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ABSTRACT

Designing and Optimizing Matching Markets

Irene Lo

Matching market design studies the fundamental problem of how to allocate scarce resources

to individuals with varied needs. In recent years, the theoretical study of matching markets such

as medical residency, public housing and school choice has greatly informed and improved the

design of such markets in practice. Impactful work in matching market design frequently makes

use of techniques from computer science, economics and operations research to provide end–to-

end solutions that address design questions holistically. In this dissertation, I develop tools for

optimization in market design by studying matching mechanisms for school choice, an important

societal problem that exemplifies many of the challenges in effective marketplace design.

In the first part of this work I develop frameworks for optimization in school choice that allow

us to address operational problems in the assignment process. In the school choice market, where

scarce public school seats are assigned to students, a key operational issue is how to reassign

seats that are vacated after an initial round of centralized assignment. We propose a class of

reassignment mechanisms, the Permuted Lottery Deferred Acceptance (PLDA) mechanisms, which

generalize the commonly used Deferred Acceptance school choice mechanism and retain its desirable

incentive and efficiency properties. We find that under natural conditions on demand all PLDA

mechanisms achieve equivalent allocative welfare, and the PLDA based on reversing the tie-breaking

lottery during the reassignment round minimizes reassignment. Empirical investigations on data

from NYC high school admissions support our theoretical findings. In this part, we also provide

a framework for optimization when using the prominent Top Trading Cycles (TTC) mechanism.

We show that the TTC assignment can be described by admission cutoffs, which explain the role

of priorities in determining the TTC assignment and can be used to tractably analyze TTC. In a

large-scale continuum model we show how to compute these cutoffs directly from the distribution of

preferences and priorities, providing a framework for evaluating policy choices. As an application of

the model we solve for optimal investment in school quality under choice and find that an egalitarian



distribution can be more efficient as it allows students to choose schools based on idiosyncracies in

their preferences.

In the second part of this work, I consider the role of a marketplace as an information provider

and explore how mechanisms affect information acquisition by agents in matching markets. I pro-

vide a tractable “Pandora’s box” model where students hold a prior over their value for each school

and can pay an inspection cost to learn their realized value. The model captures how students’

decisions to acquire information depend on priors and market information, and can rationalize a

student’s choice to remain partially uninformed. In such a model students need market information

in order to optimally acquire their personal preferences, and students benefit from waiting for the

market to resolve before acquiring information. We extend the definition of stability to this partial

information setting and define regret-free stable outcomes, where the matching is stable and each

student has acquired the same information as if they had waited for the market to resolve. We show

that regret-free stable outcomes have a cutoff characterization, and the set of regret-free stable out-

comes is a non-empty lattice. However, there is no mechanism that always produces a regret-free

stable matching, as there can be information deadlocks where every student finds it suboptimal to

be the first to acquire information. In settings with sufficient information about the distribution

of preferences, we provide mechanisms that exploit the cutoff structure to break the deadlock and

approximately implement a regret-free stable matching.
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Chapter 1

Introduction

The allocation of scarce resources is a fundamental societal problem. Whether we are assigning

tenants to public housing, medical supplies and donations to recipients, or children to schools and

foster care, many of the important problems in modern-day society involve distributing a limited

supply of goods to human beings with varied and competing needs. As such, the effective design

of assignment processes requires not only operational and algorithmic tools, but also a sensitivity

to economic incentives and societal influences. Indeed, in many of these applications we wish to

assign goods to strategic users who have private information about their preferences, while accom-

modating societal aversions to using money to redistribute goods and incentivize behavior. The

field of matching market design harnesses rigorous techniques from computer science, economics,

and operations research to address such issues in a holistic manner.

In this dissertation, I develop tools for optimization in market design by studying matching

mechanisms for school choice. In the school choice problem, cities seek to incorporate student

preferences when assigning students to seats in public schools. As many school districts have

fewer seats at desirable schools than students wishing to attend those schools, school choice is a

socially important problem that exemplifies many of the challenges in matching market design. It

is also a setting where theoretical solutions can be validated using data, and insights from theory

have had direct and substantial impact. Since a market design approach to school choice was

first proposed by Abdulkadiroğlu and Sönmez (2003), academics and practitioners have together

1



developed algorithms for centralized school seat assignment with better incentive properties and

efficiency than their prior counterparts (Abdulkadiroğlu et al., 2017a). This literature proposed

two incentive compatible mechanisms, Deferred Acceptance (DA) and Top Trading Cycles (TTC),

and characterized the trade-off between their guarantees for efficiency and equity. The work in this

dissertation joins a growing operations literature that quantifies operational tradeoffs in the school

choice problem and provides simple policy levers for optimizing school district objectives (Arnosti,

2015; Ashlagi and Nikzad, 2016; Ashlagi and Shi, 2014, 2015; Shi, 2015).

I believe that an operations research perspective can bring two significant contributions to the

sphere of market design. The first is practical: as a discipline that trains its students both in

mathematical theory and solving real-world problems, we can furnish simplifying mathematical

frameworks for market structures that are of practical relevance and help policymakers discern

how decisions affect outcomes. The second is tactical: weaving together tools from combinatorial

optimization and game theory, we can propose algorithms that incentivize strategic users to provide

useful information for achieving desirable outcomes. Accordingly, in my dissertation I have sought

to further our theoretical understanding of both DA and TTC in ways that provide clear operational

insights, and have proposed new algorithms for school choice with desirable properties. In doing so,

I address operational problems in the implementation of school choice, such as reducing congestion

when reassigning students to vacated seats after late cancellations, deciding how to invest in school

quality, and designing market mechanisms to minimize the cost that students must incur to learn

their preferences. In order to provide solutions with practical relevance, I also corroborate my

findings with data from school systems, as well as with personal interactions with parents, principals,

and school district administrators.

2



1.1 Simplifying Frameworks for Optimization in School Choice

As market design theory increasingly shapes the design and operations of real-life marketplaces,

it is important for designers to provide simple policy levers that practitioners can use to optimize

platform objectives. In Chapter 3 we provide a framework for addressing a key operational issue in

school choice – reassigning seats that are vacated after an initial round of centralized assignment.

Every year around 10% of students assigned a seat in the NYC public high school system eventually

do not attend a public school in the following year, opting instead to attend private or charter

schools, and their vacated seats can be reassigned. Practical solutions to the reassignment problem

must be simple to implement, truthful and efficient. We propose and axiomatically justify a class of

reassignment mechanisms, the Permuted Lottery Deferred Acceptance (PLDA) mechanisms, which

generalize the commonly used Deferred Acceptance (DA) school choice mechanism to a two-round

setting and retain its desirable incentive and efficiency properties. We also provide guidance to

school districts as to how to choose the appropriate mechanism in this class for their setting.

Centralized admissions are typically conducted in a single round using Deferred Acceptance,

with a lottery used to break ties in each school’s prioritization of students. Our Permuted Lottery

Deferred Acceptance mechanisms reassign vacated seats using a second round of DA with a lottery

based on a suitable permutation of the first-round lottery numbers. We demonstrate that under

natural conditions on aggregate student demand for schools, the second-round tie-breaking lottery

can be correlated arbitrarily with that of the first round without affecting allocative welfare, and

hence the correlation between tie-breaking lotteries can be chosen to attain other objectives. Using

this framework, we show how the identifying characteristic of PLDAmechanisms, their permutation,

can be chosen to control reallocation. In most school choice systems across the United States, seats

vacated after the initial round are reassigned using decentralized waitlists that create significant

student movement after the start of the school year, which is costly for both students and schools.

We show that reversing the lottery order between rounds minimizes reassignment among all PLDA

mechanisms, allowing us to alleviate costly student movement between schools without affecting

the efficiency of the final allocation. Empirical investigations based on data from NYC high school

3



admissions support our theoretical findings.

In Chapter 4, we provide a framework for optimization when using the Top Trading Cycles

(TTC) school choice mechanism. While TTC has attractive properties for school choice and is

often considered by school systems, the commonly used combinatorial description of the mecha-

nism obfuscates many of these properties, and the mechanism has essentially not been adopted in

practice. Moreover there is little guidance in the literature as to how to design the inputs to TTC,

such as schools’ priorities for students, to optimize a school district’s objectives. Drawing on ideas

from general equilibrium theory, we show that the TTC assignment can be described by admission

cutoffs. These cutoffs parallel prices in competitive equilibrium, with students’ priorities serving

the role of endowments. In a continuum model these cutoffs can be computed directly from the

distribution of preferences and priorities, providing a framework that can be used to evaluate policy

choices.

We characterize the TTC assignment in terms of cutoffs pij for every pair of schools (i, j). A

student is able to attend a school i if for any school j her priority at j meets the cutoff pij . We use

a novel formulation of TTC in terms of trade balance equations in order to provide a procedure for

computing these cutoffs as solutions to a system of differential equations. Using this procedure,

we provide closed form solutions for the TTC assignment under a family of distributions, and

derive comparative statics. For example, we show that increasing the desirability of a school may

result in admitting students with lower priority. Our formulation also gives an alternative to

current simulation techniques for evaluating the impact of policy decisions on school assignment

and student welfare. As an illustration, we use our framework to solve for optimal investment

in school quality under the TTC assignment for a parametrized economy, and show that choice

incentivizes a welfare-maximizing school district to invest more equitably in all schools instead of

just in the best schools. Our formulation can be used to better design TTC priorities, optimize the

use of TTC and empirically compare TTC with other assignment mechanisms, and we hope that

it will inspire future work in all these directions.

4



1.2 Mechanisms for Matching with Incomplete Information

One of the essential roles of a marketplace is to communicate information about supply and demand.

Market design affects not only how goods and services are allocated to recipients, but also the

information that must be acquired in order to do so. In Chapter 5 we study how school choice

mechanisms affect the information acquisition costs borne by students. In a matching model where

students pay a cost to learn their preferences, we show that traditional school choice mechanisms

that do not account for costly information acquisition can lead to information deadlocks, where it

is strictly optimal for every agent to wait for other agents to provide additional market information

before paying the cost to learn their own preferences. To overcome this problem, we propose

mechanisms that learn sufficient information about aggregate student demand to approximate the

optimal outcome.

In our “Pandora’s box” model, school priorities are known, and students have a prior over their

cardinal utilities for each school and can pay a cost to see the actual values. We define stability under

incomplete information, where an outcome, consisting of a matching and acquired information, is

stable if any student who has higher priority at a given school than a student assigned to that

school either (1) knows her value for that school and prefers her current assignment, or (2) does

not know her value for that school and is not willing to pay the cost to learn it. In settings with costly

information acquisition students need information about their possible matches to optimally acquire

information, and may benefit from waiting for the market to resolve before acquiring information.

We refine the set of stable outcomes to the set of regret-free stable outcomes, under which the

information acquired by students is as if they acquired information optimally after knowing the

preferences and information acquisition processes of all other students. We characterize the set of

regret-free stable outcomes using cutoffs and show they have a lattice structure. However, without

information about student priors, it can be impossible to compute a regret-free stable matching.

In settings with sufficient information about student preferences, we propose mechanisms that use

the cutoff structure to approximately implement a regret-free stable matchings.
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Chapter 2

School Choice

The goal of every school district is to provide each student with admission to a desirable school.

However, in most districts, seats at good schools are a scarce resource and a decision has to be

made as to which students are able to secure the most coveted seats. Historically, most schools

districts have adopted neighborhood schooling policies, where students attend schools in their

residential area. This results in students from wealthier families attending the most desirable

schools, as they are the ones who are able to afford property in the neighborhoods of these schools.

Increasingly, in cities across the United States students are assigned to schools via choice-based

systems, where students are able to express their preferences over and be assigned to schools beyond

their residential area. Such systems provide more equitable access to opportunity for students from

all socio-economic backgrounds, and can improve efficiency by matching students to the schools

that provide the educational experience that is best for them. However they also require more

sophisticated assignment processes in order to ensure that students’ true preferences are elicited

and that the assignment process is equitable and efficient.

The mechanism design approach to school choice was first formulated by Balinski and Sönmez

(1999) for college admissions, and by Abdulkadiroğlu and Sönmez (2003) for K-12 admissions.

These papers took the view that school choice is an assignment problem where the inputs, each

student’s preferences, are private information that can be strategically reported by agents in order to

affect the assignment outcome, and proposed centralized mechanisms, assignment algorithms with
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strategic input, for computing desirable assignments. This initiated a rich and growing theoretical

literature on the design of suitable mechanisms for a single round of centralized school assignment,

and also led to significant academic input in the redesign of school choice systems across the US.

Academics have worked closely with school authorities to redesign school choice systems in New

York City (2003), Boston (2005), New Orleans (2012), Denver (2012), and Washington DC (2013),

implementing centralized mechanisms that appear to outperform the uncoordinated and ad hoc

assignment systems that they replaced (see, e.g. Abdulkadiroğlu et al., 2017a). I provide brief

summaries of the works most relevant to the optimization of quantitative objectives in school

choice, and point the interested reader to recent surveys by Abdulkadiroğlu (2013) and Pathak

(2011) for more comprehensive overviews of the literature.

2.1 The School Choice Model

The model for the school choice problem first introduced by Abdulkadiroğlu and Sönmez (2003)

can be summarized as follows. A finite set of students S must be assigned to seats at a finite set of

schools C. Each student s ∈ S has preferences �s for the school they attend, which are strict ordinal

rankings over the subset of schools that they find acceptable. Each school i ∈ C has priorities, a

weak ordinal ranking �i over the set of eligible students. Some schools give priority to students

according to strict preferences formed using test scores or admissions portfolios, and other schools

give priority to students based on coarse criteria, such as priority for living in the neighborhood or

for having a sibling attending the school. In the canonical school choice model, it is assumed that

all students know their preferences and that these preferences do not depend on the preferences of

other students or the schools attended by other students. The goal of the school choice problem is

to design a mechanism M that takes as input school priorities � and reported student preferences

�r and outputs an appropriate assignment µ : S → C of students to schools.

In this dissertation, we will often consider the following continuum formulation of the school

choice problem, which was proposed by Azevedo and Leshno (2016). A set S of students must

be assigned to seats at a finite set of schools C = {1, 2, . . . , n}. Each student s ∈ S has a type
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θ =
(
�θ, pθ

)
which encodes both the student’s ordinal preferences �θ over schools as well as the

schools’ priorities pθ ∈ [0, 1]C for the student. We may think of pθc as the percentile rank of a student

of type θ in the school’s priority ordering. A continuum economy is given by E = (C,Θ, η, q) where

q = {qc}c∈C is the vector of capacities of each school, and η is a measure over the space of student

types Θ. An assignment is a mapping µ : Θ → C ∪ {∅} from students to schools. The goal of the

school choice problem in the continuum setting is again to design a mechanism M that takes as

input school priorities p and reported student preferences �r and outputs an appropriate assignment

of students to schools.

The continuum model deviates from the standard model in a way that captures two salient

features of the school choice problem. While traditional matching problems are often classified as

either two-sided (e.g. hospital residency matching (Roth and Peranson, 1999), which view both

residents and hospitals as strategic) or one-sided (e.g. housing allocation (Abdulkadiroğlu and

Sönmez, 1999), which view only the tenants as strategic), the school choice problem lies somewhere

in the middle, as it takes input from agents on both sides of the market with the goal of providing

assignments that are efficient and equitable from the student perspective. The continuum model

visually emphasizes the focus on student outcomes by considering schools’ priorities as properties

of students, rather than of schools, and invites us to view school priorities as a design lever for

achieving what the mechanism designer believes is a desirable assignment for students. In addition,

the continuum model of Azevedo and Leshno (2016) captures a setting where the number of students

is much larger than the number of schools.1 In doing so, it implicitly assumes that students are

non-atomic and that any single student misreporting their preferences does not affect outcomes for

any other students, a simplifying assumption that allows us to provide clean intuition and high-level

insights for design. There is now a growing literature that uses continuum models in market design

(see, e.g. Avery and Levin, 2010; Abdulkadiroğlu et al., 2015; Ashlagi and Shi, 2015; Che et al.,

2015; Azevedo and Hatfield, 2015) .

1This is contrast with e.g. Che and Tercieux (2015, 2018), which study the properties of TTC in a large market
where the heterogeneity of items grows as the market gets large.
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2.2 Policy Goals and Design Objectives

Since the academic study and design of school choice systems was initiated by Balinski and Sön-

mez (1999); Abdulkadiroğlu and Sönmez (2003), there have been remarkable levels of collaboration

between academics and practitioners in redesigning school choice systems. This has given us signif-

icant insight into the desirable qualities of school choice assignments and assignment mechanisms,

a few of which I highlight below. More detailed discussions of the first-order issues in school choice

in practice can be found in Pathak (2016), as well as in papers about the redesign processes in

New York (Abdulkadiroğlu et al., 2005a), Boston (Abdulkadiroğlu et al., 2005b) and New Orleans

(Abdulkadiroğlu et al., 2017c) .

Clear Incentives

One of the clear themes that has emerged in the redesign of school choice systems is the importance

of providing the correct incentives for students to tell the truth. When redesigning the Boston

school choice system, officials at Boston Public Schools (BPS) strongly advocated for selecting a

non-manipulable mechanism on the grounds that it would equalize the opportunity to access schools

BPS (2005):

“[A] strategy-proof algorithm ‘levels the playing field’ by diminishing the harm done

to parents who do not strategize or do not strategize well. [...] [T]he need to strate-

gize provides an advantage to families who have the time, resources, and knowledge to

conduct the necessary research.”

When we presented our class of reassignment mechanisms (Chapter 3) to practitioners, one of the

first questions we received from officials at BPS and the New York City Department of Education

alike was whether the mechanisms were manipulable by students. Similarly Clark medalist Parag

Pathak, who was involved in the redesign of dozens of school choice systems including those at

New York City and Boston, echoes the sentiment that manipulability erodes equity and trust,

saying “the idea that a manipulable mechanism frustrates participants and creates inequities for

sincere participants is a theme that I have seen in cities other than Boston”(Pathak, 2016). Thus
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motivated, most of the theoretical literature on school choice has focused on providing mechanisms

that incentivize students to truthfully report their preferences.

Definition 2.1. A mechanism is strategy-proof if it is a dominant strategy for each student to

report her true preferences, i.e. for all students s, for all preferences �−s of other students and

priorities p, student s (weakly) prefers her assignment under truthful reporting to her assignment

under any misreport �r.

Equity and Fairness

As suggested in the previous section, another key attribute of commonly-used school choice mecha-

nisms is that they are perceived to be fair. While definitions of equity and fairness in market design

are nascent, one partial notion of fairness that was proposed in Abdulkadiroğlu and Sönmez (2003)

has proved to be enduring in practice. An assignment eliminates justified envy or respects priorities

if, when two students both wish to attend a given school i, the student with higher priority at school

i is given precedence. In the school choice literature, in line with prior work in two-sided matching

markets, this has also been termed stability.

Definition 2.2. An assignment µ is stable or respects priorities if for every student s ∈ S and

school i ∈ C and such that student s prefers i to her assignment i �s µ(i), the school i is full of

students with higher priority than s i.e. (i) η (µ(i)) = qi, and (ii) ps′i ≥ psi for all s′ ∈ µ−1 (i). A

mechanism M is stable or respects priorities if it always produces a stable assignment.

In a one-sided assignment setting, stability provides a rationale for the assignment: students

who are not assigned to a school have insufficient priority for being assigned to that school. In a two-

sided matching setting, a stable mechanism incentivizes schools and students to adopt the matching

proposed by the mechanism, as students and schools cannot Pareto improve their outcomes by

assigning students outside of the system. Hence in school choice, in addition to providing some

measure of fairness, a stable mechanism also eliminates justifiable challenges to the outcome of the

mechanism and helps prevent unraveling of the market.
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Efficiency

Finally, one of the primary aims of school choice is to increase student welfare by allowing het-

erogeneous students to choose the schools that best suit their educational needs. Hence from an

optimization perspective one of the most natural criteria for a school choice mechanism is that it

produces an efficient assignment. Two desirable notions of efficiency commonly put forth in the

literature are as follows.

Definition 2.3. An assignment µ is non-wasteful if no student desires an unused seat over her

own, i.e. if i �s µ (i) then η
(
µ−1 (i)

)
= qi.

Definition 2.4. An assignment µ is feasible if the number of students assigned to a school does not

exceed its capacity, η
(
µ−1 (i)

)
≤ qi ∀i. A feasible assignment µ is Pareto efficient (for students)

if there is no feasible assignment µ′ that weakly improves outcomes for all students and strictly

improves for at least one, i.e. there is no feasible assignment µ′ such that µ′ (s) �s µ (s) for some

s ∈ S and µ′ (s′) �s′ µ (s′) ∀s′ ∈ S.

While the notion of Pareto efficiency has many proponents in the theoretical literature, in prac-

tice school districts have tended to emphasize other notions of efficiency, such as the proportion

of students being assigned to their (reported) first choice school. Further discussion on the impor-

tance of efficiency in practice can be found in Chapter 4, in Abdulkadiroğlu et al. (2017c), and in

a number of empirical papers (see e.g. Abdulkadiroğlu et al. (2009)).

2.3 Mechanisms

An ideal school choice mechanism would embody all the desirable properties of strategy-proofness,

stability and efficiency. However, it is well known that there is no mechanism that is both stable

and Pareto efficient (see e.g. Gale and Shapley (1962); Roth (1982)). The two main mechanisms

proposed by the theoretical literature, Deferred Acceptance (DA) and Top Trading Cycles (TTC),

represent two extremes in the tradeoff between these properties: both mechanisms are strategy-

proof, and DA is stable while TTC is Pareto efficient. Moreover, DA implements the student-

optimal stable assignment (Gale and Shapley, 1962), and TTC minimizes the violations of priorities
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required to achieve an efficient outcome (Abdulkadiroğlu et al., 2017c). I describe both mechanisms

and their qualitative properties, and also provide some background as to how they can be tuned to

optimize quantitative outcomes.

Deferred Acceptance (DA)

The Deferred Acceptance mechanism for school choice is based on the Gale-Shapley Deferred Ac-

ceptance algorithm for one-to-one stable matching Gale and Shapley (1962), and was one of the

two mechanisms first proposed by Abdulkadiroğlu and Sönmez (2003) for school choice. It takes as

input student preferences �S and strict school priorities and runs via student proposals as follows.2

In step 1, each student applies to their most-preferred school. A school with a capacity of q tenta-

tively assigns a seat to each of the q highest-ranked eligible applicants and rejects any remaining

applicants. In each subsequent step, students who are not tentatively assigned apply to their most-

preferred school that has not yet rejected them. A school with a capacity of q tentatively assigns

a seat to the q highest-ranked students who have applied to the school in any step and rejects any

remaining applicants. The algorithm runs until there are no new student applications, at which

point it terminates and assigns each student to her tentatively assigned school seat.

The Gale-Shapley Deferred Acceptance mechanism has many desirable properties for school

choice. Dubins and Freedman (1981) and Roth (1982) proved that it is strategy-proof for students,

and Gale and Shapley (1962) demonstrated that it always finds the student-optimal stable matching

µ∗, which satisfies the property that every student s (weakly) prefers to their assignment µ∗ (s)

under µ∗ to their assignment µ (s) under any stable matching µ. DA also admits the following

description via admissions cutoffs:

Definition 2.5 (Deferred Acceptance (Azevedo and Leshno, 2016)). The Deferred Acceptance

mechanism is a function DAη
(
(�s, ps)s∈S

)
mapping student preferences and strict school priorities

into an assignment µ, defined by a vector of cutoffs C ∈ Rn
+ as follows. Each student s is assigned

to her most-preferred school as per her preferences, among those where her priority exceeds the

cutoff:

2In practice, weak school priorities are turned into strict school priorities via random tie-breaking.
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µ(s) = max
�s

({i ∈ S : psi ≥ Ci} ∪ {n+ 1}). (2.1)

Moreover, C is market-clearing, namely

η(µ(i)) ≤ qi for all i ∈ S, with equality of Ci > 0. (2.2)

The cutoff characterization simplifies the description of the outcome of Deferred Acceptance

and elucidates the role of priorities in determining the outcome. It has also been instrumental in

providing methods for empirical and counterfactual analysis of school systems (see, e.g. Agarwal

and Somaini, 2018; Abdulkadiroğlu et al., 2017b; Fack et al., 2015). In addition, the cutoff char-

acterization has been used to provide frameworks for optimization when the mechanism of choice

is Deferred Acceptance. Shi (2015) uses the cutoff description of Deferred Acceptance to provide a

method for optimizing the design of priorities via a reduction to an assortment planning problem,

and Ashlagi and Shi (2014) employs the cutoff characterization to design optimal correlations in

tie-breaking lotteries when the goal is the increase community cohesion in school seat assignment.

In Chapter 3 we define a class of reassignment mechanisms based on running two rounds of Deferred

Acceptance, show that they have a similar cutoff characterization, and use it to show the effect of

cross-round correlations in tie-breaking lotteries on allocative efficiency and reassignment.

Top Trading Cycles (TTC)

The Top Trading Cycles mechanism for school choice is based on the Top Trading Cycles algorithm

for housing allocation, first proposed in Shapley and Scarf (1974) and attributed to David Gale.

It is also one of the two mechanisms first proposed by Abdulkadiroğlu and Sönmez (2003) for

school choice. It runs in discrete steps as follows. In step 1, each student points to their most-

preferred school, and each school points to their top priority student. Some number of cycles in

the pointing graph (there is at least one) are selected, students in the cycles are assigned to the

school they are pointing to, and schools in the cycles decrease their remaining capacity by 1. In

each subsequent step, each unassigned student points to their most-preferred school, each school
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with positive residual capacity points to their top priority remaining student, and more cycles are

selected and students assigned. The algorithm runs until either all students are assigned or there

are no seats with remaining capacity.

TTC also has many desirable properties for school choice. It is simple to verify that it always

results in a Pareto efficient assignment, and Abdulkadiroğlu and Sönmez (2003) and Roth and

Postlewaite (1977) demonstrated that it is strategy-proof for students. As a result, TTC has been

considered for use in a number of school choice systems (see, e.g. Abdulkadiroğlu et al., 2005b).

However, TTC has not been widely adopted for school choice.3 Pathak (2016) hypothesizes that

this may be due to a lack of a simple explanation for TTC that emphasizes its desirable properties,

and a lack of understanding of the role of priorities in TTC. For example, a report from Boston

Public Schools states BPS (2005):

“The Top Trading Cycles Algorithm allows students to trade their priority for a seat at

a school with another student. This trading shifts the emphasis onto the priorities and

away from the goals BPS is trying to achieve by granting these priorities in the first

place.”

In Chapter 4 we provide a cutoff characterization of the TTC mechanism that emphasizes that it is

strategy-proof and elucidates the role of priorities in the TTC allocation. This allows us to reframe

the primary choice between DA and TTC as follows: DA sacrifices some student welfare but strictly

respects priorities, and TTC uses priorities to guide the selection of an efficient allocation. Our

cutoff characterization also lays the framework for designing TTC priorities to achieve desirable

outcomes.

Other Mechanisms

Several variants of DA and TTC have also been suggested in the literature. Kesten (2006) studies

the relationship between DA and TTC, and shows that they are equivalent if and only if the

priority structure is acyclic. In subsequent work Kesten (2010) also proposes the Efficiency Adjusted

3The only instances where TTC was implemented for school choice are in the San Francisco school district and
previously in the New Orleans Recovery School District (Abdulkadiroğlu et al. (2017c)).
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Deferred Acceptance, which relaxes the justified envy condition to improve efficiency. Morrill

(2015b) suggests the Clinch and Trade mechanism, which differs from TTC in that it identifies

students who are guaranteed admission to their first choice and assigns them immediately without

implementing a trade. Hakimov and Kesten (Forthcoming) introduce Equitable TTC, a variation

on TTC that aims to reduce inequity. All these mechanisms provide intermediate alternatives to

DA and TTC in the tradeoff between efficiency and stability

2.4 Optimization and Operations in School Choice

There is a growing operations literature on designing the school choice process to optimize quanti-

tative objectives. In the Boston school choice system (which uses the Deferred Acceptance mech-

anism), Ashlagi and Shi (2014) consider how to improve community cohesion in school choice by

correlating the lotteries of students in the same community, and Ashlagi and Shi (2015) show how

to maximize welfare given busing cost constraints.

Several papers also explore how school districts can use rules for breaking ties in school priorities

as policy levers. Most school choice systems turn weak school priorities into strict school priorities

using the same tie-breaking lottery across all schools before running DA, resulting in a mechanism

known as DA-STB. Arnosti (2015); Ashlagi and Nikzad (2016); Ashlagi et al. (2015) show that

DA-STB assigns more students to one of their top k schools (for small k) compared to DA using

independent lotteries at different schools, and Abdulkadiroğlu et al. (2009) empirically compare

these tie-breaking rules. A concrete design recommendation of Ashlagi and Nikzad (2016) is that

in order to improve the efficiency of the assignment “popular” schools should use single tie-breaking

to break ties, which is the tie-breaking rule used in our work. Erdil and Ergin (2008) also exploit

indifferences to improve allocative efficiency. Similarly, when using TTC in a setting with weak

priorities, Ehlers (2014) shows that any fixed tie-breaking rule satisfies weak efficiency, and Alcalde-

Unzu and Molis (2011), Jaramillo and Manjunath (2012) and Saban and Sethuraman (2013) give

specific variants of TTC that are strategy-proof and efficient.

There are still many important operational questions in the assignment of students to schools.
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Most of the existing literature on school choice is essentially static and considers a model where all

students know their preferences, submit them to a centralized system and are assigned in a single

round. In Chapter 3 we address the problem of designing reassignment mechanisms and after-

markets, a clear operational issue where a systematic market design approach can have significant

welfare benefits (see, e.g. Narita, 2016; Pathak, 2016). In Chapter 4 we consider how the choice of

a school choice mechanism can also affect how policy decisions outside of the school choice system,

such as investment in school quality, impact student welfare. In Chapter 5 we consider a setting

where students do not know their preferences and must exert effort to learn them, and explore

how sequential matching mechanisms can be designed to reduce unnecessary costly learning. These

works illustrate the benefits of an operations research approach, which can consider the detailed

constraints of the market and provide practical solutions and overarching insights.
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Part I

Simplifying Frameworks for

Optimization in School Choice
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Chapter 3

Dynamic Matching in School Choice:

Efficient Seat Reassignment after Late

Cancellations

In public school systems throughout the United States, students submit preferences that are used

to assign them to public schools. As this occurs fairly early in the school year, students typically

do not know their options outside of the public school system when submitting their preferences.

Consequently, a significant fraction of students who are allotted a seat in a public school eventually

do not use it, leading to considerable inefficiency. In the NYC public high school system, over

80,000 students are assigned to public school each year in March, and about 10% of these students

choose to not attend a public school in September, possibly opting to attend a private or charter

school instead.1 Schools find out about many of the vacated seats only after classes begin, when

students do not show up to class; such seats are reassigned in an ad hoc manner by the schools using

decentralized procedures that can run months into the school year. A well-designed reassignment

process, run after students learn about their outside options, could lead to significant gains in

overall welfare. Yet no systematic way of reassigning students to unused seats has been proposed

1In the 2004–2005 school year, 9.22% of a total of 81,884 students dropped out of the public school system after
the first round. Numbers for 2005–2006 and 2006–2007 are similar.
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in the literature. Our goal is to design an explicit reassignment mechanism run at a late stage of

the matching process that efficiently reassigns students to vacated seats.

During the past fifteen years, insights from matching theory have informed the design of school

choice programs in cities around the world. Although there is a vast and growing literature that

explores many aspects of school choice systems and informs how they are designed in practice, most

models considered in this literature are essentially static. Incorporating dynamic considerations in

designing assignment mechanisms, such as learning new information at an intermediate time, is an

important aspect that has only recently started to be addressed. Our work provides some initial

theoretical results in this area and suggests that simple adaptations of one-shot mechanisms can

work well in a more general setting.

We consider a two-round model of school assignment with finitely many schools, where students

learn their outside option after the first-round assignment, resulting in vacant seats which can be

reassigned. In the first round, schools have weak priorities over students, and students submit

strict ordinal preferences over schools. Students receive a first-round assignment based on these

preferences via Deferred Acceptance with Single Tie-Breaking (DA-STB), a variant of the standard

Deferred Acceptance mechanism (DA) where ties in school preferences are broken via a single lottery

ordering across all schools. Afterwards, students may be presented with better outside options (such

as admission to a private school), and may no longer be interested in the seat allotted to them. In the

second round, students are invited to submit new ordinal preferences over schools, reflecting changes

in their preferences induced by learning their outside options. The goal is to reassign students so

that the resulting assignment is efficient and the two-round mechanism is strategy-proof and does

not penalize students for participating in the second round. As a significant fraction of vacated

seats are reassigned only after the start of the school year, a key additional goal is to ensure that

the reassignment process minimizes the number of students who need to be reassigned.

We introduce a class of reassignment mechanisms with desirable properties: the Permuted

Lottery Deferred Acceptance (PLDA) mechanisms. PLDA mechanisms compute a first-round as-

signment by running DA-STB, and then a second-round assignment by running DA-STB with a

permuted lottery. In the second round, each school first prioritizes students who were assigned to it
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in the first round, which guarantees each student a second-round assignment that she prefers to her

first-round assignment, then prioritizes students according to their initial priorities at the school,

and finally breaks ties at all schools via a permutation of the (first-round) lottery numbers. Our

proposed PLDA mechanisms are based on school choice mechanisms currently used in the main

round of assignment, and can be implemented either as centralized PLDAs, which run a central-

ized second round with updated preferences, or as decentralized PLDAs, which run a decentralized

second round via a waitlist system that closely mirrors current reassignment processes.

Our key insight is that the mechanism designer can design the correlation between tie-breaking

lotteries to achieve operational goals. In particular, reversing the lottery between rounds minimizes

reassignment without sacrificing student welfare. Our main theoretical result is that under an

intuitive order condition, all PLDAs produce the same distribution over the final assignment, and

reversing tie-breaking lotteries between rounds implements the centralized Reverse Lottery DA

(RLDA), which minimizes the number of reassigned students. We axiomatically justify PLDA

mechanisms: absent school priorities, PLDAs are equivalent to the class of mechanisms that are

two-round strategy-proof while satisfying natural efficiency requirements and symmetry properties.

In a setting where all students agree on a ranking of schools and there are no priorities our

results are very intuitive. By reversing the lottery, we move a few students many schools up

their preference list rather than many students a few schools up, thereby eliminating unnecessary

cascades of reassignment (see Figure 3.1). Suprisingly, however, our theoretical result holds in a

general setting with heterogeneous student preferences and arbitrary priorities at schools. The

order condition can be interpreted as aggregate student preferences resulting in the same order of

popularity of schools in the two rounds. Our results show that if student preferences and school

priorities produce such agreement in aggregate demand across the two rounds, then reversing the

lottery between rounds preserves ex ante allocative efficiency and minimizes reassignment.

We empirically assess the performance of RLDA using data from the New York City public high

school system. We first investigate a class of centralized PLDAs that includes RLDA, rerunning

DA using the original lottery order (termed Forward Lottery Deferred Acceptance or FLDA),

and rerunning DA using an independent random lottery. We find all these mechanisms provide
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Figure 3.1: Running DA with a reversed lottery eliminates the cascade of reassignments.

There are 6 students with identical preferences over schools, and 6 schools each with a single priority group. All
students prefer schools in the order 1 � 2 � · · · � 6. The student assigned to school 1 in the first round leaves
after the first round; otherwise all students find all schools acceptable in both rounds. Running DA with the same tie-
breaking lottery reassigns each student to the school one better on her preference list, whereas reversing the tie-breaking
lottery reassigns only the student initially assigned to 6 from her least preferred to her most preferred school.

similar allocative efficiency, but RLDA reduces the number of reassigned students significantly.

For instance, in the NYC data set from 2004–2005, we find that FLDA results in about 7,800

reassignments, and RLDA results in about 3,400 reassignments out of a total of about 74,000

students who remained in the public school system, i.e. less than half the number of reassignments

under FLDA. The gains become even more marked if we compare with current practice: RLDA

results in less than 40% of the 8,600 reassignments under decentralized FLDA with waitlists.2

To better evaluate the decentralized waitlist systems currently used in practice, we also em-

pirically explore the performance of decentralized FLDA and RLDA as a function of the time

available to clear the market. We find that the timing of information revelation can greatly impact

the allocative efficiency and the congestion of decentralized waitlist systems. If, as in Figure 3.1,

congestion is caused by students taking time to vacate previously assigned seats, then reversing

the lottery increases allocative efficiency during the early stages of reassignment and decreases the

congestion in the system. However, if congestion is caused by students taking time to decide on

offers from the waitlist, then these findings are reversed. In both cases, for reasonable timescales

the welfare gains from centralizing the reassignment are substantial.

2A decentralized version of FLDA is used in most cities and in NYC kindergarten admissions. It was also used in
NYC high school admissions until a few years ago, when the system abandoned reassignments entirely, anecdotally
due to the excessive logistical difficulties created by market congestion. See Section 3.1.1 for more details.
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3.1 Reassignment in Matching Markets

3.1.1 Current Reassignment Systems in School Choice

Schools systems in cities across the US, including in New York, Boston, Washington DC, Den-

ver, Seattle, New Orleans, and Chicago, use similar centralized processes for admissions to public

schools. Students seeking admission to a school submit their preference lists over schools to a

central authority by December through March, for admission starting the subsequent fall. Each

school may have priority classes of students, such as priority for students who live in the neigh-

borhood, priority for siblings of students who are already enrolled at that school, or priority for

students whose families have low income. An allocation of seats to students is produced by using the

student-proposing Gale-Shapley Deferred Acceptance algorithm with single-tiebreaking. Students

must register in their assigned school by April or early May.

In March and April students are also admitted to private and charter school via processes run

concurrently with the public school assignment process. This results in an attrition rate of about

8-10% of the seats assigned in the main round of public school admissions. Some schools account for

this attrition by making “over offers” in the first round and accepting more students than they have

seats for (see, e.g. Szuflita). However, such oversubscription of students is usually conservative, due

to hard constraints on space and teacher capacity.3 As a result, most schools have unused seats

at the end of the first round that can be reassigned to students who want those seats, and many

schools find out about these vacant seats only after the start of the school year.

Reassignments in most school choice systems, such as in New York kindergarten, Boston, Wash-

ington DC, Denver, Seattle, New Orleans, and Chicago, are performed using a decentralized waitlist

system. Students are put on waitlists for all schools that they ranked above their first-round assign-

ment, in the order of the first-round priorities (after tie-breaking).4 Students who do not register

by the deadline are presumed to be uninterested and their seats are offered to waitlisted students

in sequence, with further seats becoming available over time as students receive new offers from

3Capacity constraints are binding in most schools. Most states impose maximum class sizes and fund schools based
on enrollment after the first 2-3 weeks of classes, which incentivizes schools to enroll as many students as permissible.

4Late applicants are also included in these waitlists, typically with inferior lottery numbers.
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outside the system. The seats previously occupied by students who were reassigned are also offered

to students on the waitlists. Students offered seats by the waitlist system usually have several

days to a week to make a decision, and are only bound by the final offer they choose to accept.5

Overall, this typically results in a “huge slow round robin” (Szuflita) of reassignment that continues

all summer until classes begin, and in some cities (e.g. NYC, Boston, and Washington DC) up to

several months after classes begin.

Our proposed class of mechanisms may be viewed as a generalization of these waitlist systems

as follows. Waitlists are PLDA mechanisms where 1) the second round is implemented in a de-

centralized fashion as information about vacated seats propagates through the system, and 2) the

tie-breaking lotteries used in the second round are the same as those used in the first round. We

show that permuting the tie-breaking lottery numbers before creating waitlists provides a class of

reassignment mechanisms that, given sufficient time to clear the market, result in similar eventual

allocative efficiency while allowing the designer additional flexibility for optimizing other objectives.

3.1.2 Related Literature

There is a vast literature on dynamic matching and reassignments. The reassignment of donated

organs has been extensively studied in work on kidney exchange (see, e.g. Roth et al., 2004; An-

derson et al., 2015, 2017; Ashlagi et al., 2017). Reassignments due to cancellations also frequently

arise in online assignment settings such as kidney transplantation (see, e.g. Zenios, 1999; Su and

Zenios, 2006) and public housing allocation (see, e.g. Kaplan, 1987; Arnosti and Shi, 2017). An

important difference is that these are online settings where agents and objects arrive over time and

are matched on an ongoing basis. In such settings matches are typically irrevocable, and so optimal

assignment policies account for typical cancellation and arrival statistics and optimize for agents

arriving in the future (see, e.g. Dickerson and Sandholm, 2015). In our setting the matching for

the entire system is coordinated in time, and we improve welfare by controlling both the initial

5Students who have accepted an offer off the waitlist of one school are allowed to accept offers off the waitlists
of other schools. Since registration for one school automatically cancels the student’s previous registrations, such an
action would automatically release the seat the student accepted from the first school, making that seat available to
other students on the waitlist.
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assignment and subsequent reassignment of objects among the same set of agents.

Another relevant strand in the reassignment literature is the work of Abdulkadiroğlu and Son-

mëz on house allocation models with existing tenants (or housing endowments) (Abdulkadiroğlu

and Sönmez, 1999). Our second round can be thought of as school seat allocation where some

agents already own a seat and we wish to reassign seats to reach an efficient assignment. There

are also a growing number of papers that consider a dynamic model for school admissions (see,

e.g. Compte and Jehiel, 2008; Combe et al., 2016). A critical distinction between these works

and ours is that in our model, the initial endowment is determined endogenously by preferences,

and so we propose reassignment mechanisms that are impervious to students manipulating their

first-round endowment to improve their final assignment. We also exploit indifference to minimize

reassignment, a direction which is not explored in these works.

A number of recent papers, such as Dur (2012a); Kadam and Kotowski (2014); Pereyra (2013),

focus on the strategic issues in dynamic reassignment. and also propose using modified versions of

DA in each round. These works develop solution concepts in finite markets with specific cross-period

constraints and propose DA-like mechanisms that implement them. In recent complementary work

Narita (2016) analyzes preference data from NYC school choice, observes that a significant fraction

of preferences are permuted after the initial match, and proposes a modified version of DA with

desirable properties in this setting. We similarly propose PLDA mechanisms for their desirable

incentive and efficiency properties. In addition, our large market and consistency assumptions

allow us to uncover considerable structure in the problem and provide conditions under which we

can optimize over the entire class of PLDA mechanisms.

Our work also has some connections to the queueing literature. The class of mechanisms that

emerges in our setting involves choosing a permutation of the initial lottery order, and we find

that the reverse lottery minimizes reassignment within this class. This is similar to the choice of

a service policy in a queueing system (e.g. FIFO, LIFO, SRPT etc.), whereby a particular policy

is chosen in order to minimize cost functions such as expected waiting time (see, e.g. Lee and

Srinivasan, 1989). “Work-conserving” service policies such as these result in identical throughput

but different expected waiting times, and we similarly find that different PLDA mechanisms differ
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in the number of reassignments even when they have identical allocative efficiency. Our continuum

model parallels fluid limits and deterministic models employed in queueing (Whitt, 2002), revenue

management (Talluri and Van Ryzin, 2006), and other contexts in operations management.

3.2 Model

We consider the problem of assigning a set of students S to seats in a finite set of schools C =

{1, . . . , n}. Each student can attend at most one school. There is a continuum6 of students with an

associated measure η: for any (measurable) subset S ⊆ S, we let η(S) denote the mass of students

in S. The outside option is n+ 1 /∈ C. The capacities of the schools are q1, . . . , qn ∈ R+, and

qn+1 =∞. A set of students of η-measure at most qi can be assigned to school i.

Each student submits a strict preference ordering over her acceptable schools, and each school

partitions eligible students into priority groups. Each student has a type θ = (�θ, �̂θ, pθ) that

encapsulates both her preferences and school priorities. The student’s first- and second-round

preferences, respectively �θ and �̂θ, are strict ordinal preferences over C ∪ {n+ 1}, and schools

before (after) {n+ 1} in the ordering are acceptable (unacceptable). The student’s priority class

pθ encodes her priority pθi at school i. Each school i has ni priority groups. We assume that

schools prefer higher priority groups, students ineligible for school i have priority pi = −1, and that

pi ∈ {−1, 0, 1, . . . , ni − 1}. Eligibility and priority groups are exogenously determined and publicly

known.

Each student s = (θs, L(s)) ∈ S also has a first-round lottery number L(s) ∈ [0, 1]. We

sometimes use the notation (�s, �̂s, ps) as a less cumbersome alternative to (�θs , �̂θ
s

, pθ
s). We let

Θ be the set of all student types, so that S = Θ× [0, 1] denotes the set of students. For each θ ∈ Θ

we let ζ(θ) = η({θ} × [0, 1]) be the measure of all students with type θ.

We assume that all students have consistent preferences, defined as follows.

6Our continuum model can be viewed as a two-round version of the model introduced by Azevedo and Leshno
(2016). Continuum models have been used in a number of papers on school choice; see Agarwal and Somaini (2018);
Ashlagi and Shi (2014); Azevedo and Leshno (2016). Intuitively, one could think of the continuum model as a
reasonable approximation of the discrete model when the number of students is large, although we do not establish
a formal relationship between the discrete and continuum models, as that is beyond the scope of this work.

25



Definition 3.1. Preferences (�, �̂) are consistent if the second-round preferences �̂ are obtained

from the first-round preferences � via truncation, i.e.: (1) (a school does not become acceptable

only in the second round) for every i ∈ S, i�̂ {n+ 1} implies i � {n+ 1}, and (2) (the relative

ranking of schools is unchanged across rounds) for every i, j ∈ S, if i�̂ {n+ 1} and i�̂j then i � j.

We say that the type θ is consistent if the preferences (�θ, �̂θ) are consistent.

Assumption 3.1. If ζ(θ) > 0 then the type θ is consistent.

Assumption 3.2. For all consistent types θ ∈ Θ it holds that ζ(θ) > 0.

The consistency assumption is required in order to meaningfully define strategy-proofness in

our two-round setting, as we require truthful reporting in the first round to be optimal for both the

student’s first-round assignment as well as her second-round assignment. We use the full support

assumption only to characterize our class of proposed mechanisms (Theorem 3.3) and do not need

it for our positive results (Theorems 3.1 and 3.2 and supporting results) .

