
Environmental Research Letters

LETTER • OPEN ACCESS

Urban versus rural health impacts attributable to PM2.5 and O3 in
northern India
To cite this article: Alexandra Karambelas et al 2018 Environ. Res. Lett. 13 064010

 

View the article online for updates and enhancements.

This content was downloaded from IP address 160.39.175.247 on 15/10/2018 at 21:03

https://doi.org/10.1088/1748-9326/aac24d


Environ. Res. Lett. 13 (2018) 064010 https://doi.org/10.1088/1748-9326/aac24d

LETTER

Urban versus rural health impacts attributable to PM2.5
and O3 in northern India

Alexandra Karambelas1,7 , Tracey Holloway2, Patrick L Kinney3, Arlene M Fiore4, Ruth DeFries5, Gregor
Kiesewetter6 and Chris Heyes6

1 The Earth Institute, Columbia University, New York, NY, United States of America
2 Nelson Institute Center for Sustainability and the Global Environment, University of Wisconsin—Madison, Madison, WI, United States

of America
3 School of Public Health, Boston University, Boston, MA, United States of America
4 Department of Earth and Environmental Sciences and Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY,

United States of America
5 Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, United States of America
6 Air Quality and Greenhouse Gases, International Institute for Applied Systems Analysis, Laxenburg, Austria
7 Author to whom any correspondence should be addressed.

OPEN ACCESS

RECEIVED

8 March 2018

REVISED

30 April 2018

ACCEPTED FOR PUBLICATION

3 May 2018

PUBLISHED

25 May 2018

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 3.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the
title of the work, journal
citation and DOI.

E-mail: ak4040@columbia.edu

Keywords: emissions, air quality, India, health, rural, urban

Supplementary material for this article is available online

Abstract
Ambient air pollution in India contributes to negative health impacts and early death. Ground-based
monitors often used to quantify health impacts are located in urban regions, yet approximately 70%
of India’s population lives in rural communities. We simulate high-resolution concentrations of fine
particulate matter (PM) and ozone from the regional Community Multi-scale Air Quality model over
northern India, including updated estimates of anthropogenic emissions for transportation,
residential combustion and location-based industrial and electrical generating emissions in a new
anthropogenic emissions inventory. These simulations inform seasonal air quality and health impacts
due to anthropogenic emissions, contrasting urban versus rural regions. For our northern India
domain, we estimate 463 200 (95% confidence interval: 444 600–482 600) adults die prematurely each
year from PM2.5 and that 37 800 (28 500–48 100) adults die prematurely each year from O3. This
translates to 5.8 deaths per 10 000 attributable to air pollution out of an annual rate of 72 deaths per
10 000 (8.1% of deaths) using 2010 estimates. We estimate that the majority of premature deaths
resulting from PM2.5 and O3 are in rural (383 600) as opposed to urban (117 200) regions, where we
define urban as cities and towns with populations of at least 100 000 people. These findings indicate
the need for rural monitoring and appropriate health studies to understand and mitigate the effects of
ambient air pollution on this population in addition to supporting model evaluation.

1. Introduction

Worldwide, more than 7 million adult premature
deaths each year are attributable to ambient air pol-
lution (Lim et al 2012, Forouzanfar et al 2015, 2016).
An additional estimated 600 000 children are annually
subject to premature mortality resulting from long-
term ambient air pollution exposure (UNICEF 2016).
Human health impacts from air pollution dispropor-
tionately affect populations in countries undergoing
rapid industrialization, population growth, urbaniza-
tion, and motorization. In India, annual premature

mortality estimates due to ambient air pollution are
estimated between 580 000 (Ghude et al 2016) to more
than one million people (Health Effects Institute 2017).
Premature deaths due to air pollution can bring signifi-
cant monetary losses to the Indian economy (Ghude
et al 2016). However, many health analyses fail to
reflect differences across urban versus rural popu-
lations, important considering India’s population is
largely rural.

The Global Burden of Disease (GBD) studies seek
to quantify health effects (mortality and morbidity)
due to risk factors, including environmental risks such
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as ambient outdoor air pollution (Brauer et al 2012,
Lim et al 2012, Lelieveld et al 2015, Forouzanfar
et al 2016). Estimates to ambient air pollution risk-
attributable mortality and morbidity are calculated
usingbaseline mortalities for specific diseases and dose-
response relationships derived from cohort studies.
However, evaluating ambient air pollution impacts
requires accurate quantitative estimates of concentra-
tions at the surface, where people are subject to harmful
exposure effects.

