥AX − Y ∥2F , subject to A ∈ A. (8.1.1)

Here, ∥X∥1
.
=
∑
i,j |Xij | promotes sparsity of the coefficients, λ ≥ 0 trades off the level of coefficient sparsity

and quality of approximation, and A imposes desired structures on the dictionary.

This formulation is nonconvex: the admissible set A is typically nonconvex (e.g., orthogonal group, ma-

trices with normalized columns)2, while the most daunting nonconvexity comes from the bilinear mapping:

(A,X) 7→ AX . Because (A,X) and
(
AΠΣ,Σ−1Π∗X

)
result in the same objective value for the conceptual

formulation (8.1.1), where Π is any permutation matrix, and Σ any diagonal matrix with diagonal entries

in {±1}, and (·)∗ denotes matrix transpose. Thus, we should expect the problem to have combinatorially

many global minimizers. These global minimizers are generally isolated, likely jeopardizing natural convex

relaxation (see similar discussions in, e.g., [GS10] and [GW11]).3 This contrasts sharply with problems in

sparse recovery and compressed sensing, in which simple convex relaxations are often provably effective

2For example, in nonlinear approximation and harmonic analysis, orthonormal basis or (tight-)frames are preferred; to fix the scale
ambiguity discussed in the text, a common practice is to require that A to be column-normalized.

3Simple convex relaxations normally replace the objective function with a convex surrogate, and the constraint set with its convex
hull. When there are multiple isolated global minimizers for the original nonconvex problem, any point in the convex hull of these
global minimizers are necessarily feasible for the relaxed version, and such points tend to produce smaller or equal values than that of
the original global minimizers by the relaxed objective function, due to convexity. This implies such relaxations are bound to be loose.
Semidefinite programming (SDP) lifting may be one useful general strategy to convexify bilinear inverse problems, see, e.g., [ARR14,
CM14a]. However, for problems with general nonlinear constraints, it is unclear whether the lifting always yields tight relaxation;
consider, e.g., [BKS13a, BR14, CM14a] and the identification issue in blind deconvolution [? ? ].
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Figure 8.1: Alternating direction method for (8.2.1) on uncompressed real images seems to always produce the same
solution! Top: Each image is 512 × 512 in resolution and encoded in the uncompressed pgm format (uncompressed
images to prevent possible bias towards standard bases used for compression, such as DCT or wavelet bases). Each
image is evenly divided into 8 × 8 non-overlapping image patches (4096 in total), and these patches are all vectorized
and then stacked as columns of the data matrix Y . Bottom: Given each Y , we solve (8.2.1) 100 times with independent
and randomized (uniform over the orthogonal group) initialization A0. Let A∞ denote the value of A at convergence
(we set the maximally allowable number of ADM iterations to be 104 and λ = 2). The plots show the values of ∥A∗

∞Y ∥1
across the independent repetitions. They are virtually the same and the relative differences are less than 10−3!

[DT09, OH10, CLMW11b, DGM13, MT14, MHWG13, CRPW12, CSV13, ALMT14, Can14]. Is there any hope

to obtain global solutions to the DL problem?

8.2 An Intriguing Numerical Experiment with Real Images

We provide empirical evidence in support of a positive answer to the above question. Specifically, we learn

orthogonal bases (orthobases) for real images patches. Orthobases are of interest because typical hand-

designed dictionaries such as discrete cosine (DCT) and wavelet bases are orthogonal, and orthobases seem

competitive in performance for applications such as image denoising, as compared to overcomplete dictio-

naries [BCJ13]4.

We divide a given greyscale image into 8 × 8 non-overlapping patches, which are converted into 64-

dimensional vectors and stacked column-wise into a data matrix Y . Specializing (8.1.1) to this setting, we

4See Section 8.3 for more detailed discussions of this point. [LGBB05] also gave motivations and algorithms for learning (union of)
orthobases as dictionaries.
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obtain the optimization problem:

minimizeA,X λ ∥X∥1 +
1

2
∥AX − Y ∥2F ,

subject to A ∈ On,
(8.2.1)

where On is the set of order n orthogonal matrices, i.e., order-n orthogonal group. To derive a concrete

algorithm for (8.2.1), one can deploy the alternating direction method (ADM)5, i.e., alternately minimizing

the objective function with respect to (w.r.t.) one variable while fixing the other. The iteration sequence

actually takes very simple form: for k = 1, 2, 3, . . . ,

Xk = Sλ
[
A∗k−1Y

]
, Ak = UV ∗

where Sλ [·] denotes the well-known soft-thresholding operator acting elementwise on matrices, i.e., Sλ [x]
.
=

sign (x)max (|x| − λ, 0) for any scalar x, and UDV ∗ = SVD (Y X∗k).

Fig. 8.1 shows what we obtained using the simple ADM algorithm, with independent and randomized ini-

tializations: The algorithm seems to always produce the same optimal value, regardless of the initialization.

This observation is consistent with the possibility that the heuristic ADM algorithm may always converge

to a global minimizer! 6 Equally surprising is that the phenomenon has been observed on real images7. One

may imagine only random data typically have “favorable” structures; in fact, almost all existing theories for

DL pertain only to random data [SWW12a, AAJ+13, AGM13, AAN13, ABGM14, AGMM15].

8.3 Dictionary Recovery and Our Results

In this thesis, we take a step towards explaining the surprising effectiveness of nonconvex optimization

heuristics for DL. We focus on the dictionary recovery (DR) setting: given a data matrix Y generated as

Y = A0X0, where A0 ∈ A ⊆ Rn×m and X0 ∈ Rm×p is “reasonably sparse”, try to recover A0 and X0.

Here recovery means to return any pair
(
A0ΠΣ,Σ−1Π∗X0

)
, where Π is a permutation matrix and Σ is a

nonsingular diagonal matrix, i.e., recovering up to sign, scale, and permutation.

To define a reasonably simple and structured problem, we make the following assumptions:

5This method is also called alternating minimization or (block) coordinate descent method. see, e.g., [BT89, Tse01] for classic results
and [ABRS10, BST14] for several interesting recent developments.

6Technically, the convergence to global solutions is surprising because even convergence of ADM to critical points is not guaranteed
in general, see, e.g., [ABRS10, BST14] and references therein.

7Actually the same phenomenon is also observed for simulated data when the coefficient matrix obeys the Bernoulli-Gaussian
model, which is defined later. The result on real images supports that previously claimed empirical successes over two decades may
be non-incidental.
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• The target dictionary A0 is complete, i.e., square and invertible (m = n). In particular, this class

includes orthogonal dictionaries. Admittedly overcomplete dictionaries tend to be more powerful for

modeling and to allow sparser representations. Nevertheless, most classic hand-designed dictionaries

in common use are orthogonal. Orthobases are competitive in performance for certain tasks such as

image denoising [BCJ13], and admit faster algorithms for learning and encoding. 8

• The coefficient matrix X0 follows the Bernoulli-Gaussian (BG) model with rate θ: [X0]ij = ΩijVij ,

with Ωij ∼ Ber (θ) and Vij ∼ N (0, 1), where all the different random variables are jointly indepen-

dent. We write compactly X0 ∼i.i.d. BG(θ). This BG model, or the Bernoulli-Subgaussian model as

used in [SWW12a], is a reasonable first model for generic sparse coefficients: the Bernoulli process

enables explicit control on the (hard) sparsity level, and the (sub)-Gaussian process seems plausible

for modeling variations in magnitudes. Real signals may admit encoding coefficients with additional

or different characteristics. We will focus on generic sparse encoding coefficients as a first step towards

theoretical understanding.

In this paper, we provide a nonconvex formulation for the DR problem, and characterize the geometric struc-

ture of the formulation that allows development of efficient algorithms for optimization. In the companion

paper [SQW15c], we derive an efficient algorithm taking advantage of the structure, and describe a complete

algorithmic pipeline for efficient recovery. Together, we prove the following result:

Theorem 8.1 (Informal statement of our results, a detailed version included in [SQW15c]) For any θ ∈

(0, 1/3), given Y = A0X0 with A0 a complete dictionary and X0 ∼i.i.d. BG(θ), there is a polynomial-time al-

gorithm that recovers (up to sign, scale, and permutation) A0 and X0 with high probability (at least 1−O(p−6))

whenever p ≥ p⋆ (n, 1/θ, κ (A0) , 1/µ) for a fixed polynomial p⋆ (·), where κ (A0) is the condition number of

A0 and µ is a parameter that can be set as cn−5/4 for a constant c > 0.

Obviously, even if X0 is known, one needs p ≥ n to make the identification problem well posed. Under our

particular probabilistic model, a simple coupon collection argument implies that one needs p ≥ Ω
(
1
θ log n

)
to

ensure all atoms inA0 are observed with high probability (w.h.p.). Ensuring that an efficient algorithm exists

may demand more. Our result implies when p is polynomial in n, 1/θ and κ(A0), recovery with an efficient

algorithm is possible. The parameter θ controls the sparsity level of X0. Intuitively, the recovery problem

8Empirically, there is no systematic evidence supporting that overcomplete dictionaries are strictly necessary for good performance
in all published applications (though [OF97] argues for the necessity from a neuroscience perspective). Some of the ideas and tools
developed here for complete dictionaries may also apply to certain classes of structured overcomplete dictionaries, such as tight frames.
See Section ?? for relevant discussion.
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is easy for small θ and becomes harder for large θ.9 It is perhaps surprising that an efficient algorithm can

succeed up to constant θ, i.e., linear sparsity in X0. Compared to the case when A0 is known, there is only

at most a constant gap in the sparsity level one can deal with.

For DL, our result gives the first efficient algorithm that provably recovers complete A0 and X0 when

X0 hasO(n) nonzeros per column under appropriate probability model. Section 8.4 provides detailed com-

parison of our result with other recent recovery results for complete and overcomplete dictionaries.

8.4 Prior Arts and Connections

It is far too ambitious to include here a comprehensive review of the exciting developments of DL algorithms

and applications after the pioneer work [OF96]. We refer the reader to Chapter 12 - 15 of the book [Ela10] and

the survey paper [MBP14] for summaries of relevant developments in image analysis and visual recognition.

In the following, we focus on reviewing recent developments on the theoretical side of dictionary learning,

and draw connections to problems and techniques that are relevant to the current work.

Theoretical Dictionary Learning The theoretical study of DL in the recovery setting started only very re-

cently. [AEB06] was the first to provide an algorithmic procedure to correctly extract the generating dictio-

nary. The algorithm requires exponentially many samples and has exponential running time; see also [HS11].

Subsequent work [GS10, GW11, Sch14a, Sch14b, Sch15] studied when the target dictionary is a local opti-

mizer of natural recovery criteria. These meticulous analyses show that polynomially many samples are

sufficient to ensure local correctness under natural assumptions. However, these results do not imply that

one can design efficient algorithms to obtain the desired local optimizer and hence the dictionary.

[SWW12a] initiated the on-going research effort to provide efficient algorithms that globally solve DR.

They showed that one can recover a complete dictionary A0 from Y = A0X0 by solving a certain sequence

of linear programs, when X0 is a sparse random matrix (under the Bernoulli-Subgaussian model) with

O(
√
n) nonzeros per column (and the method provably breaks down when X0 contains slightly more than

Ω(
√
n) nonzeros per column). [AAJ+13, AAN13] and [AGM13, AGMM15] gave efficient algorithms that

provably recover overcomplete (m ≥ n), incoherent dictionaries, based on a combination of {clustering

9Indeed, when θ is small enough such that columns of X0 are predominately 1-sparse, one directly observes scaled versions of the
atoms (i.e., columns of X0); when X0 is fully dense corresponding to θ = 1, recovery is never possible as one can easily find another
complete A′

0 and fully dense X′
0 such that Y = A′

0X
′
0 with A′

0 not equivalent to A0.
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or spectral initialization} and local refinement. These algorithms again succeed when X0 has Õ(
√
n) 10

nonzeros per column. Recent work [BKS14] provided the first polynomial-time algorithm that provably

recovers most “nice” overcomplete dictionaries when X0 hasO(n1−δ) nonzeros per column for any constant

δ ∈ (0, 1). However, the proposed algorithm runs in super-polynomial (quasipolynomial) time when the

sparsity level goes up to O(n). Similarly, [ABGM14] also proposed a super-polynomial time algorithm that

guarantees recovery with (almost) O (n) nonzeros per column. Detailed models for those methods dealing

with overcomplete dictionaries all differ from one another; nevertheless, they all assume each column of

X0 has bounded sparsity levels, and the nonzero coefficients have certain sub-Gaussian magnitudes11. By

comparison, we give the first polynomial-time algorithm that provably recovers complete dictionary A0 when

X0 has O (n) nonzeros per column, under the BG model. After our initial submission, the very recent

work [MSS16] assumed the same model as in [BKS14] and provided the first polynomial-time algorithm

that guarantees to recover overcomplete dictionaries when the coefficients have up to near sparsity. The

improvement is based on a refinement to the rounding procedure for the SOS proposed in [BKS14].

Aside from efficient recovery, other theoretical work on DL includes results on identifiability [AEB06,

HS11, WY15], generalization bounds [MP10b, VMB11, MG13, GJB+13], and noise stability [GJB14].

Finding Sparse Vectors in a Linear Subspace We have followed [SWW12a] and cast the core problem

as finding the sparsest vectors in a given linear subspace, which is also of independent interest. Under a

planted sparse model12, [DH14] showed that solving a sequence of linear programs similar to [SWW12a] can

recover sparse vectors with sparsity up to O (p/
√
n), sublinear in the vector dimension. The work in Part

II of this thesis improved the recovery limit to O (p) by solving a nonconvex sphere-constrained problem

similar to (9.0.3)13 via an ADM algorithm. The idea of seeking rows of X0 sequentially by solving the above

core problem sees precursors in [ZP01] for blind source separation, and [GN10] for matrix sparsification.

[ZP01] also proposed a nonconvex optimization similar to (9.0.3) here and that employed in Chapter II.

10The Õ suppresses some logarithm factors.
11Thus, one may anticipate that the performances of those methods do not change much qualitatively, if the BG model for the

coefficients had been assumed.
12... where one sparse vector embedded in an otherwise random subspace.
13The only difference is that they chose to work with the Huber function as a proxy of the ∥·∥1 function.
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Nonconvex Optimization Problems For other nonconvex optimization problems of recovery of structured

signals14, including low-rank matrix completion/recovery [KMO10, JNS13, Har14, HW14, NNS+14, JN14,

SL14, ZL15, TBSR15, CW15], phase retreival [NJS13, CLS15b, CC15, WWS15], tensor recovery [JO14, AGJ14b,

AGJ14a, AJSN15], mixed regression [YCS13, LWB13], structured element pursuit [QSW14], and recovery of

simultaneously structured signals [LWB13], numerical linear algebra and optimization [JJKN15? ], the ini-

tialization plus local refinement strategy adopted in theoretical DL [AAJ+13, AAN13, AGM13, AGMM15,

ABGM14] is also crucial: nearness to the target solution enables exploiting the local property of the op-

timizing objective to ensure that the local refinement succeeds.15 By comparison, we provide a complete

characterization of the global geometry, which admits efficient algorithms without any special initialization.

(a) Correlated Gaussian, θ = 0.1 (b) Correlated Uniform, θ = 0.1 (c) Independent Uniform, θ = 0.1

(d) Correlated Gaussian, θ = 0.9 (e) Correlated Uniform, θ = 0.9 (f) Independent Uniform, θ = 1

Figure 8.2: Asymptotic function landscapes when rows of X0 are not independent. W.l.o.g., we again assume A0 = I .
In (a) and (d), X0 = Ω ⊙ V , with Ω ∼i.i.d. Ber(θ) and columns of X0 i.i.d. Gaussian vectors obeying vi ∼ N (0,Σ2)
for symmetric Σ with 1’s on the diagonal and i.i.d. off-diagonal entries distributed as N (0,

√
2/20). Similarly, in (b)

and (e), X0 = Ω ⊙ W , with Ω ∼i.i.d. Ber(θ) and columns of X0 i.i.d. vectors generated as wi = Σui with ui ∼i.i.d.

Uniform[−0.5, 0.5]. For comparison, in (c) and (f), X0 = Ω⊙W with Ω ∼i.i.d. Ber(θ) and W ∼i.i.d. Uniform[−0.5, 0.5].
Here ⊙ denote the elementwise product, and the objective function is still based on the log cosh function as in (9.0.3).

Independent Component Analysis (ICA) and Other Matrix Factorization Problems DL can also be con-

sidered in the general framework of matrix factorization problems, which encompass the classic principal

component analysis (PCA), ICA, and clustering, and more recent problems such as nonnegative matrix fac-

14This is a body of recent work studying nonconvex recovery up to statistical precision, including, e.g., [LW11, LW13, WLL14, BWY14,
WGNL14, LW14, Loh15, SLLC15].

15The powerful framework [ABRS10, BST14] to establish local convergence of ADM algorithms to critical points applies to DL/DR
also, see, e.g., [BJQS14, BQJ14, BJS14]. However, these results do not guarantee to produce global optima.
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torization (NMF), multi-layer neural nets (deep learning architectures). Most of these problems are NP-

hard. Identifying tractable cases of practical interest and providing provable efficient algorithms are subject

of on-going research endeavors; see, e.g., recent progresses on NMF [AGKM12], and learning deep neural

nets [ABGM13, SA14, NP13, LSSS14].

ICA factors a data matrix Y as Y = AX such that A is square and rows of X achieve maximal statis-

tical independence [HO00, HKO01]. In theoretical study of the recovery problem, it is often assumed that

rows of X0 are (weakly) independent (see, e.g., [Com94, FJK96, AGMS12]). Our i.i.d. probability model on

X0 implies rows of X0 are independent, aligning our problem perfectly with the ICA problem. More inter-

estingly, the log cosh objective we analyze here was proposed as a general-purpose contrast function in ICA

that has not been thoroughly analyzed [Hyv99]. Algorithms and analysis with another popular contrast

function, the fourth-order cumulants, however, indeed overlap with ours considerably [FJK96, AGMS12]16.

While this interesting connection potentially helps port our analysis to ICA, it is a fundamental question to

ask what is playing a more vital role for DR, sparsity or independence.

Fig. 8.2 helps shed some light in this direction, where we again plot the asymptotic objective landscape

with the natural reparameterization as in Section 10. From the left and central panels, it is evident that

even without independence, X0 with sparse columns induces the familiar geometric structures we saw in

Fig. 10.1; such structures are broken when the sparsity level becomes large. We believe all our later analyses

can be generalized to the correlated cases we experimented with. On the other hand, from the right panel17,

it seems that with independence, the function landscape undergoes a transition, as sparsity level grows:

target solution goes from minimizers of the objective to the maximizers of the objective. Without adequate

knowledge of the true sparsity, it is unclear whether one would like to minimize or maximize the objective.18

This suggests that sparsity, instead of independence, makes our current algorithm for DR work.

Nonconvex Problems with Similar Geometric Structure Besides ICA discussed above, it turns out that a

handful of other practical problems arising in signal processing and machine learning induce the “no spu-

rious minimizers, all saddles are second-order” structure under natural setting, including the eigenvalue

16Nevertheless, the objective functions are apparently different. Moreover, we have provided a complete geometric characterization
of the objective, in contrast to [FJK96, AGMS12]. We believe the geometric characterization could not only provide insight to the
algorithm, but also help improve the algorithm in terms of stability and also finding all components.

17We have not showed the results on the BG model here, as it seems the structure persists even when θ approaches 1. We suspect
the “phase transition” of the landscape occurs at different points for different distributions and Gaussian is the outlying case where
the transition occurs at 1.

18For solving the ICA problem, this suggests the log cosh contrast function, that works well empirically [Hyv99], may not work for
all distributions (rotation-invariant Gaussian excluded of course), at least when one does not process the data (say perform certain
whitening or scaling).
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problem, generalized phase retrieval [SQW16], orthogonal tensor decomposition [GHJY15], low-rank ma-

trix recovery/completion [BNS16, GLM16], noisy phase synchronization and community detection [BVB16,

Bou16, BBV16], linear neural nets learning [BH89, Kaw16, SC16]. [SQW15d] gave a review of these prob-

lems, and discussed how the methodology developed in this and the companion paper [SQW15c] can be

generalized to solve those problems.
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Chapter 9

Nonconvex Problem Formulation

Since Y = A0X0 and A0 is complete, row (Y ) = row (X0) (row (·) denotes the row space of a matrix)

and hence rows of X0 are sparse vectors in the known (linear) subspace row (Y ). We can use this fact to

first recover the rows of X0, and subsequently recover A0 by solving a system of linear equations. In fact,

for X0 ∼i.i.d. BG(θ), rows of X0 are the n sparsest vectors (directions) in row (Y ) w.h.p. whenever p ≥

Ω(n log n) [SWW12a]. Thus, recovering rows of X0 is equivalent to finding the sparsest vectors/directions

(due to the scale ambiguity) in row(Y ). Since any vector in row(Y ) can be written as q∗Y for a certain q,

one might try to solve

minimize ∥q∗Y ∥0 subject to q∗Y ̸= 0 (9.0.1)

to find the sparsest vector in row(Y ). Once the sparsest one is found, one then appropriately reduces the

subspace row(Y ) by one dimension, and solves an analogous version of (9.0.1) to find the second sparsest

vector. The process is continued recursively until all sparse vectors are obtained. The above idea of reducing

the original recovery problem into finding sparsest vectors in a known subspace first appeared in [SWW12a].

The objective is discontinuous, and the domain is an open set. In particular, the homogeneous constraint

is unconventional and tricky to deal with. Since the recovery is up to scale, one can remove the homogeneity

by fixing the scale of q. Known relaxations [SWW12a, DH14] fix the scale by setting ∥q∗Y ∥∞ = 1 and use

∥·∥1 as a surrogate to ∥·∥0, where ∥·∥∞ is the elementwise ℓ∞ norm, leading to the optimization problem

minimize ∥q∗Y ∥1 subject to ∥q∗Y ∥∞ = 1. (9.0.2)
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The constraint means at least one coordinate of q∗Y has unit magnitude1. Thus, (9.0.2) reduces to a

sequence of convex (linear) programs. [SWW12a] has shown that (see also [DH14]) solving (9.0.2) recov-

ers (A0,X0) for very sparse X0, but the idea provably breaks down when θ is slightly above O(1/
√
n), or

equivalently when each column of X0 has more than O (
√
n) nonzeros. Inspired by our previous image

experiment, we work with a nonconvex alternative2:

minimize f(q; Ŷ )
.
=

1

p

p∑
k=1

hµ (q
∗ŷk) , subject to ∥q∥ = 1, (9.0.3)

where Ŷ ∈ Rn×p is a proxy for Y (i.e., after appropriate processing), k indexes columns of Ŷ , and ∥·∥ is the

usual ℓ2 norm for vectors. Here hµ (·) is chosen to be a convex smooth approximation to |·|, namely,

hµ (z) = µ log

(
ez/µ + e−z/µ

2

)
= µ log cosh(z/µ), (9.0.4)

which is infinitely differentiable and µ controls the smoothing level.3 An illustration of the hµ(·) function
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Figure 9.1: The smooth ℓ1 surrogate defined in (9.0.4) vs. the ℓ1 function, for varying values of µ. The surrogate approx-
imates the ℓ1 function more closely when µ gets smaller.

vs. the ℓ1 function is provided in Fig. 9.1. The spherical constraint is nonconvex. Hence, a-priori, it is

unclear whether (9.0.3) admits efficient algorithms that attain global optima. Surprisingly, simple descent

algorithms for (9.0.3) exhibit very striking behavior: on many practical numerical examples4, they appear to

produce global solutions. Our next section will uncover interesting geometrical structures underlying the

phenomenon.

1The sign ambiguity is tolerable here.
2A similar formulation has been proposed in [ZP01] in the context of blind source separation; see also Chapter II.
3In fact, there is nothing special about this choice and we believe that any valid smooth (twice continuously differentiable) approx-

imation to |·| would work and yield qualitatively similar results. We also have some preliminary results showing the latter geometric
picture remains the same for certain nonsmooth functions, such as a modified version of the Huber function, though the analysis
involves handling a different set of technical subtleties. The algorithm also needs additional modifications.

4... not restricted to the model we assume here for A0 and X0.
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Chapter 10

The High-dimensional Function

Landscape

For the moment, suppose A0 = I and take Ŷ = Y = A0X0 = X0 in (9.0.3). Fig. 10.1 (left) plots

EX0 [f (q;X0)] over q ∈ S2 (n = 3). Remarkably, EX0 [f (q;X0)] has no spurious local minimizers. In fact,

every local minimizer q̂ is one of the signed standard basis vectors, i.e., ±ei’s where i ∈ {1, 2, 3}. Hence,

q̂∗Y reproduces a certain row of X0, and all minimizers reproduce all rows of X0.

Let e⊥3 be the equatorial section that is orthogonal to e3, i.e., e⊥3
.
= span(e1, e2) ∩ B3. To better illustrate

the above point, we project the upper hemisphere above e⊥3 onto e⊥3 . The projection is bijective and we

equivalently define a reparameterization g : e⊥3 7→ R of f . Fig. 10.1 (right) plots the graph of g. Obviously

the only local minimizers are 0,±e1,±e2, and they are also global minimizers. Moreover, the apparent

nonconvex landscape has interesting structures around 0: when moving away from 0, one sees successively

a strongly convex region, a strong gradient region, and a region where at each point one can always find a

direction of negative curvature. This geometry implies that at any nonoptimal point, there is always at least

one direction of descent. Thus, any algorithm that can take advantage of the descent directions will likely

converge to a global minimizer, irrespective of initialization.

Two challenges stand out when implementing this idea. For geometry, one has to show similar structure

exists for general complete A0, in high dimensions (n ≥ 3), when the number of observations p is finite (vs.

the expectation in the experiment). For algorithms, we need to be able to take advantage of this structure

without knowing A0 ahead of time. In Section 11, we will describe a Riemannian trust region method which
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Figure 10.1: Why is dictionary learning over Sn−1 tractable? Assume the target dictionary A0 = I . Left: Large sample
objective function EX0 [f (q)]. The only local minimizers are the signed basis vectors ±ei. Right: A visualization of
the function as a height above the equatorial section e⊥

3 , i.e., span{e1, e2} ∩ B3. The derived function is obtained by
assigning values of points on the upper hemisphere to their corresponding projections on the equatorial section e⊥

3 .
The minimizers for the derived function are 0,±e1,±e2. Around 0 in e⊥

3 , the function exhibits a small region of strong
convexity, a region of large gradient, and finally a region in which the direction away from 0 is a direction of negative
curvature.

addresses the latter challenge.

Geometry for orthogonal A0. In this case, we take Ŷ = Y = A0X0. Since f (q;A0X0) = f (A∗0q;X0),

the landscape of f (q;A0X0) is simply a rotated version of that of f (q;X0), i.e., when A0 = I . Hence we

will focus on the case when A0 = I . Among the 2n symmetric sections of Sn−1 centered around the signed

basis vectors ±e1, . . . ,±en, we work with the symmetric section around en as an exemplar. An illustration

of the symmetric sections and the exemplar we choose to work with on S2 is provided in Fig. 10.2. The result

will carry over to all sections with the same argument; together this provides a complete characterization of

the function f (q;X0) over Sn−1.

To study the function on this exemplar region, we again invoke the projection trick described above, this

time onto the equatorial section e⊥n . This can be formally captured by the reparameterization mapping:

q (w) =

(
w,

√
1− ∥w∥2

)
, w ∈ Bn−1, (10.0.1)

where w is the new variable and Bn−1 is the unit ball in Rn−1. We first study the composition g (w;X0)
.
=
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Figure 10.2: Illustration of the six symmetric sections on S2 and the exemplar we work with. Left: The six symmetric
sections on S2, as divided by the green curves. The signed basis vectors, ±ei’s, are centers of these sections. We choose
to work with the exemplar that is centered around e3 that is shaded in blue. Right: Projection of the upper hemisphere
onto the equatorial section e⊥

3 . The blue region is projection of the exemplar under study. The larger region enclosed
by the red circle is the Γ set on which we characterize the reparametrized function g.

f (q (w) ;X0) over the set

Γ
.
=

{
w : ∥w∥ <

√
4n−1
4n

}
⊊ Bn−1. (10.0.2)

It can be verified the exemplar we chose to work with is strictly contained in this set1. This is illustrated for

the case n = 3 in Fig. 10.2 (right). Our analysis characterizes the properties of g (w;X0) by studying three

quantities

∇2g (w;X0) ,
w∗∇g (w;X0)

∥w∥
,

w∗∇2g (w;X0)w

∥w∥2

respectively over three consecutive regions moving away from the origin, corresponding to the three regions

in Fig. 10.1 (right). In particular, through typical expectation-concentration style arguments, we show that

there exists a positive constant c such that

∇2g (w;X0) ⪰
1

µ
cθI,

w∗∇g (w;X0)

∥w∥
≥ cθ, w∗∇2g (w;X0)w

∥w∥2
≤ −cθ (10.0.3)

1Indeed, if ⟨q, en⟩ ≥ |⟨q, ei⟩| for all i ̸= n, 1−∥w∥2 = q2n ≥ 1/n, implying ∥w∥2 ≤ n−1
n

< 4n−1
4n

. The reason we have defined an
open set instead of a closed (compact) one is to avoid potential trivial local minimizers located on the boundary. We study behavior of
g over this slightly larger set Γ, instead of just the projection of the chosen symmetric section, to conveniently deal with the boundary
effect: if we choose to work with just projection of the chosen symmetric section, there would be considerable technical subtleties at
the boundaries when we call the union argument to cover the whole sphere.
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over the respective regions w.h.p., confirming our low-dimensional observations described above. In partic-

ular, the favorable structure we observed for n = 3 persists in high dimensions, w.h.p., even when p is large

yet finite, for the case A0 is orthogonal. Moreover, the local minimizer of g (w;X0) over Γ is very close to 0,

within a distance of O (µ)2. More specifically, our result can be stated as follows.

Theorem 10.1 (High-dimensional landscape - orthogonal dictionary) Suppose A0 = I and hence Y =

A0X0 = X0. There exist positive constants c⋆ andC, such that for any θ ∈ (0, 1/2) andµ < camin
{
θn−1, n−5/4

}
,

whenever

p ≥ C

µ2θ2
n3 log

n

µθ
, (10.0.4)

the following hold simultaneously with probability at least 1− cbp−6:

∇2g(w;X0) ⪰
c⋆θ

µ
I, if ∥w∥ ≤ µ

4
√
2
, (10.0.5)

w∗∇g(w;X0)

∥w∥
≥ c⋆θ, if µ

4
√
2
≤ ∥w∥ ≤ 1

20
√
5

(10.0.6)

w∗∇2g(w;X0)w

∥w∥2
≤ −c⋆θ, if 1

20
√
5
≤ ∥w∥ ≤

√
4n− 1

4n
, (10.0.7)

and the function g(w;X0) has exactly one local minimizer w⋆ over the open set Γ .
=
{
w : ∥w∥ <

√
4n−1
4n

}
,

which satisfies

∥w⋆ − 0∥ ≤ min

{
ccµ

θ

√
n log p

p
,
µ

16

}
. (10.0.8)

Here ca through cc are all positive constants.

Here q (0) = en, which exactly recovers the last row of X0, (x0)
n. Though the unique local minimizer

w⋆ may not be 0, it is very near to 0. Hence the resulting q (w⋆) produces a close approximation to (x0)
n.

Note that q (Γ) (strictly) contains all points q ∈ Sn−1 such that n = argmaxi∈±[n] q
∗ei. We can characterize

the graph of the function f (q;X0) in the vicinity of other signed basis vector ±ei simply by changing the

equatorial section e⊥n to e⊥i . Doing this 2n times (and multiplying the failure probability in Theorem 10.1 by

2n), we obtain a characterization of f (q;X0) over the entirety of Sn−1.3 The result is captured by the next

corollary.

2When p → ∞, the local minimizer is exactly 0; deviation from 0 that we described is due to finite-sample perturbation. The
deviation distance depends both the hµ(·) and p; see Theorem 10.1 for example.

3In fact, it is possible to pull the very detailed geometry captured in (10.0.5) through (10.0.7) back to the sphere (i.e., the q space)
also; analysis of the Riemannian trust-region algorithm later does part of these. We will stick to this simple global version here.
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Corollary 10.2 Suppose A0 = I and hence Y = A0X0 = X0. There exist positive constant C, such that

for any θ ∈ (0, 1/2) and µ < camin
{
θn−1, n−5/4

}
, whenever p ≥ C

µ2θ2n
3 log n

µθ , with probability at least

1 − cbp
−5, the function f (q;X0) has exactly 2n local minimizers over the sphere Sn−1. In particular, there

is a bijective map between these minimizers and signed basis vectors {±ei}i, such that the corresponding local

minimizer q⋆ and b ∈ {±ei}i satisfy

∥q⋆ − b∥ ≤
√
2min

{
ccµ

θ

√
n log p

p
,
µ

16

}
. (10.0.9)

Here ca to cc are positive constants.

We refer the readers to [SQW15b] for the detailed proofs of Theorem 10.1 and Corollary 10.2. Though

the 2n isolated local minimizers may have different objective values, they are equally good in the sense each

of them helps produce a close approximation to a certain row of X0. As discussed above, for cases A0 is

an orthobasis other than I , the landscape of f (q;Y ) is simply a rotated version of the one we characterized

above.

Geometry for complete A0. For general complete dictionaries A0, we hope that the function f retains

the nice geometric structure discussed above. We can ensure this by “preconditioning” Y such that the

output looks as if being generated from a certain orthogonal matrix, possibly plus a small perturbation.

We can then argue that the perturbation does not significantly affect qualitative properties of the objective

landscape. Write

Y =
(

1
pθY Y ∗

)−1/2
Y . (10.0.10)

Note that for X0 ∼i.i.d. BG(θ), E [X0X
∗
0 ] / (pθ) = I . Thus, one expects 1

pθY Y ∗ = 1
pθA0X0X

∗
0A
∗
0 to behave

roughly like A0A
∗
0 and hence Y to behave like

(A0A
∗
0)
−1/2

A0X0 = (UΣV ∗V ΣU∗)
−1/2

UΣV ∗X0 = UΣ−1U∗UΣV ∗X0 = UV ∗X0 (10.0.11)

where SVD(A0) = UΣV ∗. It is easy to see UV ∗ is an orthogonal matrix. Hence the preconditioning scheme

we have introduced is technically sound. Our analysis shows that Y can be written as

Y = UV ∗X0 +ΞX0, (10.0.12)
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where Ξ is a matrix with a small magnitude. Simple perturbation argument shows that the constant c

in (10.0.3) is at most shrunk to c/2 for all w when p is sufficiently large. Thus, the qualitative aspects of the

geometry have not been changed by the perturbation. To characterize the function landscape of f (q;X0)

over Sn−1, we mostly work with the function

g (w)
.
= f (q (w) ;X0) =

1

p

p∑
k=1

hµ
(
q (w)

∗
(x0)k

)
, (10.0.13)

induced by the reparametrization

q (w) =

(
w,

√
1− ∥w∥2

)
, w ∈ Bn−1. (10.0.14)

In particular, we focus our attention to the smaller set

Γ =

{
w : ∥w∥ <

√
4n− 1

4n

}
⊊ Bn−1, (10.0.15)

because q (Γ) contains all points q ∈ Sn−1 with n ∈ argmaxi∈±[n] q
∗ei and we can similarly characterize

other parts of f on Sn−1 using projection onto other equatorial sections. Note that overΓ, qn =
√
1− ∥w∥2 ≥

1/(2
√
n).

Theorem 10.3 (High-dimensional landscape - complete dictionary) SupposeA0 is complete with its con-

dition number κ (A0). There exist positive constants c⋆ (particularly, the same constant as in Theorem 10.1) and

C, such that for any θ ∈ (0, 1/2) and µ < camin
{
θn−1, n−5/4

}
, when

p ≥ C

c2⋆θ
2
max

{
n4

µ4
,
n5

µ2

}
κ8 (A0) log

4

(
κ (A0)n

µθ

)
(10.0.16)

and Y
.
=
√
pθ (Y Y ∗)

−1/2
Y , UΣV ∗ = SVD (A0), the following hold simultaneously with probability at least

1− cbp−6:

∇2g(w;V U∗Y ) ⪰ c⋆θ

2µ
I, if ∥w∥ ≤ µ

4
√
2
, (10.0.17)

w∗∇g(w;V U∗Y )

∥w∥
≥ 1

2
c⋆θ, if µ

4
√
2
≤ ∥w∥ ≤ 1

20
√
5

(10.0.18)

w∗∇2g(w;V U∗Y )w

∥w∥2
≤ −1

2
c⋆θ, if 1

20
√
5
≤ ∥w∥ ≤

√
4n− 1

4n
, (10.0.19)

and the function g(w;V U∗Y ) has exactly one local minimizerw⋆ over the open setΓ .
=
{
w : ∥w∥ <

√
4n−1
4n

}
,

which satisfies

∥w⋆ − 0∥ ≤ µ/7. (10.0.20)
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Here ca, ab are both positive constants.

Corollary 10.4 SupposeA0 is complete with its condition number κ (A0). There exist positive constants c⋆ (par-

ticularly, the same constant as in Theorem 10.1) andC, such that for any θ ∈ (0, 1/2) andµ < camin
{
θn−1, n−5/4

}
,

when p ≥ C
c2⋆θ

2 max
{
n4

µ4 ,
n5

µ2

}
κ8 (A0) log

4
(
κ(A0)n
µθ

)
and Y

.
=
√
pθ (Y Y ∗)

−1/2
Y , UΣV ∗ = SVD (A0),

with probability at least 1 − cbp−5, the function f
(
q;V U∗Y

)
has exactly 2n local minimizers over the sphere

Sn−1. In particular, there is a bijective map between these minimizers and signed basis vectors {±ei}i, such that

the corresponding local minimizer q⋆ and b ∈ {±ei}i satisfy

∥q⋆ − b∥ ≤
√
2µ/7. (10.0.21)

Here ca, cb are both positive constants.

From the above theorems, it is clear that for any saddle point in the w space, the Hessian has at least one

negative eigenvalue with an associated eigenvectorw/∥w∥. Now the question is whether all saddle points of

f on Sn−1 have analogous properties, we will show in Section 11 that we need to perform actual optimization

in the q space. The arguments are put in the language of Riemannian geometry, and we can switch back

and forth between q and w spaces in our algorithm analysis without stating this fact.
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Chapter 11

Algorithm

To optimize the objective (9.0.3), as we do not know A0 ahead of time, so our algorithm needs to take ad-

vantage of the structure described in the previous chapter without knowledge of A0. Intuitively, this seems

possible as the descent direction in the w space appears to also be a local descent direction for f over the

sphere. Another issue is that although the optimization problem has no spurious local minimizers, it does

have many saddle points with indefinite Hessian, which we call ridable saddles 1 (Fig. 10.1). We can use

second-order information to guarantee to escape from such saddle points. In this chapter, we derive an

algorithm based on the Riemannian trust region method (TRM) [ABG07, AMS09] for solving the complete

dictionary learning problem. There are other algorithmic possibilities; see, e.g., [Gol80, GHJY15].

First, let us provide the basic intuition why a local minimizer can be retrieved by the second-order trust-

region method. Consider an unconstrained optimization problem

min
x∈Rn

ϕ (x) .

Typical (second-order) TRM proceeds by successively forming a second-order approximation to ϕ at the

current iterate,

ϕ̂(δ;x(r−1))
.
= ϕ(x(r−1)) +∇∗ϕ(x(r−1))δ + 1

2δ
∗Q(x(r−1))δ, (11.0.1)

where Q(x(r−1)) is a proxy for the Hessian matrix ∇2ϕ(x(r−1)), which encodes the second-order geometry.

The next movement direction is determined by seeking a minimum of ϕ̂(δ;x(r−1)) over a small region, nor-

mally a norm ball ∥δ∥p ≤ ∆, called the trust region, inducing the well-studied trust-region subproblem that

1See [SQW15d] and [GHJY15].
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can efficiently solved:

δ(r)
.
= argmin

δ∈Rn,∥δ∥p≤∆
ϕ̂(δ;x(r−1)), (11.0.2)

where ∆ is called the trust-region radius that controls how far the movement can be made. If we take

Q(x(r−1)) = ∇2ϕ(x(r−1)) for all r, then whenever the gradient is nonvanishing or the Hessian is indefinite,

we expect to decrease the objective function by a concrete amount provided ∥δ∥ is sufficiently small. Since

the domain is compact, the iterate sequence ultimately moves into the strongly convex region, where the

trust-region algorithm behaves like a typical Newton algorithm. In the following, we generalize those ideas

to our objective (9.0.3) over the sphere and make it rigorous. We refer the readers to [SQW15c] for the

detailed proofs.