We also assume that the first-round lottery numbers are drawn independently and uniformly

from [0, 1] and do not depend on preferences. This means that for all θ ∈ Θ and intervals (a, b)

with 0 ≤ a ≤ b ≤ 1, η ({θ} × (a, b)) = (b− a)ζ(θ).7

An assignment µ : S → C specifies the school that each student is assigned to. For any

assignment µ, we let µ(s) denote the school to which student s is assigned, and overloading notation

we let µ(i) denote the set of students assigned to school i. We assume that µ(i) is η-measurable

and that the assignment is feasible, i.e. η(µ(i)) ≤ qi for all i ∈ C and if µ(s) = i then psi ≥ 0. We

let µ and µ̂ denote the first- and second-round assignments respectively.

Timeline. Students report first-round preferences �.8 The mechanism designer obtains a first-

round assignment µ by running DA-STB with lottery L and announces µ and L. Students then

observe their outside options and update their preferences accordingly to �̂. Finally, students report

their second-round preference �̂, and the mechanism designer obtains a second-round assignment

7This can be justified via an axiomatization of the kind obtained by Al-Najjar (2004).
8Since we will be considering mechanisms that are strategy-proof in the large, we assume that students report

truthfully; we do not distinguish between reported preferences and true preferences.
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Figure 3.2: Timeline of the two-round mechanism design problem

µ̂ by running a reassignment mechanism M and announces µ̂. We illustrate the timeline in Figure

3.2.

Informational Assumptions. Eligibility and priorities are exogenously determined and pub-

licly known. The mechanism is publicly announced before preferences are submitted. Before

first-round reporting, each student knows her first-round preferences, and that her second-round

preferences will be obtained from these preferences via truncation. Each student has imperfect in-

formation regarding her own second-round preferences (i.e., the point of truncation) at that stage,

and believes with positive probability her preferences in both rounds will be identical.9 We assume

students know the distribution η over student types and lotteries (an assumption we need only for

our characterization result, Theorem 3.3). Each student is assumed to learn her lottery number

after the first round, as in practice students are often permitted to inquire about their position in

each school’s waitlist; however our results hold even if students do not learn their lottery numbers.

Definition 3.2. A student s ∈ S is a reassigned student if she is assigned to a different school in

C in the second round than in the first round. That is, s is a reassigned student under reassignment

µ̂ if µ(s) 6= µ̂(s) and µ(s) 6= {n+ 1} , µ̂(s) 6= n+ 1.10

The majority of reassignments happen around the start of the school year, a time when they are

costly for schools and students alike. Hence, in addition to providing an efficient final assignment,

we also want to reduce congestion by minimizing the number of reassigned students.

9This ensures that students will report their full first-round preferences in the first round, instead of truncating
in the first round based on their beliefs about their second-round preferences.

10Several alternative definitions of reassigned students—such as counting students who are initially unassigned and
end up at a school in C, and/or counting initially assigned students who end up unassigned—could also be considered.
We note that our results continue to hold for all these alternative definitions.
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3.2.1 Mechanisms

A mechanism is a function that maps the realization of first-round lotteries L, school priorities p,

and students’ first-round preference reports � into an assignment µ. A reassignment mechanism

is a function that maps the realization of first-round lotteries L, first-round assignment µ, school

priorities p, and students’ second-round reports �̂ into a second-round assignment µ̂.11 A two-

round mechanism obtained from a reassignment mechanism M is a two-round mechanism where

the first-round mechanism is DA-STB (see Definition 3.3), and the second-round mechanism is M .

In the first round, seats are assigned according to the student-optimal Deferred Acceptance

(DA) algorithm with single tie-breaking (STB), which constructs an assignment as follows. A

single lottery ordering of the students L is used to resolve ties in the priority groups at all schools,

resulting in an instance of the two-sided matching problem with strict preferences and priorities. In

each step, unassigned students apply to their most-preferred school that has not yet rejected them.

A school with a capacity of q tentatively accepts the q highest-ranked eligible applicants (according

to its priority ranking of the students after breaking all ties) and rejects any remaining applicants.

The algorithm runs until there are no new student applications, at which point it terminates and

assigns each student to her tentatively assigned school seat. The strict student preferences, weak

school priorities, and the use of DA-STB mirror current practice in many school choice systems,

such as those in New York City, Chicago, and Denver.

In the continuum model, Azevedo and Leshno (2016) have shown that DA may be formally

defined in terms of admissions scores and cutoffs.

Definition 3.3 (Deferred Acceptance (Azevedo and Leshno, 2016)). The Deferred Acceptance

mechanism with single tie-breaking (DA-STB) is a function DAη
(
(�s, ps)s∈S , L

)
mapping student

preferences, priorities and lottery numbers into an assignment µ, defined by a vector of cutoffs

C ∈ Rn
+ as follows. Each student s is given a score rsi = psi + L(s) at school i and assigned to her

most-preferred school as per her preferences, among those where her score exceeds the cutoff:

11Here we restrict our design space to second-round assignments that depend on the first-round reports only
indirectly, through the first-round assignment µ. We believe that this is a reasonable restriction, given that the
second round occurs a significant period of time after the first round.
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µ(s) = max
�s

({i ∈ C : rsi ≥ Ci} ∪ {n+ 1}). (3.1)

Moreover, C is market-clearing, namely

η(µ(i)) ≤ qi for all i ∈ C, with equality if Ci > 0. (3.2)

Azevedo and Leshno (2016) showed that the set of assignments satisfying equations (3.1) and

(3.2) forms a non-empty complete lattice, and typically consists of a single uniquely determined

assignment.12 This unique assignment in the continuum further corresponds to the limit of the set

of stable matches obtained in finite markets as the number of students grows (with school capacities

growing proportionally). Throughout this paper, in the (knife edge) case where there are multiple

assignments satisfying Definition 3.3, we pick the student-optimal matching.

Given cutoffs {Ci}ni=1, we will also find it helpful to define for each priority class π the cutoffs

within the priority class at each school Cπ,i ∈ [0, 1] by Cπ,i = 0 if Ci ≤ πi, Cπ,i = 1 if Ci ≥ πi + 1,

and Cπ,i = Ci−πi otherwise. Thus, Cπ,i is the lowest lottery number a student in the priority class

π can have and still be able to attend school i.

We now turn to the mechanism design problem. We emphasize that we keep the first round

consistent with currently used mechanisms and consider only two-round mechanisms whose first

round mechanism is DA-STB, i.e. the only freedom afforded the planner is the design of the

reassignment mechanism. We propose the following class of two-round mechanisms. Intuitively,

these mechanisms run DA-STB twice, once in each round. They explicitly correlate the lotteries

used in the two rounds via a permutation P , and give each student top priority in the school she was

assigned to in the first round to guarantee that each student receives a (weakly) better assignment

in the second round.

Definition 3.4 (Permuted Lottery Deferred Acceptance (PLDA) mechanisms). Let P : [0, 1] →

[0, 1] be a measure-preserving bijection. Let L be the realization of first-round lottery numbers,

and let µ be the first-round assignment obtained by running DA with lottery L.

12A sufficient condition for the assignment to be unique is when the demand D (C) for schools given cutoffs C,
defined by Di (P ) = η

(
s ∈ S | max�s

{
j | rsj ≥ Pj

}
= i
)
, is continuously differentiable in the cutoffs. Moreover for

almost all demand functions the resulting assignment is unique for all but a measure zero set of capacity vectors.
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Define a new economy η̂, where to each student s ∈ S with priority vector ps, and first-round

lottery and assignment L(s) = `, µ(s) = i, we: (1) assign a lottery number P (`); and (2) give top

second-round priority p̂si = ni at their first-round assignment i and unchanged priority p̂sj = psj at

all other schools j 6= i. PLDA(P ) is the two-round mechanism obtained using the reassignment

mechanism DAη̂
(
(�̂s, p̂s)s∈S , P ◦ L

)
.

We use ĈPπ,i to denote the second-round cutoff for priority class π in school i under PLDA(P ).

We highlight two particular PLDA mechanisms. The RLDA (reverse lottery) mechanism uses

the reverse permutation R(x) = 1−x; and the FLDA (forward lottery) mechanism, which preserves

the original lottery order, uses the identity permutation F (x) = x. By default, school districts often

use a decentralized version of the FLDA mechanism, implemented via waitlists. In this paper, we

provide evidence that supports using the centralized RLDA mechanism in a school system like that

in NYC, where a large proportion of vacated seats are revealed close to or after the start of the

school year, and where reassignments are costly for both students and the school administration.

The PLDA mechanisms are an attractive class of two-round assignment mechanisms for a num-

ber of reasons. They are intuitive to understand and simple to implement in systems already using

DA. (A decentralized implementation would be even simpler to integrate with current practice; the

currently used waitlist mechanism for reassignments can be retained with the simple modification of

permuting the lottery numbers just before waitlists are constructed.) In addition, we will show that

the PLDA mechanisms have desirable incentive and efficiency properties, which we now describe.

Any reassignment mechanism that takes away a student’s initial assignment against her will is

impractical. Thus, we require our mechanism to respect first-round guarantees:

Definition 3.5. A two-round mechanism (or a second-round assignment µ̂) respects guarantees

if every student (weakly) prefers her second-round assignment to her first-round assignment, that

is, µ̂(s)�̂sµ(s) for every s ∈ S.

One of the reasons for the success of DA in practice is that it respects priorities: if a student

is not assigned to a school she wants, it is because that school is full of students who have higher

priority at that school. This leads to the following natural requirement in our two-round context:
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Definition 3.6. A two-round mechanism (or a second-round assignment µ̂) respects priorities

(subject to guarantees) if for every i ∈ C and eligible student s ∈ S such that i �̂s µ̂(s) and

every student s′ such that µ̂(s′) = i 6= µ(s′) it holds that s′ is eligible for i and ps′i ≥ psi .

Thus, our definition of respecting priorities (subject to guarantees) requires that every student

who was upgraded to a school i in the second-round must have a (weakly) higher priority at that

school than every eligible student s who prefers i to her second-round assignment.

We now turn to incentive properties. In the school choice problem it is reasonable to assume

that students will be strategic in how they interact with the mechanism at each stage. Hence, it

is desirable that whenever a student (with consistent preferences) reports preferences, conditional

on everything that has happened up to that point, it is a dominant strategy for her to report

truthfully. To describe the properties formally, we start by fixing an arbitrary profile of first and

second round preferences (�−s, �̂−s) for all the students other than student s. For any preference

report of student s in the first round she will receive an assignment that is probabilistic because of

the lottery used to break ties in the first round; then, after observing her first-round assignment

and her updated outside option, she can submit a second-round preference report, based on which

her final assignment is computed. This leads to two natural notions of strategy-proofness.

Definition 3.7. A two-round mechanism is strongly strategy-proof if for each student s (with

consistent preferences) truthful reporting is a dominant strategy, i.e. for each realization of lottery

numbers and profile of first- and second-round reported preferences of the students other than s,

reporting her preferences truthfully in each of the two rounds is a best response for s.

Our definition of strong strategy-proofness is rather demanding: it requires that no student be

able to manipulate the mechanism even if she has full knowledge of the first and second round

preferences of all other students and the lottery numbers. We shall also consider a weaker version

of strategy-proofness that applies when a manipulating student does not know the lottery number

realizations when she submits her first-round preference report and learns all lottery numbers only

after the end of the first round. In that case, each student views her first-round assignment as a

probability vector; her second-round assignment is also random, but is a deterministic function of
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the first-round outcome, the second-round reports, and the first-round lottery numbers. We make

precise the notion of a successful manipulation in this setting as follows.

Definition 3.8. A two-round mechanism is weakly strategy-proof if the following conditions

hold:

• Knowing the specific realization of first-round assignments (and the second round preferences

of the students other than s), it is optimal for student s to submit her second-round preference

truthfully, given what the other students do;

• For each student s (with consistent preferences), and for each profile of first- and second-

round preferences of the students other than s, the probability that student s is assigned to

one of her top k schools in the second round is maximized when she reports truthfully in the

first round (assuming truthful reporting in the second round), for each k = 1, 2, . . . , n.

In other words, in each stage of the dynamic game, the second-round assignment from truthful

reporting stochastically dominates the outcomes of all other strategies. We emphasize that the

uncertainty in the assignment is solely due to the lottery numbers, which students initially do not

know.

Note that a two-round mechanism that uses the first-round assignment as the initial endowment

for a mechanism like top trading cycles in the second round will not be two-round strategy-proof,

because students can benefit from manipulating their first-round reports to obtain a more popular

initial assignment that they could use to their advantage in the second round.

Finally, we discuss some efficiency properties. To be efficient, clearly a mechanism should not

leave unused any seats that are desired by students.

Definition 3.9. A two-round mechanism is non-wasteful if no student is assigned to a school

she is eligible for that she prefers less than a school not at capacity; that is, for each student s ∈ S

and schools i, j, if µ̂(s) = i and j�̂si and psj ≥ 0, then η(µ̂(j)) = qj .

It is also desirable for a two-round mechanism to be Pareto efficient. We do not want any

students to be able to improve their utility by swapping probability shares in second-round as-

signments. However, we also require that our reassignment mechanism respect guarantees and
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priorities (see Definitions 3.5 and 3.6), which is incompatible with Pareto efficiency even in a static,

one-round setting.13 This motivates the following definitions. Consider a second-round assignment

µ̂. A Pareto-improving cycle is an ordered set of types (θ1, θ2, . . . , θm) ∈ Θm, sets of students

(S1,S2, . . . ,Sm) ∈ Sm, and schools (1′, 2′, . . . ,m′) ∈ Cm, such that η(Si) > 0 and (i + 1)′�̂θii′

(where we define (m + 1)′ = 1′), for all i, and such that for each i, θs = θi and µ̂(s) = i′ for all

s ∈ Si.

Let p̂ be the second-round priorities obtained by giving each student s a top second-round

priority p̂si = ni at their first-round assignment µ(s) = i (if i ∈ S) and unchanged priority p̂sj = psj

at all other schools j 6= i. We say that a Pareto-improving cycle (in a second-round assignment)

respects (second-round) priorities if p̂θi(i+1)′ ≥ p̂
θi+1
(i+1)′ for all i (where we define θm+1 = θ1).

Definition 3.10. A two-round mechanism is constrained Pareto efficient if the second-round

assignment has no Pareto-improving cycles that respect second-round priorities.

We remark that this is the same notion of efficiency that is satisfied by static, single-round

DA-STB (Definition 3.3)—the resulting assignment has no Pareto-improving cycles that respect

priorities. In other words, the constrained Pareto efficiency requirement is informally to be “as

efficient as static DA”. We also note here that as a result of the requirement to respect second

round priorities, Pareto improving cycles considered must include only reassigned students.

Finally, for equity purposes, it is desirable that a mechanism be anonymous.

Definition 3.11. A two-round mechanism is anonymous if students with the same first-round

assignment and the same first- and second-round preference reports have the same distribution over

second-round assignments.

We show that PLDA mechanisms satisfy all the aforementioned properties.

Proposition 3.1. Suppose student preferences are consistent. Then PLDA mechanisms respect

guarantees and priorities, and are strongly two-round strategy-proof, non-wasteful, constrained

Pareto efficient, and anonymous.
13When schools have strict preferences, an assignment respects priorities if and only if it is stable, and it is well

known that in two-sided matching markets with strict preferences, there exist preference structures for which every
stable assignment can be Pareto improved.
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Proof. Fix a permutation P and some PLDA with permutation P . We show that this particular

PLDA satisfies all the desired properties. Let η be a distribution of students, and let ĈP be the

second-round cutoffs corresponding to the assignment given by the PLDA for this distribution of

student types.

PLDA respects guarantees because fewer students are guaranteed at each school than the ca-

pacity of the school. PLDA is non-wasteful because the second round terminates with a stable

matching where all schools find all students acceptable, which is non-wasteful.

We now show that the PLDA mechanism is strongly two-round strategy-proof. Since students

are non-atomic, no student can change the cutoffs ĈP by changing her first- or second-round

reports. Hence it is a dominant strategy for all students to report truthfully in the second round.

Moreover, for any student s, the only difference between having a first-round guarantee at a school

i and having no first-round guarantee is that in the former case, r̂si = p̂si + L (s) increases from rsi

by ni − psi . This means that having a guarantee at a school i changes the student’s second-round

assignment in the following way. She receives a seat in school i whereas without the guarantee she

would have received a seat in some school j that she reported preferring less to school i, and her

second-round assignment is unchanged otherwise.

Therefore, students want their first-round guarantee to be the best under their second-round

preferences, and so it is a dominant strategy for students with consistent preferences to report

truthfully in the first round.

PLDA is constrained Pareto efficient, since we use single tie-breaking and the output is the

student-optimal stable matching with respect to the updated second-round priorities p̂. This is

easily seen via the cutoff characterization. Let the second-round cutoffs be P̂ , where overloading

notation we let P̂i denote the cutoff for school ĩ. Fix a Pareto-improving cycle (Θm,Sm, Cm).

Without loss of generality we may assume that p̂s
ĩ

+ L(s) ≥ Pi for all s ∈ Si, since the set of

students for whom this is not true has measure 0. Moreover, since all students s ∈ Si prefer

school (i+1)′ to their assigned school µ̂ (s) = i′, without loss of generality we may also assume that

p̂s(i+1)′+L(s) < Pi+1 for all s ∈ Si, since the set of students for whom this is not true has measure 0.

This means that for all si ∈ Si and si+1 ∈ Si+1 it holds that p̂si(i+1)′+L(si) < Pi+1 ≤ p̂si+1
(i+1)′+L(si+1),
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and so p̂si(i+1)′ ≤ p̂
si+1
(i+1)′ .

Suppose for the sake of contradiction that the cycle (Θm,Sm, Cm) respects second-round prior-

ities. Then for each si ∈ Si and si+1 ∈ Si+1 it holds that p̂si(i+1)′ ≥ p̂
si+1
(i+1)′ , and so L (si) > L (si+1).

But since this holds for all i we obtain a cycle of lottery numbers L (s1) > L (s2) > · · · > L (sm) >

L (s1), which provides the necessary contradiction.

We will show in Section 3.3.1 that in a setting without priorities, the PLDA mechanisms are

the only mechanisms that satisfy all these properties (and some additional technical requirements),

even if we only require weak strategy-proofness (Theorem 3.3).

Finally, it is simple to show that the natural counterparts to PLDA mechanisms in a discrete

setting (with a finite number of students) respect guarantees and priorities, and are non-wasteful,

constrained Pareto efficient, and anonymous. We make these claims formal in Section 3.5 and

also provide an informal argument that the discrete PLDA mechanisms are also approximately

strategy-proof when the number of students is large.

3.3 Main Results

In this section, we will show that the defining characteristic of a PLDA mechanism—the permuta-

tion of lotteries between the two rounds—can be chosen to achieve desired operational goals. We

first provide a simple and intuitive order condition, and show that under this condition, all PLDA

mechanisms give the same ex ante allocative efficiency. Thus when the primitives of the market

satisfy the order condition, it is possible to pursue secondary operational goals without sacrificing

allocative efficiency. Next, in the context of reassigning school seats at the start of the school

year, we consider the specific problem of minimizing reassignment, and show that when the order

condition is satisfied, reversing the lottery minimizes reassignment among all centralized PLDA

mechanisms. In Section 3.6, we empirically demonstrate using data from NYC public high schools

that reversing the lottery minimizes reassignment (amongst a subclass of centralized PLDA mecha-

nisms) and does not significantly affect allocative efficiency even when the order condition does not

hold exactly. Our results suggest that centralized RLDA is a good choice of mechanism when the

35



primary goal is to minimize reassignments while providing a second-round assignment with high

allocative efficiency. In Section 3.3.1 we provide an axiomatic justification for PLDA mechanisms,

and later in Section 3.7 we discuss how the choice of lottery permutation can be used to achieve

other operational goals, such as maximizing the number of students with improved assignments.

We begin by defining the order condition, which we will need to state our main results.

Definition 3.12. The order condition holds on a set of primitives (C,S, η, q) if for every priority

class π, the first- and second-round school cutoffs under RLDA within that priority class are in the

same order, i.e., for all i, j ∈ C,

Cπ,i > Cπ,j ⇒ ĈRπ,i ≥ ĈRπ,j .

We emphasize that the order condition is a condition on the market primitives, namely, school

capacities and priorities and student preferences (though checking whether it holds involves investi-

gating the output of RLDA). We may interpret the order condition as an indication that the relative

demand for the schools is consistent between the two rounds. Informally speaking, it means that

the revelation of the outside options does not change the order in which schools are overdemanded.

One important setting where the order condition holds is the case of uniform dropouts and a single

priority type. In this setting, each student independently with probability ρ either remains in the

system and retains her first-round preferences in the second round, or drops out of the system

entirely; student first-round preferences and school capacities are arbitrary. We establish the order

condition and provide direct proofs of several of our theoretical results for the setting with uniform

dropouts in Section 3.4, in order to give a flavor of the arguments employed to establish our results

in the general setting.

To compare the allocative efficiency of different mechanisms, we define type-equivalence of as-

signments. In words, two second-round assignments are type-equivalent if the masses of different

student types θ assigned to each school are the same across the two assignments.

Definition 3.13. Two second-round assignments µ̂ and µ̂′ are said to be type-equivalent if14
η ({s ∈ S : θs = θ, µ̂ (s) = i}) = η

({
s ∈ S : θs = θ, µ̂′ (s) = i

})
∀θ ∈ Θ and i ∈ C.

14We remark that the type-equivalence condition is well defined in the space of interest. Specifically, although for
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In our continuum model, if two two-round mechanisms produce type-equivalent second-round

assignments we may equivalently interpret them as providing each individual student of type θ with

the same ex ante distribution (before lottery numbers are assigned) over assignments.

We are now ready to state the main results of this section. The first is a surprising finding that

under the order condition, all PLDAs are allocatively equivalent.

Theorem 3.1 (Order condition implies type-equivalence). If the order condition (Definition 3.12)

holds, all PLDA mechanisms produce type-equivalent second-round assignments.

Thus, if the order condition holds, the measure of students of type θ ∈ Θ assigned to each school

in the second round is independent of the the permutation P . The intuition behind this result is that

if the cutoffs are in the same order under RLDA, then the cutoffs are in the same order under any

PLDA, which can be used to show that aggregate final outcomes are equivalent across mechanisms.

We remark that type equivalence does not imply an equal (or similar) amount of reassignment,

as type-equivalence depends only on the second-round assignment, while reassignment (Definition

3.2) measures the difference between the first- and second-round assignments. For example, in the

example in Figure 3.1 if schools have a single priority class then FLDA and RLDA each give each

remaining student a one fifth chance of being assigned to each of schools 1 through 5, but FLDA

performs 5 reassignments whilst RLDA performs only 1. This brings us to our second result.

Theorem 3.2 (Reverse lottery minimizes reassignment). If all PLDA mechanisms produce type-

equivalent second-round assignments, then RLDA minimizes the measure of reassigned students

among PLDA mechanisms.

Proof. Fix θ = (�θ, �̂θ, pθ) ∈ Θ and school i ∈ C. We will show that, among all type equivalent

mechanisms, RLDA minimizes the measure of reassigned students with type θ who were assigned

to school i in the second round. The idea is that RLDA never reassigns a student of type θ into a

school i if it has reassigned a student of type θ out of school i.

Formally, for every permutation P , let the measure of students with type θ leaving and entering

school i in the second round under PLDA(P ) be denoted by `P = η({s ∈ S : θs = θ, µ(s) =

general random mechanisms these measures are random variables, in the case of PLDA mechanisms, these measures
are a deterministic function of priorities and preferences, and the equality is well defined.
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i, µ̂P (s) 6= i}) and eP = η({s ∈ S : θs = θ, µ(s) 6= i, µ̂P (s) = i}) respectively. Due to type-

equivalence, there is a constant c such that `P = eP − c for all permutations P . We show that

either `R = 0 and eR = c, or eR = 0, implying that eR ≤ eP for all permutations P .

If both eR > 0 and `R > 0, then students of type θ who entered i in the second round of RLDA

had worse first- and second-round lottery numbers than students who left i in the second round

of RLDA, which contradicts the reversal of the lottery. Formally, suppose eR > 0 and `R > 0.

If n+ 1�̂θi then eR = 0, so we may assume i�̂θn+ 1 . Since eR > 0, there exists some student

s ∈ S with type θs = θ for whom i = µ̂R(s)�̂θµ(s). By consistency, we have i �θ µ(s) , and

therefore s could not afford (meet the cutoff for) i in the first round. Since `R > 0, there exists

some student s′ ∈ S with type θs′ = θ for whom j = µ̂R(s′)�̂θµ(s′) = i. By definition, s′ could

afford i in the first round and s could not, and hence L(s′) > L(s). Note that since i�̂θn+ 1 , it

follows that j�̂θi�̂θn+ 1. Now, since s′ received a better second-round assignment under RLDA

than s and both s and s′ were reassigned under RLDA, it follows that R(L(s′)) > R(L(s)), which

is a contradiction. Since eP = `P + c ≥ c and eP ≥ 0 this completes the proof.

Our results present a strong case for using the centralized RLDA mechanism when the main

goals are to achieve allocative efficiency and minimize the number of reassigned students. Theorems

3.1 and 3.2 show that when the order condition holds, centralized RLDA is unequivocally optimal

in the class of PLDA mechanisms, since all PLDA mechanisms give type-equivalent assignments15

and centralized RLDA minimizes the number of reassigned students. In addition, we remark that

the order condition can be checked easily by running RLDA (e.g., on historical data).16

Next, we give examples of when the order condition holds and does not hold, and illustrate the

resulting implications for type-equivalence. We illustrate these in Figure 3.3.

Example 3.1. There are n = 2 schools, each with a single priority group. School 1 has lower

capacity and is initially more overdemanded. Student preferences are such that when all students

15A reasonable utility model in the continuum would yield that type-equivalence implies welfare equivalence.
16We are not suggesting that the mechanism should involve checking the order condition and then using centralized

RLDA only if this condition is satisfied (based on the guarantee in Theorems 3.1 and 3.2). However, one could check
whether the order condition holds on historical data and accordingly decide whether to use the centralized RLDA
mechanism or not.
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who want only 2 drop out the order condition holds, and when all students who want only 1 drop

out school 2 becomes more overdemanded under RLDA and the order condition does not hold.

School capacities are given by q1 = 2, q2 = 5. There is measure 4 of each of the four types of first-

round student preferences. Let θi denote the student type that finds only school i acceptable, and let

θi,j denote the type that finds both schools acceptable and prefers i to j. (We will define the second

round preferences of each student type below; each type will either leave the system completely or

keep the same preferences.) If we run DA-STB, the first-round cutoffs are (C1, C2) =
(

3
4 ,

1
2

)
.

Suppose that all type θ2 students leave the system, and all students of other types stay in the

system and keep the same preferences as in the first round. This frees up 2 units at school 2. Under

RLDA, the second-round cutoffs are
(
ĈR1 , Ĉ

R
2

)
=
(
1, 3

4

)
. In this case, the order condition holds

and FLDA and RLDA are type-equivalent. It is simple to verify that both FLDA and RLDA assign

the same measure µ̂(i) of students of type (θ1, θ1,2, θ2,1) to school i, where

µ̂F = µ̂R = (µ̂(1), µ̂(2)) = ((1, 1, 0), (0, 2, 3)) .

Suppose that all type θ1 students leave the system, and all students of other types stay in the

system and keep the same preferences as in the first round. This frees up 1 unit at school 1. Under

RLDA, no new students are assigned to school 2, and the previously bottom-ranked (but now top-

ranked) measure 1 of students who find school 1 acceptable are assigned to school 1. Hence the

second-round cutoffs are
(
ĈR1 , Ĉ

R
2

)
=
(

7
8 , 1
)
. In this case, the order condition does not hold. Type

equivalence also does not hold (and in fact FLDA and RLDA give different ex ante assignments to

students of every remaining type), since the FLDA and RLDA assignments are

µ̂F =
(

(2, 0, 0),
(1

3 ,
7
3 ,

7
3

))
, µ̂R = ((1.5, 0.5, 0), (1, 2, 2)) .

3.3.1 Axiomatic Justification of PLDA Mechanisms

We have shown that PLDA mechanisms satisfy a number of desirable properties. Namely, PLDA

mechanisms respect guarantees and priorities, and are two-round strategy-proof (in a strong sense),

non-wasteful, constrained Pareto efficient, and anonymous. In this section, we show that in a setting
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Figure 3.3: In Example 3.1, FLDA and RLDA are type equivalent when the order condition holds, and give different
assignments to students of every type when the order condition does not hold.

The initial economy and first-round assignment are depicted on the top left. On the right, we show the second-round
assignments under FLDA and RLDA when type θ2 students (who want only school 2) drop out, and when type θ1
students (who want only school 1) drop out. Students toward the left have larger first round lottery numbers. The
patterned boxes above each column of students indicate the affordable sets for students in that column. When students
who want only school 2 drop out, the order condition holds, and FLDA and RLDA are type-equivalent. When students
who want only school 1 drop out, school 2 becomes more overdemanded in RLDA, and FLDA and RLDA give different
ex ante assignments to students of every remaining type.

with a single priority class the PLDA mechanisms are the only mechanisms that satisfy both these

properties as well as two mild technical conditions on the symmetry of the mechanism, even when

we require only the weaker version of two-round strategy-proofness.

Definition 3.14. A two-round mechanism satisfies the averaging axiom if for every type θ and

pair of schools (i, j) the randomization of the mechanism does not affect the measure of students

with type θ assigned to (i, j) in the first and second rounds, respectively. That is, for all θ, i, j,

there exists a constant cθ,i,j such that η({s ∈ S : θs = θ, µ(s) = i, µ̂(s) = j}) = cθ,i,j w.p. 1.

Definition 3.15. A two-round mechanism is non-atomic if any single student changing her pref-

erences has no effect on the assignment probabilities of other students.

Our characterization result is the following.
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Theorem 3.3. Suppose that student preferences are consistent and student types have full support

(Assumptions 3.1 and 3.2). A non-atomic two-round assignment mechanism where the first round

is DA-STB respects guarantees and is

• non-wasteful,

• (weakly) two-round strategy-proof,

• constrained Pareto efficient,

• anonymous, and

• averaging,

if and only if the second-round assignment is given by PLDA. (Here the permutation P may depend

on the measure of student preference types ζ(·).)

We remark that we require two-round strategy-proofness only for students whose true preference

type is consistent. This is because preference inconsistencies across rounds can lead to conflicts

between the desired first-round assignment with respect to first-round preferences and the desired

first-round guarantee with respect to second-round preferences, making it unclear how to even define

a best response. Moreover, it may be reasonable to assume that students who are sophisticated

enough to strategize about misreporting in the first round in order to affect the guarantee structure

in the second round will also know their second-round preferences over schools in C (i.e., everything

except where they rank their outside option) at the beginning of the first round, and hence will

have consistent preferences.17 We remark also that the ‘only if’ direction of this result is the only

place where we require the full support assumption (Assumption 3.2).

The main focus of our result is the effect of cross-round constraints. By assumption, the first-

round mechanism is DA-STB. It is relatively straightforward to deduce that the second-round

mechanism also has to be DA-STB. Strategy-proofness in the second round, together with non-

wastefulness, respecting priorities and guarantees, and anonymity, constrain the second round to

17One obvious objection is that students may also obtain extra utility from staying at a school between rounds,
or, equivalently, they may have a disutility for moving, creating inconsistent preferences where the school they are
assigned to in the first round becomes preferred to previously more desirable schools. We remark that Theorem 3.3
extends to the case of students whose preferences incorporate additional utility if they stay put, provided that the
utility is the same at every school for a given student or satisfies a similar non-crossing property.
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be DA, with each student given a guarantee at the school she was assigned to in the first round, and

constrained Pareto efficiency forces the tiebreaking to be in the same order at all schools. The cross-

round constraints are more complicated, but can be understood using affordable sets. A student’s

affordable set is the set of schools that she can choose to attend, i.e., the first-round affordable set

is the set of schools for which she meets the first-round cutoff, and the affordable set is the set of

schools for which she meets the first- or second-round cutoff. The set of possible affordable sets is

uniquely determined by the order of cutoffs. By carefully using two-round strategy-proofness and

anonymity, we show that a student’s preference type does not affect the joint distribution over her

first-round affordable set and affordable set, and hence her second-round lottery is a permutation

of her first-round lottery that does not depend on her preference type.

Our result mirrors similar large market cutoff characterizations for single-round mechanisms by

Liu and Pycia (2016) and Ashlagi and Shi (2014), which show, in settings with a single and multiple

priority types respectively, that a mechanism is non-atomic, strategy-proof, symmetric, and efficient

(in each priority class) if and only if it can be implemented by lottery-plus-cutoff mechanisms, which

provide random lottery numbers to each student and admit them to their favorite school for which

they meet the admission cutoff. We obtain such a characterization in a two-round setting using the

fact that the mechanism respects guarantees and introducing an affordable set argument to isolate

the second round from the first. This simplification allows us to employ arguments similar to those

used in Liu and Pycia (2016) and Ashlagi and Shi (2014) to show that the first- and second-round

mechanisms can be individually characterized using lottery-plus-cutoff mechanisms.

3.4 Intuition for Main Results

In this section, we provide some intuition for our main results. We also furnish full proofs for a

special case of our model to give the interested reader a taste of the general proof techniques in a

more transparent setting. This section may be skipped at a first reading without loss of continuity.

We begin with some definitions and intuition for our general results. A key conceptual insight

is that we can simplify the analysis by shifting away from student assignments, which depend on
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student preferences, and considering instead the options that a student is allowed to choose from,

which are independent of preferences. Specifically, if we define the affordable set for each student

as the set of schools for which she meets either the first- or second-round cutoffs, then each student

is assigned to her favorite school in her affordable set at the end of the second round, and changing

the student’s preferences does not change her affordable set in our continuum model. Moreover,

affordable sets and preferences uniquely determine demand.

The main technical idea that we use in establishing our main results is that the order condition

is equivalent to the following seemingly much more powerful “global” order condition.

Definition 3.16. We say that PLDA(P ) satisfies the local order condition on a set of primitives

(C,S, η, q) if, for every priority class π, the first- and second-round school cutoffs within that priority

class are in the same order under PLDA(P ). That is, for all i, j ∈ C,

Cπ,i > Cπ,j ⇒ ĈPπ,i ≥ ĈPπ,j .

We say that the global order condition holds on a set of primitives (C,S, η, q) if:

• (Consistency aross rounds) PLDA(P ) satisfies the local order condition on (C,S, η, q) ∀P ;

• (Consistency aross permutations) For every priority class π, for all pairs of permutations P, P ′

and schools i, j ∈ C ∪ {n+ 1}, it holds that ĈPπ,i > ĈPπ,j ⇒ ĈP
′

π,i ≥ ĈP
′

π,j .

In other words, the global order condition requires that all PLDA mechanisms result in the same

order of school cutoffs in both rounds. Surprisingly, if the cutoffs are in the same order in both

rounds under RLDA, then they are in the same order in both rounds under any PLDA.

Theorem 3.4. The order condition (Definition 3.12) holds for a set of primitives (C,S, η, q) if and

only if the global order condition holds for (C,S, η, q).

We provide some intuition as to why Theorem 3.4 holds by using the affordable set framework.

Under the reverse permutation, the sets of schools that enter a student’s affordable set in the first

and second rounds respectively are maximally misaligned. Hence, if the cutoff order is consistent
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across both rounds under the reverse permutation, then the cutoff order should also be consistent

across both rounds under any other permutation.

The affordable set framework also sheds some light on the power of the global order condition.

Fix a mechanism and suppose that the first- and second-round cutoffs are in the same order. Then

each student s’s affordable set is of the form Xi = {i, i+ 1, . . . , n} for some i = i(s), where schools

are indexed in decreasing order of their cutoffs for the relevant priority group π = pθ
s , and the

probability that a student receives some affordable set is independent of her preferences. Moreover,

since affordable sets are nested X1 ⊇ X2 ⊇ · · · ⊇ Xn, and since the lottery order is independent of

student types, the demand for schools is uniquely identified by the proportion of students whose

affordable set contains school i for each i. When the global order condition holds, this is true for

every PLDA mechanism individually, which provides enough structure to induce type-equivalence.

We now introduce a special case of our model. For this special case, we will prove that the

order condition holds, and show that all PLDA mechanisms give type-equivalent assignments.

Definition 3.17. (Informal) A market satisfies uniform dropouts if there is exactly one prior-

ity group at each school, students leave the system independently with some fixed probability ρ,

(as formalized in Equation (3.3) below), and the students who remain in the system retain their

preferences.

Before formalizing the definition and results for this setting, we provide some intuition for why

the global order condition always holds under uniform dropouts. In the uniform dropouts model,

each student drops out of the system with probability ρ, e.g. due to leaving the city after the first

round for reasons that are independent of the school choice system. The second-round problem

can thus be viewed as a rescaled version of the first-round problem; in particular, the measure of

remaining students who were assigned to each school i in the first round is (1−ρ)qi, the measure of

students of each type θ assigned to each school is scaled down by 1− ρ, the capacity of each school

is still qi, and the measure of students of each type θ who are still in the system is scaled down by

1− ρ. Thus schools fill in the same order regardless of the choice of permutation.

Let us now formalize our definitions and results. Throughout the rest of this section, since

there are no priorities, we will let student types be defined either by θ = (�θ, �̂θ,1) or simply by
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θ = (�θ, �̂θ). We define uniform dropouts with probability ρ by

ζ({θ ∈ Θ :�θ=�, �̂θ = (n+ 1) � . . .}) = ρζ({θ ∈ Θ :�θ=�}),

ζ({θ ∈ Θ :�θ=�, �̂θ =�}) = (1− ρ)ζ({θ ∈ Θ :�θ=�}) , (3.3)

i.e. for every strict preference � over schools, students with first-round preferences � with proba-

bility ρ find the outside option n+ 1 the most attractive in the second round, and with probability

1− ρ retain the same preferences in the second round.18

We show first that the global order condition (Definition 3.16) holds in the setting with uniform

dropouts. The high level steps and algebraic tools used in this proof are similar to those used to

show that the order condition is equivalent to the global order condition in our general framework

(Theorem 3.4), although the analysis in each step is greatly simplified. We provide some intuition

as to the differences in this section, and furnish the full proof of Theorem 3.4 in the Appendix.

Theorem 3.5. In any market with uniform dropouts (Definition 3.17), the global order condition

(Definition 3.16) holds.

Proof. The main steps in the proof are as follows: (1) Assuming that every student’s affordable

set is Xi for some i, for every school j, guess the proportion of students who should receive an

affordable set that contains j. (2) Calculate the corresponding second-round cutoffs C̃j for school

j. (3) Show that these cutoffs are in the same order as the first-round cutoffs. (4) Use the fact that

the cutoffs are in the same order to verify that the cutoffs are market-clearing, and deduce that the

constructed cutoffs are precisely the PLDA(P ) cutoffs.

Throughout this proof, we amend the second-round score of a student s under PLDA(P ) to be

r̂si = P (L(s)) + 1{L(s)≥Ci}, meaning that we give each student a guarantee at any school for which

she met the cutoff in the first round. By consistency of preferences, it is easily seen that this has no

effect on the resulting assignment or cutoffs. Let the first-round cutoffs be C1, C2, . . . , Cn, where

without loss of generality we index the schools such that C1 ≥ C2 ≥ · · · ≥ Cn.

18We remark that there is a well-known technical measurability issue w.r.t. a continuum of random variables, and
that this issue can be handled; see, for example, Al-Najjar (2004).
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(1) In the setting with uniform dropouts, since the second-round problem is a rescaled version of

the first-round problem (with a (1− ρ) fraction of the original students remaining), we guess that

we want the proportion of students with an affordable set containing school j to be 1
1−ρ times the

original proportion. (In the general setting, we no longer have a rescaled problem and so we instead

guess that the proportion of students with each affordable set is the same as that under RLDA.)

(2) We translate this into cutoffs in the following way. Let fPi (x) = |{` : ` ≥ Ci or P (`) ≥ x}|

be the proportion of students who receive school i in their (second-round) affordable set with the

amended second-round scores under permutation P if the first- and second-round cutoffs are Ci

and x respectively. Notice that fi(x) is non-increasing for all i, fi(0) = 1, fi(1) = 1 − Ci, and if

i < j then fi(x) ≤ fj(x) for all x ∈ [0, 1]. Let the cutoff C̃Pi ∈ [0, 1] be the minimal cutoff satisfying

the equation fi(C̃Pi ) = 1
1−ρ(1 − Ci), and let C̃Pi = 0 if Ci < ρ . (In the general setting the cutoffs

are defined using the same functions fPi (·) with the proportions being equal to those that arise

under RLDA, as mentioned in step (1) above.)

(3) We now show that the cutoffs C̃ are in the right order. Suppose that i < j. If C̃Pi = 0

then Cj ≤ Ci ≤ ρ and so C̃Pj = 0 ≤ C̃Pi as required. Hence we may assume that C̃Pi , C̃Pj > 0.

In this case, since fj(·) is non-increasing and C̃Pj is minimal, we can deduce that C̃Pj ≤ C̃Pi if

fj
(
C̃Pj

)
≥ fj

(
C̃Pi

)
. It remains to establish the latter. Using the definition of fj and fi, we have

fj
(
C̃Pi

)
= fi

(
C̃Pi

)
+
∣∣∣{` : ` ∈ [Cj , Ci), P (`) < C̃Pi

}∣∣∣
≤ 1

1− ρ(1− Ci) + (Ci − Cj) ≤
1

1− ρ(1− Cj) = fj
(
C̃Pj

)
,

where both inequalities hold since Cj ≤ Ci. It follows that C̃Pi ≥ C̃Pj , as required. (In the general

setting, since we cannot give closed form expressions for the proportions fi
(
C̃Pi

)
in terms of the

cutoffs Ci, this step requires using the intermediate value theorem and an inductive argument.)

(4) We now show that C̃P is the set of market-clearing DA cutoffs for the second round of PLDA(P ).

Note that γi = Ci−1−Ci is the proportion of students whose first-round affordable set is Xi (where

C0 = 1). Since dropouts are uniform at random, this is the proportion of such students out of the

total number of remaining students both before and after dropouts.

Consider first the case C̃Pi > 0. Now fi
(
C̃Pi

)
is the proportion of students whose second-round
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affordable set contains i, and since C1 ≥ C2 ≥ · · · ≥ Cn and C̃P1 ≥ C̃P2 ≥ · · · ≥ C̃Pn , it follows that

the affordable sets are nested. Hence the proportion of students (of those remaining after students

drop out) whose second-round affordable set is Xi is given by (where f0(·) ≡ 1)

γPi = fi
(
C̃Pi

)
− fi−1

(
C̃Pi−1

)
= Ci−1 − Ci

1− ρ = γi
1− ρ.

For each student type θ = (�,�) and set of schools X, let Dθ(X) be the maximal school in X under

�, and let θ′ = (�, �̂) be the student type consistent with θ that finds all schools unacceptable in

the second round. Then a set of students of measure

∑
j≤i

∑
θ∈Θ:Dθ(Xj)=i

γPj ζ(θ) =
∑
j≤i

γj
∑

θ∈Θ:Dθ(Xj)=i

ζ(θ)
1− ρ =

∑
j≤i

γj
∑

θ∈Θ:Dθ(Xj)=i
ζ(θ) + ζ(θ′)

choose to go to school i in the second round under the second-round cutoffs C̃P . We observe that

the expression on the right gives the measure of the set of students who choose to go to school i in

the first round under first-round cutoffs C.

In the case where C̃Pi = 0 the above expressions give upper bounds on the measure of the set

of students who choose to go to school i in the second round under the second-round cutoffs C̃P .

Since C are market-clearing cutoffs, and C̃Pi > 0⇒ CPi > 0, it follows that C̃P are market-clearing

cutoffs too. We have shown that in PLDA(P ), the second-round cutoffs are exactly the constructed

cutoffs C̃P and they satisfy C̃P1 ≥ · · · ≥ C̃Pn , and so the global order condition holds.

The general proof of Theorem 3.4 uses the cutoffs for RLDA in steps (1) and (2) above to guess

the proportion of students who receive an affordable set that contains school j, and requires that

each student priority type be carefully accounted for. However, the general structure of the proof

is similar, and the tools used are straightforward generalizations of those used in the proof above.

We next show that Theorem 3.1 holds with uniform dropouts. Specifically, we show that all

PLDA mechanisms give type-equivalent assignments.

Proposition 3.2. In any market with uniform dropouts (Definition 3.17), all PLDA mechanisms

produce type-equivalent assignments.
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Proof. The proposition follows immedately from the fact that the proportion γPi of students whose

second-round affordable set is Xi does not depend on P . In more detail, consider first the case

when all schools reach capacity in the second round of PLDA. We showed in the proof of Theorem

3.5 that for all i and all student types θ, the proportion of students of type θ with affordable set Xi

in the second round under PLDA(P ) is given by γPi = γi
1−ρ , where γi is the proportion of students

of type θ with affordable set Xi in the first round. It follows that all PLDAs are “type-equivalent”

to each other because they are type-equivalent to the first-round assignment in the following sense.

For each preference order �, let �̃ be the preferences obtained from � by making the outside option

the most desirable, i.e., n+ 1�̃ · · · . Then

η({s ∈ S : θs = (�,�), µ̂P (s) = i}) = 1
1− ρη({s ∈ S : θs = (�,�), µ(s) = i})

= η({s ∈ S : θs ∈ {(�,�), (�, �̃)}, µ(s) = i}),

where the second equality holds since students stay in the system uniformly-at-random with prob-

ability 1 − ρ. Under uniform dropouts this holds for all student types that remain in the system,

and so it follows that µ̂P is type-equivalent to µ̂P ′ for all permutations P, P ′.

When some school does not reach capacity in the second round, we can show by induction on

the number of such schools that all PLDAs are type-equivalent to RLDA.

Remark. Most of the results of this section extend to the following generalization of the

uniform dropouts setting. A market satisfies uniform dropouts with inertia if there is exactly one

priority group at each school, students leave the system independently with some fixed probability

ρ, remain and wish to stay at their first round assignment with some fixed probability ρ’ (have

‘inertia’), and otherwise remain and retain their first round preferences.19 It can be shown that in

such a market, the global order condition always holds, and RLDA minimizes reassignment amongst

all type-equivalent allocations. Moreover, if all students are assigned in the first round, it can also

be shown that PLDA mechanisms produce type-equivalent allocations.