Pollutant exposures are estimated using a com-
bination of atmospheric chemistry models, satellite
observations, and in situ measurements. Tradi-
tionally, surface measurements reflect the best
recording of ambient concentrations to determine
exposure-response relationships. Yet, in India, sur-
face monitoring is largely limited to urban regions
as opposed to rural villages, and available observa-
tions supported by the Central PollutionControl Board
(CPCB) in India do not have an extensive history (Cen-
tral Pollution Control Board 2008, ENVIS Centre on
Control of Pollution 2016). We can fill in some of these
gaps using long-term satellite tropospheric column
averages, which show spatial variations in increased
pollution over time e.g. Duncan et al (2015) that
may have slowed in recent years (Hilboll et al 2017).
Previous health impact assessments in India have
used satellite observations to infer surface concentra-
tions and health impacts of PM2.5 at the district level
(Chowdhury and Dey 2016). Advanced chemical trans-
port models are increasingly used to focus on pollution
across India regionally, from evaluating and devel-
oping NOx emissions inventories (Ghude et al 2013,
Jena et al 2015) to testing modeled O3 sensitivities in
the region (Surendran et al 2015, Sharma et al 2016), in
addition to estimating premature mortality due to air
pollution (Ghude et al 2016). However, some mod-
els may be too coarse to resolve large topographic
gradients that affect modeled airflow and thus pollu-
tant distributions, something particularly important in
northern India due to the Himalayas. Yet the current
capacity of atmospheric chemistry models to produce
surface concentrations remains largely limited by our
understanding of emissions inventories.

Emissions remain challenging to quantify as a result
of ongoing industrialization, motorization, and urban-
ization in India. Many different emissions inventories
for use in atmospheric chemistry models have been
used for understanding air quality impacts in India
(Zhang et al 2009, Amann et al 2011, EC-JRC/PBL
2011, Kurokawa et al 2013, Guttikunda and Jawahar
2014, Pandey et al 2014, Sadavarte and Venkatara-
man 2014), however emissions estimates remain highly
uncertain in magnitude—NOx and SO2 range between
5–6.75 Tg and 7–9 Tg per year respectively—and loca-
tion (Saikawa et al 2017). In addition estimating rural
emissions by extrapolation from urban data can be
problematic. Karambelas et al (2018) found large low
biases across modeled concentrations evaluated with

satellite and surface observations, demonstrating the
importance of having representative inventories and
high-resolution chemical transport models. Emissions
inventories are invaluable to air quality modeling and
for estimating human health impacts due to pollution
exposure, playing a vital role in advancing air quality
and health understanding in India.

In this study, we present a high-resolution anthro-
pogenic emissions inventory to identify pollution
impacts on urban and rural populations. We update
anthropogenic emissions from the Greenhouse Gas-
Air Pollution Interactions and Synergies (GAINS)
model (0.5◦ by 0.5◦) using urban and rural popula-
tion densities and emissions activity information for
predominant anthropogenic sectors—domestic com-
bustion and transportation. Applying this new updated
emissions inventory at a high horizontal resolution
(12 km by 12 km), the US Environmental Protec-
tionAgency (EPA)CommunityMulti-scaleAirQuality
(CMAQ) model, yields premature mortality estimates
that are higher in rural regions compared to urban
areas with populations greater than 100 000 people.
Results demonstrate the sensitivity of health impact
calculations to emissions inventories, and the value of
expanding surfacemonitoring in rural India to improve
air quality and accuracy of health impact assessments
of the region.