11.1 Finding One Local Minimizer via the Riemannian Trust-Region

Method

We are interested to seek a local minimizer of (9.0.3). The presence of saddle points have motivated us to

develop a second-order Riemannian trust-region algorithm over the sphere; the existence of descent direc-

tions at nonoptimal points drives the trust-region iteration sequence towards one of the minimizers asymp-

totically. We will prove that under our modeling assumptions, this algorithm with an arbitrary initialization

efficiently produces an accurate approximation2 to one of the minimizers. Throughout the exposition, basic

knowledge of Riemannian geometry is assumed. The reader can consult the excellent monograph [AMS09]

for relevant background and details.

11.1.1 Some Basic Facts about the Sphere and f

For any point q ∈ Sn−1, the tangent space TqSn−1 and the orthoprojector PTqSn−1 onto TqSn−1 are given by

TqSn−1 = {δ ∈ Rn : q∗δ = 0} ,

PTqSn−1 = I − qq∗ = UU∗,

2By “accurate” we mean one can achieve an arbitrary numerical accuracy ε > 0 with a reasonable amount of time. Here the running
time of the algorithm is on the order of log log(1/ε) in the target accuracy ε, and polynomial in other problem parameters.
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where U ∈ Rn×(n−1) is an arbitrary orthonormal basis for TqSn−1 (note that the orthoprojector is indepen-

dent of the basis U we choose). Consider any δ ∈ TqSn−1. The map

γ(t) : t 7→ q cos (t ∥δ∥) + δ

∥δ∥
sin (t ∥δ∥)

defines a smooth curve on the sphere that satisfies γ(0) = q and γ̇(0) = δ. Geometrically, γ(t) is a segment

of the great circle that passes q and has δ as its tangent vector at q. The exponential map for δ is defined as

expq(δ)
.
= γ(1) = q cos ∥δ∥ + δ

∥δ∥
sin ∥δ∥ .

It is a canonical way of pulling δ to the sphere.

O

q

TqS
n−1

δ

exp
q
(δ)

S
n−1

Figure 11.1: Illustrations of the tangent space TqSn−1 and exponential map expq (δ) defined on the sphere Sn−1.

In this paper we are interested in the restriction of f to the unit sphere Sn−1. For the sake of performing

optimization, we need local approximations of f . Instead of directly approximating the function in Rn,

we form quadratic approximations of f in the tangent spaces of Sn−1. We consider the smooth function

f ◦ expq(δ) : TqSn−1 7→ R, where ◦ is the usual function composition operator. An applications of vector

space Taylor’s theorem gives

f ◦ expq(δ) ≈ f(q; Ŷ ) +
⟨
∇f(q; Ŷ ), δ

⟩
+

1

2
δ∗
(
∇2f(q; Ŷ )−

⟨
∇f(q; Ŷ ), q

⟩
I
)
δ

when ∥δ∥ is small. Thus, we form a quadratic approximation f̂(δ; q) : TqSn−1 7→ R as

f̂(δ; q, Ŷ )
.
= f(q; Ŷ ) +

⟨
∇f(q; Ŷ ), δ

⟩
+

1

2
δ∗

∇2f(q; Ŷ )−
⟨
∇f(q; Ŷ ), q

⟩
I

 δ. (11.1.1)

Here ∇f(q) and ∇2f(q) denote the usual (Euclidean) gradient and Hessian of f w.r.t. q in Rn. For our
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specific f defined in (9.0.3), it is easy to check that

∇f(q; Ŷ ) =
1

p

p∑
k=1

tanh

(
q∗ŷk
µ

)
ŷk, (11.1.2)

∇2f(q; Ŷ ) =
1

p

p∑
k=1

1

µ

[
1− tanh2

(
q∗ŷk
µ

)]
ŷkŷ

∗
k. (11.1.3)

The quadratic approximation also naturally gives rise to the Riemannian gradient and Riemannian Hessian

defined on TqSn−1 as

grad f(q; Ŷ ) = PTqSn−1∇f(q; Ŷ ), (11.1.4)

Hess f(q; Ŷ ) = PTqSn−1

(
∇2f(q; Ŷ )−

⟨
∇f(q; Ŷ ), q

⟩
I
)
PTqSn−1 . (11.1.5)

Thus, the above quadratic approximation can be rewritten compactly as

f̂
(
δ; q, Ŷ

)
= f(q; Ŷ ) +

⟨
δ, grad f(q; Ŷ )

⟩
+

1

2
δ∗Hess f(q; Ŷ )δ, ∀ δ ∈ TqSn−1.

The first order necessary condition for unconstrained minimization of function f̂ over TqSn−1 is

grad f(q; Ŷ ) + Hess f(q; Ŷ )δ⋆ = 0. (11.1.6)

If Hess f(q; Ŷ ) is positive semidefinite and has “full rank” n− 1 (hence “nondegenerate"3), the unique solu-

tion δ⋆ is

δ⋆ = −U
(
U∗
[
Hess f(q; Ŷ )

]
U
)−1

U∗ grad f(q),

which is also invariant to the choice of basis U . Given a tangent vector δ ∈ TqSn−1, let γ(t) .
= expq(tδ)

denote a geodesic curve on Sn−1. Following the notation of [AMS09], let

Pτ←0
γ : TqSn−1 → Tγ(τ)Sn−1

denotes the parallel translation operator, which translates the tangent vector δ at q = γ(0) to a tangent vector

at γ(τ), in a “parallel” manner. In the sequel, we identify Pτ←0
γ with the following n × n matrix, whose

restriction to TqSn−1 is the parallel translation operator (the detailed derivation can be found in Chapter 8.1

3Note that the n×n matrix Hess f(q; Ŷ ) has rank at most n− 1, as the nonzero q obviously is in its null space. When Hess f(q; Ŷ )
has rank n− 1, it has no null direction in the tangent space. Thus, in this case it acts on the tangent space like a full-rank matrix.
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of [AMS09]):

Pτ←0
γ =

(
I − δδ∗

∥δ∥2

)
− q sin (τ ∥δ∥) δ∗

∥δ∥
+

δ

∥δ∥
cos (τ ∥δ∥) δ∗

∥δ∥

= I + (cos(τ ∥δ∥)− 1)
δδ∗

∥δ∥2
− sin (τ ∥δ∥) qδ

∗

∥δ∥
. (11.1.7)

Similarly, following the notation of [AMS09], we denote the inverse of this matrix by P0←τ
γ , where its restric-

tion to Tγ(τ)Sn−1 is the inverse of the parallel translation operator Pτ←0
γ .

11.1.2 The Riemannian Trust-Region Algorithm over the Sphere

For a function f in the Euclidean space, the typical TRM starts from some initialization q(0) ∈ Rn, and

produces a sequence of iterates q(1), q(2), . . . , by repeatedly minimizing a quadratic approximation f̂ to the

objective function f(q), over a ball centered around the current iterate.

For our f defined over Sn−1, given the previous iterate q(r−1), the TRM produces the next movement by

generating a solution δ̂ to

minimizeδ∈T
q(r−1)Sn−1, ∥δ∥≤∆ f̂

(
δ; q(r−1)

)
, (11.1.8)

where f̂
(
δ; q(r−1)) is the local quadratic approximation defined in (11.1.1). The solution δ̂ is then pulled

back to Sn−1 from TqSn−1. If we choose the exponential map to pull back the movement δ̂,4 the next iterate

then reads

q(r) = q(r−1) cos ∥δ̂∥+ δ̂

∥δ̂∥
sin ∥δ̂∥. (11.1.9)

To solve the subproblem (11.1.8) numerically, we can take any matrixU ∈ Rn×(n−1) whose columns form

an orthonormal basis for Tq(r−1)Sn−1, and produce a solution ξ̂ to

minimize∥ξ∥≤∆ f̂
(
Uξ; q(r−1)

)
. (11.1.10)

Solution to (11.1.8) can then be recovered as δ̂ = Uξ̂.

The problem (11.1.10) is an instance of the classic trust region subproblem, i.e., minimizing a quadratic

function subject to a single quadratic constraint.Albeit potentially nonconvex, this notable subproblem can

be solved in polynomial time by several numerical methods [MS83, CGT00, RW97, YZ03, FW04, HK14]. Ap-

proximate solution of the subproblem suffices to guarantee convergence in theory, and lessens the storage

4The exponential map is only one of the many possibilities; also for general manifolds other retraction schemes may be more practical.
See exposition on retraction in Chapter 4 of [AMS09].
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and computational burden in practice. We will deploy the approximate version in simulations. For simplic-

ity, however, our subsequent analysis assumes the subproblem is solved exactly. We next briefly describe

how one can deploy the semidefinite programming (SDP) approach [RW97, YZ03, FW04, HK14] to solve the

subproblem exactly. This choice is due to the well-known effectiveness and robustness of the SDP approach

on this problem. We introduce

ξ̃ = [ξ∗, 1]
∗
, Θ = ξ̃ξ̃∗, M =

 A b

b∗ 0

 , (11.1.11)

where A = U∗Hess f(q(r−1); Ŷ )U and b = U∗ grad∇f(q(r−1); Ŷ ). The resulting SDP to solve is

minimize Θ ⟨M ,Θ⟩ , subject to tr(Θ) ≤ ∆2 + 1, ⟨En+1,Θ⟩ = 1, Θ ⪰ 0, (11.1.12)

where En+1 = en+1e
∗
n+1. Once the problem (11.1.12) is solved to its optimum Θ⋆, one can provably recover

the minimizer ξ⋆ of (11.1.10) by computing the SVD of Θ⋆ = ŨΣṼ ∗, and extract as a subvector the first n−1

coordinates of the principal eigenvector ũ1 (see Appendix B of [BV04]).

Using general convergence results on Riemannian TRM (see, e.g., Chapter 7 of [AMS09]), it is not difficult

to prove that the gradient sequence grad f(q(r); Ŷ ) produced by TRM converges to zero (i.e., global conver-

gence), or the sequence converges (at quadratic rate) to a local minimizer if the initialization is already close

a local minimizer (i.e., local convergence). In this section, we show that under our probabilistic assump-

tions, these results can be substantially strengthened. In particular, the algorithm is guaranteed to produce

an accurate approximation to a local minimizer of the objective function, in a number of iterations that is

polynomial in the problem size, from arbitrary initializations. The arguments in the Chapter 10 showed

that w.h.p. every local minimizer of f produces a close approximation to a row of X0. Taken together, this

implies that the algorithm efficiently produces a close approximation to one row of X0.

Thorough the analysis, we assume the trust-region subproblem is exactly solved and the step size pa-

rameter ∆ is fixed. Our next two theorems summarize the convergence results for orthogonal and complete

dictionaries, respectively.

Theorem 11.1 (TRM convergence - orthogonal dictionary) Suppose the dictionaryA0 is orthogonal. There

exists a positive constant C, such that for all θ ∈ (0, 1/2) and µ < camin
{
θn−1, n−5/4

}
, whenever

p ≥ C

µ2θ2
n3 log

n

µθ
,
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with probability at least 1− cbp−6, the Riemannian trust-region algorithm with input data matrix Ŷ = Y , any

initialization q(0) on the sphere, and a step size satisfying

∆ ≤ ccc
3
⋆θ

3µ2

n7/2 log7/2 (np)
(11.1.13)

returns a solution q̂ ∈ Sn−1 which is ε near to one of the local minimizers q⋆ (i.e., ∥q̂ − q⋆∥ ≤ ε) in at most

max

{
cdn

6 log3 (np)

c3⋆θ
3µ4

,
cen

c2⋆θ
2∆2

}
f(q(0))

+ log log
cfc⋆θµ

εn3/2 log3/2 (np)
(11.1.14)

iterations. Here c⋆ is as defined in Theorem 10.1, and ca through cf are all positive constants.

Theorem 11.2 (TRM convergence - complete dictionary) Suppose the dictionary A0 is complete with con-

dition numberκ (A0). There exists a positive constantC, such that for all θ ∈ (0, 1/2), andµ < camin
{
θn−1, n−5/4

}
,

whenever

p ≥ C

c2⋆θ
2
max

{
n4

µ4
,
n5

µ2

}
κ8 (A0) log

4

(
κ (A0)n

µθ

)
,

with probability at least 1−cbp−6, the Riemannian trust-region algorithm with input data matrixY .
=
√
pθ (Y Y ∗)

−1/2
Y

where UΣV ∗ = SVD (A0), any initialization q(0) on the sphere and a step size satisfying

∆ ≤ ccc
3
⋆θ

3µ2

n7/2 log7/2 (np)
(11.1.15)

returns a solution q̂ ∈ Sn−1 which is ε near to one of the local minimizers q⋆ (i.e., ∥q̂ − q⋆∥ ≤ ε) in at most

max

{
cdn

6 log3 (np)

c3⋆θ
3µ4

,
cen

c2⋆θ
2∆2

}
f(q(0))

+ log log
cfc⋆θµ

εn3/2 log3/2 (np)
(11.1.16)

iterations. Here c⋆ is as in Theorem 10.1, and ca through cf are all positive constants.

Our convergence result shows that for any target accuracy ε > 0 the algorithm terminates within polynomi-

ally many steps. Specifically, the first summand in (11.1.14) or (11.1.16) is the number of steps the sequence

takes to enter the strongly convex region and be “reasonably" close to a local minimizer. All subsequent trust-

region subproblems are then unconstrained (proved below) – the constraint is inactive at optimal point, and

hence the steps behave like Newton steps. The second summand reflects the typical quadratic local conver-

gence of the Newton steps.
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Our estimate of the number of steps is pessimistic: the running time is a relatively high-degree polyno-

mial in p and n. We will discuss practical implementation details that help speed up in Section 5.1. Our

goal in stating the above results is not to provide a tight analysis, but to prove that the Riemannian TRM

algorithm finds a local minimizer in polynomial time. For nonconvex problems, this is not entirely trivial –

results of [MK87] show that in general it is NP-hard to find a local minimizer of a nonconvex function.

11.2 Complete Algorithm Pipeline and Main Results

For orthogonal dictionaries, from Theorem 10.1 and Corollary 10.2, we know that all the minimizers q̂⋆ are

O(µ) away from their respective nearest “target” q⋆, with q∗⋆Ŷ = αe∗iX0 for a certain α ̸= 0 and i ∈ [n];

in Theorem 11.1, we have shown that w.h.p. the Riemannian TRM algorithm produces a solution q̂ ∈ Sn−1

that is ε away to one of the minimizers, say q̂⋆. Thus, the q̂ returned by the TRM algorithm is O(ε+µ) away

from q⋆. For exact recovery, we use a simple linear programming rounding procedure, which guarantees to

produce the target q⋆. We then use deflation to sequentially recover other rows of X0. Overall, w.h.p. both

the dictionary A0 and sparse coefficient X0 are exactly recovered up to sign permutation, when θ ∈ Ω(1),

for orthogonal dictionaries. We refer the readers to Section III of [SQW15c] for detailed proofs. The same

procedure can be used to recover complete dictionaries, though the analysis is slightly more complicated;

again, we refer the readers to Section III of [SQW15c] for detailed proofs. Our overall algorithmic pipeline

for recovering orthogonal dictionaries is sketched as follows.

1. Estimating one row ofX0 by the Riemannian TRM algorithm. By Theorem 10.1 (resp. Theorem 10.3)

and Theorem 11.1 (resp. Theorem 11.2), starting from any q ∈ Sn−1, when the relevant parameters are

set appropriately (say as µ⋆ and ∆⋆), w.h.p., our Riemannian TRM algorithm finds a local minimizer q̂,

with q⋆ the nearest target that exactly recovers a row of X0 and ∥q̂ − q⋆∥ ∈ O(µ) (by setting the target

accuracy of the TRM as, say, ε = µ).

2. Recovering one row of X0 by rounding. To obtain the target solution q⋆ and hence recover (up to

scale) one row of X0, we solve the following linear program:

minimizeq

∥∥∥q∗Ŷ ∥∥∥
1
, subject to ⟨r, q⟩ = 1, (11.2.1)

with r = q̂. We show that when ⟨q̂, q⋆⟩ is sufficiently large, implied by µ being sufficiently small, w.h.p.

the minimizer of (11.2.1) is exactly q⋆, and hence one row of X0 is recovered by q∗⋆Ŷ .
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3. Recovering all rows ofX0 by deflation. Once ℓ rows ofX0 (1 ≤ ℓ ≤ n−2) have been recovered, say, by

unit vectors q1
⋆, . . . , q

ℓ
⋆, one takes an orthonormal basis U for [span

(
q1
⋆, . . . , q

ℓ
⋆

)
]⊥, and minimizes the

new function h(z) .
= f(Uz; Ŷ ) on the sphere Sn−ℓ−1 with the Riemannian TRM algorithm (though

conservative, one can again set parameters as µ⋆, ∆⋆, as in Step 1) to produce a ẑ. Another row of

X0 is then recovered via the LP rounding (11.2.1) with input r = Uẑ (to produce qℓ+1
⋆ ). Finally, by

repeating the procedure until depletion, one can recover all the rows of X0.

4. Reconstructing the dictionary A0. By solving the linear system Y = AX0, one can obtain the dictio-

nary A0 = Y X∗0 (X0X
∗
0 )
−1.

Our recovery result can be summarized as follows.

Theorem 11.3 (Main theorem - recovering orthogonal dictionaries) Assume the dictionaryA0 is orthog-

onal and we take Ŷ = Y . Suppose θ ∈ (0, 1/3), µ⋆ < camin
{
θn−1, n−5/4

}
, and p ≥ Cn3 log n

µ⋆θ
/
(
µ2
⋆θ

2
)
.

The above algorithmic pipeline with parameter setting

∆⋆ =
cbc

3
⋆θ

3µ2
⋆

n7/2 log7/2 (np)
, (11.2.2)

recovers the dictionary A0 and X0 in polynomial time, with failure probability bounded by ccp−6. Here c⋆ is as

defined in Theorem 10.1, and ca through cc, and C are all positive constants.

By working with the preconditioned data samples Ŷ = Y
.
=
√
θp (Y Y ∗)

−1/2
Y ,5 we can use the same

procedure as described above to recover complete dictionaries.

Theorem 11.4 (Main theorem - recovering complete dictionaries) Assume the dictionary A0 is complete

with a condition number κ (A0) and we take Ŷ = Y . Suppose θ ∈ (0, 1/3), µ⋆ < camin
{
θn−1, n−5/4

}
, and

p ≥ C
c2⋆θ

2 max
{
n4

µ4 ,
n5

µ2

}
κ8 (A0) log

4
(
κ(A0)n
µθ

)
. The algorithmic pipeline with parameter setting

∆⋆ =
cdc

3
⋆θ

3µ2
⋆

n7/2 log7/2 (np)
(11.2.3)

recovers the dictionary A0 and X0 in polynomial time, with failure probability bounded by cbp−6. Here c⋆ is as

defined in Theorem 10.1, and ca, cb are both positive constants.

We refer the readers to Section III of [SQW15c] for the detailed proofs of Theorem 11.3 and Theorem

11.4.

5In practice, the parameter θ might not be know beforehand. However, because it only scales the problem, it does not affect the
overall qualitative aspect of results.
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Chapter 12

Numerical Simulations

12.1 Practical TRM Implementation

Fixing a small step size and solving the trust-region subproblem exactly eases the analysis, but also renders

the TRM algorithm impractical. In practice, the trust-region subproblem is never exactly solved, and the

trust-region step size is adjusted to the local geometry, say by backtracking. It is possible to modify our

algorithmic analysis to account for inexact subproblem solvers and adaptive step size; for sake of brevity,

we do not pursue it here. Recent theoretical results on the practical version include [CGT12, BAC16].

Here we describe a practical implementation based on the Manopt toolbox [BMAS14]1. Manopt is a user-

friendly Matlab toolbox that implements several sophisticated solvers for tackling optimization problems

over Riemannian manifolds. The most developed solver is based on the TRM. This solver uses the truncated

conjugate gradient (tCG; see, e.g., Section 7.5.4 of [CGT00]) method to (approximately) solve the trust-region

subproblem (vs. the exact solver in our analysis). It also dynamically adjusts the step size using backtracking.

However, the original implementation (Manopt 2.0) is not adequate for our purposes. Their tCG solver uses

the gradient as the initial search direction, which does not ensure that the TRM solver can escape from

saddle points [ABG07, AMS09]. We modify the tCG solver, such that when the current gradient is small

and there is a negative curvature direction (i.e., the current point is near a saddle point or a local maximizer

of f(q)), the tCG solver explicitly uses the negative curvature direction2 as the initial search direction. This

modification ensures the TRM solver always escape from saddle points/local maximizers with negative

1Available online: http://www.manopt.org.
2...adjusted in sign to ensure positive correlation with the gradient – if it does not vanish.

http://www.manopt.org
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directional curvature. Hence, the modified TRM algorithm based on Manopt is expected to have the same

qualitative behavior as the idealized version we analyzed above, with better scalability. We will perform

our numerical simulations using the modified TRM algorithm whenever necessary. Algorithm 3 together

with Lemmas 9 and 10 and the surrounding discussion in the very recent work [BAC16] provides a detailed

description of this practical version.

12.2 Simulated Data

To corroborate our theory, we experiment with dictionary recovery on simulated data.3 For simplicity, we

focus on recovering orthogonal dictionaries and we declare success once a single row of the coefficient matrix

is recovered.

Since the problem is invariant to rotations, w.l.o.g. we set the dictionary as A0 = I ∈ Rn×n. For any

fixed sparsity k, each column of the coefficient matrix X0 ∈ Rn×p has exactly k nonzero entries, chosen

uniformly random from
(
[n]
k

)
. These nonzero entries are i.i.d. standard normals. This is slightly different

from the Bernoulli-Gaussian model we assumed for analysis. For n reasonably large, these two models have

similar behaviors. For our sparsity surrogate, we fix the smoothing parameter as µ = 10−2. Because the

target points are the signed basis vector ±ei’s (to recover rows of X0), for a solution q̂ returned by the TRM

algorithm, we define the reconstruction error (RE) to be

RE = min
i∈[n]

(∥q̂ − ei∥ , ∥q̂ + ei∥) . (12.2.1)

One trial is determined to be a success once RE ≤ µ, with the idea that this indicates q̂ is already very near the

target and the target can likely be recovered via the LP rounding we described (which we do not implement

here).

We consider two settings: (1) fix p = 5n2 log n and vary the dimension n and sparsity k; (2) fix the

sparsity level as ⌈0.2 · n⌉ and vary the dimension n and number of samples p. For each pair of (k, n) for (1),

and each pair of (p, n) for (2), we repeat the simulations independently for T = 5 times. Fig. 12.1 shows the

phase transition for the two settings. It seems that our TRM algorithm can work well into the linear region

whenever p ∈ O(n2 log n) (Fig. 12.1-Top), but p should have order greater than Ω(n) (Fig. 12.1-Bottom). The

sample complexity from our theory is significantly suboptimal compared to this.

3The code is available online: https://github.com/sunju/dl_focm

https://github.com/sunju/dl_focm
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Figure 12.1: Phase transition for recovering a single sparse vector. Top: We fix p = 5n2 logn and vary the dimension
n and sparsity level k; Bottom: We fix the sparsity level as ⌈0.2 · n⌉ and vary the dimension n and number of samples
p. For each configuration, the experiment is independently repeated for five times. White indicates success, and black
indicates failure.

12.3 Image Data Again

Our algorithmic framework has been derived based on the BG model on the coefficients. Real data may

not admit sparse representations w.r.t. complete dictionaries, or even so, the coefficients may not obey the

BG model. In this experiment, we explore how our algorithm performs in learning complete dictionaries

for image patches, emulating our motivational experiment in Section 8.2 of Chapter 8. Thanks to research

on image compression, we know patches of natural images tend to admit sparse representation, even w.r.t.

simple orthogonal bases, such as Fourier basis or wavelets.

We take the three images that we used in the motivational experiment. For each image, we divide it

into 8× 8 non-overlapping patches, vectorize the patches, and then stack the vectorized patches into a data

matrix Y . Y is preconditioned as

Y =
(
Y Y ⊤

)−1/2
Y ,

and the resulting Y is fed to the dictionary learning pipeline described in Section 11.2. The smoothing

parameter µ is fixed to 10−2. Fig. 12.2 contains the learned dictionaries: the dictionaries generally contain lo-

calized, directional features that resemble subset of wavelets and generalizations. These are very reasonable

representing elements for natural images. Thus, the BG coefficient model may be a sensible, simple model

for natural images.

Another piece of strong evidence in support of the above claim is as follows. For each image, we repeat
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Figure 12.2: Results of learning complete dictionaries from image patches, using the algorithmic pipeline in Section 11.2.
Top: Images we used for the experiment. These are the three images in Chapter 8. The way we formed the data matrix
Y is exactly the same as in that experiment. Middle: The 64 dictionary elements we learned. Bottom: Let Â be the
final dictionary matrix at convergence. This row shows the value ∥Â−1Y ∥1 across one hundred independent runs. The
values are almost the same, with a relative difference less than 10−3.

the learning pipeline for one hundred times, with independent initializations across the runs. Let Â be the

final learned dictionary for each run, we plot the value of ∥Â−1Y ∥1 across the one hundred independent

runs. Strikingly, the values are virtually the same, with a relative difference of 10−3! This is predicted by our

theory, under the BG model. If the model is unreasonable for natural images, the preconditioning, benign

function landscape, LP rounding, and the deflation process that hinge on this model would have completely

fallen down.

For this image experiment, n = 64 and p = 4096. A single run of the learning pipeline, including
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solving 64 instances of the optimization over the sphere (with varying dimensions) and solving 64 instances

of the LP rounding (using CVX), lasts about 20 minutes on a mid-range modern laptop. So with careful

implementation we discussed above, the learning pipeline is actually not far from practical.
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Chapter 13

Discussion

The dependency of p on n and other parameters could be suboptimal due to several factors: (1) The ℓ1 proxy.

Derivatives of the log cosh function we adopted entail the tanh function, which is not amenable to effective

approximation and affects the sample complexity; (2) Space of geometric characterization. It seems working

directly on the sphere (i.e., in the q space) could simplify and possibly improve certain parts of the analy-

sis; (3) Dealing with the complete case. Treating the complete case directly, rather than using (pessimistic)

bounds to treat it as a perturbation of the orthogonal case, is very likely to improve the sample complexity.

Particularly, general linear transforms may change the space significantly, such that preconditioning and

comparing to the orthogonal transforms may not be the most efficient way to proceed.

It is possible to extend the current analysis to other dictionary settings. Our geometric structures (and

algorithms) allow plug-and-play noise analysis. Nevertheless, we believe a more stable way of dealing with

noise is to directly extract the whole dictionary, i.e., to consider geometry and optimization (and perturba-

tion) over the orthogonal group. This will require additional nontrivial technical work, but likely feasible

thanks to the relatively complete knowledge of the orthogonal group [EAS98, AMS09]. A substantial leap

forward would be to extend the methodology to recovery of structured overcomplete dictionaries, such as

tight frames. Though there is no natural elimination of one variable, one can consider the marginalization

of the objective function w.r.t. the coefficients and work with implicit functions. 1 For the coefficient model,

as we alluded to in Section 8.4, our analysis and results likely can be carried through to coefficients with

statistical dependence and physical constraints.

1This recent work [AGMM15] on overcomplete DR has used a similar idea. The marginalization taken there is near to the global
optimum of one variable, where the function is well-behaved. Studying the global properties of the marginalization may introduce
additional challenges.
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The connection to ICA we discussed in Section 8.4 suggests our geometric characterization and algo-

rithms can be modified for the ICA problem. This likely will provide new theoretical insights and compu-

tational schemes to ICA. In the surge of theoretical understanding of nonconvex heuristics [KMO10, JNS13,

Har14, HW14, NNS+14, JN14, NJS13, CLS15b, JO14, AGJ14b, YCS13, LWB13, QSW14, LWB13, AAJ+13,

AAN13, AGM13, AGMM15, ABGM14], the initialization plus local refinement strategy mostly differs from

practice, whereby random initializations seem to work well, and the analytic techniques developed in that

line are mostly fragmented and highly specialized. The analytic and algorithmic framework we developed

here holds promise to providing a coherent account of these problems, see [SQW15d]. In particular, we

have intentionally separated the geometric characterization and algorithm development, hoping to making

both parts modular. It is interesting to see how far we can streamline the geometric characterization. More-

over, the separation allows development of more provable and practical algorithms, say in the direction

of [GHJY15].
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Part IV

Generalized Phase Retrieval
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Can we recover a complex signal from its Fourier magnitudes? More generally, given a set of m mea-

surements, yk = |a∗kx| for k = 1, . . . ,m, is it possible to recover x ∈ Cn (i.e., length-n complex vector)?

This generalized phase retrieval (GPR) problem is a fundamental task in various disciplines, and has been the

subject of much recent investigation. Natural nonconvex heuristics often work remarkably well for GPR in

practice, but lack clear theoretical explanations. In this paper, we take a step towards bridging this gap. We

prove that when the measurement vectors ak’s are generic (i.i.d. complex Gaussian) and numerous enough

(m ≥ Cn log3 n), with high probability, a natural least-squares formulation for GPR has the following be-

nign geometric structure: (1) there are no spurious local minimizers, and all global minimizers are equal to

the target signal x, up to a global phase; and (2) the objective function has a negative directional curvature

around each saddle point. This structure allows a number of iterative optimization methods to efficiently

find a global minimizer, without special initialization. To corroborate the claim, we describe and analyze a

second-order trust-region algorithm.

The remainder of this part is organized as follows. In Chapter 14 we motivate the generalized phase

retrieval problem and overview main ingredients of our nonconvex approach. In Section 15, we provide

a quantitative characterization of the global geometry for GPR and highlight main technical challenges in

establishing the results. Based on this characterization, in Section 16 we present a modified trust-region

method for solving GPR from an arbitrary initialization, which leads to our main computational guarantee.

In Section 17 we study the empirical performance of our method for GPR. Section 18, concludes the main

body with a discussion of open problems.

All the technical detailed are omitted in this part, we refer the readers to our paper [SQW16] for more

detailed analysis.
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Chapter 14

Introduction

14.1 Generalized Phase Retrieval and a Nonconvex Formulation

This chapter concerns the problem of recovering an n-dimensional complex vector x from the magnitudes

yk = |a∗kx| of its projections onto a collection of known complex vectors a1, . . . ,am ∈ Cn. Obviously, one

can only hope to recover x up to a global phase, as xeiϕ for all ϕ ∈ [0, 2π) gives exactly the same set of

measurements. The generalized phase retrieval problem asks whether it is possible to recover x, up to this

fundamental ambiguity:

Generalized Phase Retrieval Problem: Is it possible to efficiently recover an unknown x from

yk = |a∗kx| (k = 1, . . . ,m), up to a global phase factor eiϕ?

This problem has attracted substantial recent interest, due to its connections to fields such as crystallography,

optical imaging and astronomy. In these areas, one often has access only to the Fourier magnitudes of a

complex signal x, i.e., |F(x)| [Mil90, Rob93, Wal63, DF87]. The phase information is hard or infeasible

to record due to physical constraints. The problem of recovering the signal x from its Fourier magnitudes

|F(x)| is naturally termed (Fourier) phase retrieval (PR). It is easy to see PR as a special version of GPR, with

the ak’s the Fourier basis vectors. GPR also sees applications in electron microscopy [MIJ+02], diffraction

and array imaging [BDP+07, CMP11], acoustics [BCE06, Bal10], quantum mechanics [Cor06, Rei65] and

quantum information [HMW13]. We refer the reader to survey papers [SEC+15, JEH15] for accounts of

recent developments in the theory, algorithms, and applications of GPR.

For GPR, heuristic methods based on nonconvex optimization often work surprisingly well in practice
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(e.g., [Fie82, GS72], and many more cited in [SEC+15, JEH15]). However, investigation into provable re-

covery methods, particularly based on nonconvex optimization, has started only relatively recently [NJS13,

CESV13, CSV13, CL14, CLS15a, WdM15, VX14, ABFM14, CLS15b, CC15, WWS15, ZCL16, ZL16, WGE16,

KÖ16, GX16, BE16, Wal16]. The surprising effectiveness of nonconvex heuristics on GPR remains largely

mysterious. In this part of the thesis, we take a step towards bridging this gap.

We focus on a natural least-squares formulation1 – discussed systematically in [SEC+15, JEH15] and first

studied theoretically in [CLS15b, WWS15],

minimizez∈Cn f(z)
.
=

1

2m

m∑
k=1

(
y2k − |a∗kz|

2
)2
. (14.1.1)

We assume the ak’s are independent identically distributed (i.i.d.) complex Gaussian:

ak =
1√
2
(Xk + iYk) , with Xk, Yk ∼ N (0, In) independent. (14.1.2)

f(z) is a fourth-order polynomial in z,2 and is nonconvex. A-priori, there is little reason to believe that

simple iterative methods can solve this problem without special initialization. Typical local convergence

(i.e., convergence to a local minimizer) guarantees in optimization require an initialization near the target

minimizer [Ber99]. Moreover, existing results on provable recovery using (14.1.1) and related formulations

rely on careful initialization in the vicinity of the ground truth [NJS13, CLS15b, CC15, WWS15, ZCL16, ZL16,

WGE16, KÖ16, GX16, BE16, Wal16].

14.2 A Curious Experiment

We apply gradient descent to f(z), starting from a random initialization z(0):

z(r+1) = z(r) − µ∇zf(z
(r)),

where the step size µ is fixed for simplicity3. The result is quite striking (Figure 14.1): for a fixed problem

instance (fixed set of random measurements and fixed target x), gradient descent seems to always return a

global minimizer (i.e., the targetxup to a global phase shift), across many independent random initializations!

1Another least-squares formulation, minimizez
1

2m

∑m
k=1(yk −

∣∣a∗
kz

∣∣)2, was first studied in the seminal works [Fie82, GS72]. An
obvious advantage of the f(z) studied here is that it is differentiable in the sense of Wirtinger calculus introduced later.

2Strictly speaking, f(z) is not a complex polynomial in z over the complex field; complex polynomials are necessarily complex
differentiable. However, f(z) is a fourth order real polynomial in real and complex parts of z.

3Mathematically, f(z) is not complex differentiable; here the gradient is defined based on the Wirtinger calculus [KD09]; see
also [CLS15b]. This notion of gradient is a natural choice when optimizing real-valued functions of complex variables.
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Figure 14.1: Gradient descent with random initialization seems to always return a global solution for (14.1.1)! Here
n = 100, m = 5n logn, step size µ = 0.05, and stopping criterion is ∥∇zf(z)∥ ≤ 10−5. We fix the set of random
measurements and the ground-truth signal x. The experiments are repeated for 100 times with independent random
initializations. z⋆ denotes the final iterate at convergence. (Left) Final distance to the target; (Right) Final function value
(0 if globally optimized). Both vertical axes are on − log10(·) scale.

This contrasts with the typical “mental picture” of nonconvex objectives as possessing many spurious local

minimizers.

14.3 A Geometric Analysis

The numerical surprise described above is not completely isolated. Simple heuristic methods have been

observed to work surprisingly well for practical PR [Fie82, GS72, SEC+15, JEH15]. In this part of the thesis,

we take a step towards explaining this phenomenon. We show that although the function (14.1.1) is nonconvex,

when m is reasonably large, it actually has benign global geometry which allows it to be globally optimized by efficient

iterative methods, regardless of the initialization.

This geometric structure is evident for real GPR (i.e., real signals with real random measurements) in

R2. Figure 14.2 plots the function landscape of f(z) for this case with large m (i.e., Ea[f(z)] approximately).

Notice that (i) the only local minimizers are exactly ±x – they are also global minimizers;4 (ii) there are

saddle points (and a local maximizer), but around them there is a negative curvature in the ±x direction.

Intuitively, any algorithm that can successfully escape from this kind of saddle point (and local maximizer)

can in fact find a global minimizer, i.e., recover the target signal x.

We prove that an analogous geometric structure exists, with high probability (w.h.p.)5, for GPR in Cn,

4Note that the global sign cannot be recovered.
5The probability is with respect to drawing of ak’s.
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Figure 14.2: Function landscape of (14.1.1) for x = [1; 0] and m → ∞. The only local and also global minimizers are
±x. There are two saddle points near ±[0; 1/

√
2], around each there is a negative curvature direction along ±x. (Left)

The function graph; (Right) The same function visualized as a color image. The measurement vectors ak’s are taken as
i.i.d. standard real Gaussian in this version.

when m is reasonably large (Theorem 15.1). In particular, we show that when m ≥ Cn log3 n, w.h.p., (i)

the only local and also global minimizers to (14.1.1) are the target xeiϕ for ϕ ∈ [0, 2π); (ii) at any point in

Cn, either the gradient is large, or the curvature is negative in a certain direction, or it is near a minimizer.

Moreover, in the vicinity of the minimizers, on the orthogonal complement of a single flat direction (which

occurs because f(zeiϕ) = f(z) for every z, ϕ), the objective function is strongly convex (a weaker version of

this local restricted strong convexity was first established in [CLS15b]; see also [WWS15]).

Because of this global geometry, a wide range of efficient iterative methods can obtain a global min-

imizer to f(z), regardless of initialization. Examples include the noisy gradient and stochastic gradient

methods [GHJY15] (see also [LSJR16, PP16]), curvilinear search [Gol80] and trust-region methods [CGT00,

NP06, SQW15d]. The key property that the methods must possess is the ability to escape saddle points at

which the Hessian has a strictly negative eigenvalue6. We corroborate this claim by developing a second-

order trust-region algorithm for this problem, and prove that (Theorem 16.1) (i) from any initialization, it

efficiently obtains a close approximation (i.e., up to numerical precision) of the targetx (up to a global phase)

and (ii) it exhibits quadratic convergence in the vicinity of the global minimizers.

In sum, our geometrical analysis produces the following result.

Informal Statement of Our Main Results Whenm ≥ Cn log3 n, with probability at least 1− cm−1, the function

f(z) has no spurious local minimizers. The only global minimizers are the target x and its equivalent copies, and

6Such saddle points are called ridable saddles [SQW15d] or strict saddles [GHJY15]; see [AG16] for computational methods for
escaping from higher-order saddles also.
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at all saddle points the function has directional negative curvature. Moreover, with at least the same probability, the

trust-region method with properly set step size parameter find a global minimizer of f(z) in polynomial time, from

an arbitrary initialization in the zero-centered complex ball with radius R0
.
= 3( 1

m

∑m
k=1 y

2
k)

1/2. Here C and c are

absolute positive constants.

The choice of R0 above allows us to state a result with a concise bound on the number of iterations

required to converge. However, under our probability model, w.h.p., the trust- region method succeeds

from any initialization. There are two caveats to this claim. First, one must choose the parameters of the

method appropriately. Second, the number of iterations depends on how far away from the truth the method

starts.

Our results asserts that when the ak’s are numerous and generic enough, GPR can be solved in poly-

nomial time by optimizing the nonconvex formulation (14.1.1). Similar conclusions have been obtained

in [NJS13, CLS15b, CC15, WWS15, ZCL16, ZL16, WGE16, KÖ16, GX16, BE16, Wal16], also based on noncon-

vex optimization. One salient feature of our result is that the optimization method is “initialization free” -

any initialization in the prescribed ball works. This follows directly from the benign global geometry of f(z).

In contrast, all prior nonconvex methods require careful initializations that are already near the unknown

target xeiϕ, based on characterization of only local geometry. We believe our global geometrical analysis

sheds light on mechanism of the above numerical surprise.

The second-order trust-region method, albeit polynomial-time, may not be the most practical algorithm

for solving GPR. Deriving the most practical algorithms is not the main focus of this thesis. We mentioned

above that any iterative method with saddle-escaping capability can be deployed to solve the nonconvex

formulation; our geometrical analysis constitutes a solid basis for developing and analyzing much more

practical algorithms for GPR.

14.4 Prior Arts and Connections

The survey papers [SEC+15, JEH15] provide comprehensive accounts of recent progress on GPR. In this

section, we focus on provable efficient (particularly, nonconvex) methods for GPR, and draw connections to

other work on provable nonconvex heuristics for practical problems.