19This market is slightly beyond the scope of our general model, as the type of the student now also has to encode
second-round preferences that depend on the first-round assignment, namely whether they have inertia.
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3.5 PLDA for a Discrete Set of Students

Before verifying our theoretical results through simulations, we formally define and show how to

implement PLDA mechanisms in a discrete setting with a finite number of students. We also prove

that they retain almost all the desired incentive and efficiency properties discussed in Section 3.2.1.

3.5.1 Discrete Model

A finite set S = {1, 2, . . . , N} of students are to be assigned to a set C = {1, . . . , n} of schools.

Each student can attend at most one school. As in the continuum model, for every school i, let

qi ∈ N+ be the capacity of school i, i.e., the number of students the school can accommodate. Let

n+ 1 6∈ C denote the outside option, and assume qn+1 = ∞. For each set of students S ⊆ S we

let η(S) = |S| be the number of students in the set. As in the continuum model, each student

s = (θs, L(s)) ∈ S has a type θs = (�s, �̂s, ps) and a first-round lottery number L(s) ∈ [0, 1], which

encode both student preferences and school priorities.

The first-round lottery numbers L(s) are i.i.d. random variables drawn uniformly from [0, 1]

and do not depend on preferences. These random lottery numbers L generate a uniformly random

permutation of the students based on the order of their lottery numbers.

An assignment µ : S → C specifies the school that each student is assigned to. For an assignment

µ, we let µ(s) denote the school to which student s is assigned, and in a slight abuse of notation,

we let µ(i) denote the set of students assigned to school i. As in the continuum model, we say that

a student s ∈ S is a reassigned student if she is assigned to a school in C in the second round that

is different to her first-round assignment.

3.5.2 PLDA Mechanisms & Their Properties

We now formally define PLDA mechanisms in a setting with a finite number of students. In order

to do so, we use the algorithmic description of DA and extend it to a two-round setting. This also

provides a clear way to implement PLDA mechanisms in practice. We first reproduce the widely

deployed DA algorithm, and then proceed to define PLDAs.
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Definition 3.18. The Deferred Acceptance algorithm with single tie-breaking is a functionDA
(
(�s

, ps)s∈S , L
)
mapping the student preferences in the first round, priorities and lottery numbers into

an assignment µ constructed as follows. In each step, unassigned students apply to their most-

preferred school that has not yet rejected them. A school with a capacity of q tentatively assigns

a seat to each of its q highest-ranked applicants, ranked according to its priority ranking of the

students with ties broken by giving preference to higher lottery numbers L (or tentatively assigns

seats to all applicants, if fewer than q have applied), and rejects any remaining applicants, and

the algorithm moves on to the next step. The algorithm runs until there are no new student

applications, at which point it terminates and assigns each student to her tentatively assigned

school seat.

Definition 3.19 (Permuted Lottery Deferred Acceptance (PLDA) mechanisms). Let P be a per-

mutation of S. Let L be the realization of first-round lottery numbers, and let µ be the first-round

assignment obtained by running DA with lottery L. The permuted lottery deferred acceptance

mechanism associated with P (PLDA(P )) is the mechanism that then computes a second-round

assignment µ̂P by running DA on the same set of students S but with student preferences �̂, a

modified lottery P ◦ L, and modified priorities p̂ that give each student top priority at the school

she was assigned to in the first round. Specifically, each school i’s priorities �̂i are defined by lexi-

cographically ordering the students first by whether they were assigned to i in the first round, and

then according to pi. PLDA(P ) is the two-round mechanism obtained from using the reassignment

mechanism DA
(
(�̂s, p̂s)s∈S , P ◦ L

)
.

We now formally define desirable properties from Section 3.2.1 in our discrete model. We

remark that the definitions of respecting guarantees, strategy-proofness and anonymity do not

reference school capacities and so carry over immediately. Similarly, the definitions for respecting

priorities, non-wastefulness and constrained Pareto efficiency do not require non-atomicity and so

our definition of η ensures that they also carry over. For completeness, we rewrite these properties

without reference to η.

Definition 3.20. A two-round mechanism M respects priorities (subject to guarantees) if
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(i) for every school i ∈ C and student s ∈ S who prefers i to her assigned school i �̂s µ̂(s) , we have

|µ̂(i)| = qi, and (ii) for all students s′ such that µ̂(s′) = i 6= µ(s′), we have ps′i ≥ psi .

Definition 3.21. A two-round mechanism is non-wasteful if no student is denied a seat at a school

that has vacant seats; that is, for each student s ∈ S and schools i, if i�̂sµ̂(s), then |µ̂(i)| = qi.

Let µ̂ be a second-round assignment. A Pareto-improving cycle is an ordered set of students

(s1, s2, . . . , sm) ∈ Sm and schools (1′, 2′, . . . ,m′) ∈ Cm such that (i+ 1)′ �̂ii′ (where �̂i denotes the

second-round preferences of student si, and we define (m+ 1)′ = 1′), and µ̂(si) = i′ for all i.

Let p̂ be the second-round priorities obtained by giving each student s a top second-round

priority p̂si = ni at their first-round assignment µ(s) = i (if i ∈ C ) and unchanged priority p̂sj = psj

at all other schools j 6= i. We say that a Pareto-improving cycle (in a second-round assignment)

respects (second-round) priorities if p̂si(i+1)′ ≥ p̂
si+1
(i+1)′ for all i (where we define sm+1 = s1).

Definition 3.22. A two-round mechanism is constrained Pareto efficient if the second-round

assignment has no Pareto-improving cycles that respect second-round priorities.

In a setting with a finite number of students, PLDA mechanisms exactly satisfy all these prop-

erties except for strategy-proofness.

Proposition 3.3. Suppose student preferences are consistent. Then PLDA mechanisms respect

guarantees and priorities, and are non-wasteful, constrained Pareto efficient, and anonymous.

Proof. The proofs of all these properties are almost identical to those in the continuum setting.

As an illustration, we prove that PLDA is constrained Pareto efficient in the discrete setting by

using the fact that both rounds use single tie-breaking and the output is stable with respect to the

second-round priorities p̂.

Fix a Pareto-improving cycle C. Since si is assigned a seat at a school i when she prefers school

i+ 1 = µ(si+1), by the stability of DA she must either be in a strictly worse priority group than

si+1 at school i+ 1, or in the same priority group but have a worse lottery number. If C respects

(second-round) priorities, then it must hold that for all i that students si and si+1 are in the same

priority group at school i+ 1 and si has a worse lottery number than si+1. But since this holds
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for all i, single tie-breaking implies that we obtain a cycle of lottery numbers, which provides the

necessary contradiction.

Proposition 3.3 states that in a setting with a finite number of students, PLDA mechanisms

satisfy all our desired properties except for strategy-proofness. The following example illustrates

that in a setting with a finite number of students, PLDA mechanisms may not satisfy two-round

strategy-proofness. The intuition is that without non-atomicity, students are able to manipulate the

first-round assignments of other students to change the guarantees, and hence change the second-

round stability structure. In some cases in small markets, students are able to change the set of

stable outcomes to benefit themselves.

Example 3.2 (PLDA with a finite number of students is not strategy-proof.). Consider a setting

with n = 2 schools and N = 4 students, S = {w, x, y.z}. Each school has capacity 1 and a single

priority class. For readability, we let ∅ denote the outside option. The students have the following

preferences:

• 1 �w ∅ �w 2 and ∅ �̂w 1 �̂w2,

• 1 �x 2 �x ∅, second-round preferences identical,

• 2 �y 1 �y ∅, second-round preferences identical,

• 2 �z ∅ �z 1, second-round preferences identical.

We show that the RLDA mechanism is not strategy-proof. Consider the lottery that yields L(w) >

L(x) > L(y) > L(z). If the students report truthfully, the first-round assignment and second-round

reassignment are

µ(S) = (µ(w), µ(x), µ(y), µ(z)) = (1, 2, ∅, ∅), and

µ̂(S) = (µ̂(w), µ̂(x), µ̂(y), µ̂(z)) = (∅, 2, 1, ∅)

respectively. However, consider what happens if student x says that only school 1 is acceptable to
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her by reporting preferences �r= �̂r given by 1�r∅�r2 and 1�̂r∅�̂r2. Then

µ(S) = (1, ∅, 2, ∅), µ̂(S) = (∅, 1, 2, ∅),

which is a strictly beneficial change for student x in the second round (and, in fact, weakly beneficial

for all students).

Note that this reassignment was not stable in the second round when students reported truth-

fully, since, in that case, school 2 had second-round priorities px2 > pz2 > py2 > pw2 and so school

2 and student z formed a blocking pair. In other words, for this particular realization of lottery

numbers, student x is able to select a beneficial second-round assignment µ̂ that was previously

unstable by changing student y’s first-round assignment so that student z cannot block µ̂.

In addition, the second-round outcome for student x under misreporting stochastically domi-

nates her outcome from truthful reporting, when all other students report truthfully and the ran-

domness is due the first-round lottery order. For if the lottery order is L(w) > L(x) > L(y) > L(z)

then student x can change her second-round assignment from 2 to 1 by reporting 2 as unacceptable,

and this is the only lottery order for which student x receives a second-round assignment of 2 under

truthful reporting. This is because if L(s) > L(x) for s ∈ {y, z} then student s is assigned to

school 2 and stays there in both rounds, if L(x) > L(w), L(y), L(z) then student x is assigned to

school 1 and stays there in both rounds, and finally if L(w) > L(x) > L(z) > L(y) then student

x is assigned to school 1 in the second round. Moreover, for any lottery order where student x

received 1 in the first or second round under truthful reporting, she also received school 1 in the

same round by misreporting. This is because any stable matching in which student x is assigned

to1 remains stable after student x truncates. Indeed, student x is not part of any unstable pair, as

she got her first choice, and any unstable pair not involving student x remains unstable under the

true preferences, as only student x changes her preferences. Hence the second-round assignment

student x receives by misreporting stochastically dominates the assignment she would have received

under truthful reporting. This violates strategy-proofness.

This example shows that, as noted in Section 3.7, PLDAmechanisms are not two-round strategy-
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proof in the finite setting. However, there are convergence results in the literature that suggest that

PLDA mechanisms are almost two-round strategy-proof in large markets. Azevedo and Leshno

(2016) have shown that if a sequence of (large) discrete economies converges to some limiting

continuum economy with a unique stable matching (defined via cutoffs), then the stable matchings

of the discrete economies converge to the stable matching of the continuum. Azevedo and Budish

(2017) have shown that Deferred Acceptance is “strategy-proof in the large”. We conjecture that

the proportion of students who are able to successfully manipulate PLDA mechanisms decreases

polynomially in the size of the market. While a formal proof of such a result is beyond the scope

of this paper, we provide a heuristic argument as follows. By definition, PLDA mechanisms satisfy

the efficiency and anonymity requirements in finite markets as well. In the second round it is

clearly a dominant strategy to be truthful, and, intuitively, for a student to benefit from a first-

round manipulation, her report should affect the second-round cutoffs in a manner that gives her

a second-round assignment she would not have received otherwise. If the market is large enough,

the cutoffs will converge to their limiting values, and the probability that she could benefit from

such a manipulation would be negligible.

Moreover, we believe that students will be unlikely to try to misreport under the PLDA mecha-

nisms.20 This is because, as Example 3.2 illustrates, successful manipulations require that students

strategically change their first-round assignment and correctly anticipate that this changes the set

of second-round stable assignments to their benefit. Such deviations are very difficult to plan and

require sophisticated strategizing and detailed information about other students’ preferences.

The heuristic argument that PLDAmechanisms are strategy-proof in the large also suggests that

our theoretical results should approximately hold for large discrete economies. A similar argument

can be used to show that an approximate version of our characterization result (Theorem 3.3)

holds for finite markets with no priorities, as PLDA mechanisms satisfy an approximate version of

the averaging axiom in large finite markets. Our type-equivalence result (Theorem 3.1) and result

showing that RLDA minimizes transfers (Theorem~3.2) should also be approximately valid in the

large market limit. Specifically, consider a sequence of markets of increasing size. If the global order

20as compared to the currently used DA mechanism.
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condition holds in the continuum limit, this should lead to approximate type-equivalence under all

PLDAs and to RLDA approximately minimizing transfers among PLDAs in the finite markets as

market size grows. Moreover, if the order condition holds, then in large finite economies and for

every permutation P , the set of students who violate a local order condition on PLDA(P ) will be

small relative to the size of the market.

3.6 Empirical Analysis of PLDA Mechanisms

In this section, we use data from the New York City (NYC) high school choice system to simulate

and evaluate the performance of centralized PLDA mechanisms under different permutations P .

The simulations indicate that our theoretical results are real-world relevant. Different choices of

P are found to yield similar allocative efficiency: the number of students assigned to their k-th

choice for each rank k, as well as the number of students remaining unassigned, are similar for

different permutations P . At the same time, the difference in the number of reassigned students is

significant and is minimized under RLDA.

Motivated by current practice, we also simulate decentralized versions of FLDA and RLDA.

In a version where students take time to vacate previously assigned seats, reversing the lottery

increases allocative efficiency during the early stages of reassignment and decreases the number of

reassignments at every stage. However, in a version where students take time to decide on offers

from the waitlist, the efficiency comparisons are reversed.21 In both versions both FLDA and RLDA

took tens of stages to converge. Our simulations suggest that decentralized waitlist mechanisms

can achieve some of the efficiency gains of a centralized mechanism but incur significant congestion

costs, and the effects of reversing the tie-breaking order before constructing waitlists will depend

on the specific time and informational constraints of the market.

21This is due to a phenomenon that occurs when the second round is decentralized (not captured by our theoretical
model), where under the reverse lottery the students with the worst lottery in the first round increase the waiting
time for other students in the second round by considering multiple offers off the waitlist that they eventually decline.
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3.6.1 Data

We use data from the high school admissions process in NYC for the academic years 2004–2005,

2005–2006, and 2006–2007, as follows.

First-round preferences. In our simulation, we take the first-round preferences � of every

student to be the preferences they submitted in the main round of admissions. The algorithm used

in practice is essentially strategy-proof (see Abdulkadiroğlu et al., 2005a), justifying our assumption

that reported preferences are true preferences.22

Second-round preferences. In our simulation, students either drop out of the system entirely

in the second round or maintain the same preferences. Students are considered to drop out if the

data does not record them as attending any public high school in NYC the following year (this was

the case for about 9% of the students each year).23

School capacities and priorites. Each school’s capacity is set to the number of students assigned

to it in the first-round assignment in the data. This is a lower bound on the true capacity, but lets

us compute the final assignment under PLDA with the true capacities, since the occupancy of each

school with vacant seats decreases across rounds in our setting. School priorities over students are

obtained directly from the data. (We obtain similar results in simulations with no school priorities.)

3.6.2 Simulations

We ran simulations using a centralized implementation of PLDA as well as two decentralized ver-

sions of PLDA.

Centralized PLDA. We first consider the following family of centralized PLDA mechanisms,

parameterized by a single parameter α that smoothly interpolates between RLDA and FLDA.

Each student s receives a uniform i.i.d. first-round lottery number L(s) (a normal variable with

22The algorithm is not completely strategy-proof, since students may rank no more than 12 schools. However,
only a very small percentage of students rank 12 schools. Another issue is that there is some empirical evidence that
students do not report their true preferences even in school choice systems with strategy-proof mechanisms; (see, e.g.,
Hassidim et al., 2015; Narita, 2016).

23For a minority of the students (9.2%-10.45%), attendance in the following year could not be determined by our
data, and hence we assume they drop out randomly at a rate equal to the dropout rate for the rest of the students
(8.9%-9.2%).
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mean 0 and variance 1), which generates a uniformly random lottery order.24 The second-round

‘permuted lottery’ of s is given by αL(s)+L̃(s), where L̃(s) is a new i.i.d. normal variable with mean

0 and variance 1, and α is identical for all the students. RLDA corresponds to α = −∞ and FLDA

corresponds to α =∞. For a fixed real α, every realization of second-round scores corresponds to

some permutation of first-round lottery numbers, with α roughly capturing the correlation of the

second-round order with that of the first round. We quote averages across simulations.

Decentralized PLDA. In order to evaluate the performance of waitlist systems, we also ran

simulations using two versions of decentralized PLDA with second rounds run in multiple “stages”:

Version 1. At stage `, school i has residual capacity q̃`i equal to the number of students previously

assigned to school i who rejected school i in the previous stage (and q̃1
i is the number of students

assigned to school i in the first round who dropped out of the system). Each school i proposes to

the top q̃`i students on their waitlist (including students who dropped out) and removes them from

the waitlist, students who dropped out reject all offers, and all remaining students are (tentatively)

assigned to their favorite school that offered them a seat in the first round or in the second round

thus far and reject the rest. The stages of reassignment continue until there are no new proposals.

Version 2. At stage `, school i has residual capacity q̃`i equal to the number of students previously

assigned to school i who rejected school i in the previous stage (and q̃`1 is the number of students

assigned to school i in the first round who dropped out of the system). We run DA-STB on the

residual economy where each school i has capacity q̃`i and each student only finds schools strictly

better than their current assignment acceptable.25 This results in some students being reassigned

and new residual capacities for stage `+ 1, equal to the sum of the number of unfilled seats at the

end of stage ` and the number of students who left the school due to an upgrade in stage `. The

stages of reassignment continue until there are no new proposals.

Version 1 of the decentralized PLDA mechanisms mirrors a decentralized process where students

take time to make decisions. However, it does so in a rather naive fashion by assuming that students

24School preferences are then generated by considering students in the lexicographical ordering first in terms of
priority, then by lottery number. We may equivalently renormalize the set of realized lottery numbers to lie in the
interval [0, 1] before computing scores.

25We provide results using school-proposing DA, as this more closely mirrors the structure of waitlist systems.
Results using student-proposing DA were similar.
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take the same amount of time to accept an offer, to reject an offer, or to inform a school that they

were previously assigned to that they have been assigned to a different school. Version 2 captures a

decentralized process where students also take time to both make and communicate decisions, but

take much longer to tell schools that they were previously assigned to that they have been assigned

to a different school. Accordingly the efficiency outcomes at a given stage of version 2 dominate

those of version 1 at the same stage, as more information is communicated during each stage under

version 2.

Version 2 simulations a setting where the main driver behind congestion is chains of student

reassignment. Version 2 is more realistic in settings where schools are the primary drivers behind

updated information, since a school is much more likely to ask for decisions from students who are

undecided about an offer from the school rather than from students who have already accepted

an offer from the school. In many school districts information about previously assigned students

being reassigned to other schools is processed centrally, and it is also reasonable to assume that this

would occur on a slower timescale than rejections of offers. In practice we expect that the dynamics

of waitlist systems would lie somewhere on the spectrum between these two extreme versions of

decentralized PLDA.

3.6.3 Results

The results of our centralized PLDA computational experiments based on 2004–2005 NYC high

school admissions data appear in Table 3.1 and Figure 3.4. Results for 2005–2006 and 2006–2007

were similar. Figure 3.4 shows that the mean number of reassignments is minimized at α = −∞

(RLDA) and increases with α, which is consistent with our theoretical result in Theorem 3.2. The

mean number of reassignments is as large as 7,800 under FLDA compared to just 3,400 under

RLDA.

Allocative efficiency appears not to vary much across values of α: the number of students receiv-

ing at least their k-th choice for each 1 ≤ k ≤ 12, as well as the number of unassigned students, vary

by less than 1% of the total number of students. There is a slight trade-off between allocative effi-

ciency due to reassignment and allocative efficiency from assigning previously unassigned students,
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Figure 3.4: Number of reassigned students versus α. The number of reassigned students under the extreme values of
α, namely, α =∞ (FLDA) and α = −∞ (RLDA), are shown via dotted lines.

α Reassignments Unassigned k = 1 k ≤ 2 k ≤ 3
# % % % %

Round 1 (No Reassignment) 0 9.31 50.14 64.14 72.44
Round 2

FLDA: ∞ 7797 5.89 55.41 69.85 78.03
8.00 7606 5.90 55.40 69.85 78.02
6.00 7512 5.90 55.40 69.85 78.03
4.00 7325 5.89 55.38 69.84 78.02
2.00 6863 5.89 55.33 69.81 78.02
0.00 5220 5.87 54.96 69.65 77.97
-2.00 3686 5.81 54.52 69.37 77.82
-4.00 3480 5.79 54.47 69.33 77.78
-6.00 3433 5.79 54.46 69.32 77.77
-8.00 3416 5.79 54.45 69.31 77.77

RLDA: −∞ 3391 5.79 54.45 69.30 77.75

Table 3.1: Centralized PLDA simulation results: 2004–2005 NYC high school admissions.

We show the mean percentage of students remaining unassigned or getting at least their kth choice, averaged across
100 realizations for each value of α. All percentages are out of the total number of students remaining in the second
round. The data contained 81,884 students, 74,366 students remaining in the second round, and 652 schools. The
percentage of students who dropped out was 9.18%. The variation in the number of reassignments across realizations
was only about 100 students.
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with the percentage of unassigned students and percentage of students obtaining their top choice

both decreasing in α by about 0.1% and 1% of students respectively.26We further find that for most

students, the likelihoods of getting one of their top k choices under FLDA and under RLDA are

very close to each other. (For instance, for 87% of students, these likelihoods differ by less than

3% for all k.) This is consistent with what we would expect based on our theoretical finding of

type-equivalence (Theorem 3.1) of the final assignment under different PLDA mechanisms.

The results of our decentralized PLDA computation experiments appear in Table 3.2. When

implementing PLDAs in a decentralized fashion, our measures of congestion can be more nuanced.

We let a reassignment be a movement of a student from a school in C to a different school in

C, possibly during an interim stage of the second round, and let a temporary reassignment be a

movement of a student from a school in C ∪ {n+ 1} to a different school in C that is not their final

assignment. We will also be interested in the number of stages it takes to clear the market.

In the first version of decentralized PLDAs, FLDA reassigns more students than RLDA but far

outperforms RLDA in terms of minimizing congestion and maximizing efficiency. FLDA takes on

average 17 stages to converges, while RLDA requires 33. FLDA performs 780 temporary transfers

while RLDA performs 2420, creating much more unnecessary congestion. FLDA takes 2 and 5

stages to achieve 50% and 90% respectively of the total increase in number of students assigned to

their top school, whereas RLDA takes 3 and 9 stages respectively. FLDA also dominates RLDA in

terms of the number of students assigned to one of their top k choices in the first ` stages, for all

k and all `, and the percentage of unassigned students in the first ` stages for almost all small `.

In the second version of decentralized PLDAs, FLDA still reassigns more students and now

achieves less allocative efficiency than RLDA during the initial stages of reassignment. RLDA has

fewer unassigned students by stage ` than FLDA for all `. RLDA also dominates FLDA in terms of

the number of students assigned to one of their top k choices in the first 2 stages, and achieves most

of its allocative efficiency by the second stage, improving the allocative efficiency by fewer than 100

students from that point onwards. In the limit FLDA is still slightly more efficient than RLDA,

26Intuitively, prioritizing students with lower lotteries both decreases the number of unassigned students and
decreases allocative efficiency by artificially increasing the constraints from providing first-round guarantees.
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α Reassignments Unassigned k = 1 k ≤ 2 k ≤ 3
# total (# temporary) % % % %

Round 1 (No Reassignments) 0 9.31 50.14 64.17 72.45
Round 2 FLDA, Version 1

Stage 1 3461 (447) 7.89 52.68 66.62 74.47
Stage 2 2126 (206) 7.04 53.93 68.03 76.14
Stage 3 1258 (80) 6.55 54.60 68.83 76.96
Stage 4 727 (30) 6.27 54.97 69.28 77.42
Stage 5 425 (11) 6.11 55.18 69.53 77.68

Total (Stage ≈ 17) 8590 (780) 5.87 55.46 69.87 78.05
Round 2 RLDA, Version 1

Stage 1 1004 (835) 7.85 51.38 65.70 74.09
Stage 2 1077 (577) 7.18 52.24 66.72 75.15
Stage 3 838 (369) 6.78 52.82 67.39 75.83
Stage 4 640 (234) 6.52 53.23 67.86 76.30
Stage 9 180 (24) 5.97 54.22 69.02 77.45

Total (Stage ≈ 33) 5818(2419) 5.79 54.51 69.37 77.80
Round 2 FLDA, Version 2

Stage 1 4139 (457) 7.62 53.21 67.14 75.21
Stage 2 2333 (166) 6.69 54.50 68.66 76.75
Stage 3 1137 (42) 6.24 55.06 69.35 77.48
Stage 4 511 (9) 6.03 55.30 69.65 77.80

Total (Stage ≈ 12) 8503 (677) 5.89 55.47 69.87 78.04
Round 2 RLDA, Version 2

Stage 1 2863 (199) 6.15 54.14 68.85 77.24
Stage 2 489 (17) 5.88 54.38 69.16 77.58
Stage 3 165 (2) 5.82 54.46 69.26 77.69
Stage 4 63 (0) 5.79 54.49 69.30 77.73

Total (Stage ≈ 9) 3624 (220) 5.79 54.51 69.33 77.76

Table 3.2: Decentralized PLDA simulation results: 2004–2005 NYC high school admissions.

We show the mean number of reassignments (number of movements of a student from a school in C to a different
school in C) as well as the mean number of temporary reassignments (number of movements of a student from a school
in C ∪ {n+ 1} to a school in C that is not their final assignment) in parentheses. We also show mean percentage of
students remaining unassigned, or getting at least their kth choice. All figures are averaged across 100 realizations
for each value of α, and all percentages are out of the total number of students remaining in the second round. The
data contained 81,884 students, 74,366 students remaining in the second round, and 652 schools.
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and so for large ` FLDA achieves higher allocative welfare than RLDA after ` stages. However

FLDA also requires more stages to converge, taking on average 12 stages compared to 9 for RLDA.

Our empirical findings have mixed implications for implementing decentralized waitlists. Our

clearest finding is the benefit of centralization in reducing congestion. In most school districts

students are given up to a week to make decisions. If students take this long both to reject

undesirable offers and to vacate previously assigned seats, our simulations on NYC data suggest

that in the best case the market could take at least 4 months to clear. Even if students make

quick decisions, if it takes them a week to vacate their previously assigned seats, our simulations

suggest that the market would take at least 2 months to clear. In both cases the congestion

costs are prohibitive. If, despite these congestion costs, a school district wishes to implement

decentralized waitlists, our results suggest that the optimal permutation for the second-round

lottery for constructing waitlists will depend on the informational constraints in the market.

3.6.4 Strategy-proofness of PLDA

One of the aspects of the DA mechanism that makes it successful in school choice in practice is that

it is strategy-proof. While we have shown that PLDA mechanisms are two-round strategyproof in

a continuum setting, it is natural to ask to what extent PLDA mechanisms are two-round strategy-

proof in practice. We provide a numerical upper bound on the incentives to deviate from truthful

reporting using computational experiments based on 2004–2005 NYC high school data, and find

that on average a negligible proportion of students (< 0.01%) could benefit from misreporting

within their consideration set of programs. Specically, 0.8% of sampled students could misreport

in a potentially beneficial manner in at least one of 100 sampled lotteries, and no students could

benefit in more than 3 of 100 sampled lotteries from misreporting. Moreover for 99.8% of lotteries

the proportion of students who could successfully manipulate their report was at most 1%.

These upper bounds were computed as follows. Approximately 2700 students were sampled,

and RLDA was run for each of these students using 100 different sampled lotteries. For a given

student, let C be the set of schools that were a part of the student’s first round preferences in the

data. We allowed the student to unilaterally misreport in the first round, reporting at most one
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school from C in the first round instead of their true preferences. We then counted the number

of such students who by doing so could either (1) change their first-round assignment (for the

worse) but second-round assignment for the better, or (2) create a rejection cycle. This provides a

provable upper bound on the number of students who can benefit from misreporting (and possibly

reordering) a subset of C in the first round. We omit the formal details in the interest of space.

3.7 Proposals & Discussion

Summary of findings. We have proposed the PLDA mechanisms as a class of reassignment mech-

anisms with desirable incentive and efficiency properties. These mechanisms can be implemented

with a centralized second round at the start of the school year, or with a decentralized second round

via waitlists, and a suitable implementation can be chosen depending on the timing of informa-

tion arrival and subsequent congestion in the market. Moreover, the key defining characteristic of

the mechanisms in this class, the permutation used to correlate the tie-breaking lotteries between

rounds, can be used to optimize various objectives. We propose implementing centralized RLDA

at the start of the school year, as both in our theory and in simulations on data this allows us to

maintain efficiency while eliminating the congestion caused by sequentially reassigning students,

and minimizes the number of reassignments required to reach an efficient assignment.

RLDA is practical. We have shown that RLDA is an attractive choice when the objectives

are to achieve allocative efficiency and minimize the number of reassigned students. In addition,

RLDA has the nice property of being equitable in an intuitive manner, as students who receive a

poor draw of the lottery in the first round are prioritized in the second round. This may make

RLDA more palatable to students than other PLDA mechanisms. Indeed, Random Hall, an MIT

dorm, uses a mechanism for assigning rooms that resembles the reverse lottery mechanism we have

proposed. Freshmen rooms are assigned using serial dictatorship. At the end of the year (after

seniors leave), students can claim the rooms vacated by the seniors using serial dictatorship where

the initial lottery numbers (from their first match) are reversed.27

27The MIT Random Hall matching is more complicated, because sophomores and juniors can also claim the vacated
rooms, but the lottery only gets reversed at the end of freshman year. Afterward, if a sophomore switches room, her
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Optimizing other objectives. Our results suggest that PLDA mechanisms are an attractive class

of mechanisms in more general settings, and the choice of mechanism within this class will vary with

the policy goal. If, for instance, it were viewed as more equitable to allow more students to receive

(possibly small) improvements to their first-round assignment, then the FLDA mechanism that

simply runs DA again would optimize over this objective. Moreover, our type-equivalence result

(Theorem 3.1) shows that when the relative overdemand for schools stays the same this choice can

be made without sacrificing allocative efficiency.

Discussion of axiomatic characterization. We axiomatically justified the class of PLDA mech-

anisms in settings where schools do not have priorities (Theorem 3.3). In a model with priorities,

we find that natural extensions of our axioms continue to describe PLDA mechanisms, but also

include undesirable generalizations of PLDA mechanisms. Specifically, suppose that we add an

axiom requiring that for each school i, the probability that a student who reports a top choice of i

then receives it in the first or second round be independent of their priority at other schools. This

new set of axioms describes a class of mechanisms that includes the PLDA mechanisms. However,

there also exists an example market and a mechanism satisfying this new set of axioms such that

the joint distribution over the two rounds of assignments does not match any PLDA. Characterizing

the class of mechanisms satisfying these axioms in the richer setting with school priorities remains

an open question. It may also be possible to characterize PLDA mechanisms in a setting with

priorities using a different set of axioms. We leave both questions for future research.

Inconsistent preferences. Another natural question is how to deal with inconsistent student

preferences. Narita (2016) observed that in the current reapplication process in the NYC public

school system, although only about 7% of students reapplied, about 70% of these reapplicants re-

ported second-round preferences that were inconsistent with their first-round reported preferences.

Note that PLDAs allow students to report inconsistent preferences in the second round. We believe

that some of our insights remain valid if a small fraction of students have an idiosyncratic change in

preferences, or if a small number of new students enter in the second round. However, new effects

may emerge if students have arbitrarily different preferences in the two rounds. In such settings,

priority drops to the last place of the queue.
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strategy-proofness is no longer well defined, and it can be shown that the order condition is no

longer sufficient to guarantee type-equivalence and optimality of RLDA. Moreover, in such settings

the relative efficiency of the PLDA mechanisms will depend on the details of school supply and

student demand.

More than two rounds. Finally, what insights do our results provide for situations in which

assignment is done in three or more rounds? For instance, one could consider mechanisms under

which the lottery is reversed (or permuted) after a certain number of rounds and thereafter remains

fixed. At what stage should the lottery be reversed? Clearly, there are many other mechanisms

that are reasonable for this problem, and we leave a more comprehensive study of this question for

future work.
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Chapter 4

The Cutoff Structure of Top Trading

Cycles in School Choice

In this chapter, we provide a framework for optimizing over quantitative objectives when using the

Top Trading Cycles (TTC) school choice mechanism. We first develop a characterization of TTC

that explains the role of priorities in determining the TTC assignment and can be used to tractably

analyze TTC. The TTC assignment can be concisely described by admissions cutoffs, with a cutoff

pij for each pair of schools i, j that describes the minimal priority a student needs to have at school

j in order to use it to attend school i. These cutoffs parallel prices in competitive equilibrium, with

students’ priorities serving the role of endowments. We show that there is a labeling of schools

{1, .., n} such that for any i the cutoffs are ordered p1
i ≥ p2

i ≥ . . . pii = · · · = pni . Additionally, to

help convey to students that TTC is strategy-proof, we derive cutoffs that are independent of the

reported preferences of a given student.

To facilitate tractable analysis of TTC, we then formulate a continuum model of TTC and show

how to directly calculate the TTC assignment from the distribution of preferences and priorities

by solving a system of equations. We present closed form solutions for parameterized economies.

We also show that the discrete TTC model is a particular case of the continuum framework, as for

discrete problems the continuum TTC model calculates cutoffs that give the discrete TTC assign-

ment. We establish that the TTC assignment changes smoothly with changes in the underlying
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economy, implying that the continuum economy can also be used to approximate sufficiently similar

economies.

The tractability of our framework relies on a novel approach to analyzing TTC. A key idea that

allows us to define TTC in the continuum is that the TTC algorithm can be characterized by its

aggregate behavior over many cycles. Any collection of cycles must maintain trade balance, that is,

the number of students assigned to each school is equal to the number of students who claimed or

traded a seat at that school. For smooth continuum economies we reformulate the trade balance

equations into a system of equations that fully characterizes TTC. These equations provide a recipe

for calculating the TTC assignment.

The tractable continuum framework allows us to analyze the performance of TTC. We provide

comparative statics, calculate assignment probabilities under lotteries and evaluate welfare. In

particular, when priorities are partly determined by random lottery, the probability that a student

gains admission to a school can be directly derived as the probability her random priority is above

the required cutoffs. The cutoff representation also yields for each student a budget set of schools

at which she gained admission, and these budget sets allow tractable expressions for welfare under

random utility models.

As an illustration of the framework, we apply it to study the effects of making a school more

desirable. As a shorthand, we refer to such changes as an increase in the quality of the school.1 To

evaluate the effects of increasing the quality of a school it is necessary to account for changes in the

assignment due to changes in student preferences. First, we derive comparative statics that show

how the assignment and student welfare change with changes in a school’s quality. We decompose

the marginal change in student welfare into the direct increase in utility of students assigned to

the more desirable school and the indirect effect that arises from changes in the assignment. A

marginal increase in the quality of a popular school can have a negative indirect effect on welfare:

as some students switch into the school and gain a marginal utility increase, other students are

1Examples of such changes include increases in school infrastructure spending Cellini et al. (2010), increases in
school district funding Hoxby (2001); Jackson et al. (2016); Johnson and Jackson (2017), reduction in class size
Krueger (1999); Chetty et al. (2011) and changes in an individual school’s funding Dinerstein et al. (2014), but our
theoretical model is not specific to any of these examples.
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denied admission and can suffer substantial losses. We quantify these effects in a parametric setting,

showing that increasing the quality of a popular school can decrease the welfare gains from sorting

on idiosyncratic preferences.

This allows us to consider a school district’s problem of optimally allocating resources to improve

schools, taking utilitarian welfare as a proxy for the school district’s objective. The framework

allows us to solve for the optimal distribution of school quality under TTC for a parametric setting.

We find that the optimal distribution of quality is equitable, in the sense that it makes all schools

equally over-demanded. An equitable distribution of quality is efficient under TTC because it

allows students more choice, yielding better sorting on idiosyncratic preferences and therefore higher

welfare. This can hold even if some schools are more efficient at utilizing resources, as the benefits

from more efficient sorting can outweigh benefits from targeting more efficient schools.

As another application, we explore the design of priorities for TTC and find that it is “bossy”

in the sense that a change in the priority of a student that does not alter her assignment can

nonetheless alter the assignment of other students. This implies that it is not possible to determine

the TTC cutoffs directly through a supply-demand equation as in Azevedo and Leshno (2016).

We characterize the range of possible assignments generated by TTC after changes to the relative

priority of high-priority students, and show that a small change to the priorities will only change

the assignment of a few students.

A third application of our model provides comparisons between mechanisms in terms of assign-

ments and welfare. We solve for welfare under TTC and DA in a parametric setting and quantify

how much welfare is sacrificed due to stability. A comparison between TTC and DA across different

school choice environments corroborates a conjecture by Pathak (2016) that the difference between

the mechanisms becomes smaller with increased alignment between student preferences and school

priorities. We also compare TTC to the Clinch and Trade mechanism of Morrill (2015b) in large

economies and find that it is possible for TTC to produce fewer blocking pairs than the Clinch and

Trade mechanism.

A few technical aspects of the analysis may be of interest. First, we note that the trade

balance equations circumvent many of the measure theoretic complications in defining TTC in the
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continuum. Second, a connection to Markov chain theory allows us to show that a solution to the

marginal trade balance equations always exists, and to characterize the possible trades.

4.1 Prior Work on TTC

Since Abdulkadiroğlu and Sönmez (2003) introduced school choice as a mechanism design problem

and suggested the DA and TTC mechanisms as desirable solutions, TTC has been considered for

use in a number of school choice systems. However, while DA has been adopted by many school

choice systems, TTC has essentially not been implemented, leading to a number of papers studying

the relative merits of the two mechanisms for practical applications. Abdulkadiroğlu et al. (2005b)

discuss how the city of Boston debated between using DA and TTC for their school choice systems

and ultimately chose DA. Abdulkadiroğlu et al. (2009) compare the outcomes of DA and TTC for

the NYC public school system, and show that TTC gives higher student welfare. Kesten (2006)

studies the relationship between DA and TTC, and shows that they are equivalent if and only if

the priority structure is acyclic.

There are a multitude of characterizations of TTC in the literature. Abdulkadiroğlu et al.

(2017c) show that TTC minimizes the number of blocking pairs subject to strategy-proofness and

Pareto efficiency. Additional axiomatic characterizations of TTC were given by Dur (2012b) and

Morrill (2013, 2015a). These characterizations explore the qualitative properties of TTC, but do

not provide another method for calculating the TTC outcome or evaluating quantitative objectives.

Ma (1994), Pápai (2000) and Pycia and Ünver (2017) give characterizations of more general classes

of Pareto efficient and strategy-proof mechanisms in terms of clearing trade cycles. While our

analysis focuses on the TTC mechanism, we believe that our trade balance approach will be useful

in analyzing these general classes of mechanisms.

Dur and Morrill (2017) show that the outcome of TTC can be expressed as the outcome of a

competitive market where there is a price for each priority position at each school, and agents may

buy and sell exactly one priority position. Our characterization also provides a connection between

TTC and competitive markets, but requires a lower dimensional set of cutoffs and provides a method
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for directly calculating these cutoffs. He et al. (Forthcoming) propose an alternative pseudo-market

approach for discrete assignment problems that extends Hylland and Zeckhauser (1979) and also

uses admission cutoffs. Miralles and Pycia (2014) show a second welfare theorem for discrete goods,

namely that any Pareto efficient assignment of discrete goods without transfers can be decentralized

through prices and endowments, but require an arbitrary endowment structure.

Several variants of TTC have been suggested in the literature. Morrill (2015b) introduces

the Clinch and Trade mechanism, which differs from TTC in that it identifies students who are

guaranteed admission to their first choice and assigns them immediately without implementing a

trade. Hakimov and Kesten (Forthcoming) introduce Equitable TTC, a variation on TTC that aims

to reduce inequity. In Chapter 4.5.2 we show how our model can be used to analyze such variants

of TTC and compare their assignments. Other variants of TTC can also arise from the choice of

tie-breaking rules. Ehlers (2014) shows that any fixed tie-breaking rule satisfies weak efficiency,

and Alcalde-Unzu and Molis (2011), Jaramillo and Manjunath (2012) and Saban and Sethuraman

(2013) give specific variants of TTC that are strategy-proof and efficient. The continuum model

allows us to characterize the possible outcomes from different tie-breaking rules.

Several papers also study TTC in large markets. Hatfield et al. (2016) study the incentives for

schools to improve their quality under TTC and find that even in a large market a school may be

assigned less preferred students when it improves its quality. Our results in Chapter 4.5.1 quantify

these effects. Che and Tercieux (2015, 2018) study the properties of TTC in a large market where

the heterogeneity of items grows as the market gets large, whereas our setting considers a large

population of agents and a fixed number of item types. The results in Chapter 4.5 show that TTC

has different properties in these different large markets.

4.1.1 Practical Implications

When school districts redesigned their school choice mechanisms to improve student welfare, most

chose to implement the Deferred Acceptance (DA) mechanism, and essentially none selected the

TTC mechanism. This is despite the fact that while TTC is Pareto efficient for students, DA

is inefficient, in that it may produce assignments that are Pareto dominated for students. For
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example, students are commonly given priority for their neighborhood schools, and DA may assign

two students to their respective neighborhood schools even if both students would prefer to swap

their assignments.2

One of the possible reasons for the lack of popularity of TTC is the way it has typically been

described. While the sequential clearing of trade cycles is simple to state, it obscures the desirable

properties of the mechanism and results in an opaque mapping between a student’s priorities

and their assignment. For example, Boston Public Schools considered both TTC and DA when

redesigning its school choice in 2005, and decided in favor of using DA, stating BPS (2005):

The behind the scenes mechanized trading makes the student assignment process less

transparent[...] and could lead families to believe they can strategize by listing a school

they don’t want in hopes of a trade.

Similarly, in Pathak (2016) Pathak writes: “I believe that the difficulty of explaining TTC, together

with the precedent set by New York and Boston’s choice of DA, are more likely explanations for why

TTC is not used in more districts.” In other words, the combinatorial description of TTC in terms

of trading cycles caused users to doubt the strategy-proofness of the mechanism, and eroded trust

in the system by making it difficult for parents verify that their children were correctly assigned.

Another major drawback of the algorithmic description of TTC is that it makes it difficult to

discern how a student’s priorities determine their assignment under TTC. This is exacerbated by

the fact that priority at a school has different implications under DA and TTC; under TTC (in

contrast to DA) it is possible for a student to gain admission to one school by having priority at

another school. This means that school boards could potentially redesign their priority structures

to obtain their goals under TTC, but in general the appropriate priority structures under DA and

TTC will be different, and current theory provides almost no guidance as to how to design such

2Such a swap will not harm any other students, but can lead to an assignment that is unstable with respect to
the priority structure. While this may allow strategic agents to form blocking pairs in other contexts (such as the
NRMP), this is not a concern for many school districts (such as the Boston Public Schools system) because of two
attributes of school choice. First, priority for a school is often determined by school zone, sibling status and lotteries.
Thus, schools do not prefer higher priority students. Second, schools cannot enroll students without the districts
approval. (The NYC high school admissions system is a notable exception, see Abdulkadiroğlu et al. (2009)).
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priority structures under TTC. 3

Our cutoff characterization of TTC provides a way to communicate the TTC outcome that is

easily verifiable. If students privately know their priorities, publicly publishing the cutoffs
{
pji

}
allows each student to determine their assignment.4Additionally, we provide TTC cutoffs that

are independent of the reported preferences of a given student, which demonstrates that TTC

is strategy-proof. Our cutoff characterization also elucidates the role of priorities under TTC.

Students can use priority at school i to gain admission to school j if their priority at school i is

above the cutoff pji . Each student is assigned to her most preferred school for which she gained

admission. As a result, we are hopeful that our framework for understanding the TTC outcome

and designing appropriate input (such as school priorities) can increase the adoption of the Pareto

efficient TTC in practice.

Finally, cutoff representations have been instrumental for empirical work on DA and variants of

DA. Abdulkadiroğlu et al. (2017b) use admission cutoffs to construct propensity score estimates.

Agarwal and Somaini (2018); Kapor et al. (2016) structurally estimate preferences from rank lists

submitted to non-strategy-proof variants of DA. Both build on the cutoff representation of Azevedo

and Leshno (2016). We hope that our cutoff representation of TTC will be similarly useful for

empirical work on TTC.

4.2 TTC in School Choice

4.2.1 The Discrete TTC Model

Let S be a finite set of students, and let C = {1, . . . , n} be a finite set of schools. Each school i ∈ C

has a finite capacity qi > 0. Each student s ∈ S has a strict preference ordering �s over schools.

3Comparisons between DA and TTC rely on simulations, and typically use the same priority structure for both
mechanisms instead of optimizing the priority structures used for each mechanism, see for example Abdulkadiroğlu
et al. (2009); Pathak (2016).

4 This cutoff representation allows us to give the following non-combinatorial description of TTC. For each school
i, each student receives i-tokens according to their priority at school i, where students with higher i-priority receive
more i-tokens. The TTC algorithm publishes cutoffs

{
pji
}
. Students can purchase a single school using a single

kind of token, and the required number of i-tokens to purchase school j is pji . Theorem 4.1 shows the cutoffs can be
observed after the run of TTC. We thank Chiara Margaria, Laura Doval and Larry Samuelson for suggesting this
explanation.
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Let Chs (C) = arg max�s {C} denote s’s most preferred school out of the set C. Each school i ∈ C

has a strict priority ordering �i over students. To simplify notation, we assume that all students

and schools are acceptable, and that there are more students than available seats at schools.5 It

will be convenient to represent the priority of student s at school i by the student’s percentile rank

rsi = |{s′ | s �i s′}| / |S| in the school’s priority ordering. Note that for any two students s, s′ and

school i we have that s �i s′ ⇐⇒ rsi > rs
′
i and that 0 ≤ rsi < 1.

A feasible assignment is µ : S → C ∪ {∅} where |µ−1(i)| ≤ qi for every i ∈ C. If µ(s) = i we

say that s is assigned to i, and we use µ(s) = ∅ to denote that the student s is unassigned. As

there is no ambiguity, we let µ(i) denote the set µ−1(c) for i ∈ C ∪ {∅}. A discrete economy is

E = (C,S,�S ,�C , q), where C is the set of schools, S is the set of students, q = {qi}i∈C is the

capacity of each school, and �S= {�s}s∈S , �C= {�i}i∈C .

Given an economy E, the discrete Top Trading Cycles algorithm (TTC) calculates an assignment

µdTTC (· | E) : S → C ∪ {∅}. We omit the dependence on E when it is clear from context. The

algorithm runs in discrete steps, as described in Algorithm 1.