2. Methods

2.1. Modeling
Air quality modeling was performed using the regional
CMAQ model version 5.1. Previously, CMAQ has been
used in India to assess O3 regimes (Sharma et al
2016, Sharma and Khare 2017) and evaluate urban
and rural emissions uncertainties (Karambelas et al
2018). We completed simulations for four season-
ally representative months using 2010 meteorology
and emissions: January, April, July, and October for
winter, pre-monsoon spring, monsoon, and post-
monsoon fall respectively. Model processes include
surface- and upper-level emissions, photolysis, gas-
and particle-phase chemistry, deposition, and disper-
sion Byun and Schere (2006). Simulations include
the Carbon Bond 05 (CB05) chemical mechanism
(Yarwood et al 2005) and AERO 6 aerosol mecha-
nism, the inclusion of windblown dust (Dong et al
2015) with enhancements following Karambelas et al
(2018), and in-line lightning NOx production (Allen
et al 2012). Boundary and initial conditions are
from a larger, 36 km by 36 km domain (Karam-
belas et al 2018). Meteorology is simulated using
the Weather Research and Forecasting (WRF) model
v3.2 and Preprocessing System with European Center
for Medium-Range Weather Forecasting ERA-Interim
globally gridded reanalysis data (Dee et al 2011). WRF
is used to interpolate weather data from an 80 km res-
olution over 60 vertical layers at 6 hour increments
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to our model domain over 36 vertical sigma layers
from the surface to approximately 150 hPa using the
Grell cumulus parameterization Grell and Devenyi
(2002). For use in CMAQ, WRF output was ultimately
preprocessed with the Meteorology-Chemistry Inter-
face Processor (MCIP). Planetary boundary height,
temperature, and precipitation from MCIP and eval-
uated with TRMM show MCIP captures seasonality
in meteorology for the region, though underesti-
mates precipitation (supplemental figure 1 available at
stacks.iop.org/ERL/13/064010/mmedia).

2.2. Emissions
We use biogenic, biomass burning, and anthro-
pogenic emissions for year 2010 gridded to 12 by
12 km and vertically distributed (supplemental table
1). Monthly biogenic emissions are from the Com-
munity Land Model with the Model of Emissions and
Gases from Nature (Guenther et al 2006) (downloaded
from http://lar.wsu.edu/megan/guides.html). Monthly
biomass burning emissions are from the Global Fire
Emissions Database including small fires (GFED v4.1s)
(van Der Werf et al 2010) and were vertically dis-
tributed following methods used in Karambelas et al
(2018). Annual total anthropogenic emissions for 2010
are from the GAINS Model gridded globally following
the ECLIPSE (Evaluating the Climate and Air Qual-
ity Impacts of Short-Lived Pollutants) project version
5a (Stohl et al 2015, Klimont et al 2017). In addi-
tion to regridding anthropogenic emissions from the
global 0.5 degree by 0.5 degree to 12 km by 12 km over
northern India, we distribute anthropogenic emissions
vertically according to Simpson et al (2012). Updates
according to urban and rural activities and popula-
tion distributions where cities and towns greater than
100 000 people are designated as urban were included
for the domestic combustion and transportation sec-
tors to provide enhanced detail at the higher domain
resolution. Emissions from electricity generation were
also updated based on power plant location informa-
tion. More details on population data and energy sector
emissions updates can be found in the supplemental
information. Our urban designation is different than
used for population distribution in India, that states
an urban population must have (1) at least a popula-
tion of 5000; (2) 75% of the male working population
is employed in non-agricultural work; and (3) the den-
sity is at least 400 people per square kilometer. Our
urban-rural designations result in a distribution of
79% rural and 21% urban, and is approximately 2%
more rural (less urban) than the 2001 population dis-
tribution off of which our data is based.

Solid fuel based cooking is one of the main sources
of primary PM emissions in India, particularly among
rural communities where biomass is freely available
and access to clean fuels like liquid petroleum gas
(LPG) or cookstoves that use them may be lim-
ited in availability and cost. Recent studies found
residential combustion emissions are attributable for

20%–25% of premature deaths associated with ambi-
ent PM2.5 air pollution (Conibear et al 2018, GBD
MAPS Working Group 2018). We reallocate emis-
sions from the domestic cooking sector using state
totals and gridded population data following greater
LPG consumption in urban regions and more tradi-
tional biomass burned in rural regions. Information on
distinctions between urban and rural domestic cook-
ing fuel use were from Pachauri et al (2013), and
updated emissions were gridded according to urban
and rural population activity fractions across each state.
We did not include other socio-demographic factors
such as proximity to forest edge (Winijkul et al 2016a,
2016b), yet we recognize this may be a relevant factor in
emissions allocation.