Provable methods for GPR. Although heuristic methods for GPR have been used effectively in prac-

tice [GS72, Fie82, SEC+15, JEH15], only recently have researchers begun to develop methods with provable
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performance guarantees. The first results of this nature were obtained using semidefinite programming

(SDP) relaxations [CESV13, CSV13, CL14, CLS15a, WdM15, VX14]. While this represented a substantial ad-

vance in theory, the computational complexity of semidefinite programming limits the practicality of this

approach.7

Recently, several provable nonconvex methods have been proposed for GPR. [NJS13] augmented the sem-

inal error-reduction method [GS72] with spectral initialization and resampling to obtain the first provable

nonconvex method for GPR. [CLS15b] studied the nonconvex formulation (14.1.1) under the same hypothe-

ses as the thesis, and showed that a combination of spectral initialization and local gradient descent recovers

the true signal with near-optimal sample complexity. [CC15] worked with a different nonconvex formula-

tion, and refined the spectral initialization and the local gradient descent with a step-adaptive truncation.

With the modifications, they reduced the sample requirement to the optimal order.8 More recent work in

this line [ZCL16, ZL16, WGE16, KÖ16, GX16, BE16, Wal16] concerns error stability, alternative formulations,

algorithms, and measurement models. Compared to the SDP-based methods, these methods are more scal-

able and closer to methods used in practice. All these analyses are based on local geometry in nature, and

hence depend on the spectral initializer being sufficiently close to the target set. In contrast, we explicitly

characterize the global function landscape of (14.1.1). Its benign global geometric structure allows several

algorithmic choices (see Section 14.3) that need no special initialization and scale much better than the convex

approaches.

Near the target set (i.e., R3 in Theorem 15.1), [CLS15b, CC15] established a local curvature property

that is strictly weaker than our restricted strong convexity result. The former is sufficient for obtaining con-

vergence results for first-order methods, while the latter is necessary for establishing convergence results

for second-order method. Besides these, [Sol14] and [WWS15] also explicitly established local strong con-

vexity near the target set for real GPR in Rn; the Hessian-form characterization presented in [WWS15] is

real-version counterpart to ours here.

(Global) Geometric analysis of other nonconvex problems. The approach taken here is similar in spirit

to our recent geometric analysis of a nonconvex formulation for complete dictionary learning [SQW15a].

7Another line of research [BCE06, BBCE09, ABFM14] seeks to co-design the measurements and recovery algorithms based on frame-
or graph-theoretic tools. While revising this work, new convex relaxations based on second-order cone programming have been pro-
posed [GS16, BR16, HV16? ].

8In addition, [CC15] shows that the measurements can be non-adaptive, in the sense that a single, randomly chosen collection of
vectors ai can simultaneously recover every x ∈ Cn. Results in [NJS13, CLS15b] and this paper pertain only to adaptive measurements
that recover any fixed signal x with high probability.
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For that problem, we also identified a similar geometric structure that allows efficient global optimization

without special initialization. There, by analyzing the geometry of a nonconvex formulation, we derived

a provable efficient algorithm for recovering square invertible dictionaries when the coefficient matrix has

a constant fraction of nonzero entries. Previous results required the dictionary matrix to have far fewer

nonzero entries. [SQW15d] provides a high-level overview of the common geometric structure that arises

in dictionary learning, GPR and several other problems. This approach has also been applied to other prob-

lems [GHJY15, BBV16, BVB16, SC16, Kaw16, BNS16, GLM16, PKCS16]. Despite these similarities, GPR raises

several novel technical challenges: the objective is heavy-tailed, and minimizing the number of measure-

ments is important9.

Our work sits amid the recent surge of work on provable nonconvex heuristics for practical problems. Be-

sides GPR studied here, this line of work includes low-rank matrix recovery [KMO10, JNS13, Har14, HW14,

NNS+14, JN14, SL14, WCCL15, SRO15, ZL15, TBSR15, CW15], tensor recovery [JO14, AGJ14a, AGJ14b,

AJSN15, GHJY15], structured element pursuit [QSW14, HSSS15], dictionary learning [AAJ+13, AGM13,

AAN13, ABGM14, AGMM15, SQW15a], mixed regression [YCS13, SA14], blind deconvolution [LWB13, LJ15,

LLJB15], super resolution [EW15], phase synchronization [Bou16], numerical linear algebra [JJKN15], and

so forth. Most of the methods adopt the strategy of initialization plus local refinement we alluded to above.

In contrast, our global geometric analysis allows flexible algorithm design (i.e., separation of geometry and

algorithms) and gives some clues as to the behavior of nonconvex heuristics used in practice, which often

succeed without clever initialization.

Recovering low-rank positive semidefinite matrices. The phase retrieval problem has a natural gen-

eralization to recovering low-rank positive semidefinite matrices. Consider the problem of recovering an

unknown rank-r matrix M ⪰ 0 in Rn×n from linear measurement of the form zk = tr(AkM) with sym-

metric Ak for k = 1, . . . ,m. One can solve the problem by considering the “factorized” version: recovering

X ∈ Rn×r (up to right invertible transform) from measurements zk = tr(X∗AkX). This is a natural gener-

alization of GPR, as one can write the GPR measurements as y2k = |a∗kx|
2
= x∗(aka

∗
k)x. This generalization

and related problems have recently been studied in [SRO15, ZL15, TBSR15, CW15, BNS16].

9The same challenge is also faced by [CLS15b, CC15].
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14.5 Notations and Wirtinger Calculus

Basic notations and facts. Throughout this part of the thesis, we will often use the canonical identification

of Cn and R2n, which assign z ∈ Cn to [ℜ (z) ;ℑ (z)] ∈ R2n. This is so natural that we will not explicitly

state the identification when no confusion is caused. We say two complex vectors are orthogonal in the

geometric (real) sense if they are orthogonal after the canonical identification10. It is easy to see that two

complex vectors a and b are orthogonal in the geometric (real) sense if and only if ℜ(w∗z) = 0.

For any z, obviously f(z) = f(zeiϕ) for all ϕ, and the set
{
zeiϕ : ϕ ∈ [0, 2π)

}
forms a one-dimensional (in

the real sense) circle in Cn. Throughout the paper, we reserve x for the unknown target signal, and define

the target set as X .
=
{
xeiϕ : ϕ ∈ [0, 2π)

}
. Moreover, we define

ϕ(z)
.
= argmin

ϕ∈[0,2π)

∥∥z − xeiϕ
∥∥ , h(z)

.
= z − xeiϕ(z), dist (z,X ) .= ∥h(z)∥ . (14.5.1)

for any z ∈ Cn. It is not difficult to see that z∗xeiϕ(z) = |x∗z|. Moreover, zT
.
= iz/ ∥z∥ and −zT are the unit

vectors tangent to the circle
{
zeiϕ : ϕ ∈ [0, 2π)

}
at point z.

Wirtinger calculus. Consider a real-valued function g(z) : Cn 7→ R. Unless g is constant, it is not complex

differentiable. However, if one identifies Cn with R2n and treats g as a function in the real domain, g may

still be differentiable in the real sense. Doing calculus for g directly in the real domain tends to produce

cumbersome expressions. A more elegant way is adopting the Wirtinger calculus, which can be thought

of a neat way of organizing the real partial derivatives. Here we only provide a minimal exposition of

Wirtinger calculus; similar exposition is also given in [CLS15b]. A systematic development with emphasis

on applications in optimization is provided in the article [KD09].

Let z = x+ iy where x = ℜ(z) and y = ℑ(z). For a complex-valued function g(z) = u(x,y) + iv(x,y),

the Wirtinger derivative is well defined so long as the real-valued functions u and v are differentiable with

respect to (w.r.t.) x and y. Under these conditions, the Wirtinger derivatives can be defined formally as

∂g

∂z

.
=
∂g(z, z)

∂z

∣∣∣∣
z constant

=

[
∂g(z, z)

∂z1
, . . . ,

∂g(z, z)

∂zn

]∣∣∣∣
z constant

∂g

∂z

.
=
∂g(z, z)

∂z

∣∣∣∣
z constant

=

[
∂g(z, z)

∂z1
, . . . ,

∂g(z, z)

∂zn

]∣∣∣∣
z constant

.

The notation above should only be taken at a formal level. Basically it says when evaluating ∂g/∂z, one just

treats z as if it was a constant, and vise versa. To evaluate the individual partial derivatives, such as ∂g(z,z)
∂zi

,

10Two complex vectors w,v are orthogonal in complex sense if w∗v = 0.
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all the usual rules of calculus apply.11

Note that above the partial derivatives ∂g
∂z and ∂g

∂z are row vectors. The Wirtinger gradient and Hessian

are defined as

∇g(z) =
[
∂g

∂z
,
∂g

∂z

]∗
∇2g(z) =

 ∂
∂z

(
∂g
∂z

)∗
∂
∂z

(
∂g
∂z

)∗
∂
∂z

(
∂g
∂z

)∗
∂
∂z

(
∂g
∂z

)∗
 , (14.5.2)

where we sometimes write ∇zg
.
=
(
∂g
∂z

)∗
and naturally ∇zg

.
=
(
∂g
∂z

)∗
. With gradient and Hessian, the

second-order Taylor expansion of g(z) at a point z0 is defined as

ĝ(δ; z0) = g(z0) + (∇g(z0))∗

δ
δ

+
1

2

δ
δ


∗

∇2g(z0)

δ
δ

 .
For numerical optimization, we are most interested in real-valued g. A real-valued g is stationary at a point

z if and only if

∇zg(z) = 0.

This is equivalent to the condition ∇zg = 0, as ∇zg = ∇zg when g is real-valued. The curvature of g at

a stationary point z is dictated by the Wirtinger Hessian ∇2g(z). An important technical point is that the

Hessian quadratic form involves left and right multiplication with a 2n-dimensional vector consisting of a

conjugate pair (δ, δ̄).

For our particular function f(z) : Cn 7→ R defined in (14.1.1), direct calculation gives

∇f(z) = 1

m

m∑
k=1


(
|a∗kz|

2 − y2k
)
(aka

∗
k) z(

|a∗kz|
2 − y2k

)
(aka

∗
k)
⊤
z

 , (14.5.3)

∇2f(z) =
1

m

m∑
k=1


(
2 |a∗kz|

2 − y2k
)
aka

∗
k (a∗kz)

2
aka

⊤
k

(z∗ak)
2
aka

∗
k

(
2 |a∗kz|

2 − y2k
)
aka

⊤
k

 . (14.5.4)

Following the above notation, we write∇zf(z) and∇zf(z) for denoting the first and second half of∇f(z),

respectively.

11The precise definition is as follows: write z = u+ iv. Then ∂g
∂z

.
= 1

2

(
∂g
∂u

− i ∂g
∂v

)
. Similarly, ∂g

∂z̄

.
= 1

2

(
∂g
∂u

+ i ∂g
∂v

)
.
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Chapter 15

High Dimensional Geometry of the

Objective Function

The low-dimensional example described in the introduction (Figure 14.2) provides some clues about the

high-dimensional geometry of the objective function f(z). Its properties can be seen most clearly through

the population objective function Ea[f(z)], which can be thought of as a “large sample” version in which

m → ∞. In this chapter, We characterize this large-sample geometry. We show that the most important

characteristics of this large-sample geometry are present even when the number of observations m is close

to the number of degrees of freedom n in the target x.

More specifically, the following theorem characterizes the geometry of the objective function f(z), when

the number of samples m is roughly on the order of n – degrees of freedom of x. The main conclusion is

that the space Cn can be divided into three regions, in which the objective either exhibits negative curvature,

strong gradient, or restricted strong convexity. Our main geometric result is as follows:

Theorem 15.1 (Main Geometric Results) There exist positive absolute constants C, c, such that when m ≥

Cn log3 n, it holds with probability at least 1 − cm−1 that f(z) has no spurious local minimizers and the only

local/global minimizers are exactly the target set X . More precisely, with the same probability,

1

∥x∥2

 xeiϕ(z)

xe−iϕ(z)


∗

∇2f(z)

 xeiϕ(z)

xe−iϕ(z)

 ≤ − 1

100
∥x∥2 , ∀ z ∈ R1,

(Negative Curvature)
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Figure 15.1: Schematic illustration of partitioning regions for Theorem 15.1. This plot corresponds to Figure 14.2, i.e., the
target signal is x = [1; 0] and measurements are real Gaussians, such that the function is defined in R2. Here Rz

2 ∪Rh
2

is R2; we will need the further sub-division of R2 in the proof.

∥∇zf(z)∥ ≥
1

1000
∥x∥2 ∥z∥ , ∀ z ∈ R2,

(Large Gradient)g(z)
g(z)


∗

∇2f(z)

g(z)
g(z)

 ≥ 1

4
∥x∥2 , ∀ z ∈ R3,

(Restricted Strong Convexity)

where, assuming h(z) as defined in (14.5.1),

g(z)
.
=


h(z)/ ∥h(z)∥ if dist(z,X ) ̸= 0,

h ∈ S .
= {h : ℑ(h∗z) = 0, ∥h∥ = 1} if z ∈ X .

Here the regionsR1, R2, R3 are defined as

R1
.
=

z :

 xeiϕ(z)

xe−iϕ(z)


∗

E
[
∇2f(z)

]  xeiϕ(z)

xe−iϕ(z)

 ≤ − 1

100
∥x∥2 ∥z∥2 − 1

50
∥x∥4

 , (15.0.1)

R3
.
=

{
z : dist(z,X ) ≤ 1√

7
∥x∥

}
, (15.0.2)

R2
.
= (R1 ∪R3)

c
. (15.0.3)

We refer the readers to [SQW16] for the detailed proofs of the theorem. Figure 15.1 visualizes the dif-

ferent regions described in Theorem 15.1, and gives an idea of how they cover the space. For f(z), a point

z ∈ Cn is either near a critical point such that the gradient ∇zf(z) is small (in magnitude), or far from a
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critical point such that the gradient is large. Any point in Ju: R2 is far from a critical point. The rest of the

space consists of points near critical points, and is covered byR1 ∪R3. For any z inR1, the quantity

1

∥x∥2

 xeiϕ(z)

xe−iϕ(z)


∗

∇2f(z)

 xeiϕ(z)

xe−iϕ(z)


measures the local curvature of f(z) in thexeiϕ(z) direction. Strict negativity of this quantity implies that the

neighboring critical point is either a local maximizer, or a saddle point. Moreover, xeiϕ(z) is a local descent

direction, even if ∇zf(z) = 0. For any z ∈ R3, g(z) is the unit vector that points to xeiϕ(z), and is also

geometrically orthogonal to the ixeiϕ(z) which is tangent the circle X at xeiϕ(z). The strict positivity of the

quantity g(z)
g(z)


∗

∇2f(z)

g(z)
g(z)


implies that locally f(z) is strongly convex in g(z)direction, although it is flat on the complex circle

{
zeiϕ : ϕ ∈ [0, 2π)

}
.

In particular, the result applied to z ∈ X implies that on X , f(z) is strongly convex in any direction orthog-

onal to X (i.e., any “radial” direction w.r.t. X ). This observation, together with the fact that the Hessian

is Lipschitz, implies that there is a neighborhood N(X ) of X , such that for all z ∈ N(X ), v∗∇2f(z)v > 0

for every v that is orthogonal to the trivial direction iz, not just the particular direction g(z). This stronger

property can be used to study the asymptotic convergence rate of algorithms; in particular, we will use it

to obtain quadratic convergence for a certain variant of the trust-region method. The geometric characteri-

zation of the whole space provide quantitative control for regions near critical points (i.e., R1 ∪R3). These

concrete quantities are important for algorithm design and analysis (see Section 11.1).

In sum, our objective f(z) has the benign geometry that each z ∈ Cn has either large gradient or neg-

ative directional curvature, or lies in the vicinity of local minimizers around which the function is locally

restrictedly strongly convex. Functions with this property lie in the ridable-saddle function class [GHJY15,

SQW15d]. Functions in this class admit simple iterative methods (including the noisy gradient method,

curvilinear search, and trust-region methods), which avoid being trapped near saddle points, and obtain a

local minimizer asymptotically. Theorem 15.1 shows that for our problem, every local minimizer is global,

and so for our problem, these algorithms obtain a global minimizer asymptotically. Moreover, with appro-

priate quantitative assumptions on the geometric structure as we obtained (i.e., either gradient is sufficiently

large, or the direction curvature is sufficiently negative, or local directional convexity is sufficiently strong),
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these candidate methods actually find a global minimizer in polynomial time.
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Chapter 16

Optimization by Trust-Region Method

Based on the geometric characterization in Chapter 15, we describe a second-order trust-region algorithm

that produces a close approximation (i.e., up to numerical precision) to a global minimizer of (14.1.1) in

polynomial number of steps. One interesting aspect of f in the complex space is that each point has a “circle”

of equivalent points that have the same function value. Thus, we constrain each step to move “orthogonal”

to the trivial direction. This simple modification helps the algorithm to converge faster in practice, and

proves important to the quadratic asymptotic convergence rate in theory.

16.1 A Modified Trust-Region Algorithm

The basic idea of the trust-region method is simple: we generate a sequence of iterates z(0), z(1), . . . , by

repeatedly constructing quadratic approximations f̂(δ; z(r)) ≈ f(z(r) + δ), minimizing f̂ to obtain a step

δ, and setting z(r+1) = z(r) + δ. More precisely, we approximate f(z) around z(r) using the second-order

Taylor expansion,

f̂(δ; z(r)) = f(z(r)) +

δ
δ


∗

∇f(z(r)) +
1

2

δ
δ


∗

∇2f(z(r))

δ
δ

 ,
and solve

minimizeδ∈Cn f̂(δ; z(r)), subject to ℑ
(
δ∗z(r)

)
= 0, ∥δ∥ ≤ ∆, (16.1.1)
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to obtain the step δ. In (16.1.1), ∆ controls the trust-region size. The first linear constraint further forces

the movement δ to be geometrically orthogonal to the iz direction, along which the possibility for reducing

the function value is limited. Enforcing this linear constraint is a strategic modification to the classical trust-

region subproblem.

The modified trust-region subproblem is easily seen to be equivalent to the classical trust-region subprob-

lem (with no constraint) over 2n− 1 real variables. Notice that
{
w ∈ Cn : ℑ(w∗z(r)) = 0

}
forms a subspace

of dimension 2n−1 overR2n (the canonical identification ofCn andR2n applies whenever needed). Take any

matrixU(z(r)) ∈ Cn×(2n−1) whose columns form an orthonormal basis for the subspace, i.e.,ℜ(U∗i Uj) = δij

for any columns Ui and Uj . The subproblem can then be reformulated as (U short for U(z(r)))

minimizeξ∈R2n−1 f̂(Uξ; z(r)), subject to ∥ξ∥ ≤ ∆. (16.1.2)

Let us define

g(z(r))
.
=

U
U


∗

∇f(z(r)), H(z(r))
.
=

U
U


∗

∇2f(z(r))

U
U

 . (16.1.3)

Then, the quadratic approximation of f(z) around z(r) can be rewritten as

f̂(ξ; z(r)) = f(z(r)) + ξ⊤g(z(r)) +
1

2
ξ⊤H(z(r))ξ. (16.1.4)

By structure of the Wirtinger gradient ∇f(z(r)) and Wirtinger Hessian ∇2f(z(r)), g(z(r)) and H(z(r)) con-

tain only real entries. Thus, the problem (16.1.2) is in fact an instance of the classical trust-region subproblem

w.r.t. real variable ξ. A minimizer to (16.1.1) can be obtained from a minimizer of (16.1.2) ξ⋆ as δ⋆ = Uξ⋆.

So, any method which can solve the classical trust-region subproblem can be directly applied to the

modified problem (16.1.1). Although the resulting problem can be nonconvex (as H(z(r)) in (16.1.4) can be

indefinite), it can be solved in polynomial time, by root-finding [MS83, CGT00] or SDP relaxation [RW97,

FW04]. Our convergence guarantees assume an exact solution of this problem.

16.2 Convergence of the Trust-region Method

Norm of the target vector and initialization. In our problem formulation, ∥x∥ is not known ahead of

time. However, it can be well estimated. When a ∼ CN (n), E |a∗x|2 = ∥x∥2. By Bernstein’s inequality,
1
m

∑m
k=1 |a∗kx|

2 ≥ 1
9 ∥x∥

2 with probability at least 1 − exp(−cm). Thus, with the same probability, the
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quantity

R0
.
= 3

(
1

m

m∑
k=1

|a∗kx|
2

)1/2

is an upper bound for ∥x∥. For the sake of analysis, we will assume the initialization z(0) is an arbitrary

point over CBn(R0). Now consider a fixed R1 > R0. By the fact that maxk∈[m] ∥ak∥
4 ≤ 10n2 log2m with

probability at least 1− cam−n, we have that the following estimate

inf
z,z′: ∥z∥≤R0, ∥z′∥≥R1

f(z′)− f(z)

= inf
z,z′: ∥z∥≤R0, ∥z′∥≥R1

1

m

m∑
k=1

[
|a∗kz′|

4 − |a∗kz|
4 − 2 |a∗kz′|

2 |a∗kx| 2 + 2 |a∗kz|
2 |a∗kx| 2

]
≥ inf

z,z′: ∥z∥≤R0, ∥z′∥≥R1

199

200
∥z′∥4 − 10n2 log2m ∥z∥4 − 201

200

(
∥z′∥2 ∥x∥2 + |x∗z′|2

)
≥ inf

z′:∥z′∥≥R1

199

200
∥z′∥4 − 10n2 log2mR4

0 −
201

100
∥z′∥2R2

0

holds with probability at least 1− cbm−1, providedm ≥ Cn log n for a sufficiently large C. It can be checked

that when

R1 = 3
√
n logmR0, (16.2.1)

we have

inf
z′:∥z′∥≥R1

199

200
∥z′∥4 − 10n2 log2mR4

0 −
201

100
∥z′∥2R2

0 ≥ 40n2 log2mR4
0.

Thus, we conclude that when m ≥ Cn log n, w.h.p., the sublevel set
{
z : f(z) ≤ f(z(0))

}
is contained in the

set

Γ
.
= CBn(R1). (16.2.2)

TRM Convergence Throughout, we assume m ≥ Cn log3 n for a sufficiently large constant C, so that all

the events of interest hold w.h.p.. The convergence guarantee of the trust-region method can be summarized

as follows.

Theorem 16.1 (TRM Convergence) Suppose m ≥ Cn log3 n for a sufficiently large constant C. Then with

probability at least 1 − cam−1, the trust-region algorithm with an arbitrary initialization z(0) ∈ CBn(R0),
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where R0 = 3( 1
m

∑m
k=1 y

2
k)

1/2, will return a solution that is ε-close to the target set X in

cb

∆2 ∥x∥2
f(z(0)) + log log

(
cc ∥x∥
ε

)
(16.2.3)

steps, provided that

∆ ≤ cd(n7/2 log7/2m)−1 ∥x∥ . (16.2.4)

Here ca through cd are positive absolute constants.

Our initialization is an arbitrary point z(0) ∈ CBn(R0) ⊆ Γ. We analyze effect of a trust-region step from

any iterate z(r) ∈ Γ. Based on these arguments, we show that whenever z(r) ∈ Γ, z(r+1) ∈ Γ, and so the

entire iterate sequence remains in Γ. The analysis will use the fact that f and its derivatives are Lipschitz

over the trust-region z + CBn(∆). Our convergence proof proceeds as follows. Let δ⋆ denote the optimizer

of the trust-region subproblem at a point z. If ∥∇f(z)∥ is bounded away from zero, or λmin(∇2f(z)) is

bounded below zero, we can guarantee that f̂(δ⋆, z)−f(z) < −ε, for some εwhich depends on our bounds

on these quantities. Because f(z+δ⋆) ≈ f̂(δ⋆, z) < f(z)−ε, we can guarantee (roughly) an ε decrease in the

objective function at each iteration. Because this ε is uniformly bounded away from zero over the gradient

and negative curvature regions, the algorithm can take at most finitely many steps in these regions. Once it

enters the strong convexity region around the global minimizers, the algorithm behaves much like a typical

Newton-style algorithm; in particular, it exhibits asymptotic quadratic convergence. We refer the readers to

our paper [SQW16] for more detailed analysis.
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Chapter 17

Numerical Simulations

Our convergence analysis for the TRM is based on two idealizations: (i) the trust-region subproblem is solved

exactly; and (ii) the step-size is fixed to be sufficiently small. These simplifications ease the analysis, but also

render the TRM algorithm impractical. In practice, the trust-region subproblem is never exactly solved, and

the trust-region step size is adjusted to the local geometry, by backtracking. It is relatively straightforward

to modify our analysis to account for inexact subproblem solvers; for sake of brevity, we do not pursue this

here1.

In this section, we investigate experimentally the number of measurements m required to ensure that

f(z) is well-structured, in the sense of our theorems. This entails solving large instances of f(z). To this

end, we deploy the Manopt toolbox [BMAS14]2. Manopt is a user-friendly Matlab toolbox that implements

several sophisticated solvers for tackling optimization problems on Riemannian manifolds. The most devel-

oped solver is based on the TRM. This solver uses the truncated conjugate gradient (tCG; see, e.g., Section

7.5.4 of [CGT00]) method to (approximately) solve the trust-region subproblem (vs. the exact solver in our

analysis). It also dynamically adjusts the step size. However, the original implementation (Manopt 2.0) is

not adequate for our purposes. Their tCG solver uses the gradient as the initial search direction, which does

not ensure that the TRM solver can escape from saddle points [ABG07, AMS09]. We modify the tCG solver,

1The proof ideas are contained in Chap 6 of [CGT00]; see also [AMS09]. Intuitively, such result is possible because reasonably
good approximate solutions to the TRM subproblem make qualitatively similar progress as the exact solution. Recent work [CGT12,
BAC16] has established worst-case polynomial iteration complexity (under reasonable assumptions on the geometric parameters of the
functions, of course) of TRM to converge to point verifying the second-order optimality conditions. Their results allow inexact trust-
region subproblem solvers, as well as adaptive step sizes. Based on our geometric result, we could have directly called their results,
producing slightly worse iteration complexity bounds. It is not hard to adapt their proof taking advantage of the stronger geometric
property we established and produce tighter results.

2Available online: http://www.manopt.org.

http://www.manopt.org
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such that when the current gradient is small and there is a negative curvature direction (i.e., the current

point is near a saddle point or a local maximizer for f(z)), the tCG solver explicitly uses the negative cur-

vature direction3 as the initial search direction. This modification4 ensures the TRM solver always escapes

saddle points/local maximizers with directional negative curvature. Hence, the modified TRM algorithm

based on Manopt is expected to have the same qualitative behavior as the idealized version we analyzed.

We fix n = 1, 000 and vary the ratio m/n from 4 to 10. For each m, we generate a fixed instance: a fixed

Figure 17.1: (Left) Recovery performance for GPR when optimizing (14.1.1) with the TRM. With n = 1000 and m
varying, we consider a fixed problem instance for each m, and run the TRM algorithm 25 times from independently
random initializations. The empirical recovery probability is a test of whether the benign geometric structure holds.
(Right) A small “artistic” Columbia University campus image we use for comparing TRM and gradient descent.

signal x, and a fixed set of complex Gaussian vectors. We run the TRM algorithm 25 times for each problem

instance, with independent random initializations. Successfully recovery is declared if at termination the

optimization variable z∞ satisfies

εRel
.
= ∥z∞ − xeiϕ(z∞)∥/ ∥x∥ ≤ 10−3.

The recovery probability is empirically estimated from the 25 repetitions for each m. Intuitively, when the

recovery probability is below one, there are spurious local minimizers. In this case, the number of samples

m is not large enough to ensure the finite-sample function landscape f(z) to be qualitatively the same as the

asymptotic version Ea[f(z)]. Figure 17.1 shows the recovery performance. It seems that m = 7n samples

may be sufficient to ensure the geometric property holds.5 On the other hand, m = 6n is not sufficient,

3...adjusted in sign to ensure positive correlation with the gradient – if it does not vanish.
4Similar modification is also adopted in the TRM algorithmic framework in the recent work [BAC16] (Algorithm 3).
5This prescription should be taken with a grain of salt, as here we have only tested a single fixed n.
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whereas in theory it is known 4n samples are enough to guarantee measurement injectivity for complex

signals [BCE06].6

We now briefly compare TRM and gradient descent in terms of running time. We take a small (n =

80× 47) image of Columbia University campus (Figure 17.1 (Right)), and make m = 5n log n complex Gaus-

sian measurements. The TRM solver is the same as above, and the gradient descent solver is one with

backtracking line search. We repeat the experiment 10 times, with independently generated random mea-

surements and initializations each time. On average, the TRM solver returns a solution with εRel ≤ 10−4 in

about 2600 seconds, while the gradient descent solver produces a solution with εRel ∼ 10−2 in about 6400

seconds. The point here is not to exhaustively benchmark the two – they both involve many implementation

details and tuning parameters and they have very different memory requirements. It is just to suggest that

second-order methods can be implemented in a practical manner for large-scale GPR problems.7

6Numerics in [CC15] suggest that under the same measurement model, m = 5n is sufficient for efficient recovery. Our requirement
on control of the whole function landscape and hence “initialization-free" algorithm may need the additional complexity.

7The main limitation in this experiment was not the TRM solver, but the need to store the vectorsa1, . . .am. For other measurement
models, such as the coded diffraction model [CLS15a], “matrix-free” calculation is possible, and storage is no longer a bottleneck.
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Chapter 18

Discussion

In this work, we provide a complete geometric characterization of the nonconvex formulation (14.1.1) for the

GPR problem. The benign geometric structure allows us to design a second-order trust-region algorithm

that efficiently finds a global minimizer of (14.1.1), without special initializations. We close this part of thesis

by discussing possible extensions and relevant open problems.

Sample complexity and measurement schemes. Our result (Theorem 15.1 and Theorem 16.1) indicates

that m ≥ C1n log
3(n) samples are sufficient to guarantee the favorable geometric property and efficient re-

covery, while our simulations suggested that C2n log(n) or even C3n is enough. For efficient recovery only,

m ≥ C4n are known to be sufficient [CC15] (and for all signals; see also [CLS15b, WGE16, ZL16]). It is inter-

esting to see if the gaps can be closed. Our current analysis pertains to Gaussian measurements only which

are not practical, it is important to extend the geometric analysis to more practical measurement schemes,

such as t-designs [GKK13] and masked Fourier transform measurements [CLS15a]. A preliminary study of

the low-dimensional function landscape for the latter scheme (Ju: for reduced real version) produces very

positive result; see Figure 18.1.

Figure 18.1: Function landscape of (14.1.1) forx = [1; 0] andm→ ∞ for the real-value-masked discrete cosine transform
measurements (i.e., real-valued version of the coded diffraction model [CLS15a]). The mask takes i.i.d. values from
{1, 0,−1}; each entry takes 1 or −1 with probability 1/4 respectively, and takes 0 with probability 1/2. The landscape
is qualitatively similar to that for the Gaussian model (Figure 14.2).

Sparse phase retrieval. A special case of GPR is when the underlying signalx is known to be sparse, which

can be considered as a quadratic compressed sensing problem [OYVS13, OYDS13, OYDS12, LV13, JOH13,
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SBE14]. Since x is sparse, the lifted matrix X = xx∗ is sparse and has rank one. Thus, existing convex

relaxation methods [OYVS13, OYDS13, LV13, JOH13] formulated it as a simultaneously low-rank and sparse

recovery problem. For the latter problem, however, known convex relaxations are suboptimal [OJF+12,

MHWG14]. Let k be the number of nonzeros in the target signal. [LV13, JOH13] showed that natural convex

relaxations require C5k
2 log n samples for correct recovery, instead of the optimal order O(k log(n/k). A

similar gap is also observed with certain nonconvex methods [CLM15]. It is tempting to ask whether novel

nonconvex formulations and analogous geometric analysis as taken here could shed light on this problem.

Other structured nonconvex problems. We have mentioned recent surge of works on provable noncon-

vex heuristics [JNS13, Har14, HW14, NNS+14, JN14, SL14, JO14, WCCL15, SRO15, ZL15, TBSR15, CW15,

AGJ14a, AGJ14b, AJSN15, GHJY15, QSW14, HSSS15, AAJ+13, AGM13, AAN13, ABGM14, AGMM15, SQW15a,

YCS13, SA14, LWB13, LJ15, LLJB15, EW15, Bou16, JJKN15]. While the initialization plus local refinement

analyses generally produce interesting theoretical results, they do not explain certain empirical successes

that do not rely on special initializations. The geometric structure and analysis we work with in our recent

work [SQW15a, SQW15d] (see also [GHJY15, AG16], and [Kaw16, SC16, BNS16, GLM16, PKCS16, BBV16,

BVB16]) seem promising in this regard. It is interesting to consider whether analogous geometric structure

exists for other practical problems.
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Part V

Convolutional Phase Retrieval
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We study the convolutional phase retrieval problem, which considers recovering an unknown signalx ∈ Cn

from m measurements consisting of the magnitude of its cyclic convolution with a known kernel a ∈ Cm.

This model is motivated by applications such as channel estimation, optics, and underwater acoustic com-

munication, where the signal of interest is acted on by a given channel/filter, and phase information is

difficult or impossible to acquire. We show that when a is random and the sample number m is sufficiently

large, with high probability x can be efficiently recovered up to a global phase using a combination of spec-

tral initialization and generalized gradient descent. The main challenge is coping with dependencies in the

measurement operator. We overcome this challenge by using ideas from decoupling theory, suprema of

chaos processes and the restricted isometry property of random circulant matrices, and recent analysis for

alternating minimization methods.

This part of the thesis is based on our paper [QZEW17], and it is organized as follows. In Chapter 19 we

introduce and motivate the convolutional phase retrieval problem. In Chapter 20, we introduce the basic

formulation of the problem and the algorithm. In Chapter 21, we present the main results and proof sketch,

detailed analysis is postponed to Chapter 24. In Chapter 22, we corroborate our analysis with numerical

experiments. We discuss the potential impacts of our work in Chapter 23. Finally, all the basic probability

tools that are used in this part are postponed to Appendix B.
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Chapter 19

Introduction

We study the problem of recovering an unknown signal x ∈ Cn from measurements y = |a⊛ x|, which

consist of the magnitude of its convolution with a given filter a ∈ Cm,

find z, s.t. y = |a⊛ z| , (19.0.1)

where ⊛ denotes cyclic convolution modulo m. Let Ca ∈ Cm×m be a circulant matrix generated by a, and

let A ∈ Cm×n be a matrix formed by the first n columns of Ca. Then the convolutional phase retrieval problem

can be rewritten in the common matrix-vector form

find z, s.t. y = |Az| . (19.0.2)

This problem is motivated by applications in areas such as channel estimation [WBJ15], noncoherent optical com-

munication [GK76], and underwater acoustic communication [SCP94]. For example, in millimeter-wave (mm-

wave) wireless communications for 5G networks [SGD+15], one important problem is to reconstruct the

angle of arrival (AoA) of a signal from measurements, which are taken by the convolution of signal AoA

and the antenna pattern. Because of technical difficulties the phase measurements are either very noisy and

unreliable, or expensive to acquire, it is preferred to only take measurements of signal magnitude and the

phase information is lost.

Most known results on the exact solution of phase retrieval problems [CSV13, Sol14, CC15, WGE16,

WdM15, Wal16] pertain to generic random matrices, where the entries of A are independent subgaussian

random variables. However, in practice it is almost impossible to implement purely random measurement

matrices. In many applications, the measurement is much more structured – the convolutional model stud-
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ied here is one such structured measurement operator. Moreover, structured measurements often admit

more efficient numerical methods: by using the fast Fourier transform for matrix-vector products, the benign

structure of the convolutional model (19.0.1) allows to design methods withO(m) memory andO(m logm)

computation cost per iteration. In contrast, for generic measurements, the cost is around O(mn).

In this work, we study the convolutional phase retrieval problem (19.0.1) under the assumption that the

kernel a = [a1, · · · , am]
⊤ is random, with entries i.i.d. complex Gaussian,

a = u+ iv, u,v ∼i.i.d. N
(
0, 12I

)
. (19.0.3)

Compared to the generic random measurements, the random convolution model we study here is far more

structured: it is parameterized by only O(m) independent complex normal random variables, whereas the

generic model involvesO(mn) random variables. This extra structure poses significant challenges for analy-

sis: the rows and columns of the sensing matrix A are probabilistically dependent, and classical probability

tools (based on concentration of functions of independent random vectors) do not apply.

We propose and analyze a local gradient descent type method, minimizing a weighted, nonconvex and

nonsmooth objective

min
z∈Cn

f(z) =
1

2m

∥∥∥b1/2 ⊙ (y − |Az|)
∥∥∥2 , (19.0.4)

where ⊙ denotes the Hadamard product. b ∈ Rm++ is a weighting vector, which is introduced mainly for

analysis purposes. The choice of b is discussed in Section 21. Our result can be informally summarized as

follows.

Theorem 19.1 (Informal) When m ≥ Ω(npoly log n), with high probability, spectral initialization [NJS13,

CLS15b] produces an initialization z(0) that is O(1/ poly log n) close to the optimum. Moreover, when m ≥

Ω
(
∥Cx∥2

∥x∥2 npoly log n
)

, with high probability, a certain gradient descent method based on (19.0.4) converges

linearly from this initialization to the optimal set X =
{
xeiϕ | ϕ ∈ [0, 2π)

}
of points that differ from the true

signal x only by a global phase.

Here, Cx ∈ Cm×m denotes the circulant matrix corresponding to cyclic convolution with a length m

zero padding of x, and poly log n denotes a polynomial in log n. Compared to the results of generalized

phase retrieval, the sample complexitym here also depends on ∥Cx∥, which is quite different. The operator

norm ∥Cx∥ is inhomogeneous over CSn−1: for a typical1 x ∈ CSn−1, ∥Cx∥ is of the order O(log n) and the

1e.g., x is drawn uniformly at random from CSn−1.
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sample complexity matches that of the generalized phase retrieval up to log factors; the “bad” case is when

x is sparse in the Fourier domain: ∥Cx∥ ∼ O(
√
n) and m can be as large as O(n2 poly log n). Based on the

result from the work [CL14], it raises the possibility that our dependence on the spectral spikiness of the

target x could be unnecessary (although we don’t see any easy way to carry our analysis through without

this dependence). Further investigation is left for the future work.

Our proof is based on ideas from decoupling theory [DlPG99], the suprema of chaos processes and restricted

isometry property of random circulant matrices [Rau10, KMR14], and inspired by a new iterative analysis of

alternating minimization methods [Wal16]. Our analysis draws connections between the convergence prop-

erties of gradient descent and the classical alternating direction method. This allows us to avoid the need to

argue that high-degree polynomials in the structured random matrix A concentrate uniformly, as would be

required by a straightforward translation of existing analysis to this new setting. Instead, we control the bulk

effect of phase errors uniformly in a neighborhood around the ground truth. This requires us to develop

new decoupling and concentration tools for controlling nonlinear phase functions of circulant random ma-

trices, which could be potentially useful for analyzing other random circulant convolution problems, such

as blind deconvolution [ZLK+17] and convolutional dictionary learning [HHW15].

19.1 Literature Review

Prior art in phase retrieval The challenge of developing efficient, guaranteed methods for phase retrieval

has attracted substantial interest over the past several decades [SEC+15, JEH15]. The problem is moti-

vated by applications such as X-ray crystallography [Mil90, Rob93], microscopy [MIJ+02], astronomy [DF87],

diffraction and array imaging [BDP+07, CMP11], and optics [Wal63]. The most classical method is the er-

ror reduction algorithm derived by Gerchberg and Saxton [GS72], also known as the alternating direction

method. This approach has been further improved by the hybrid input-output (HIO) algorithm [Fie82]. For

oversampled Fourier measurements, it often works surprisingly well in practice, while its global conver-

gence properties still largely remains as a mystery.

For the generalized phase retrieval problem for which the sensing matrix A is random, the problem is better-

studied: in many cases, when the number of measurements is large enough, the target solution can be

exactly recovered by using either convex or nonconvex optimization methods. The first theoretical guar-

antees for global recovery of generalized phase retrieval are based on convex optimization – the so-called

Phaselift/Phasemax methods [CSV13, CESV13, WdM15]. These methods lift the problem to a higher dimen-
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sion and solve a semi-definite programming (SDP) problem. However, the high computational cost of SDP

limits their practicality. Quite recently, [BR16, GS16, HV16] reveal that the problem can also be solved in the

natural parameter space via linear programming.