Mechanism 1 Top Trading Cycles (TTC)

1: procedure TTC(E =
(
C,S,�S ,�C , q

)
)

2: S ← S . Unassigned students
3: C ← C . Available schools
4: q̃ ← q . Residual capacity
5: while |S| > 0, |C| > 0 do . while there are unassigned students and available schools
6: for i ∈ C do
7: i points to and offers a seat to highest priority student in S
8: for s ∈ S do
9: s points to most preferred school in C
10: Select at least one trading cycle, i.e. a list of students s1, . . . , s`, s`+1 = s1 such that

si+1 was offered a seat at si’s most preferred available school. Assign all students in the cycle
to the school they point to.6

11: Remove the assigned students from S, reduce the capacity of the schools they were
assigned to by 1, and remove schools with no remaining capacity from C.

12: return µ

TTC satisfies a number of desirable properties. An assignment µ is Pareto efficient for students

5This is without loss of generality, as we can introduce auxiliary students and schools that represent being un-
matched.
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if no group of students can improve by swapping their allocations, and no individual student can

improve by swapping her assignment for an unassigned object. A mechanism is Pareto efficient

for students if it always produces an assignment that is Pareto efficient for students. A mechanism

is strategy-proof for students if reporting preferences truthfully is a dominant strategy. It is well

known that TTC, as used in the school choice setting, is both Pareto efficient and strategy-proof

for students (Abdulkadiroğlu and Sönmez, 2003). Moreover, when type-specific quotas must be

imposed, TTC can be easily modified to meet quotas while still maintaining constrained Pareto

efficiency and strategy-proofness (Abdulkadiroğlu and Sönmez, 2003).

4.2.2 Cutoff Characterization

Our first main contribution is that the TTC assignment can be described in terms of n2 cutoffs

{pij}, one for each pair of schools.

Theorem 4.1. Let E be an economy. The TTC assignment is given by

µdTTC(s | E) = max
�s

{
i | rsj ≥ pij for some j

}
,

where pij is the percentile in school j’s ranking of the worst ranked student at school j that traded a

seat at school j for a seat at school i during the run of the TTC algorithm on E. If no such student

exists, pij = 1.

Proof. For each student s let B (s,p) =
{
i | rsj ≥ pij for some j

}
. It suffices to show that for each

student s it holds that µdTTC (s) ∈ B (s,p), and that if i ∈ B (s,p) then s prefers µdTTC (s) to

i, i.e. µdTTC (s) �s i. The former is simple to show, since if we let j be the school such that

s traded a seat at school j for a seat at school µdTTC (s), then by definition p
µdTTC(s)
j ≤ rsj and

µdTTC (s) ∈ B (s,p).

Now suppose for the sake of contradiction that i ∈ B (s,p) and student s strictly prefers i to

µdTTC (s), i.e. i �s µdTTC (s). As i ∈ B (s,p) there exists a school j′ such that rsj′ ≥ pij′ . Let s′ be

the student with rank rs′j′ = pij′ at school j′. (Such a student exists by the definition of pij′ .) Then by

definition student s′ traded a seat at school j′, so since rsj′ ≥ pij′ = rs
′
j′ student s is assigned weakly
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before student s′. Additionally, since i �s µdTTC (s) school i must reach capacity before student s

is assigned, and so since student s′ was assigned to school i student s′ was assigned strictly before

student s. This provides the required contradiction.

Cutoffs serve a parallel role to prices in Competitive Equilibrium, and each student’s vector

of priorities at each school serves as her endowment. For each student s, the cutoffs p =
{
pij

}
i,j

combine with student s’s priorities rs to give s a budget set B (s,p) =
{
i | rsj ≥ pij for some j

}
of

schools she can attend. TTC assigns each student to her favorite school in her budget set.

The cutoffs pij in Theorem 4.1 can be easily identified after the mechanism has been run. Hence

Theorem 4.1 provides an intuitive way for students to verify that they were correctly assigned by

the TTC algorithm. Instead of only communicating the assignment of each student, the mechanism

can make the cutoffs publicly known. Students can calculate their budget set from their privately

known priorities and the publicly given cutoffs, allowing them to verify that they were indeed

assigned to their most preferred school in their budget set. In particular, if a student does not

receive a seat at a desired school i, it is because she does not have sufficiently high priority at any

school, and so i is not in her budget set. We illustrate these ideas in Example 4.1.

Example 4.1. Consider a simple economy where there are two schools each with capacity q = 120,

and a total of 300 students, 2/3 of whom prefer school 1. Student priorities were selected such that

there is little correlation between student priority at either school and between student priorities

and preferences. Figure 4.1a illustrates the preferences and priorities of each of the students. Each

colored number represents a student. The location of the student in the square indicates their

priority, with the horizontal axis indicating priority at school 1 and the vertical axis indicating

priority at school 2. The number indicates the student’s preferred school, and all students find

both schools acceptable. The color indicates the student’s assignment under TTC.

The cutoffs p and resulting budget sets B (s,p) for each student are illustrated in Figure 4.1b.

The colors in the body of the figure indicate the budget sets given to students as a function of

their priority at both schools. The colors along each axis indicate the schools that enter a student’s

budget set because of her priority at the school whose priority is indicated by that axis. For
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(b) Budget sets for the economy E.

Figure 4.1: The economy and TTC budget sets for Example 4.1.

example, a student has the budget set {1, 2} if she has sufficiently high priority at either school 1

or school 2. Note that students’ preferences are not indicated in Figure 4.1b as for given p each

student’s budget set does not depend on her preferences. The assignment of each student is her

favorite school in her budget set.

Figure 4.1 shows the role of priorities in determining the TTC assignment in Example 4.1.

Students with higher priority have a larger budget set of schools from which they can choose. A

student can choose her desired school if her priority for some school is sufficiently high. Priority for

each school is considered separately, and priority from multiple schools cannot be combined. For

example, a student who has top priority for one school and bottom priority at the other school is

assigned to her top choice, but a student who has the median priority at both schools will not be

assigned to school 1.

Remark. This example also shows that the TTC assignment cannot be expressed in terms of one

cutoff for each school, as the assignment in Example 4.1 cannot be described by fewer than 3 cutoffs.

4.2.3 The Structure of TTC Budget Sets

The cutoff structure for TTC allows us to provide some insight into the structure of the assignment.

For each student s, let Bi (s,p) =
{
j | rsi ≥ p

j
i

}
denote the set of schools that enter student s’s

budget set because of her priority at school i. Note that Bi (s,p) depends only on the n cutoffs
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pi =
{
pji

}
j∈C

. A student’s budget set is the union B (s,p) = ∪iBi (s,p). Figure 4.1(b) depicts

B1 (s,p) and B2 (s,p) for the economy of Example 4.1 along the x and y axes respectively.

The following proposition shows that budget sets Bi (s,p) can be given by cutoffs pi that share

the same ordering over schools for every i. We let C(i) = {i, i+ 1, . . . , n} denote the set of schools

that have a higher index than i.

Proposition 4.1. There exists a relabeling of school indices such that there exist cutoffs p =
{
pji

}
that describe the TTC assignment

µdTTC(s) = max
�s

{
j | rsi ≥ p

j
i for some i

}
,

and for any school i the cutoffs are ordered,7

p1
i ≥ p2

i ≥ · · · ≥ pii = pi+1
i = · · · = pni . (4.1)

Therefore, the set of schools Bi (s,p) student s can afford via her priority at school i is either the

empty set φ or
Bi (s,p) = C(j) = {j, j + 1, . . . , n}

for some j ≤ i. Moreover, each student’s budget set B (s,p) = ∪iBi (s,p) is either B (s,p) = φ or

B (s,p) = C(j) for some j.

Proof. Let the schools be indexed such that they reach capacity in the order 1, 2, . . . , |C|. If a

student s was assigned (strictly) after school ` − 1 reached capacity and (weakly) before school

` reached capacity, we say that the student s was assigned in round `. Given TTC cutoffs pji

from Theorem 4.1, we define new cutoffs
{
p̃ji

}
by setting p̃ji = mink≤j pki . It evidently holds that

p̃1
i ≥ p̃2

i ≥ · · · ≥ p̃ii = p̃i+1
i = · · · = p̃ni for all i. We show that the cutoffs

{
p̃ji

}
give the same

allocation as the cutoffs
{
pji

}
, i.e. for each student s it holds that

max
�s

{
j | rsi ≥ p̃

j
i for some i

}
= µdTTC(s) = max

�s

{
j | rsi ≥ p

j
i for some i

}
.

For each student s let B (s, p̃) =
{
j | rsi ≥ p̃

j
i for some i

}
. It suffices to show that for each

7The cutoffs p defined in Theorem 4.1 do not necessarily satisfy this condition. However, the run of TTC produces
the following relabeling of schools and cutoffs p̃ that give the same assignment and satisfy the condition: the schools
are relabeled in the order in which they reach capacity under TTC, and the cutoffs p̃ are given by p̃ij = mink≤i pkj .
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student s it holds that µdTTC (s) ∈ B (s, p̃), and that if j ∈ B (s, p̃) then s prefers µdTTC (s) to j, i.e.

µ (s) �s j. The former is simple to show, since clearly p̃ ≤ p and so B (s, p̃) ⊇ B (s,p) 3 µdTTC (s)

(by Theorem 4.1).

The rest of the proof can be completed in much the same way as the proof of Theorem 4.1.

Suppose for the sake of contradiction that j ∈ B (s, p̃) and student s strictly prefers j to µdTTC (s),

i.e. j �s µdTTC (s). As j ∈ B (s, p̃) there exists a school i′ such that rsi′ ≥ p̃ji′ . Let s′ be the

student with rank rs′i′ = p̃ji′ at school i′. (Such a student exists by the definition of the cutoffs pki′ ,

k ≤ j.) Then by definition student s′ traded a seat at school i′, so since rsi′ ≥ p̃
j
i′ = rs

′
i′ student s is

assigned weakly before student s′. Additionally, since j �s µdTTC (s) school j must reach capacity

before student s is assigned. Finally, by definition there exists some k ≤ j such that p̃ji′ = pki′ ,

and so since rs′i′ = pki′ it follows that student s′ was assigned to school k. Thus student s′ was

assigned weakly before school j reached capacity, and so strictly before student s. This provides

the required contradiction. The statements about the structure of the set of schools Bi (s,p) student

s can afford via her priority at school i and the structure of the budget set B (s,p) = ∪iBi (s,p)

follow immediately from the ordered cutoffs.

When there exist TTC cutoffs that satisfy inequality (4.1) we say that the schools are labeled in

order. The cutoff ordering proved in Proposition 4.1 implies that budget sets of different students

are nested, and therefore that the TTC assignment is Pareto efficient. The cutoff ordering is a

stronger property than Pareto efficiency, and is not implied by the Pareto efficiency of TTC. For

example, serial dictatorship with a randomly drawn ordering will give a Pareto efficient assignment,

but there is no relationship between a student’s priorities and her assignment.

Proposition 4.1 allows us to give a simple illustration for the TTC assignment when there are

n ≥ 3 schools. For each school i, we can illustrate the set of schools Bi (s,p) that enter a student’s

budget set because of her priority at school i as in Figure 4.2 (under the assumption that schools

are labeled in order). This generalizes the illustration along each axis in Figure 4.1(b), and can be

used for any number of schools. It is possible that pji = 1, meaning that students cannot use their

priority at school i to trade into school c.

Dur and Morrill (2017) provide a characterization of TTC as a competitive equilibrium where
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Figure 4.2: The schools Bi (s,p) that enter a student’s budget set because of her priority at school i. The cutoffs pji
are weakly decreasing in j, and are equal for all j ≥ i (i.e. pii = pi+1

i = · · · = pni ). That is, a student’s priority at i
can add one of the sets C(1), C(2), . . . , C(i), φ to her budget set. If any school enters a student’s budget because of her
priority at i, then school i must also enter her budget set because of her priority at i.

a priority value function v(r, i) specifies the price of priority r at school i and students are allowed

to buy and sell one priority. Given TTC cutoffs
{
pji

}
where schools are labeled in order, the

TTC assignment and priority value function v (r, i) = n−min
{
j | r ≥ pji

}
constitute a competitive

equilibrium. We introduce a framework in Chapter 4.3 that allows a direct calculation of this

competitive equilibrium as a solution to a set of equations.

4.2.4 Limitations

Although the cutoff structure is helpful in understanding the structure of the TTC assignment,

there are several limitations to the cutoffs computed in Theorem 4.1 and Proposition 4.1. First,

while the cutoffs can be determined by running the TTC algorithm, Theorem 4.1 does not provide

a direct method for calculating the cutoffs from the economy primitives. In particular, it does not

explain how the TTC assignment changes with changes in school priorities or student preferences.

Second, the budget set B (s,p) given by the cutoffs derived in Theorem 4.1 does not correspond

to the set of possible school assignments that student s can achieve by unilaterally changing her

reported preferences.8,9 We therefore introduce the continuum model for TTC which allows us

8More precisely, given economy E and student s, let economy E′ be generated by changing the preferences ordering
of s from �s to �′. Let µdTTC (s | E) and µdTTC (s | E′) be the assignment of s under the two economies, and let p
be the cutoffs derived by Theorem 4.1 for economy E. Theorem 4.1 shows that µdTTC (s | E) = max�s B (s,p) but
it may be µdTTC (s|E′) 6= max�′ B (s,p).

9For example, let E be an economy with three schools C = {1, 2, 3}, each with capacity 1. There are three students
s1, s2, s3 such that the top preference of s1, s2 is school 1, the top preference of s3 is school 3, and student si has
top priority at school i. Theorem 4.1 gives the budget set {1} for student s1, as p1 =

(
2
3 , 1, 1

)
, p2 =

(
1, 2

3 , 1
)
and

p3 =
(
1, 1, 2

3

)
, since the only trades are of seats at c for seats at the same school c. However, if s1 reports the

preference 2 � 1 � 3 she will be assigned to school 2, so an appropriate definition of budget sets should include
school 2 in the budget set for student s1. Also note that no matter what preference student s1 reports, she will not
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to directly calculate the cutoffs, allowing for comparative statics. Using the continum model, we

present in Chapter 4.3.4 cutoffs that yield refined budget sets which provide for each student the

set of schools that she could be assigned to by unilaterally changing her preferences. Thus the

appropriate cutoff structure also makes it clear that TTC is strategy-proof.

4.3 Continuum Model and Main Results

4.3.1 Model

We consider the school choice problem with a continuum of students and finitely many schools, as

in Azevedo and Leshno (2016). There is a finite set of schools denoted by C = {1, . . . , n}, and each

school i ∈ C has the capacity to admit a mass qi > 0 of students. A student s has a type θ ∈ Θ

given by θ =
(
�θ, rθ

)
; overloading notation we will sometimes refer to a student s by their type θ.10

We let �θ denote the student’s strict preferences over schools, and let Chθ (C) = max
�θ

(C) denote

θ’s most preferred school out of the set C. The priorities of schools over students are captured by

the vector rθ ∈ [0, 1]C . We say that rθi is the rank of student θ at school i, or the i-rank of student

θ. Schools prefer students with higher ranks, that is θ �i θ′ if and only if rθi > rθ
′
i .

Definition 4.1. A continuum economy is given by E = (C,Θ, η, q) where q = {qi}i∈C is the vector

of capacities of each school, and η is a measure over Θ.

We make some assumptions for the sake of tractability. First, we assume that all students and

schools are acceptable. Second, we assume there is an excess of students, that is,
∑
i∈C qi < η (Θ).

Finally, we make the following technical assumption that ensures that the run of TTC in the

continuum economy is sufficiently smooth and allows us to avoid some measurability issues.

Assumption 4.1. The measure η admits a density ν. That is for any measurable subset of students

be assigned to school 3, so an appropriate definition of budget sets should not include school 3 in the budget set for
student s1.

10In this continuum model all students of the same type are indistinguishable and we may assume that they are
assigned to the same school under TTC.
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A ⊆ Θ

η(A) =
∫
A
ν(θ)dθ.

Furthermore, ν is piecewise Lipschitz continuous everywhere except on a finite grid,11 bounded from

above, and bounded from below away from zero on its support.12

Assumption 4.1 is general enough to allow embeddings of discrete economies, and is satisfied by

all the economies considered throughout the paper. However, it is not without loss of generality,

e.g. it is violated when all schools share the same priorities over students.13

An immediate consequence of Assumption 4.1 is that a school’s indifference curves are of η-

measure 0. That is, for any i ∈ C, x ∈ [0, 1] we have that η({θ | rθi = x}) = 0. This is analogous

to schools having strict preferences in the standard discrete model. As rθi carries only ordinal

information, we may assume each student’s rank is normalized to be equal to her percentile rank

in the school’s preferences, i.e. for any i ∈ C, x ∈ [0, 1] we have that η({θ | rθi ≤ x}) = x.

It is convenient to describe the distribution η by the following induced marginal distributions.

For each point x ∈ [0, 1]n and subset of schools C ⊆ C, let Hj|C
i (x) be the marginal density of

students who are top ranked at school i among all students whose rank at every school k is no

better than xk, and whose top choice among the set of schools C is j.14 We omit the dependence on

C when the relevant set of schools is clear from context, and write Hj
i (x). The marginal densities

H
j|C
i (x) uniquely determine the distribution η.

11A grid G ⊂ Θ is given by G =
{
θ | ∃i s.t. rθi ∈ D

}
, where D = {d1, . . . , dL} ⊂ [0, 1] is a finite set of grid points.

Equivalently, ν is Lipschitz continuous on the union of open hypercubes Θ \G.
12That is, there exists M > m > 0 such that for every θ ∈ Θ either ν(θ) = 0 or m ≤ ν(θ) ≤M .
13We can incorporate an economy where two schools have perfectly aligned priories by considering them as a

combined single school in the trade balance equations, as defined in Definition 4.2. The capacity constraints still
consider the capacity of each school separately.

14Formally

H
j|C
i (x) def= lim

ε→0

1
ε
η
({
θ ∈ Θ | rθ ∈ [(xi − ε) · ei,x) and Chθ (C) = j

})
=
∫
{θ|rθ∈[xi·ei,x) and Chθ(C)=c}

ν (θ) dθ,

where ei is the unit vector in the direction of coordinate i. In other words, Hj|C
i (x) is the density of students θ with

priority rθi = xi and rθk ≤ xk for all k ∈ C whose most preferred school in C is j.
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As in the discrete model, an assignment is a mapping µ : Θ→ C ∪ {∅} specifying the assignment

of each student. With slight abuse of notation, we let µ (i) = {θ | µ (θ) = i} denote the set of

students assigned to school i. An assignment µ is feasible if it respects capacities, i.e. for each

school i ∈ C we have η (µ(i)) ≤ qi. Two allocations µ and µ′ are equivalent if they differ only on a

set of students of zero measure, i.e. η ({θ | µ (θ) 6= µ′ (θ)}) = 0.

Remark 4.1. In school choice, it is common for schools to have coarse priorities, and to refine these

using a tie-breaking rule. Our economy E captures the strict priority structure that results after

applying the tie-breaking rule.

4.3.2 Main Results

Our main result establishes that in the continuum model the TTC assignment can be directly

calculated from trade balance and capacity equations. This allows us to explain how the TTC

assignment changes with changes in the underlying economy. It also allows us to derive cutoffs that

are independent of a student’s reported preferences, giving another proof that TTC is strategy-

proof.

We remark that directly translating the TTC algorithm to the continuum setting by considering

individual trading cycles is challenging, as a direct adaptation of the algorithm would require the

clearing of cycles of zero measure. We circumvent the technical issues raised by such an approach by

formally defining the continuum TTC assignment in terms of trade balance and capacity equations,

which characterize the TTC algorithm in terms of its aggregate behavior over multiple steps. To

verify the validity of our definition, we show in Subsection 4.3.3 that continuum TTC can be used

to calculate the discrete TTC outcome. We provide further intuition in Section 4.4.

We begin with some definitions. A function γ (t) : [0,∞) → [0, 1]C is a TTC path if γ is

continuous and piecewise smooth, γi (t) is weakly decreasing for all i, and the initial condition

γ (0) = 1 holds. A function γ̃ (t) : [t0,∞) → [0, 1]C̃ is a residual TTC path if it satisfies all the

properties of a TTC path except the initial condition and γ̃i (t) is defined only for t ≥ t0 > 0 and

i ∈ C̃ ⊂ C. For a set
{
t(i)
}
i∈C
∈ RC≥ of times we let t(i∗) def= mini

[
t(i)
]
denote the minimal time.
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For a point x ∈ [0, 1]C , let

Di (x) def= η
({
θ | rθ 6< x, Chθ (C) = i

})

denote the mass of students whose rank at some school j is better than xj and their first choice is

school i. We will refer to Di (x) as the demand for i. Recall that H i
j(x) is the marginal density of

students who want i who are top ranked at school j among all students with rank no better than

x. Note that Di (x) and H i
j (x) depend implicitly on the set of available schools C, as well as on

the economy E .

A TTC path γ can capture the progression of a continuous time TTC algorithm, with the

interpretation that γi (t) is the highest i-priority of any student who remains unassigned by time

t. The stopping times
{
t(i)
}
i∈C

indicate when each school fills its capacity. To verify whether γ

and
{
t(i)
}
i∈C

can correspond to a run of TTC we introduce trade balance conditions and capacity

constraints as defined below.

Definition 4.2. Let E = (C,Θ, η, q) be an economy. We say that the (residual) TTC path γ (t)

and positive stopping times
{
t(i)
}
i∈C
∈ RC≥ satisfy the trade balance and capacity equations for the

economy E if the following hold.

1. γ (·) satisfies the marginal trade balance equations

∑
k∈C

γ′k (t)H i
k (γ (t)) =

∑
k∈C

γ′i (t)Hk
i (γ (t)) (4.2)

for all i ∈ C and all t ≤ t(i∗) = minc
[
t(c)
]
for which the derivatives exist.

2. The minimal stopping time t(i∗) solves the capacity equations

Di∗
(
γ
(
t(i
∗)
))

= qi∗

Dk
(
γ
(
t(i
∗)
))
≤ qk ∀k ∈ C

(4.3)

and γi∗ (t) is constant for all t ≥ t(i∗).
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3. If C \ {i∗} 6= φ, define the residual economy Ẽ =
(
C̃,Θ, η̃, q̃

)
by C̃ = C \ {i∗}, q̃i = qi −

Di
(
γ
(
t(i
∗)
))

and η̃ (A) = η
(
A ∩

{
θ : rθ ≤ γ

(
t(i
∗)
)})

. Define the residual TTC path γ̃ (·)

by restricting γ (·) : [t(i∗),∞)→ [0, 1]C̃ to t ≥ t(i∗) and coordinates within C̃. Then γ̃ and the

stopping times
{
t(i)
}
i∈C̃

satisfy the trade balance and capacity equations for Ẽ.

A brief motivation for the definition is as follows. TTC progresses by clearing trading cycles,

and in each trading cycle the number of seats offered by a school is equal to the number of students

assigned to that school. The path γ (t) can be thought of as tracking the students who are being

offered seats by each school at time t, and γ′i (t) gives the rate at which school i is moving down its

priority list at time t. Hence γ′k (t)H i
k (γ (t)) gives the rate at which students are assigned to school

i at time t due to their priority at school k,15 and equation (4.2) states that over every small time

increment the mass of students assigned to school i must be equal to the mass of offers made by

school i. While all schools have remaining capacity, every assigned student is assigned to his first

choice, and thus Di (γ (t)) gives the mass of students assigned to school i at time t ≤ t(i
∗) in the

algorithm. The time t(i∗) when school i∗ fills its capacity can be calculated as a solution to Equation

(4.3). Once a school exhausts its capacity we can eliminate that school and recursively calculate

the TTC assignment on the remaining problem with n−1 schools, which is stated as condition (3).

We provide more comprehensive intuition for the definition and the results in Section 4.4.

Our main result is that the trade balance and capacity equations fully characterize and provide

a way to directly calculate the TTC assignment from the problem primitives. We show in Chapter

4.3.3 that this characterization is consistent with the discrete TTC.

Theorem 4.2. Let E = (C,Θ, η, q) be an economy. There exist a TTC path γ (·) and stopping times{
t(i)
}
i∈C

that satisfy the trade balance and capacity equations. Any γ (·) ,
{
t(i)
}
i∈C

that satisfy the

trade balance and capacity equations yield the same assignment µcTTC , given by

µcTTC (θ) = max
�θ

{
j : rθi ≥ p

j
i for some i

}
,

15Recall that Hi
k (γ (t)) gives the marginal density of students who are top ranked at school k when students with

priority higher than γ(t) have already been assigned.
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where the n2 TTC cutoffs
{
pji

}
are given by

pji = γi
(
t(j)
)
∀i, j.

In other words, Theorem 4.2 provides the following a recipe for calculating the TTC assignment.

First, find γ̂ (·) that solves the marginal trade balance equations (4.2) for all t. Second, calculate

t(i
∗) from the capacity equations (4.3) for γ̂ (·). Set γ (t) = γ̂ (t) for t ≤ t(i

∗). To determine the

remainder of γ (·), apply the same steps to the residual economy Ẽ which has one less school.16

This recipe is illustrated in Example 4.2. The TTC path used in this recipe may not be the unique

TTC path, but all TTC paths yield the same TTC assignment.

Theorem 4.2 shows that the cutoffs can be directly calculated from the primitives of the economy.

In contrast to the cutoff characterization in the standard model (Theorem 4.1), this allows us to

understand how the TTC assignment changes with changes in capacities, preferences or priorities.

We remark that the existence of a smooth curve γ follows from our assumption that η has a density

that is piecewise Lipschitz and bounded, and the existence of t(i) satisfying the capacity equations

(4.3) follows from our assumptions that there are more students than seats and all students find

all schools acceptable.

The following immediate corollary of Theorem 4.2 shows that in contrast with the cutoffs given

by the discrete model, the cutoffs given by Theorem 4.2 always satisfy the cutoff ordering.

Corollary 4.1. Let the schools be labeled such that t(1) ≤ t(2) ≤ · · · ≤ t(n). Then schools are labeled

in order, that is,
p1
i ≥ p2

i ≥ · · · ≥ pii = pi+1
i = · · · = p

|C|
i for all i.

To illustrate how Theorem 4.2 can be used to calculate the TTC assignment and understand

how it depends on the parameters of the economy, we consider the following simple economy. This

parameterized economy yields a tractable closed form solution for the TTC assignment. For other

economies the equations may not necessarily yield tractable expressions, but the same calcula-

tions can be be used to numerically solve for cutoffs for any economy satisfying our smoothness

16Continuity of the TTC path provides an initial condition for γ̃, namely that γ̃i
(
t(i
∗)
)

= γi

(
t(i
∗)
)
for all i.
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Figure 4.3: The TTC path, cutoffs, and budget sets for a particular instance of the economy E in Example 4.2.
Students in the dark blue region have a budget set of {1, 2}, students in the light blue region have a budget set of {2},
and students in the white region have a budget set of φ.

requirements.

Example 4.2. We demonstrate how to use Theorem 4.2 to calculate the TTC assignment for a

simple parameterized continuum economy. The economy E has two schools 1, 2 with capacities

q1 = q2 = q with q < 1/2. A fraction p > 1/2 of students prefer school 1, and student priorities

are uniformly distributed on [0, 1] independently for each school and independently of preferences.

This economy is described by

H (x1, x2) =

 px2 (1− p)x2

px1 (1− p)x1

 ,
where Hc

b (x) is given by the b-row and c-column of the matrix. A particular instance of this

economy with q = 4/10 and p = 2/3 is illustrated in Figure 4.3. This economy can be viewed as a

smoothed continuum version of the economy in Example 4.1.

We start by solving for γ from the trade balance equations (4.2), which simplify to the differential
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equation17

γ′2 (t)
γ′1 (t) = 1− p

p

γ2 (t)
γ1 (t) .

Since γ (0) = 1, this is equivalent to γ2 (t) = (γ1 (t))
1
p
−1
. Hence for 0 ≤ t ≤ min

{
t(1), t(2)

}
we set

γ (t) =
(
1− t, (1− t)

1
p
−1
)
.

We next compute t(c∗) = min
{
t(1), t(2)

}
. Observe that because p > 1/2 it must be that t(1) < t(2).

Otherwise, we have that t(2) = min
{
t(1), t(2)

}
and D1

(
γ
(
t(2)
))
≤ q, implying that D2

(
γ
(
t(2)
))

=
1−p
p D1

(
γ
(
t(2)
))

< q. Therefore, we solve D1
(
γ
(
t(1)
))

= q to get that t(1) = 1−
(
p−q
p

)p
and that

p1
1 = γ1

(
t(1)
)

=
(

1− q

p

)p
, p1

2 = γ2
(
t(1)
)

=
(

1− q

p

)1−p
.

For the remaining cutoffs, we eliminate school 1 and perform the same steps for the residual economy

where C′ = {2} and q′2 = q2 −D2
(
γ
(
t(1)
))

= q (2− 1/p).

For the residual economy the marginal trade balance equations (4.2) are trivial, and we define

the residual TTC path by
γ (t) =

(
p1

1, p
1
2 −

(
t− t(1)

))
for t(1) ≤ t ≤ t(2). Solving the capacity equation (4.3) for t(2) yields that

p2
1 = γ1

(
t(2)
)

=
(

1− q

p

)p
= p1

1, p2
2 = γ2

(
t(2)
)

= (1− 2q)
(

1− q

p

)−p
.

For instance, if we plug in q = 4/10 and p = 2/3 to match the economy in Example 4.1, the

calculation yields the cutoffs p1
1 = p2

1 ≈ .54, p1
2 ≈ .73 and p2

2 ≈ .37, which are approximately the

same cutoffs as those for the discrete economy in Example 4.1.

17The original trade balance equations are

γ′1 (t) pγ2 (t) + γ′2 (t) pγ1 (t) = γ′1 (t) pγ2 (t) + γ′1 (t) (1− p) γ2 (t) ,
γ′1 (t) (1− p) γ2 (t) + γ′2 (t) (1− p) γ1 (t) = γ′2 (t) pγ1 (t) + γ′2 (t) (1− p) γ1 (t) .
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Example 4.2 illustrates how the TTC cutoffs can be directly calculated from the trade balance

equations and capacity equations, without running the TTC algorithm. Example 4.2 can also

be used to show that it is not possible to solve for the TTC cutoffs only from supply-demand

equations. In particular, the following equations are equivalent to the condition that for given

cutoffs
{
pji

}
i,j∈{1,2}

, the demand for each school c is equal to the available supply qc given by the

school’s capacity:

p ·
(
1− p1

1 · p1
2

)
= q1 = q

(1− p) ·
(
1− p1

1 · p1
2

)
+ p1

1

(
p1

2 − p2
2

)
= q2 = q.

Any cutoffs p1
1 = p2

1 = x, p1
2 = (1 − q/p)/x, p2

2 = (1− 2q)x with x ∈ [1− q/p, 1] solve these

equations, but if x 6=
(
1− q

p

)p
then the corresponding assignment is different from the TTC

assignment. Section 4.5.2 provides further details as to how the TTC assignment depends on

features of the economy that cannot be observed from supply and demand alone. In particular, the

TTC cutoffs depend on the relative priority among top-priority students, and not all cutoffs that

satisfy supply-demand conditions produce the TTC assignment.

4.3.3 Consistency with the Discrete TTC Model

In this section we first show that any discrete economy can be translated into a continuum econ-

omy, and that the cutoffs obtained using Theorem 4.2 on this continuum economy give the same

assignment as discrete TTC. This demonstrates that the continuum TTC model generalizes the

standard discrete TTC model. We then show that the TTC assignment changes smoothly with

changes in the underlying economy.

To represent a discrete economy E =
(
C,S,�C ,�S , q

)
with N = |S| students by a continuum

economy Φ (E) =
(
C,Θ, η, qN

)
, we construct a measure η over Θ by placing a mass at (�s, rs) for

each student s. To ensure the measure has a bounded density, we spread the mass of each student s

over a small region Is =
{
θ ∈ Θ |�θ=�s, rθ ∈ [rsi , rsi + 1

N ) ∀i ∈ C
}
and identify any point θs ∈ Is

with student s. Formally, for each student s ∈ S and school i ∈ C, we identify each student

s ∈ S with the N -dimensional cube Is =�s ×
∏
i∈C

[
rsi , r

s
i + 1

N

)
of student types with preferences
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�s (where rsi = |{s′ | s �i s′}| / |S| is the percentile rank of s at i) and define η to have constant

density 1
N ·N

N on ∪sIs and 0 everywhere else.

The following proposition shows that the continuum TTC assigns all θs ∈ Is to the same

school, which is the assignment of student s in the discrete model. Moreover, we can directly use

the continuum cutoffs for the discrete economy. The intuition behind this result is that TTC is

essentially performing the same assignments in both models, with discrete TTC assigning students

to schools in discrete steps, and continuum TTC assigning students to schools continuously, in

fractional amounts. By considering the progression of continuum TTC at the discrete time steps

when individual students are fully assigned, we obtain the same outcome as discrete TTC.

Proposition 4.2. Let E =
(
C,S,�C ,�S , q

)
be a discrete economy with N = |S| students, and

let Φ (E) =
(
C,Θ, η, qN

)
be the corresponding continuum economy. Let p be the cutoffs produced

by Theorem 4.2 for economy Φ (E). Then the cutoffs p give the TTC assignment for the discrete

economy E, namely,

µdTTC (s | E) = max
�s

{
j | rsi ≥ p

j
i for some i

}
,

and for every θs ∈ Is we have that

µdTTC (s | E) = µcTTC (θs |Φ (E)) .

The idea behind the proof is as follows. Fix a discrete cycle selection rule ψ. We construct a

TTC path γ such that TTC on the discrete economy E with cycle selection rule ψ gives the same

allocation as TTC (γ|Φ (E)). Since the assignment of discrete TTC is unique Shapley and Scarf

(1974), and the assignment in the continuum model is unique (Proposition 4.2), this proves the

theorem.

Proof. Consider a point during the run of discrete TTC when all schools are still available. At this

point, denote by xi the i-rank of the student pointed to by school i for all i ∈ C, and denote by

S (x) the set of assigned students. By construction, x ∈ X =
{

0, 1
N ,

2
N , . . . , 1

}C
. In the next step
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the discrete TTC clears a cycle and schools point to their favorite remaining student. Let K be the

set of schools in the cycle, and let di = 1{i∈K}. Denote by yi the i-rank of the student pointed to

by school i after the cycle is cleared for all i ∈ C, and denote by S (y) the set of assigned students

after the cycle is cleared. Note that x− y = 1
N d.

Suppose that in continuum TTC there is a TTC path such that γ (t1) = x + 1 · 1
N ∈ X. First,

notice that by time t1 the continuum TTC has assigned θ ∈ Is if and only if s ∈ S (x). Second, we

will show that γ (t) = x− (t− t1) 1
N d + 1

N for t ∈ [t1, t1 + 1) satisfies the trade balance equations,

and thus the continuum TTC can progress to γ (t1 + 1) = y + 1 · 1
N ∈ X. To see that, observe that

Hj
i

(
x + 1 · 1

N

)
= 1 if in the discrete TTC school j is the favorite school of the student with i-rank

xi, and Hj
i

(
x + 1 · 1

N

)
= 0 otherwise. On the path γ (t) we have that for every i, j ∈ K

Hj
i (γ (t)) = Hj

i

(
x + 1 · 1

N

)
· (1− (t− t1))

and if i ∈ K and j /∈ K then Hj
i (γ (t)) = 0.

Therefore for any i ∈ K

∑
k∈C

dkH
i
k (γ (t)) = (1− (t− t1)) =

∑
k∈C

diH
k
i (γ (t)) ,

and for any i /∈ K ∑
k∈C

dkH
i
k (γ (t)) = 0 =

∑
k∈C

diH
k
i (γ (t)) .

Thus, the trade balance equations hold for t ∈ [t1, t1 + 1), and there is a continuum TTC path such

that γ (t1) = x, γ (t2) = y.

The claim follows by induction on the number of cycles cleared so far in discrete TTC.

In other words, Φ embeds a discrete economy into a continuum economy that represents it, and

the TTC cutoffs in the continuum embedding give the same assignment as TTC in the discrete

model. This shows that the TTC assignment defined in Theorem 4.2 provides a strict generalization

of the discrete TTC assignment to a larger class of economies. We provide an example of an

embedding of a discrete economy in Section 4.4.5.
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Next, we show that the continuum economy can also be used to approximate sufficiently similar

economies. Formally, we show that the TTC allocations for strongly convergent sequences of

economies are also convergent.

Theorem 4.3. Consider two continuum economies E = (C,Θ, η, q) and Ẽ = (C,Θ, η̃, q), where the

measures η and η̃ have total variation distance ε. Suppose also that both measures have full support.

Then the TTC allocations in these two economies differ on a set of students of measure O(ε|C|2).

In Chapter 4.5.2, we show that changes to the priorities of a set of high priority students can

affect the final assignment of other students in a non-trivial manner. This raises the question

of what the magnitude of these effects are, and whether the TTC mechanism is robust to small

perturbations in student preferences or school priorities. Our convergence result implies that the

effects of perturbations are proportional to the total variation distance of the two economies, and

suggests that the TTC mechanism is fairly robust to small perturbations in preferences.

4.3.4 Proper budget sets

The standard definition for a student’s budget set is the set of schools she can be assigned to by

reporting some preference to the mechanism. Specifically, let [E−s;�′] denote the discrete economy

where student s changes her report from �s to �′ (holding others’ reported preferences fixed), and

let

B∗ (s | E) def=
⋃
�′
µdTTC

(
s |
[
E−s;�′

])
denote the set of possible school assignments that student s can achieve by unilaterally changing

her reported preferences. Note that s cannot misreport her priority.

We observed in Chapter 4.2.4 that in the discrete model the budget set B (s,p) produced by

cutoffs p = p (E) generated by Theorem 4.1 do not necessarily correspond to the set B∗ (s | E).

The analysis in this section can be used to show that the budget sets B∗ (s | E) correspond to the

budget sets B (s,p∗) for appropriate cutoffs p∗.
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Proposition 4.3. Let E = (C,S,�S ,�C , q) be a discrete economy, and let

P (E) =
{

p | pji = γi

(
t(j)
)

where γ (·) , t(j) satisfy trade balance and capacity for Φ (E)
}

be the set of all cutoffs that can be generated by some TTC path γ (·) and stopping times
{
t(i)
}
i∈C

.

Then

B∗ (s | E) =
⋂

p∈P(E)
B (s,p) .

Moreover, there exists p∗ ∈ P (E) such that for every student s

B∗ (s | E) = B (s,p∗) .

Proof. Throughout the proof, we omit the dependence on E and let B∗ (s) denote B∗ (s|E). For

brevity, we also let B (s) =
⋂

p∈P(E)
B (s,p) denote the intersection of all possible budget sets of s

in the continuum embedding with some path γ and resulting cutoffs p. We construct TTC cutoffs{
(p∗)ji = γ∗i

(
t(j)
)}

given by a TTC path γ∗ and stopping times ˜{
t(j)
}
j∈C that satisfy trade balance

and capacity for Φ (E) such that B∗ (s) ⊆ B (s) ⊆ B (s; p∗) ⊆ B∗ (s).

We first show that B∗ (s) ⊆ B (s). Suppose i 6∈ B (s). Then there exists a TTC path γ for

E such that rs + 1
|S|1 ≤ γ

(
t(i)
)
. Hence for all �̃ there exists a TTC path γ̃ ∈ P ([E−s; �̃]) such

that rs + 1
|S|1 ≤ γ̃

(
t(i)
)
, e.g. the TTC path that follows the same valid directions as γ until it

assigns student s. By Proposition 4.2 and Theorem 4.2 for all �̃ it holds that µdTTC (s | [E−s; �̃]) =

max�̃
{
k : rsj ≥ γ̃

(
t(k)
)
j
for some j

}
. Hence for all �̃ it holds that µdTTC (s | [E−s; �̃]) 6= i and

so i 6∈ B∗ (s).

We next show that B (s) ⊆ B (s; p∗) ⊆ B∗ (s). Intuitively, we construct the special TTC path

γ∗ for E by clearing as many cycles as possible that do not involve student s. Formally, let B be an

ordering over subsets of C where: (1) all subsets containing student s’s top choice available school

i∗ (under the preferences �s in E) come after all subsets not containing i∗; and (2) subject to this,

subsets are ordered via the shortlex order. Let γ∗ be the TTC path for E obtained by selecting

valid directions with minimal support under the order B. (Such a path exists since when using the
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shortlex order the resulting valid directions d are piecewise Lipschitz continuous.)

It follows trivially from the definition of B (s) that B (s) ⊆ B (s; p∗). We now show that

B (s; p∗) ⊆ B∗ (s). For suppose i ∈ B (s; p∗). Consider the preferences �′ that put school i first,

and then all other schools in the order given by �s. Let E′ denote the economy [E−s;�′]. It

remains to show that µdTTC (s | E′) = i. Since i ∈ B (s; p∗), it holds that rs 6< γ∗
(
t(i)
)
. In other

words, if we let τ∗ = inf {τ | γ∗ (τ) 6≥ rs} be the time that the cube Is corresponding to student s

starts clearing, then school i is available at time τ s. Let γ′ be the TTC path for E′ obtained by

selecting valid directions with minimal support under the order B, and let τ ′ = inf {τ | γ′ (τ) 6≥ rs}.

We show that τ ≤ τ∗ and school i is available to student s at time τ ′.

Consider the time interval [0,min {τ∗, τ ′}]. During this time the set of valid directions along the

TTC path remain the same (i.e. dγ′

dt = dγ∗

dt ), as the set of valid directions not involving student s18

hasn’t changed, and student s19 has not yet been assigned under either TTC (γ∗|E) or TTC (γ′|E′)

so we do not need to consider the set of valid directions involving student s. Now at worst in going

from γ,E to γ′, [E−s;�′] we have replaced a valid direction involving s and i∗ with a different valid

direction involving s and not involving i∗, so student s is assigned sooner in TTC (γ′|E′) than

in TTC (γ∗|E), giving τ ′ ≤ τ∗. Hence γ′ (τ ′) = γ∗ (τ ′) where τ ′ ≤ τ∗ ≤ t(i) and so school i is

available to student s when she is assigned. Hence by Proposition 4.2 and Theorem 4.2 it holds

that µdTTC (s | E′) = i and so i ∈ B∗ (s).

Proposition 4.3 allows us to construct proper budget sets for each agent that determine not

only their assignment given their current preferences, but also their assignment given any other

submitted preferences. This particular budget set representation of TTC makes it clear that it is

strategy-proof.

18We say that a valid direction ’involves’ a student s if it starts at a point x on the boundary of their cube Is and
points into the interior of the cube.

19More formally, no points in the cube corresponding to student s are assigned.
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4.4 Intuition for the Continuum TTC Model

In this section, we provide some intuition for our main results by considering a more direct adap-

tation of the TTC algorithm to continuum economies. This section can be skipped by the reader

on a first reading without loss of continuity.

Informally speaking, consider a continuum TTC algorithm in which schools offer seats to their

highest priority remaining students, and students are assigned through clearing of trading cycles.

This process differs from the discrete TTC algorithm as there is now a set of zero measure of highest

priority students at each school, and the resulting trading cycles are also within sets of students of

zero measure.

There are a few challenges in turning this informal algorithm description into a precise defini-

tion. First, each cycle is of zero measure, but the algorithm needs to appropriately reduce school

capacities as students are assigned. Second, a school will generally offer seats to multiple types of

students at once. This implies each school may be involved in multiple cycles at a given point, a

type of multiplicity that leads to non-unique TTC allocations in the discrete setting.

To circumvent the challenges above, we define the algorithm in terms of its aggregate behavior

over many cycles. Instead of tracing each cleared cycle, we track the state of the algorithm by

looking at the fraction of each school’s priority list that has been cleared. Instead of progressing

by selecting one cycle at a time, we determine the progression of the algorithm by conditions that

must be satisfied by any aggregation of cleared cycles. These yield equations (4.2) and (4.3), which

determine the characterization given in Theorem 4.2.

4.4.1 Tracking the State of the Algorithm through the TTC Path γ

Consider some point in time during the run of the discrete TTC algorithm before any school has

filled its capacity. While the history of the algorithm up to this point includes all previously cleared

trading cycles, it is sufficient to record only the top priority remaining student at each school. This

is because knowing the top remaining student at each school allows us to know exactly which

students were previously assigned, and which students remain unassigned. Assigned students are

94



𝛾(𝜏)

TTC path 𝛾 Assigned 
at time 𝜏

Unassigned 
at time 𝜏

Figure 4.4: The set of students assigned at time τ is described by the point γ (τ) on the TTC path. Students in the
grey region with rank better than γ (τ) are assigned, and students in the white region with rank worse than γ (τ) are
unassigned.

relevant for the remainder of the algorithm only insofar as they reduce the number of seats available.

Because all schools have remaining capacity, all assigned students are assigned to their top choice,

and we can calculate the remaining capacity at each school.

To formalize this notion, let τ be some time point during the run of the TTC algorithm before

any school has filled its capacity. For each school i ∈ C, let γi (τ) ∈ [0, 1] be the percentile rank of the

remaining student with highest i-priority. That is, at time τ in the algorithm each school i is offering

a seat to students s for whom rsi = γi (τ). Let γ (τ) be the vector (γi (τ))i∈C . The set of students that

have already been assigned at time τ is {s | rs 6< γ (τ)}, because any student s where rsi > γi (τ)

for some i must have already been assigned. Likewise, the set of remaining unassigned students

is {s | rs ≤ γ (τ)}. See Figure 4.4 for an illustration. Since all assigned students were assigned to

their top choice, the remaining capacity at school i ∈ C is qi − |{s | rs 6< γ (τ) and Chs (C) = i}|.

Thus, γ (τ) captures all the information needed for the remainder of the algorithm.

This representation can be readily generalized to continuum economies. In the continuum, the

algorithm progresses in continuous time. The state of the algorithm at time τ ∈ R≥ is given by

γ (τ) ∈ [0, 1]C , where γi (τ) ∈ [0, 1] is the percentile rank of the remaining students with highest

i-priority. By tracking the progression of the algorithm through γ (·) we avoid looking at individual

trade cycles, and instead track how many students were already assigned from each school’s priority

list.
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4.4.2 Determining the Algorithm Progression through Trade Balance

The discrete TTC algorithm progresses by finding and clearing a trade cycle. This cycle assigns a

set of discrete students; for each involved school i the top student is cleared and γi (·) is reduced. In

the continuum each cycle is infinitesimal, and any change in γ (·) must involve many trade cycles.

Therefore, we seek to determine the progression of the algorithm by looking at the effects of clearing

many cycles.