Transportation emissions were adjusted according
to vehicle type: mopeds, motor-cycles, light duty cars,
light duty trucks, buses, and heavy duty trucks. Based
on best available information from Indian transporta-
tion research on vehicle population composition in
the Mumbai metropolitan region (Shirgaonkar 2012)
and personal communications (with Dr. Jens Borken,
AIR, IIASA in July 2015), emissions for urban and
rural regions per vehicle type are distributed according
to ratios in supplemental table 2. Equal distribution
is given to urban and rural mopeds due to their
accessibility for both low-income and middle-class
households. Urban populations operate more motor-
cycles, light duty cars and trucks, while buses and
heavy-duty trucks are operated in greater frequency
in rural areas. Assumptions regarding vehicle fleet age
are not included in the redistribution. Urban and rural
emissions were gridded based on respective population
distributions.

The final emissions inventory included the updated
sectors merged with non-updated sectors including
agriculture, non-road, industry, and other sectors.

2.3. Estimating premature mortality
We use parameters from integrated exposure response
functions from the GBD 2013 study (Cohen et al
2016, Forouzanfar et al 2015, World Health Organi-
zation 2016) to calculate the relative risk associated
with diseases attributable to an excess concentration
of ambient PM2.5. The attributable fraction of cause-
specificmortality related to excess ambient airpollution
is multiplied by our population dataset to estimate
the number of premature deaths per grid cell.

We estimate the effects of long-term exposure to
PM2.5 on deaths due to chronic obstructive pulmonary
disease (COPD), ischemic heart disease (IHD), lung
cancer, and stroke. Baseline mortality rate estimates for
these outcomes in India are from the World Health
Organization (WHO) (World Health Organization
2017) and have been previously used for ambient air
pollution health assessments in India (Chowdhury and
Dey 2016, Ghude et al 2016). Our work follows meth-
ods similar to Ghude et al (2016), Burnett et al (2014)
and Apte et al (2015). We estimate annual premature
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Figure 1. Anthropogenic emissions for India (ECLIPSE v5a; www.iiasa.ac.at/web/home/research/researchPrograms/air/
Global_emissions.html) with updated population and activity information for (a) annual total NOx, (b) SO2, and (c) primary
PM2.5 . Emissions are shown for India only, yet emissions exist elsewhere in the domain including in Pakistan, Bangladesh, and Nepal.
All non-model domain regions are colored in gray.

mortality (ΔM𝑗) attributable to estimated annual aver-
age PM2.5 concentrations as a result of disease j, where
instances of IHD and stroke are age-dependent, follow-
ing:

Δ𝑀𝑗 = 𝑌𝑗 ×
𝑅𝑅𝑗−1

𝑅𝑅𝑗

× 𝑃 (1)

where Y𝑗 is the baseline mortality rate for a partic-
ular disease and P is total population. We apply the
same baseline mortality rates across India, but we rec-
ognize that there are limitations to this method. We
use relative risk tables parameters from GBD (2013) in
calculating relative risk for disease j using an integrated
exposure response (IER) function following Burnett
et al (2014):

𝑅𝑅𝑗 = 1 + 𝑎𝑗 × [1 − exp(−𝛾𝑗(Δ𝑃𝑀2.5)𝛿𝑗 )] (2)

where 𝛼, 𝛾 , and 𝛿 are disease-dependent parameters
(Burnett et al 2014, Apte et al 2015). ΔPM2.5 is the
excess PM2.5 beyond an annual average counterfac-
tual minimum risk concentration commonly placed
between 5.8–8.0 𝜇g m−3 (Chowdhury and Dey 2016,
Ghude et al 2016). Other recent estimates have used
nonlinear power law functions derived from cohort
studies to estimate relative risk attributable to PM2.5
in India which result in lower premature mortal-
ity estimates compared to using IER methodology
(Chowdhury and Dey 2016) and references therein,
and we include analysis using this method in the
supplemental information. We calculate the 95% con-
fidence interval of disease-specific relative risk at each
grid cell to define a range of mortality estimates
attributable to PM2.5 exposure.

We estimate premature deaths from COPD due to
long-term exposure of estimated annual average con-
centrations of maximum daily 8 hour average (MDA8)
O3 following Ghude et al (2016) and Ostro (2004).

We use the relative risk calculation:

𝑅𝑅 =
[
𝑋 + 1
𝑋0 + 1

]𝛿
(3)

where theminimum-risk concentration,X0 , is 37.6 ppb
(range: 33.3–41.9 ppb) and the factor 𝛿 is 0.1521, both
derived from the GBD assessment (Lim et al 2012).
This minimum-risk concentration range was used to
estimate minimum and maximum mortality impacts.
To estimate ΔM attributable to annual average MDA8
O3, we substitute RR from equation (3) into equa-
tion (1). Premature mortality for both PM2.5 and O3
is estimated for adults 25 years and older, meaning our
estimates are likely conservative considering they do
not take into account infant, child, and young adult
mortality. Finally, we apply grid-cell specific popula-
tion distributions to assess differences across urban and
rural regions, with urban defined as towns and cities
with greater than 100 000 people in total respectively.