Recently, a promising research direction for generalized phase retrieval is based on nonconvex optimiza-

tion. The first result of this type is due to [NJS13], Netrapalli et al. showed that the alternating minimization

method provably converges to the truth, when initialized using a spectral method and provided with fresh

samples at each iteration. Later on, Candès et al. [CLS15b] showed that with the same initialization, gradient

descent for the nonconvex least squares objective,

min
z∈Cn

f1(z) =
1

2m

∥∥∥y2 − |Az|2
∥∥∥2 , (19.1.1)

provably recovers the ground truth, with near-optimal sample complexity m ≥ Ω(n log n). The subsequent

work [CC15, ZL16, WGE16] further reduced the sample complexity to m ≥ Ω(n) by using different noncon-

vex objectives and truncation techniques. In particular, recent work by [ZL16, WGE16] studied a nonsmooth

objective that is similar to ours (19.0.4) with weighting b = 1. Compared to the SDP-based methods, these

methods are more scalable and closer to the methods used in practice. Moreover, Sun et. al. [SQW16] re-

veal that the nonconvex objective (19.1.1) actually has a benign global geometry: with high probability, it has

no bad critical points with m ≥ Ω(n log3 n) samples2. Such a result enables initialization-free nonconvex

recovery3.

Structured random measurements The study of structured random measurements in signal processing

has quite a long history [KR14]. For compressed sensing [CRT06a], the work [CRT06b, CT06, EK12] studied

random Fourier measurements, and later [Rau10, KMR14] proved similar results for partial random convo-

lution measurements. However, the study of structured random measurements for phase retrieval is still

quite limited. In particular, [GKK13] and [CLS15a] studied t-designs and coded diffraction patterns (i.e.,

random masked Fourier measurements) using semidefinite programming. Recent work studied noncon-

vex optimization using coded diffraction patterns [CLS15b] and STFT measurements [BE16], both of which

minimize a nonconvex objective similar to (19.1.1). These different measurement models are motivated by

different applications. For instance, the coded diffraction is designed for imaging applications such as X-

2[Sol17] further tightened the sample complexity to m ≥ Ω(n logn) by using more advanced probability tools.
3For convolutional phase retrieval, it would be nicer to characterize the global geometry of the problem as in [GHJY15, SQW15d,

SQW16, SQW15a]. However, the inhomogeneity of ∥Cx∥ over CSn−1 causes tremendous difficulties for concentration with m ≥
Ω(n poly logn) samples.
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ray diffraction imaging, the STFT can be applied to frequency resolved optical gating [TKD+96] and some

speech processing tasks [LO79]. Both of the results show iterative contraction in a region that is at most

O(1/
√
n)-close to the optimum. The radius of the region is either not large enough for initialization to reach,

or extra technique like resampling is needed for initialization. In comparison, the contraction region we

show for the random convolutional model is larger O(1/polylog(n)), which is achievable in the initializa-

tion stage via the spectral method. For a more detailed review of this subject, we refer the readers to Section

4 of [KR14].

In addition, the convolutional measurement can also be reviewed as a single masked coded diffraction

partterns, as we have a⊛ x = F−1(â⊙ x̂), where â is the Fourier transform of a and x̂ is the oversampled

Fourier transform of x. The sample complexity m ≥ Ω(n log4 n) in [CLS15b] suggests that the dependence

of our sample complexity on ∥Cx∥ for convolutional phase retrieval might not be necessary and can be

improved. On the other hand, our results suggest that the contraction region is larger than O(1/
√
n) for

coded diffraction patterns, that resampling for initialization might not be necessary.

19.2 Notations

We use Ca ∈ Cm×m to denote a circulant matrix generated from a, i.e.,

Ca =



a1 am · · · a3 a2

a2 a1 am a3
... a2 a1

. . .
...

am−1
. . . . . . am

am am−1 · · · a2 a1


=

[
s0[a] s1[a] · · · sm−1[a]

]
, (19.2.1)

where sℓ[·] (0 ≤ ℓ ≤ m−1) denotes a circulant shift by ℓ samples. We use g1 |= g2 to denote the independence

of two random variables g1, g2. For a random variable X , its Lp norm is defined as

∥X∥Lp = E [|X|p]1/p ,

for any positive integer p ≥ 1. For a smooth function f ∈ C1, its L∞ norm is defined as

∥f∥L∞ = sup
t∈dom(f)

|f(t)| .
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For an arbitrary set Ω, we use |Ω| to denote the cardinality of Ω, and use supp(Ω) to denote the support set

of Ω, i.e., the subset containing elements which are not mapped to zero. If |Ω| = ℓ, we use RΩ : Rm 7→ Rℓ

to denote a mapping that maps a vector into its coordinates restricted to the set Ω. We use 1Ω to denote the

indicator function of the set Ω, i.e.,

[1Ω]j =


1 if j ∈ Ω,

0 otherwise.

where [·]j denotes the jth coordinate of vector. Let Fn ∈ Cn×n denote a unnormalized n× n Fourier matrix

with ∥Fn∥ =
√
n, and let Fm

n ∈ Cm×n (m ≥ n) to be an oversampled Fourier matrix. Throughout this part

of the thesis, we assume the ground truth signal to be x ∈ Cn. Because the problem can only be solved up

to a global phase shift, we define the optimal solution set as X =
{
xeiϕ | ϕ ∈ [0, 2π)

}
, and correspondingly

define the distance from a point z ∈ Cn to the set X as

dist(z,X ) .= inf
ϕ∈[0,2π)

∥∥z − xeiϕ
∥∥ .
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Chapter 20

Algorithm

In this work, we develop an approach to convolutional phase retrieval based on local nonconvex optimiza-

tion. Our proposed algorithm has two components: (1) a careful initialization using the spectral method; (2)

local refinement by (generalized) gradient descent. We introduce the two steps in reverse order.

20.1 Minimization of a nonconvex and nonsmooth objective

We consider minimizing a weighted nonconvex and nonsmooth objective

f(z) =
1

2m

∥∥∥b1/2 ⊙ (y − |Az|)
∥∥∥2 . (20.1.1)

The introduction of the positive weights b facilitates our analysis, by enabling us to compare certain functions

of the dependent random matrix A to functions involving more independent random variables. We will

substantiate this claim in the next section.

Although the function (19.0.4) is not complex-differentiable, for reasons explained in [Sol14] and Section

1 of [SQW16], we adopt the Wirtinger calculus instead[KD09], which can be thought of as a compact way of

organizing the real partial derivatives. It should also be noted that the absolute value |·| is nonsmooth at 0,

and hence the function f(·) is not differentiable everywhere even in the real sense. Similar to [WGE16], for

any complex number u ∈ C, if we define its phase ϕ(u) by

exp (iϕ(u))
.
=


u/ |u| if |u| ̸= 0,

1 otherwise,
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the (generalized) Wirtinger gradient of (19.0.4) is

∂

∂z
f(z) =

1

m
A∗ diag (b) [Az − y ⊙ exp (iϕ(Az))] . (20.1.2)

Starting from some initialization z(0), we minimize the objective (20.1.1) by gradient descent

z(r+1) = z(r) − τ ∂
∂z

f(z(r)), (20.1.3)

where τ > 0 is the stepsize. Indeed, ∂
∂z f(z) can be interpreted as the gradient of f(z) as in the real case; this

method is also referred to as amplitude flow [WGE16].

20.2 Initialization via spectral method

Algorithm 2 Spectral Initialization
Input: Observations {yk}mk=1.
Output: The initial guess z(0).

1: Estimate the norm of x by

λ =

√√√√ 1

m

m∑
k=1

y2k

2: Compute the leading eigenvector z̃(0) ∈ CSn−1 of the matrix,

Y =
1

m

m∑
k=1

y2kaka
∗
k =

1

m
A∗ diag

(
y2
)
A,

3: Set z(0) = λz̃(0).

Similar to [NJS13, Sol14], we compute the initialization z(0) via a spectral method, detailed in Algorithm

2. More specifically, z(0) is a scaled version of the leading eigenvector of the following matrix

Y =
1

m

m∑
k=1

y2kaka
∗
k =

1

m
A∗ diag

(
y2
)
A, (20.2.1)

which is constructed from the knowledge of the sensing vectors and observations. The leading eigenvector

of Y can be efficiently computed via the power method. Note that E [Y ] = ∥x∥2 I + xx∗, so the leading

eigenvector of E [Y ] is proportional to the target solution x. Under the random convolutional model of A,

by using probability tools from [KR14], we show that v∗Y v concentrates to its expectation v∗E [Y ]v for all

v ∈ CSn−1 whenever m ≥ Ω(n poly log n), ensuring that the initialization z(0) is close to the optimal set X .1

1Several variants of this initialization approach have been introduced in the literature. They slightly improve the sample complexity
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for generalized phase retrieval with i.i.d. measurements. Those methods include the truncated spectral method [CC15], null initializa-
tion [CFL] and orthogonality-promoting initialization [WGE16]. For the simplicity of analysis, here we only consider Algorithm 2 for
the convolutional model.
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Chapter 21

Main Result and Analysis

In this chapter, we introduce our main theoretical result, and sketch the basic ideas behind the analysis.

21.1 Main Result

Our main theoretical result shows that with high probability, the algorithm described in the previous section

succeeds.

Theorem 21.1 (Main Result) Whenever m ≥ C0n log
31 n, Algorithm 2 produces an initialization z(0) that

satisfies

dist
(
z(0),X

)
≤ c0 log

−6 n ∥x∥

with probability at least 1− c1m−c2 . Suppose b = ζσ2(y), where

ζσ2(t) = 1− 2πσ2ξσ2(t), ξσ2(t) =
1

2πσ2
exp

(
− |t|

2

2σ2

)
, (21.1.1)

withσ2 > 1/2. Starting fromz(0), withσ2 = 0.51 and stepsize τ = 2.02, wheneverm ≥ C1
∥Cx∥2

∥x∥2 max
{
log17 n, n log4 n

}
,

with probability at least 1− c3m−c4 for all iterates z(r) (r ≥ 1) defined in (24.2.2), we have

dist
(
z(r),X

)
≤ (1− ϱ)r dist

(
z(0),X

)
, (21.1.2)

for some numerical constant ϱ ∈ (0, 1). Here, c0, c1, c2, c3, c4 and C0, C1 are positive numerical constants.
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Remark: Our result shows that by initializing the problemO(1/polylog(n))-close to the optimum via spec-

tral method, the gradient descent (24.2.2) converges linearly to the optimal solution. As we can see, the

sample complexity here also depends on ∥Cx∥, which is quite different from the i.i.d. case. For a typical

x ∈ CSn−1 (e.g., x is drawn uniformly random from CSn−1), ∥Cx∥ remains as O(log n), the sample com-

plexity m ≥ Ω(npoly log n) matches the i.i.d. case up to log factors. However, ∥Cx∥ is nonhomogeneous

over x ∈ CSn−1: if x is sparse in the Fourier domain (e.g., x = 1√
n
1), the sample complexity can be as large

as m ≥ Ω
(
n2 poly log n

)
. Such a behavior is also demonstrated in the experiments of Section 22. We believe

the (very large!) number of logarithms in our result is an artifact of our analysis, rather than a limitation

of the method. We expect to reduce the sample complexity to m ≥ Ω
(
∥Cx∥2

∥x∥2 n log
6 n
)

by a tighter analysis,

which is left for future work. The choices of the weighting b ∈ Rm in (21.1.1), σ2 = 0.51, and the stepsize

τ = 2.02 are purely for the purpose of analysis. In practice, the algorithm converges with b = 1 and a choice

of small stepsize τ , or by using backtracking linesearch for the stepsize τ .

21.2 A Sketch of Analysis

In this subsection, we briefly highlight some major challenges and novel ideas behind the analysis. All the

detailed proofs are postponed to Section 24. The core idea behind the analysis is to show that the iterate

contracts once we initialize close enough to the optimum. In the following, we first describe the basic ideas

of proving iterative contraction, which critically depends on bounding a certain nonlinear function of a

random circulant matrix. Second, we sketch the core ideas how to bound such a complicated term via the

decoupling technique.

21.2.1 Proof sketch of iterative contraction

Our iterative analysis is inspired by the recent analysis of alternating direction method (ADM) [Wal16]. In the

following, we draw connections between the gradient descent method (24.2.2) and ADM, and sketch the

basic ideas of convergence analysis.

ADM iteration. ADM is a classical method for solving phase retrieval problems [GS72, NJS13, Wal16],

which can be considered as a heuristic method for solving the following nonconvex problem

min
z∈Cn,|u|=1

1
2 ∥Az − y ⊙ u∥2 .
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At every iterate ẑ(r), ADM proceeds in two steps:

c(r+1) = y ⊙ exp
(
Aẑ(r)

)
,

ẑ(r+1) = argmin
z

1

2

∥∥∥Az − c(r+1)
∥∥∥2 ,

which leads to the following update

ẑ(r+1) = A†
(
y ⊙ exp

(
Aẑ(r)

))
,

where A† = (A∗A)
−1

A∗ is the pseudo-inverse of A. Let θ̂r = argminθ∈[0,2π)

∥∥∥ẑ(r) − xeiθ
∥∥∥. The distance

between ẑ(r+1) and X is bounded by

dist
(
ẑ(r+1),X

)
=
∥∥∥ẑ(r+1) − xeiθ̂r+1

∥∥∥ ≤ ∥∥A†∥∥ ∥∥∥Axeiθ̂r −
(
y ⊙ exp

(
Aẑ(r)

))∥∥∥ . (21.2.1)

Gradient descent with b = 1. For simplicity and illustration purposes, let us first consider the gradient

descent update (24.2.2) with b = 1. Let θr = argminθ∈[0,2π)

∥∥∥z(r) − xeiθ
∥∥∥, with stepsize τ = 1. The distance

between the iterate z(r+1) and the optimal set X is bounded by

dist
(
z(r+1),X

)
=
∥∥∥z(r+1) − xeiθr+1

∥∥∥ ≤ ∥∥∥∥I − 1

m
A∗A

∥∥∥∥ ∥∥∥z(r) − xeiθr
∥∥∥

+
1

m
∥A∥

∥∥∥Axeiθr − y ⊙ exp
(
iϕ(Az(r))

)∥∥∥ . (21.2.2)

Towards iterative contraction. By the measure concentration, it can be shown that∥∥∥∥I − 1

m
A∗A

∥∥∥∥ = o(1), ∥A∥ ≈
√
m,

∥∥A†∥∥ ≈ 1/
√
m, (21.2.3)

holds with high probability whenever m ≥ Ω(n poly log n). Therefore, to show iterative contraction of both

ADM and gradient descent methods, based on (21.2.1) and (21.2.2), it is sufficient to show that∥∥Axeiθ − y ⊙ exp (iϕ(Az))
∥∥ ≤ (1− η)

√
m
∥∥z − xeiθ

∥∥ , (21.2.4)

for some constant η ∈ (0, 1) sufficiently small, where θ = argminθ∈[0,2π)

∥∥∥z − xeiθ
∥∥∥ such that eiθ = x∗z/ |x∗z|.

By borrowing ideas of controlling (21.2.4) for the ADM method [Wal16], this observation provides a new

way of analyzing the gradient descent method. As an attempt to show (21.2.4) for the random circulant

matrix A, we invoke Lemma B.1, which controls the error in a first order approximation to exp(iϕ(·)). Let
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us decompose

z = αx+ βw,

where w ∈ CSn−1 with w ⊥ x, and α, β ∈ C. Notice that ϕ(α) = θ, then by Lemma B.1, for any ρ ∈ (0, 1) we

have ∥∥Axeiθ − y ⊙ exp (iϕ(Az))
∥∥ =

∥∥∥∥|Ax| ⊙
[
exp (iϕ (Ax))− exp

(
iϕ

(
Ax+

β

α
Aw

))]∥∥∥∥
≤

∥∥∥|Ax| ⊙ 1| βα ||Aw|≥ρ|Ax|

∥∥∥︸ ︷︷ ︸
T1

+
1

1− ρ

∣∣∣∣βα
∣∣∣∣ ∥ℑ ((Aw)⊙ exp (−iϕ(Ax)))∥︸ ︷︷ ︸

T2

.

The first term T1 can be bounded using the restricted isometry property of a random circulant matrix [KMR14],

together with some auxiliary analysis. The detailed analysis is provided in Section 24.4. The second term T2

involves a nonlinear function exp (−iϕ(Ax)) of the random circulant matrix A. Controlling this nonlinear,

highly dependent random process for all w is a nontrivial task. In the next subsection, we explain why

bounding T2 is technically challenging, and we sketch the key ideas about how to control a smoothed variant

of T2, by using the weighting b introduced in (21.1.1). We also provide intuitions as to why the weighting b

is helpful.

21.2.2 Controlling a smoothed variant of the phase term T2

As elaborated above, the major challenge of showing iterative contraction is bounding the suprema of the

nonlinear, dependent random process T2(w) over the set

S .
=
{
w ∈ CSn−1 | w ⊥ x

}
.

By using the fact that ℑ(u) = 1
2i (u− u) for any u ∈ C, we have

sup
w∈S
T 2
2 (w) ≤ 1

2 ∥A∥
2
+ 1

2 sup
w∈S

∣∣∣∣∣∣∣w⊤A⊤ diag (ψ(Ax))Aw︸ ︷︷ ︸
L(a,w)

∣∣∣∣∣∣∣ ,
where we define ψ(t) .

= exp (−2iϕ(t)). As from (21.2.3), we know that ∥A∥ ≈
√
m. Thus, to show (21.2.4),

the major task left is to prove that

sup
w∈S
|L(a,w)| < (1− η′)m (21.2.5)

for some constant η′ ∈ (0, 1).
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Why decoupling? Let A =


a∗1

· · ·

a∗m

, the term

L(a,w) = w⊤A⊤ diag (ψ(Ax))Aw =

m∑
k=1

ψ(a∗kx)w
⊤aka

⊤
k w︸ ︷︷ ︸

dependence across k

is a summation of dependent random variables. To address this problem, we deploy ideas from decoupling

[DlPG99]. Informally, decoupling allows us to compare moments of random functions to functions of more

independent random variables, which are usually easier to analyze. The book [DlPG99] provides a beautiful

introduction to this area. In our problem, notice that the random vector a occurs twice in the definition of

L(a,w) – one in the phase term ψ(Ax) = exp(−2iϕ(Ax)), and another in the quadratic term. The general

spirit of decoupling is to seek to replace one of these copies of a with an independent copy a′ of the same

random vector, yielding a random process with fewer dependencies. Here, we seek to replace L(a,w) with

QLdec(a,a′,w) = w⊤A⊤ diag (ψ(A′x))Aw. (21.2.6)

The utility of this new, decoupled form QLdec(a,a′,w) of L(a,w) is that it introduces extra randomness —

QLdec(a,a′,w) is now a chaos process of a conditioned on a′. This makes analyzing supw∈S QLdec(a,a′,w)

amenable to existing analysis of suprema of chaos processes for random circulant matrices [KR14]. However,

achieving the decoupling requires additional work; the most general existing results on decoupling pertain

to tetrahedral polynomials, which are polynomials with no monomials involving any power larger than one of

any random variable. By appropriately tracking cross terms, these results can also be applied to more gen-

eral (non-tetrahedral) polynomials in Gaussian random variables [Kwa87]. However, our random process

L(a,w) involves a nonlinear phase term ψ(Aw) which is not a polynomial, and hence is not amenable to a

direct appeal to existing results.

Decoupling is “recoupling”. Existing results [Kwa87] for decoupling polynomials of Gaussian random

variables are derived from two simple facts:

1. orthogonal projections of Gaussian variables are independent;

2. Jensen’s inequality.
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Indeed, for the random vector a ∼ CN (0, I), let us introduce an independent copy δ ∼ CN (0, I). Write

g1 = a+ δ, g2 = a− δ.

Because of Fact 1, g1 and g2 are two independent CN (0, 2I) vectors. Now, by taking conditional expectation

with respect to δ, we have

Eδ

[
QLdec(g1, g2,w)

]
= Eδ

[
QLdec(a+ δ,a− δ,w)

] .
= L̂(a,w). (21.2.7)

Thus, we can see that the key idea of decoupling L(a,w) into QLdec(a,a′,w), is essentially “recoupling”

QLdec(g1, g2,w) via conditional expectation – the “recoupled” term L̂ can be reviewed as an approximation

of L(a,w). Notice that by Fact 2, Jensen’s inequality, for any convex function φ,

Ea

[
sup
w∈S

φ
(
L̂(a,w)

)]
= Ea

[
sup
w∈S

φ
(
Eδ

[
QLdec(a+ δ,a− δ,w)

])]
≤ Ea,δ

[
sup
w∈S

φ
(
QLdec(a+ δ,a− δ,w)

)]
= Eg1,g2

[
sup
w∈S

φ
(
QLdec(g1, g2,w)

)]
.

Thus, by choosing φ appropriately, i.e., as φ(t) = |t|p, we can control all the moments of supw∈S L̂(a,w) via∥∥∥∥ sup
w∈S

∣∣∣L̂(a,w)
∣∣∣∥∥∥∥
Lp

≤
∥∥∥∥ sup
w∈S

∣∣QLdec(g1, g2,w)
∣∣∥∥∥∥
Lp

. (21.2.8)

This type of inequality is very useful because it relates the moments of supw∈S
∣∣∣L̂(a,w)

∣∣∣ to that of supw∈S
∣∣QLdec(a,a′,w)

∣∣.
As discussed previously, QLdec is a chaos process of g1 by conditioning on g2. Its moments can be bounded

using existing results [KMR14].

If L was a tetrahedral polynomial, we have L̂ = L, i.e., the approximation is exact. As the tail bound of

supw∈S |L(a,w)| can be controlled via its moments bounds [FR13, Chapter 7.2], this allows us to directly

control the object L of interest. The reason that this control obtains is because the conditional expectation

operatorEδ [· | a] “recouples”QLdec(a,a′,w) back to the targetL(a,w). In slogan form, (Gaussian) decoupling

is recoupling.

“Recoupling” is Gaussian smoothing. A distinctive feature of the term L(a,w) in convolutional phase

retrieval is that ψ(·) is a phase function and therefore L is not a polynomial. Hence, it may be challenging

to posit a QLdec which “recouples” back to L. In other words, in the existing form, we need to tolerate an

approximation error as L̂ ̸= L. Although L̂ is not exactly L, we can still control supw∈S |L(a,w)| through its
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approximation L̂,

sup
w∈S
|L(a,w)| ≤ sup

w∈S

∣∣∣L̂(a,w)
∣∣∣ + sup

w∈S

∣∣∣L̂(a,w)− L(a,w)
∣∣∣ . (21.2.9)

As we discussed above, the term supw∈S

∣∣∣L̂(a,w)
∣∣∣ can be controlled by using decoupling and the moments

bound in (21.2.8). Therefore, the inequality (21.2.9) is useful to derive a sufficiently tight bound for L(a,w)

if L̂(a,w) is very close to L(a,w) uniformly, i.e., the approximation error is small. Now the question is: for

what L is it possible to find a “well-behaved” QLdec for which the approximation error is small? To understand this

question, recall that the mechanism that linksQdec to L̂ is the conditional expectation operator Eδ [· | a]. For

our case, from (21.2.7) orthogonality leads to

L̂(a,w) = w⊤A⊤ diag (h(Ax))Aw, h(t)
.
= Es∼CN (0,∥x∥2) [ψ(t+ s)] . (21.2.10)

Thus, by using the results in (21.2.9) and (21.2.10), we can bound supw∈S |L(a,w)| as

sup
w∈S
|L(a,w)| ≤ sup

w∈S

∣∣∣L̂(a,w)
∣∣∣ + ∥h− ψ∥L∞︸ ︷︷ ︸

approximation error

∥A∥2 . (21.2.11)

Notice that the function h is not exactly ψ, but generated by convolving ψ with a multivariate Gaussian

pdf : indeed, recoupling is Gaussian smoothing. The Fourier transform of a multivariate Gaussian is again a

Gaussian; it decays quickly with frequency. So, in order to admit a small approximation error, the target

ψ must be smooth. However, in our case, the function ψ(t) = exp(−2iϕ(t)) is discontinuous at t = 0; it

changes extremely rapidly in the vicinity of t = 0, and hence its Fourier transform (appropriately defined)

does not decay quickly at all. Therefore, the term L(a,w) is a poor target for approximation by using a

smooth function L̂(a,w) = Eδ[QLdec(g1, g2,w)]. From Fig. 21.1, the difference between h and ψ increases as

|t| ↘ 0. The poor approximation error ∥ψ − f∥L∞ = 1 results in a trivial bound for supw∈S |L(a,w)| instead

of (21.2.5).

Decoupling and convolutional phase retrieval. To reduce the approximation error caused by the nons-

moothness of ψ at t = 0, we smooth ψ. More specifically, we introduce a new weighted objective (20.1.1)

with Gaussian weighting b = ζσ2(y) in (21.1.1), replacing the analyzing target T2 with

T̂2 =
∥∥∥diag (b1/2)ℑ ((Aw)⊙ exp (−iϕ(Ax)))

∥∥∥ .
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Figure 21.1: Plots of functions h(t), ψ(t) and ζσ2(t) over the real line. The ψ(t) function is discontinuous at 0, and
cannot be uniformly approximated by h(t). On the other hand, the function h(t) serves as a good approximation of the
weighting ψ(t).

Consequently, we obtain a smoothed variant Ls(a,w) of L(a,w),

Ls(a,w) = w⊤A⊤ diag (ζσ2(y)⊙ ψ(Ax))Aw.

Similar to (21.2.11), we obtain

sup
w∈S
|Ls(a,w)| ≤ sup

w∈S

∣∣∣L̂(a,w)
∣∣∣ + ∥h(t)− ζσ2(t)ψ(t)∥L∞ ∥A∥2 .

Now the approximation error ∥h− ψ∥L∞ in (21.2.11) is replaced by ∥h(t)− ζσ2(t)ψ(t)∥L∞ . As observed

from Fig. 21.1, the function ζσ2(t) smoothes ψ(t) especially near the vicinity of t = 0, such that the new

approximation error ∥f(t)− ζσ2(t)ψ(t)∥L∞ is significantly reduced. Thus, by using similar ideas above, we

can provide a nontrivial bound

sup
w∈S
|Ls(a,w)| < (1− ηs)m,

for some ηs ∈ (0, 1), which is sufficient for showing iterative contraction. Finally, because of the weighting

b = ζσ2(y), it should be noticed that the overall analysis needs to be slightly modified accordingly. For more

detailed analysis, we refer the readers to Section 24.
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Chapter 22

Numerical Results

In this section, we conduct some experiments on both synthetic and real dataset to demonstrate the effec-

tiveness of the proposed method.

Figure 22.1: Phase transition for recovering the signal x ∈ CSn−1 with different signal patterns and ∥Cx∥.

Dependence of sample complexity on ∥Cx∥. First, we investigate the dependence of the sample complex-

ity m on ∥Cx∥. We assume the ground truth x ∈ CSn−1, and consider three cases:

• x = e1 with e1 to be the standard basis vector, such that ∥Cx∥ = 1;

• x is uniformly random generated on the complex sphere CSn−1;

• x = 1√
n
1, such that ∥Cx∥ =

√
n.
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For each case, we fix the signal length n = 1000 and vary the ratio m/n. For each ratio m/n, we randomly

generate the kernela ∼ CN (0, I) in (19.0.1) and repeat the experiment 100 times. We initialize the algorithm

by the spectral method in Algorithm 2 and run the gradient descent (24.2.2). Given the algorithm output x̂,

we judge the success of recovery by

inf
ϕ∈[0,2π)

∥∥x̂− xeiϕ
∥∥ ≤ ϵ, (22.0.1)

where ϵ = 10−5. From Fig. 22.1, for the case when ∥Cx∥ = O(1), the number of measurements needed is far

less than our Theorem 21.1 suggests. Bridging the gap between the practice and theory is left for the future

work.

Another observation is that the larger the ∥Cx∥ is, the more samples we needed for the success of re-

covery. One possibility is that the sample complexity depends on ∥Cx∥, another possibility is that the extra

logarithmic factors in our analysis are truly necessary for worst case (here, spectral sparse) inputs.

Figure 22.2: Phase transition for convolutional phase retrieval with weightings for b.

Effects of weighting b. Although the weighting b in (21.1.1) that we introduced in Theorem 21.1 is mainly

for analysis, here we investigate the effectiveness in practice. We consider the same three cases for x as we

did before. For each case, we fix the signal length n = 100 and vary the ratio m/n. For each ratio m/n, we

randomly generate the kernel a ∼ CN (0, I) in (19.0.1) and repeat the experiment 100 times. We initialize

the algorithm by the spectral method in Algorithm 2 and run the gradient descent (24.2.2) with weighting

b = 1 and b in (21.1.1), respectively. We judge success of recovery once the error (22.0.1) is smaller than

10−5. From Fig. 22.2, we can see that the sample complexity is slightly larger for b = ζσ2(y), the benefits of

weighting here is more for the ease of analysis.
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Figure 22.3: Phase transition of random convolution model vs. i.i.d. random model.

Comparison with generic random measurements. Another interesting question is that, in comparison

with pure random model, how much more samples are needed for the random convolutional model in

practice? We investigate this question numerically. We consider the same three cases for x as we did before,

and consider two random measurement models

y1 = |a⊛ x| , y2 = |Ax| ,

where a ∼ CN (0, I), and A =


a1

· · ·

am

 with ak ∼i.i.d. CN (0, I). For each case, we fix the signal length

n = 100 and vary the ratio m/n. We repeat the experiment 100 times. We initialize the algorithm by the

spectral method in Algorithm 2 for both models, and run gradient descent (24.2.2). We judge success of

recovery once the error (22.0.1) is smaller than 10−5. From Fig. 22.3, we can see that when x is typical (e.g.,

x = e1 or x is uniformly random generated from CSn−1), under the same settings, the samples needed for

the two random models are almost the same. However, when x is Fourier sparse (e.g., x = 1√
n
1), more

samples are required for the random convolution model.

Necessity of initializations. As has been shown in [SQW16, Sol17], for phase retrieval with generic mea-

surement, when the sample complexity satisfies m ≥ Ω(n log n), with high probability the landscape of the

nonconvex objective (19.1.1) is nice enough that it enables initialization free global optimization. This raises

an interesting question that whether spectral initialization is still necessary for the random convolutional

model. We consider similar setting as the previous experiment, where the ground truth x ∈ Cn is drawn

uniformly random from CSn−1. We fix the dimension n = 1000 and change the ratiom/n. For each ratio, we
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Figure 22.4: Phase transition for convolutional phase retrieval with different initialization schemes, wherex is generated
uniformly random from CSn−1.

randomly generate the kernel a ∼ CN (0, I) in (19.0.1) and repeat the experiment for 100 times. For each in-

stance, we start the algorithm from random initialization and spectral initialization, respectively. We choose

the stepsize via backtracking linesearch and terminate the experiment either when the number iteration is

larger than 2× 104 or the distance of the iterate to the solution is smaller than 1× 10−5. As we can see from

Fig. 22.4, the sample number required for successful recovery with random initializations is only slightly

more than that with the spectral initialization. This implies that the spectral initialization is not that critical

for the random convolutional model, neither.

Figure 22.5: Experiment on real data.
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Experiments on real antenna data for 5G communication. Finally, we demonstrate the effectiveness of

the proposed method on a problem arising in 5G communication, as we mentioned in the introduction.

Fig. 22.6 (left) shows an antenna pattern a ∈ C361 obtained from Bell labs. We observe the modulus of the

convolution of this pattern with the signal of interest. For three different types of signals with length n = 20,

(1) x = e1 , (2) x is uniformly random generated from CSn−1, (3) x = 1√
n
1, our result in Fig. 22.6 shows that

we can achieve almost perfect recovery.

Figure 22.6: Experiment on real images.

Experiments on real image. Finally, we run the experiment on some real dataset to demonstrate the effec-

tiveness and the efficiency of the proposed method. We choose an image of size 200 × 300 as in Fig. 22.6,

we use m = 5n log n samples for reconstruction. The kernel a ∈ Cm is randomly generated as complex

Gaussian CN (0, I). We run power method for 100 iterations for initialization, and stop the algorithm once

the error is smaller than 1 × 10−4. It takes 197.08s to reconstruct all the RGB channels. Experiment using

general Gaussian measurements A ∈ Cm×n could easily run out of memory on a personal computer for

problems of this size.
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Chapter 23

Discussion

In this part of the thesis, we showed that via nonconvex optimization, the phase retrieval problem with ran-

dom convolutional measurement can be solved to global optimum withm ≥ Ω
(
∥Cx∥2

∥x∥2 npoly log n
)

samples.

Our result raises several interesting questions that we discuss below.

Tightening sample complexity. Our estimate of the sample complexity is only tight up to logarithm fac-

tors: there is a substantial gap between our theory and practice for the dependence of the logarithm factors.

We believe the high order dependence of the logarithm factors is an artifact of our analysis. In particular,

our analysis in Section 24.4 is based on the result of RIP conditions for partial circulant random matrices,

which is no way tight. We believe that by using advanced tools in probability, the sample complexity can be

tightened to at least m ≥ Ω
(
n log6 n

)
, which is left for future work.

Geometric analysis and global result. Our convergence analysis is based on showing iterative contraction

of gradient descent methods. However, it would be interesting if we could characterize the function land-

scape of nonconvex objectives as we did in [SQW16]. Such a result would provide a better explanation why

the gradient descent method works, and help us design more efficient algorithms. The major difficulty we

encountered is the lack of probability tools for analyzing the random convolutional model: because of the

nonhomogeneity of ∥Cz∥, it is hard to tightly uniformize quantities of random convolutional matrices over

the complex sphere CSn−1: our preliminary analysis results in suboptimal bounds for sample complexity.

We hope this work can invite more ideas for theoretical understandings of this problem.
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Tools for analyzing other structured nonconvex problems. This work is part of a recent surge of research

efforts on deriving provable and practical nonconvex algorithms to central problems in modern signal pro-

cessing and machine learning [JNS13, Har14, HW14, NNS+14, JN14, SL14, JO14, WCCL15, SRO15, ZL15,

TBSR15, CW15, AGJ14a, AGJ14b, AJSN15, GHJY15, QSW14, HSSS15, AAJ+13, AGM13, AAN13, ABGM14,

AGMM15, SQW15a, YCS13, SA14, LWB13, LJ15, LLJB15, EW15, Bou16, JJKN15]. On the other hand, we

believe the probability tools of decoupling and measure concentration we developed here laid a solid foun-

dation for studying other nonconvex problem under the random convolutional model. Those problems

include blind calibration [LS15, CJ16, LS16], blind deconvolution [LWDF09, ETS11, CM14b, ARR14, LLJB15,

LLSW16, LTR16, LS17], and convolutional dictionary learning[BEL13, BL14, HHW15, HA], etc.

Application ideas. Finally, despite the cases we mentioned in the introduction, the application of convo-

lutional phase retrieval seems ubiquitous in many signal processing problems but largely unexplored. We

hope that the algorithm and theoretical guarantees we developed here could invite and inspire more appli-

cation ideas.
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Chapter 24

Proof of Technical Results

In this section, we provide the detailed proof of Theorem 21.1. The whole section is organized as follows.

In Subsection 24.1, we show that the the initialization produced by Algorithm 2 is close to the optimum. In

Subsection 24.2, we sketch the proof of our main result, i.e., Theorem 21.1, where some key proofing details

is provided in Subsection 24.3. All the other supporting results are provided subsequently. We provide

detailed proofs of two key supporting lemmas in Subsection 24.4 and Subsection 24.5, respectively. Finally,

other supporting lemmas are postponed to the appendices: in Appendix B.1, we introduce the elementary

tools and results that are useful throughout analysis; in Appendix B.2, we provide results of bounding the

suprema of chaos processes for random circulant matrices. In Appendix B.3, we provide concentration

results for suprema of some dependent random processes via decoupling.

24.1 Spectral Initialization

Proposition 24.1 Suppose z0 is produced by Algorithm 2. Given a fixed scalar δ > 0, wheneverm ≥ Cδ−2n log7 n,

we have

dist2 (z0,X ) ≤ δ ∥x∥2

with probability at least 1− c1m−c2 . Here c1, c2 and C are some positive numerical constants.

The proof is similar to that of [Sol14], while we here are handling random circulant matrices. We sketch

the main ideas of the proof below, some detailed analysis is retained to Appendix B.2 and Appendix B.3.
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Proof Without loss of generality, we assume that ∥x∥ = 1. Let z̃0 be the leading eigenvector of

Y =
1

m

m∑
k=1

|a∗kx|
2
aka

∗
k

with ∥z̃0∥ = 1, and let σ1 be the corresponding eigenvalue. We have

dist(z0,X ) ≤ ∥z0 − z̃0∥ + dist (z̃0,X ) .

First, since z0 = λz̃0, we have

∥z0 − z̃0∥ = |λ− 1| .

By Theorem B.12 in Appendix B.2, for any ε > 0, whenever m ≥ Cε−2n log4 n, we know that

|λ− 1| ≤
∣∣λ2 − 1

∣∣ = ∣∣∣∣∣ 1m
m∑
k=1

|a∗kx|
2 − 1

∣∣∣∣∣ ≤ ε/2 (24.1.1)

with probability at least 1 − 2m−c log
3 n, where c, C > 0 are some numerical constants. On the other hand,

we have

dist2(z̃0,X ) = argmin
θ

∥∥z̃0 − xeiθ
∥∥2 = 2− 2 |x∗z̃0| .

Theorem B.21 in Appendix B.3 implies that for any δ > 0, whenever m ≥ C ′δ−2n log7 n∥∥∥Y − (xx∗ + ∥x∥2 I)∥∥∥ ≤ δ,
with probability at least 1− 2m−c1 . Here c1 > 0 is some numerical constant. It further implies that∣∣∣z̃∗0Y z̃0 − |z̃∗0x|

2 − 1
∣∣∣ ≤ δ,

so that

|z̃∗0x|
2 ≥ σ1 − 1− δ,

where σ1 is the top singular value of Y . Since σ1 is the top singular value, we have

σ1 ≥ x∗Y x = x∗(Y − xx∗ − ∥x∥2 I)x+ 2 ≥ 2− δ.

Thus, for δ > 0 sufficiently small, we obtain

dist2(z̃0,X ) ≤ 2− 2
√
1− 2δ ≤ 2δ. (24.1.2)



CHAPTER 24. PROOF OF TECHNICAL RESULTS 144

Choose δ = ε2/8, and combining the results in (24.1.1) and (24.1.2), we obtain

dist(z0,X ) ≤ ∥z0 − z̃0∥ + dist (z̃0,X ) ≤ ε,

holds with high probability.

24.2 Proof of Main Result

In this section, we proof Theorem 21.1 in the main manuscript, where we restate the result as below.

Theorem 24.2 (Main Result) Whenever m ≥ C0n log
31 n, Algorithm 2 produces an initialization z(0) that

satisfies

dist
(
z(0),X

)
≤ c0 log

−6 n ∥x∥

with probability at least 1− c1m−c2 . Suppose b = ζσ2(y), where

ζσ2(t) = 1− 2πσ2ξσ2(t), ξσ2(t) =
1

2πσ2
exp

(
− |t|

2

2σ2

)
, (24.2.1)

withσ2 > 1/2. Starting fromz(0), withσ2 = 0.51 and stepsize τ = 2.02, wheneverm ≥ C1
∥Cx∥2

∥x∥2 max
{
log17 n, n log4 n

}
,

with probability at least 1− c3m−c4 for all iterate z(r)(r ≥ 1) defined in (24.2.2), we have

dist
(
z(r),X

)
≤ (1− ϱ)r dist

(
z(0),X

)
,

holds for some small numerical constant ϱ ∈ (0, 1). Here, c0, c1, c2, c3, c4 and C0, C1 are positive numerical

constants.

Our proof critically depends on the following result, where we show that with high probability for every

z ∈ Cn close enough to the optimal set X , the iterate

ẑ = z − τ ∂
∂z

f(z), (24.2.2)

∂

∂z
f(z) =

1

m
A∗ diag (b) [Az − y ⊙ exp (iϕ(Az))] . (24.2.3)

is a contraction.
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Proposition 24.3 (Iterative Contraction) Let σ2 = 0.51 and the stepsize τ = 2.02. There exists some positive

constants c1, c2, c3 andC, wheneverm ≥ C ∥Cx∥2

∥x∥2 max
{
log17 n, n log4 n

}
, with probability at least 1−c1m−c2

for every z ∈ Cn such that dist (z,X ) ≤ c3 log−6 n ∥x∥, we have

dist

(
z − τ ∂

∂z
f(z),X

)
≤ (1− ϱ) dist (z,X )

holds for some small constant ϱ ∈ (0, 1). Here, ∂
∂z f(z) is defined in (24.2.3).