Suppose at time τ1 the TTC algorithm has reached the state x = γ (τ1), where γ (·) is differen-

tiable at τ1 and d = −γ′ (τ1) ≥ 0. Let ε > 0 be a small step size, and assume that by sequentially

clearing trade cycles the algorithm reaches the state γ (τ2) at time τ2 = τ1 + ε. Consider the sets of

students offered seats and assigned seats during this time step from time τ1 to time τ2. Let i ∈ C be

some school. For each cycle, the measure of students assigned to school c is equal to the measure

of seats offered20 by school i. Therefore, if students are assigned between time τ1 and τ2 through

clearing a collection of cycles, then the set of students assigned to school i has the same measure

as the set of seats offered by school i. If γ (·) and η are sufficiently smooth, the measures of both of

these sets can be approximately expressed in terms of ε ·d and the marginal densities
{
Hj
i (x)

}
i,j∈C

,

yielding an equation that determines d. We provide an illustrative example with two schools in

Figure 4.5. For the sake of clarity, we omit technical details in the ensuing discussion. A rigorous

derivation can be found in Appendix B.2.

We first identify the measure of students who were offered a seat at a school i or assigned to

a school j during the step from time τ1 to time τ2. If d = −γ′ (τ1) and ε is sufficiently small, we

have that for every school i

|γi (τ2)− γi (τ1)| ≈ εdi,

that is, during the step from time τ1 to time τ2 the algorithm clears students with i-ranks between

20Strictly speaking, the measure of students assigned to each school during the time step is equal to the measure
of seats at that school which were claimed by the student offered the seat or traded by the student offered the seat
during the time step (not the measure of seats offered). A seat can be offered but not claimed or traded in one of two
ways. The first occurs when the seat is offered at time τ but not yet claimed or traded. The second is when a student
is offered two or more seats at the same time, and trades only one of them. Both of these sets are of η-measure 0
under our assumptions, and thus the measure of seats claimed or traded is equal to the measure of seats offered.
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Figure 4.5: The set of students that are assigned during a small time step between τ1 and τ2. The dot indicates
γ (τ1) = x. The highlighted areas indicate the students T ji (x, εdi) who are offered a seat during this step. Student in
the blue (red) region receive an offer from school 1 (school 2). The pattern indicates whether a student received an
offer from his preferred school. Trade balance is satisfied when there is an equal mass of students in the checkered
regions.

γi (τ1) = x and γi (τ2) = x− εdi. To capture this set of students, let

Ti (x, εdi)
def=
{
θ ∈ Θ | rθ ≤ x, rθi > x− εdi

}

denote the set of students with ranks in this range. For all ε, Ti (x, εdi) is the set of top remaining

students at i, and when ε is small, Ti (x, εdi) is approximately the set of students who were offered

a seat at school i during the step.21

To capture the set of students that are assigned to a school j during the step, partition the set

Ti (x, εdi) according to the top choice of students. Namely, let

T ji (x, εdi)
def=

{
θ ∈ Ti (x, εdi) | Chθ (C) = j

}
,

denote the top remaining students on i’s priority list whose top choice is school j. Then the

set of students assigned to school j during the step is ∪kT jk (x, εdk), the set of students that got an

offer from some school k ∈ C and whose top choice is j.

We want to equate the measure of the set ∪kT ik (x, εdk) of students who were assigned to i

21The students in the set Ti (x, εdi) ∩ Tk (x, εdk) could have been offered a seat at school k and assigned before
getting an offer from school i. However, for small ε the intersection is of measure O

(
ε2) and therefore negligible.
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with the measure of the set of students who are offered a seat at i, which is approximately the set

Ti (x, εdi). By smoothness of the density of η, for sufficiently small δ we have that

η
(
T ji (x, δ)

)
≈ δ ·Hj

i (x) .

Therefore, we have that22

η
(
∪kT ik (x, εdk)

)
≈
∑
k∈C

η
(
T ik (x, εdk)

)
≈
∑
k∈C

εdk ·H i
k (x) ,

η (Ti (x, εdi)) = η
(
∪kT ki (x, εdi)

)
≈
∑
k∈C

εdi ·Hk
i (x) .

In sum, if the students assigned during the step from time τ1 to time τ2 are cleared via a collection

of cycles, we must have the following condition on the gradient d = γ′ (τ1) of the TTC path,

∑
k∈C

εdk ·H i
k (x) ≈

∑
k∈C

εdi ·Hk
i (x) .

Formalizing this argument yields the marginal trade balance equations at x = γ (τ1),

∑
k∈C

γ′k (τ1) ·H i
k (x) =

∑
k∈C

γ′i (τ1) ·Hk
i (x) .

4.4.3 Interpretation of Solutions to the Trade Balance Equations

The previous subsection showed that any small step clearing a collection of cycles must correspond

to a gradient γ′ that satisfies the trade balance equations. We next characterize the set of solutions

to the trade balance equations and explain why any solution corresponds to clearing a collection of

cycles.

Let γ (τ) = x, and consider the set of valid gradients d = −γ′ (τ) ≥ 0 that solve the trade

balance equations for x ∑
k∈C

dk ·H i
k (x) =

∑
k∈C

di ·Hk
i (x) .

22These approximations make use of the fact that η (Ti (x, εdi) ∩ Tk (x, εdk)) = O
(
ε2) for small ε.
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Figure 4.6: Example of a graph representation for the trade balance equations at x. There is an edge from i to j if
and only if Hj

i (x) > 0. The two communication classes are framed.

Consider the following equivalent representation. Construct a graph with a node for each school.

Let the weight of node i be dj , and let the flow from node i to node j be fi→j = di ·Hj
i (x). The

flow fi→j represents the flow of students who are offered a seat at i and wish to trade it for school j

when the algorithm progresses down school i’s priority list at rate di. Figure 4.6 illustrates such a

graph for C = {1, 2, 3, 4}. Given a collection of cycles let di be the number of cycles containing node

i. It is straightforward that any node weights d obtained in this way give a zero-sum flow, i.e. total

flow into each node is equal to the total flow out of the node. Standard arguments from network

flow theory show that the opposite also holds, that is, any zero-sum flow can be decomposed into

a collection of cycles. In other words, the algorithm can find a collection of cycles that clears each

school i’s priority list at rate di if and only if and only if d is a solution to the trade balance

equations.

To characterize the set of solutions to the trade balance equations we draw on a connection

to Markov chains. Consider a continuous time Markov chain over the states C, and transition

rates from state i to state j equal to Hj
i (x). The stationary distributions of the Markov chain are

characterized by the balance equations, which state that the total probability flow out of state i is

equal to the total probability flow into state i. Mathematically, these are exactly the trade balance

equations. Hence d is a solution to the trade balance equations if and only if d/‖d‖1 is a stationary

distribution of the Markov chain.

This connection allows us to fully characterize the set of solutions to the trade balance equations

through well known results about Markov chains. We restate them here for completeness. Given a

transition matrix P , a recurrent communication class is a subset K ⊆ C, such that the restriction of

P to rows and columns with coordinates in K is an irreducible matrix, and P ij = 0 for every j ∈ K
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and i /∈ K. See Figure 4.6 for an example. There exists at least one recurrent communication class,

and two different communication classes have empty intersection. Let the set of communicating

classes be {K1, . . . ,K`}. For each communicating class K there is a unique vector dK that is a

stationary distribution and dKi = 0 for any i /∈ K. The set of stationary distributions of the Markov

chain is given by convex combinations of
{

dK1 , . . . ,dK`
}
.

An immediate implication is that a solution to the trade balance equations always exists. As

an illustrative example, we provide the following result for when η has full support.23 In this case,

the TTC path γ is unique (up to rescaling of the time parameter). This is because full support

of η implies that the matrix H (x) is irreducible for every x, i.e. there is a single communicating

class. Therefore there is a unique (up to normalization) solution d = −γ′ (τ) to the trade balance

equations at x = γ (τ) for every x and the path is unique.

Lemma 4.1. Let E = (C,Θ, η, q) be a continuum economy where η has full support. Then there

exists a TTC path γ that is unique up to rescaling of the time parameter t. For τ ≤ mini∈C
{
t(i)
}

we have that γ(·) is given by
dγ(t)
dt

= d (γ(t))

where d(x) is the solution to the trade balance equations at x, and d (x) is unique up to normaliza-

tion.

On the Multiplicity of TTC Paths

In general, there can be multiple solutions to the trade balance equations at x, and therefore multiple

TTC paths. The Markov chain and recurrent communication class structure give intuition as to

why the TTC assignment is still unique. Each solution dK corresponds to the clearing of cycles

involving only schools within the set K. The discrete TTC algorithm may encounter multiple

disjoint trade cycles, and the outcome of the algorithm is invariant to the order in which these

cycles are cleared (when preferences are strict). Similarly here, the algorithm may encounter

mutually exclusive combinations of trade cycles
{

dK1 , . . . ,dK`
}
, which can be cleared sequentially

23η has full support if for every open set A ⊂ Θ we have η(A) > 0.
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Figure 4.7: Illustration of the gradient field d (·) and path γ (·) (ignoring the capacity equations).

or simultaneously at arbitrary relative rates. Theorem 4.2 shows that just like the outcome of the

discrete TTC algorithm does not depend on the cycle clearing order, the outcome of the continuum

TTC algorithm does not depend on the order in which
{

dK1 , . . . ,dK`
}
are cleared.

As an illustration, consider the unique solution dK for the communicating class K = {1, 2},

as illustrated in Figure 4.6. Suppose that at some point x we have H1
1 (x) = 1/2, H2

1 (x) = 1/2

and H1
2 (x) = 1. That is, the marginal mass of top ranked students at either school is 1, all the

top marginal students of school 2 prefer school 1, and half of the top marginal students of school

1 prefer school 1 and half prefer school 2. The algorithm offers seats and goes down the schools’

priority lists, assigning students through a combination of two kinds of cycles: the cycle 1 	where

a student is offered a seat at 1 and is assigned to 1, and a cycle 1 � 2 where a student who was

offered a seat at 1 trades her seat with a student who was offered a seat at 2. Given the relative

mass of students, the cycle 1� 2 should be twice as frequent as the cycles 1 	. Therefore, clearing

cycles leads the mechanism to go down school 1’s priority list at twice the speed it goes down

school 2’s list, or d1 = 2 · d2, which is the unique solution to the trade balance equations at x (up

to normalization).

Figure 4.7 illustrates the path γ (·) and the solution d (x) to the trade balance equations at x.
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Note that for every x we can calculate d (x) from H (x). When there are multiple solutions to the

trade balance equations at some x, we may select a solution d (x) for every x such that d (·) is a

sufficiently smooth gradient field. The TTC path γ (·) can be generated by starting from γ (0) = 1

and following the gradient field.

4.4.4 When a School Fills its Capacity

So far we have described the progression of the algorithm while all schools have remaining capacity.

To complete our description of the algorithm we need to describe how the algorithm detects that

a school has exhausted all its capacity, and how the algorithm continues after a school is full.

As long as there is still some remaining capacity, the trade balance equations determine the

progression of the algorithm along the TTC path γ (·). The mass of students assigned to school i

at time τ is

Di (γ (τ)) = η
({
θ | rθ 6< γ (τ) , Chθ (C) = i

})
.

Because γ (·) is continuous and monotonically decreasing in each coordinate, Di (γ (τ)) is a con-

tinuous increasing function of τ . Therefore, the first time during the run of the continuum TTC

algorithm at which any school reached its capacity is given by t(i∗) that solves the capacity equations

Di∗
(
γ
(
t(i
∗)
))

= qi∗

Dk
(
γ
(
t(i
∗)
))
≤ qk ∀k ∈ C

where i∗ is the first school to reach its capacity.

Once a school has filled up its capacity, we can eliminate that school and apply the algorithm

to the residual economy. Note that the remainder of the run of the algorithm depends only on the

remaining students, their preferences over the remaining schools, and remaining capacity at each

school. After eliminating assigned students and schools that have reached their capacity we are left

with a residual economy that has strictly fewer schools. To continue the run of the continuum TTC

algorithm, we may recursively apply the same steps to the residual economy. Namely, to continue

the algorithm after time t(i∗) start the path from γ
(
t(i
∗)
)
and continue the path using a gradient
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that solves the trade balance equations for the residual economy. The algorithm follows this path

until one of the remaining schools fills its capacity, and another school is removed.

4.4.5 Comparison between Discrete TTC and Continuum TTC

Table 4.1 summarizes the relationship between the discrete and continuum TTC algorithms, and

provides a summary of this section. It presents the objects that define the continuum TTC algo-

rithm with their counterparts in the discrete TTC algorithm. For example, running the continuum

TTC algorithm on the embedding Φ (E) of a discrete economy E performs the same assignments as

the discrete TTC algorithm, except that the continuum TTC algorithm performs these assignments

continuously and in fractional amounts instead of in discrete steps.

Discrete TTC → Continuum TTC Expression Equation

Cycle → Valid gradient d (x)
trade balance
equations

Algorithm progression → TTC path γ(·) γ′ (τ) = d (γ (τ))
School removal → Stopping times t(i) capacity equations

Table 4.1: The relationship between the discrete and continuum TTC processes.

Finally, we note that the main technical content of Theorem 4.2 is that there always exists

a TTC path γ and stopping times
{
t(i)
}

that satisfy the trade balance and capacity equations,

and that these necessary conditions, together with the capacity equations (4.3), are sufficient to

guarantee the uniqueness of the resulting assignment.

Example: Embedding a discrete economy in the continuum model

Consider the discrete economy E =
(
C,S,�S ,�C , q

)
with two schools and six students, C = {1, 2},

S = {a, b, c, u, v, w}. School 1 has capacity q1 = 4 and school 2 has capacity q2 = 2. The school

priorities and student preferences are given by

1 : a � u � b � c � v � w, a, b, c : 1 � 2,

2 : a � b � u � v � c � w, u, v, w : 2 � 1.
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In Figure 4.8, we display three TTC paths for the continuum embedding Φ (E) of the discrete

economy E. The first path γall corresponds to clearing all students in recurrent communication

classes, that is, all students in the maximal union of cycles in the pointing graph. The second path

γ1 corresponds to taking K = {1} whenever possible. The third path γ2 corresponds to taking

K = {2} whenever possible. We remark that the third path gives a different first round cutoff

point p1, but all three paths give the same allocation.

We calculate the TTC paths γall, γ1 and γ2. We consider only solutions d to the trade balance

equations (4.2) that have been normalized so that d · 1 = −1. For brevity we call such solutions

valid directions. The relevant valid directions are shown in Figure 4.9.

We first calculate the TTC path in the regions where the TTC paths are the same. At every

point (x1, x2) with 5
6 < x1 ≤ x2 ≤ 1 the H matrix is

x2 − 5
6 0

x1 − 5
6 0

, so d = [−1, 0] is the unique valid

direction and the TTC path is defined uniquely for t ∈
[
0, 1

6

]
by γ (t) = (1− t, 1). This section of

the TTC path starts at (1, 1) and ends at
(

5
6 , 1
)
. At every point

(
5
6 , x2

)
with 5

6 < x2 ≤ 1 the H

matrix is

0 1
6

0 0

, so d = [0,−1] is the unique valid direction, and the TTC path is defined uniquely

for t ∈
[

1
6 ,

1
3

]
by γ (t) =

(
5
6 ,

7
6 − t

)
. This section of the TTC path starts at

(
5
6 , 1
)
and ends at(

5
6 ,

5
6

)
.
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TTC path γall clears all students in recurrent communication classes.

TTC path γ1 clears all students who want school 1 before students who want school 2.

TTC path γ2 clears all students who want school 2 before students who want school 1.

Figure 4.8: Three TTC paths and their cutoffs and allocations for the discrete economy in example 4.4.5. In each set
of two squares, students in the left box prefer school 1 and students in the right box prefer school 2. The first round
TTC paths are solid, and the second round TTC paths are dotted. The cutoff points p1 and p2 are marked by filled
circles. Students shaded dark blue are assigned to school 1 and students shaded dark light are assigned to school 2.

At every point (x1, x2) with 2
3 < x1, x2 ≤ 5

6 the H matrix is

0 1
6

1
6 0

, and so d =
[
−1

2 ,−
1
2

]
is the

unique valid direction, the TTC path is defined uniquely to lie on the diagonal γ1 (t) = γ2 (t), and

this section of the TTC path starts at
(

5
6 ,

5
6

)
and ends at

(
2
3 ,

2
3

)
. At every point x =

(
1
3 , x2

)
with
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Figure 4.9: The valid directions d (x) for the continuum embedding Φ (E). Valid directions d (x) are indicated for
points x in the grey squares (including the upper and right boundaries but excluding the lower and left boundaries), as
well as for points x on the black lines. Any vector d (x) is a valid direction in the lower left gray square. The borders
of the squares corresponding to the students are drawn using dashed gray lines.

1
3 < x2 ≤ 2

3 the H matrix is

0 6x2 − 2

0 0

, and so d = [0,−1] is the unique valid direction, and the

TTC path is parallel to the y axis. Finally, at every point
(
x1,

1
3

)
with 0 < x1 ≤ 2

3 , the measure of

students assigned to school 1 is at most 3, and the measure of students assigned to school 2 is 2, so

school 2 is unavailable. Hence, from any point
(
x1,

1
3

)
the TTC path moves parallel to the x1 axis.

We now calculate the various TTC paths where they diverge.

At every point x = (x1, x2) with 1
2 < x1, x2 ≤ 2

3 the H matrix is

0 0

0 0

 (i.e. there are no

marginal students). Moreover, at every point x = (x1, x2) with 1
3 < x1, x2 ≤ 1

2 the H matrix is1
6 0

0 1
6

. Also, at every point x = (x1, x2) with 1
3 < x1 ≤ 1

2 and 1
2 < x2 ≤ 2

3 , theH matrix is

1
6 0

0 0

.
The same argument with the coordinates swapped gives that H =

0 0

0 1
6

 when 1
2 < x1 ≤ 2

3 and

1
3 < x2 ≤ 1

2 . Hence in all these regions, both schools are in their own recurrent communication

class, and any vector d is a valid direction.

The first path corresponds to taking d =
[
−1

2 ,−
1
2

]
, the second path corresponds to taking

d = [−1, 0] and the third path corresponds to taking d = [0,−1]. The first path starts at
(

2
3 ,

2
3

)
and ends at

(
1
3 ,

1
3

)
where school 2 fills. The third path starts at

(
2
3 ,

2
3

)
and ends at

(
2
3 ,

1
3

)
where
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school 2 fills. Finally, when x =
(

1
3 , x2

)
with 1

3 < x2 ≤ 1
2 , the H matrix is

0 1

0 1

 and so d = [0,−1]

is the unique valid direction, and the second TTC path starts at
(

1
3 ,

1
2

)
and ends at

(
1
3 ,

1
3

)
where

school 2 fills. All three paths continue until
(
0, 1

3

)
, where school 1 fills.

Note that all three paths result in the same TTC allocation, which assigns students a, b, c, w

to school 1 and u, v to school 2. All three paths assign the students assigned before p1 (students

a, u, b, c for paths 1 and 2 and a, u, b for path 3) to their top choice school. All three paths assign

all remaining students to school 1.

4.5 Applications

4.5.1 Optimal Investment in School Quality

We apply our model to analyze economies where preferences for schools are endogenously deter-

mined by the allocation of resources to schools. Empirical evidence suggests that increased financing

affects student achievements Jackson et al. (2016); Lafortune et al. (2018); Johnson and Jackson

(2017) as well as demand for housing Hoxby (2001); Cellini et al. (2010), which indicate increased

demand for schools. Similarly, Krueger (1999) finds that smaller classes have a positive impact on

student performance, and Dinerstein et al. (2014) finds that increased funding for public schools

increases enrollment in public schools and reduces demand for private schools.

Under school choice, such resource allocation decisions can change the desirability of schools

and therefore change the assignment of students to schools. We explore the implication of such

changes in a stylized model. As a shorthand, we refer to an increase in the desirability of a school

as an increase in the quality of the school. We explore comparative statics of the allocation and

evaluate student welfare. Omitted proofs and derivations can be found in the Appendix B.3.

Model with quality dependent preferences We enrich the model from Chapter 4.3 to allow

student preferences to depend on school quality δ = {δi}i∈C , where the desirability of school i

is increasing in δi. An economy with quality dependent preferences is given by E = (C,Υ, υ, q),
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where C = {1, 2, . . . , n} is the set of schools and Υ is the set of student types. A student s ∈ Υ is

given by s = (us (· | ·) , rs), where us (i | δ) is the utility of student s for school i given δ = {δi}i∈C
and rsi is the student’s rank at school i. We assume us (i | ·) is differentiable, increasing in δi and

non-increasing in δj for any j 6= i. The measure υ over Υ specifies the distribution of student types.

School capacities are q = {qi}, where
∑
qi < 1. We will refer to δi as the quality of i.

For a fixed quality δ, let ηδ be the induced distribution over Θ, and let Eδ = (C,Θ, ηδ, q) denote

the induced economy.24 We assume for all δ that ηδ has a Lipschitz continuous non-negative density

νδ that is bounded below on its support and depends smoothly on δ. For a given δ, let µδ and{
pij (δ)

}
i∈C

denote the TTC assignment and associated cutoffs for the economy Eδ. We omit the

dependence on δ when it is clear from context.

Comparative statics of the allocation The following proposition gives the direction of change

of the TTC cutoffs when there are two schools and δ` increases for some ` ∈ {1, 2}. Throughout this

subsection, when considering a fixed δ we assume that schools are labeled in order, unless stated

otherwise.

Proposition 4.4. Suppose E = (C = {1, 2} ,Υ, υ, q) and δ induces an economy Eδ such that the

TTC path γ that, if possible, assigns seats at school 1 before seats at school 2, yields p1
2 (δ) > p2

2 (δ).25

Consider δ̂ that increases the quality of school 2, i.e. δ̂2 ≥ δ2 and δ1 = δ̂1, and which induces Eδ̂
with TTC path γ̂ that also assigns seats at 1 before 2 when possible and yields p1

2

(
δ̂
)
≥ p2

2

(
δ̂
)
.

Then a change from δ to δ̂ induces the cutoffs pij (·) to change as follows:

• p1
1 and p1

2 both decrease, i.e., it becomes easier to trade into school 1; and

• p2
2 increases, i.e. higher 2-priority is required to get into school 2.

Proposition 4.4 is illustrated in Figure 4.10. As first shown in Hatfield et al. (2016), an increase

in the desirability of school 2 can cause low 2-rank students to be assigned to school 2. Note that

individual students’ budget sets can grow or shrink by more than one school.

24To make student preferences strict we arbitrarily break ties in favor of schools with lower indices. We assume the
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Figure 4.10: The effect of an increase in the quality of school 2 on TTC cutoffs and budget sets. Dashed lines indicate
initial TTC cutoffs, and dotted lines indicate TTC cutoffs given increased school 2 quality. The cutoffs p1

1 = p2
1 and

p1
2 decrease and the cutoff p2

2 increases. Students in the colored sections receive different budget sets after the increase.
Students in dark blue improve to a budget set of {1, 2} from ∅, students in light blue improve to {1, 2} from {2}, and
students in red have an empty budget set ∅ after the change and {2} before.
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When there are n ≥ 3 schools, it is possible to show that an increase in the quality of a school

` can either increase or decrease any cutoff. With additional structure we can provide precise

comparative statics that mirror the intuition from Proposition (4.4).

Consider the logit economy where students’ utilities for each school i are randomly distributed

as a logit with mean δi, independently of priorities and utilities for other schools. That is, utility

for school i is given by us (i | δ) = δi + εis with εis distributed as i.i.d. extreme value shifted to

have a mean of 0 McFadden (1973). We assume that the total measure of students is normalized

to 1, that there are more students than school seats, i.e.
∑
i qi < 1, and that all students prefer any

school to being unassigned26. Schools’ priorities are uncorrelated and uniformly distributed. This

model combines heterogeneous idiosyncratic taste shocks with a common preferences modifier δi.

Proposition 4.5 gives the TTC assignment in closed form for the logit economy.

Proposition 4.5. Under the logit economy schools are labeled in order if q1
eδ1
≤ q2

eδ2
≤ · · · ≤ qn

eδn
,

and in such cases the TTC cutoffs pij for i ≤ j are given by27

pij =
(
Ri
) eδj
πi
∏
k<i

(
Rk
) eδj
πk
− e

δj

πk+1 (4.4)

where πi =
∑
i′≥i e

δi′ is the normalization term for schools in C(i), for all i ≥ 1 the quantity

Ri = 1−
∑
i′<i qi′ − πi

eδi
qi is the measure of unassigned, or remaining, students after the cth round,

and R0 = 1.

Moreover, pij is decreasing in δ` for i < ` and increasing in δ` for j > i = `.

Figure 4.11 illustrates how the TTC cutoffs change with an increase in the quality of school `.

Using equation (4.4), we derive closed form expressions for dpij
dδ`

, which can be found in Appendix

B.3.

utility of being unassigned is −∞, so all students find all schools acceptable.
25Formally, γ is defined by requiring that for all t it holds that γ′ (t) is the valid direction at γ (t) with support

that is minimal under the order {1} < {1, 2} < {2}.
26Formally, us (φ | δ) = −∞. For welfare calculations we only consider assigned students.
27When i = 1 we let

∏
i′<i

pi−1
i′ = 1 and set ρ1 = q1/e

δ1 .
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Figure 4.11: The effects of changing the quality δ` of school ` on the TTC cutoffs pji under the logit economy. If i < `

then
dpij
dδ`

< 0 for all j ≥ i, i.e., it becomes easier to get into the more popular schools. If i > ` then
dpij
dδ`

= 0. If i = `

then
dpij
dδ`

=
dp`j
dδ`

> 0 for all j > `, and p`` may increase or decrease depending on the specific problem parameters. Note
that although pij and pi` look aligned in the picture, in general it does not hold that pij = pi` for all j.

Remark 4.2. Proposition 4.5 can be used to calculate admission probability under multiple tie-

breaking as follows. Consider an economy where priorities are determined by a multiple tie-breaking

rule where the priority of each student at each school is generated by an independent U [0, 1] lottery

draw. As a result, students priorities will be uniformly distributed over [0, 1]C and uncorrelated

with student preferences. If in addition student preferences are given by the MNL model, this is a

logit economy. In the logit economy the ex-ante probability that a student will gain admission to

school i is given by

1−
∏
j∈C

pij

with pij given by Proposition 4.5.

Comparative statics of student welfare We consider a social planner who can affect quality

levels δ of schools in economy E . We suppose that the social planner wishes to assign students to

schools at which they attain high utility, and for the sake of simplicity consider students’ social

welfare as a proxy for the social planner’s objective. Given assignment µ, the social welfare is given

by

111



U (δ) =
∫
s∈Υ,µ(s)6=φ

us (µ (s) | δ) dυ.

As a benchmark, we first consider neighborhood assignment µNH which assigns each student

to a fixed school regardless of her preferences. We assume this assignment fills the capacity of each

school. Social welfare for the logit economy is

UNH (δ) =
∑
i

qi · δi,

because E
[
εµ(s)s

]
= 0 under neighborhood assignment. Under neighborhood assignment, the

marginal welfare gain from increasing δ` is dUNH
dδ`

= q`, as an increase in the school quality benefits

each of the q` students assigned to school `.

The budget set formulation of TTC allows us to tractably capture student welfare under

TTC.28 A student who is offered the budget set C(i) = {i, . . . , n} is assigned to the school ` =

arg max
j∈C(i)

{δj + εjs}, and her expected utility is U i = ln
(∑

j≥i e
δj
)
Small and Rosen (1981). Let N i

be the mass of agents with budget set C(i). Then social welfare under the TTC assignment given

δ simplifies to UTTC (δ) =
∑
i

N i · U i.

This expression for welfare also allows for a simple expression for the marginal welfare gain from

increasing δ` under TTC.

Proposition 4.6. For the logit economy, the change in social welfare UTTC (δ) under TTC from

a marginal increase in δ` is given by

dUTTC
dδ`

=q` +
∑
i≤`+1

dN i

dδ`
· U i.

Under neighborhood assignment dUNH
dδ`

= q`.

Proposition 4.6 shows that under TTC a marginal increase in the quality of school ` will have

28Under TTC the expected utility of student s assigned to school µ(s) depends on the student’s budget
set B (s,p) because of the dependency of µ (s) on student preferences. Namely, E [us (µ (s) | δ)] = δµ(s) +
E
[
εµ(s)s | δµ(s) + εµ(s)s ≥ δi + εis ∀i ∈ B (s,p)

]
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two effects. As under neighborhood assignment, it will increase the utility of the q` students

assigned to ` by dδ`. In addition, the quality increase changes student preferences, and therefore

changes the assignment. The second term captures the indirect effect on welfare due to changes in

the assignment. This effect is captured by changes in the number of students offered each budget

set.

The indirect effect can be negative. In particular, when there are two schools C = {1, 2} the

welfare effect of a quality increase to school 1 is29

dUTTC
dδ1

= q1 + dN1

dδ1
· U1 + dN2

dδ1
· U2

= q1 −
(
q1 · eδ2−δ1

) (
ln
(
eδ1 + eδ2

)
− δ2

)
< q1.

An increase in the quality of school 1 gives higher utility for students assigned to 1, which is

captured by the first term. Additionally, it causes some students to switch their preferences to

1 � 2, making school 1 run out earlier in the TTC algorithm, and removing school 1 from the

budget set of some students. Students whose budget set did not change and who switched to 1 � 2

are almost indifferent between the schools and hence almost unaffected. Students who lost school 1

from their budget set may prefer school 1 by a large margin, and hence incur significant loss. Thus,

there is a total negative effect from changes in the assignment, which is captured by the second

term.

If a positive mass of students receive the budget set {2} (that is, N2 > 0), improving the quality

of school 2 will have the opposite indirect effect. Specifically,

dUTTC
dδ2

= q2 + q1 · eδ2−δ1
(
ln
(
eδ1 + eδ2

)
− δ2

)
> q2

which is larger than the marginal effect under neighborhood assignment.

If admission cutoffs into both schools are equal (that is, p1
2 = p2

2 and N2 = 0) we say that both

schools are equally over-demanded. In such a case, a marginal increase in the quality of either

29Recall that we assume that schools are labeled in order, and thus school 1 is the more selective school. We use
that N1 = q1 + q1e

δ1−δ2 , N2 = q2 − q1eδ2−δ1 .

113



(a) TTC, δ1 = δ2 = 1,
optimal investment.

(b) TTC, δ1 = 2, δ2 = 0. (c) Average student welfare
under TTC, δ1 + δ2 = 2.

(d) DA, δ1 = δ2 = 1,
optimal investment.

(e) DA, δ1 = 2, δ2 = 0. (f) Average student welfare
under DA, δ1 + δ2 = 2.

Figure 4.12: Illustration for Example 4.3. Figures (a) and (b) show the budget sets under TTC for different quality
levels, and Figure (c) shows the average welfare of assigned students under TTC for quality levels δ1 + δ2 = 2 for
different values of δ1 − δ2. Figures (d) and (e) show the budget sets under DA, and Figure (f) shows the average
welfare of assigned students under DA.

school will have a negative indirect effect on welfare.30

Selecting the quality distribution to maximize student welfare We now provide an illus-

trative example showing the welfare optimal quality distribution under DA, TTC and neighborhood

assignment. This example also allows us to compare welfare across mechanisms. In the examples

below we fix the school labels and consider various δ. For some values of δ the schools may be

labeled out of order.

Example 4.3. Consider a logit economy with two schools and q1 = q2 = 3
8 , and let Q = q1 + q2

denote the total capacity. Quality levels δ are constrained by δ1 + δ2 = 2 and δ1, δ2 ≥ 0.

30That is, if δ1 = δ2 then dUTTC
dδ1

< q1 and dUTTC
dδ2

< q2. If we fix δ1 + δ2 and consider UTTC (∆) as a function of
∆ = δ1 − δ2 the function UTTC (∆) will have a kink at ∆ = 0 (see Figure 4.12c).
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Under neighborhood assignment UNH/Q = 1 for any choice of δ1, δ2. Under TTC the unique

optimal quality is δ1 = δ2 = 1, yielding UTTC/Q = 1 + E [max (ε1s, ε2s)] = 1 + ln (2) ≈ 1.69. This

is because any assigned student has the budget set B = {1, 2} and is assigned to the school for

which he has higher idiosyncratic taste. Welfare is lower when δ1 6= δ2, because fewer students

choose the school for which they have higher idiosyncratic taste. For instance, given δ1 = 2, δ2 = 0

welfare is UTTC/Q = 1
2
(
1 + e−2) log

(
1 + e2) ≈ 1.20. Under Deferred Acceptance (DA) the unique

optimal quality is also δ1 = δ2 = 1, yielding UDA/Q = 1 + 1
3 ln (2) ≈ 1.23. This is strictly lower

than the welfare under TTC because under DA only students that have sufficiently high priority

for both schools have the budget set B = {1, 2}. Two thirds of assigned students have a budget set

B = {1} or B = {2}, corresponding to the single school for which they have sufficient priority. If

δ1 = 2, δ2 = 0 welfare under DA is UDA/Q ≈ 1.11.

In Example 4.3, TTC yields higher student welfare by providing all assigned students with a

full budget set, thus maximizing each assigned student’s contribution to welfare from horizontal

taste shocks. However, the assignment it produces is not stable. In fact, both schools admit

students whom they rank at the bottom, and thus virtually all unassigned students can potentially

block with either school.31 Requiring a stable assignment will constrain two thirds of the assigned

students from efficiently sorting on horizontal taste shocks.

We next provide an example where the two schools have different capacity, with q1 > q2. To

make investment in school 1 more efficient, we assume that (despite having more students) school 1

requires the same amount of resources to increase its quality for all its students. Thus, we keep the

constraint that δ1 + δ2 = 2. It is straightforward to see that under neighborhood assignment the

welfare optimal distribution of quality is δ1 = 2, δ2 = 0. In contrast, we find the welfare optimal

distribution under TTC can be closer to egalitarian.

Example 4.4. Consider a logit economy with two schools and q1 = 1/2, q2 = 1/4, and let Q =

q1 + q2 denote the total capacity. Quality levels δ are constrained by δ1 + δ2 = 2 and δ1, δ2 ≥ 0.

Under neighborhood assignment the welfare optimal quality is δ1 = 2, δ2 = 0, yielding UNH/Q =

31Note that this is not a concern in school choice settings where blocking pairs cannot be assigned outside of the
mechanism.
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(a) TTC, δ1 = δ2 = 1. (b) TTC, δ1, δ2 = 1± ln(2)
2 ,

optimal investment.
(c) Average student welfare

under TTC, δ1 + δ2 = 2.

(d) DA, δ1 = δ2 = 1. (e) DA, δ1 = 2, δ2 = 0,
optimal investment.

(f) Average student welfare
under DA, δ1 + δ2 = 2.

Figure 4.13: Illustration for Example 4.4. Figures (a) and (b) show the budget sets under TTC for different quality
levels, and Figure (c) shows the average welfare of assigned students under TTC for quality levels δ1 + δ2 = 2 for
different values of δ1− δ2. Note that δ1 = δ2 = 1 is no longer optimal. Figures (d) and (e) show the budget sets under
DA, and Figure (f) shows the average welfare of assigned students under DA.

4/3 ≈ 1.33. Under TTC assignment the unique optimal quality is δ1 = 1+ 1
2 ln (2) , δ2 = 1− 1

2 ln (2),

yielding UTTC/Q = ln
(

3e√
2

)
≈ 1.75. Under these quality levels any assigned student has the budget

set B = {1, 2}. Given δ1 = 2, δ2 = 0 welfare is UTTC/Q ≈ 1.61. The quality levels that are optimal

in Example 4.3, namely δ1 = 1, δ2 = 1, yield UTTC/Q ≈ 1.46. Under DA assignment the unique

optimal quality is δ1 = 2, δ2 = 0, yielding UDA/Q ≈ 1.45. Given δ1 = 1, δ2 = 1 welfare under DA is

UDA/Q ≈ 1.20.

Again in Example 4.4 we find that the optimal quality distribution under TTC provides all

assigned students with a full budget set, making all schools equally over-demanded. The optimal

quality distribution under neighborhood assignment and DA allocates all resources to the more

efficient school. While quality directed to the larger school affects more students and yields more
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direct benefit, under TTC an egalitarian distribution leads to more welfare gains from sorting on

horizontal tastes. For general parameters the welfare gain from sorting can be lower or higher than

the welfare gains from directing all resources to the more efficient school.

Finally, consider a central school board with a fixed amount of resources K to be allocated to

the n schools. We assume that the cost of quality δi is the convex function κi (δi) = eδi . This

specification makes bigger schools more efficient.32 Using Proposition 4.6 we solve for the optimal

distribution of school quality. Despite the heterogeneity among schools, social welfare is maximized

when all assigned students have a full budget set, which occurs when the amount allocated to each

school is proportional to the number of seats at the school.

Proposition 4.7. Consider a logit economy with cost function κi (δi) = eδi∀i and resource con-

straint ∑i κi (δi) ≤ K. Social welfare is uniquely maximized when the resources κi allocated to

school i are proportional to the capacity qi, that is,

κi (δi) = qi∑
j qj

K

and all assigned students s receive a full budget set, i.e., B (s,p) = {1, 2, . . . , n} for all assigned

students s.

Under optimal investment, the resulting TTC assignment is such that every assigned student

receives a full budget set and is able to attend their top choice school. More is invested in higher

capacity schools, as they provide more efficient investment opportunities, but the investment is

balanced across schools.

4.5.2 Design of TTC Priorities

To better understand the role of priorities in the TTC mechanism, we examine how the TTC

assignment changes with changes in the priority structure. Notice that any student s whose favorite

school is i and who is within the qi highest ranked students at i is guaranteed admission to i. In the

32Note that κi is the total school funding. This is equivalent to setting the student utility of school i to be to
us (i | κi) = log (κi) + εis = log (κi/qi) + log (qi) + εis, which is the log of the per-student funding plus a fixed school
utility that is larger for bigger schools.
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following example, we consider changes to the relative priority of such highly ranked students and

find that these changes can have an impact on the assignment of other students, without changing

the assignment of any student whose priority changed.

Example 4.5. The economy E has two schools 1, 2 with capacities q1 = q2 = q, students are equally

likely to prefer each school, and student priorities are uniformly distributed on [0, 1] independently

for each school and independently of preferences. The TTC algorithm ends after a single round,

and the resulting assignment is given by p1
1 = p2

1 = p1
2 = p2

2 =
√

1− 2q. The derivation can be

found in Appendix B.3.

Consider the set of students {s | rsi ≥ m ∀i} for some m > 1 − q. Any student in this set is

assigned to his top choice. Suppose we construct an economy E ′ by arbitrarily changing the rank

of students within the set, subject to the restriction that their ranks must remain in [m, 1]2.33 The

range of possible TTC cutoffs for E ′ is given by p1
1 = p2

1, p
1
2 = p2

2 where

p1
1 ∈ [p, p̄] , p2

2 = 1
p1

1
(1− 2q)

for p =
√

(1− 2q) m2

1−2m+2m2 and p =
√

(1− 2q) 1−2m+2m2

m2 . Figure 4.14 illustrates the range of

possible TTC cutoffs for E ′ and the economy E for which TTC obtains one set of extreme cutoffs.

Example 4.5 has several implications. First, it shows that it is not possible to directly compute

TTC cutoffs from student demand. The set of cutoffs such that student demand is equal to school

capacity (depicted by the grey curve in Figure 4.14) are the cutoffs that satisfy p1
1 = p2

1, p
1
2 = p2

2

and p1
1p

2
2 = 1 − 2q. Under any of these cutoffs the students in {s | rsi ≥ m ∀i} have the same

demand, but the resulting TTC outcomes are different. It follows that the mechanism requires

more information to determine the assignment. However, Theorem 4.3 implies that the changes in

TTC outcomes are small if 1−m is small.

A second implication is that the TTC priorities can be ‘bossy’ in the sense that changes in the

relative priority of high priority students can affect the assignment of other students, even when

all high priority students receive the same assignment. Notice that in all the economies considered

33 The remaining students still have ranks distributed uniformly on the complement of [m, 1]2.
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Figure 4.14: The range of possible TTC cutoffs in example 4.5 with q = 0.455 and m = 0.6. The points depict the
TTC cutoffs for the original economy and the extremal cutoffs for the set of possible economies E ′, with the range
of possible TTC cutoffs for E ′ given by the bold curve. The dashed line is the TTC path for the original economy.
The shaded squares depict the changes to priorities that generate the economy E which has extremal cutoffs. In E the
priority of all top ranked students is uniformly distributed within the smaller square. The dotted line depicts the TTC
path for E, which results in cutoffs p1

1 =
√

(1− 2q) 1−2m+2m2

m2 ≈ 0.36 and p2
2 =

√
(1− 2q) m2

1−2m+2m2 ≈ 0.25.

in Example 4.5, we only changed the relative priority within the set {s | ∃i s.t. rsi ≥ m}, and all

these students were always assigned to their top choice. However, these changes resulted in a

different assignment for low priority students. For example, if q = 0.455 and m = 0.4, a student

s with priority rs1 = 0.35,rs2 = 0.1 could possibly receive his first choice or be unassigned. Such

changes to priorities may naturally arise when there are many indifferences in student priorities,

and tie-breaking is used. Since priorities are bossy, the choice of tie-breaking between high-priority

students can have indirect effects on the assignment of low priority students.

4.5.3 Comparing Mechanisms

In Chapter 4.5.1 we compared the welfare effects of changes in school resource allocation under

various school choice mechanisms. Our formulation of TTC also allows us to compare TTC with

other school choice mechanisms. In this section, we provide a theoretical explanation for observed

similarities between assignments under TTC and Deferred Acceptance (DA), as well as a compar-

ison of the number of blocking pairs induced by TTC and the closely related Clinch and Trade

mechanism.
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Both TTC and Deferred Acceptance (DA) Gale and Shapley (1962) are strategy-proof, but differ

in that TTC is efficient whereas DA is stable. Kesten (2006); Ehlers and Erdil (2010) show the

two mechanisms are equivalent only under strong conditions that are unlikely to hold in practice.

However, Pathak (2016) evaluates the two mechanisms on application data from school choice in

New Orleans and Boston, and reports that the two mechanisms produce similar outcomes. In

Chapter 4.5.1 we compared DA and TTC in terms of welfare and assignment and found that large

differences were possible.34 Pathak (2016) conjectures that the neighborhood priority used in New

Orleans and Boston led to correlation between student preferences and school priorities that may

explain the similarity between the TTC and DA allocations in these cities.

To study this conjecture, we consider a simple model with neighborhood priority. There are

n neighborhoods, each with one school and a mass q of students. Schools have capacities q1 ≤

· · · ≤ qn = q, and each school gives priority to students in their neighborhood. For each student,

the neighborhood school is their top ranked choice with probability α; otherwise the student ranks

the neighborhood school in position k drawn uniformly at random from {2, 3, . . . , n}. Student

preference orderings over non-neighborhood schools are drawn uniformly at random.

We find that the proportion of students whose assignments are the same under both mechanisms

scales linearly with the probability of preference for the neighborhood school α, supporting the

conjecture of Pathak (2016).

Proposition 4.8. The proportion of students who have the same assignments under TTC and DA

is given by

α

∑
i qi
nq

.

Proof. We use the methodologies developed in Chapter 4.3.2 and in Azevedo and Leshno (2016)

to find the TTC and DA allocations respectively. For each school, students with priority are

given a lottery number uniformly at random in
[
n−1
n , 1

]
, and students without priority are given

a lottery number uniformly at random in
[
0, n−1

n

]
, where lottery numbers at different schools are

34Che and Tercieux (2015) show that when there are a large number of schools with a single seat per school and
preferences are random both DA and TTC are asymptotically efficient and stable and give asymptotically equivalent
allocations. As Example 4.3 shows, these results do not hold when there are many students and a few large schools.
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independent. For all values of α, the TTC cutoffs are given by pij = pji = 1− qi
nq for all i ≤ j, and

the DA cutoffs are given by pi = 1− qi
nq . We now derive these cutoffs.

Consider the TTC cutoffs for the neighborhood priority setting. We prove by induction on `

that p`j = 1− q`
nq for all `, j such that j ≥ `.

Base case: ` = 1.

For each school i, there are measure q of students whose first choice school is i, αq of whom

have priority at i and (1−α)q
n−1 of whom have priority at school j, for all j 6= i.

The TTC path is given by the diagonal, γ (t) =
(
1− t√

n
, 1− t√

n
, . . . , 1− t√

n

)
. At the point

γ (t) = (x, x, . . . , x) (where x ≥ n−1
n ) a fraction n (1− x) of students from each neighborhood have

been assigned. Since the same proportion of students have each school as their top choice, this

means that the quantity of students assigned to each school i is n (1− x) q. Hence the cutoffs are

given by considering school 1, which has the smallest capacity, and setting the quantity assigned

to school 1 equal to its capacity q1. It follows that p1
j = x∗ for all j, where n (1− x∗) q = q1, which

yields

p1
j = 1− q1

nq
for all j.

Inductive step.

Suppose we know that the cutoffs
{
pij

}
i,j : i≤`

satisfy pij = 1 − qi
nq . We show by induction that

the (`+ 1)th set of cutoffs
{
p`+1
j

}
j>`

are given by p`+1
j = 1− q`+1

nq .

The TTC path is given by the diagonal when restricted to the last n−` coordinates, γ
(
t(`) + t

)
=(

p1
1, p

2
2, . . . , p

`
`, p

`
` −

t√
n−` , p

`
` −

t√
n−` , . . . , p

`
` −

t√
n−`

)
.

Consider a neighborhood i. If i > `, at the point γ (t) = (p1
1, p

2
2, . . . , p

`
`, x, x, . . . , x) (where x ≥

n−1
n ) a fraction n

(
p`` − x

)
of (all previously assigned and unassigned) students from neighborhood

i have been assigned in round `+ 1. If i ≤ `, no students from neighborhood i have been assigned

in round `+ 1.