3. Results

3.1. Updated annual emissions for northern India
Domain-wide 2010 annual emissions of anthropogenic
NOx, SOx, and primary PM2.5 (elemental carbon [EC],
organic carbon [OC]) indicate spatial variability across
the Indo-Gangetic Plain. Emissions vary across the
region, with many instances of localized high values
indicative of regions of relatively higher population
density. EmissionsofNOx (figure1(a)) andSO2 (figure
1(b)) exhibit similar distributions, with annual totals in
the north India region (model domain) of 2.3 Tg N
(2.6 Tg N) and 6.3 Tg (6.9 Tg) respectively, where
there are many concentrated regions of emissions and
fewer emissions from area sources, however this is
much more pronounced among the SO2 emissions
due to power plants being a main source. Emissions
of NOx are slightly greater than reported in a recent
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O3, Annual average

PM2.5, Annual average

Figure 2. Four-month estimated annual average concentra-
tions of (a) PM2.5 and (b) maximum daily 8 hour O3 using
January, April, July, and October monthly average concentra-
tions for use in relative risk calculations. PM2.5 concentrations
are greatest along the Indo-Gangetic Plain where popula-
tion density is greatest. O3 concentrations reflect regions of
slightly lower O3 due to inhibited O3 formation as well as
NOx titration along the Indo-Gangetic Plain with seasonal
variations.

total India 2005 inventory of 1.9 TgN derived using
satellite tropospheric columns (Ghude et al 2013), but
emissions of both NOx and SO2 are less than the
range (5–6.5 TgN and 7–9.5 Tg SO2 respectively for
2010) of a recent comparative analysis (Saikawa et al
2017), as expected considering our simulations cover
the northernmost half of India.

Particulate emissions are largely dominated by the
domestic combustion sector, emissions from which are
strongly dependent on population density and avail-
ability of combustible materials. Total PM2.5 emissions
for the north India domain (2.7 Tg) are about one-third
of those used in recent studies covering all of India
(9–9.1 Tg) (Venkataraman et al 2017, GBD MAPS
Working Group 2018). Emissions indicate a high
number of localized peaks in PM2.5 emissions, and,
unlike NOx and SO2 emissions, broad regions of lower

levels of emissions (figure 1(c)). Variations in emis-
sions magnitude indicate relatively densely populated
villages among low-populated rural areas and the effect
these different population distributions have on total
emissions. Adjusting emissions according to urban-
rural population and activity distribution information
resolves detailed urban and rural differences for more
precise air quality modeling.

3.2. Estimated annual concentrations of surface
PM2.5 and O3
Estimated annual average concentrations of PM2.5
and MDA8 O3 using four seasonally representa-
tive months are shown in figure 2; monthly average
concentrations are shown in supplemental figure 2.
Modeled average concentrations for PM2.5 and MDA8
O3 are 25.5𝜇g m−3 and 41.7 ppb in northern India
respectively (figures 2(a) and (b) respectively). Con-
centrations of PM2.5 in the New Delhi National
Capital Region are much higher (167.4 𝜇g m−3). Con-
centrations of both pollutants are relatively higher
along the Indo-Gangetic Plain (IGP), corresponding
with population density. South of the IGP, annual
mean concentrations of PM2.5 are comparatively low,
between 30 and 40 𝜇g m−3 with some localized
instances of concentrations greater than 50 𝜇g m−3

including near Ahmedabad to the west and Kolkata to
the east. Localized instances of higher concentrations
are predominantly from primary PM2.5 species such as
elemental and organic carbon (supplemental figure 3).
Ozone concentrations exhibit local minima in highly
populated urban areas, for instance in Ahmedabad and
most noticeably Delhi, where concentrations average
34.3 ppb as a result of NOx titration due to modeled
high NO2 concentrations in excess of 20 ppb.