We sketch the main idea of the proof below. More detailed analysis is postponed to Section 24.3, Section

24.4 and Section 24.5.

Proof [Proof of Proposition 24.3] Without loss of generality, throughout the analysis we assume that ∥x∥ = 1.

By (24.2.2) and (24.2.3), and with the choice of stepsize τ = 2σ2 + 1, we have

ẑ = z − 2σ2 + 1

m
A∗ diag (ζσ2(y)) [Az − y ⊙ exp (iϕ (Az))]

= z −Mz +
2σ2 + 1

m
A∗ diag (ζσ2(y)) [y ⊙ exp (iϕ (Az))] ,

where we define

M(a) =
2σ2 + 1

m
A∗ diag (ζσ2(y))A. (24.2.4)

For any z ∈ Cn, let us decompose z as

z = αx+ βw, (24.2.5)

where α, β ∈ C, and w ∈ CSn−1 with w ⊥ x, and α = |α| eiϕ(α) with the phase ϕ(α) of α satisfies eiϕ(α) =

x∗z/ |x∗z|. Therefore, if we let

θ = argminθ∈[0,2π)

∥∥∥z − xeiθ
∥∥∥ , (24.2.6)

then we also have ϕ (α) = θ. Thus, by using the results above, we observe

dist2 (ẑ,X ) = min
θ∈[0,2π)

∥∥∥ẑ − xeiθ
∥∥∥2 ≤ ∥∥ẑ − eiθx∥∥2 ≤ ∥Px⊥d∥2 + ∥Pxd∥2 ,

where we define

d(z)
.
= (I −M)

(
z − eiθx

)
− eiθMx+

2σ2 + 1

m
A∗ diag (ζσ2(y)) [y ⊙ exp (iϕ (Az))] . (24.2.7)

Let δ > 0, by Lemma 24.7 and Lemma 24.8, whenever m ≥ C ∥Cx∥2 max
{
log17 n, δ−2n log4 n

}
, with proba-
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bility at least 1− c1m−c2 for all z ∈ Cn such that
∥∥z − xeiθ

∥∥ ≤ c3δ3 log−6 n, we have

∥Px⊥d∥ ≤

[
δ + (1 + δ)

(
4δ

ρ

√
2σ2 + 1 +

1

1− ρ
1

1− δ

√
1 + (2 + ε)δ + (1 + δ)∆∞(ε)

2

)]∥∥z − xeiθ
∥∥

∥Pxd∥ ≤
(

2σ2

1 + 2σ2
+ cσ2δ

)∥∥z − xeiθ
∥∥

holds for any ρ ∈ (0, 1), where ∆∞(ε) be defined in (24.5.1) with ε ∈ (0, 1). Here, c1, c2, c3, cσ2 and C are

some positive numerical constants, where cσ2 is only depending on σ2. With ε = 0.2 and σ2 = 0.51, Lemma

24.7 implies that ∆(ε) ≤ 0.404. Thus, we have

∥Px⊥d∥ ≤

[
δ + (1 + δ)

(
5.686δ

ρ
+

1

1− ρ
1

1− δ

√
1 + 2.2δ + 0.404(1 + δ)

2

)]∥∥z − xeiθ
∥∥

∥Pxd∥ ≤ (0.505 + cσ2δ)
∥∥z − xeiθ

∥∥ .
By choosing the constants δ and ρ sufficiently small, direct calculation reveals that

dist2 (ẑ,X ) ≤ ∥Px⊥d∥2 + ∥Pxd∥2 ≤ 0.96
∥∥z − xeiθ

∥∥2 = 0.96 dist2 (z,X ) ,

as desired.

Now with Proposition 24.3 in hand, we are ready to prove Theorem 24.2.

Proof [Proof of Theorem 3.1] We prove the theorem by recursion. Let us assume that the properties in

Proposition 24.3 holds, which happens on an event E with probability at least 1−c1m−c2 for some numerical

constants c1, c2 > 0. By Proposition 24.1 in Appendix 24.1, for any numerical constant δ > 0, whenever

m ≥ Cδ−12n log31 n, the initialization z(0) produced by Algorithm 2 satisfies

dist
(
z(0),X

)
≤ c3δ3 log−6 n ∥x∥ ,

with probability at least 1 − c4m
−c5 , for some constants. Here, c3, c4, c5 and C > 0 are some numerical

constants. Therefore, conditioned on the event E , we know that

dist
(
z(1),X

)
= dist

(
z(0) − τ ∂

∂z
f(z),X

)
≤ (1− ϱ) dist

(
z(0),X

)
holds for some small constant ϱ ∈ (0, 1). This proves (21.1.2) for the first iteration z(1). Notice that the

inequality above also implies that dist
(
z(1),X

)
≤ c3δ

3 log−6 n ∥x∥. Therefore, by reapplying the same rea-

soning, we can prove (21.1.2) for the iterations r = 2, 3, · · · .
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24.3 Bounding ∥Px⊥d(z)∥ and ∥Pxd(z)∥

Let d(z) be defined as in (24.2.7) and assume that ∥x∥ = 1. In this section, we provide bounds for ∥Pxd∥ and

∥Px⊥d∥ under the condition that z and x are close. Before presenting the main results, let us first introduce

some useful preliminary lemmas. First, based on the decomposition of z in (24.2.5) and the definition of θ

in (24.2.6), we can show the following result.

Lemma 24.4 Let θ = argminθ∈[0,2π)

∥∥∥z − xeiθ
∥∥∥ and suppose dist (z,x) =

∥∥z − xeiθ
∥∥ ≤ ϵ for some ϵ ∈

(0, 1), then we have ∣∣∣∣βα
∣∣∣∣ ≤ 1

1− ϵ
∥∥z − xeiθ

∥∥
Proof Given the facts in (24.2.5) and (24.2.6) that z = αx+ βw with w ∈ CSn−1 and w ⊥ x, and ϕ(α) = θ,

we have

∥∥z − xeiθ
∥∥2 = (|α| − 1)

2
+ |β|2 .

This implies that

|β| ≤
∥∥z − xeiθ

∥∥ , |α| ≥ 1−
∥∥z − xeiθ

∥∥ =⇒
∣∣∣∣βα
∣∣∣∣ ≤

∥∥z − xeiθ
∥∥

1− ∥z − xeiθ∥
≤ 1

1− ϵ
∥∥z − xeiθ

∥∥ ,
as desired.

Our proof is also critically depends on the concentration of M(a) in Theorem B.24 in Appendix B.3, and

the following Lemmas. Please refer to Section24.4 and Section 24.5 for the detailed proofs.

Lemma 24.5 For any given scalar δ ∈ (0, 1), let γ = c0δ
3 log−6 n, whenever

m ≥ Cmax
{
∥Cx∥2 log17 n, δ−2n log4 n

}
, with probability at least 1− c1m−c2 for all w with ∥w∥ ≤ γ ∥x∥,

the inequality

∥∥Ax⊙ 1|Aw|≥|Ax|
∥∥ ≤ δ√m ∥w∥

holds. Here, c0, c1, c2 and C are some positive numerical constants.

Lemma 24.6 For any scalar δ ∈ (0, 1), whenever m ≥ C ∥Cx∥2 δ−2n log4 n, with probability at least 1 −
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cm−c
′ log3 n for all w ∈ Cn with w ⊥ x, we have∥∥∥∥∥
√

2σ2 + 1

m
diag

(
ζ
1/2
σ2 (y)

)
ℑ (Aw ⊙ exp (−iϕ(Ax)))

∥∥∥∥∥
2

≤ 1 + (2 + ε)δ + (1 + δ)∆∞(ε)

2
∥w∥2

holds. Here c, c′ are some numerical constants. In particular, when σ2 = 0.51 and ε = 0.2, we have ∆(ε) ≤

0.404. With the same probability for all w ∈ Cn with w ⊥ x, we have∥∥∥∥∥
√

2σ2 + 1

m
diag

(
ζ
1/2
σ2 (y)

)
ℑ (Aw ⊙ exp (−iϕ(Ax)))

∥∥∥∥∥
2

≤ 1 + 2.2δ + 0.404(1 + δ)

2
∥w∥2 .

24.3.0.1 Bounding the “x-perpendicular” term ∥Px⊥d∥

Lemma 24.7 Let d be defined in (24.2.7), and suppose σ2 > 1/2 be a constant. For any δ > 0, whenever

m ≥ C ∥Cx∥2 max
{
log17 n, δ−2n log4 n

}
, with probability at least 1 − c1m

−c2 for all z ∈ Cn such that∥∥z − xeiθ
∥∥ ≤ c3δ3 log−6 n, we have

∥Px⊥d∥ ≤

[
δ + (1 + δ)

(
4δ

ρ

√
2σ2 + 1 +

1

1− ρ
1

1− δ

√
1 + 2δ + (1 + δ)∆∞(ε)

2

)]∥∥z − xeiθ
∥∥ .

Here, ∆∞(ε) are defined in (24.5.1) for any scalar ε ∈ (0, 1), and c1, c2, c3 and C are some numerical constants.

In particular, when ε = 0.2 and σ2 = 0.51, we have ∆∞(ε) ≤ 0.404.

The analysis of bounding ∥Px⊥d∥ is similar to that of [Wal16].

Proof By the definition (24.2.7) of d(z), notice that

∥Px⊥d∥ ≤
∥∥∥∥Px⊥

{
2σ2 + 1

m
A∗ diag (ζσ2(y)) [y ⊙ exp (iϕ (Az))]− eiθMx

}∥∥∥∥
+ ∥Px⊥(I −M)∥

∥∥z − eiθx∥∥
For the second term, by Theorem B.24, for any δ > 0, whenever m ≥ C1δ

−2 ∥Cx∥2 n log4 n, we have

∥Px⊥ (I −M)∥ ≤ δ, (24.3.1)

with probability at least 1− c1m−c2 log3 n. For the first term, we observe∥∥∥∥Px⊥

{
2σ2 + 1

m
A∗ diag (ζσ2(y)) [y ⊙ exp (iϕ (Az))]− eiθMx

}∥∥∥∥
=

∥∥∥∥Px⊥

{
2σ2 + 1

m
A∗ diag (ζσ2(y)) (|Ax| ⊙ [exp (iϕ (Az))− exp (iθ + iϕ (Ax))])

}∥∥∥∥
≤

∥∥∥∥∥
√

2σ2 + 1

m
Px⊥A∗ diag

(
ζ
1/2
σ2 (y)

)∥∥∥∥∥×
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∥∥∥∥∥
√

2σ2 + 1

m
diag

(
ζ
1/2
σ2 (y)

)
(|Ax| ⊙ [exp (iϕ (Az))− exp (iθ + iϕ (Ax))])

∥∥∥∥∥ .
By Theorem B.24 and Lemma B.30 in Appendix B.3, for any δ > 0, whenever m ≥ C1δ

−2 ∥Cx∥2 n log4 n, we

have ∥∥∥∥∥
√

2σ2 + 1

m
Px⊥A∗ diag

(
ζ
1/2
σ2 (y)

)∥∥∥∥∥ ≤ ∥H∥1/2 ≤ (∥E [H]∥ + ∥H − E [H]∥)1/2

≤ (1 + δ)
1/2 ≤ 1 + δ,

with probability at least 1−c1m−c2 log3 n. And by Lemma B.1 and decomposition of z in (24.2.5) with ϕ(α) =

θ, we obtain ∥∥∥∥∥
√

2σ2 + 1

m
diag

(
ζ
1/2
σ2 (y)

)
(|Ax| ⊙ [exp (iϕ (Az))− exp (iθ + iϕ (Ax))])

∥∥∥∥∥
=

∥∥∥∥∥
√

2σ2 + 1

m
diag

(
ζ
1/2
σ2 (y)

)(
|Ax| ⊙

[
exp (iϕ (Ax))− exp

(
iϕ

(
Ax+

β

α
Aw

))])∥∥∥∥∥
≤ 1

1− ρ

∣∣∣∣βα
∣∣∣∣
∥∥∥∥∥
√

2σ2 + 1

m
diag

(
ζ
1/2
σ2 (y)

)
ℑ (Aw ⊙ exp (−iϕ (Ax)))

∥∥∥∥∥
+ 2

√
2σ2 + 1

m

∥∥∥|Ax| ⊙ 1| βα ||Aw|≥ρ|Ax|

∥∥∥ ,
for any ρ ∈ (0, 1). By Lemma 24.4, we know that ρ−1

∣∣∣βα ∣∣∣ ≤ 2
ρ

∥∥z − xeiθ
∥∥ < cρδ

3 log−6 n holds under our as-

sumption, where cρ is a constant depending on ρ. Thus, wheneverm ≥ C2 max
{
∥Cx∥2 log17 n, δ−2n log4 n

}
for any δ ∈ (0, 1), with probability at least 1− c1m−c2 for all w ∈ CSn−1, Lemma 24.5 implies that∥∥∥|Ax| ⊙ 1| βα ||Aw|≥ρ|Ax|

∥∥∥ ≤ δ

ρ

∣∣∣∣βα
∣∣∣∣√m ≤ 2δ

ρ

√
m
∥∥z − xeiθ

∥∥ .
Here, c1, c2 and C2 are some positive numerical constants.

Moreover, for any δ ∈ (0, 1), whenever m ≥ C3 ∥Cx∥2 n log4 n, with probability at least 1− c3m−c4 log3 n

for all w ∈ CSn−1 with w ⊥ x, Lemma 24.6 implies that∥∥∥∥∥
√

2σ2 + 1

m
diag

(
ζ
1/2
σ2 (y)

)
ℑ (Aw ⊙ exp (−iϕ (Ax)))

∥∥∥∥∥ ≤
√

1 + 2δ + (1 + δ)∆∞(ε)

2
,

where ∆∞(ε) is defined in (24.5.1) for some ε ∈ (0, 1), and c3, c4 are some positive numerical constants. In

addition, whenever
∥∥z − xeiθ

∥∥ ≤ c5δ3 log−6 n∥∥z − xeiθ
∥∥ for some constant c5 > 0, Lemma 24.4 implies that∣∣∣∣βα

∣∣∣∣ ≤ 1

1− c5δ3 log−6 n
∥∥z − xeiθ

∥∥ ≤ 1

1− δ
∥∥z − xeiθ

∥∥ ,
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for δ > 0 sufficiently small. Thus, combining the results above, we have the bound

∥Px⊥d∥ ≤

[
δ + (1 + δ)

(
4δ

ρ

√
2σ2 + 1 +

1

1− ρ
1

1− δ

√
1 + 2δ + (1 + δ)∆∞(ε)

2

)]∥∥z − xeiθ
∥∥

holds as desired. Finally, when σ2 = 0.51 and ε = 0.2, the bound for ∆∞(ε) can be found in Lemma 24.15

in Section 24.5.

24.3.0.2 Bounding the “x-parallel” term ∥Pxd∥

Lemma 24.8 Let d(z) be defined in (24.2.7), and let σ2 > 1/2 be a constant. For any δ > 0, whenever m ≥

C ∥Cx∥2 max
{
log17 n, δ−2n log4 n

}
, with probability at least 1 − c1m−c2 for all z such that

∥∥z − xeiθ
∥∥ ≤

c3δ
3 log−6 n, we have

∥Pxd∥ ≤
(

2σ2

1 + 2σ2
+ cσ2δ

)∥∥z − xeiθ
∥∥ .

Here, c1, c2, c3 and C are some positive numerical constants, and cσ2 > 0 is some numerical constant depending

only on σ2.

Proof Given the decomposition of z in (24.2.5) with w ⊥ x and ϕ(α) = θ, and by the definition of d(z) in

(24.2.7), we observe

∥Pxd∥ =
∣∣∣∣x∗{(I −M)

(
z − eiθx

)
− eiθMx+

2σ2 + 1

m
A∗ diag (ζσ2(y)) [y ⊙ exp (iϕ (Az))]

}∣∣∣∣
≤
∣∣∣∣(1− x∗E [M ]x) (|α| − 1) eiθ − eiθx∗Mx+

2σ2 + 1

m
x∗A∗ diag (ζσ2(y)) [y ⊙ exp (iϕ (Az))]

∣∣∣∣
+ ∥M − E [M ]∥

∥∥z − xeiθ
∥∥

≤ |(1− x∗E [M ]x)| ||α| − 1|︸ ︷︷ ︸
T1

+ ∥M − E [M ]∥
∥∥z − xeiθ

∥∥
+

∣∣∣∣2σ2 + 1

m
x∗A∗ diag (ζσ2(y))

[
(Ax)⊙

(
exp

(
iϕ (Az − iϕ (Ax))− eiθ1

))]∣∣∣∣︸ ︷︷ ︸
T2

,

where for the second inequality, we used Lemma B.30 such that x∗ (I − E [M ])w = 0. For the first term T1,

notice that

∥∥z − xeiθ
∥∥ =

√
||α| − 1|2 + ∥βw∥2 ≥ ||α| − 1| ,
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and by using the fact that E [M ] = I + 2σ2

1+2σ2xx
∗ in Lemma B.30, we have

T1 =
2σ2

1 + 2σ2
||α| − 1| ≤ 2σ2

1 + 2σ2

∥∥z − xeiθ
∥∥ .

For the term T2, using the fact that z = αx+ βw and θ = ϕ(α), and by Lemma B.2, notice that∣∣∣∣exp (iϕ (Az)− iϕ (Ax))− eiθ1+ ieiθℑ
(
βAw

αAx

)∣∣∣∣
=

∣∣∣∣exp(iϕ(1 + βAw

αAx

))
− 1+ iℑ

(
βAw

αAx

)∣∣∣∣ ≤ 6

∣∣∣∣βα
∣∣∣∣2 ∣∣∣∣Aw

Ax

∣∣∣∣2 ,
whenever

∣∣∣βAw
αAx

∣∣∣ ≤ 1/2. Thus, by using the result above, we observe

T2 ≤ 2

∣∣∣∣2σ2 + 1

m
x∗A∗ diag (ζσ2(y))

[
(Ax)⊙ 1| βα ||Aw|≥ 1

2 |Ax|

]∣∣∣∣
+

∣∣∣∣2σ2 + 1

m
x∗A∗ diag

(
ζσ2(y)⊙

(
exp (iϕ (Az)− iϕ (Ax))− eiθ1

)
⊙ 1| βα ||Aw|≤ 1

2 |Ax|

)
Ax

∣∣∣∣
≤ 2

∣∣∣∣2σ2 + 1

m
x∗A∗ diag (ζσ2(y))

[
(Ax)⊙ 1| βα ||Aw|≥ 1

2 |Ax|

]∣∣∣∣
+

∣∣∣∣2σ2 + 1

m
x∗A∗ diag (ζσ2(y))

[
(Ax)⊙ℑ

(
βAw

αAx

)]∣∣∣∣
+ 6

∣∣∣∣βα
∣∣∣∣2
∣∣∣∣∣2σ2 + 1

m
x∗A∗ diag

(
ζσ2(y)⊙ |Aw|2

|Ax|2

)
Ax

∣∣∣∣∣
≤ 2

2σ2 + 1

m
∥A∥

∥∥∥Ax⊙ 1| βα ||Aw|≤ 1
2 |Ax|

∥∥∥ + 6

∣∣∣∣βα
∣∣∣∣2 ∣∣∣∣2σ2 + 1

m
w∗A∗ diag (ζσ2(y))Aw

∣∣∣∣
+

1

2

∣∣∣∣βα
∣∣∣∣ ∣∣∣∣2σ2 + 1

m
x∗A∗ diag (ζσ2(y))Aw

∣∣∣∣
+

1

2

∣∣∣∣βα
∣∣∣∣ ∣∣∣∣2σ2 + 1

m
x∗A∗ diag (ζσ2(y))

[
exp (2iϕ (Ax))⊙Aw

]∣∣∣∣
Given the fact that x ⊥ w, by Lemma B.30 again we have x∗E [M ]w = 0. Thus∣∣∣∣2σ2 + 1

m
x∗A∗ diag (ζσ2(y))Aw

∣∣∣∣ = |x∗Mw − x∗E [M ]w| ≤ ∥M − E [M ]∥ ,

and similarly we have ∣∣∣∣2σ2 + 1

m
x∗A∗ diag (ζσ2(y))

[
exp (2iϕ (Ax))⊙Aw

]∣∣∣∣
=

∣∣∣∣2σ2 + 1

m
w⊤A⊤ diag (ζσ2(y)) [exp (−2iϕ (Ax))⊙Ax]

∣∣∣∣
=

∣∣∣∣2σ2 + 1

m
w⊤A⊤ diag (ζσ2(y))Ax

∣∣∣∣
=

∣∣∣∣2σ2 + 1

m
x∗A∗ diag (ζσ2(y))Aw

∣∣∣∣ ≤ ∥M − E [M ]∥ .
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Thus, suppose
∥∥z − xeiθ

∥∥ ≤ 1
2 , by using Lemma 24.4 we know that

∣∣∣βα ∣∣∣ ≤ 2
∥∥z − xeiθ

∥∥. Thus, combining

the estimates above, we have

T3 ≤ 2
2σ2 + 1

m
∥A∥

∥∥∥Ax⊙ 1| βα ||Aw|≤ 1
2 |Ax|

∥∥∥ + 24
∥∥z − xeiθ

∥∥2 ∥M∥
+ 2 ∥M − E [M ]∥

∥∥z − xeiθ
∥∥ .

Combining the estimates for T1 and T2, we have

∥Pxd∥ ≤
2σ2

1 + 2σ2

∥∥z − xiθ
∥∥ + 3 ∥M − E [M ]∥

∥∥z − xiθ
∥∥

+ 2
2σ2 + 1

m
∥A∥

∥∥∥Ax⊙ 1| βα ||Aw|≤ 1
2 |Ax|

∥∥∥ + 24 ∥M∥
∥∥z − xeiθ

∥∥2 .
By Theorem B.24, for any δ > 0, whenever m ≥ C1δ

−2 ∥Cx∥2 n log4 n, we have

∥M − E [M ]∥ ≤ δ, ∥M∥ ≤ ∥E [M ]∥ + δ =
1 + 4σ2

1 + 2σ2
+ δ

holds with probability at least 1 − c1m−c2 log3 n. Here c1, c2, and C1 are positive numerical constants. By

Corollary B.13, for any δ ∈ (0, 1), whenever m ≥ C2δ
−2n log4 n, we have

∥A∥ ≤ (1 + δ)
√
m

holds with probability at least 1−2m−c3 log3 n for some constant c3 > 0. If 1
2

∣∣∣βα ∣∣∣ ≤ ∥∥z − xeiθ
∥∥ ≤ c4δ3 log−6 n,

whenever m ≥ C3 max
{
∥Cx∥2 log17 n, δ−2n log4 n

}
, Lemma 24.5 implies that

∥∥∥|Ax| ⊙ 1| βα ||Aw|≥ 1
2 |Ax|

∥∥∥ ≤ 2δ

∣∣∣∣βα
∣∣∣∣√m ≤ 4δ

√
m
∥∥z − xeiθ

∥∥
holds for all w ∈ CSn−1 with probability at least 1− c5m−c6 . Here, c4, c5, c6 and C2, C3 are some numerical

constants. Given
∥∥z − xeiθ

∥∥ ≤ c4
4 δ

3 log−6 n, combining the estimates above, we have

∥Pxd∥ ≤
[

2σ2

1 + 2σ2
+ 3δ + 8(1 + δ)δ

(
2σ2 + 1

)
+ 24c4

(
1 + 4σ2

1 + 2σ2
+ δ

)
δ3 log−6 n

] ∥∥z − xeiθ
∥∥

≤
(

2σ2

1 + 2σ2
+ cσ2δ

)∥∥z − xeiθ
∥∥

for δ sufficiently small. Here, cσ2 is some positive numerical constant depending only on σ2.
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24.4 Proof of Lemma 24.5

In this section, we assume ∥x∥ = 1, and we prove the Lemma 24.5 in Subsection 24.3, which can be restated

as follows.

Lemma 24.9 For any given scalar δ ∈ (0, 1), let γ = c0δ
3 log−6 n, whenever

m ≥ Cmax
{
∥Cx∥2 log17 n, δ−2n log4 n

}
, with probability at least 1− c1m−c2 for all w with ∥w∥ ≤ γ ∥x∥,

the inequality

∥∥Ax⊙ 1|Aw|≥|Ax|
∥∥ ≤ δ√m ∥w∥ (24.4.1)

holds. Here, c0, c1, c2 and C are some positive numerical constants.

We prove this lemma using the results in Lemma 24.10 and Lemma 24.11.

Proof By Corollary B.13, for some small scalar ε ∈ (0, 1), whenever m ≥ Cn log4 n, with probability at least

1−m−c log3 n for every w with ∥w∥ ≤ γ ∥x∥, we have

∥Aw∥ ≤ (1 + ε)
√
m ∥w∥ ≤ (1 + ε)γ

√
m ∥x∥ ≤

(
1 + ε

1− ε

)1/2

γ ∥Ax∥ ≤ 2γ ∥Ax∥ .

Here, c, C are some numerical constants. Let us define a set

S .
= {k | |a∗kw| ≥ |a∗kx|} .

By Lemma 24.10, with probability at least 1 − exp
(
− ρ4m

2∥Cx∥2

)
, for every set S with |S| > ρm (for some

ρ ∈ (0, 1) to be chosen later), we have

∥(Ax)⊙ 1S∥ >
ρ3/2

32
∥Ax∥

holds. Choose ρ such that γ = ρ3/2

64 , we have

∥Aw∥ ≥ ∥(Aw)⊙ 1S∥ ≥ ∥(Ax)⊙ 1S∥ > 2γ ∥Ax∥ .

This contradicts with the fact that ∥Aw∥ ≤ 2γ ∥Ax∥. Therefore, whenever ∥w∥ ≤ γ ∥x∥, with high proba-

bility we have |S| ≤ ρm holds. Given any δ > 0, choose γ = cδ3 log−6 n for some constant c > 0. Because

γ = ρ3/2

64 , we know that ρ = c′δ2/ log4 n. By Lemma 24.11, whenever m ≥ Cδ−2n log4 n, with probability at

least 1− 2m−c log
2 n for all w ∈ CSn−1, we have

∥∥|Ax| ⊙ 1|Aw|≥|Ax|
∥∥ ≤ ∥|Aw| ⊙ 1S∥ ≤ δ

√
m ∥w∥ ,
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holds . Here c, c′, C are some numerical constants. Combining the results above, we complete the proof.

Lemma 24.10 Let ρ ∈ (0, 1) be a positive scalar, with probability at least 1 − exp
(
− ρ4m

2∥Cx∥2

)
, for every set

S ∈ [m] with |S| ≥ ρm, we have

∥|Ax| ⊙ 1S∥ >
1

32
ρ3/2 ∥Ax∥ .

Proof Let gρ(Ax) be defined as in Lemma 24.12, we know that

∥gρ(Ax)∥1 ≥
∥∥1|Ax|≤ρ

∥∥
1

holds uniformly. Thus, for an independent copy a′ of a, we have

∣∣∥gρ(Cxa)∥1 − ∥gρ(Cxa
′)∥1

∣∣ ≤ ∥gρ(Cxa)− gρ(Cxa
′)∥1 ≤

√
m

ρ
∥Cxa−Cxa

′∥

≤
√
m

ρ
∥Cx∥ ∥a− a′∥ .

Therefore, we can see that ∥gρ(Cxa)∥1 is L-Lipschitz with respect to a, with L =
√
m
ρ ∥Cx∥. By Gaussian

concentration inequality in Lemma B.3, we have

P
(∣∣∥gρ(Cxa)∥1 − E

[
∥gρ(Cxa)∥1

]∣∣ ≥ t) ≤ 2 exp

(
− t2

2L2

)
. (24.4.2)

By using the fact that
√
2 |a∗kx| follows χ distribution, we have

E
[
∥gρ(Cxa)∥1

]
≤

m∑
k=1

E
[
1|a∗

kx|≤2ρ
]
=

m∑
k=1

P (|a∗kx| ≤ 2ρ) ≤ ρm.

Thus, with probability at least 1− 2 exp
(
− ρ4m

2∥Cx∥2

)
, we have

∥∥1|Ax|≤ρ
∥∥
1
≤ ∥gρ(Ax)∥1 ≤ 2ρm

holds. Thus, for any set S such that |S| ≥ 4ρm, we have

∥(Ax)⊙ 1S∥2 ≥
∥∥(Ax)⊙ 1|Ax|≤ρ

∥∥2 ≥ 2ρ3m.

Thus, by replacing 4ρ with ρ, we complete the proof.

Lemma 24.11 Given any scalar δ > 0, let ρ ∈ (0, cδlog
−4n)with cδ be some constant depending on δ, whenever

m ≥ Cδ−2n log4 n, with probability at least 1 − 2m−c log
2 n, for any set S ∈ [m] with |S| < ρm and for all
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w ∈ Cn, we have

∥(Aw)⊙ 1S∥ ≤ δ
√
m ∥w∥

holds. Here c, C > 0 are some numerical constants.

Proof Without loss of generality, let us assume that ∥w∥ = 1. First, notice that

∥Aw ⊙ 1S∥ = sup
v∈CSm−1, supp(v)⊆S

⟨v,Aw⟩ ≤ sup
v∈CSm−1, supp(v)⊆S

∥A∗v∥ .

By Lemma B.11, for any positive scalar δ > 0 and any ρ ∈ (0, cδ2 log−4 n), wheneverm ≥ Cδ−2n log4 n, with

probability at least 1−m−c′ log2 n, we have

sup
v∈CSn−1, supp(v)⊆S

∥A∗v∥ ≤ δ
√
m

holds. Here c, c′, C > 0 are some positive numerical constants.

Lemma 24.12 For a variable u ∈ C and a fixed positive scalar v ∈ R, let us define

gv(u) =


1 if |u| ≤ v,

1
v (2v − |u|) v < |u| ≤ 2v

0 otherwise,

(24.4.3)

then gv(u) is 1/v-Lipschitz. Moreover, the following bound

gv(u) ≥ 1|u|≤v

holds uniformly for u over the whole space.

Proof The proof of Lipschitz continuity of gv(u) is straight forward, and the inequality directly follows from

the definition of gv(u).

24.5 Proof of Lemma 24.6

Given some scalar ε > 0 and σ2 > 1/2, let us define a quantity

∆∞(ε)
.
=
(
1 + 2σ2

) ∥∥(1 + ε)Es∼CN (0,1) [ψ(t+ s)]− ζσ2(t)ψ(t)
∥∥
L∞ , (24.5.1)

where ψ(t) = exp (−2iϕ(t)) and ζσ2 is defined in (24.2.1). Assuming ∥x∥ = 1, we show the following result.
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Lemma 24.13 For any scalar δ ∈ (0, 1), whenever m ≥ C ∥Cx∥2 δ−2n log4 n, with probability at least 1 −

cm−c
′ log3 n for all w ∈ Cn with w ⊥ x, we have∥∥∥∥∥
√

2σ2 + 1

m
diag

(
ζ
1/2
σ2 (y)

)
ℑ (Aw ⊙ exp (−iϕ(Ax)))

∥∥∥∥∥
2

≤ 1 + (2 + ε)δ + (1 + δ)∆∞(ε)

2
∥w∥2

holds. Here c, c′ are some numerical constants. In particular, when σ2 = 0.51 and ε = 0.2, we have ∆(ε) ≤

0.404. With the same probability for all w ∈ Cn with w ⊥ x, we have∥∥∥∥∥
√

2σ2 + 1

m
diag

(
ζ
1/2
σ2 (y)

)
ℑ (Aw ⊙ exp (−iϕ(Ax)))

∥∥∥∥∥
2

≤ 1 + 2.2δ + 0.404(1 + δ)

2
∥w∥2 .

Proof Without loss of generality, let us assume w ∈ CSn−1. For any w ∈ CSn−1 with w ⊥ x, we observe∥∥∥∥∥
√

2σ2 + 1

m
diag

(
ζ
1/2
σ2 (y)

)
ℑ (Aw ⊙ exp (−iϕ(Ax)))

∥∥∥∥∥
2

=

∥∥∥∥∥12
√

2σ2 + 1

m
diag

(
ζ
1/2
σ2 (y)

) [
(Aw)⊙ exp (−iϕ(Ax))− (Aw)⊙ exp (iϕ(Ax))

]∥∥∥∥∥
2

≤ 1

2
|w∗Px⊥MPx⊥w|+ 1

2

∣∣∣∣2σ2 + 1

m
w⊤P⊤x⊥A

⊤ diag (ζσ2(Ax)ψ(Ax))APx⊥w

∣∣∣∣
≤ 1

2
∥E [H]∥ + 1

2
∥H − E [H]∥ + 1

2

∣∣∣∣2σ2 + 1

m
w⊤P⊤x⊥A

⊤ diag (ζσ2(Ax)ψ(Ax))APx⊥w

∣∣∣∣ ,
holds for all w ∈ CSn−1 with w ⊥ x, where M and H are defined in (B.3.2) and (B.3.6), and ψ(t) =

(
t/ |t|

)2.

By Lemma B.30, we know that

∥E [H]∥ = ∥Px⊥∥ ≤ 1. (24.5.2)

By Theorem B.24, we know that for any δ > 0, whenever m ≥ C1δ
−2 ∥Cx∥2 n log4 n, we have

∥H − E [H]∥ ≤ δ,

with probability at least 1 − c1m
−c2 log3 n. Here c1, c2 and C1 are some numerical constants. In addition,

Lemma 24.14 implies that for any δ > 0, when m ≥ C2δ
−2n log4 n for some constant C2 > 0, we have∣∣∣∣2σ2 + 1

m
w⊤P⊤x⊥A

⊤ diag (ζσ2(Ax)ψ(Ax))APx⊥w

∣∣∣∣ ≤ (1 + δ)∆∞(ε) + (1 + ε)δ,

holds with probability at least 1 − 2m−c3 log3 n for some constant c3 > 0. Combining the results above, we
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obtain ∥∥∥∥∥
√

2σ2 + 1

m
diag

(
ζ
1/2
σ2 (y)

)
ℑ (Aw ⊙ exp (−iϕ(Ax)))

∥∥∥∥∥
2

≤ 1 + (2 + ε)δ + (1 + δ)∆∞(ε)

2
.

Finally, by using Lemma 24.15, when σ2 = 0.51 and ε = 0.2, we have∥∥∥∥∥
√

2σ2 + 1

m
diag

(
ζ
1/2
σ2 (y)

)
ℑ (Aw ⊙ exp (−iϕ(Ax)))

∥∥∥∥∥
2

≤ 1 + 2.2δ + 0.404(1 + δ)

2
,

as desired.

Lemma 24.14 For a fixed scalar ε > 0, let ∆∞(ε) be defined as (24.5.1). For any δ > 0, whenever m ≥

Cδ−2n log4 n, with probability at least 1−m−c log3 n for all w ∈ CSn−1 with w ⊥ x, we have∣∣∣∣2σ2 + 1

m
w⊤A⊤ diag (ζσ2(Ax)ψ(Ax))Aw

∣∣∣∣ ≤ (1 + δ)∆∞(ε) + (1 + ε)δ

holds. Here c, C > 0 are some numerical constants.

Proof First, let g = a and let δ ∼ CN (0, I) independent of g, given a small scalar ε > 0, we have∣∣∣∣2σ2 + 1

m
w⊤R[1:n]C

⊤
g diag (ζσ2(g ⊛ x)ψ(g ⊛ x))CgR

⊤
[1:n]w

∣∣∣∣
≤
∣∣∣∣2σ2 + 1

m
w⊤R[1:n]C

⊤
g diag (ζσ2(g ⊛ x)ψ(g ⊛ x)− (1 + ε)Eδ [ψ((g − δ)⊛ x)])CgR

⊤
[1:n]w

∣∣∣∣
+ (1 + ε)

∣∣∣∣2σ2 + 1

m
w⊤R[1:n]C

⊤
g diag (Eδ [ψ((g − δ)⊛ x)])CgR

⊤
[1:n]w

∣∣∣∣
≤ ∆∞(ε)

m

∥∥R[1:n]C
∗
g

∥∥2 + (1 + ε)

∣∣∣∣∣∣∣∣
2σ2 + 1

m
w⊤R[1:n]C

⊤
g diag (Eδ [ψ((g − δ)⊛ x)])CgR

⊤
[1:n]w︸ ︷︷ ︸

D(g,w)

∣∣∣∣∣∣∣∣ .
By Corollary B.13, for any δ > 0, whenever m ≥ C0δ

−2n log4 n for some constant C0 > 0, we have

∥∥R[1:n]C
∗
g

∥∥2 ≤ (1 + δ)m

with probability at least 1−m−c0 log3m for some constant c0 > 0. Next, let us define a decoupled version of

D(g,w),

QDdec(g1, g2,w) =
2σ2 + 1

m
w⊤R[1:n]C

⊤
g1 diag

(
ψ(g2 ⊛ x)

)
Cg1R⊤[1:n]w. (24.5.3)

where g1 = g + δ and g2 = g − δ. Then by using the fact that w ⊥ x, we have

∣∣Eδ

[
QD
dec(g

1, g2,w)
]∣∣ = ∣∣∣∣2σ2 + 1

m
w⊤R[1:n]C

⊤
g diag (Eδ [ψ ((g − δ)⊛ x)])CgR

⊤
[1:n]w

∣∣∣∣ .
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Then for any positive integer p ≥ 1, by Jensen’s inequality and Theorem B.14, we have∥∥∥∥∥ sup
∥w∥=1, w⊥x

|D(g,w)|

∥∥∥∥∥
Lp

≤

∥∥∥∥∥ sup
∥w∥=1

∣∣QDdec(g1, g2,w)
∣∣∥∥∥∥∥
Lp

≤ Cσ2

(√
n

m
log3/2 n log1/2m+

√
n

m

√
p+

n

m
p

)
,

where Cσ2 > 0 is some positive constant depending on σ2, and we used the fact that
∥∥ψ(g2 ⊛ x)

∥∥
∞ ≤ 1

holds uniformly for all g2. Thus, by Lemma B.6, then for any δ > 0, whenever m ≥ C1δ
−2n log3 n logm, we

have

sup
∥w∥=1, w⊥x

|D(g,w)| ≤ δ,

holds with probability at least 1 −m−c1 log3m. Here c1, C1 > 0 are some numerical constants. Combining

the results above, we complete the proof.

24.5.0.1 Bounding ∆∞(ε)

Let us define

h(t) = Es∼N (0,1) [ψ(t+ s)] , (24.5.4)

in this subsection, given σ2 > 1/2, we bound the following quantity

∆∞(ε) =
(
1 + 2σ2

)
∥(1 + ε)h(t)− ζσ2(t)ψ(t)∥L∞ .

with ζσ2(t) = 1− exp
(
− |t|2 /(2σ2)

)
and ψ(t) =

(
t/ |t|

)2. The result is as follows.

Lemma 24.15 Given σ2 = 0.51 and ε = 0.2, we have

∆∞(ε) ≤ 0.404.

Proof First, by Lemma 24.16, notice that the function h(t) can be decomposed as

h(t) = g(t)ψ(t)

where g(t) : C 7→ [0, 1) is rotational invariant with respect to t. Since ζσ2(t) is also rotational invariant with
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Figure 24.1: Computer simulation of the functions ζσ2(t) and h(t). Fig. (a) displays the functions ζσ2(t) and h(t) with
σ2 = 0.51. Fig. (b) shows differences two function ζσ2(t)− (1 + ε)h(t) with ε = 0.2.

respect to t, it is enough to consider the case when t ∈ [0,+∞) , and bounding the following quantity

sup
t∈[0,+∞)

|(1 + ε)h(t)− ζσ2(t)| .

Lemma 24.17 implies that

h(t) = Es∼CN (0,1) [ψ(t+ s)] =


1− t−2 + t−2e−t

2

t > 0,

0 t = 0.

Then if t = 0, then it is obvious that |(1 + ε)h(t)− ζσ2(t)| = 0. For t > 0, when ε = 0.2 and σ2 = 0.51, we

have

ζσ2(t)− (1 + ε)h(t) = −0.2− e− t2

1.02 + 1.2t−2 − 1.2t−2e−t
2

.