Consider the set of students S who live in one of the neighborhoods `+1, `+2, . . . , n. These are

the only students who have priority at one of the remaining schools. Moreover, the same proportion

of these students have each remaining school as their top choice out of the remaining schools. This
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means that for any i > `, the quantity of students assigned to school i in round ` + 1 by time t

is a 1
n−` fraction of the total number of students assigned in round ` + 1 by time t, and is given

by 1
n−` (n− `)

(
p`` − x

)
nq = n

(
p`` − x

)
q. Hence the cutoffs are given by considering school ` + 1,

which has the smallest residual, and setting the quantity assigned to school `+1 equal to its residual

capacity q`+1 − q`. It follows that p`+1
j = x∗ for all j > ` where n

(
p`` − x∗

)
q = q`+1 − q`, which

yields

p`+1
j = p`` −

q`+1 − q`
nq

= 1− q`
nq
− q`+1 − q`

nq
= 1− q`+1

nq
for all j > `.

This completes the proof that the TTC cutoffs are given by pij = pji = 1− qi
nq for all i ≤ j.

Now consider the DA cutoffs. We show that the cutoffs pi = 1− qi
nq satisfy the supply-demand

equations. We first remark that the cutoff at school i is higher than all the ranks of students

without priority at school i, pi ≥ n−1
n . Since every student has priority at exactly one school, this

means that every student is either above the cutoff for exactly one school and is assigned to that

school, or is below all the cutoffs and remains unassigned. Hence there are nq (1− pi) = qi students

assigned to school i for all i, and the supply-demand equations are satisfied.

The students who have the same assignments under TTC and DA are precisely the students

at neighborhood i whose ranks at school i are above 1 − qi
nq , and whose first choice school is

their neighborhood school. This set of students comprises an α
∑

i
qi

nq fraction of the entire student

population, which scales proportionally with the correlation between student preferences and school

priorities.

We can also compare TTC with the Clinch and Trade (C&T) mechanism introduced by Morrill

(2015b). The C&T mechanism identifies students who are guaranteed admission to their favorite

school i by having priority rsi ≥ 1 − q and assigns them to i by ‘clinching’ without trade. Morrill

(2015b) suggests that this design choice is desirable because it can reduce the number of blocking

pairs induced by the assignment, and gives an example where the C&T assignment has fewer

blocking pairs than the TTC assignment. The fact that allowing students to clinch can change

the assignment can be interpreted as another example of the bossiness of priorities under TTC: we

can equivalently implement C&T by running TTC on a changed priority structure where students
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who clinched at school i have higher rank at i than any other student.35 The following proposition

builds on Example 4.5 and shows that C&T may produce more blocking pairs than TTC.

Proposition 4.9. The Clinch and Trade mechanism can produce more, fewer or an equal number

of blocking pairs compared to TTC.

Figure 4.15: Economy E1 used in the proof of Proposition 4.9. The black borders partition the space of students
into four regions. The density of students is zero on white areas, and constant on each of the shaded areas within a
bordered region. In each of the four regions, the total measure of students within is equal to the total area (white and
shaded) within the borders of the region.

Proof. Morrill (2015b) provides an example where C&T produces fewer blocking pairs than TTC.

Both mechanisms give the same assignment for the symmetric economy in the beginning of Example

4.5. It remains to construct an economy E1 for which C&T produces more blocking pairs than

TTC. Let economy E be defined as in Section B.3, that is, by taking an economy E with capacities

q1 = q2 = q = 0.455 where students are equally likely to prefer each school and student priorities

are uniformly distributed on [0, 1] independently for each school and independently of preferences,

and changing the ranks of top priority students (those with rank rθ1, rθ2 ≥ m = 0.6) so that they have

ranks uniformly distributed in the r̃ × r̃ square (1− r̃, 1]× (m,m+ r̃] for some r̃ ≤ (2m−1)(1−m)
2m .

35For brevity, we abstract away from certain details of C&T mechanism that are important when not all schools
run out at the same round.
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Recall that when running TTC on the economy E the cutoffs are given by p1 =
(
p, p

)
, where p =√

(1− 2q) m2

1−2m+2m2 and p =
√

(1− 2q) 1−2m+2m2

m2 . The economy E1 is constructed by taking the

economy E and redistributing school 2 rank among students with rθ2 ≤ p ≈ 0.25 so that those with

rθ1 ≥ p ≈ 0.36 have higher school 2 rank.36 The C&T assignment for E1 is given by p1
1 = p2

2 = 0.3,

while TTC gives p1
1 = p ≈ 0.36 and p2

2 = p ≈ 0.25 (and under both p1
1 = p2

1, p
1
2 = p2

2). Under TTC

unmatched students will form blocking pairs only with school 2, while under C&T all unmatched

students will form a blocking pair with either school. See Figure 4.15 for an illustration.

4.6 Discussion

Summary of findings. We have provided a cutoff characterization for the TTC outcome in

terms of n2 cutoffs, one for every pair of schools. The cutoff pij represents the lowest j-priority a

student can have in order to use that priority to obtain a seat in school i. In a continuum setting we

demonstrated how to compute these cutoffs as the solutions to a system of differential equations. In

parametrized economies we provide closed-form expressions for the TTC outcome. We consider the

problem of optimal investment in school quality, and show that under TTC the optimal invesment

levels are equitable, as the greatest utility gains in TTC come from allowing students to choose

schools based on their idiosyncratic preferences rather than based on the quality of the school.

We are hopeful that our characterization of the TTC assignment can be used to increase the use

of TTC in practice and inform optimal decision-making in other aspects of the school assignment

problem.

Communicating the TTC outcome. We can simplify how the TTC outcome is communicated

to students and their families by using the cutoff characterization. The cutoffs
{
pji

}
are calculated

in the course of running the TTC algorithm. The cutoffs can be published to allow parents to verify

their assignment, or the budget set structure can be communicated using the language of tokens

(see footnote 4). We hope that these methods of communicating TTC will make the mechanism

36Specifically, select `1 < `2. Among students with rθ2 ≤ p and rθ1 ≥ p̄ the school 2 rank is distributed uniformly
in the range [`2, p]. Among students with rθ2 ≤ p and rθ1 < p̄ the school 2 rank is distributed uniformly in the range
[0, `1]. Within each range rθ1 and rθ2are still independent. See Figure 4.15 for an illustration.
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more palatable to students and their parents, and facilitate a more informed comparison with the

Deferred Acceptance mechanism.

Unacceptable matches and quotas. The model assumes for simplicity that all students and

schools are acceptable. It can be naturally extended to allow for unacceptable students or schools

by erasing from student preferences any school that they find unacceptable or that finds them

unacceptable. Type-specific quotas can be incorporated, as in Abdulkadiroğlu and Sönmez (2003),

by adding type-specific capacity equations and erasing from the preference list of each type all the

schools which do not have remaining capacity for their type.

Optimization and counterfactuals under TTC. Our framework for understanding the TTC

outcome can also be used to inform policy decisions and perform counterfactuals using the TTC

mechanisms. While examples provided in the paper utilized functional form assumptions to gain

tractability, the methodology can be used more generally with numerical solvers. This provides

a useful alternative to simulation methods that can be more efficient for large economies, or for

calculating an average outcome for large random economies. For example, most school districts

uses tie-breaking rules, and current simulation methods perform many draws of the random tie-

breaking lottery to calculate the expected outcomes. Our methodology directly calculates the

expected outcome from the distribution.

Designing TTC priorities. Arnosti (2015); Ashlagi and Shi (2014); Ashlagi and Nikzad (2016);

Feigenbaum et al. show that the optimal choice of tie-breaking lottery can lead to significant welfare

gains when using DA. In Chapter 4.5.2 we characterize all the possible TTC outcomes for a class

of tie-breaking rules, and find that the choice of tie-breaking rule can have significant effect on

the assignment, suggesting that tie-breaking can also play a significant role in determining welfare

under TTC. Our cutoff structure for TTC also differs from the one found in Azevedo and Leshno

(2016) for DA. This demonstrates that priorities play a different role under these mechanisms, and

raises the question of how to best design priorities under TTC. Are there priorities for TTC that,

similar to neighborhood priority in DA, allow us to prioritize students for a given school? Can TTC

priorities be designed to optimize other global objectives in assigning students to schools, such as

maximizing welfare for students from disadvantaged neighborhoods or minimizing busing costs?
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Our framework opens the possibility of exploring different tie-breaking schemes when using TTC

and also for optimal design of TTC priorities in general, and we leave both questions for future

research.
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Part II

Mechanisms for School Choice with

Incomplete Information
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Chapter 5

The Information Acquisition Costs of

Matching Markets

Matching markets have been the subject of much academic research as well as substantial interest

from practitioners. In these markets agents have preferences over the individuals they are matched

to, and the assignment is not determined simply by monetary transfers. Matching theory inves-

tigates the role of marketplace rules in determining the allocation, and elucidates how matching

markets can and should compute the overall assignment from individual agent preferences. Such

models allow us to better understand decentralized markets, such as college admission, or facilitate

a better design of centralized assignment mechanisms, such as the medical match and school choice

(see, e.g. Roth and Sotomayor, 1992; Roth, 2015).

In this paper, we investigate the effects of mechanisms on how agents form their preferences.

The prevalence of incomplete information is well-studied in the context of auction markets (see

e.g. Eso and Szentes (2007); Milgrom and Weber (1982)), but is relatively unexplored in matching

market settings. This is despite the fact that in matching settings such as medical residency

matching and school choice, it is common not only for agents to have incomplete information

about their preferences, but also for them to spend a significant amount of effort investigating

potential placements before forming their final preferences. For example, in NYC public high school

admissions students must submit their preferences over more than 700 programs at more than 400
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high schools. Moreover, costly information acquisition is also an important equity problem in school

choice, as students from underprivileged backgrounds are often inadequately informed about their

options and must exert the most effort to determine their preferences (see, e.g. Hassidim et al.,

2015; Kapor et al., 2016).

Thus motivated, we study the effects of market design on costly information acquisition in a

many-to-one school choice market. In our model school priorities are common knowledge, and

students can acquire costly information about their preferences over school. We model each agent’s

information acquisition problem using the “Pandora’s box” framework of Weitzman (1979) in the

tractable continuum matching market of Azevedo and Leshno (2016). Each student knows a prior

distribution for each school’s utility to them, and must pay a cost to learn the actual utility real-

ization. The utility realizations are independent for each student, and students individually decide

on their information acquisition process. The student information acquisition problem admits an

optimal solution via a simple index policy, and allows for students to only partially collect infor-

mation.

We define stability under incomplete information for this setting: an outcome for the market

is stable with respect to acquired information and information acquisition costs. A blocking pair

is a (student, school) pair such that the student (i) has higher priority at the school than another

student assigned to that school or the school is undercapacitated, and the student either (ii) prefers

the school to their assigned school, given their acquired information, or (ii’) does not have enough

information to make a decision and is willing to pay the cost to collect further information, and

a matching and set of acquired information constitute a stable outcome if there is no blocking

pair. This definition extends the standard definition of stability, and is equivalent to the stan-

dard definition when students do not incur information acquisition costs and collect all preference

information. However, in the presence of information acquisition costs it is possible for different

sets of acquired information to lead to different stable outcomes. Hence the design of the market

mechanism can induce beliefs that lead students to acquire information differently and implement

different outcomes, even when there is a unique stable matching under full information.

In settings with costly information acquisition students need information about their possible
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matches in order to optimally acquire information, and students may benefit from waiting for

the market to resolve before acquiring information. We refine the set of stable outcomes to the

set of regret-free stable outcomes, under which the information acquired by each student is the

same as if they performed their optimal information acquisition process knowing the preferences

and information acquisition processes of all other students. In other words, each student acquires

information as if she were the last the enter the market, and no student regrets not waiting for

further information about other students’ preferences before learning her own preferences. This

means that regret-free stable matchings do not depend on student beliefs. We furnish the surprising

result that the set of regret-free stable matchings has a lattice structure, which it inherits from of

the set of stable matchings under complete information (attributed to John Conway in Knuth,

1976), and hence is non-empty and has an outcome that is unambiguously the best for all students.

We then turn to the problem of providing matching mechanisms for implementing regret-free

stable outcomes. We show that as regret-free stable matchings are characterized by cutoffs, the

student-optimal regret-free stable outcome can be implemented by learning and posting the appro-

priate admissions cutoffs. For example, given sufficient market structure, school-proposing Deferred

Acceptance can be implemented in a sequential manner to learn the regret-free stable cutoffs with

regret-free information acquisition. However, we also demonstrate that there exist economies where

regret-free stable matchings cannot be computed without incurring additional information acquisi-

tion costs, and also where the student-optimality of a regret-free stable matching cannot be verified

without incurring additional costly information acquisition. In general settings, standard mecha-

nisms can result in information deadlocks, where no information is gathered because every student

finds it strictly optimal to wait for others to acquire information first. Hence the presence of costly

information acquisition does not affect the structure of the set of stable outcomes but rather the

algorithmic questions of computing a regret-free stable outcome and verifying its optimality.

We show how to approximately compute the market-clearing admissions cutoffs when we have

historical information about demand or can estimate it by subsampling, and in such settings provide

mechanisms that implement outcomes that are student-optimal regret-free stable with respect to

perturbed school capacities. Our results illustrate that, given sufficient information about aggregate
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student demand for schools, it is possible to approximately implement a regret-free stable matching.

5.1 Prior Work

This paper contributes to the literature of matching markets with incomplete information. The

stream of work that is closest to ours is that of Aziz et al. (2016); Rastegari et al. (2013, 2014),

which analyze a matching model where there is partial ordinal information on both sides of the

market that can be refined through costly interviews. They ask computational questions regarding

the minimal number of interviews required to find a stable matching, and find that under a tiered

structure an iterative version of DA minimizes the number of required interviews. Our finding

that a sequential version of DA implements a regret-free stable matching when agents are willing

to inspect all schools they can attend is a particular case of this result where the preferences of

one side are known. Drummond and Boutilier (2013, 2014) consider more general algorithms that

acquire information through both interviews and comparisons and provide algorithms that achieve

approximately stable matchings with low information costs. Lee and Schwarz (2009); Kadam (2015)

also study information sharing through interviews.

Several papers consider other aspects of imperfect information in matching markets, without

allowing agents to search for information. Liu et al. (2014) suggest a notion of stability under

asymmetric information between agents. Chakraborty et al. (2010) consider agents with incom-

plete information who update their preferences after seeing the matching. Ehlers and Massó (2015)

demonstrate that there is a strong connection between ordinal Bayesian Nash equilibria of stable

mechanisms under incomplete information and Nash equilibria of the mechanism under corre-

sponding complete information settings. We similarly define a notion of stability under incomplete

information and find a strong parallel with the structure of stable matchings under complete infor-

mation.

Empirical work demonstrates that incomplete information is important in the school choice

setting. Kapor et al. (2016) provides empirical evidence that many students participating in a school

choice mechanism are not well informed, and make mistakes when reporting their preferences, and
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Dur et al. (2015) provides evidence that different parents exert different levels of efforts in learning

about school choice.

There is also a growing literature about information acquisition in market design. In an auction

setting, Kleinberg et al. (2016) shows that descending price auction create optimal incentives for

value discovery. Chen and He (2015) study how the DA and Boston mechanisms give participating

agents incentives to learn their preferences and preferences of others, but limit attention to the

decision of whether to learn the full ordinal or cardinal valuation for all schools. Bade (2015);

Harless and Manjunath (2015) consider information acquisition in assignment problems without

stability constraints.

The rational inattention literature that stemmed from the macroeconomic literature also looks

at information acquisition by agents. This literature uses a framework introduced by Sims (2003)

where the costs of signals are given by information theoretic measures of the informativeness of the

signals. Matějka and McKay (2015) shows that in that framework agent’s choices can be formulated

as a generalized multinomial logit, and Steiner et al. (2017) give a tractable formulation for the

choices of agents with endogenous information acquisition in a dynamic setting. Our approach

differs in that our model uses a different cost structure, and focuses on the interaction between

information acquisition and market mechanisms.

A related question is the communication complexity of transmitting known preference to a

mechanism. Gonczarowski et al. (2015) consider the communication complexity of finding a stable

matching and show that it requires Ω
(
n2) boolean queries. Ashlagi et al. (2018) find that the

communication complexity of finding a stable matching is low under assumptions on the structure

of the economy and a Bayesian prior. Their Communication-Efficient Deferred Acceptance protocol

utilizes messages about both acceptances and rejections. The analysis in both papers differs from

ours in that they assume agent know their full preferences (for example, can report their first choice)

and only consider the cost of communicating that information to the mechanism.

Finally, our work contributes to the growing number of papers exploring the use of sequential

or multi-round school choice mechanisms. Bo and Hakimov (2017) and Ashlagi et al. (2018) pro-

pose the Iterative Deferred Acceptance mechanism (IDAM) and Communication-Efficient Deferred
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Acceptance mechanism respectively, which allow for multiple rounds of message-passing where stu-

dents can learn the set of schools with which they are likely to be matched. Such mechanisms are

also currently used in practice; Dur et al. (2015) empirically study a public school system in Wake

County that implements an iterative mechanism, Gong and Liang (2016) theoretically and empiri-

cally consider a college admissions system in Inner Mongolia that implements an iterative version

of Deferred Acceptance, and Bo and Hakimov (2017) propose IDAM in response to a sequential

mechanism previously used for college admissions in Brazil. We hope that our findings can be used

to better design sequential school choice mechanisms in these cities, and many others across the

world.

5.2 Model

We present a model where students learn their preferences through costly information acquisition.

The set of schools is denoted by C = {1, . . . , n}, and each school i ∈ C has capacity to admit

qi > 0 students. A student is given by a quadruple s = (F s, cs, rs, vs). School priorities are publicly

known, and captured by the vector rs ∈ [0, 1]C . School i prefers student s over student s′ if and only

if rsi > rs
′
i . We say that rsi is the rank of student s at school i. Student s needs to perform costly

information acquisition to learn her value for attending each school. Initially student s knows that

the value for attending school i is distributed according to prior F si , and may pay a inspection cost

of csi > 0 to learn the realized value vsi . Student s privately knows F s, cs (importantly, the designer

does not know these parameters). Students must inspect a school in order to attend it. We assume

that vsi is independently drawn across students and schools.1

With slight abuse of notation, we use a student type θ = θ (s) =
(
F θ, cθ, rθ

)
to denote the

initially known information of a student s =
(
F θ, cθ, rθ, vs

)
. We refer to θ ∈ Θ as a student type,

and refer to s = (θ, vs) ∈ S as the student’s realized preference. Formally, Θ = FC × RC × [0, 1]C ,

where F is the set of probability distribution functions, and S = Θ × RC . We will use s and θ

interchangeably to index F θ, cθ, rθ. Given a type θ the realized values are randomly distributed

1This implies that preferences of other students do not provide a student any information about vs.
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vs ∼ F θ, and with slight abuse of notation we write s ∼ F θ.

Definition 5.1. An discrete economy is given by E = (C, S, q), where S = {s1, . . . , sN} is the set

of students and q = {qi}i∈C is the vector of quotas at each school.

We make the following assumptions. First, all students and colleges are acceptable. Second, as

rsi carries only ordinal information, it is normalized to be equal to the percentile rank of student s in

college i’s preferences, i.e. rsc = |{s′ | s �c s′}| / |S|. Third, school have strict priorities, i.e., rsi 6= rs
′
i

if s 6= s′. Fourth, the priors F θ are such that students have strict preferences, i.e., P (vsi = vsi′) = 0

for all s and i 6= i′. Last, we assume there is an excess of students, that is,
∑
i∈C qi < |S|.

It will useful to consider continuum economies where there is no aggregate uncertainty. The

realized preferences vs of a single student given his type θ (s) are random. In the continuum

economy there is a continuous mass of students of any given type θ, and although the realized

preferences of an individual student are random, the aggregate distribution over s = (θ, v) is known

from the initial information F θ. Formally, a continuum economy is described by a measure η over

S. We require that the measure η is consistent with initial information, that is, for any A ⊂ Θ and

sets Vi ⊂ RC we have that

η ({(θ, v) | θ ∈ A, vi ∈ Vi}) =
∫
θ∈A

∫
v∈V1×···×Vn

dF θ (v) dη (θ) .

Definition 5.2. A continuum economy is given by E = (C,S, η, q), where q = {qi}i∈C is the vector

of quotas at each school, and η is a probability measure over S that is consistent with initial

information.

We make the same assumptions about continuum economies as for finite economies: namely

that all students and colleges are acceptable; rsi is normalized so that for any i ∈ C and x ∈ [0, 1],

we have that η
({

(θ, v) ∈ S| rθi ≤ x
})

= x; school priorities are strict, i.e. for any x ∈ [0, 1] we

have η
({

(θ, v) ∈ S| rθi = x
})

= 0; student preferences are strict, i.e. for any x ∈ [0, 1] we have

η({s = (θ, vs) ∈ S|vsi = x}) = 0; and there is an excess of students,
∑
i∈C qi < η (S) = 1. In what

follows, we will define concepts for both the discrete and continuum economy, and let η (·) denote

the cardinality of a set in the discrete economy, and the measure in the continuum economy.
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As in the standard matching model, a matching is a mapping µ : S → C ∪ {∅} specifying the

assignment of each student. Overloading notation, for school i ∈ C let µ (i) denote the set µ−1 (i) ⊆

S of students assigned to school i. For each student s ∈ S and school i ∈ C, let the inspection

indicator χsi be an indicator function that is 1 if student s has inspected school i and 0 otherwise.2

We denote the preference information revealed from inspections χ by v|χ = {vsi | χsi = 1}.

A matching µ is feasible with respect to inspections χ if for each school i ∈ C we have that µ(i)

is η-measurable and η (µ(i)) ≤ qi, and, for each student s, if µ(s) 6= ∅ then then χsµ(s) = 1. This

last condition is tantamount to assuming that a student must inspect a school in order to attend

it. A feasible outcome is a matching and inspection pair (µ, χ) such that µ is feasible with respect

to χ. Given (µ, χ) the utility of student s is us (µ, χ) = vsµ(s) −
∑
i∈C χ

s
i c
s
i .

5.2.1 Stability with Costly Information Acquisition

Consider a feasible outcome (µ, χ). As in the complete information setting, a student-school pair

(s, i) forms a blocking pair if: (i) student s has higher priority than some student who is assigned

to s or school s did not fill its capacity, namely rsi > inf
{
rs
′
i | s′ ∈ µ (i)

}
or η (µ (i)) < qi; and

(ii) student s inspected school i and knows she prefers school i over her assigned school µ (s),

namely χsi = 1 and vsi > vsµ(s).
3 When information acquisition is costly for students there may

be a student-school pair (s, i) where (i) holds and student s did not inspect school i. We extend

the standard definition and say that (s, i) forms a blocking pair if (i) holds; and (ii’) s has not yet

inspected school i and prefers to pay the inspection cost csi and be assigned to the better school of i

and µ (s), namely χsi = 0 and Eṽsi∼F si
[
max

{
vsµ(s), ṽ

s
i

}
− csi

]
≥ vsµ(s). An outcome (µ, χ) is stable if

there are no pairs (s, i) that block by satisfying either (i),(ii) (i.e. the classical stability condition)

or (i),(ii’).

We remark that stability of (µ, χ) depends only on student’s initial information θ (s) and pref-

erences revealed by inspections v|χ. Simple examples show that if χ 6= χ′ are different inspections

2We are implicitly assuming that two students with the same type and values inspect the same schools.
3Recall that feasibility requires that χsµ(s) = 1.
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and µ is a matching, it is possible that the outcome (µ, χ) is stable but the outcome (µ, χ′) is not.4

Given a matching µ define the budget set of student s by

Bs (µ) =
{
i ∈ C | rsi ≥ rs

′
i for some s′ ∈ µ (i)

}
∪ {i ∈ C | η (µ (i)) < qi} .

The budget set Bs (µ) is the set of schools such that (s, i) satisfy condition (i). A stable outcome

(µ, χ) must assign student s to a school i ∈ Bs (µ) if s so desires, and the student s cannot be

assigned to any school in the complement set C \Bs (µ). We say that a school i is available to s if

i ∈ Bs (µ), otherwise school i is unavailable to s. The following straightforward lemma characterizes

stable outcomes in terms of budget sets.

Lemma 5.1. A feasible outcome (µ, χ) is stable if and only if for every student we have that

µ (s) = arg max
i∈C
{vsi | i ∈ Bs (µ) , χsi = 1} ,

and for any i ∈ Bs (µ) such that χsi = 0 we have that

Eṽsi∼F si
[
max

{
vsµ(s), ṽ

s
i

}
− csi

]
≤ vsµ(s).

5.2.2 Regret-Free Stable Outcomes

To reach an outcome, students must perform inspections to acquire information about their values.

These inspections might induce regret. Sometimes this regret is unavoidable: e.g., a student will

regret having inspected a school with low value. Other times, regret is avoidable: e.g. a student

will regret inspecting a school that is not available to her, or inspecting schools in the wrong order.

In other words, a student should carefully select her inspections based on her available information.

Below we characterize the information acquisition process that maximizes the student’s expected

payoff given all potential information, including her initial information and information that could

4For example, if there are only two schools, both of which are very costly to inspect compared to the possible
values they may yield, then a student who has inspected and is matched to the first but has not inspected the second
(χ) might not wish to pay the inspection cost for the second school, causing the current matching to be stable.
However, if she had inspected the second schoool (χ′), she may realize a high value for it and thus form a blocking
pair with it.
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be provided by the market. We determin how market information can affect the student’s infor-

mation acquisition decision. This allows us to define regret-free stable matchings where agents

acquired information optimally.

Consider a student s who possesses initial information θ (s) = (F s, cs, rs) and needs to select

which schools to inspect. Since inspections are costly, student s will want to inspect a school only

if inspecting the school can lead to being assigned to that school and receiving a higher value. In

particular, student s will not want to inspect a school i if she knows that school i filled its capacity

with higher priority students, and therefore she will not be assigned to the school i regardless of

her value vsi . Thus, the set of schools that student s would like to inspect depends on her potential

matches and the preferences of other students.

To fix ideas, first consider the isolated information acquisition problem where student s = (θ, vs)

is given a subset of schools C ⊆ C to choose from, each of which guarantees her admission. Student

s needs to acquire information to form her preferences and then select her assigned school from

C. If χs is s’s inspection indicator and i∗ ∈ C is her selected school her utility is vsi∗ −
∑
i∈C χ

s
i c
s
i .

The adaptive inspection strategy that maximizes the student’s expected utility given the initial

information F θ is derived by Weitzman (1979) and is stated in the following lemma.

Lemma 5.2. (Weitzman 1979) Consider a student s = (θ, vs) with initial information F θ and

inspection costs cθ that can adaptdively inspect schools and choose a school from C ⊂ C. For each

school i, define a index vθi to be the unique solution to the equation Eṽi∼F θi
[
max{0, (ṽi − vθi )}

]
= cθi .

Sequentially inspect schools one by one in decreasing order of their index vθi .5 Continue inspecting

the following school until the score of the next school to be inspected is below the maximal realized

value among inspected schools.6

We denote the inspections resulting from this optimal strategy by χopt
(
F θ, cθ, vs;C

)
.

The optimal inspection policy is an index policy, where students use the prior information F θ

5In case of multiple schools with equal index vθi=v
θ
i′ , break the tie by first inspecting the school min {i, i′}.

6That is, if the set of inspected schools is I = {i | χsi = 1} then inspect j∗ = argmaxj∈C\I
{
vθj
}
if vθj∗ > maxi∈I vsi

and stop otherwise.
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to compute indices vθi for each school i and inspect schools in decreasing order of their index.7 The

set of inspected schools depends on the set of available schools C, the indices
{
vθi

}
i∈C

, and the

realized values {vsi }i∈C . The following example illustrates this.

Example 5.1. Suppose that C = C = {1, 2}. Let [x; p] denote the probability distribution which

assigns probability p to the value x and 1 − p to 0. Consider a student with v1 ∼ F1 = [10; 1/2],

and v2 ∼ F2 = [4; 3/4] and let the inspection costs be c1 = 3, c2 = 1. Then the optimal inspection

strategy is to first inspect school 1, and continue to inspect school 2 only if v1 = 0. If instead

C = {2} the optimal inspection strategy is to only inspect school 2.

Knowing the set of available schools C helps the student in Example 5.1 to conduct the adaptive

information acquisition that maximizes her expected utility. If the student does not know C she

her inspection strategy may be sub-optimal in two ways. First, the student may inspect school 1

when it is not available, wasting the cost c1. Second, the student should not inspect school 2 before

she inspects school 1 or learns that school 1 is not available, because it is likely that she will not

choose to inspect school 2 after inspecting school 1.

When student s is part of a matching market, the set of schools that are available to her depends

on the resulting matching outcome, and therefore on the preferences of other students. Suppose

that student s were to delay her information acquisition until the rest of the market resolved and the

matching µ is realized. Arriving last to the market, student s can learn the set of schools available to

her, which is Bs (µ) by Lemma 5.1. The student can optimize her information acquisition by using

her initial information F θ, cθ as well as the market information Bs (µ), and applying Lemma 5.2.

We say that the outcome (µ, χ) is regret-free stable if every students follows the optimal inspection

policy informed by all available market information, that is, every student inspected schools as if

she was the last to the market.

Definition 5.3. An outcome (µ, χ) is regret-free stable if (µ, χ) is stable and every student s in-

spected the optimal set of schools given her available set of schoolsBs (µ), that is χs = χopt (F s, cs, vs;Bs (µ))

for all s ∈ S. We let MRF (E) denote the set of regret-free stable outcomes for the economy E.

7Such a policy can also be constructed by mapping the problem to a multi-armed bandit (MAB) problem; see e.g
Olszewski and Weber (2015) for details.
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When an outcome is not regret-free stable some students can benefit from delaying their infor-

mation acquisition until the remainder of the market resolved. Note that while the definition of

regret-free stability is ex post in flavor, as it is stated in terms of each student’s realized preferences

vs, it only imposes the restriction that the student follows the ex ante optimal inspection strategy

given θ and Bs (µ) = Bθ (µ) (before observing vs). A regret-free stable outcome could be ex post

suboptimal, e.g. a student s may inspect a school i 6= µ (s) with low realized value vsi and ex post

observe that the inspection cost ci was wasted, but student s could do no better given all available

information from θ (s) and the market information.

Remark. To verify whether (µ, χ) is regret-free stable it is sufficient to know vs|χ, χs and F s, cs for

each s, and the students’ values for uninspected schools is not necessary.

5.3 The Structure of Regret-Free Stable Outcomes

In this section we provide several results about the structure of regret-free stable outcomes. We show

that the set of regret-free stable outcomes is a non-empty lattice and give a concise characterization

of regret-free stable outcomes in terms of cutoffs.

We begin by exploring how the demand of student s depends on the set of available schools.

Consider a student s with available schools C ⊂ C. If s optimally acquires information, she inspects

χs = χopt
(
F θ, cθ, vs;C

)
. Denote the resulting demand of s by

Ds (C) = arg max
{
vi | i ∈ C, χopt

(
F θ, cθ, vs;C

)
= 1

}
∈ C,

which is the most preferred inspected school. Note that Ds (C) depends only on information that

is revealed to s. The following lemma shows that Ds (·) satisfies WARP, and we can construct a

full preference ordering �Ψ(s) that yields the same demand.

Proposition 5.1 (Reduction to demand from complete information). Let s = (F s, cs, rs, vs) be a
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realized student. There exist an ordering �Ψ(s) such that for all C ⊂ C we have that

Ds (C) = max
�Ψ(s)

(C) .

Proof. Using the indices from Lemma 5.2, define i �Ψ(s) j if and only if min
{
vθi , v

s
i

}
≥ min

{
vθj , v

s
j

}
.

It is straightforward to verify that Ds (C) = max�Ψ(s) (C).

That is, if we only observe the eventual selection from a set of available schools C, the student

s is indistinguishable from a student with complete preference information and preferences �Ψ(s).

Given only initial information θ, the demand of θ from a set C is uncertain, as the realized values

vs are unknown. An immediate corollary is the distribution of demand of θ from a set C is identical

to the distribution of argmax�Ψ(s) (C), where �Ψ(s) is the random preference ordering induced by

drawing a random student s =
(
F θ, cθ, rθ, vs

)
from the distribution vs ∼ F θ.

Proposition 5.1 also allows a characterization of regret-free stable outcomes in terms of cutoffs,

as in the complete information model of (Azevedo and Leshno, 2016). Cutoffs P = {Pi}i∈C ∈ RC

are admission thresholds for each school. Cutoffs P determine the budget set of a student s to be

Bs (P ) = {i ∈ C | rsi ≥ Pi} ,

which is the set of schools where s has better rank than the cutoff at that school. Note that Bs (P )

depends only on rs and can be calculated from P and the initial information θ (s).

The demand of student s given cutoffs P is defined to be equal to Ds (C) for a set of available

schools equal to his budget set C = Bs (P ); for succinctness we will write this as Ds (P ). Note that

within the definition of Ds (P ) we require that student acquire information optimally. Aggregate

demand for school i given cutoffs P is defined to be the mass of students that demand school i,

Di (P ) = Di (P |η) = η ({s ∈ S |Ds (P ) = i}) .

We define market-clearing cutoffs as in Azevedo and Leshno (2016) and show there is a one-to-one

correspondence between market-clearing cutoffs and regret-free stable outcomes. Note that the
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effect of information acquisition is captured within the definition of Di (·).

Definition 5.4. A vector of cutoffs P is market-clearing if it matches supply and demand for all

schools with non-zero cutoffs:

Di (P ) ≤ qi for all i and Di (P ) = qi if Pi > 0.

We can now state our characterization of regret-free stable outcomes.

Theorem 5.1. An outcome (µ, χ) is regret-free stable if and only if there exist market-clearing

cutoffs P such that for all s

µ (s) = Ds (P )

and

χs = χopt
(
F θ, cθ, vs;Bs (P )

)
Theorem 5.1 shows an equivalence between market clearing cutoffs and regret-free stable out-

comes. Because demand D (·) provides us with sufficient information to determine whether P are

market clearing cutoffs, demand D (·) is also sufficient to determine whether a matching µ yields

a regret-free stable outcome with some χ. Using Proposition 5.1, for any market with informa-

tion acquisition E = (C,S, η, q) we can construct a full information economy E that has the same

demand, and therefore the economy E has the same market clearing cutoffs as E.

Theorem 5.2. For every continuum economy E there exists a regret-free stable outcome. Moreover,

the set of regret-free stable outcomes (µ, χ) is a non empty lattice under the order � defined by

(µ, χ) � (µ′, χ′) iff vsµ(s) (ω) ≥ vsµ′(s) (ω) ∀s ∈ S.

Proof. The theorem follows from the reduction shown in Proposition 5.1 to the complete informa-

tion setting, and analogous results by Blair (1988) on the lattice structure of many-to-one stable

matchings in the complete information setting.

Uniqueness of the regret-free stable outcome will require that the distribution of student types
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be regular. As student types have probabilistic demand, we will need to expand the definition of

regularity beyond that found in Azevedo and Leshno (2016).

Definition 5.5. We say that θ =
(
F θ, cθ, rθ

)
is regular if for all i 6= j we have that vθi 6= vθj and

Pṽsi∼F θi
(
ṽsi = vθj

)
= 0.

An measure η is regular if η ({s | θ (s) is not regular}) = 0 and the image under D (· | η) of

the closure of the set
{
P ∈ (0, 1)C |D (·|η) is not continuously differentiable at P

}
has Lebesgue

measure 0.

Intuitively, a type θ is regular if there are no ties, and so there is always a unique decision for

whether to continue to inspect, and if so which school to inspect. A measure η is regular if there

is no positive measure of irregular students and the implied demand is sufficiently smooth.

Theorem 5.3. Suppose η is a regular measure. Then for almost every q with∑i qi < 1 the economy

E = (C,S, η, q) has a unique regret-free stable outcome.

Proof. If η satisfies η ({s | θ (s) is not regular}) = 0 then for every cutoff P demand D (P |η) is

uniquely specified, and so there is a unique reduction to the complete information setting. The

theorem follows from the reduction shown in Proposition 5.1 to the complete information setting,

and analogous results by Azevedo and Leshno (2016) in this setting.

5.4 Mechanisms

To this point we have discussed properties of regret-free stable outcomes. We now turn to the

process by which a market-maker might implement such outcomes. In general, the market arrives

at an outcome (µ, χ) following a sequential process in which students provide information to the

market, the market provides information to students, students inspect schools to obtain more

information, and the process repeats. We can describe any such market procedure as a dynamic

mechanism.

The mechanism relies on the information it receives from students. We will be interested in

two kinds of mechanisms. First, we consider direct mechanisms in which students report all of
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their private information and thereby delegate all decision-making. Second, we consider choice

mechanisms, which are restricted in the nature of information that can be passed between the

mechanism and the students. Choice mechanisms can only inform students about the availability

of schools, and can only collect ordinal preference information from students.

5.4.1 Direct Mechanisms

In a direct mechanism the students fully delegate their decisions to the mechanism. We can think

of a direct mechanism as the following iterative process. At any given state of the mechanism,

we can write χ̂ to denote the indicator for the set of inspections the mechanism has conducted

so far. Then, for each student s, the mechanism knows vs|χ̂ and knows F s, cs, rs by assumption.

Based on this information the mechanism can either decide to stop acquiring information and

output the outcome (µ, χ̂) for some matching µ, or to decide on the behalf of some students to

inspect additional schools. We denote the information available in economy E = (C,S, η, q) after

inspections χ by Idirect (E , χ) = (ν, q, v|χ, χ), where ν is defined by ν (A) = η ({s | θ (s) ∈ A}) for

A ⊂ Θ. We denote that set of all possible inspection indicators by X and use 0 ∈ X to denote

the initial state where no student has inspected any school. Let Idirect denote the collection of all

possible information sets Idirect (E , χ).

Definition 5.6. A direct mechanism M is a mapping

M : Idirect →
(
2S×C

)
∪
(
SC , χ

)

that takes as input all the information available to the mechanism given previous inspections

and returns either a next step of the inspection process, as described by tuple (S, i) of a set

S ⊆ S of students to inspect the school i ∈ C, or a final outcome (µ, χ) where χ is the current

inspection indicator. To ensure termination of the mechanism, we require that iterated applications

of the mechanism starting with Idirect (E , 0) will ultimately produce an outcome (µ, χ), which is the

outcome of the mechanism.8

8More formally, the mapping M induces a mapping M ′ : Idirect → Idirect defined by M ′ (Idirect (E , χ)) =
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Imposing that the mechanism produces a regret-free stable matching ensures that the mech-

anism makes inspection decisions that are aligned with the optimal solution to each student’s

single-agent inspection problem.

Definition 5.7. A mechanism M is (student-optimal) regret-free stable if for any economy E =

(C,S, η, q) the mechanism outputs a regret-free stable outcome (µ, χ).

5.4.2 Choice-Based Mechanisms

Direct mechanisms require that students directly report their initial information and all inspected

values. However, students may not to communicate detailed cardinal information about their

priors and costs. This may preclude the use of direct mechanisms in practice. We therefore con-

sider mechanisms with lower communication requirements, where students provide only information

about their preferred choice(s) from given sets of schools.

A choice-based mechanism is an iterative process where the mechanism provides information

to students, students choose which schools to inspect, provide information back to the mechanism,

and so on. Choice-based mechanisms do not have access to students’ private information, and

therefore cannot directly inform students which schools they should inspect. The mechanism can

only provide information to students about which schools are available to them. Because we are

interested in producing regret-free stable outcomes, which do not depend on students’ beliefs about

other students’ preferences, we restrict our attention to mechanisms that only inform a student

whether (i) it is certain that school i is available to her (A), (ii) it is certain that school i is

unavailable to her (R), or (c) it is uncertain whether school i is available or not (W). We use

Accept (A), Reject (R) and Wait-list (W) to denote these three possible messages.

Students receiving an AWR message can choose which schools to inspect, and inform the mech-

anism of their choices. To simplify notation, we write the response of the student as a refinement

of a preference ordering. Given s, χs define <s|χs by i �s|χs i′ if χsi = χsi′ = 1 and vsi > vsi′ ,

Idirect (E , χ′), where: if M (Idirect (E , χ)) = (S, i) then we let χ′ be the inspections after the students in S have
inspected school i, i.e. (χ′)sj = 1 ⇔

(
χsj = 1 or s ∈ S, j = i

)
; and if M (Idirect (E , χ)) = (µ, χ) then we let χ′ = χ.

It is sufficient to require that if I = (ν, q, v|χ, χ) is a fixed point of the mapping M ′ then M (I) = (µ, χ) for some
matching µ and the same inspections χ.
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and i ∼s|χs φ if χsi = 0. Here we are using symbol φ to denote non-inspected schools. Let

L (C ∪ {φ}) denote all transitive relations over C and the non-inspection symbol φ. For an econ-

omy E = (C,S, η, q) and χ an inspection indicator, the information available to a choice-based

mechanism is Ichoice (E , χ) =
({
<s|χ

s
, rs
}
s∈S

, q, χ

)
. Let Ichoice denote the collection of all possible

information sets Ichoice (E , χ).

Definition 5.8. An Accept-Waitlist-Reject (AWR) mechanism M is is defined via a mapping

M : Ichoice →
(
{A,W,R}S×C

)
∪
(
SC , χ

)

that takes all the information available to the mechanism given previous inspections and returns

either a AWR message for each student about each school, or a outcome (µ, χ) where χ is the

current inspection indicator. We require that iterated applications of the mechanism starting with

Ichoice (E , 0) ultimately produces an outcome (µ, χ), which is the outcome of the mechanism.

We formally define general mechanisms, choice-based mechanisms and AWR mechanisms as

dynamic games of incomplete information in the appendix.

5.5 Implementing Regret-Free Stable Matchings

We have shown that regret-free stable matchings inherit the lattice structure of of stable matchings

in the complete information setting, and can also be characterized using market-clearing cutoffs. In

this section, we explore the mechanism design problem of implementing regret-free stable outcomes.

We first show that regret-free stable matchings can be implemented by posting market-clearing

cutoffs, and that information about these cutoffs is sufficient for regret-free information acquisition.

We then show that in the incomplete information setting, the difficulties lie not in the existence

of regret-free stable matchings, but in computing and verifying the stability and optimality of

these matchings in a regret-free manner. While standard mechanisms popularized in the complete

information setting can discover the market-clearing cutoffs, in many markets they will necessarily

incur regret. This is because such mechanisms rely on students gathering and reporting information

about their preferences and can result in information deadlocks, where no information is gathered
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because every student waits for others to acquire and report information first. Moreover, even

when these mechanisms discover a regret-free stable matching, they will not be able to check if the

matching is student-optimal without incurring regret.

Our conclusion is that information acquisition problems can be mitigated by posting market-

clearing cutoffs. Cutoffs provide each agent with sufficient information to perform their inspections

in a regret-free stable manner. The natural question, then, is how the market designer should

determine which cutoffs to post. Market-clearing cutoffs can be learned and posted by the market

designer without incurring regret if there is sufficient information about aggregate demand, either

from historical data or from structured demand. We also show that even if market-clearing cutoffs

can only be approximated, this is sufficient to implement a matching that is regret-free stable with

respect to capacities that are close to the true capacities. Hence learning and posting cutoffs allows

us to break the information deadlock and reach a regret-free stable outcome.

5.5.1 All You Need are Cutoffs

Recall from Theorem 5.1 that an outcome (µ, χ) is regret-free stable if and only if there exist

market-clearing cutoffs P such that (a) each student follows the Weitzman optimal inspection

strategy over her budget set as described by P , and (b) each student is matched to the school in

her budget set that is most preferred, given the information revealed by the aforementioned optimal

inspection strategy. Note, then, that if a student knows her budget set in advance, then she can

optimally solve her information acquisition problem by proceeding as in a single-agent Pandora’s

Box problem to resolve her own incomplete information. An implication is that any matching

mechanism that proceeds by committing to a collection of market-clearing acceptance cutoffs for

the schools, then allowing each student to unilaterally optimize her inspection strategy and select

her most-demanded school, will necessarily result in a regret-free stable match.

Theorem 5.4. Let E = (C,S, η, q) be a continuum economy, and let P be the student-optimal

market-clearing cutoffs in E. Then Mechanism 2 is regret-free stable.

Proof. We show that Mechanism 2 produces the student-optimal regret-free stable matching when

all students report truthfully, and hence truthful reporting is a Nash equilibrium that produces
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Mechanism 2 Acceptance with Market-Clearing Cutoffs (AwMC)
1: procedure AwMC(C,S, q, P )

Message Passing from Platform to Students
2: for s ∈ S do
3: for i ∈ C do
4: if rsi ≥ Pi then
5: Send message ‘i accepts’ to s

Message Passing from Students to Platform
6: for Student s in S do
7: Student s reports top choice school is that accepted them
8: µ(s)← is

9: return µ

the student-optimal regret-free stable matching. Indeed, the mechanism presents each student s

with their budget set Bµ (s) = {i ∈ C | rsi ≥ Pi (η)}, and student s is guaranteed to be matched to

their reported favorite school is ∈ Bµ(s). Thus each student is presented precisly the single agent

problem on Bµ (s). Solving this problem yields inspection strategy χs = χOPT (by definition of

χOPT ), followed by truthfully reporting the students true favorite school: is = Ds (P ∗ (η)). By

construction, demand exactly matches supply under this truthful reporting, so the output µ is the

student-optimal regret free stable matching for E = (C,S, η, q).

This result states that advance knowledge of market-clearing cutoffs are sufficient for regret-free

stability. Indeed, posting cutoffs in advance of any information acquisition removes all uncertainty

on the part of the agents about which schools they could match with. This, in turn, removes the

possibility of regretting one’s choice to explore the value of a match on the grounds that this school

was ultimately unattainable. We note that this lack of regret does not depend on the posted cutoffs

being market-clearing, but only that the mechanism commits to honoring the implied budget set

for each student. Thus, for any economy E = (C,S, η, q) and any (not necessarily market-clearing)

cutoffs P , there exists a choice of capacities q′ such that P are the student-optimal market-clearing

cutoffs in E ′ = (C,S, η, q′), and hence Mechanism 2 is regret-free stable with respect to E ′. We will

make use of this fact when discussing notions of approximation in Section 5.5.3.

147



5.5.2 Regret-Free Choice-Based Mechanisms and Information Deadlock

Theorem 5.4 shows that knowing market-clearing cutoffs in advance of the market mechanism

is sufficient for implementing a regret-free stable matching. Knowing market-clearing cutoffs in

advance can be strong requirement. Indeed, aggregate uncertainty about agents’ demands might

make it difficult for the mechanism designer to know this information before interacting with the

students. One might hope to avoid this impasse by way of a mechanism that reaches a stable

matching without necessarily determining each student’s full budget set. After all, each student’s

demand is ultimately described by a single ordering over all schools that is consistent across budget

sets, which seems to suggest that it might not be necessary to fully learn every student’s budget

set in order to find a stable match. However, even though the realized demand is described by

a single consistent ordering, the student cannot know this ordering a priori precisely because it

depends on the values, which are only revealed after costly exploration. In other words, while the

realized demand is ordered consistently, the order in which a student would wish to explore depends

crucially on her budget set, and hence revealing the budget set can be crucial for avoiding wasteful

exploration and regret.