We evaluate model performance for 2010 with
available observations from India’s CPCB. Modeled
O3 exhibits a minimal high bias (NMB = +3.5%)
across nine monitor locations. However at Delhi
monitor locations model biases are actually low on
average in comparison due to an overestimation of
modeled O3 depletion from NOx titration. Aver-
age high O3 biases exhibited across northern India
is exhibited in other CMAQ (Sharma et al 2016
andWRF-ChemGhude et al2016) analyses.Compared
to two sites in Delhi, modeled daily PM2.5 concen-
trations exhibit a slight high bias of +6.0%. Despite
low model biases, normalized mean errors are quite
high (O3: 83.4%; PM2.5 45.7%) and spatial correla-
tions are poor (O3: −0.29; PM2.5: +0.41). Evaluation
with CPCB measurements is limited due to challenges
such as unavailable data and the influence of very
local sources on measured concentrations. Finally, to
determine if the model can represent annual aver-
age values of PM2.5 and O3 from the four month
simulations, we compare our modeled values with
long-term average concentrations at available moni-
tors from 1 January 2010– 31 December 2014 (detailed
in the supplemental information). The four-month
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Total urban premature mortalityTotal rural premature mortality

Baseline estimated annual premature deaths

Figure 3. Annual estimates of premature mortality in deaths per 12 km by 12 km grid cell for adults greater than 25 years due to excess
exposure to (a) PM2.5 , (b) MDA8 O3. Average deaths per grid cell due to PM2.5 (O3) in India are 19 (2) adults, and maximum deaths
per grid cell are 5580 (320) adults. Using ratios of grid-total urban and rural distributions, we also estimate (c) rural and (d) urban
premature mortality distributions and quantify air quality impacts on these populations where the maximum deaths per grid cell due
to PM2.5 (O3) are 4450 (200) in urban regions and 3020 (170) in rural regions.

average concentrations compare well with observa-
tions at nine monitor locations in Delhi for PM2.5—
163𝜇g m−3 modeled and 160𝜇g m−3 observed—and
at 23 monitor locations in the IGP for annual average
O3—22 ppb modeled and 21 ppb observed. Evaluation
metrics for NO2, SO2, and PM10 for 2010 are shown in
supplemental table 3.

3.3. Adult premature mortality in northern India
Using representative annual average concentrations
of PM2.5 and O3, we calculate premature mortality
attributable to these pollutants within northern India.

Estimated population-weighted annual average
concentrations of PM2.5 are 72.1 𝜇g m−3 in northern
India. We estimate 463 200 (95% CI: 444 600–482 600)
annual premature adults deaths resulting from excess
PM2.5 pollution in northern India. Concentrations
and adult premature deaths from COPD, IHD, stroke,
and LC are greatest along IGP (figure 3(a)), where

most grid cells reflect annual premature deaths
between 40 and 75 adults and several localized hotspots
estimate more than 300 adults deaths attributable to
PM2.5 (i.e. in New Delhi). In far northwestern India
where the population and emission density is low, there
are some cells where zero deaths are attributable to
PM2.5. Estimated annual average modeled concentra-
tions in Delhi and Kolkata are 152.7 𝜇g m−3 and 144.4
𝜇g m−2, respectively, well above the Indian National
Ambient Air Quality Standard (NAAQS) of 40 ug m−3

(annual average) and the WHO guideline of 10 ug m−3.
The populations of Delhi and Kolkata are 16.8 and
4.5 million people according to the 2011 Census,
respectively. Using the average concentration and total
populations of Delhi (National Capital Territory) and
Kolkata, we find that approximately 12 200 (11 700–
12 800) and 3300 (3600–3900) premature deaths occur
each year in Delhi and Kolkata, respectively, as a result
of excess PM2.5. Our estimate of premature mortality
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Lung cancer

Figure 4. Total annual cause-specific urban (light blue) and rural (dark blue) premature death estimates for PM2.5 attributable
mortality, and average cause-specific urban (yellow) and rural (orange) premature death estimates for MDA8 O3 attributable mortality.
All premature mortality estimates for MDA8 O3 are the result of chronic obstructive pulmonary disease (COPD). Total deaths are
in tens of people, with the all-cause urban (rural) mortality estimated to be 117 200 (383 600). Stroke and IHD lead to the greatest
number of premature deaths, while lung cancer is estimated to cause relatively few premature deaths in both urban and rural regions.

in Delhi is about 50% greater than the 8300 deaths
from Amann et al (2017), likely due to our aver-
age modeled concentration being greater by nearly
30𝜇g m−3 and differences in model resolution, emis-
sions, and population datasets. Values for other cities
atop the WHO most polluted cities list are included in
the Supplemental Information.