Based on the observation of Fig. 24.1, we can prove that ∥ζσ2(t)− (1 + ε)h(t)∥L∞ ≤ 0.2 by a tight approxi-

mation of the function ζσ2(t)− (1 + ε)h(t). Therefore, we have

∆∞(ε) = (1 + 2σ2) ∥ζσ2(t)− (1 + ε)h(t)∥L∞ ≤ 0.2× (1 + 2× 0.51) = 0.404,

when σ2 = 0.51 and ε = 0.2.
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Lemma 24.16 Let ψ(t) =
(
t/ |t|

)2 , then we have

h(t) = Es∼CN (0,1) [ψ(t+ s)] = g(t)ψ(t).

where g(t) : C 7→ [0, 1), such that

g(t) = Ev1,v2∼N (0,1/2)

[
(|t|+ v1)

2 − v22
(|t|+ v1)2 + v22

]
,

where v1 ∼ N (0, 1/2), and v2 ∼ N (0, 1/2).

Proof By definition, we know that

Es∼CN (0,1) [ψ(t+ s)] = Es

[(
t+ s

|t+ s|

)2
]
= Es

[(
t

|t|
t+ s

|t+ s|

)2
]

︸ ︷︷ ︸
g(t)

ψ(t).

Next, we estimate g(t) and show that it is indeed real. We decompose the random variable s as

s = ℜ
(
ts

|t|

)
t

|t|
+ iℑ

(
ts

|t|

)
t

|t|
= v1

t

|t|
+ iv2

t

|t|
,

where v1 = ℜ
(
ts
|t|

)
and v2 = ℑ

(
ts
|t|

)
are the real and imaginary parts of a complex Gaussian variable

ts/ |t| ∼ CN (0, 1). By rotation invariant property, we have v1 ∼ N (0, 1/2) and v2 ∼ N (0, 1/2), and v1 and v2

are independent. Thus, we have

h(t) = Es

[(
|t|+ v1 − iv2
|t+ s|

)2
]
= Es

[
(|t|+ v1)

2 − v22
|t+ s|2

]
− 2iEs

[
(|t|+ v1) v2

|t+ s|2

]

= Ev1,v2

[
(|t|+ v1)

2 − v22
(|t|+ v1)

2
+ v22

]
− 2iEv1,v2

[
(|t|+ v1) v2

(|t|+ v1)
2
+ v22

]
.

We can see that (|t|+v1)v2
(|t|+v1)2+v22

is an odd function of v2. Therefore, the expectation of (|t|+v1)v2
(|t|+v1)2+v22

with respect

to v2 is zero. Thus, we have

g(t) = Es

[(
t

|t|
t+ s

|t+ s|

)2
]
= Ev1,v2∼N (0,1/2)

[
(|t|+ v1)

2 − v22
(|t|+ v1)2 + v22

]
,

which is real.
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Lemma 24.17 For t ∈ [0,+∞), we have

f(t) = Es∼CN (0,1) [ψ(t+ s)] =


1− t−2 + t−2e−t

2

t > 0,

0 t = 0.

(24.5.5)

Proof Let sr = ℜ (s) and si = ℑ (s), and let s = r exp (iθ) with r = |s| and exp (iθ) = s/ |s|. We observe

Es∼CN (0,1) [ψ(t+ s)] =
1

π

∫ +∞

sr=−∞

∫ +∞

si=−∞

(sr + isi)
2

|sr + isi|2
e−|sr+isi−t|2dsrdsi

=
1

π

∫ +∞

r=0

∫ 2π

θ=0

e−i2θe−r
2−t2e2rt cos θrdθdr

=
1

π
e−t

2

∫ +∞

r=0

∫ 2π

θ=0

cos(2θ)re−r
2

e2rt cos θdθdr

=
2

π
e−t

2

∫ +∞

r=0

∫ π

θ=0

cos(2θ)re−r
2

cosh (2rt cos θ) dθdr

=
2

π
e−t

2

∫ +∞

r=0

∫ π/2

θ=0

cos(2θ)re−r
2

[cosh (2rt cos θ)− cosh(2rt sin θ)] dθdr

where the third equality uses the fact that the integral of odd function is zero. By using Taylor expansion

of cosh(x), and by using the dominated convergence theorem to exchange the summation and integration, we

observe

Es∼CN (0,1) [ψ(t+ s)]

=
2

π
e−t

2

∫ +∞

r=0

∫ π

θ=0

cos(2θ)re−r
2
+∞∑
k=0

[
(2rt cos θ)

2k

(2k)!
− (2rt sin θ)

2k

(2k)!

]
dθdr

=
2

π
e−t

2

∫ +∞

r=0

∫ π

θ=0

cos(2θ)

+∞∑
k=0

[
(2t cos θ)

2k
r2k+1e−r

2

(2k)!
− (2t sin θ)

2k
r2k+1e−r

2

(2k)!

]
dθdr

=
2

π
e−t

2
+∞∑
k=0

(2t)2k

(2k)!

∫ +∞

r=0

r2k+1e−r
2

dr

[∫ π

θ=0

cos(2θ) cos2k θdθ −
∫ π

θ=0

cos(2θ) sin2k θdθ

]
.

We have the integrals ∫ +∞

r=0

r2k+1e−r
2

dr =
Γ(k + 1)

2
,∫ π

θ=0

cos(2θ) cos2k θdθ =

√
π

2

kΓ(k + 1/2)

Γ(k + 2)
,∫ π

θ=0

cos(2θ) sin2k θdθ = −
√
π

2

kΓ(k + 1/2)

Γ(k + 2)
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holds for any integer k ≥ 0, where Γ(k) is the Gamma function such that

Γ(k + 1) = k!, Γ(k + 1/2) =
(2k)!

4kk!

√
π.

Thus, for t > 0, we have

Es∼CN (0,1) [ψ(t+ s)] =
2

π
e−t

2
+∞∑
k=0

(2t)2k

(2k)!
× Γ(k + 1)

2
×
√
π
kΓ(k + 1/2)

Γ(k + 2)

= e−t
2
+∞∑
k=0

kt2k

(k + 1)!
= e−t

2

(
+∞∑
k=0

t2k

k!
−

+∞∑
k=0

t2k

(k + 1)!

)

= e−t
2

[
et

2

− t−2
(

+∞∑
k=0

t2k

k!
− 1

)]
= 1− t−2 + t−2e−t

2

.

When t = 0, by using L’Hopital’s rule, we have

η(0) = lim
t→0

Es∼CN (0,1) [ψ(t+ s)] = lim
t→0

[
1 +

1− et2

t2et2

]
= 1 + lim

t→0

−1
1 + t

= 0.
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Part VI

Discussion and Future Directions
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Chapter 25

Future Directions in Broad Perspective

The thesis has been focused on nonconvex optimization methods. In particular, we focused on two prob-

lems: (i) phase retrieval, (ii) sparse subspace learning, where both are of broad interest in signal processing

and machine learning. Chapter II and Chapter V demonstrate that for certain structured random models,

nonconvex problems we can construct a model specialized initialization that is close to the optimal solution,

so that simple and efficient methods provably converge to the global solution. Chapter III and Chapter IV

studies the complete dictionary learning and phase retrieval under more general assumptions, for which the

problems have global geometric structures, that allows efficient and initialization free global optimization.

The theories developed in this thesis laid a solid foundation for studying nonconvex problems of broader

interest. In the following, we discuss about potential directions moving forward.

25.1 Broader Applications of Nonconvex Optimization

The practical benefits of heuristic nonconvex approaches are well-known in industry. However, nonconvex

recovery in practice is still widely viewed as a “dark art”. Shedding light on the global guarantees of non-

convex optimizations will not only have substantial theoretical impacts, but also huge impacts in practice

that we can efficiently cope with much broader classes of signal structures in a near optimal way.

Scientific/computational imaging Computational imaging problems abound in the modern world. Med-

ical imaging (CT, MRI, PET, ultrasound), remote sensing, seismography, non-destructive inspection, digital

photography, astronomy, all involve at their computational core the solution of inverse problems. These prob-
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lems are often ill-posed with missing or only partial observations. Many inverse problems such as Fourier

phase retrieval [GS72, Fie82], their variational formulations are naturally nonconvex. However, most of the

nonconvex methods that have been proposed lack global convergence guarantees and require "tricks" in

order to work well (e.g., careful initialization and continuation procedures), making it hard to trace their

(non)success to the behavior of the optimization algorithm or the (in)adequacy of the objective function. I

believe our new theoretical insights into those problems will advance the practice by enabling design of

better sensing modalities with reduced measurements, and more efficient and guaranteed reconstruction

methods. I would like to work with practitioners from sensing, imaging, and a wide range of application

domains to investigate on nonconvex methods for those problems with global theoretical guarantees and

without careful user interaction.

Deep neural network The success of deep neutral networks in various disciplines is another demonstra-

tion of the power of nonconvex optimization. However, its spectacular success is purely empirical — the non-

convexity and nonlinearity of the networks pose significant challenges for theoretical understanding. The

lack of theoretical guarantee limits its application to scientific discovery, and many other mission-critical

applications. Towards theoretical understanding of deep networks, I would like to: (i) build up our un-

derstanding from shallow networks with generative models – what does the function landscape of simple

two/three layer network look like in high dimensions? how and why does depth (not) create spurious local

minima? (ii) investigate deep network on solving nonlinear inverse problems, where the target functions

and solutions are often mathematically precise – for instance, when and why can(not) deep network solve

Fourier phase retrieval problem, which cannot be solved by traditional optimization methodologies? The

advances would help us provide theoretical guidance of deep networks in broader applications, and shed

light on developing better optimization methods.

25.2 General Methodologies of Nonconvex Modeling and Optimization?

A general framework of nonconvex modeling One of our crucial discoveries is that certain nonconvex

objective functions arising in structured signal recovery have special structures which enable efficient algo-

rithms to find the global optimum. In the context of the sparse vector in a subspace problem and phase

retrieval under random sensing model, this discovery allowed us to break known barriers for convex meth-

ods. This is illustrative of a general phenomena: when the data are large and random, certain seemingly challenging
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nonconvex problems become easy! Inspired by these observations, we aim to attack nonconvex problems falling

in the following form

min
z
Ln(z), s.t. z ∈M, (25.2.1)

whereM is a smooth manifold, Ln(·) :M 7→ R is a random nonconvex function depends on the observed

data {y1, · · · ,yn}, and the function value Ln(z) provides the measure of fitness to the given observation. I

would like to develop a global, geometric, and generic framework for theoretically justifying the correctness of

many other nonconvex learning and inverse/recovery problems in the form of (25.2.1). Correspondingly,

we will develop a corresponding suite of efficient, scalable algorithms which are customized to the special

geometric structure of these problems.

More general properties of nonconvex problems Currently, verifying the ridable saddle properties on

specific problems, based on first and second derivatives, is highly technical. This limits our ability to iden-

tify the benign structure for new nonconvex problems – there is a pressing need for simple analytic tools.

Similar to the study of convex functions, one promising direction is to identify conditions and operations

that preserve the ridable saddle property: our case study on (overcomplete) dictionary learning and ten-

sor decomposition suggests that adding 4-th order random Gaussian polynomials does not create bad local

minima over the sphere – I believe this observation could lead to the discovery of a much more general

phenomena.

Furthermore, the computational challenges of globally solving many other nonconvex problems (i.e.,

deep neutral network and Fourier phase retrieval) cannot be dealt with using strict saddle property. Those

problems can have much more complicated landscapes due to their rich inherent symmetry. Studying and

understanding symmetries in those problems would potentially provide theoretical insight of solving those

problems globally.



CHAPTER 26. POTENTIAL PROBLEMS OF PARTICULAR INTEREST 167

Chapter 26

Potential Problems of Particular Interest

In this chapter, we will discuss about several problems that could be of immediate interest and possible

extensions of the thesis. We will discuss about several problems whose optimization objective could be

(locally) ridable saddle function, which is conjectured with strong numerical evidence.

26.1 Convolutional Dictionary Learning

Given the data y ∈ Rm, the convolutional dictionary learning (CDL) problem is to seek a compact represen-

tation of the data in the following form

y =

N∑
k=1

a0k ⊛ x0k, {a0k}Nk=1 convolution kernel, {x0k}Nk=1 sparse spike train,

where ⊛ denotes the circulant convolution of a0k ∈ Rn0 and x0k ∈ Rm, and both {a0k}Nk=1 and {x0k}Nk=1 are

unknown. This problem can be thought as a more general problem of blind deconvolution [ZLK+17], and it

appears in many applications of signal processing, astronomy, and computational imaging, etc. For example,

the spike sorting problem, which is a crucial step to extract information from extracellular recordings in

neural science, can naturally formulated as the CDL problem [SFB18]. Motivated by these applications, we

assume the spike trains {x0k}Nk=1 are sparse, and {a0k}Nk=1 to be short kernels (i.e.,n0 ≪ m) and satisfies the

following incoherent conditions

• Shift incoherence for each kernel a0k: The first assumption is that distinct self-shifts of a0k have small

inner product for each 1 ≤ k ≤ N . For each kernel a0k (1 ≤ k ≤ N ), we define the shift coherence of
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a0k to be the largest inner product between distinct self-shifts:

µs(a0k)
.
= max

ℓ
|⟨a0k, sℓ [a0k]⟩| .

The quantity µs(a0k) ∈ [0, 1].

• Incoherence between kernels {a0k}mk=1: Moreover, we also assume that all the shifts of different ker-

nels a0i and a0j has small correlation. Let A0 = [a01,a02, · · · ,a0N ], we define the incoherence

µd(A0) = max
1≤i,j≤N,i ̸=j

∥∥C∗a0i
a0j

∥∥
∞ .

Thus, our problem of interest can be stated as follows.

Problem 26.1 Given the convolutional measurement y =
∑N
k=1 a0k⊛x0k ∈ Rm, with the kernels {a0k}Nk=1 ∈

Rn0 and representations {x0k}Nk=1 ∈ Rm sparse, recover {a0k}Nk=1 ∈ Rn0 and {x0k}Nk=1 ∈ Rm.

The problem is notoriously difficult to solve, due to its intrinsic symmetries, which can be classified into

three categories,

• scale symmetry: It is obvious that the solution of CDL can only be optimal up to scale ambiguity:

suppose {a⋆0k}
N
k=1 and {x⋆0k}

N
k=1 are optimal solutions, then for any {αk}Nk=1 ̸= 0,

{
1
αk

a⋆0k

}N
k=1

and

{αkx⋆0k}
N
k=1 are also equivalent optimal solutions. We assume ∥a0k∥ = 1 to reduce the scale ambigui-

ties to sign ambiguities.

• shift symmetry: Let sℓ [·] denote the cyclic shift of a signal of length ℓ. Obviously, we have sℓ [a0k] ⊛

s−ℓ [x0k] = a0k ⊛ x0k, so we can only hope to find the solutions up to shift ambiguities.

• permutation symmetry of {a0k}Nk=1. Changing the order of a0k does not change the solution.

Therefore, we can only hope to solve this problem up to scaling, shift and permutation symmetries. To count

for all shifts of a0k, we consider optimization variables Ã of longer length n = 3n0 − 2. Let

ak =


0n0−1

a0k

0n0−1

 ∈ Sn−1, A =

[
a1 a2 · · · aN

]
, (26.1.1)

then we are hoping to recover A up to permutation. The problem can be naturally casted as

min
Ã,X

ΦNL

(
Ã,X

)
=

1

2

∥∥∥∥∥y −
N∑
k=1

ãk ⊛ xk

∥∥∥∥∥
2

+ λ

N∑
k=1

∥xk∥1 , s.t. ãk ∈ Sn−1,
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where we minimize the least squares loss plus a sparsity promoting penalty for X , and λ > 0 is a scalar.

We constrain the kernels {ãk}mk=1 over the spheres (the oblique manifold) to reduce the scale ambiguities.

The problem is bilinear in Ã and X , and the constraint ãk ∈ Sn−1 is nonconvex, so the overall problem is

nonconvex. Nonetheless, simple alternating minimization methods have shown empirical success in many

applications [GCW17]. However, as the lasso formulation for xk does not have closed-form solution, it

makes the marginalized function

φNL

(
Ã
)
= min

X

1

2

∥∥∥∥∥y −
N∑
k=1

ãk ⊛ xk

∥∥∥∥∥
2

+ λ

N∑
k=1

∥xk∥1 ,

very difficult to analyze. By our incoherence assumption of ak with small incoherence parameter µ, the

quadratic term approximately equals to∥∥∥∥∥y −
N∑
k=1

ãk ⊛ xk

∥∥∥∥∥
2

= ∥y∥2 − 2

⟨
y,

N∑
k=1

ãk ⊛ xk

⟩
+

∥∥∥∥∥
N∑
k=1

ãk ⊛ xk

∥∥∥∥∥
2

≈ ∥y∥2 − 2

⟨
y,

N∑
k=1

ãk ⊛ xk

⟩
+

N∑
k=1

x∗kC
∗
ιn→mãk

Cιn→mãk︸ ︷︷ ︸
≈I

xk

≈ ∥y∥2 − 2

⟨
y,

N∑
k=1

ãk ⊛ xk

⟩
+

N∑
k=1

∥xk∥2 .

Therefore, we could consider a variant of the lasso formulation,

ΦNDQ

(
Ã,X

)
=

1

2
∥y∥2 −

⟨
y,

N∑
k=1

ãk ⊛ xk

⟩
+

1

2

N∑
k=1

∥xk∥2 + λ

N∑
k=1

∥xk∥1 ,

=
1

2
∥y∥2 +

N∑
k=1

(
1

2
∥xk∥2 − ⟨y, ãk ⊛ xk⟩+ λ ∥xk∥1

)
,

which we call it the drop quadratic (DQ) loss. we have closed-form solutions for X with Ã fixed,

x⋆k = argmin
xk

Φ̃DQ(Ã,X) = Sλ {(Rnak)⊛ y} .

Plugging x⋆k back, we could obtain the marginalized objective function of ak as

φNDQ

(
Ã
)

=
1

2
∥y∥2 − 1

2

N∑
k=1

∥Sλ [(Rnãk)⊛ y]∥2 . (26.1.2)

However, the drop quadratic loss decouples the dependence of {ak}Nk=1 across k. If we minimize the ob-

jective over the oblique manifold, we could obtain multiple duplicate solutions for the kernels. Instead, we

could consider finding all the kernels one by one using a deflation approach. As observed from (26.1.2), the
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objective function φDQ(Ã) is decoupled with respect to {ak}Nk=1, we can try to find the kernels {ak}Nk=1 one

by one via minimizing

φDQ(a)
.
=

1

2
∥y∥2 − 1

2
∥Sλ [C∗ay]∥

2
, a ∈ Sn−1 (26.1.3)

The optimal solution a⋆ = argmina φDQ(a) produces an approximation of one of those {ak}Kk=1. Using the

approximation, we solve a lasso problem

min
x

F (x) =
1

2
∥y − a⋆ ⊛ x∥2︸ ︷︷ ︸

f(x)

+λ ∥x∥1︸ ︷︷ ︸
g(x)

to find the corresponding x⋆. After subtracting y by a⋆ ⊛ x⋆, i.e.,

y ← y − a⋆ ⊛ x⋆,

we repeat the whole process until all {ak}Nk=1 and {xk}Nk=1 are recovered. Our premature analysis implies

that the objective function (26.1.3) is a ridable saddle function over a local portion on the sphere, which

implies that we could find an approximate solution of one of the kernels with efficient methods.

Last but not least, it should be noticed that our numerical simulations implies that the quadratic-free

approximation provides a problem formulation amenable to analysis, but at a significant trade-off to statis-

tical efficiency. Specifically, for N = 1, solving a typical drop quadratic problem to high statistical precision

would require

n ≥ Ω(105), m ≥ Ω(107), θ ≤ n−0.5,

while for bilinear lasso the optimal solution can be reliably recovered with problem size as small as

n ∼ O(1), m ≥ Ω(102), θ ≤ n−0.5.

Given advantage of the statistical efficiency, it would be interesting of how to directly analyze the original

bilinear formulation .

26.2 Overcomplete Dictionary Learning/Tensor Decomposition

Overcomplete tensor decomposition. Another nonconvex problem of great interest in theoretical com-

puter science is the overcomplete tensor decomposition problem. For example, consider decomposing a
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Figure 26.1: Function landscape of φ(q) (left) and φ(q) (right) over the sphere S2, with preconditioned A ∈ R3×4.

4-th order tensor T of rank m in the following form,

T =

m∑
k=1

ak ⊗ ak ⊗ ak ⊗ ak,

where ak ∈ Rn are the true components. We are interested in the overcomplete regime where the number

of components m ≫ n. Suppose we are given all the entries of the tensor T , our goal is to recover all the

components {ak}mk=1. Previously, Ge et al. [GHJY15] show that for the orthogonal case where n ≤ m and

all the ak are orthogonal, the objective function φ(q) have only 2m local minima that are approximately the

true components. However, the technique heavily uses the orthogonality of the components and is not gen-

eralizable to the overcomplete case. The overcomplete setting is much more challenging, but it is crucial for

unsupervised learning applications where the hidden representations have higher dimension than the data

[DLCC07, KB09, AGMM15, AGJ15]. Previous algorithmic results either require access to high order tensors

[BCMV14, GVX14], or use complicated techniques such as FOOBI [DLCC07] or sum-of-squares relaxation

[BKS15, GM15, HSSS16, MSS16, SS17], whose computational complexity is quasi-polynomial. Instead, we

could directly analyze the following non-convex objective

minφ(q)
.
= −T (q, q, q, q) = −

∥∥A⊤q∥∥4
4
, s.t. ∥q∥ = 1, (26.2.1)

where A =
[
a⊤1 , · · · ,a⊤m

]
. Empirically, under proper assumptions of ak, (Riemannian) gradient decent of

φ(q) with random initialization finds one of the solution even ifm is significantly larger than n. In the litera-

ture, the local geometry for the over-complete case around the true components is known: in a small neigh-
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borhood of each component, the function is strongly convex and there is a unique local minima [AGJ14a]. Ge

and Ma [GM17] further expand the “nice” region by showing that there is no spurious local minima when-

ever the objective is a little bit smaller than its expected value. However, the size of the enlarged region

they characterize decreases exponentially as data dimension increases. It remains a major open question

whether there are any other spurious local minima over the rest of the sphere. Based on extensive simula-

tions and function landscape in low dimension (Fig. 26.1), our conjecture is that when A is i.i.d. Gaussian,

the function is ridable saddle and there is no spurious local minimizer over the sphere.

Overcomplete dictionary learning. Another important problem is the overcomplete dictionary learning,

which has many applications in signal processing and machine learning [Ela10, MBP14]. Given the under-

lying generative model of the observed data Y ,

Y = AX, A ∈ Rn×m, X ∈ Rm×p,

where A is called the dictionary and X is the sparse code, the problem of dictionary learning is to find the

underlying dictionary A from Y . When the dictionary A is complete (i.e., square and nonsingular), the row

space of Y equals to the row space of X (i.e., row(Y ) = row(X)). As discussed in this thesis, the dictionary

learning problem is equivalent to finding the sparsest vector in the subspace S = row(Y ) [SWW12b, QSW14,

DH14]. Let h(·) be a sparse promoting function, Chapter xx in this thesis reveals that the nonconvex problem

min
q

h(q⊤Y ), s.t. ∥q∥ = 1,

has no spurious local minima, and every the local minima corresponds to an approximation of one row of

X . The new discovery has lead to the development of efficient optimization methods [SQW15c]. Recently,

[SS17] proposed a spectral method for dictionary learning based on sum of squares relaxation. However, all

of these methods exploit the fact that row(Y ) = row(X) when A is complete, and it cannot be generalized

to the overcomplete setting m > n.

In this work, we are interested in the case when A is overcomplete m ≫ n. Instead of recovering rows

of X , we seek to find the columns of A by solving the following nonconvex objective,

min
q
φ(q) = − 1

4m

∥∥q⊤Y ∥∥4
4
, s.t. ∥q∥ = 1. (26.2.2)

We show that under proper random assumptions of A and X , the optimal solution of φ(q) corresponds

to one column of A, and the objective function has no spurious local minima. More specifically, when
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AA⊤ ≈ I and assume that X is Bernoulli-Gaussian, we can show that

EX [φ(q)] ≈ c1φ(q) + c2,

where c1 and c2 are some numerical constants. This implies that, with respect to the randomness of X , the

expectation of optimization landscapeφ(q) of the overcomplete dictionary learning can be reduced to that of

the overcomplete tensor decomposition. Therefore, if the conjecture that the overcomplete tensor problem

is ridable, one can expect a similar benign geometric structure for overcomplete dictionary problem by an

expectation-concentration type analysis.
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Appendix A

Auxillary Results for Finding a Sparse

Vector in a Subspace

A.1 Technical Tools and Preliminaries

In this appendix, we record several lemmas that are useful for our analysis.

Lemma A.1 Let ψ(x) and Ψ(x) to denote the probability density function (pdf) and the cumulative distribution

function (cdf) for the standard normal distribution:

(Standard Normal pdf) ψ(x) =
1√
2π

exp

{
−x

2

2

}
(Standard Normal cdf) Ψ(x) =

1√
2π

∫ x

−∞
exp

{
− t

2

2

}
dt,

Suppose a random variable X ∼ N(0, σ2), with the pdf fσ(x) = 1
σψ
(
x
σ

)
, then for any t2 > t1 we have∫ t2

t1

fσ(x)dx = Ψ
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σ
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−Ψ
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− σ

[
t2ψ

(
t2
σ

)
− t1ψ

(
t1
σ

)]
.
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Lemma A.2 (Taylor Expansion of Standard Gaussian cdf and pdf ) Assume ψ(x) and Ψ(x) be defined as

above. There exists some universal constant Cψ > 0 such that for any x0, x ∈ R,

|ψ(x)− [ψ(x0)− x0ψ (x0) (x− x0)]| ≤ Cψ(x− x0)2,

|Ψ(x)− [Ψ(x0) + ψ(x0)(x− x0)]| ≤ Cψ(x− x0)2.

Lemma A.3 (Matrix Induced Norms) For any matrix A ∈ Rp×n, the induced matrix norm from ℓp → ℓq is

defined as

∥A∥ℓp→ℓq
.
= sup
∥x∥p=1

∥Ax∥q .

In particular, let A = [a1, · · · ,an] =
[
a1, · · · ,ap

]⊤ , we have

∥A∥ℓ2→ℓ1 = sup
∥x∥=1

p∑
k=1

∣∣a⊤k x∣∣ , ∥A∥ℓ2→ℓ∞ = max
1≤k≤p

∥∥ak∥∥ ,
∥AB∥ℓp→ℓr ≤ ∥A∥ℓq→ℓr ∥B∥ℓp→ℓq ,

and B is any matrix of size compatible with A.

Lemma A.4 (Moments of the Gaussian Random Variable) IfX ∼ N
(
0, σ2

X

)
, then it holds for all integer

m ≥ 1 that

E|X|m = σmX (m− 1)!!

[√
2

π
1m=2k+1 + 1m=2k

]
≤ σmX (m− 1)!!, k = ⌊m/2⌋.

Lemma A.5 (Moments of the χ Random Variable) If X ∼ χ (n), i.e., X = ∥x∥ for x ∼ N (0, I), then it

holds for all integer m ≥ 1 that

EXm = 2m/2
Γ (m/2 + n/2)

Γ (n/2)
≤ m!! nm/2.

Lemma A.6 (Moments of the χ2 Random Variable) IfX ∼ χ2 (n), i.e.,X = ∥x∥2 for x ∼ N (0, I), then

it holds for all integer m ≥ 1 that

EXm = 2m
Γ (m+ n/2)

Γ (n/2)
=

m∏
k=1

(n+ 2k − 2) ≤ m!

2
(2n)m.
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Lemma A.7 (Moment-Control Bernstein’s Inequality for Random Variables [FR13]) LetX1, . . . , Xp be

i.i.d. real-valued random variables. Suppose that there exist some positive numbers R and σ2
X such that

E|Xk|m ≤
m!

2
σ2
XR

m−2, for all integers m ≥ 2.

Let S .
= 1

p

∑p
k=1Xk, then for all t > 0, it holds that

P|S − ES| ≥ t ≤ 2 exp

(
− pt2

2σ2
X + 2Rt

)
.

Lemma A.8 (Moment-Control Bernstein’s Inequality for Random Vectors [SQW15a]) Letx1, . . . ,xp ∈

Rd be i.i.d. random vectors. Suppose there exist some positive number R and σ2
X such that

E [∥xk∥m] ≤ m!

2
σ2
XR

m−2, for all integers m ≥ 2.

Let s = 1
p

∑p
k=1 xk, then for any t > 0, it holds that

P [∥s− E [s]∥ ≥ t] ≤ 2(d+ 1) exp

(
− pt2

2σ2
X + 2Rt

)
.

Lemma A.9 (Gaussian Concentration Inequality) Let x ∼ N (0, Ip). Let f : Rp 7→ R be an L-Lipschitz

function. Then we have for all t > 0 that

P [f(X)− Ef(X) ≥ t] ≤ exp

(
− t2

2L2

)
.

Lemma A.10 (Bounding Maximum Norm of Gaussian Vector Sequence) Letx1, . . . ,xn1
be a sequence

of (not necessarily independent) standard Gaussian vectors in Rn2 . It holds that

Pmax
i∈[n1]

∥xi∥ >
√
n2 + 2

√
2 log(2n1) ≤ (2n1)

−3.

Proof Since the function ∥·∥ is 1-Lipschitz, by Gaussian concentration inequality, for any i ∈ [n1], we have

P∥xi∥ −
√
E ∥xi∥2 > t ≤ P∥xi∥ − E ∥xi∥ > t ≤ exp

(
− t

2

2

)
for all t > 0. Since E ∥xi∥2 = n2, by a simple union bound, we obtain

Pmax
i∈[n1]

∥xi∥>
√
n2 + t ≤ exp

(
− t

2

2
+ log n1

)
for all t > 0. Taking t = 2

√
2 log(2n1) gives the claimed result.
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Corollary A.11 Let Φ ∈ Rn1×n2 ∼i.i.d. N (0, 1). It holds that

∥Φx∥∞ ≤
(√

n2 + 2
√

2 log(2n1)
)
∥x∥ for all x ∈ Rn2 ,

with probability at least 1− (2n1)
−3.

Proof Let Φ =
[
ϕ1, · · · ,ϕn1

]⊤ . Without loss of generality, let us only consider x ∈ Sn2−1, we have

∥Φx∥∞ = max
i∈[n1]

∣∣x⊤ϕi∣∣ ≤ max
i∈[n1]

∥∥ϕi∥∥ . (A.1.1)

Invoking Lemma A.10 returns the claimed result.

Lemma A.12 (Covering Number of a Unit Sphere [Ver10]) Let Sn−1 = {x ∈ Rn | ∥x∥ = 1} be the unit

sphere. For any ε ∈ (0, 1), there exists some ε cover of Sn−1 w.r.t. the ℓ2 norm, denoted as Nε, such that

|Nε| ≤
(
1 +

2

ε

)n
≤
(
3

ε

)n
.

Lemma A.13 (Spectrum of Gaussian Matrices, [Ver10]) Let Φ ∈ Rn1×n2 (n1 > n2) contain i.i.d. stan-

dard normal entries. Then for every t ≥ 0, with probability at least 1− 2 exp
(
−t2/2

)
, one has

√
n1 −

√
n2 − t ≤ σmin(Φ) ≤ σmax(Φ) ≤

√
n1 +

√
n2 + t.

Lemma A.14 For any ε ∈ (0, 1), there exists a constant C (ε) > 1, such that provided n1 > C (ε)n2, the

random matrix Φ ∈ Rn1×n2 ∼i.i.d. N (0, 1) obeys

(1− ε)
√

2

π
n1 ∥x∥ ≤ ∥Φx∥1 ≤ (1 + ε)

√
2

π
n1 ∥x∥ for all x ∈ Rn2 ,

with probability at least 1− 2 exp (−c (ε)n1) for some c (ε) > 0.

Geometrically, this lemma roughly corresponds to the well known almost spherical section theorem [FLM77,

GG84], see also [GM03]. A slight variant of this version has been proved in [Don06], borrowing ideas

from [Pis99].

Proof By homogeneity, it is enough to show that the bounds hold for every x of unit ℓ2 norm. For a fixed

x0 with ∥x0∥ = 1, Φx0 ∼ N (0, I). So E ∥Φx∥1 =
√

2
πn1. Note that ∥·∥1 is √n1-Lipschitz, by concentration

of measure for Gaussian vectors in Lemma A.9, we have

P|∥Φx∥1 − E∥Φx∥1| > t ≤ 2 exp

(
− t2

2n1

)
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for any t > 0. For a fixed δ ∈ (0, 1), Sn2−1 can be covered by a δ-net Nδ with cardinality #Nδ ≤ (1 + 2/δ)
n2 .

Now consider the event

E .
=

{
(1− δ)

√
2

π
n1 ≤ ∥Φx∥1 ≤ (1 + δ)

√
2

π
n1 ∀ x ∈ Nδ

}
.

A simple application of union bound yields

PEc ≤ 2 exp

(
−δ

2n1
π

+ n2 log

(
1 +

2

δ

))
.

Choosing δ small enough such that

(1− 3δ) (1− δ)−1 ≥ 1− ε and (1 + δ) (1− δ)−1 ≤ 1 + ε,

then conditioned on E , we can conclude that

(1− ε)
√

2

π
n1 ≤ ∥Φx∥1 ≤ (1 + ε)

√
2

π
n1 ∀ x ∈ Sn2−1.

Indeed, suppose E holds. Then it can easily be seen that any z ∈ Sn2−1 can be written as

z =

∞∑
k=0

λkxk, with |λk| ≤ δk,xk ∈ Nδ for all k.

Hence we have

∥Φz∥1 =

∥∥∥∥∥Φ
∞∑
k=0

λkxk

∥∥∥∥∥
1

≤
∞∑
k=0

δk ∥Φxk∥1 ≤ (1 + δ) (1− δ)−1
√

2

π
n1.

Similarly,

∥Φz∥1 =

∥∥∥∥∥Φ
∞∑
k=0

λkxk

∥∥∥∥∥
1

≥
[
1− δ − δ (1 + δ) (1− δ)−1

]√ 2

π
n1 = (1− 3δ) (1− δ)−1

√
2

π
n1.

Hence, the choice of δ above leads to the claimed result. Finally, given n1 > Cn2, to make the probability

PEc decaying in n1, it is enough to set C = 2π
δ2 log

(
1 + 2

δ

)
. This completes the proof.

A.2 The Random Basis vs. Its Orthonormalized Version

In this appendix, we consider the planted sparse model

Y = [x0 | g1 | · · · | gn−1] = [x0 | G] ∈ Rp×n
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as defined in (3.0.5), where

x0(k) ∼i.i.d.
1√
θp

Ber (θ) , gℓ ∼i.i.d. N
(
0,

1

p
I

)
, 1 ≤ k ≤ p, 1 ≤ ℓ ≤ n− 1. (A.2.1)

Recall that one “natural/canonical” orthonormal basis for the subspace spanned by columns of Y is

Y =

[
x0

∥x0∥
| Px⊥

0
G
(
G⊤Px⊥

0
G
)−1/2]

,

which is well-defined with high probability asPx⊥
0
G is well-conditioned (proved in Lemma A.16). We write

G′
.
= Px⊥

0
G
(
G⊤Px⊥

0
G
)−1/2

(A.2.2)

for convenience. When p is large, Y has nearly orthonormal columns, and so we expect that Y closely

approximates Y . In this section, we make this intuition rigorous. We prove several results that are needed

for the proof of Theorem 2.1, and for translating results for Y to results for Y in Section 7.3.4.

For any realization of x0, let I = supp(x0) = {i | x0(i) ̸= 0}. By Bernstein’s inequality in Lemma A.7

with σ2
X = 2θ and R = 1, the event

E0
.
=

{
1

2
θp ≤ |I| ≤ 2θp

}
(A.2.3)

holds with probability at least 1− 2 exp (−θp/16). Moreover, we show the following:

Lemma A.15 When p ≥ Cn and θ > 1/
√
n, the bound∣∣∣∣1− 1

∥x0∥

∣∣∣∣ ≤ 4
√
2

5

√
n log p

θ2p
(A.2.4)

holds with probability at least 1− cp−2. Here C, c are positive constants.

Proof Because E∥x0∥2 = 1, by Bernstein’s inequality in Lemma A.7 with σ2
X = 2/(θp2) and R = 1/(θp), we

have

P
∣∣∣∥x0∥2 − E∥x0∥2

∣∣∣ > t = P
∣∣∣∥x0∥2 − 1

∣∣∣ > t ≤ 2 exp

(
− θpt2

4 + 2t

)
for all t > 0, which implies

P|∥x0∥ − 1| > t

∥x0∥ + 1
= P|∥x0∥ − 1| (∥x0∥ + 1) > t ≤ 2 exp

(
− θpt2

4 + 2t

)
.
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On the intersection with E0, ∥x0∥ + 1 ≥ 1√
2
+ 1 ≥ 5/4 and setting t =

√
n log p
θ2p , we obtain

P|∥x0∥ − 1| ≥ 4

5

√
n log p

θ2p

∣∣∣ E0 ≤ 2 exp
(
−
√
np log p

)
.

Unconditionally, this implies that with probability at least 1− 2 exp (−pθ/16)− 2 exp
(
−
√
np log p

)
, we have

∣∣∣∣1− 1

∥x0∥

∣∣∣∣ = |1− ∥x0∥|
∥x0∥

≤ 4
√
2

5

√
n log p

θ2p
,

as desired.

Let M .
=
(
G⊤Px⊥

0
G
)−1/2

. Then G′ = GM − x0x
⊤
0

∥x0∥2
GM . We show the following results hold:

Lemma A.16 Provided p ≥ Cn, it holds that

∥M∥≤ 2, ∥M − I∥≤ 4

√
n

p
+ 4

√
log(2p)

p

with probability at least 1− (2p)−2. Here C is a positive constant.

Proof First observe that

∥M∥=
(
σmin

(
G⊤Px⊥

0
G
))−1/2

= σ−1min

(
Px⊥

0
G
)
.

Now suppose B is an orthonormal basis spanning x⊥0 . Then it is not hard to see the spectrum of Px⊥
0
G is

the same as that of B⊤G ∈ R(p−1)×(n−1); in particular,

σmin

(
Px⊥

0
G
)
= σmin

(
B⊤G

)
.

Since each entry of G ∼i.i.d. N
(
0, 1p

)
, and B⊤ has orthonormal rows, B⊤G ∼i.i.d. N

(
0, 1p

)
, we can invoke

the spectrum results for Gaussian matrices in Lemma A.13 and obtain that√
p− 1

p
−
√
n− 1

p
− 2

√
log (2p)

p
≤ σmin

(
B⊤G

)
≤ σmax

(
B⊤G

)
≤
√
p− 1

p
+

√
n− 1

p
+ 2

√
log(2p)

p

with probability at least 1 − (2p)−2. Thus, when p ≥ C1n for some sufficiently large constant C1, by using

the results above we have

∥M∥ = σ−1min

(
B⊤G

)
=

(√
p− 1

p
−
√
n− 1

p
− 2

√
log (2p)

p

)−1
≤ 2,

∥I −M∥ = max (|σmax (M)− 1| , |σmin (M)− 1|)

= max
(∣∣σ−1min

(
B⊤G

)
− 1
∣∣ , ∣∣σ−1max

(
B⊤G

)
− 1
∣∣)
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≤ max


(√

p− 1

p
−
√
n− 1

p
− 2

√
log (2p)

p

)−1
− 1, 1−

(√
p− 1

p
+

√
n− 1

p
+ 2

√
log(2p)

p

)−1
= max


(
1−

√
p− 1

p
+

√
n− 1

p
+ 2

√
log (2p)

p

)(√
p− 1

p
−
√
n− 1

p
− 2

√
log (2p)

p

)−1
,

(√
p− 1

p
− 1 +

√
n− 1

p
+ 2

√
log(2p)

p

)(√
p− 1

p
+

√
n− 1

p
+ 2

√
log(2p)

p

)−1
≤ 2

(
1−

√
p− 1

p
+

√
n− 1

p
+ 2

√
log (2p)

p

)

≤ 4

√
n

p
+ 4

√
log(2p)

p
,

with probability at least 1− (2p)−2.

Lemma A.17 Let YI be a submatrix of Y whose rows are indexed by the set I. There exists a constant C > 0,

such that when p ≥ Cn and 1/2 > θ > 1/
√
n, the following

∥∥Y ∥∥
ℓ2→ℓ1 ≤ 3

√
p,

∥YI∥ℓ2→ℓ1 ≤ 7
√
2θp,

∥G−G′∥ℓ2→ℓ1 ≤ 4
√
n+ 7

√
log(2p),∥∥Y I − YI

∥∥
ℓ2→ℓ1 ≤ 20

√
n log p

θ
,

∥∥Y − Y
∥∥
ℓ2→ℓ1 ≤ 20

√
n log p

θ

hold simultaneously with probability at least 1− cp−2 for a positive constant c.