It is perhaps useful to once again consider the school-proposing DA mechanism, which we

recall can be interpreted as discovering the market-clearing cutoffs over time. Initially only the

highest-ranked students are admitted to the schools of their choice, consistent with implicit cutoffs

that are initially high, and these cutoffs then decrease (i.e., lower-ranked students are accepted)

until the market clears. This choice-based approach does not post cutoffs in advance, but rather

discovers them through repeated interaction with students. This provides hope that a mechanism

that proceeds in multiple rounds can elicit enough information to find appropriate market-clearing

cutoffs in a regret-free manner.

Indeed, we will show that under certain sufficient conditions on student preferences, the following

iterative implementation of the school-proposing Deferred Acceptance is regret-free stable. The

key idea is that while students’ information acquisition problems are interconnected and can create

information deadlocks, school priorities also provide students with partial information, and this

may be sufficient to both start and finish the information acquisition process.
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Algorithm 5.1 (Iterative Deferred Acceptance.). At each step:

• Each school i proposes to the top qi students who have not yet rejected them.

• Each student (irrevocably) rejects some of the schools that have proposed to them.

The algorithm terminates when no new proposals are performed, at which point all students are

asked for their top choice school among all those that have proposed to them and which they have

not rejected, and are assigned to school.

Theorem 5.5. Suppose that at least one of the following conditions hold:

1. All students inspect all schools in their budget set and do not have indifferences, i.e. E [vsi ] =

∞ for all s ∈ S and i ∈ C, and P
(
vsi = vsj

)
= 0 for all s ∈ S and i 6= j.

2. For all m ≥ mini qi the same students occupy the top m ranks at all schools, i.e. for all i, j ∈

C,
{
s | rsi ≥ 1− m

|S|

}
=
{
s | rsj ≥ 1− m

|S|

}
. (Recall that rsi is normalized to be the percentile

rank of student s in school i’s priorities.)

Suppose all agents only perform regret-free inspections and report truthfully. Then Mechanism 5.1

almost surely implements the school-optimal regret-free stable matching.

Proof. The intuition is that our conditions guarantee that at all stages of proposal, there are

students who have sufficient information about their budget set to both inspect some schools and

reject some proposals. (This requires that students do not have indifferences in their preferences.)

We show this formally for both cases.

Case (1). Suppose that all students inspect all schools in their budget set, i.e. condition (1)

holds. First, assuming truthful reporting, it is regret-free for every student to inspect all schools

that proposed to them. This is because if school i has proposed to student s, it is not full of

students it prefers to s, so for all realized preferences v and for all outcomes (µ, χ) ∈ MRF (E) it

holds that i ∈ Bs (µ). Since s is willing to inspect any school in her budget set it follows that it is

optimal for student s to inspect school i.

Next, suppose students do not have indifferences in their preferences, i.e. vsi 6= vsj for all s and

i 6= j. Then it is regret-free for each student to reject all the schools that proposed to them except
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the one with the highest observed value. This is because if student s has inspected both i and j

and vsi > vsj then µ (s) 6= j for all µ ∈ MRF (v) and it is optimal for s to reject the school with

lower observed value.

When the algorithm terminates either all schools are at capacity or all students are assigned,

since during each step all students reject all the schools that proposed to them except one, and so

the algorithm terminates with a regret-free stable outcome.

Case (2). Suppose that for all m ≥ mini qi the same students occupy the top m ranks at

all schools, i.e. condition (2) holds. Let q = mini qi. It follows that there is a set S (0) of

students who are in the top q at all schools, and for all m > q there is a student sm who is m-th

ranked at all schools. Hence there is a unique regret-free stable matching, and Mechanism 5.1

essentially performs serial dictatorship and tells each student her (unique) budget set in order of

her rank. When students don’t have indifferences in their preferences, it follows that at each step

some students reject all the schools that proposed to them except one, and so when the algorithm

terminates it outputs a regret-free stable matching.

We show that there is a unique regret-free stable matching. Fix v and let µ, µ′ ∈MRF (v). Let

s1, s2, . . . , sq be an arbitrary ordering of the students in S (0) and sm be the m-ranked student for

all m > q. Then for all m > q we can define Bsm (µ|v) by

Bsm (µ|v) =

i | ∑
s′=sm′ ,m′<m

1
{
Ds′

(
Bs′ (µ) |v

)
= i
}
< qi

 ,
i.e. the budget set of sm is the set of schools with residual capacity once all students ranked higher

than sm have chosen their school from their budget set. Hence by induction Bs (µ|v) = Bs (µ′|v)

for all s and so µ (s) = µ′(s) for all s.

Theorem 5.5 demonstrates that for certain priorities and preferences iterative Deferred Accep-

tance, which is a choice-based mechanism, can discover market-clearing cutoffs in a regret-free

stable manner. This mechanism is iterative, and one can show that this is necessary: even under

the conditions laid out in Theorem 5.5, no one-shot mechanism — choice-based or otherwise — can

be regret-free stable. We provide an example in Appendix C.2.1.
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Furthermore, the matching found by the school-proposing DA mechanism is not student-

optimal. Can one find a student-optimal matching in a regret-free manner? The original proof

of Gale and Shapley of the existence of a student-optimal stable matching is constructive: they

furnished an algorithm, the Gale-Shapley Deferred Acceptance (DA) algorithm, and demonstrated

that it always finds the student-optimal stable matching in polynomial time. An analogous al-

gorithm for identifying the student-optimal regret-free stable matching could also be defined in

our incomplete information setting, but would require students to provide information about both

their priors and values and may induce students to acquire information in a way that incurs re-

gret. In fact, for many economies, verifying that the student-optimal regret-free stable matching

is the student-optimal one necessitates incurring regret with positive probability in the inspection

process. This is because in regret-free stable matchings students cannot inspect outside of their

budget set, and in many economies with positive probability the student-optimal regret-free stable

matching does not provide students with their full budget set. We provide an example that ad-

mits no student-optimal regret-free stable mechanism in Appendix C.2.2. The intuition behind the

example is that the act of verification requires some student to perform more information acqui-

sition than is allowed under the regret-free stable inspection policy, and if the existing matching

is student-optimal it is then costly for them to acquire the necessary information. This mirrors

the Grossman-Stiglitz paradox, whereby under costly information acquisition equilibrium market

prices cannot be stable, as this would eliminate the benefit of acquiring this information (Grossman

and Stiglitz, 1980).

We next show that the conditions of Theorem 5.5 are necessary, in the sense that there is no (even

non-choice-based) mechanism that is regret-free stable for general economies. In the more general

case where students can suffer regret by inspecting the schools out of order, it may be impossible for

any (even multi-round) mechanism to find a regret-free stable matching without incurring regret.

Perhaps more fundamentally, this example shows that any mechanism that converges to a stable

matching in a regret-free manner (such as school-proposing DA) relies heavily on an assumption

that there always exist students willing to inspect some schools in their budget set.

Theorem 5.6. Let M be a mechanism. Then there exists an economy E = (C,S, q) such that,
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when each student reports Is = (F s, cs) truthfully, with positive probability mechanism M does not

implement a regret-free stable matching.

Remark. For convenience, we state and prove Theorem 5.6 for finite economies; we note that the

result can be extended to continuum economies with minor adjustments.

Proof. Consider an economy E with three schools C = {1, 2, 3} with capacities q1 = q2 = q3 = 2

and three students S = {x, y, z}.9

Suppose that school priorities are given by

priority at 1 : ry1 > rz1 > rx1

priority at 2 : rz2 > rx2 > ry2

priority at 3 : rx3 > ry3 > rz3,

and that student values at each school are U [0, 1] variables, i.e. with priors F si (x) = x ∀x ∈ [0.1]

and student costs for inspection are given by cx1 = cy2 = cz3 = 0.1, cx2 = cy3 = cz1 = 0.2 and cx3 = cy1 =

cz2 = 0.3. Note that this means vx1 = vy2 = vz3 =
√

1− 0.2 ≈ 0.89, vx2 = vy3 = vz1 =
√

1− 0.4 ≈ 0.77

and vx3 = vy1 = vz2 =
√

1− 0.6 ≈ 0.63 and so the order in which students {x, y, z} wish to inspect

schools is exactly the reverse of their priority at each school, e.g. student x wishes to inspect 1 then

2 then 3, and have bottom, middle and top priority out of {x, y, z} at those schools respectively.

We will show that for all students s, there exists a school i = β (s) such that, with positive

probability, in every regret-free stable matching µ ∈MRF (E) student s only inspects i. Also, with

positive probability, in every regret-free stable matching µ′ ∈MRF (E) school i is not in student s’s

budget setBµ′ (s). To see why this implies the theorem, note that under MechanismM , one of x, y, z

must be the first student in {x, y, z} to perform an inspection with positive probability. Without

loss of generality we may suppose that student is x. If x first inspects β (x) then with positive

probability, in any regret-free stable matching µ′ ∈MRF (E) student x regrets her inspection. If x

9Note that strictly speaking, as we assumed that there are more students than seats, the economy should have
seven students S={x, y, z, d1, d2, d3, d4} where the di are four dummy students who have lower priority at every
school than the students in {x, y, z} and who have arbitrary preferences. For simplicity we omit these students in the
description of the economy; however note that the proof applies as written to both economies.
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first inspects some school other than β (x) then with positive probability for any regret-free stable

matching µ ∈ MRF (E) student x regrets her inspection. Hence with positive probability there

exists a student who regrets her inspection process, and so with positive probability M does not

implement any regret-free stable matching.

We now turn to proving the claim: for all students s, there exists a school i = β (s) such that

with positive probability every regret-free stable matching involves student s inspecting only i, and

with positive probability no regret-free stable matching has school i in student s’s budget set. In

particular, we show that 1 = β (x) satisfies the required properties. Note that since all priorities

and costs are symmetric, the same arguments can be used to show that 2 = β (y) and 3 = β (z)

satisfy the required properties.

Consider the event that vx1 , v
y
2 , v

z
3 ≥ 0.9, and vy1 , v

y
3 , v

z
1 , v

z
2 ≤ 0.5. Note that it then holds that

Dx (C) = 1, Dy (C) = 2 and Dz (C) = 3. Now it is easy to check that for all ω ∈ X the only

regret-free stable matching µ ∈MRF (E) is (µ (x) , µ (y) , µ (z)) = (1, 2, 3), since if any school i was

not assigned to any of x, y, z (i.e. µ (i) ∩ {x, y, z} = ∅) then it would form a blocking pair with the

student in {x, y, z} whose top choice school is i. Hence Bµ (x) = C, so x inspects school 1 first, and

since vx1 ≥ 0.9 > vx2 , v
x
3 it follows that x only inspects school 1.

Next consider the event that vx1 , v
y
1 , v

z
1 ≥ 0.9 and vy2 , v

y
3 , v

z
2 , v

z
3 ≤ 0.5. Note then that Dy (C) =

Dz (C) = 1. Moreover, since vy1 ≥ v
y
2, v

y
3 ≥ 0.5 ≥ vy2 , v

y
3 and y has top priority at 1 it follows that in

any regret-free stable matching µ ∈ MRF (E) student y inspects 1, and since Dy (C) = 1 student

y is assigned to 1, i.e. µ (y) = 1. Since q1 = 2 and z has second priority at 1 a similar argument

shows that µ (z) = 1. Hence for all regret-free stable matchings µ ∈ MRF (E) it follows that 1 is

full of students it prefers to x, and 1 6∈ Bµ (x).

Note that if no student has performed any inspections then we are unable to discern whether

either these events is true, and for any student any inspection they perform will incur regret in

either one event or the other, i.e. any inspections incurs regret with positive probability.

This example shows that there does not exist any mechanism that always finds a regret-free

stable matching in a regret-free manner. This makes it even more surprising that, for any realization

of preferences, the set of regret-free stable matchings MRF (E) not only has a student-optimal
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member, but also inherits the lattice structure induced by the deterministic economy with students

Ψ (s). The intuition behind the difficulty in finding regret-free stable matchings is that in order

to identify the appropriate deterministic preferences that rationalize demand under incomplete

information, students need to know both their reservation values and their realized values.

To build additional intuition for Theorem 5.6, let us briefly demonstrate why Mechanism 5.1

might not be regret-free in a general economy. In the first round of Mechanism 5.1, every student s

is proposed to by all schools except β (s). When students were willing to inspect all schools in their

budget set this was enough to induce some inspections and rejections. However, in general, there

is an inspection order that maximizes the resulting expected payoff, and with positive probability

students do not inspect school some schools in their budget set. Hence even though every student

knows some of the schools in their budget set, no student s wants to start inspecting schools until

she knows for sure whether β (s) is in her budget set. In other words, it is strictly optimal for each

student to wait until the mechanism forces them to perform inspections.

This intuition illustrates a more general principle: in the presence of costly information acqui-

sition, iterative mechanisms without an activity rule may result in an information deadlock, where

no actions are taken because every agent can achieve higher utility if another agent acts first.

5.5.3 Regret-Free Learning

While it may not always be possible to discover market-clearing cutoffs through observed choice,

the structure of regret-free stable matchings gives us hope that they can still be learned and

implemented in an approximate manner. We show that when we have sufficient initial information

or market structure, cutoff mechanisms that use estimated cutoffs implement outcomes that are

regret-free stable with respect to slightly perturbed school capacities.

Before formalizing these ideas, we first turn to the following question: How do we estimate

population demand? In matching markets with one-sided incomplete information, the preferences

of the side with full information are a key source of information. For example, in Theorem 5.5,

condition (2) guarantees that at any point in iterative Deferred Acceptance there are students who

have full information about their budget set. For more general priority structures, there will be
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students who have such information at the outset of the mechanism.

Definition 5.9. Let E = (C, S, q) be an economy. A student s has free market information if for

all schools i student s is either in the top qi percentile of students or the bottom 1−
∑
j qj percentile

of students, i.e. ∀irsi 6∈
⌈
1−

∑
j qj , 1− qi

)
. We let Sf (E) =

{
s | ∀i rsi 6∈

⌈
1−

∑
j qj , 1− qi

)}
denote

the set of students with free market information in E.

Knowing only their priors and school priorities, students with free market information can

determine both their budget sets and their preferences in a regret-free manner.

Hence we may estimate market demand as follows. In some markets historical demand is

sufficient for estimating population demand. For example, in college admissions in many countries

aggregate student demand for different university courses do not vary much from year to year and

historical demand can be used to estimate current demand. Even when such prior information

is not available, as long as there are students with free information we can start learning about

student preferences. For example, if running iterative Deferred Acceptance assigns some students

before reaching a deadlock, the demand of the assigned students could be used to estimate the

demand of the remaining students.

Estimated Cutoffs are Robust

We now formalize the claim that outcomes of cutoff mechanisms are robust to errors in estimated

demand. The intuition behind these results is that demand with costly information acquisition

satisfies WARP (Proposition 5.1), and so all questions about cutoff mechanisms under costly in-

formation acquisition reduce to analogous questions about cutoff mechanisms in markets without

costly information acquisition.

We first show that the outcome
(
µP , χP

)
from posting cutoffs P when using Mechanism 2 is

regret-free stable for capacities qP that are slightly perturbed from the true capacities, and differs

from the regret-free stable assignment under q for only a small number of students.

Theorem 5.7. Let E be a continuum economy, let µ be a regret-free stable matching for E corre-

sponding to market-clearing cutoffs P ∗, and let q = D (P ∗) be the measures of seats assigned under
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µ. Let
(
µP , χP

)
be the outcome of running Mechanism 2 on E with cutoffs P , and for all i let qPi =∣∣∣{s |µP (s) = i

}∣∣∣. Then
(
µP , χP

)
is regret-free stable with respect to qP ,

∥∥∥qP − q∥∥∥
2
≤ ‖P − P ∗‖2,

and
∣∣∣{s |µ (s) 6= µP (s)

}∣∣∣ ≤ ‖P − P ∗‖2.
Proof. Note that by definition qP ≡ D (P ). Now it is easy to see that

(
µP , χP

)
is regret-free stable

with respect to D (P ). Moreover, each student’s assignment µ (s) is equal to their demand Ds (P ),

which is determined by their budget set Bs (P ). Finally, in moving from P to P ∗ only ‖P − P ∗‖2
students receive different budget sets. The result follows.

When the error in the estimated cutoffs is due to sampling error, the outcome is regret-free

stable for capacities that are normally distributed around the market-clearing demand.

Definition 5.10. For a capacity vector q′ = (q′1, . . . , q′n)T we let Σq′ denote the matrix with entries

Σq
ij =


−qiqj if i 6= j

qi (1− qi) if i = j.

Proposition 5.2 (Distribution of approximately feasible capacities). Suppose the continuum econ-

omy E admits a unique stable matching µ with cutoffs P ∗, and let q = D (P ∗|η).10 Let Ek =
(
ηk, qk

)
be a randomly drawn finite economy, with k students drawn independently according to η, ω drawn

independently, and where qk = D
(
P ∗|ηk

)
is defined so that P ∗ is a market-clearing cutoff for Ek.

Then
√
k ·
(
qk − q

)
d→ N

(
0,Σq

)
,

where N (·|·) denotes a C-dimensional normal distribution with given mean and covariance.

Proof. The result follows from the central limit theorem, as D
(
P ∗|ηk

)
= 1

k

∑k
a=1Xa, where Xa =

Dθ (P ∗) is a random variable with θ ∼ η capturing the demand of a single student drawn randomly

from η and the Xa are independently drawn.

10Note that qi = qi for all overdemanded schools i, i.e. those such that P ∗i > 0.
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Hence the mapping from cutoffs to demand is continuous, so approximate cutoffs yield regret-

free stable outcomes for approximately feasible capacities. We similarly show in Appendix C.3.1

that the mapping from demand to market-clearing cutoffs is continuous, and estimated cutoffs are

robust to errors due to sampling. Thus in order to obtain a desirable estimate of the market-clearing

cutoffs P it suffices to furnish an accurate estimate of demand D.

Examples

These results suggest that if we use cutoff mechanisms based on estimated population demand, the

resulting outcomes will be robust to small biases or noise due to sampling error. We illustrate this

intuition in the following examples.

Example 5.2. In this example, we show how to implement an approximately regret-free sta-

ble matching in a setting with historical demand data. Suppose that this year’s economy E =(
C, Sk, bqkc

)
is given by drawing k students independently from a distribution η, and last year’s

economy Ehist =
(
C, Shist, bαqkc

)
is given by drawing αk students independently also from η for

some fixed α > 0. Then the student-optimal market-clearing cutoffs P̂ for the economy Ehist

give an unbiased estimator for the student-optimal market-clearing cutoffs both for E and for

E = (C,S, η, q), and we can show that in this year’s economy E posting P̂ implements a regret-free

stable matching with respect to capacities q̂kk that are close to qk. Specifically, if we let P ∗ be the

market-clearing cutoffs of E = (C,S, η, q) and q = D (P ∗|η) then we can use classic results about

the convergence of two-step estimators11 to show

√
k
(
q̂k − q

)
d→ N

(
0, (α+ 1)

α
Σq
)
,

for Σq defined as in Definition 5.10. The full proof can be found in Appendix C.3.2.

For large economies the capacities that make the outcome regret-free stable converge to the

true capacities, and the variance depends only on q and α. Moreover, in the absence of historical

information (α = 0) the cutoff mechanism can perform arbitrarily poorly, whereas more accurate

11See, e.g. Newey and McFadden (1994) for details.
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historical information (α→∞) leads to smaller perturbations in the capacities.

Example 5.3. Suppose that this year’s economy E =
(
C, Sk, qk

)
is given by drawing k students

independently from a distribution η (Γ∗), where student demand Ds (P |η (Γ)) is parametrized by

Γ = (γ1, γ2, . . . , γn). Suppose also that some positive fraction α of students have free market

information. Then by first obtaining preferences from the students with free market information,

we can estimate Γ∗ and provide an estimate P̂ for the student-optimal market-clearing cutoffs for

E. We can also show that posting P̂ implements a regret-free stable matching with respect to

capacities q̂kk that are close to qk.

Formally, consider the mechanism MF that runs in two rounds. In the first round it proposes

to all students s ∈ Sf (E), assigns them each to their chosen school and obtains their aggregate

demand q̂fi k for each school i, and uses this demand to provide an estimate Γ̂ for Γ∗. In the second

round it runs Mechanism 2 with cutoffs P̂ on a residual economy Er computed as follows. The

cutoffs P̂ are the market-clearing cutoffs for an estimated residual economy Êr = (C, Sr, q̂rk), where

Êr is given by drawing k −
∣∣∣Sf (E)

∣∣∣ students without free market information in E independently

from the distribution η
(
Γ̂
)
and the residual capacity for each school i is q̂ri = qi− q̂fi . The residual

economy Er =
(
C, Sk \ Sf (E) , q̂rk

)
is given by removing the students in Sf (E) from E and

reducing capacities accordingly at their assigned schools.

Let α denote the measure of students in E who have free market information, let Df
i (Γ) denote

the proportion of students in Sf (E) who demand school i as a function of Γ, and let qfi = αDf
i (Γ∗)

be the target first-round capacities. Define target capacities q = D (P ∗|η (Γ∗)) in terms of the

market-clearing cutoffs P ∗ of E = (C,S, η (Γ∗) , q). We can show that Mechanism MF implements

a regret-free stable matching µ with respect to perturbed capacity q̂kk, where

√
k
(
q̂k − q

)
d→ N

(
0,Σq + 2

( 1
α
A+ I

)
ΣqfAT

)

as k →∞ for A = ∇ΓD (Γ∗)
(
∇ΓD

f (Γ∗)
)−1

and Σq,Σqf defined as in Definition 5.10. (Note that

α ≤ mini qi + 1 −
∑
i qi

def= α∗, and α = α∗ is achieved when schools have aligned preferences, i.e.

condition (2) in Theorem 5.5.) The idea is that since in the first round we assign only students
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in Sf (E), the budget set and demand of these students is that same whether we assign them in

the first round, or in the second round after posting the cutoffs P̂ . Hence the outcome after both

rounds is regret-free stable with respect to realized demand. Convergence and variance expressions

can be derived using two-step GMM. The full proof can be found in Appendix C.3.2.

For large economies the capacities that make the outcome regret-free stable converge to the true

capacities, and the variance depends on q, qf , A = ∇ΓD (Γ∗)
(
∇ΓD

f (Γ∗)
)−1

and α. Moreover,

in the absence of free market information (α = 0) the cutoff mechanism can perform arbitrarily

poorly, whereas priorities that yield more students with free market information (α→ α∗) or more

accurate estimates of Γ∗ (A → 0) lead to smaller perturbations in the capacities. Finally, the

first round in this mechanism corresponds to the first round of iterative school-proposing Deferred

Acceptance. If we allow for further rounds of proposals, we can further reduce the noise in the

perturbed capacities.

5.6 Discussion

Summary of findings. We have proposed regret-free stability as a suitable solution concept

in matching markets with costly information acquisition. We have also shown that, surprisingly,

regret-free stable matchings always exist and the set of regret-free stable matchings has a lattice

structure. However, we have also shown that the effect of costly information acquisition is that

it may be impossible to compute a regret-free stable matching in a regret-free manner, and that

standard matching market mechanisms can result in information deadlocks. We have also provided

some mechanisms for when we are willing to relax feasibility and provide varying amounts of

information in order to achieve a regret-free outcome, and shown that for large economies they

can be implemented by perturbing the capacities by O
(√

k
)
students, where k is the number of

students in the market.

Approximation algorithms. Our results demonstrate that in general there is a tradeoff between

the regret of a mechanism, the feasibility of the solution, and the amount of information provided

to the mechanism. We have provided one class of mechanisms that relax the feasibility constraint
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in order to achieve optimal regret. It may also be possible to relax the regret of the mechanism in

order to achieve exact feasibility, or to increase the number of rounds of communication in order

to better approximate both. We leave these questions open for future work.

Activity rules. We demonstrated that in the presence of costly information acquisition standard

matching mechanisms can create situations where it is strictly optimal for every agent to wait

for other agents to move first. This illustrates a more general principle, that in the presence of

costly information acquisition iterative mechanisms will need an activity rule to converge. Another

relevant question is what the appropriate design of activity rules is for such situations.

Stable matchings. We have concentrated our efforts on mechanisms that implement regret-free

stable matchings. However, we have also provided a more general notion of stability in incomplete

information settings. Is this more general space of outcomes predictive and does it have attractive

structural properties? We selected the class of regret-free stable matchings as they compare each

agent’s utility only with her own utility under other information acquisition strategies. However

it may be possible to improve social welfare by moving to a stable matching that transfers utility

from one student to another. Are there stable matchings that are more desirable than the student-

optimal regret-free stable matching? Our notion of stability under incomplete information can also

be naturally extended to settings with two-sided incomplete information, as well as to settings

with more general models for costly information acquisition, such as rational inattention models,

or other models where agents may refine their priors for a cost. All of these questions become much

more interesting in these general settings. We leave them open for future investigation.

Practical market design. Finally, what implications do our results have for practical appli-

cations? Colleges in many countries, such as China, India and Australia post historical cutoffs

for admission into college programs. Our results on mechanisms with historical cutoffs suggests

that if colleges capacities are flexible this can eliminate unnecessary preference formation by appli-

cants. In Israel colleges post a pair of cutoffs for each program; students above the higher cutoff

are guaranteed admission, students below the lower cutoff are advised to consider other options,

students between the cutoffs are advised to wait for further information on enrolment for that

year, and the cutoffs are updated as students register for programs. This very closely mirrors our
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Accept-Waitlist-Reject mechanisms and suggests that they can be of practical use. Our result on

information deadlock also brings to mind the behavior of participants reacting to activity rules

such as deadlines and exploding offers in other markets. In markets such as job markets and Ph.D.

admissions, participants often wait until the last minute before expressing their preferences. Clearly

costly information acquisition is an important issue in many other markets, and we leave further

investigation of the empirical and practical consequences for future work.
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A.1 Definitions and Notation

We begin with some general notation and definitions. Let µ be the initial assignment under DA-

STB, and let P be a permutation. We say that a school i reaches capacity under a mechanism with

output assignment µ if η(µ(i)) = qi.

We re-index the schools in C ∪ {n+ 1} so that Ci ≥ Ci+1. Moreover, we assume that this

indexing is done such that if the order condition is satisfied, then ĈPi ≥ ĈPi+1 (where the cutoffs

ĈP are as defined by PLDA(P )) holds simultaneously for all permutations P .

Recall that in DA each student is given a score rsi = psi + L(s), and in PLDA(P ) this leads

to a second-round score r̂si = p̂si + P (L(s)) = P (L(s)) + ni1{µ(s)=i} + psi1{µ(s)6=i}. Throughout the

Appendix, for convenience, we slightly change the second-round score of a student s under PLDA

with permutation P to be r̂si = P (L(s)) + ni1{L(s)≥Ci} + psi1{L(s)<Ci}, meaning that we give each

student a guarantee at any school for which she met the cutoff in the first round. By consistency

of preferences, it is easily seen that this has no effect on the resulting assignment or cutoffs.

We say that a student can afford a school in a round if her score in that round is at least as

large as the school’s cutoff in that round. We say that the set of schools a student can afford in

the second round (with her amended second-round score) is her affordable set.

Throughout the Appendix, we let Xi = {i, . . . , n+ 1} be the set of schools at least as affordable

as school i, and we let γi be the proportion of students whose first-round affordable set is Xi.

A.2 Proof of Theorem 3.1

We first prove Theorem 3.1 in the case where all schools have one priority group. We then show

that if the order condition holds, all PLDA mechanisms assign the same number of seats at a given

school i to students of a given priority class π. Hence, by restricting to the set of students with

priority class π, we can reduce the general problem to the case where all schools have one priority

group. This shows that all PLDA mechanisms produce type-equivalent assignments.

Lemma A.1. Assume that each school has a single priority group, p = 1. If the order condition

holds, all PLDA mechanisms produce type-equivalent assignments.
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Proof. Let P be a permutation. Assume that the order condition holds. By Theorem 3.4, we may

assume that the global order condition holds. Hence the schools in C ∪ {n+ 1} can be indexed so

that Ci ≥ Ci+1 and ĈPi ≥ ĈPi+1 for all permutations P (simultaneously).

We first present the relevant notation that will be used in this proof. We are interested in sets

of schools of the form Xi = {i, . . . , n+ 1}. Let

βi,j = η({s ∈ S : i is the most desirable school in Xj with respect to �̂s})

be the measure of the students who, when their set of affordable schools is Xj , will choose i (when

following their second-round preferences). Note that βi,j = 0 for all j > i.

Let Es(C) and ÊsP (ĈP ) be the first-round affordable set and (total) affordable set for student

s when running PLDA with permutation P . Note that for each student s ∈ S, there exists some i

such that Es(C) = Xi, and since the order condition is satisfied, there exists some j ≤ i such that

ÊsP (ĈP ) = Xj . The fact that ÊsP (ĈP ) = Xj for some j is a result of the order condition: students’

amended second-round scores guarantee that Es(C) ⊆ ÊsP (ĈP ) (every school affordable in the first

round is guaranteed in the second) and hence that j ≤ i. Let γPi = η({s ∈ S : ÊsP (ĈP ) = Xi}) be

the fraction of students whose (total) affordable set in PLDA(P ) is Xi.1 We note that by definition

of PLDA, η({s ∈ S : θs = θ, ÊsP (ĈP ) = Xi}) = ζ({θ})γPi ; that is, the students whose affordable

sets are Xi “break proportionally" into types. For a school i, this means that the measure of

students assigned to i is therefore
∑
j≤i βi,jγ

P
j .

Let P ′ be another permutation, and define γP ′i similarly. We will prove by induction that

there exist PLDA(P ′) cutoffs ĈP ′ such that γP ′i = γPi for all i ∈ C ∪ {n+ 1}. Note that by the

proportional breaking into types of γPi and γP ′i , this will imply type-equivalence.

Assume that the PLDA(P ′) cutoffs ĈP ′ are chosen such that γP ′j = γPj for all j < i, and i is

maximal such that this is true. Then we have that
∑
j≤i−1 βi,jγ

P
j =

∑
j≤i−1 βi,jγ

P ′
j . Assume w.l.o.g.

that γPi > γP
′

i . It follows that qi ≥
∑
j≤i βi,jγ

P
j ≥

∑
j≤i βi,jγ

P ′
j , where the first inequality follows

since i cannot be filled beyond capacity. If the second inequality is strict, then under P ′, i is not full,

1Note that η (S) = 1, as η is a probability distribution over S.
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and therefore ĈP ′i = 0. However, this means that all students can afford i under P ′, and therefore

γP
′

i = 1 −
∑
j<i γ

P ′
j = 1 −

∑
j<i γ

P
j ≥ γPi , a contradiction. If the second inequality is an equality,

then βi,i = 0 and no students demand school i under the given affordable set structure. It follows

that we can define the cutoff ĈP
′

i such that γP ′i = γPi . This provides the required contradiction,

completing the proof.

Now consider when schools have possibly more than one priority group. We show that if the

order condition holds, then all PLDA mechanisms assign the same measure of students of a given

priority type to a given school. It is not at all obvious that such a result should hold, since priority

types and student preferences may be correlated, and the relative proportions of students of each

priority type assigned to each school can vary widely. Nonetheless, the order condition (specifically,

the equivalent global order condition) imposes enough structure so that any given priority type is

treated symmetrically across different PLDA mechanisms.

Theorem A.1. If the order condition holds, then for all priority classes π and schools i all PLDA

mechanisms assign the same measure of students of priority class π to school i.

Proof. Fix a permutation P . By Theorem 3.4, we may assume that the global order condition

holds.

We show that PLDA(P ) assigns the same measure of students of each priority type to each

school i as RLDA. The idea will be to define cutoffs on priority-type-specific economies, and show

that these cutoffs are the same as the PLDA cutoffs. However, since cutoffs are not necessarily

unique in the two-round setting, care needs to be taken to make sure that the individual choices

for priority-type-specific cutoffs are consistent across priority types.

The proof runs as follows. We first define an economy Eπ for each priority class π that gives only

as many seats as are assigned to students of priority class π under RLDA. We then invoke the global

order condition and Theorems 3.4 and 3.1 to show that all PLDA mechanisms are type-equivalent

on each Eπ. We also use the global order condition to argue that it is sufficient to consider affordable

sets, and also to select “minimal” cutoffs. Then we construct cutoffs CPπ,i using the economies Eπ

and show that they are (almost) independent of priority type. Finally, we show that this means
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that CPπ,i also define PLDA cutoffs for the large economy E and conclude that PLDA(P ) assigns

the same measure of students of each priority type to each school i as RLDA.

(1) Defining little economies Eπ for each priority type.

Fix a priority class π. Let qπ be a restricted capacity vector, where qπ,i is the measure of

students of priority class π assigned to school i under RLDA. Let Sπ be the set of students s such

that ps = π, and let ηπ be the restriction of the distribution η to Sπ. Let Eπ denote the primitives

(C,Sπ, ηπ, qπ). Recall that ĈR are the second-round cutoffs for RLDA on E . It follows from the

definition of Eπ that ĈR
π are also the second-round cutoffs for RLDA on Eπ.

Let C̃P
π be the second-round cutoffs of PLDA(P ) on Eπ. We show that the cutoffs C̃P

π defined

for the little economy are the same as the consistent second-round cutoffs ĈP
π for PLDA(P ) for the

large economy E , that is, C̃P
π = ĈP

π .

(2) Implications of the global order condition.

We have assumed that the global order condition holds. This has a number of implications for

PLDA mechanisms run on the little economies Eπ. For all p, the local order condition holds for

RLDA on Eπ. Hence, by Theorem 3.4, the little economies Eπ each satisfy the order condition.

Moreover, by Theorem 3.1, all PLDA mechanisms produce type-equivalent assignments when run

on Eπ. Finally, if we can show that for every permutation P , PLDA(P ) assigns the same measure of

students of each priority type π to each school i (namely (qπ)i) as RLDA, then E satisfies the global

order condition if and only if for all p the little economy Eπ satisfies the global order condition.

The global order condition also allows us to determine aggregate student demand from the

proportions of students who have each school in their affordable set. In general, if affordable sets

break proportionally across types, and if for each subset of schools X ⊆ C we know the proportion

of students whose affordable set is X, then we can determine aggregate student demand. The

global order condition implies that for any pair of permutations P, P ′, the affordable sets from both

rounds are nested in the same order under both permutations. In other words, for each priority

class π there exists a permutation σπ such that the affordable set of any student in any round of any

PLDA mechanism is of the form {σπ(i), σπ(i+ 1), . . . , σπ(n), n+ 1}. Hence when the global order

condition holds, to determine the proportion of students whose affordable set is X, it is sufficient
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to know the proportion of students who have each school in their affordable set.

Another more subtle implication of the global order condition is the following. In the second

round of PLDA, for each permutation P and school i there will generically be an interval that ĈPi

can lie in and still be market-clearing. The intuition is that there will be large empty intervals

corresponding to students who had school i in their first-round affordable set, and whose second-

round lottery changed accordingly. When the global order condition holds, we can without loss of

generality assume that as many as possible of the cutoffs for a given priority type are 0 or 1, and

the global order condition will still hold.

Formally, for cutoffs C we can equivalently define priority-type-specific cutoffs Cπ,i = (bCi −

πic)+. Note the cutoffs Cπ are consistent across priority types, namely: (1) cutoffs match for

two priority types with the same priority group at a school, πi = π′i ⇒ Cπ,i = Cπ′,i and Ĉπ,i =

Ĉπ′,i; and (2) there is at most one marginal priority group at each school, Cπ,i, Cπ′,i ∈ (0, 1) ⇒ πi =

π′i.Moreover, if cutoffs Cπ are consistent across priority types, then there exist cutoffs C from which

they arise.

Suppose that we set as many as possible of the priority-type-specific cutoffs ĈPπ to be extremal;

i.e., we let ĈPπ,i be 1 if no students have i in their affordable set, and let ĈPπ,i be minimal otherwise.

We show that under this new definition, Cπ, ĈPπ satisfies the local order condition consistently with

all other PLDAs.

Specifically, let

fPπ,i(x) = |{` : ` ≥ Cπ,i or P (`) ≥ x}|

be the proportion of students of priority class π who have school i in their affordable set if the

first- and second-round cutoffs are Cπ,i and x respectively. Notice that f is decreasing in x. Define

cutoffs C̃Pπ as follows. If fPπ,i
(
ĈPπ,i

)
= 0 we set C̃Pπ,i = 1, and otherwise we let C̃Pπ,i be the minimal

cutoff satisfying fPπ,i
(
C̃Pπ,i

)
= fPπ,i

(
ĈPπ,i

)
.

Since E satisfies the global order condition, for all π there exists an ordering σπ such that

Cσπ(1) ≥ Cσπ(2) ≥ · · · ≥ Cσπ(n) and ĈP
′

σπ(1) ≥ ĈP
′

σπ(2) ≥ · · · ≥ ĈP
′

σπ(n) for all permutations P ′. We

show that the global order condition implies that the newly defined cutoffs ĈP satisfy C̃Pπ,σπ(1) ≥
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C̃Pπ,σπ(2) ≥ · · · ≥ C̃Pπ,σπ(n). This is because the global order condition implies that fPπ is increasing

in i; i.e., for each π, i < j, and x it holds that fPπ,σπ(i)(x) ≤ fPπ,σπ(j)(x). Hence for all j > i

fPπ,σπ(j)

(
C̃Pπ,σπ(j)

)
= fPπ,σπ(j)

(
ĈPπ,σπ(j)

)
≥ fPπ,σπ(j)

(
ĈPπ,σπ(i)

)
(since f is decreasing)

≥ fPπ,σπ(i)

(
ĈPπ,σπ(i)

)
(since f is increasing in i)

= fPπ,σπ(i)

(
C̃Pπ,σπ(i)

)

and so since we set C̃Pπ,σπ(j) to be minimal and fPπ,σπ(j) (·) is decreasing it follows that C̃Pπ,σπ(j) ≤

C̃Pπ,σπ(i).

(3) Cutoffs C̃Pπ,i are (almost) independent of priority type.

We now show that C̃Pπ,i depends on π only via πi, and does not depend on πj for all j 6=

i. Since Eπ satisfies the order condition, all PLDA mechanisms on Eπ are type-equivalent, and

the proportion of students who have each school in their affordable set is the same across all

PLDA mechanisms. Hence for all permutations P , priority classes π, and schools i it holds that

fPπ,i

(
C̃Pπ,i

)
= fPπ,i

(
ĈPπ,i

)
= fRπ,i

(
ĈRπ,i

)
. This means that C̃Pπ,i satisfies the following equation in

terms of ĈRπ,i, Cπ,i and P :

fPπ,i

(
C̃Pπ,i

)
= fRπ,i

(
ĈRπ,i

)
= 2− ĈRπ,i − Cπ,i. (A.1)

(We note that an application of the intermediate value theorem shows that this equation always

has a solution in [0, 1], since fPπ,i(0) = 1 − Cπ,i, fπ,i(1) = 1, fπ,i is continuous and decreasing on

[0, 1], and we are in the case where 1− Cπ,i ≤ ĈRπ,i ≤ 1. Hence C̃Pπ,i is defined by fPπ,i and fRπ,i.) In

other words, the value of C̃Pπ,i is defined by fPπ,i(·), fRπ,i(·), and ĈRπ,i, which in turn are defined by

Cπ,i and the permutations P or R. Since Cπ,i depends on π only through πi, it follows that C̃Pπ,i

depends on π only through πi. In other words the C̃Pπ,i define cutoffs C̃Pi that are independent of

priority type.
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(4) C̃Pi are the PLDA cutoffs.

Finally, we remark that C̃Pi are market-clearing cutoffs. This is because we have shown that

for each priority class π, the number of students assigned to each school i is the same under

RLDA and under the demand induced by the cutoffs C̃Pi , and we know that the RLDA cutoffs are

market-clearing for E .

Hence C̃Pi give the assignments for PLDA on E , and since C̃Pi was defined individually for

each priority class π on Eπ, it follows that PLDA(P ) assigns the same measure of students of each

priority type to each school i as RLDA.

We are now ready to prove Theorem 3.1

Proof of Theorem 3.1. Fix a priority class π. By Theorem A.1, for every school i, all PLDA

mechanisms assign the same measure qπ,i of students of priority class π to school i.

Consider the subproblem with primitives Eπ = (C, qπ,Sπ, ηπ). By Lemma A.1, for all θ ∈ Θ and

i,

ηπ({s ∈ Sπ : θs = θ, µ̂P (s) = i}) = ηπ({s ∈ Sπ : θs = θ, µ̂P ′(s) = i}).

Since ηπ is the restriction of η to sπ, it follows that all PLDA mechanisms are type-equivalent.

A.3 Proof of Theorem 3.3

We first note that with a single priority class, the first round corresponds to the random serial

dictatorship (RSD) mechanism of Abdulkadiroğlu and Sönmez (1998), where the (random) order of

students is the single order of tie-breaking. Hence instead of referring to the first-round mechanism

as DA-STB, we will sometimes refer to it as RSD.

Recall the cutoff characterization of the set of stable matchings for given student preferences

and responsive school preferences (encoded by student scores rsi = psi +L(s)) (Azevedo and Leshno,

2016). Namely, if C ∈ RN
+ is a vector of cutoffs, let the assignment µ defined by C be given by

assigning each student of type s to her favorite school among those where her score weakly exceeds
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the cutoff, µ(s) = max�s({si ∈ C : rsi ≥ Ci} ∪ {n+ 1}). The cutoffs C are market-clearing if

under the assignment µ defined by C, every school with a positive cutoff is exactly at capacity,

η(µ(si)) ≤ qi for all i ∈ C, with equality if Ci > 0. The set of all stable matchings is precisely given

by the set of assignments defined by market-clearing vectors (Azevedo and Leshno, 2016).

Under PLDA(P ), a student of type s has a second-round score r̂si = P (L(s)) + 1{L(s)≥Ci} at

school i for each school i ∈ C ∪ {n+ 1} (assuming that scores are modified to give guarantees to

students who had a school in their first-round affordable set, instead of just students assigned to

the school in the first round). In a slight abuse of notation, we will sometimes let ĈP refer to

the second-round cutoffs from some fixed PLDA(P ) (not necessarily corresponding to the student-

optimal stable matching given by PLDA).

The proof that any PLDA satisfies the axioms essentially follows from Proposition 3.1. We

note that averaging follows from the continuum model, which preserves the relative proportion of

students with different reported types under random lotteries and permutations of random lotteries.

Hence it suffices to show that any mechanism M satisfying the axioms is a PLDA.

We will show that the reassignment produced by M is type-equivalent to the reassignment

produced by some PLDA. If we assume, that conditional on their reports, students’ assignments

under M are uncorrelated, we are able to explicitly construct a PLDA that provides the same joint

distribution over assignments and reassignments as M . We provide a sketch of the proof before

fleshing out the details.

Fix a distribution of student types ζ. Since the first round of our mechanism M is DA-STB

and M is anonymous, this gives a distribution η of students that is the same (up to relabeling of

students) at the end of the first round. For a fixed labeling of students, it also gives a distribution

over first-round assignments µ and a distribution over second round assignments µ̂.

We first invoke averaging to assume that all ensuing constructions of aggregate cutoffs and

measures of students assigned to pairs of schools in the two rounds are deterministic. Specifically,

since the first-round assignment µ is given by STB, and the mechanism satisfies the averaging

axiom, we may assume that each pathwise realization of the mechanism gives type-equivalent (two-

round) assignments. Hence, for the majority of the proof we perform our constructions of aggregate
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cutoffs and measures of students pathwise, and assume that any realization of the lottery numbers

produces the same cutoffs and measures of students. (In particular, the quantities Ĉi, ρi,j , γi,j that

we will later define will be the same across all realizations.)

Outline of Proof. We use constrained Pareto efficiency to construct a first-round overdemand

ordering 1, 2, . . . , n, n+ 1, as in (Ashlagi and Shi, 2014), where school i comes before j in an ordering

for the first (second) round if there exists a non-zero measure of students who prefer school i to

j in the first (second) round but who are assigned to j in the first (second) round. (In the case

of the second-round ordering, we require that these students’ second-round assignments j not be

the same as their first-round guarantees.) The existence of these orderings follows from the facts

that the first-round mechanism, DA-STB, is Pareto efficient, that the two-round mechanism is

constrained Pareto efficient. We let Xi = {i, i+ 1, . . . , n, n+ 1} denote the set of schools after i in

the first-round overdemand ordering, and let X̃i = {σ(i), σ(i+ 1), . . . , σ(n+ 1)} denote the set of

schools after σ(i) in the second-round overdemand ordering.

We next note that instead of assignments µ and µ̂, we can think of giving students first- and

second-round affordable sets E(s), Ê(s) so that µ and µ̂ are given by letting each student choose her

favorite school in her affordable set for that round. We use weak two-round strategy-proofness and

anonymity to show that two students of different types face the same joint distribution over first-

and second-round affordable sets. This allows us to construct the permutation P by constructing

proportions γi,j of students whose first-round affordable set was Xi and whose (total) affordable

set was X̃j . This is the most technical step in the proof, and so we separate it into several steps.

The crux of the analysis is the fact that for any school i and set C′ 63 i of schools, two students

with top choices C′ who are assigned to a school they weakly prefer to i the first round have the

same conditional probability of being assigned to a school in C′ in the second round.2We term this

the “prefix property” and prove it in Lemma A.2.

Finally, we construct the lottery L and verify that if second-round scores are given by first

prioritizing all guaranteed students over non-guaranteed students and subsequently breaking ties

2The formal statement also takes into account how demanded the schools they weakly prefer to i are, and is given
in terms of student types who were assigned to i, and lottery numbers.
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according to the permuted lottery P ◦L, then PLDA(P ) gives every student the same pair of first-

and second- round assignments as M .

Formal Proof. We now present the formal proof. Since we are assuming that the considered

mechanism M is weakly strategy-proof, we assume that students report truthfully and so we con-

sider preferences instead of reported preferences. We will explicitly specify when we are considering

the possible outcomes from a single student misreporting.