Larger numbers of premature deaths attributable
to MDA8 O3 are evident across the IGP than in central
India (figure 3(b)). The average population weighted
MDA8 O3 concentration in northern India is 56.5 ppb.
Exposure to O3 contributes to approximately 37 600
(28 500–48 100) adult lives lost annually. In Delhi, the
MDA8 O3 concentration of 34.3 ppb is lower then both
the O3 ambient air quality standards of both India and
the WHO (50 ppb) due to NOx titration, while the
average MDA8 O3 concentration in Kolkata (59.5 ppb)
is in excess of these standards. Ozone-attributable
COPD deaths in these cities are an estimated 100
and 315, respectively. In contrast to PM2.5, there are
many grid cells across India where fewer than five
premature adult deaths are attributable to O3, sug-
gesting that PM2.5 rather than O3 plays a larger health
risk to the northern India population.

3.3.1. Urban and rural adult premature deaths
Usingurbanand rural populationdistributions,wefind
that excessPM2.5 andO3 pollutionaffects rural popula-
tions three to five times larger, with annual premature
adult deaths in rural regions of 383 600 adults (fig-
ure 3(c)) compared to 117 200 deaths in urban regions

(figure 3(d)). An estimated 352 400 premature deaths
in rural regions are attributable to excess PM2.5, com-
pared to an estimated 110 800 adults in urban regions.
Rural deaths correspond with a greater quantity of pri-
mary particulate emissions (2.3 Tg of elemental and
organic carbon) versus urban (0.48 Tg). An urban-
rural effect is found for O3 as well, where the number
of premature deaths in rural (urban) regions due to
O3 pollution is 31 200 (6400) adults. However, per
total urban and rural population and in comparison
to the total death rate of 72 people per 10 000, urban
(rural) deaths attributable to ambient air pollution are
6.4 (5.6) per 10 000, such that ambient pollution in
2010 contributed to 8.1% of deaths.

Ambient PM2.5-attributable premature deaths are
greatest in rural regions for all diseases (figure 4). By far
the greatest cause of death as a result of PM2.5 is from
ischemic heart disease (IHD), causing an estimated
160 900 premature deaths of adults annually. Total
deaths from PM2.5-attributable IHD is lower in urban
areas at 48 000 premature deaths. Stroke contributes to
the second greatest cause of PM2.5 related premature
mortality, with an estimated 133 500 (41 000) people in
rural (urban) areas. COPD due to both PM2.5 and O3
affects a smaller number of people in both rural and
urban regions (80 200 rural and 25 300 urban annu-
ally), and lung cancer has the lowest impact according
to our estimates (9000 rural and 2900 urban annually).
All of these estimates were based only on population
exposure with no weight given to economic measures
such as access to healthcare, however this may play
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a considerable role in survival rate against a disease
(Chowdhury and Dey 2016).

3.4. Limitations
This study has several limitations. One limitation is
deficiencies in other emissions sectors, for instance,
data is particularly lacking for the industrial sec-
tor. Further, emissions inventories in India remain
highly uncertain. Recently, an emissions inventory
comparison noted large uncertainties, on the order
of 150%–325%, across several inventories for differ-
ent pollutants from the domestic combustion sector
(Saikawa et al 2017). Updates to support reducing
uncertainties in the domestic combustion sector have
been included in this study, yet still requires consider-
able research.

A second limitation is using four model months
to represent annual average concentrations. Each
month was chosen to represent a unique air quality
condition: January for the polluted winter due to inver-
sions, April to represent spring windblown dust, July
to simulate air quality conditions during the monsoon,
and October to represent the onset of the agricultural
biomass burning season in northwestern India. How-
ever, we note above that the average concentrations
estimatedusing these fourmonths (PM2.5 : 163𝜇g m−3,
O3: 22 ppb) are comparable to annual average long-
term observations from the CPCB (PM2.5: 160𝜇g m−3,
O3: 21 ppb).