Proof First of all, we have∥∥∥∥∥x0x
⊤
0

∥x0∥2
GM

∥∥∥∥∥
ℓ2→ℓ1

≤ 1

∥x0∥2
∥x0∥ℓ2→ℓ1

∥∥x⊤0 GM
∥∥
ℓ2→ℓ2 =

2

∥x0∥2
∥x0∥1

∥∥x⊤0 G∥∥ ,
where in the last inequality we have applied the fact ∥M∥ ≤ 2 from Lemma A.16. Nowx⊤0 G is an i.i.d. Gaus-

sian vectors with each entry distributed as N
(
0,
∥x0∥2
p

)
, where ∥x0∥2 = |I|

θp . So by Gaussian concentration

inequality in Lemma A.9, we have

∥∥x⊤0 G∥∥ ≤ 2 ∥x0∥

√
log(2p)

p
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with probability at least 1− c1p−2. On the intersection with E0, this implies∥∥∥∥∥x0x
⊤
0

∥x0∥2
GM

∥∥∥∥∥
ℓ2→ℓ1

≤ 2
√
2θ log(2p),

with probability at least 1 − c2p−2 provided θ > 1/
√
n. Moreover, when intersected with E0, Lemma A.14

implies that when p ≥ C1n,

∥G∥ℓ2→ℓ1 ≤
√
p, ∥GI∥ℓ2→ℓ1 ≤

√
2θp

with probability at least 1− c3p−2 provided θ > 1/
√
n. Hence, by Lemma A.16, when p > C2n,

∥G−G′∥ℓ2→ℓ1 ≤ ∥G∥ℓ2→ℓ1 ∥I −M∥ +

∥∥∥∥∥x0x
⊤
0

∥x0∥2
GM

∥∥∥∥∥
ℓ2→ℓ1

≤ √p

(
4

√
n

p
+ 4

√
log(2p)

p

)
+ 2
√
2θ log(2p) ≤ 4

√
n+ 7

√
log(2p),

∥∥Y ∥∥
ℓ2→ℓ1 ≤ ∥x0∥ℓ2→ℓ1 + ∥G∥ℓ2→ℓ1 ≤ ∥x0∥1 +

√
p ≤ 2

√
θp+

√
p ≤ 3

√
p,

∥G′I∥ℓ2→ℓ1 ≤ ∥GI∥ℓ2→ℓ1 ∥M∥ +

∥∥∥∥∥x0x
⊤
0

∥x0∥2
GM

∥∥∥∥∥
ℓ2→ℓ1

≤ 2
√

2θp+ 2
√

2θ log(2p) ≤ 4
√

2θp,

∥GI −G′I∥ℓ2→ℓ1 ≤ ∥GI∥ℓ2→ℓ1 ∥I −M∥ +

∥∥∥∥∥x0x
⊤
0

∥x0∥2
GM

∥∥∥∥∥
ℓ2→ℓ1

≤
√

2θp

(
4

√
n

p
+ 4

√
log(2p)

p

)
+ 2
√
2θ log(2p) ≤ 4

√
2θn+ 6

√
2θ log(2p),

∥YI∥ℓ2→ℓ1 ≤
∥∥∥∥ x0

∥x0∥

∥∥∥∥
ℓ2→ℓ1

+ ∥G′I∥ℓ2→ℓ1 ≤
∥x0∥1
∥x0∥

+ 6
√

2θp ≤ 7
√

2θp

with probability at least 1 − c4p−2 provided θ > 1/
√
n. Finally, by Lemma A.15 and the results above, we

obtain

∥∥Y − Y
∥∥
ℓ2→ℓ1 ≤

∣∣∣∣1− 1

∥x0∥

∣∣∣∣ ∥x0∥1 + ∥G−G′∥ℓ2→ℓ1 ≤ 20

√
n log p

θ
,

∥∥Y I − YI
∥∥
ℓ2→ℓ1 ≤

∣∣∣∣1− 1

∥x0∥

∣∣∣∣ ∥x0∥1 + ∥GI −G′I∥ℓ2→ℓ1 ≤ 20

√
n log p

θ
,

holding with probability at least 1− c5p−2.

Lemma A.18 Provided p ≥ Cn and θ > 1/
√
n, the following

∥G′∥ℓ2→ℓ∞ ≤ 2

√
n

p
+ 8

√
2 log(2p)

p
,
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∥G−G′∥ℓ2→ℓ∞ ≤
4n

p
+

8
√
2 log(2p)

p
+

21
√
n log(2p)

p

hold simultaneously with probability at least 1− cp−2 for some constant c > 0.

Proof First of all, we have when p ≥ C1n, it holds with probability at least 1− c2p−2 that∥∥∥∥∥x0x
⊤
0

∥x0∥2
GM

∥∥∥∥∥
ℓ2→ℓ∞

≤ 1

∥x0∥2
∥x0∥ℓ2→ℓ∞

∥∥x⊤0 GM
∥∥
ℓ2→ℓ2 ≤

2

∥x0∥2
∥x0∥∞

∥∥x⊤0 G∥∥ ,
where at the last inequality we have applied the fact ∥M∥ ≤ 2 from Lemma A.16. Moreover, from proof

of Lemma A.17, we know that
∥∥x⊤0 G∥∥ ≤ 2

√
log(2p)/p ∥x0∥ with probability at least 1 − c3p−2 provided

p ≥ C4n. Therefore, conditioned on E0, we obtain that∥∥∥∥∥x0x
⊤
0

∥x0∥2
GM

∥∥∥∥∥
ℓ2→ℓ∞

≤
4 ∥x0∥∞
∥x0∥

√
log(2p)

p
≤

4
√

2 log(2p)√
θp

holds with probability at least 1− c5p−2 provided θ > 1/
√
n. Now by Corollary A.11, we have that

∥G∥ℓ2→ℓ∞ ≤
√
n

p
+ 2

√
2 log(2p)

p

with probability at least 1 − c6p
−2. Combining the above estimates and Lemma A.16, we have that with

probability at least 1− c7p−2

∥G′∥ℓ2→ℓ∞ ≤ ∥GM∥ℓ2→ℓ∞ +

∥∥∥∥∥x0x
⊤
0

∥x0∥2
GM

∥∥∥∥∥
ℓ2→ℓ∞

≤ ∥G∥ℓ2→ℓ∞ ∥M∥ +

∥∥∥∥∥x0x
⊤
0

∥x0∥2
GM

∥∥∥∥∥
ℓ2→ℓ∞

≤ 2

√
n

p
+ 4

√
2 log(2p)

p
+

4
√
2 log(2p)√
θp

≤ 2

√
n

p
+ 8

√
2 log(2p)

p
,

where the last simplification is provided that θ > 1/
√
n and p ≥ C8n for a sufficiently large C8. Similarly,

∥G−G′∥ℓ2→ℓ∞ ≤ ∥G∥ℓ2→ℓ∞ ∥I −M∥ +

∥∥∥∥∥x0x
⊤
0

∥x0∥2
GM

∥∥∥∥∥
ℓ2→ℓ∞

≤ 4n

p
+

8
√
2 log(2p)

p
+

(8
√
2 + 4)

√
n log(2p)

p
+

4
√

2 log(2p)√
θp

≤ 4n

p
+

8
√
2 log(2p)

p
+

21
√
n log(2p)

p
,

completing the proof.
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Appendix B

Auxillary Results for Convolutional

Phase Retrieval

In the appendix, we provide details of proof for some supporting results. Appendix B.1 provided us the very

basic tools used throughout the analysis. In Appendix B.2, we provide results of bounding the suprema

of chaos processes for random circulant matrices. In Appendix B.3, we provide concentration results for

suprema of some dependent random processes via decoupling.

B.1 Elementary Tools and Results

Lemma B.1 Given a fixed number ρ > 0, for any z, z′ ∈ C, we have

|exp (iϕ(z′ + z))− exp (iϕ(z′))| ≤ 21|z|≥ρ|z′| +
1

1− ρ
|ℑ (z/z′)| . (B.1.1)

Proof Please refer to the proof of Lemma 3.2 of [Wal16].

Lemma B.2 Let ρ ∈ (0, 1), for any z ∈ C with |z| ≤ ρ, we have

|1− exp (iϕ(1 + z)) + iℑ(z)| ≤ 2− ρ
(1− ρ)2

|z|2 . (B.1.2)

Proof For any t ∈ R+, let g(t) =
√
(1 + ℜ(z))2 + t2, then

g′(t) =
t√

(1 + ℜ(z))2 + t2
≤ t

|1 + ℜ(z)|
.
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Hence, for any z ∈ C with |z| ≤ ρ, we have

||1 + z| − (1 + ℜ(z))| =
∣∣∣∣√(1 + ℜ(z))2 + ℑ2(z)− (1 + ℜ(z))

∣∣∣∣
= |g (ℑ(z))− g(0)| ≤ ℑ2(z)

|1 + ℜ(z)|
≤ 1

1− ρ
ℑ2(z).

Let f(z) = 1− exp (iϕ(1 + z)), then by using the estimates above, we observe

|f(z) + iℑ(z)| =
∣∣∣∣ |1 + z| − (1 + z)

|1 + z|
+ iℑ (z)

∣∣∣∣
=

1

|1 + z|
||1 + z| − (1 + z) + iℑ(z) |1 + z||

≤ 1

|1 + z|
(|ℑ(z)| |1− |1 + z||+ ||1 + z| − (1 + ℜ(z))|)

≤ 1

|1 + z|

(
|z| |ℑ(z)|+ 1

1− ρ
ℑ2(z)

)
≤ 2− ρ

(1− ρ)2
|z|2 .

Lemma B.3 (Gaussian Concentration Inequality) Let w ∈ Rn be a standard Gaussian random variable

w ∼ N (0, I), and let g : Rn 7→ R denote an L-Lipschitz function. Then for all t > 0,

P (|g(w)− E [g(w)]| ≥ t) ≤ 2 exp
(
−t2/(2L2)

)
.

Moreover, if w ∈ Cn with w ∼ CN (0, I), and g : Cn 7→ R is L-Lipschitz, then the inequality above still holds.

Proof The result for real-valued Gaussian random variables is standard, please refer to [BLM13, Chapter 5]

for detailed proof. For the complex case, let

v =
1√
2

[
I iI

]
︸ ︷︷ ︸

h

vr
vi

 , vr,vi ∼i.i.d. N (0, I) .

By composition theorem, we know that g′ ◦h : R2n 7→ R is L-Lipschitz. Therefore, by applying the Gaussian

concentration inequality for g′ ◦ h and

vr
vi

, we get the desired result.

Theorem B.4 (Gaussian tail comparison for vector-valued functions, Theorem 3, [led07]) Letw ∈ Rn

be standard Gaussian variable w ∼ N (0, I), and let f : Rn 7→ Rℓ be an L-Lipschitz function. Then for any
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t > 0, we have

P (∥f(w)− E [f(w)]∥ ≥ t) ≤ eP
(
∥v∥ ≥ t

L

)
,

where v ∈ Rℓ such that v ∼ N (0, I). Moreover, if w ∈ Cn with w ∼ CN (0, I) and f : Cn 7→ Rℓ is

L-Lipschitz, then the inequality above still holds.

The proof is similar to that of Lemma B.3.

Lemma B.5 (sub-Gaussian Random Variables) LetX be a centered σ2 sub-Gaussian random variable, such

that

P (|X| ≥ t) ≤ 2 exp

(
− t2

2σ2

)
,

then for any integer p ≥ 1, we have

E [|X|p] ≤
(
2σ2
)p/2

pΓ(p/2).

In particular, we have

∥X∥Lp = (E [|X|p])1/p ≤ σe1/e√p, p ≥ 2,

and E [|X|] ≤ σ
√
2π.

Lemma B.6 (Sub-exponential tail bound via moment control) Suppose X is a centered random variable

satisfying

(E [|X|p])1/p ≤ α0 + α1
√
p+ α2p, for all p ≥ p0

for some α0, α1, α2, p0 > 0. Then, for any u ≥ p0, we have

P
(
|X| ≥ e(α0 + α1

√
u+ α2u)

)
≤ 2 exp (−u) .

This further implies that for any t > α1
√
p0 + α2p0, we have

P (|X| ≥ c1α0 + t) ≤ 2 exp

(
−c2 min

{
t2

α2
1

,
t

α2

})
,

for some positive constants c1, c2 > 0.

Proof The first inequality directly comes from Proposition 2.6 of [KMR14] via Markov inequality, also see
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Proposition 7.11 and Proposition 7.15 of [FR13]. For the second, let t = α1
√
u+ α2u, if α1

√
u ≤ α2u, then

t = α1

√
u+ α2u ≤ 2α2u ⇒ u ≥ t

2α2
.

Otherwise, similarly, we have u ≥ t2/(4α2
1). Combining the two cases above, we get the desired result.

Lemma B.7 (Tail bound for heavy-tailed distribution via moment control) SupposeX is a centered ran-

dom variable satisfying

(E [|X|p])1/p ≤ p (α0 + α1
√
p+ α2p) , for all p ≥ p0,

for some α0, α1, α2, p0 ≥ 0. Then, for any u ≥ p0, we have

P
(
|X| ≥ eu

(
α0 + α1

√
u+ α2u

))
≤ 2 exp (−u) .

This further implies that for any t > p0
(
α0 + α1

√
p0 + α2p0

)
, we have

P (|X| ≥ c1t) ≤ 2 exp

(
−c2 min

{√
t

2(α1 + α2)
,
t

2α0

})
,

for some positive constant c1, c2 > 0.

Proof The proof of the first tail bound is similar to that of Lemma B.6 by using Markov inequality. Notice

that

P (|X| ≥ eu (α0 + (α1 + α2)u)) ≤ P
(
|X| ≥ eu

(
α0 + α1

√
u+ α2u

))
≤ 2 exp (−u) .

Let t = α0u+ (α1 + α2)u
2, if α0u ≤ (α1 + α2)u

2, then

t = α0u+ (α1 + α2)u
2 ≤ 2 (α1 + α2)u

2 ⇒ u ≥

√
t

2(α1 + α2)
.

Otherwise, we have u ≥ t/(2α0). Combining the two cases above, we get the desired result.

Definition B.8 (d2(·), dF (·) and γβ functional) For a given set of matrices B, we define

dF (B)
.
= sup

B∈B
∥B∥F , d2(B)

.
= sup

B∈B
∥B∥ ,

For a metric space (T, d), an admissible sequence of T is a collection of subsets of T , {Tr : r > 0}, such that for
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every s > 1, |Tr| ≤ 22
r and |T0| = 1. For β ≥ 1, define the γβ functional by

γβ(T, d)
.
= inf sup

t∈T

∞∑
r=0

2r/βd(t, Tr),

where the infimum is taken with respect to all admissible sequences of T . In particular, for γ2 functional of the

set B equipped with distance ∥∥, [Tal14a] shows that

γ2(B, ∥∥) ≤ c
∫ d2(B)

0

log1/2N (B, ∥∥ , ϵ)dϵ, (B.1.3)

where N (B, ∥∥ , ϵ) is the covering number of the set B with diameter ϵ ∈ (0, 1).

Theorem B.9 (Theorem 3.5, [KMR14]) Let σ2
ξ ≥ 1 and ξ = (ξj)

n
j=1, where {ξj}nj=1 are independent zero-

mean, variance one, σ2
ξ -subgaussian random variables, and let B be a class of matrices. Let us define a quantity

CB (ξ)
.
= sup

B∈B

∣∣∣∥Bξ∥2 − E
[
∥Bξ∥2

]∣∣∣ . (B.1.4)

For every p ≥ 1, we have ∥∥∥∥ sup
B∈B
∥Bξ∥

∥∥∥∥
Lp

≤ Cσ2
ξ
[γ2 (B, ∥∥) + dF (B) +

√
pd2(B)]∥∥∥∥ sup

B∈B

∣∣∣∥Bξ∥2 − E
[
∥Bξ∥2

]∣∣∣∥∥∥∥
Lp

≤ Cσ2
ξ
{γ2(B, ∥∥) [γ2 (B, ∥∥) + dF (B)]

+
√
pd2(B) [γ2 (B, ∥∥) + dF (B)] + pd22(B)

}
,

where Cσ2
ξ

is some positive numerical constant only depending on σ2
ξ , and d2(·), dF (·) and γ2(B, ∥·∥) are given

in Definition B.8.

The following theorem establishes the restricted isometry property (RIP) of the Gaussian random convolu-

tion matrix.

Theorem B.10 (Theorem 4.1, [KMR14] ) Let ξ ∈ Cm be a random vector with ξi ∼i.i.d. CN (0, 1), and let Ω

be a fixed subset of [m] with |Ω| = n. Define a set Es = {v ∈ Cm | ∥v∥0 ≤ s}, and define a matrix

Φ = RΩC
∗
ξ ∈ Cn×m

where RΩ : Cm 7→ Cn is an operator that restrict a vector to its entries in Ω. Then for any s ≤ m, and

η, δs ∈ (0, 1) such that

n ≥ Cδ−2s s log2 s log2m,
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the partial random circulant matrix Φ ∈ Rn×m satisfies the restricted isometry property

(1− δs)
√
n ∥v∥ ≤ ∥Φv∥ ≤ (1 + δs)

√
n ∥v∥ (B.1.5)

for all v ∈ Es, with probability at least 1−m− log2 s logm.

Lemma B.11 Let the random vector ξ ∈ Cm and the random matrix Φ ∈ Cn×m be defined the same as Theorem

B.10, and let Es = {v ∈ Cm | ∥v∥0 ≤ s} for some positive integer s ≤ n. For any positive scalar δ > 0 and any

positive integer s ≤ n, whenever m ≥ Cδ−2n log4 n, we have

∥Φv∥ ≤ δ
√
m ∥v∥ ,

for all v ∈ Es, with probability at least 1−m−c log2 s. Here c, C are some positive numerical constants.

Proof The proof follows from the results in [KMR14]. Without loss of generality, we assume ∥v∥ = 1. Let

us define sets

Ds,m
.
= {v ∈ Cm : ∥v∥ = 1, ∥v∥0 ≤ s} ,

V .
=

{
1√
n
R[1:n]F

−1
m diag (Fmv)Fm | v ∈ Ds,m

}
,

Section 4 of [KMR14] shows that

sup
v∈Ds,m

∣∣∣∣ 1n ∥Φv∥2 − 1

∣∣∣∣ = sup
Vv∈V

∣∣∣∥Vvξ∥2 − Eξ

[
∥Vvξ∥2

]∣∣∣ = CV(ξ),
where CV (ξ) is defined in (B.1.4). Theorem 4.1 and Lemma 4.2 of [KMR14] implies that

dF (V) = 1, d2(V) ≤
√
s

n
, γ2(V, ∥∥) ≤ c

√
s

n
log s logm,

for some constant c > 0. By using the estimates above, Theorem 3.1 of [KMR14] further implies for any t > 0

P
(
CV(ξ) ≥ c1

√
s

n
log2 s log2m+ t

)
≤ 2 exp

(
−c2 min

{
nt2

s log2 s log2m
,
nt

s

})
.

For any positive constant δ > 0, choosing t = δ2m/n, whenever m ≥ Cδ−2n log2 s log2m for some constant

C > 0 large enough, we have

sup
v∈Ds,m

∣∣∣∣ 1n ∥Φv∥2 − 1

∣∣∣∣ ≤ c1√ s

n
log2 s log2m+ δ

m

n
≤ 2δ2

m

n
,
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with probability at least 1−m−c3 log2 s for some positive constant c3 > 0. Therefore, we have

∥Φv∥ ≤
√
n+ 2δ2m ≤ C ′δ

√
m,

holds for any v ∈ Ds,m with high probability, where C ′ > 0 is a numerical constant.

B.2 Moments and Spectral Norm of Partial Random Circulant Matrix

Let g ∈ Cm be a random complex Gaussian vector with g ∼ CN (0, σ2
gI). Given a partial random circulant

matrix CgR
⊤
[1:n] ∈ Cm×n (m ≥ n), we control the moments and the tail bound of the terms in the following

form

T1(g) =
1

m
R[1:n]C

∗
g diag (b)CgR

⊤
[1:n],

T2(g) =
1

m
R[1:n]C

⊤
g diag

(
b̃
)
CgR

⊤
[1:n],

where b ∈ Rm, and b̃ ∈ Cm. The concentration of these quantities plays an important role in our arguments,

and the proof mimics the arguments in [Rau10, KMR14]. Prior to that, let us define sets

D =
{
v ∈ CSm−1 : supp(v) ∈ [n]

}
, (B.2.1)

V(d) =
{
Vv : Vv =

1√
m

diag (d)
1/2

F−1m diag (Fmv)Fm, v ∈ D
}
. (B.2.2)

B.2.1 Controlling the Moments and Tail of T1(g)

Theorem B.12 Let g ∈ Cm be a random complex Gaussian vector with g ∼ CN (0, σ2
gI) and any fixed vector

b = [b1, · · · , bm]
⊤ ∈ Rm. Given a partial random circulant matrix CgR

⊤
[1:n] ∈ Cm×n (m ≥ n), let us define

L(g) .=

∥∥∥∥∥ 1

m
R[1:n]C

∗
g diag (b)CgR

⊤
[1:n] −

1

m

(
m∑
k=1

bk

)
I

∥∥∥∥∥ .
Then for any integer p ≥ 1, we have

∥L(g)∥Lp ≤ Cσ2
g
∥b∥∞

(√
n

m
log3/2 n log1/2m+

√
p

√
n

m
+ p

n

m

)
.

In addition, For any δ > 0, whenever m ≥ C ′σ2
g
δ−2 ∥b∥2∞ n log4 n, we have

L(g) ≤ δ (B.2.3)
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holds with probability at least 1 − 2m
−cσ2

g
log3 n. Here, cσ2

g
, Cσ2

g
, and C ′σ2

g
are some numerical constants only

depending on σ2
g .

Proof Without loss of generality, let us assume that σ2
g = 1. Let us first consider the case b ≥ 0, and let

Λ = diag (b), then

L(g) = sup
w∈CSn−1

∣∣∣∣∣ 1mw∗R[1:n]C
∗
gΛCgR

⊤
[1:n]w −

1

m

m∑
k=1

bk

∣∣∣∣∣
= sup

v∈CSm−1,supp(v)∈[n]

∣∣∣∣∣ 1mv∗C∗gΛCgv −
1

m

m∑
k=1

bk

∣∣∣∣∣ .
By the convolution theorem, we know that

1√
m
Λ1/2Cgv =

1√
m
Λ1/2 (g ⊛ v) =

1√
m
Λ1/2F−1m diag (Fmv)Fmg = Vvg.

Since E
[
R[1:n]C

∗
gΛCgR

⊤
[1:n]

]
= (
∑m
k=1 bk) I , we observe

L(g) = sup
Vv∈V

∣∣∣∥Vvg∥2 − E
[
∥Vvg∥2

]∣∣∣ ,
where the set V(b) is defined in (B.2.2). Next, we invoke Theorem B.9 to control all the moments of L(a),

where we need to control the quantities d2(·), dF (·) and γ2(·, ∥∥) defined in Lemma B.8 for the set V . By

Lemma B.18 and Lemma B.19, we know that

dF (V) ≤ ∥b∥1/2∞ , d2(V) ≤
√
n

m
∥b∥1/2∞ , (B.2.4)

γ2(V, ∥·∥) ≤ C0

√
n

m
∥b∥1/2∞ log3/2 n log1/2m, (B.2.5)

for some constant C0 > 0. Thus, combining the results in (B.2.4) and (B.2.5), wheneverm ≥ C1n log
3 n logm

for some constant C1 > 0, Theorem B.9 implies that

∥L(g)∥Lp ≤ C2

{
γ2(V, ∥∥) [γ2 (V, ∥∥) + dF (V)] +

√
pd2(V) [γ2 (V, ∥∥) + dF (V)] + pd22(V)

}
≤ C3 ∥b∥∞

(√
n

m
log3/2 n log1/2m+

√
n

m

√
p+

n

m
p

)
holds for some constants C2, C3 > 0. Based on the moments estimate of L(g), Lemma B.6 further implies

that

P
(
L(g) ≥ C4

√
n

m
∥b∥∞ log3/2 n log1/2m+ t

)
≤ 2 exp

(
−C5

m

n
∥b∥−1∞ min

{
t2

∥b∥∞
, t

})
,

for some constants C4, C5 > 0. Thus, for any δ > 0, whenever m ≥ C6δ
−2 ∥b∥2∞ n log3 n logm for some
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constant C6 > 0, we have

L(g) ≤ δ

holds with probability at least 1− 2m−C7 log3 n.

Now when b is not nonnegative, let b = b+−b−, where b+ =

[
b+1 , · · · , b+m

]⊤
, b− =

[
b−1 , · · · , b−m

]⊤
∈ Rm+

are the nonnegative and nonpositive part of b, respectively. Let Λ = diag (b), Λ+ = diag (b+) and Λ− =

diag (b−), we have

L(g) = sup
w∈CSn−1

∣∣∣∣∣ 1mw∗R[1:n]C
∗
gΛCgR

⊤
[1:n]w −

1

m

m∑
k=1

bk

∣∣∣∣∣
≤ sup

w∈CSn−1

∣∣∣∣∣ 1mw∗R[1:n]C
∗
gΛ+CgR

⊤
[1:n]w −

1

m

m∑
k=1

b+k

∣∣∣∣∣︸ ︷︷ ︸
L+(g)

+ sup
w∈CSn−1

∣∣∣∣∣ 1mw∗R[1:n]C
∗
gΛ−CgR

⊤
[1:n]w −

1

m

m∑
k=1

b−k

∣∣∣∣∣︸ ︷︷ ︸
L−(g)

.

Now since b+, b− ∈ Rm+ , we can apply the results above for L+(g) and L−(g), respectively. Then by

Minkowski’s inequality, we have

∥L(g)∥Lp ≤ ∥L+(g)∥Lp +
∥∥L−(g)∥∥Lp ≤ C6 ∥b∥∞

(√
n

m
log3/2 n log1/2m+

√
n

m

√
p+

n

m
p

)
for some constantC6 > 0. The tail bound can be similarly derived from the moments bound. This completes

the proof.

The result above also implies the following result.

Corollary B.13 Let g ∈ Cm be a random complex Gaussian vector with g ∼ CN (0, σ2
gI), and let G =

R[1:n]C
∗
g ∈ Cn×m (n ≤ m). Then for any integer p ≥ 1, we have

(E [∥G∥p])1/p ≤ Cσ2
g

√
m

(
1 +

√
n

m
log3/2 n log1/2m+

√
n

m

√
p

)
Moreover, for any ϵ ∈ (0, 1), whenever m ≥ Cδ−2n log4 n for some constant C > 0, we have

(1− δ)m ∥w∥2 ≤ ∥G∗w∥2 ≤ (1 + δ)m ∥w∥2

holds for w ∈ Cn with probability at least 1− 2m
−cσ2

g
log3 n. Here cσ2

g
, Cσ2

g
> 0 are some constants depending

only on σ2
g .
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Proof Firstly, notice that

∥G∥ = sup
w∈CSn−1,r∈CSm−1

|⟨w,Gr⟩| ≤ sup
w∈CSn−1

∥G∗w∥ = sup
w∈CSn−1

∥∥∥CgR
⊤
[1:n]w

∥∥∥
= sup

v∈CSm−1,supp(v)∈[n]
∥Cgv∥ .

Thus, similar to the argument of Theorem B.12, let the set D and V(1) define as (B.2.1) and (B.2.2), we have

1√
m
∥G∥ ≤ sup

Vv∈V
∥Vvg∥ .

By Lemma B.18 and Lemma B.19, we know that

dF (V) ≤ 1, d2(V) ≤
√
n

m
, γ2(V, ∥·∥) ≤ C0

√
n

m
log3/2 n log1/2m.

Thus, using Theorem B.9, we obtain

E
[∣∣∣∣ sup

Vv∈V
∥Vvg∥

∣∣∣∣p]1/p ≤ Cσ2
g

(√
n

m
log3/2 n log1/2m+ 1 +

√
n

m

√
p

)
,

where Cσ2
g
> 0 is constant depending only on σ2

g . The concentration inequality can be directly derived from

Theorem B.12, noticing that for any δ > 0, whenever m ≥ C1δ
−2n log4 n for some positive constant C1 > 0,

we have

sup
w∈CSn−1

∣∣∣∣ 1m (w∗GG∗w − 1)

∣∣∣∣ ≤ δ =⇒ (1− δ)m ≤ sup
w∈CSn−1

∥G∗w∥2 ≤ (1 + δ)m

holds with probability at least 1− 2m
−cσ2

g
log3 n, where cσ2

g
> 0 is some constant depending only on σ2

g .

B.2.2 Controlling the Moments of T2(g)

Theorem B.14 Let g ∈ Cm are a complex random Gaussian variable with g ∼ CN (0, σ2
gI), and let

N (g)
.
= sup

w∈CSn−1

∣∣∣∣ 1mw⊤R[1:n]C
⊤
g diag

(
b̃
)
CgR

⊤
[1:n]w

∣∣∣∣ ,
where b̃ ∈ Cm. Then whenever m ≥ Cn log4 n for some positive constant C > 0, for any positive integer p ≥ 1,

we have

∥N (g)∥Lp ≤ Cσ2
g

∥∥∥b̃∥∥∥
∞

(√
n

m
log3/2 n log1/2m+

√
n

m

√
p+

n

m
p

)
,
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where Cσ2
g

is positive constant only depending on σ2
g .

Proof Let Λ̃ = diag
(
b̃
)

, similar to the arguments of Theorem B.12, we have

N (g) = sup
Vv∈V

∣∣⟨Vvg,Vvg
⟩∣∣ , (B.2.6)

where V
(
b̃
)

is defined as (B.2.2). Let g′ be an independent copy of g, by Lemma B.15, for any integer p ≥ 1

we have

∥N (g)∥Lp ≤ 4

∥∥∥∥ sup
Vv∈V

∣∣⟨Vvg,Vvg′
⟩∣∣∥∥∥∥

Lp

.

By Lemma B.16 and Lemma B.17, we know that∥∥∥∥ sup
Vv∈V

∣∣⟨Vvg,Vvg′
⟩∣∣∥∥∥∥

Lp

≤ Cσ2
g

[
γ2 (V, ∥∥)

∥∥∥∥ sup
Vv∈V

∥Vvg
′∥
∥∥∥∥
Lp

+ sup
Vv∈V

∥∥⟨Vvg,Vvg′
⟩∥∥
Lp

]

≤ C ′σ2
g

[
γ2(V, ∥∥) (γ2(V, ∥∥) + dF (V)) +

√
pd2(V) (dF (V) + γ2(V, ∥∥)) + pd22(V)

]
.

By Lemma B.18 and Lemma B.19, we know that

dF (V) ≤
∥∥∥b̃∥∥∥1/2

∞
, d2(V) ≤

√
n

m

∥∥∥b̃∥∥∥1/2
∞

, γ2(V, ∥∥) ≤ C
√
n

m

∥∥∥b̃∥∥∥1/2
∞

log3/2 n log1/2m,

where C > 0 is constant. Thus, combining the results above, we have

∥N (g)∥Lp ≤ C ′′σ2
g

(√
n

m

∥∥∥b̃∥∥∥
∞

log3/2 n log1/2m+
√
p

√
n

m

∥∥∥b̃∥∥∥
∞

+ p
n

m

∥∥∥b̃∥∥∥
∞

)
,

where C ′′σ2
g
> 0 is some constant depending on σ2

g .

Lemma B.15 Let N (g) be defined as (B.2.6), and let g′ be an independent copy of g, then we have

∥N (g)∥Lp ≤ 4

∥∥∥∥ sup
Vv∈V

∣∣⟨Vvg,Vvg′
⟩∣∣∥∥∥∥

Lp

.

Proof Let δ ∼ CN (0, σ2
gI) which is independent of g, and let

g1 = g + δ, g2 = g − δ,

so that g1 and g2 are also independent with g1, g2 ∼ CN (0, 2σ2
gI). Let QNdec(g1, g2) =

⟨
Vvg

1,Vvg2
⟩

, then
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we have

Eδ

[
QNdec(g1, g2)

]
=
⟨
Vvg,Vvg

⟩
.

Therefore, by Jensen’s inequality, we have

∥N (g)∥Lp =

(
Eg

[(
sup
Vv∈V

∣∣Eδ

[
QNdec(g1, g2)

]∣∣)p])1/p

≤
(
Eg1,g2

[(
sup
Vv∈V

∣∣QNdec(g1, g2)
∣∣)p])1/p

= 4

∥∥∥∥ sup
Vv∈V

∣∣⟨Vvg,Vvg′
⟩∣∣∥∥∥∥

Lp

,

as desired.

Lemma B.16 Let g′ be an independent copy of g, for every integer p ≥ 1, we have∥∥∥∥sup ⟨Vvg,Vvg′
⟩∥∥∥∥
Lp

≤ Cσ2
g

[
γ2 (V, ∥∥)

∥∥∥∥ sup
Vv∈V

∥Vvg
′∥
∥∥∥∥
Lp

+ sup
Vv∈V

∥∥⟨Vvg,Vvg′
⟩∥∥
Lp

]
,

where Cσ2
g
> 0 is a constant depending only on σ2

g .

Proof The proof is similar to the proof of Lemma 3.2 of [KMR14], and is omitted here.

Lemma B.17 Let g′ be an independent copy of g, for every integer p ≥ 1, we have∥∥∥∥ sup
Vv∈V

∥Vvg
′∥
∥∥∥∥
Lp

≤ Cσ2
g
[γ2(V, ∥∥) + dF (V) +

√
pd2(V)]

sup
Vv∈V

∥∥⟨Vvg,Vvg′
⟩∥∥
Lp ≤ Cσ2

g

[√
pdF (V)d2(V) + pd22(V)

]
,

where Cσ2
g
> 0 is a constant depending only on σ2

g .

Proof The proof is similar to the proofs of Theorem 3.5 and Lemma 3.6 of [KMR14], and is omitted here.

B.2.3 Auxiliary Results

The following are the auxiliary results required in the main proof.

Lemma B.18 Let the sets D, V(d) be defined as (B.2.1) and (B.2.2), we have

dF (V) ≤ ∥d∥1/2∞ , d2(V) ≤
√
n

m
∥d∥1/2∞ .
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Proof Since each row of Vv ∈ V consists of weighted shifted copies of v, the ℓ2-norm of each nonzero row

of Vv is m−1/2 |dk|1/2 ∥v∥. Thus, we have

dF (V) = sup
Vv∈V

∥Vv∥F ≤ ∥d∥
1/2
∞ sup

v∈D
∥v∥ = ∥d∥1/2∞ .

Also, for every v ∈ D, we observe

∥Vv∥ ≤
1√
m
∥d∥1/2∞ ∥diag (Fmv)∥ = 1√

m
∥d∥1/2∞ ∥Fmv∥∞ .

It is obvious for any v ∈ D that ∥Fmv∥∞ ≤ ∥v∥1 ≤
√
n ∥v∥2 =

√
n, so that

d2(V) = sup
v∈D
∥Vv∥ ≤

√
n

m
∥d∥1/2∞ .

Lemma B.19 Let the sets D, V be defined as (B.2.1) and (B.2.2), we have

γ2(V, ∥·∥) ≤ C
√
n

m
∥d∥1/2∞ log3/2 n log1/2m,

where C > 0 is some constant.

Proof By Definition B.8, we know that

γ2 (V, ∥·∥) ≤ C
∫ d2(V)

0

log1/2N (V, ∥·∥ , ϵ) dϵ,

for some constant C > 0, where the right hand side is known as the “Dudley integral”. To estimate the

covering number N (V, ∥·∥ , ϵ), we know that for any v, v′ ∈ D,

∥Vv − Vv′∥ = ∥Vv−v′∥ ≤ 1√
m

∥∥∥diag (d)1/2∥∥∥ ∥Fm(v − v′)∥∞ ≤
1√
m
∥d∥1/2∞ ∥Fm(v − v′)∥∞ . (B.2.7)

Let ∥v∥∞̂
.
= ∥Fmv∥∞ that ∥v∥∞̂ ≤ ∥v∥1, we have N (V, ∥·∥ , ϵ) ≤ N

(
D,m−1/2 ∥d∥1/2∞ ∥·∥∞̂ , ϵ

)
. Next, we

bound the covering number N
(
D,m−1/2 ∥d∥1/2∞ ∥·∥∞̂ , ϵ

)
when ϵ is small and large, respectively.

When ϵ is small (i.e., ϵ ≤ O(1/
√
m)), let B[n]1 = {v ∈ Cm : ∥v∥1 ≤ 1, suppv ∈ [n]}, then it is obvious that

D ⊆
√
nB[n]1 . By Proposition 10.1 of [Rau10], we have

N
(
D,m−1/2 ∥d∥1/2∞ ∥·∥∞̂ , ϵ

)
≤ N

(√
nB[n]1 ,m−1/2 ∥d∥1/2∞ ∥·∥1 , ϵ

)
≤ N (B[n]1 , ∥·∥1 , ∥d∥

−1/2
∞

√
m

n
ϵ) ≤

(
1 +

2
√
n ∥d∥1/2∞√
mϵ

)n
.
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Thus, we have

logN
(
D,m−1/2 ∥d∥1/2∞ ∥·∥∞̂ , ϵ

)
≤ n log

(
1 +

2
√
n ∥d∥1/2∞√
mϵ

)
.

If the scalar ϵ is large, let us introduce a norm

∥v∥∗1 =

m∑
k=1

|ℜ(vk)|+ |ℑ(vk)| , ∀ v ∈ Cm, (B.2.8)

which is the usual ℓ1-norm after identification ofCm withR2m. LetB[n]∥·∥∗1 =
{
v ∈ Cm : ∥v∥∗1 ≤ 1, supp(v) ∈ [n]

}
,

then we have D ⊆
√
2nB[n]∥·∥∗1 . By Lemma B.20, we obtain

logN
(
D,m−1/2 ∥d∥1/2∞ ∥·∥∞̂ , ϵ

)
≤ logN

(
B[n]∥·∥∗1 , ∥·∥∞̂ ,

√
m√
2n
∥d∥−1/2∞ ϵ

)
≤ Cn

mϵ2
∥d∥∞ logm log n

Finally, we combine the results above to estimate the “Dudley integral”,

I .
=

∫ d2(V)

0

log1/2N (V, ∥·∥ , ϵ) dϵ

≤
√
n

∫ κ

0

log1/2

(
1 + 2

√
n

m

∥d∥1/2∞
ϵ

)
dϵ+ C

√
n

m
∥d∥∞ logm log n

∫ √ n
m∥v∥

1/2
∞

κ

ϵ−1dϵ

≤ 2n√
m
∥d∥1/2∞

∫ κ
2 ∥d∥

−1/2
∞
√

m
n

0

log1/2
(
1 + t−1

)
dt+ C

√
n

m
∥d∥∞ logm log n log

(√
n

m
∥d∥1/2∞ /κ

)

≤ κ
√
n

√
log

(
e

(
1 +

2

κ
∥d∥1/2∞

√
n

m

))
+ C

√
n

m
∥d∥∞ logm log n log

(√
n

m
∥d∥1/2∞ /κ

)

where the last inequality we used Lemma 10.3 of [Rau10]. Choose κ =
∥d∥1/2∞√

m
, we obtain the desired result.

Lemma B.20 Let B[n]∥·∥∗1 =
{
v ∈ Cm : ∥v∥∗1 ≤ 1, supp(v) ∈ [n]

}
, and ∥·∥∗1 is defined in (B.2.8), we have

logN
(
B[n]∥·∥∗1 , ∥·∥∞̂ , ϵ

)
≤ C

ϵ2
logm log n (B.2.9)

for some constant C > 0, where the norm ∥v∥∞̂ = ∥Fmv∥∞.

Proof Let U = {±e1, · · · ,±en,±ie1, · · · ,±ien}, it is obvious that B[n]∥·∥∗1 ⊆ conv(U), where conv(U) denotes

the convex hull of U . Fix any w ∈ U , the idea is to approximate w by a finite set of very sparse vectors. We
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define a random vector

z =


sign (ℜ(wj)) ej , with prob. |ℜ (wj)| , 1 ≤ j ≤ n

sign (ℑ(wj)) ej , with prob. |ℑ (wj)| , 1 ≤ j ≤ n

0, with prob. 1− ∥w∥∗1 .