Finally, there are limitations in using the IER
methodology to estimate premature mortality in India.
The concentration-response functions for ambient air
pollution used here were developed in the context of
the GBD 2013 study (Forouzanfar et al 2015) based on
epidemiological studies in comparatively low-pollution
regions including the US and Europe. Applying these
functions to estimate health effects in a high pollution
region such as India relies upon extrapolation to higher
levels based on studies from the passive and active
smoking literatures (Burnett et al 2014) and refer-
ences therein. The parameters used in the IERs underlie
considerable uncertainty, and recent updates in the
context of GBD studies since 2010 led to distinctly
different estimates of premature deaths. However, in
the absence of long-term air pollution cohort studies
at high concentrations, using published and docu-
mented exposure-response relationships remains the
best approach for estimating effects in India, and yields
findings that can promote awareness of health impli-
cations and the need for observational studies in India
to obtain more accurate representation of underlying
health status, relevant time spent outdoors, access to
healthcare, and genetic predisposition.

4. Conclusion

An estimated 463 200 (95% CI: 444 600–482 600) and
37 800 (28 500–48 100) premature deaths occurred

annually in 2010 as a result of excess PM2.5 and O3 con-
centrations, respectively, in northern India. Compared
to prior studies that estimate annual adult prema-
ture mortality due to PM2.5 (between 486 100 and
1100 000 (Chowdhury and Dey 2016, Ghude et al
2016, GBD MAPS Working Group 2018)) and/or O3
(12 000 (Ghude et al 2016)) across all of India, our
estimates from this study over northern India are
slightly lower for PM2.5 (463 200 premature deaths)
as expected due to the smaller domain we use in our
study, yet are much higher for O3 (37 800 prema-
ture deaths). The discrepancy between these totals may
reflect our use of MDA8 O3 concentrations to con-
sider effects from peak O3 exposure used for setting
air quality standards, whereas Ghude et al (2016) used
bias-corrected annual average concentrations to esti-
mate average exposure levels. Finally, we note that our
estimates are for adult premature mortality, though it
is estimated that up to 6% of childhood premature
deaths between the ages of five and fifteen are the result
of lower respiratory infections attributable to ambi-
ent air pollution exposure (Institute for Health Metrics
and Evaluation 2016).

We conduct model simulations to generate esti-
mated annual average ambient concentrations of
PM2.5 and O3 from the CMAQ model using a new
high-resolution anthropogenic emissions inventory
updated according to urban and rural population
and activity distribution measures for transportation
and domestic combustion. Separating total premature
deaths according to respective urban and rural areas,
we find that 6.4 (5.6) deaths per 10 000 people occur in
urban (rural) areas attributable to ambient PM2.5 and
O3 concentrations. However, despite the greater rate
of deaths per 10 000 people that occur in urban areas,
the total amount of premature deaths attributable to
air pollution in rural areas (383 600 deaths) is much
larger inmagnitude than those that occur inurbanpop-
ulations annually (117 200). Our results (76% rural)
are in line with those in a modeling study from the
Health Effect Institute, that found 75% of premature
deaths attributable to air pollution affect rural pop-
ulations (GBD MAPS Working Group 2018), with a
large fraction of premature mortality in rural popu-
lations due to residential combustion. We note this
similarity in urban-to-rural ratios despite the present
study using (1) a more common global anthropogenic
emissions inventory with updates as opposed to an
inventory developed from prior studies over India,
and (2) a higher resolution regional chemical transport
model. Rural populations are burdened by ambient
air pollution three to five times greater than urban
populations, indicating a need for surface air pollution
monitoring in rural regions.

This work supports the growing body of research
using modeled ambient concentrations to estimate
premature mortality associated with exposure to
air pollution in India by using high-resolution
detailed updates for urban and rural emissions for
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transportation and domestic combustion in addition
to location-specific power plant emissions. Ultimately,
it is challenging to gain a full understanding of the
impacts on adult mortality in northern India without
significant measurements available to validate air qual-
ity model results. Satellite tropospheric vertical column
depths (VCDs) can potentially fill in the spatial gaps
(Chowdhury and Dey 2016), yet model data are often
necessary to derive surface estimates from the VCDs to
use in health impacts assessments (Ghude et al 2016).
Future efforts would benefit from an increased net-
work of surface observations to assess more rigorously
air quality model performance and to build confidence
in applying these models to quantify human health
impacts in the region. With surface observations avail-
able in rural regions, we can also better characterize
ambient air pollution and the skill of high-resolution
emissions inventories to provide the scientific basis
for selecting effective emission control strategies to
improve air quality in India.
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