Since ∥v∥∗1 ≤ 1, this is a valid probability distribution with E [z] = w. Let z1, · · · , zL be independent copies

of z, where L is a number to be determined later. We attempt to approximate w with a L-sparse vector

zS =
1

L

L∑
k=1

zk.

By using symmetrization (Lemma 6.7 of [Rau10]), we obtain

E [∥zS − v∥∞̂] = E

[∥∥∥∥∥ 1L
L∑
k=1

(zk − E [zk])

∥∥∥∥∥
∞̂

]
≤ 2

L
E

[∥∥∥∥∥
L∑
k=1

εkzk

∥∥∥∥∥
∞̂

]

=
2

L
E

[
max
ℓ∈[m]

∣∣∣∣∣
L∑
k=1

εk ⟨fℓ, zk⟩

∣∣∣∣∣
]

where ε = [ε1, · · · , εL]∗ is a Rademacher vector, independent of {zk}Lk=1. Fix a realization of {zk}Lk=1, by

applying the Hoeffding’s inequality to ϵ, we obtain

Pε

(∣∣∣∣∣
L∑
k=1

εk ⟨fℓ, zk⟩

∣∣∣∣∣ ≥ √Lt
)
≤ Pε

(∣∣∣∣∣
L∑
k=1

εk ⟨fℓ, zk⟩

∣∣∣∣∣ ≥
∥∥∥∥∥
L∑
k=1

⟨fℓ, zk⟩

∥∥∥∥∥ t
)
≤ 2 exp

(
−t2/2

)
for all t > 0 and ℓ ∈ [m]. Thus, by combining the result above with Lemma 6.6 of [Rau10], it implies that

E

[
max
ℓ∈[m]

∣∣∣∣∣
L∑
k=1

εk ⟨fℓ, zk⟩

∣∣∣∣∣
]
≤ C

√
L log(8m),

with C =
√
2 +

(
4
√
2 log 8

)−1
< 1.5. By Fubini’s theorem, we obtain

E [∥zS − v∥∞̂] ≤ 2

L
EzEε

[
max
ℓ∈[m]

∣∣∣∣∣
L∑
k=1

εk ⟨fℓ, zk⟩

∣∣∣∣∣
]
≤ 3√

L

√
log(8m). (B.2.10)

This implies that there exists a vectorzS = 1
L

∑L
k=1 zk where each zk ∈ U such that ∥zS − v∥∞̂ ≤

3√
L

√
log(8m).

Since each zk can take 4n + 1 values, so that zS can take at most (4n + 1)L values. And for each v ∈

conv(U), according to (B.2.10), we can therefore find a vector zS such that ∥v − zS∥∞̂ ≤ ϵ with the choice

L ≤ ⌊ 9
ϵ2 log(10m)⌋. Thus, we have

logN
(
B[n]∥·∥∗1 , ∥·∥∞̂ , ϵ

)
≤ logN (conv(U), ∥·∥∞̂ , ϵ) ≤ L log(4n+ 1) ≤ 9

ϵ2
log(10m) log(4n+ 1)
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as desired.

B.3 Concentration via Decoupling

In this section, we assume that ∥x∥ = 1, and we develop concentration inequalities for the following quan-

tities

Y (g) =
1

m
R[1:n]C

∗
g diag

(
|g ⊛ x|2

)
CgR

⊤
[1:n], (B.3.1)

M(g) =
2σ2 + 1

m
R[1:n]C

∗
g diag (ζσ2(g ⊛ x))CgR

⊤
[1:n], (B.3.2)

via the decoupling technique and moments control, where ζσ2(·) is defined in (24.2.1) and σ2 > 1/2. Suppose

g ∈ Cm is complex Gaussian random variable g ∼ CN (0, I). Once all the moments are bounded, it is easy to

turn the moment bounds into a tail bound via Lemma B.6 and Lemma B.7. To bound the moments, we use

the decoupling technique developed in [AG93, DlPG99, KMR14]. The basic idea is to decouple the terms

above into terms like

QY
dec(g

1, g2) =
1

m
R[1:n]C

∗
g1 diag

(∣∣g2 ⊛ x
∣∣2)Cg1R⊤[1:n], (B.3.3)

QM
dec(g

1, g2) =
1 + 2σ2

m
R[1:n]C

∗
g1 diag

(
ησ2

(
g2 ⊛ x

))
Cg1R⊤[1:n], (B.3.4)

where ησ2(t) = 1− 2πσ2ξσ2− 1
2
(t), and g1 and g2 are two independent random variables with

g1 = g + δ, g2 = g − δ, (B.3.5)

where δ ∼ CN (0, I) is an independent copy of g. As we discussed in Chapter 21, it turns out that controlling

the moments of the decoupled terms QY
dec(g

1, g2) and QM
dec(g

1, g2) for convolutional random matrices is

easier and sufficient for providing the tail bound of Y and M . The detailed results and proofs are described

in the following subsections.

B.3.1 Concentration of Y (g)

In this subsection, we show that

Theorem B.21 Let g ∼ CN (0, I), and let Y (g) be defined as (B.3.1). For any δ > 0, whenm ≥ Cδ−2n log7 n,
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we have

∥Y (g)− xx∗ − I∥ ≤ δ,

holds with probability at least 1− 2m−c. Here c, C > 0 are some numerical constants.

Proof Suppose g1, g2 are defined as (B.3.5), and QY
dec(g

1, g2) is defined as (B.3.3). Let [g2 ⊛ x]k =
(
g2
k

)∗
x

and Cg1R⊤[1:n] =


(
g1
1

)∗
· · ·(
g1
m

)∗

, then by Lemma B.22, we have

Eδ

[
QY
dec(g

1, g2)
]
=

1

m

m∑
k=1

Eδ

[∣∣(gk − δk)
∗
x
∣∣2 (gk + δk) (gk + δk)

∗
]

=
1

m

m∑
k=1

(
|g∗kx|

2
gkg

∗
k + gkg

∗
k + |g∗kx|

2
I + xx∗ + I − xx∗gkg

∗
k − gkg

∗
kxx

∗
)

= 4I + Y (g)− Eg [Y (g)]− 1

m

m∑
k=1

(xx∗gkg
∗
k + gkg

∗
kxx

∗ − 2xx∗)

+
1

m

m∑
k=1

(gkg
∗
k − I) +

1

m

m∑
k=1

(
|g∗kx|

2 − 1
)
I.

Thus, by Minkowski inequality and Jensen’s inequality, for any positive integer p ≥ 1, we have

(Eg [∥Y (g)− E [Y (g)]∥p])1/p

≤ 4

(
Eg

[∥∥∥∥ 1

m
R[1:n]C

∗
gCgR

⊤
[1:n] − I

∥∥∥∥p])1/p

+
(
Eg

[∥∥Eδ

[
QY
dec(g

1, g2)
]
− 4I

∥∥p])1/p
≤ 4

(
Eg

[∥∥∥∥ 1

m
R[1:n]C

∗
gCgR

⊤
[1:n] − I

∥∥∥∥p])1/p

︸ ︷︷ ︸
T1

+
(
Eg1,g2

[∥∥QY
dec(g

1, g2)− 4I
∥∥p])1/p︸ ︷︷ ︸

T2

.

By Theorem B.12, we have

T1 ≤ C1

(√
n

m
log3/2 log1/2m+

√
n

m

√
p+

n

m
p

)
,

where C1 > 0 is some numerical constant. For T2, by Theorem B.12 and Lemma B.23, we have

T2 =
(
Eg1,g2

[∥∥QY
dec(g

1, g2)− 4I
∥∥p])1/p

≤
(
Eg1,g2

[∥∥∥∥QY
dec(g

1, g2)− 2
1

m

∥∥g2 ⊛ x
∥∥2 I∥∥∥∥p])1/p

+ 2

(
Eg1

[∥∥∥∥ 1

m
R[1:n]C

∗
g1Cg1R⊤[1:n] − 2I

∥∥∥∥p])1/p
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≤ C2

(
Eg2

[∥∥g2 ⊛ x
∥∥2p
∞

]1/p
+ 2

)(√
n

m
log3/2 log1/2m+

√
n

m

√
p+

n

m
p

)
≤ C3

(√
n

m

(
log3/2 n log3/2m

)
p+

√
n

m
(logm) p3/2 +

n

m
(logm) p2

)
.

where C2, C3 > 0 are some numerical constants. Thus, combining the estimates for T1 and T2 above, we

have

(Eg [∥Y (g)− E [Y (g)]∥p])1/p ≤ C4

(√
n

m

(
log3/2 n log3/2m

)
p+

√
n

m
(logm) p3/2 +

n

m
(logm) p2

)
,

where C4 > 0 is some numerical constant. Therefore, by using Lemma B.7, for any δ > 0, whenever m ≥

C5δ
−2n log4m log3 n

∥Y − E [Y ]∥ ≤ δ,

with probability at least 1− 2m−c, where c > 0 is some numerical constant . Finally, using Lemma B.22, we

get the desired result.

Lemma B.22 Let g ∼ CN (0, I), and let Y (g) be defined as (B.3.1), then we have

E [Y (g)] = xx∗ + I.

Proof Please see Lemma 6.2 of [SQW16].

Lemma B.23 Suppose g̃ ∼ CN (0, 2I), for any positive integer p ≥ 1, we have

(
Eg̃ [∥g̃ ⊛ x∥p∞]

)1/p ≤ 6
√

logm
√
p.

Proof By Minkowski inequality, we have

Eg̃ [∥g̃ ⊛ x∥p∞]
1/p ≤ E [∥g̃ ⊛ x∥∞] +

(
Eg̃ [(∥g̃ ⊛ x∥∞ − E [∥g̃ ⊛ x∥∞])

p
]
)1/p

.

We know that ∥g̃ ⊛ x∥∞ is 1-Lipschitz. Thus, by Gaussian concentration inequality in Lemma B.3, we have

P
(∣∣∥g̃ ⊛ x∥∞ − Eg̃ [∥g̃ ⊛ x∥∞]

∣∣ ≥ t) ≤ 2 exp
(
−t2/2

)
.

By Lemma B.5, we know that ∥g̃ ⊛ x∥∞ is sub-Gaussian, and satisfies

(
Eg̃

[∣∣∥g̃ ⊛ x∥∞ − Eg̃ [∥g̃ ⊛ x∥∞]
∣∣p])1/p ≤ 4

√
p.
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Besides, let g̃ ⊛ x =


g̃∗1x

· · ·

g̃∗mx

, then by Jensen’s inequality, for all λ > 0, we have

exp (λE [∥g̃ ⊛ x∥∞]) ≤ E [exp (λ ∥g̃ ⊛ x∥∞)] = E
[
max

1≤k≤m
exp (λg̃∗kx)

]
≤

m∑
k=1

E [exp (λg̃∗kx)] ≤ m exp
(
λ2
)
,

where we used the fact that the moment generating function of g̃∗kx satisfies E [exp (λg̃∗kx)] ≤ exp
(
λ2
)
.

Taking the logarithms on both sides, we have

E [∥g̃ ⊛ x∥∞] ≤ logm/λ+ λ.

Taking λ =
√
logm, the right hand side achieves the minimum, which is

E [∥g̃ ⊛ x∥∞] ≤ 2
√

logm.

Combining the results above, we obtain the desired result.

B.3.2 Concentration of M(g)

Given M(g) as in (B.3.2), let us define

H(g) = Px⊥MPx⊥ (B.3.6)

and correspondingly its decoupled term

QH
dec(g

1, g2) = Px⊥QM
dec(g

1, g2)Px⊥ , (B.3.7)

and let

ησ2(t) = 1− 2πσ2ξσ2− 1
2
(t), νσ2(t) = 1− 4πσ4

2σ2 − 1
ξσ2− 1

2
(t), (B.3.8)

where σ2 > 1/2. In this subsection, we show the following result.

Theorem B.24 For any δ > 0, when m ≥ Cδ−2 ∥Cx∥2 n log4 n, we have

∥H(g)− Px⊥∥ ≤ δ (B.3.9)
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∥∥∥∥M(g)− I − 2σ2

1 + 2σ2
xx∗

∥∥∥∥ ≤ 3δ (B.3.10)

∥Px⊥M(g)− Px⊥∥ ≤ 2δ (B.3.11)

holds with probability at least 1−cm−c′ log3 n, where c, c′ andC are some positive numerical constants depending

only on σ2.

Proof LetQH
dec(g

1, g2) be defined as (B.3.7). By using Lemma B.29, we calculate its expectation with respect

to δ, we observe

Eδ

[
QH
dec(g + δ, g − δ)

]
=

1 + 2σ2

m
Px⊥R[1:n]C

∗
g diag (Eδ [ησ2 (|(g − δ)⊛ x|)])CgR

⊤
[1:n]Px⊥

+
1 + 2σ2

m
⟨1,Eδ [ησ2 ((g − δ)⊛ x)]⟩Px⊥

=
1 + 2σ2

m

[
Px⊥R[1:n]C

∗
g diag (ζσ2(|g ⊛ x|))CgR

⊤
[1:n]Px⊥ + ⟨1, ζσ2 (|g ⊛ x|)⟩Px⊥

]
.

Using the results above and Lemma B.30, for all integer p ≥ 1, we observe

(E [∥H − E [H]∥p])1/p

=

(
Eg

[∥∥∥∥1 + 2σ2

m
Px⊥R[1:n]C

∗
g diag (ζσ2(|g ⊛ x|))CgR

⊤
[1:n]Px⊥ − Px⊥

∥∥∥∥p])1/p

=

(
Eg

[∥∥∥∥Eδ

[
QH
dec(g + δ, g − δ)

]
− Px⊥ − 1 + 2σ2

m
⟨1, ζσ2 (|g ⊛ x|)⟩Px⊥

∥∥∥∥p])1/p

≤
(
Eg

[∥∥Eδ

[
QH
dec(g + δ, g − δ)

]
− 2Px⊥

∥∥p])1/p + (Eg

[∣∣∣∣1− 1 + 2σ2

m
⟨1, ζσ2 (|g ⊛ x|)⟩

∣∣∣∣p])1/p

≤
(
Eg1,g2

[∥∥QM
dec(g

1, g2)− 2I
∥∥p])1/p + (Eg

[∣∣∣∣1− 1 + 2σ2

m
⟨1, ζσ2 (|g ⊛ x|)⟩

∣∣∣∣p])1/p

,

where QM
dec(g

1, g2) is defined as (B.3.2), and we have used the Minkowski’s inequality and the Jensen’s

inequality, respectively. By Lemma B.25 and Lemma B.31, we obtain

(E [∥H − E [H]∥p])1/p ≤ Cσ2

(√
n

m
log3/2 n log1/2m+

√
p

√
n

m
+ p

n

m

)
,

where Cσ2 is some numerical constant depending only on σ2. Thus, by using the tail bound in Lemma B.6,

for any t > 0, we obtain

P
(
∥H − E [H]∥ ≥ C1

√
n

m
log3/2 n log1/2m+ t

)
≤ 2 exp

(
−C2

mt2

n

)
for some constants C1, C2 > 0. This further implies that for any δ > 0, if m ≥ C3δ

−2n log3 n logm for some
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positive numerical constant C3, we have

∥H − E [H]∥ ≤ δ,

holds with probability at least 1− 2m−C4 log3 n, where C4 > 0 is numerical constant. Next, we use this result

to bound the term ∥M − E [M ]∥, by Lemma B.30, notice that

∥M − E [M ]∥ ≤ ∥Px⊥ (M − E [M ])Px⊥∥ + 2 ∥Px⊥ (M − E [M ]Px)∥ + ∥Px (M − E [M ])Px∥

≤ ∥H − E [H]∥ + 2 ∥Px⊥Mx∥ + |x∗ (M − E [M ])x| .

Hence, by using the results in Lemma B.26 and Lemma B.27, whenever m ≥ C ∥Cx∥2 δ−2n log4 n we obtain

∥M − E [M ]∥ ≤ 3δ,

holds with probability at least 1 − cm−c′ log3 n. Here c, c′ > 0 are some numerical constants. Similarly, we

have

∥Px⊥ (M − E [M ])∥ ≤ ∥Px⊥ (M − E [M ])Px⊥∥ + ∥Px⊥ (M − E [M ])Px∥

= ∥H − E [H]∥ + ∥Px⊥Mx∥ .

Again, by Lemma B.27, we have

∥Px⊥ (M − E [M ])∥ ≤ 2δ,

holds with probability at least 1− cm−c′ log3 n. By using Lemma B.30, we obtain the desired results.

Lemma B.25 Suppose g1, g2 are independent with g1, g2 ∼ CN (0, 2I), and let QM
dec(g

1, g2) be defined as

(B.3.4), then for any integer p ≥ 1, we have

(
Eg1,g2

[∥∥QM
dec(g

1, g2)− 2I
∥∥p])1/p ≤ Cσ2

(√
n

m
log3/2 n log1/2m+

√
p

√
n

m
+ p

n

m

)
, (B.3.12)

where Cσ2 > 0 is some numerical constant only depending on σ2.

Proof Let b =
(
2σ2 + 1

)
ησ2

(
g2 ⊛ x

)
, set b = (bk)

m
k=1, and writeQM

dec(g
1, g2) = 1

mR[1:n]C
∗
g diag (b)CgR

⊤
[1:n].

By Minkowski’s inequality, we observe

(
Eg1,g2

[∥∥QM
dec(g

1, g2)− 2I
∥∥p])1/p ≤ (Eg1,g2

[∥∥∥∥∥QM
dec(g

1, g2)− 2

m

m∑
k=1

bkI

∥∥∥∥∥
p])1/p

︸ ︷︷ ︸
T1
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+2

∥∥∥∥1 + 2σ2

m

⟨
1, ησ2

(∣∣g2 ⊛ x
∣∣)⟩− 1

∥∥∥∥
Lp︸ ︷︷ ︸

T2

.

For the term T1, conditioned g2 so that b is fixed, Theorem B.12 implies that for any integer p ≥ 1,(
Eg1

[∥∥∥∥∥QM
dec(g

1, g2)− 2

m

m∑
k=1

bkI

∥∥∥∥∥
p

| g2

])1/p

≤ Cσ2 ∥b∥∞

(√
n

m
log3/2 n log1/2m+

√
p

√
n

m
+ p

n

m

)
,

where Cσ2 > 0 is some numerical constant depending only on σ2. Given the fact that ∥b∥∞ ≤ cσ2 for some

constant cσ2 > 0, and for any choice of g2, we have

T1 ≤ Cσ2

(√
n

m
log3/2 n log1/2m+

√
p

√
n

m
+ p

n

m

)
.

For the term T2, Lemma B.31 implies that

T2 =

∥∥∥∥1 + 2σ2

m

⟨
1, ησ2

(∣∣g2 ⊛ x
∣∣)⟩− 1

∥∥∥∥
Lp

≤
C ′σ2√
m
∥Cx∥

√
p,

for some constant C ′σ2 > 0. Combining the results above and use the fact that ∥Cx∥ ≤
√
n, we obtain

(
Eg1,g2

[∥∥QM
dec(g

1, g2)− 2I
∥∥p])1/p ≤ C ′′σ2

(√
n

m
log3/2 n log1/2m+

√
p

√
n

m
+ p

n

m

)
,

where C ′′σ2 > 0 is some numerical constant only depending on σ2.

Lemma B.26 Let g ∈ Cm be a complex Gaussian random variable g ∼ CN (0, I). Let M(g) be defined as

(B.3.2). For any δ ≥ 0, whenever m ≥ Cσ2δ−1 ∥Cx∥2 n logm, we have

|x∗ (M − E [M ])x| ≤ δ

holds with 1−m−C
′
σ2∥Cx∥2n. Here, Cσ2 , C ′σ2 are some numerical constants depending on σ2.

Proof Let h(g) = |x∗M(g)x|1/2 =
√

2σ2+1
m

∥∥∥diag (ζ1/2σ2 (Cxg)
)
Cxg

∥∥∥. Then we have its Wirtinger gradient

∂

∂z
h(g) =

1

2

√
2σ2 + 1

m

∥∥∥diag (ζ1/2σ2 (Cxg)
)
Cxg

∥∥∥−1 [C∗x diag (ζσ2(Cxg))Cxg +C∗x diag (f(Cxg))Cxg] ,

where g1(t) = |t|2
2σ2 exp

(
− |t|

2

2σ2

)
, so that

∥∇gh(g)∥ =
√

2σ2 + 1

m

∥∥∥diag (ζ1/2σ2 (Cxg)
)
Cxg

∥∥∥−1×
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∥C∗x diag (ζσ2(Cxg))Cxg +C∗x diag (g1(Cxg))Cxg∥ .

Thus, we have

∥∇gh(g)∥ ≤
√

2σ2 + 1

m
∥Cx∥

(∥∥∥diag (ζ1/2σ2 (Cxg)
)∥∥∥ + ∥diag (g2(Cxg)∥

)
,

where g2(t) = g1(t)ζ
−1/2
σ2 (t). By using the fact that

∥∥∥ζ1/2σ2

∥∥∥
ℓ∞
≤ 1 and ∥g2∥ℓ∞ ≤ C1 for some constant C1 > 0,

we have

∥∇gh(g)∥ ≤ C2

√
2σ2 + 1

m
∥Cx∥ ,

for some constant C2 > 0. Therefore, we can see that the Lipschitz constant L of h(g) is bounded by

C2

√
2σ2+1
m ∥Cx∥. Thus, by Gaussian concentration inequality, we observe

P (|h(g)− E [h(g)]| ≥ t) ≤ 2 exp

(
−Cσ

2mt2

∥Cx∥2

)
(B.3.13)

holds with some constant Cσ2 > 0 depending only on σ2. Thus, we have

−t ≤ h(g)− E [h(g)] ≤ t (B.3.14)

holds with probability at least 1− 2 exp
(
−Cσ2mt

2

∥Cx∥2

)
. By Lemma B.30, we know that

E
[
h2(g)

]
= x∗E [M(g)]x =

4σ2 + 1

2σ2 + 1
.

This implies that

h2(g) ≤ (E [h(g)] + t)
2

=⇒ h2(g)− E
[
h2(g)

]
≤ 2t

√
E [h2(g)] + t2 ≤ 2t

√
1 + 4σ2

1 + 2σ2
+ t2, (B.3.15)

holds with probability at least 1 − 2 exp
(
−Cσ2mt

2

∥Cx∥2

)
. On the other hand, (B.3.13) also implies that h(g) is

subgaussian, Lemma B.5 implies that

E
[
(h(g)− E [h(g)])

2
]
≤
C ′σ2 ∥Cx∥2

m
=⇒ E

[
h2(g)

]
≤ (E [h(g)])

2
+
C ′σ2 ∥Cx∥2

m

for some constant C ′σ2 > 0 only depending on σ2. Suppose m ≥ C ′′σ2 ∥Cx∥2 for some large constant C ′′σ2 > 0

depending on σ2 > 0, from (B.3.14), we have

h(g) ≥ E [h(g)]− t ≥

√
E [h2(g)]−

C ′σ2 ∥Cx∥2

m
− t.
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Suppose t ≤
√
E [h2(g)]− C′

σ2∥Cx∥2

m , by squaring both sides, we have

h2(g) ≥ E
[
h2(g)

]
−
C ′σ2 ∥Cx∥2

m
+ t2 − 2t

√
E [h2(g)]−

C ′σ2 ∥Cx∥2

m
.

This further implies that

h2(g)− E
[
h2(g)

]
≥ t2 − 2t

√
4σ2 + 1

2σ2 + 1
−
C ′σ2 ∥Cx∥2

m
−
C ′σ2 ∥Cx∥2

m
, (B.3.16)

holds 1−2 exp
(
−Cσ2mt

2

∥Cx∥2

)
. Therefore, combining the results in (B.3.15) and (B.3.16), for any δ ≥ 0, whenever

m ≥ C4δ
−1 ∥Cx∥2 n logm, choosing t = C5δ, we have

∣∣h2(g)− E
[
h2(g)

]∣∣ ≤ δ,
holds with probability at least 1−m−C6∥Cx∥2n.

Lemma B.27 Let g ∈ Cm be a complex Gaussian random variable g ∼ CN (0, I), and let M(g) be defined as

(B.3.2). For any δ > 0, whenever m ≥ Cσ2δ−2 ∥Cx∥2 n log4 n, we have

∥Px⊥Mx∥ ≤ δ,

holds with probability at least 1 − 2m−cσ2 log3 n. Here, cσ2 , Cσ2 are some positive constants only depending on

σ2.

Proof First, let us define decoupled terms

QMx⊥

dec (g1, g2) =
2σ2 + 1

m
Px⊥R[1:n]C

∗
g1 diag

(
νσ2

(
g2 ⊛ x

))
Cg2R⊤[1:n]x, (B.3.17)

QHx⊥

dec (g1, g2) =
2σ2 + 1

m
R[1:n]C

∗
g1 diag

(
νσ2

(
g2 ⊛ x

))
Cg2R⊤[1:n]x, (B.3.18)

where νσ2(t) is defined in (B.3.8). Let CgR
⊤
[1:n] =


g∗1

· · ·

g∗m

 and CδR
⊤
[1:n] =


δ∗1

· · ·

δ∗m

 , then by Lemma B.29, we

observe

Eδ

[
QMx⊥

dec (g + δ, g − δ)
]
=

2σ2 + 1

m
Eδ

[
Px⊥R[1:n]C

∗
g+δ diag (νσ2 ((g − δ)⊛ x))Cg−δR

⊤
[1:n]x

]
=

2σ2 + 1

m

m∑
k=1

Eδ

[
νσ2 ((gk − δk)

∗x)Px⊥(gk + δk) (gk − δk)
∗
x
]
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=
2σ2 + 1

m

m∑
k=1

Px⊥gkEδ∗
kx

[
νσ2 ((gk − δk)

∗x) (gk − δk)
∗
x
]

=
2σ2 + 1

m

m∑
k=1

ζσ2 (g∗kx)Px⊥gkg
∗
kx

=
2σ2 + 1

m
Px⊥R[1:n]C

∗
g diag (ζσ2 (g ⊛ x))CgR

⊤
[1:n]x.

Thus, for any integer p ≥ 1, we have(
Eg

[∥∥∥∥2σ2 + 1

m
Px⊥R[1:n]C

∗
g diag (ζσ2 (g ⊛ x))CgR

⊤
[1:n]x

∥∥∥∥p])1/p

=
(
Eg

[∥∥∥Eδ

[
QMx⊥

dec (g + δ, g − δ)
]∥∥∥p])1/p

≤
(
Eg1,g2

[∥∥∥QMx⊥

dec (g1, g2)
∥∥∥p])1/p ≤ (Eg1,g2

[∥∥∥QHx⊥

dec (g1, g2)
∥∥∥p])1/p .

By Lemma B.28, we have

(
Eg1,g2

[∥∥∥QHx⊥

dec (g1, g2)
∥∥∥p])1/p ≤ Cσ2 ∥Cx∥

[√
n

m

(
1 +

√
n

m
log3/2 n log1/2m

)
√
p+

n

m
p

]
.

Therefore, by Lemma B.6, finally for any δ > 0, whenever m ≥ Cδ−2 ∥Cx∥2 n log4 n we obtain

P (∥Px⊥Mx∥ ≥ δ) ≤ 2m−c log
3 n,

where c, C > 0 are some positive constants.

Lemma B.28 Let g1 and g2 be random variables defined as in (B.3.5), and let QHx⊥

dec (g1, g2) be defined as

(B.3.18). Then for any integer p ≥ 1, we have

(
Eg1,g2

[∥∥∥QHx⊥

dec (g1, g2)
∥∥∥p])1/p ≤ Cσ2 ∥Cx∥

[√
n

m

(
1 +

√
n

m
log3/2 n log1/2m

)
√
p+

n

m
p

]
,

where Cσ2 is some positive constant only depending on σ2.

Proof First, we fix g1, and let h(g2) = QHx⊥

dec (g1, g2). Let g(t) = tνσ2(t), for which the Lipschitz constant

Lf ≤ Cσ2 for some positive constant Cσ2 only depending on σ2. Then given an independent copy g̃2 of g2,

we observe ∥∥∥h(g2)− h(g̃2)
∥∥∥ ≤ 2σ2 + 1

m

∥∥R[1:n]C
∗
g1

∥∥ ∥∥∥g(Cxg
2)− g(Cxg̃2)

∥∥∥
≤
C ′σ2

m

∥∥R[1:n]C
∗
g1

∥∥ ∥Cx∥︸ ︷︷ ︸
Lh

∥∥∥g2 − g̃2
∥∥∥
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where Lh is the Lipschitz constant of h(g2). Given the fact that Eg2

[
h(g2)

]
= 0, by Lemma B.4, for any

t >
√
nLh we have

P
(∥∥h(g2)

∥∥ ≥ t) ≤ eP(∥v∥ ≥ t

Lh

)
≤ e exp

(
−1

2

(
t

Lh
−
√
n

)2
)
,

where v ∈ Rn with v ∼ N (0, I), and we used the Gaussian concentration inequality for the tail bound of

∥v∥. By a change of variable, we obtain

P
(∥∥h(g2)

∥∥ ≥ t+√nLh) ≤ e exp(− 1

2L2
h

t2
)

holds for all t > 0. By using the tail bound above, we obtain

Eg2

[∥∥∥QHx⊥

dec (g1, g2)
∥∥∥p]

=

∫ ∞
t=0

P
(∥∥h(g2)

∥∥p ≥ t) dt
=

∫ (
√
nLh)

p

t=0

P
(∥∥h(g2)

∥∥p ≥ t) dt+ ∫ ∞
t=(
√
nLh)

p
P
(∥∥h(g2)

∥∥ ≥ t1/p) dt
≤
(√
nLh

)p
+ p

∫ ∞
u=
√
nLh

P
(∥∥h(g2)

∥∥ ≥ u)up−1du
=
(√
nLh

)p
+ p

∫ ∞
u=0

P
(∥∥h(g2)

∥∥ ≥ u+
√
nLh

) (
u+
√
nLh

)p−1
du

≤
(√
nLh

)p
+ 2p−2p

(√
nLh

)p−1
e

∫ ∞
u=0

exp

(
− u2

2L2
h

)
du+ 2p−2pe

∫ ∞
u=0

exp

(
− u2

2L2
h

)
up−1du

=
(√
nLh

)p
+

√
π

2
2p−2p

√
n
p−1

Lphe+ 23p/2−3pLphe

∫ ∞
τ=0

e−ττ
p
2−1dτ

≤ 3
√
n
p
Lph

(
1 +

√
π

2
2p−1p+ 23p/2−3pΓ(p/2)

)
≤ 3

(
4
√
nLh

)p
pmax

{
(p/2)p/2,

√
2π
}
,

where we used the fact that Γ(p/2) ≤ max
{
(p/2)p/2,

√
2π
}

for any integer p ≥ 1. By Corollary B.13, we

know that

Eg1

[∥∥R[1:n]C
∗
g1

∥∥p] ≤ cpσ2

√
m
p
(
1 +

√
n

m
log3/2 n log1/2m+

√
n

m

√
p

)p
,

where cσ2 is some constant only depending only onσ2. Therefore, using the fact thatLh = C ′σ2

∥∥∥R[1:n]C
∗
g1

∥∥∥ ∥Cx∥ /m

and p1/p ≤ e1/e, we obtain

(
Eg1,g2

[∥∥∥QHx⊥

dec (g1, g2)
∥∥∥p])1/p ≤ C ′′σ2 ∥Cx∥

√
n

m

(
1 +

√
n

m
log3/2 n log1/2m+

√
n

m

√
p

)
√
p

= C ′′σ2 ∥Cx∥
[√

n

m

(
1 +

√
n

m
log3/2 n log1/2m

)
√
p+

n

m
p

]
,
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where C ′′σ2 > 0 is some constant depending only on σ2.

Auxiliary Results. The following are some auxiliary results used in the main proof.

Lemma B.29 Let ξσ2 , ζσ2 , ησ2 and νσ2 be defined as (24.2.1) and (B.3.8), for t ∈ C, we have

Es∼CN (0,1) [ξσ2(t+ s)] = ξσ2+ 1
2
(t)

Es∼CN (0,1) [ησ2(t+ s)] = ζσ2(t)

Es∼CN (0,1) [ζσ2(s)] =
1

2σ2 + 1

Es∼CN (0,1)

[
|t|2 ζσ2(s)

]
=

4σ2 + 1

(2σ2 + 1)
2

Es∼CN (0,2) [ησ2(s)] =
1

2σ2 + 1

Es∼CN (0,1) [(t+ s)νσ2(t+ s)] = tζσ2(t).

Proof Let sr = ℜ(s), si = ℑ(s) and tr = ℜ(t), ti = ℑ(t), by definition, we observe

Es∼CN (0,1) [ξσ2(t+ s)]

=
1

2πσ2

1

π

∫
s

exp

(
−|t+ s|2

2σ2

)
exp

(
− |s|2

)
ds

=
1

2π2σ2

∫ +∞

sr=−∞
exp

(
− (sr + tr)

2

2σ2
− s2r

)
dsr

∫ +∞

si=−∞
exp

(
− (si + ti)

2

2σ2
− s2i

)
dsi

=
1

2π (σ2 + 1/2)
exp

(
− |t|2

2 (σ2 + 1/2)

)
= ξσ2+ 1

2
(t).

Thus, by definition of ησ2 and ζσ2 , we have

Es∼CN (0,1) [ησ2(t+ s)] = 1− 2πσ2Es∼CN (0,1)

[
ξσ2−1/2(t+ s)

]
= 1− 2πσ2ξσ2(t) = ζσ2(t).

For Et∼CN (0,1) [ζσ2(t)], we have

Et∼CN (0,1) [ζσ2(t)] = 1− 2πσ2Et∼CN (0,1) [ξσ2(t)]

= 1− Et∼CN (0,1)

[
exp

(
− |t|

2

2σ2

)]

= 1− 2σ2

2σ2 + 1
=

1

1 + 2σ2
.
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For Et∼CN (0,1)

[
|t|2 ζσ2(t)

]
, we observe

Et∼CN (0,1)

[
|t|2 ζσ2(t)

]
=

1

π

∫
t

|t|2
[
1− exp

(
− |t|

2

2σ2

)]
exp

(
− |t|2

)
dt

= Et∼CN (0,1)

[
|t|2
]
− 1

π

∫
t

|t|2 exp
(
−2σ2 + 1

2σ2
|t|2
)
dt

= 1− 2σ2

2σ2 + 1
E
t∼CN

(
0, 2σ2

2σ2+1

)E [|t|2]
= 1−

(
2σ2

2σ2 + 1

)2

=
4σ2 + 1

(2σ2 + 1)
2 .

In addition, by using the fact that Es∼CN (0,1) [ξσ2(t+ s)] = ξσ2+ 1
2
(t), we have

Et∼CN (0,2) [ησ2(t)] = Et1,t2∼i.i.d.CN (0,1) [ησ2(t1 + t2)] = Et1∼CN (0,1) [ζσ2(t1)] =
1

1 + 2σ2

For the last equality, first notice that

Es∼CN (0,1) [sξσ2(t+ s)] =
1

π

∫
s

s
1

2πσ2
exp

(
−|t+ s|2

2σ2

)
exp

(
− |s|2

)
ds

=
1

2π2σ2
exp

(
− |t|2

1 + 2σ2

)∫
s

s exp

(
−1 + 2σ2

2σ2

∣∣∣∣s+ t

1 + 2σ2

∣∣∣∣2
)
ds

=
1

2π2σ2
exp

(
− |t|2

1 + 2σ2

)
× 2π

σ2

1 + 2σ2
× −t

1 + 2σ2

=
−t

π (1 + 2σ2)
2 exp

(
− |t|2

1 + 2σ2

)
=

−t
1 + 2σ2

ξσ2+ 1
2
(t).

Therefore, we have

Es∼CN (0,1)

[
(t+ s)ξσ2− 1

2
(t+ s)

]
= tEs∼CN (0,1)

[
ξσ2− 1

2
(t+ s)

]
+ Es∼CN (0,1)

[
sξσ2− 1

2
(t+ s)

]
= tξσ2(t)− t

2σ2
ξσ2(t) =

2σ2 − 1

2σ2
tξσ2(t).

Using the result above, we observe

Es∼CN (0,1) [(t+ s)νσ2(t+ s)] = t− 4πσ4

2σ2 − 1
Es∼CN (0,1)

[
(t+ s)ξσ2− 1

2
(t+ s)

]
= t

(
1− 2πσ2ξσ2(t)

)
= tζσ2(t).
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Lemma B.30 Let g ∼ CN (0, I), and M(g), H(g) be defined as (B.3.2) and (B.3.6), we have

Eg [M(g)] = Px⊥ +
1 + 4σ2

1 + 2σ2
xx∗, Eg [H(g)] = Px⊥ .

Proof By Lemma B.29 and suppose CgR
⊤
[1:n] =


g∗1

· · ·

g∗m

 , we observe

E [M ] =
2σ2 + 1

m

m∑
k=1

E [ζσ2(g∗kx)gkg
∗
k]

=
2σ2 + 1

m

m∑
k=1

{E [ζσ2(g∗kx)]E [Px⊥gkg
∗
kPx⊥ ] + E [ζσ2(g∗kx)Pxgkg

∗
kPx]}

= Px⊥ +
2σ2 + 1

m
xx∗

m∑
k=1

E
[
ζσ2 (g∗kx) |g∗kx|

2
]

= Px⊥ +
4σ2 + 1

2σ2 + 1
xx∗.

Thus, we have

E [H] = Px⊥E [M ]Px⊥ = Px⊥

[
Px⊥ +

4σ2 + 1

2σ2 + 1
xx∗

]
Px⊥ = Px⊥

Lemma B.31 Let g ∼ CN (0, I) and g̃ ∼ CN (0, 2I), for any positive integer p ≥ 1, we have∥∥∥∥1− 1 + 2σ2

m
⟨1, ζσ2 (g ⊛ x)⟩

∥∥∥∥
Lp

≤ 3√
m

(
2σ2 + 1

)
σ

∥Cx∥
√
p,∥∥∥∥1− 1 + 2σ2

m
⟨1, ησ2 (g̃ ⊛ x)⟩

∥∥∥∥
Lp

≤ 3√
m

σ2
(
2σ2 + 1

)(
σ2 − 1

2

)3/2 ∥Cx∥
√
p.

Proof Let h(g) = 1+2σ2

m ⟨1, ζσ2 (g ⊛ x)⟩ − 1 and let h′(g̃) = 1
m ⟨1, ησ2 (|g̃ ⊛ x|)⟩, by Lemma B.29, we know

that

Eg [h(g)] = 0, Eg̃ [h
′(g̃)] = 0.

And for an independent copy g′ of g, we have

|h(g)− h(g′)| ≤ 1 + 2σ2

m

∣∣∣∣⟨1, exp(− 1

2σ2
|g ⊛ x|2

)
− exp

(
− 1

2σ2
|g′ ⊛ x|2

)⟩∣∣∣∣
≤ 1 + 2σ2

m

∥∥∥∥exp(− 1

2σ2
|g ⊛ x|2

)
− exp

(
− 1

2σ2
|g′ ⊛ x|2

)∥∥∥∥
1



APPENDIX B. AUXILLARY RESULTS FOR CONVOLUTIONAL PHASE RETRIEVAL 231

≤ 1 + 2σ2

√
mσ

∥Cx(g − g′)∥ ≤ 1 + 2σ2

√
mσ

∥Cx∥ ∥g − g′∥ ,

where we used the fact that exp
(
− x2

2σ2

)
is 1
σ e
−1/2-Lipschitz. By applying Gaussian concentration inequality

in Lemma B.3, we have

P (|h(g)| ≥ t) = P
(∣∣∣∣1 + 2σ2

m
⟨1, ζσ2 (|g ⊛ x|)⟩ − 1

∣∣∣∣ ≥ t) ≤ exp

(
− σ2mt2

2 (2σ2 + 1)
2 ∥Cx∥2

)
,

for any scalar t ≥ 0. Thus, we can see that h(g) is a centered (σ2+1)
2∥Cx∥2

σ2m -subgaussian random variable, by

Lemma B.5, we know that for any positive integer p ≥ 1

∥h(g)∥Lp ≤ 3

(
2σ2 + 1

)
∥Cx∥

σ
√
m

√
p,

as desired. For h′(g̃), we can obtain the result similarly.
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