(2a) Definitions

Let the schools be numbered 1, 2, . . . , n such that Ci ≥ Ci+1 for all i. The intuition is that

this is the order in which they reach capacity in the first round. We observe that all reassignments

are index-decreasing. That is, for all i, j, if there exists a non-zero measure of students who are

assigned to i in the first round and to j in the second round, and j 6= n+ 1, then i ≥ j. This follows

since the mechanism respects guarantees, student preferences are consistent, and the schools are

indexed in order of increasing first-round affordability. Throughout this section we will denote the

outside option n+ 1 either by 0 or ∅, to make it more evident that indices are decreasing.

Next, we define a permutation σ on the schools. We think of this as giving a second-round

overdemand (or inverse affordability) ordering, where in the second round the schools fill in the

order sσ(1), sσ(2), . . . , sσ(n). We will eventually show that M gives the same outcome as a PLDA

with cutoffs that are ordered Ĉσ(1) ≥ Ĉσ(2) ≥ · · · ≥ Ĉσ(n). We require that σ satisfies the following

property. For all i, j, if there exists a non-zero measure of students with consistent preferences

who have second-round preference reports � such that i � j, and who are not assigned to j in

the first round, but are assigned to j in the second round, then i = σ(i′) and j = σ(j′) for some

i′ < j′. We assume that σ is the unique permutation satisfying this property that is maximally

order-preserving. That is, for all pairs of schools i, j for which no non-zero measure of students of

the above type exists, σ(i) < σ(j) iff i < j. We also define σ(n+ 1) = n+ 1. An ordering σ with

the required properties exists since the mechanism is constrained Pareto efficient. In particular, if

there is a cycle of schools i1, i2, . . . , im where for each j there is a set of students Sj with non-zero

measure who prefer ij+1 to their second-round assignment ij and who are not assigned to ij in the

first round, then p̂sjij = p
sj
ij

for each sj ∈ Sj , and so there is a Pareto-improving cycle that respects

182



second-round priorities.

Let C′ be a set of schools, and let � be a preference ordering over all schools. We say that C′

is a prefix of � if i′ � i for all i′ ∈ C′, i 6∈ C′. For a set of schools C′, let i(C′) = max (C′) be the

maximum index of a school in C′. We may think of i(C′) as the index of the most affordable school

in C′ in the first round.

For a student type θ = (�, �̂), an interval I ⊆ [0, 1], and a set of schools C′, let ρθ(I, C′) be the

proportion of students with type θ who, under the mechanism M , have a first-round lottery in the

interval I and are assigned to a school in C′ in the second round. When C′ = {i′} we will sometimes

write ρθ(I, i′) instead of3 ρθ(I, {i′}). In this section, for brevity, when defining preferences � we

will sometimes write �: [si1 , si2 , . . . , sik ] instead of si1 � si2 � · · · � sik .

(2b) Constructing the permutation P .

We now construct the permutation P as follows. For all pairs of indices i, j, we define a scalar

γi,j , which we will show can be thought of as the proportion of students (of any type) whose first-

round affordable set (the set of schools at which their priority meets the first-round cutoffs) is Xi

and whose affordable set (the set of schools at which their modified priority, which gives them top

priority at all schools in their first-round affordable sets, meets the second-round cutoffs) is X̃j .

Now, for all pairs of indices i, j such that σ(j) < i, we define student preferences θi,j = (�i,j

, �̂i,j) such that

�i,j : [sσ(j), si−1, si, n+ 1] and �̂i,j : [sσ(j), n+ 1],

with all other schools unacceptable. (We remark that in the case where σ(j) = i− 1, the first two

schools in this preference ordering coincide.) We note that the full-support assumption implies that

there is a positive measure of such students. Let ρi,j be the proportion of students of type θi,j whose

first-round assignment is i and whose second-round assignment is school σ(j). Intuitively, ρi,j is

the proportion of students who can deduce that their lottery number is in the interval [Ci, Ci−1],

and whose second-round affordable set contains X̃j .

For a fixed index i, we define γi,j for j = 1, 2, . . . , n to be the unique solutions to the following

3Here we are assuming that this proportion is the same for every realization of the first round of M . This requires
non-atomicity and anonymity.
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n equations:

γi,j = 0 for all j such that σ(j) ≥ i

γi,1 + · · ·+ γi,j = ρi,j for all j such that σ(j) < i.

Note that by this definition it holds that γ1,j = 0 for all j. We may intuitively think of γi,j as the

proportion of students of type θi,j whose first-round lottery is in [Ci, Ci−1] and whose second-round

affordable set contains σ(j) but not σ(j − 1). (This is not quite the case, as we let γi,j = 0 for all

j such that σ (j) ≥ i. More precisely, if σ (j) < i then γi,j is the proportion of students of type θi,j

whose first-round lottery is in [Ci, Ci−1] and whose second-round affordable set contains σ (j), but

not σ (j′), where j′ = max {j′′ : σ (j′′) < i}.) Note that if σ(j) ≥ i then school σ (j) will be in the

first-round affordable set for all students whose first-round lottery is in [Ci, Ci−1], and we define

γi,j = 0 and keep track of these students separately.

We also define γi,n+1 to be

γi,n+1 = Ci−1 − Ci −
n∑
j=1

γi,j .

Since transfers are index-decreasing, we may intuitively think of γi,n+1 as the proportion of students

of type θi,j assigned to school i in the first round whose only available school in the second round

comes from their first-round guarantee.

We define the lottery P from γi,j as follows. We break the interval [0, 1] into (n+ 1)2 intervals,

Ĩi,j , where the interval Ĩi,j has length γi,j , and the intervals are ordered in decreasing order of the

first index i,4

Ĩn+1,n+1, Ĩn+1,n, . . . , Ĩ1,2, Ĩ1,1.

The permutation P maps the intervals back into [0, 1] in decreasing order of the second index}

4Specifically, let Ĩi,j = [Ci−1 −
∑

j′≤j γi,j′ , Ci−1 −
∑

j′<j γi,j′ ] .
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0 C1C2 1

Ĩ1,∅Ĩ2,1Ĩ2,∅Ĩ∅,1Ĩ∅,2Ĩ∅,∅

0 Ĉσ(1)Ĉσ(2) 1

P (Ĩ2,1)P (Ĩ∅,1)P (Ĩ∅,2)P (Ĩ1,∅)P (Ĩ2,∅)P (Ĩ∅,∅)

Figure A.1: Constructing the permutation P for n = 2 schools, where σ is the identity permutation. The intervals
Ĩi,j for i ≤ σ(j) = j < n+ 1 are empty by definition, as all transfers are index-decreasing.

j,5

P (Ĩn+1,n+1), P (Ĩn,n+1), . . . P (Ĩ2,1), P (Ĩ1,1).

In Figure A.1, we show an example with two schools, and write ∅ instead of n+ 1 for brevity.

We note that
∑n+1
j=1 γi,j = Ci−1 − Ci, which is the proportion of students whose first-round

affordable set is Xi. We may interpret γi,j to be the proportion of students who can deduce that

their lottery number is in the interval [Ci, Ci−1], and whose second-round affordable set is X̃j , and

so
∑n+1
i=1 γi,j is the proportion of students whose second-round affordable set is X̃j . We remark that

there may be multiple values of i, j for which γi,j = 0 (i.e. there are no students whose first-round

affordable set is Xi and second-round affordable set is Xj), but that this does not affect our ability

to assign students to all possible pairs of schools that are consistent with consistent preferences and

the first- and second-round overdemand orderings. For example γ1,j = 0 for all j, but any student

whose first-round affordable set is X1 is able to attend their top-choice school in round 1 and her

second-round affordable set is inconsequential.

We show that there exists a PLDA mechanism with permutation P , where the students with

first-round scores in Ĩi,j are precisely the students with a first-round affordable set Xi and a second-

round affordable set X̃j (where the second-round affordable set is the set of schools for which a

student’s unmodified second-round score psi + P (L (s)) meets the cutoff), and that this PLDA

mechanism gives the same joint distribution over first- and second-round assignments as M . To

do this, we first show that this distribution of first- and second-round affordable sets gives rise to

5Specifically, let Ĉσ(j) = 1−
∑

i′,j′:j′≤j γi′,j′ , and let P (Ĩi,j) = [Ĉσ(j−1) −
∑

i′≤i γi′,j , Ĉσ(j−1) −
∑

i′<i γi′,j ].

185



the correct joint first- and second-round assignments over all students. We then use anonymity

to construct L in such a way as to have the correct first- and second-round assignment joint

distributions for each student. Finally, we verify that these second-round affordable sets give the

student-optimal stable matching under the second round school preferences given by P .

(2c) Equivalence of the joint distribution of assignments given by affordable sets and

M .

Fix student preferences θ = (�, �̂). We show that if we let γi,j be the proportion of students

with preferences θ who have first- and second-round affordables Xi and X̃j respectively, then we

obtain the same joint distribution over assignments in the first and second rounds for students with

preferences θ as under mechanism M . In doing so, we will use the following “prefix lemma”.

The “prefix lemma” states that for every set of schools C′, there exist certain intervals of the form

Iji = [Ci, Cj ] such that for any two student types whose top set of acceptable schools under second-

round preference reports is C′, the proportion of students with lotteries in Iji who are upgraded to

a school in C′ in the second round is the same for each type.

We define a prefix of preferences � to be a set of schools C′ that is a top set of acceptable

schools under �; that is, for all i′ ∈ C′ and j 6∈ C′, it holds that i′ � j.

Lemma A.2 (Prefix Property). Let i < j be schools, and let C′ 63 i, j be a set of schools such that

i(C′) ≤ i. Let θ = (�, �̂) and θ′ = (�′, �̂′) be consistent preferences such that C′ is a prefix of �, �̂

and some students with preferences θ are assigned to each of schools i and j in the first round,

and similarly C′ is a prefix of �′, �̂′ and some students with preferences θ′ are assigned to each of

schools i and j in the first round. Then

ρθ([Cj , Ci], C′) = ρθ
′([Cj , Ci], C′).

That is, the proportion of students of type θ whose first-round lotteries are in the interval [Cj , Ci]

and who are assigned to a school in C′ in the second round is the same as the proportion of students

of type θ′ whose first-round lotteries are in the interval [Cj , Ci] and who are assigned to a school in

C′ in the second round.
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Sketch of proof of Lemma A.2. The idea of the proof is to use weak strategy-proofness and first-

order stochastic dominance to show that the probabilities of being assigned to C′ (conditional

on certain first-round assignments) are the same for students of type θ or θ′. We then invoke

anonymity to argue that proportions of types of students assigned to a certain school are given by

the conditional probabilities of individual students being assigned to that school. We present the

full proof at the end of Section 3.3.1.

We now show that the mechanism M and the affordable set distribution γi,j produce the same

joint distribution of assignments.

Students with two acceptable schools.

To give a bit of the flavor of the proof, we first consider student preferences θ of the form

�: [k, l, n+ 1] and �̂ : [k, n+ 1], where all other schools are unacceptable.

There are five ordered pairs of schools that students of this type can be assigned to in the two

rounds. Namely, if we let (i, j) denote assignment to i in the first round and to j in the second

round, then the ordered pairs are (k, k), (l, k), (l, n+ 1), (n+ 1, k), and (n+ 1, n+ 1). Since

the proportion of students with each first-round assignment is fixed, it suffices to show that the

mechanism M and the mechanism that assigns first- and second-round affordable set distributions

according to γi,j produce the same proportion of students assigned to (l, k) and the same proportion

of students assigned to (n+ 1, k).

Let Ikl = [Cl, Ck], and let Imax{k,l}
n+1 = [0, Cmax{k,l}]. The proportions of students with pref-

erences θ who are assigned to (l, k) and (n+ 1, k) under M are given by ρθ([Cl, Ck], k) and

ρθ([0, Cmax{k,l}], k) respectively. We want to show that this is the same as the proportion of students

with preferences θ who are assigned to (l, k) and (n+ 1, k) respectively when first- and second-round

affordable sets are given by the affordable set distribution γi,j . We remark that when k > l this

holds vacuously, since all the terms are 0. Hence, since for any school k the proportion of students

with preferences θ who are assigned to k in the first round does not depend on θ, it suffices to

consider the case where k < l.

Let θ′ = (�′, �̂′) be the preferences given by �′: [k, k + 1, . . . , l − 1, l, n+ 1] and �̂′ : [k, n+ 1],

where only the schools between k and l are acceptable in the first round, only k is acceptable in
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the second round, and all other schools are unacceptable.

For all pairs of indices i, j such that j < i, let θ′i,j = (�i,j , �̂i,j) be the student preferences such

that � i,j : [j, i− 1, i, n+ 1] and �̂i,j : [j, n+ 1], with all other schools unacceptable. (In the case

where i = j + 1, we let the first two schools under the preference ordering � i,j coincide.) We note

that θ′i,j = θi,σ−1(j), where θi,j was defined in (2b), and that for i > σ(j) we previously defined

ρi,j =
∑
l≤j γi,l to be the proportion of students of type θi,j whose first-round assignment is i and

whose second-round assignment is school j.

The proportion of students with preferences θ who are assigned to (l, k) under M is given by

ρθ([Cl, Ck], k) =ρθ′([Cl, Ck], k) (by the prefix property (Lemma A.2), as k < l)

=
∑
k<i≤l

ρθ
′([Ci, Ci−1], k)

=
∑
k<i≤l

ρθ
′
i,k([Ci, Ci−1], k)

(since the second-round assignment does not depend on the first-round report)

=
∑
k<i≤l

ρi,σ−1(k) (by the definition of ρi,σ−1(k))

=
∑
k<i≤l

∑
j≤σ−1(k)

γi,j (by the definition of γi,j),

which is precisely the proportion of students with preferences θ who are assigned to (l, k) if the first-

and second-round affordable sets are given by γi,j . Note that all θ′i,k and ρi,σ−1(k) in the summation

are well-defined, since the sum is over indices satisfying k < i.

Similarly, let θ′′ = (�′′, �̂′′) be the preferences given by �′′: [k, l, l + 1, . . . , n, n+ 1] and �̂′′ :

[k, n+ 1], where only k and the schools with indices greater than l are acceptable in the first

round, only k is acceptable in the second round, and all other schools are unacceptable. Then the
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proportion of students with preferences θ who are assigned to (n+ 1, k) under M is given by

ρθ([0, Cl], k) =ρθ′′([0, Cl], k) (by the prefix property (Lemma A.2))

=
∑
l<i≤n

ρθ
′′([Ci, Ci−1], k)

=
∑
l<i≤n

ρθ
′
i,k([Ci, Ci−1], k)

(since the second-round assignment does not depend on the first-round report)

=
∑
l<i≤n

ρi,σ−1(k) (by the definition of ρi,σ−1(k))

=
∑
l<i≤n

∑
j≤σ−1(k)

γi,j (by the definition of γi,j),

which is precisely the proportion of students with preferences θ who are assigned to (n+ 1, k) if

the first- and second-round affordable sets are given by γi,j .

(2c.ii.) Students with general preferences.

We now consider general (consistent) student preferences θ of the form (�, �̂), where

�: [i1, i2, . . . , ik, n+ 1] and �̂ : [i1, i2, . . . , il, n+ 1],

for some k > l and where all other schools are unacceptable. We wish to show that for every pair

of schools i, i′ ∈ {i1, i2, . . . , ik, n+ 1}, the mechanism M and the mechanism that assigns first- and

second-round affordable set distributions according to γi,j produce the same proportion of students

assigned to (i, i′). It suffices to show that for every prefix C′ of the preferences �̂ and every school

k′ ∈ {i2, . . . , ik, n+ 1}, the mechanism M and the mechanism that assigns first- and second-round

affordable set distributions according to γi,j produce the same proportion of students assigned to i

in the first round and some school in C′ in the second round. We say that the students are assigned

to (i, C′).

Fix a prefix C′ of �̂ and a school i = ik′ satisfying k′ ≤ k. Let l′ ≤ l be such that C′ =

{i1, i2, . . . , il′}. If k′ ≤ l′ then k′ ∈ C′, and so in any mechanism that respects guarantees, the

proportion of students with preferences θ assigned to (i, C′) is the same as the proportion of students
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assigned to i in the first round.

Recall that i (C′) is the school in C′ satisfying i (C′) ≥ i′∀i′ ∈ C′, i.e. the school in C′ that was

least affordable in the first round. (Note that this is not necessarily il′ , the school in C′ that is least

preferred by a student of type θ.) If k′ > l′ and i ≤ i(C′), then in the first round, whenever the

school i is available in the first round, so is the preferred school i(C′); thus, for any school i, the

proportion of students assigned to i in the first round is 0. It follows that in any mechanism that

respects guarantees, the proportion of students assigned to (i, C′) is 0.

From here on, we may assume that k′ > l′ (i.e., i 6∈ C′) and i > i(C′). Since i > i(C′),

the proportion of students with preferences θ who are assigned to (i, C′) under M is given by

ρθ([Ci, Ci(C′)], C′). Let i(σ(C′)) be the school j ∈ C′ such that σ−1(j) is maximal, that the school in

C′ that is most affordable in the second round.

Let θ′ = (�′, �̂′) be the preferences given by �′

�̂′ : [i(σ(C′)), C′ \ i(σ(C′)), i(C′) + 1, i(C′) + 2, · · · , i− 1, i, n+ 1],

where i (σ (C′)) is the most preferred, followed by all schools in C′ and all other schools between

i(C′) and i are acceptable in the same order as first round overdemand, and

�̂′ : [i(σ(C′)), C′ \ i(σ(C′)), n+ 1],

where i (σ (C′)) is the most preferred and all other schools in C′ are ordered arbitrarily.

Since k′ > l′, i > i(C′), and the preferences θ are consistent, the preferences θ′ are well defined.

Let θ′′ = (�′′, �̂′′) be the preferences given by the same first-round preferences �′′=�′ as θ and

second-round preference �̂′′ : [i(σ(C′)), n+ 1] that only find i (σ (C′)) acceptable.

Recall that for all j > i(σ(C′)), θ′j,i(σ(C′)) = (�j,i(σ(C′)), �̂j,i(σ(C′))) are the student preferences

such that

�j,i(σ(C′)): [i(σ(C′)), j − 1, j, n+ 1] and �̂j,i(σ(C′)) : [i(σ(C′)), n+ 1],

with all other schools unacceptable. Additionally, recall that ρj,σ−1(i(σ(C′))) is the proportion of
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students of type θj,i(σ(C′)) whose first-round assignment is j and whose second-round assignment is

i(σ(C′)). Let Ĉ = {i1, i2, . . . , ik′−1} be the schools in C′ that are preferred to school i under � and

let i(Ĉ) be the school preferable to i under � that is most affordable in the second round.

Then the proportion of students with preferences θ who are assigned to (i, C′) under M is given

by ρθ([Ci, Ci(Ĉ)], C
′), where

ρθ([Ci, Ci(Ĉ)], C
′) = ρθ

′([Ci, Ci(Ĉ)], C
′) (by the prefix property (Lemma A.2) with prefix C′)

=
∑

i(Ĉ)<j≤i

ρθ
′([Cj , Cj−1], C′)

=
∑

i(Ĉ)<j≤i

ρθ
′([Cj , Cj−1], i(σ(C′)))

(by the definition of the second-round overdemand ordering)

=
∑

i(Ĉ)<j≤i

ρθ
′′([Cj , Cj−1], i(σ(C′))) (by the prefix property with prefix {i(σ(C′))})

=
∑

i(Ĉ)<j≤i

ρ
θ′
j,i(σ(C′))([Cj , Cj−1], i(σ(C′)))

(since the second-round assignment does not depend on the first-round report)

=
∑

i(Ĉ)<j≤i

ρj,σ−1(i(σ(C′))) (by the definition of ρj,σ−1(i(σ(C′))))

=
∑

i(Ĉ)<j≤i

∑
j′≤σ−1(i(σ(C′)))

γj,j′ (by the definition of γj,j′),

which is precisely the proportion of students with preferences θ who are assigned to (i, C′) if the

first- and second-round affordable sets are given by γj,j′ . Note that all θ′j,i(σ(C′)) and ρj,σ−1(i(σ(C′)))

in the summation are well-defined, since the sum is over indices satisfying j > i
(
Ĉ
)
, and since

k′ > l′ it follows that Ĉ ⊇ C′ and hence j > i
(
Ĉ
)
≥ i (σ (C′)).

(2d) Constructing the lottery L.

Fix a student s who reports first- and second-round preferences θ = (�, �̂). Suppose that s

is assigned to schools (i, j) in the first and second rounds respectively. We first characterize all

first- and second-round budget sets consistent with the overdemand orderings that could have led
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to this assignment. Let i = min {i′ | max�Xi′ = i}, let j = min
{
j′ | max�̂ X̃j′ ∪ {i} = j

}
, and let

j = max
{
j′ | max�̂ X̃j′ ∪ {i} = j

}
. Then the set of first- and second-round budget sets that student

s could have been assigned by the mechanism is given by {Xi′ , Xj′∪{i} : i ≤ i′ ≤ i, j ≤ j′ ≤ j}. (We

remark that the asymmetry in these definitions is due to the existence of the first-round guarantee

in the second-round budget sets.)

Conditional on s being assigned to schools (i, j) in the first and second rounds respectively, we as-

sign a lottery number L(s) to s distributed uniformly over the union of intervals ∪i′,j′:i≤i′≤i,j≤j′≤j Ĩi′,j′ ,

( L(s) | (µ(s), µ̃(s)) = (i, j)) ∼ Unif
(
∪i′,j′:i≤i′≤i,j≤j′≤j Ĩi′,j′

)
,

independent of all other students’ assignments.

We show that this is consistent with the first round of the mechanism being RSD. We have

shown in (1) that if for each pair of reported preferences θ = (�, �̂) ∈ Θ, a uniform proportion γi′,j′

of students with reported preferences θ are given first- and second-round budget sets Xi′ , {iθ} ∪

X̃j′ (where iθ = max�Xi is the first-round assignment of such students), we obtain the same

distribution of assignments as M . Since M is anonymous and satisfies the averaging axiom, and

since |Ĩi′,j′ | = γi′,j′ , it follows that each student’s first-round lottery number is distributed as

Unif[0, 1].

Given the constructed lottery L, we construct the second-round cutoffs Ĉi for the PLDA and

verify that the assignment µ̃ is feasible and stable with respect to the schools’ second-round prefer-

ences, as defined by P ◦L and the guarantee structure. Specifically, in PLDA, each student with a

first-round score l and a first-round assignment i′ has a second-round score r̂i = P (l) + 1(i′ = i) at

each school i ∈ C, and students are assigned to their favorite school i at which their second-round

score exceeds the school’s second-round cutoff, r̂i ≥ Ĉi (or to the outside option n+ 1).

Recall that the schools are indexed so that C1 ≥ C2 ≥ · · · ≥ Cn+1, and that the permutation σ is

chosen so that the second-round overdemand ordering is given by σ(1), σ(2), . . . , σ(n+ 1) = n+ 1,

and so it should follow that the second-round cutoffs Ĉi satisfy Ĉσ(1) ≥ Ĉσ(2) ≥ · · · ≥ Ĉσ(n+1).

By the characterization of stable assignments given by Azevedo and Leshno (2016), it suffices
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to show that if each student with a first-round assignment i′ and second-round lottery num-

ber in [Ĉσ−1(i), Ĉσ−1(i−1)] is assigned to her favorite school in {i′} ∪ X̃i, where we define X̃i =

{σ(i), σ(i+ 1), . . . , σ(n+ 1)}, then the resulting assignment µ̂ is equal to the second-round assign-

ment µ̃ of our mechanism M , and satisfies that η(µ̂−1(i)) ≤ qi for any school i, and η(µ̂−1(i)) = qi

if Ĉi > 0.

For fixed i, j, let Ĉσ(j) = 1−
∑
i′,j′:j′≤j γi′,j′ and let Ĉi,σ(j) = Ĉσ(j−1) −

∑
i′≤i γi′,j . (We remark

that since γi,j refers to the i-th school to fill in the first round, i, and the j-th school to fill in the

second round, σ(j), the Ĉ are indexed slightly differently than γi,j is.)

We use the averaging assumption and the equivalence of assignment probabilities that we have

shown in (1) to conclude that if µ̂ is the assignment given by running DA with round scores r̂ and

cutoffs Ĉ, then µ̃ = µ̂.

This is fairly evident, but we also show it explicitly below. Specifically, consider a student s ∈ S

with a first-round lottery number L(s) and reported preferences θ = (�, �̂). Let i, j be such that

L(s) ∈ ∪i′,j′:i≤i′≤i,j≤j′≤j Ĩi′,j′ , where i = min {i′ | max�Xi′ = i}, j = min
{
j′ | max�̂ X̃j′ ∪ {i} = j

}
,

and j = max
{
j′ | max�̂ X̃j′ ∪ {i} = j

}
. Then, because of the way in which we have constructed

the lottery L, it holds that (µ(s), µ̃(s)) = (i, j).

Moreover, since

P (L(s)) ∈ P (∪i′,j′:i≤i′≤i,j≤j′≤j Ĩi′,j′)

= ∪i′,j′:i≤i′≤i,j≤j′≤jP (Ĩi′,j′)

where P (Ĩi′,j′) ∈ [Ĉσ(j′), Ĉσ(j′−1)], it holds that under µ̂, student s receives her favorite school in

{i}∪ X̃j′ for some j ≤ j′ ≤ j, which is the school j. Hence µ̃(λ) = µ̂(λ) = j. It follows immediately

that the assignment µ̂ is feasible, since it is equal to the feasible assignment µ̃.

Finally, let us check that the assignment is stable. Suppose that Ĉj > 0. We want to show that

η(µ̃−1(j)) = qj . First note that it follows from the definition of Ĉj that

1 >
∑

i′,j′:j′≤σ−1(j)
γi′,j′ =

∑
i′

ρi′,σ−1(j).
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Consider student preferences θ = (�,�) given by �: [j, 1, 2, . . . , j − 1, j + 1, . . . , n+ 1]. Then∑
i′ ρi′,σ−1(j) is the proportion of students of type θ who are assigned to school j in the second

round, which, by assumption, is also the probability that a student with preferences θ is assigned

to j in the second round. But since M is non-wasteful, this means that η(µ̃−1(j)) = qj . It follows

from constrained Pareto efficiency that the output of M is the student-optimal stable matching.

Proof of Lemma A.2. Here, we prove the prefix property. We first observe that any schools reported

to be acceptable but ranked below j in the first round are inconsequential. Moreover, since M

respects guarantees, weak two-round strategy-proofness implies that any schools reported to be

acceptable but ranked below j in the second round are inconsequential. Hence it suffices to prove

the lemma for first-round preference orderings � and �′ for which j is the last acceptable school.

Suppose that the lemma holds for i = i (C′). Then if i (C′) = i′ < i it holds that

ρθ
(
[Cj , Ci] , C′

)
=
ρθ
([
Cj , Ci(C′)

]
, C′
) (
Ci(C′) − Cj

)
− ρθ

([
Ci, Ci(C′)

]
, C′
) (
Ci(C′) − Ci

)
Ci − Cj

=
ρθ
′
([
Cj , Ci(C′)

]
, C′
) (
Ci(C′) − Cj

)
− ρθ′

([
Ci, Ci(C′)

]
, C′
) (
Ci(C′) − Ci

)
Ci − Cj

= ρθ
′ ([Cj , Ci] , C′) ,

where the first and last equalities follow from Bayes’ rule, and the second equality holds since the

lemma holds for i = i (C′), and the theorem follows. Hence it suffices to prove the lemma for

i = i (C′).

Let i1, . . . , ik be the indices of the schools in C′, in increasing order. We observe that i = i (C′) <

j.

Since we wish to prove that the lemma holds for all pairs θ, θ′ satisfying the assumptions, it

suffices to show that the lemma holds for a fixed preference θ when we vary only θ′. Therefore, we

may, without loss of generality, fix the preferences θ to satisfy that

�: [i, i1, . . . , ik−1, j, n+ 1] and �̂ : [i, i1, · · · , ik−1, n+ 1],
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and all other schools are unacceptable. That is, type θ prefers first school i = i (C′), which is

the least overdemanded school in C′, and then all other schools in C′ in the same order as the

overdemand ordering. In the first round school j is also acceptable, and in the second round only

schools in C′ are acceptable.

We remark that given the first-round ordering, the worst school in C′ and the school j (namely, i

and j) are the only acceptable schools to which students of type θ will be assigned in the first round.

Moreover, the proportion of students with preferences θ (or θ′) who can deduce that their score is

in [Cj , Ci] is precisely Ci − Cj , since such students are assigned in the first round to some school

not in C′ that they weakly prefer to j, and all such schools are between i and j in the overdemand

ordering. Similarly, the proportion of students with preferences θ (or θ′) who can deduce that their

lottery number is in [Ci, 1] is precisely 1 − Ci, since such students are assigned in the first round

to a school in C′. (Note that students with preferences θ′ may be able to deduce that their lottery

number falls in a subinterval of the interval we have specified. However, this does not affect our

statements.)

To compare the proportion of students of types θ and θ′ whose scores are in [Cj , Ci] and who are

assigned to C′ in the second round, we define a third student type θ′′ as follows. Let θ′′ = (�′, �̂)

be a set of preferences where the first-round preferences are the same as the first-round preferences

of θ′, and the second-round preferences are the same as the second-round preferences of type θ.

Let s be a student with preferences θ, and similarly let s′ be a student with preferences θ′. We

use the two-round strategy-proofness of the mechanism to show that s has the same probability

of being assigned to some school in C′ in the second round as if she had reported type θ′′, and

similarly for s′. Since the proportion of students of either type being assigned to a school in C′ in

the first round is the same and the mechanism respects guarantees, this is sufficient to prove the

prefix property.

Formally, let ρ be the probability that s is assigned to some school in C′ in the second round if

she reports truthfully, conditional on being able to deduce that her first-round score is in [Cj , Ci],

and let ρ′ be the probability that s′ is assigned to some school in C′ in the second round if she

reports truthfully, conditional on being able to deduce that her first-round score is in [Cj , Ci]. (We
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note that given her first-round assignment µ (ρ′), the student s′ may actually be able to deduce

more about her first-round score, and so the interim probability after knowing her assignment that

s′ is assigned to some school in C′ in the second round if she reports truthfully is not necessarily

ρ′.) Let ρ′′ be the probability that a student with preferences θ′′ and a first-round score in [Cj , Ci]

chosen uniformly at random is assigned to some school in C′ in the second round. It follows from

the design of the first round and from anonymity that ρ is the probability that a student with

preferences θ and a lottery number in [Cj , Ci] chosen uniformly at random is assigned to some

school in C′ in the second round, and similarly for ρ′.

Proving the lemma is equivalent to proving ρ=ρ′. We show that ρ=ρ′′=ρ′. Note that the first

equality is between preferences that are identical in the second round, and the second equality is

between preferences that are identical in the first round.

We first show that ρ=ρ′′; that is, changing just the first-round preferences does not affect the

probability of assignment to C′. This is almost immediate from first-order stochastic dominance

of truthful reporting, since the second-round preferences under θ and θ′′ are identical. (This also

illustrates the power of the assumption that the second-round assignment does not depend on first-

round preferences. It implies that manipulating first-round reports to obtain a more fine-grained

knowledge of the lottery number does not help, since assignment probabilities are conditionally

independent of the lottery number.) We present the full argument below.

Let ρ̂ be the probability that a student with preferences θ who is unassigned in the first round is

assigned to a school in C′ in the second round. We note that since the last acceptable school under

preferences θ and θ′′ is j, the set of students with preferences θ who are unassigned in the first

round is equal to the set of students with preferences θ with lottery number in [0, Cj ], and similarly

the set of students with preferences θ′′ who are unassigned in the first round is equal to the set of

students with preferences θ′′ with lottery number in [0, Cj ]. Hence, the fact that θ and θ′′ have the

same second preferences gives us that ρ̂ is also the probability that a student with preferences θ′′

who is unassigned in the first round is assigned to a school in C′ in the second round.

The probability of being assigned in the second round to a school in C′ when reporting θ is
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given by:

(1− Ci) + (Ci − Cj)ρ+ Cj ρ̂,

The probability of being assigned in the second round to a school in C′ when reporting θ′′ is given

by:

(1− Ci) + (Ci − Cj)ρ′′ + Cj ρ̂.

It follows from first-order stochastic dominance of truthful reporting for types θ and θ′ that ρ=ρ′′.

We now show that ρ′=ρ′′. This is a little more involved, but essentially relies on breaking the

set of students with first-round score in [Cj , Ci] into smaller subsets, depending on their first-round

assignment, and using first-order stochastic dominance of truthful reporting to show that in each

subset, the probability of an arbitrary student being assigned to a school in C′ in the second round

is the same for students with either set of preferences θ′ or θ′′.

We first introduce some notation for describing the first-round preferences of θ′ and θ′′. Let

{j1 ≤ · · · ≤ jm} be the schools between i(C′) and j in the overdemand ordering, corresponding to

schools that a student with preferences θ′ and a lottery number in [Cj , Ci] could have been assigned

to in the first round. Formally, we define them to be the indices j′ for which j′ 6∈ C′, i(C′) < j′ ≤ j,

j′ �′ j and j′ is relevant in the first-round overdemand ordering, that is, k′ < j′ for all k′ such that

k′ �′ j′. We observe that jm = j. For l = 1, . . . ,m, let ρ′l be the probability that a student with

preferences θ′ who was assigned to school jl is assigned to a school in C′ in the second round.

The set of students with preferences θ′ assigned to school jl in the first round is precisely the

set of students with preferences θ′ whose first-round lottery number is in [Cjl , Cjl−1 ] and similarly

the set of students with preferences θ′′ assigned to school jl in the first round is precisely the set of

students with preferences θ′′ whose first-round lottery number is in [Cjl , Cjl−1 ]. If we define j0 = i,

it follows that (Ci − Cj) =
∑m
l=1(Cjl−1 − Cjl), and that

(Ci − Cj)ρ′ =
m∑
l=1

(Cjl−1 − Cjl)ρ
′
l.

Let ρ′′l be the probability that a student with preferences θ′′ who was assigned to school jl is
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assigned to a school in C′ in the second round. Then it also holds that

(Ci − Cj)ρ′′ =
m∑
l=1

(Cjl−1 − Cjl)ρ
′′
l .

We show now that ρ′l = ρ′′l for all l, which implies that ρ′ = ρ′′.

Consider a student sl who reported �′=�′′ in the first round and was assigned to school jl. Note

that such a report is consistent with either reporting θ′ or θ′′, and since the first-round reports of

these types are the same and the first-round mechanism is DA-STB there exists some set of lottery

numbers Ll such that students of type θ′ or θ′′ are assigned to jl in the first round if and only

if their lottery lies in Ll. The probabilities that this student is assigned in the second round to

a school in C′ when reporting θ′ and θ′′ are given by ρ′l and ρ′′l respectively. Now for any fixed

lottery L (s), truthful reporting is a dominant strategy in the second round for types θ and θ′. It

follows that ρ′l = ρ′′l .

This completes the proof of the lemma.

A.4 Proof of Theorem 3.4

Suppose that the order condition holds. In what follows, we will fix a permutation P and show

that PLDA(P ) satisfies the local order condition and is type-equivalent to the reverse lottery RLDA

mechanism. As this holds for every P , it follows that the global order condition holds.

(1) Every school has a single priority group.

We first consider the case where ni = 1 for all i; that is, every school has a single priority

group. Recall that the schools are indexed according to the first-round overdemand ordering, so

that C1 ≥ C2 ≥ · · · ≥ Cn ≥ Cn+1. Since the local order condition holds for RLDA, let us assume

that they are also indexed according to the second-round overdemand ordering under RLDA, so

that ĈR1 ≥ ĈR2 ≥ · · · ≥ ĈRn ≥ ĈRn+1.

The idea will be to construct a set of cutoffs C̃P directly from the permutation P and the cutoffs

ĈR, show that the cutoffs are in the correct order C̃P1 ≥ C̃P2 ≥ · · · ≥ C̃Pn ≥ C̃Pn+1, and show that

the cutoffs C̃P and resulting assignment are market-clearing when school preferences are given by
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the amended scoring function with permutation P .

(1a) Definitions.

As in the proof of Theorem 3.1, let βi,j = η({s ∈ S : argmax�̂sXj = i}) be the measure of

students who, when their set of affordable schools is Xj , will choose i. Let Es(C) be the set of

schools affordable for student s in the first round under PLDA with any permutation, let Ês(ĈR)

be the set of schools affordable for type s in the second round under RLDA, and let Ês(ĈP ) be

the set of schools affordable for type s in the second round under PLDA(P ).

Let γRi = η({s ∈ S : Ês(ĈR) = Xi}) be the fraction of students whose affordable set in the

second round of RLDA is Xi, and let γPi = η({s ∈ S : Ês(ĈP ) = Xi}) be the fraction of students

whose affordable set in PLDA(P ) is Xi.

Let n̂ be the smallest index such that school n̂ does not reach capacity when it is not offered to

all the students. In other words, n̂ is the smallest index such that every student has school n̂ in her

affordable set under RLDA, i.e., n̂ ∈ Ês(ĈR). Since the local order condition holds for RLDA, we

may equivalently express n̂ in terms of cutoffs as the smallest index such that (1−Cn̂)+(1−ĈRn̂ ) ≥ 1.

Such an n̂ always exists, since every student has the outside option n+ 1 in her affordable set.

(1b) Defining cutoffs for PLDA.

Let us define cutoffs C̃P as follows. For i ≥ n̂ let C̃Pi = 0. For each permutation P , define a

function

fPi (x) = |{` : ` ≥ Ci or P (`) ≥ x}|

representing the proportion of students who have i in their affordable set with first- and second-

round cutoffs Ci, x under the amended scoring function with permutation P . Since P is measure-

preserving, fPi (x) is continuous and monotonically decreasing in x.

For i < n̂, we inductively define C̃Pi to be the largest real smaller than C̃Pi−1 satisfying

fPi (C̃Pi ) = fRi

(
ĈRi

)
(A.2)

(where we define C̃P0 = 1). Now fPi (0) = 1 ≥ fRi
(
ĈRi

)
, and
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fPi

(
C̃Pi−1

)
= fPi−1

(
C̃Pi−1

)
+ |{l | l ∈ [Ci, Ci−1) and P (l) ≥ C̃Pi−1}|

≤ fRi−1

(
ĈRi−1

)
+ (Ci−1 − Ci)

= (1− Ci) + (1− ĈRi−1)

≤ fRi
(
ĈRi

)
= fPi

(
C̃Pi

)

where in the first equality we are using that Ci−1 ≥ Ci, the first inequality follows from the

definition of C̃Pi=1, and the last inequality holds since ĈRi−1 ≥ ĈRi .

It follows from the intermediate value theorem that the cutoffs C̃P are well defined and satisfy

C̃P1 ≥ C̃P2 ≥ · · · ≥ C̃Pn ≥ C̃Pn+1.

(1c) The constructed cutoffs clear the market.

We show that the cutoffs C̃P and resulting assignment (from letting students choose their

favorite school out of those for which they meet the cutoff) are market-clearing when the second-

round scores are given by r̂si = P (L(s)) + ni1{L(s)≥Ci} + psi1{L(s)≥Ci}. We call the mechanism with

this second-round assignment MP .

The idea is that since the cutoffs C̃Pi are decreasing in the same order as Ci and ĈRi , the

affordable sets are nested in the same order under both sets of second-round cutoffs. It follows that

aggregate student demand is uniquely specified by the proportion of students with each school in

their affordable set, and we have defined these to be equal, fPi
(
C̃Pi

)
= fRi

(
ĈRi

)
. It follows that

C̃P are market-clearing and give the PLDA(P ) cutoffs, and so PLDA(P ) satisfies the local order

condition (with the indices indexed in the same order as with RLDA). We make the affordable set

argument explicit below.

Consider the proportion of lottery numbers giving a (total) affordable set Xi. Since ĈR1 ≥ ĈR2 ≥

· · · ≥ ĈRn , under RLDA this is given by

γRi = fRi+1

(
ĈRi+1

)
− fRi

(
ĈRi

)
,
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if i < n̂ and by 0 if i > n̂, where we define fP0 (x) = 1 for all P and x. Similarly, since C̃P1 ≥ C̃P2 ≥

· · · ≥ C̃Pn , under MP this is given by

fPi+1

(
C̃Pi+1

)
− fPi

(
C̃Pi

)

if i < n̂, which is precisely γRi , and by 0 if i > n̂.

Hence, for all i < n̂, the measure of students assigned to school i under both RLDA and MP is∑
j≤i βi,jγ

R
j = qi, and for all i ≥ n̂, the measure of students assigned to school i is

∑
j≤n̂ βi,jγ

R
j < qi.

It follows that the cutoffs C̃P are market-clearing when the second-round scores are given by

r̂si = P (L(s))+ni1{L(s)≥Ci}+psi1{L(s)≥Ci}, and so PLDA(P )= MP satisfies the local order condition.

(2) Some school has more than one priority group.

Now consider when schools have possibly more than one priority group. We show that if RLDA

satisfies the local order condition, then PLDA(P ) assigns the same number of students of each

priority type to each school i as RLDA, and within each priority type assigns the same number

of students of each preference type to each school as RLDA. We do this by first assuming that

PLDA(P ) assigns the same number of students of each priority type to each school i as RLDA,

and showing that this gives consistent cutoffs.

We note that this proof uses very similar arguments to the proof of Theorem A.1.

(2a) Defining little economies Eπ for each priority type.

Fix a priority class π. Let qπ be a restricted capacity vector, where qπ,i is the measure of

students of priority class π assigned to school i under RLDA. Let Sπ be the set of students s such

that ps = π, and let ηπ be the restriction of the distribution η to Sπ. Let Eπ denote the primitives

(CSπ, ηπ, qπ, ).

Let C̃P
π be the second-round cutoffs of PLDA(P ) on Eπ. By definition, ĈR

π are the second-

round cutoffs of RLDA on Eπ. We show that the cutoffs C̃P
π defined for the little economy are the

same as the consistent second-round cutoffs ĈP
π for PLDA(P ) run on the large economy E , that is,

C̃P
π = ĈP

π .

(2b) Implications of RLDA satisfying the local order condition.
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Since RLDA satisfies the local order condition for E , RLDA also satisfies the local order condition

for Eπ for all π. It follows from (1) that the global order condition holds on each of the little

economies Eπ. Hence by Theorem 3.1 all PLDA mechanisms produce type-equivalent assignments

when run on Eπ. Moreover, as in the proof of Theorem A.1, the global order condition on Eπ also

allows us to determine aggregate student demand in Eπ from the proportions of students who have

each school in their affordable set.

Finally, as in the proof of Theorem A.1, we may assume that for each π and school i the

cutoff C̃Pπ,i is the minimal real satisfying fPπ,i
(
C̃Pπ,i

)
= fRπ,i

(
ĈRπ,i

)
, where for each permutation P ,

fPπ,i(x) = |{l : l ≥ Cπ,i or P (l) ≥ x}| is the proportion of students of priority class π who have

school i in their affordable set if the first- and second-round cutoffs are Cπ,i and x respectively.

It follows that C̃Pπ,i depends on π only via πi, and does not depend on πj for all j 6= i. This

is because C̃Pπ,i is defined by fPπ,i(·), fRπ,i(·), and ĈRπ,i, which are in turn defined by Cπ,i and the

permutations P and R. Moreover, Cπ,i depends on π only through πi. Hence, if π, π′ are two

priority vectors such that πi = π′i, then C̃Pπ,i = C̃Pπ′,i, and so the C̃Pπ,i are consistent across priority

types and define cutoffs C̃Pi that are independent of priority type.

(3) C̃Pi are the PLDA cutoffs.

Finally, we show that C̃Pi are market-clearing cutoffs. By (1), for each priority class π, the

number of students assigned to each school i is the same under RLDA as under the demand

induced by the cutoffs C̃Pi , and we know that the RLDA cutoffs are market-clearing for E .

Hence C̃Pi give the assignments for PLDA on E , and since C̃Pi was defined individually for each

priority class π for Eπ it follows that PLDA(P ) assigns the same measure of students of each priority

type to each school i as RLDA.

202



Appendix B

Appendix for Chapter 4
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B.1 Omitted Proofs for Section 4.3

Definitions and Notation

We begin with some additional definitions and notation that will be used in the proofs in this

section.

In Appendix 4.4.1 we outlined how the TTC path γ can be interpreted as tracking the pro-

gression of the algorithm. Throughout the proofs, we make use of this interpretation and will

frequently fix an economy E1 and a TTC path γ and let TTC (γ|E) denote the continuous-time

algorithm given by the path γ on the economy E .2 Given a path γ, let
{
t(i)
}
i∈C

be stopping times

such that γ and
{
t(i)
}
i∈C

satisfy the capacity equations. Let the schools be labeled such that

t(i1) ≤ t(i2) ≤ · · · ≤ t(in), and let t(i0) = 0. We will refer to the progression of the algorithm from

time t(i`−1) to time t(i`) as Round ` of TTC(γ).

Let x, x be vectors. We let (x, x] = {x : x 6≤ x and x ≤ x} denote the set of vectors that are

weakly smaller than x along every coordinate, and strictly larger than x along some coordinate.

Let K ⊆ C be a set of schools. For all vectors x, we let πK (x) denote the projection of x to the

coordinates indexed by schools in K.

The following notation is used to incorporate information about the set of available schools. For

an economy E and TTC path γ yielding TTC cutoffs p we let C (x) =
{
j | ∃i s.t. pji ≤ xi

}
denote

the set of schools available to students with rank x. We denote by

Θi|C =
{
θ ∈ Θ|Chθ (C) = i

}

the set of students whose top choice in C is i, and denote by ηi|C the measure of these students.

That is, for S ⊆ Θ, let ηi|C (S) := η
(
S ∩Θi|C

)
. In an abuse of notation, for a set A ⊆ [0, 1]C , we

will often let η (A) denote η
({
θ ∈ Θ | rθ ∈ A

})
, the measure of students with ranks in A, and let

ηi|C (A) denote η
({
θ ∈ Θi|C | rθ ∈ A

})
, the measure of students with ranks in A whose top choice

1The economy E can either be a continuum economy, or a discrete economy E, in which case we let TTC (γ|E)
denote TTC (γ|Φ (E)).

2We will omit the dependence on the economy when it is evident from context.
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school in C is i.

We will also find it convenient to define sets of students who were offered or assigned a seat

along some TTC path γ. These will be useful in considering the result of aggregating the marginal

trade balance equations. For each time τ let

Ti (γ; τ) def= {θ ∈ Θ | ∃τ ′ ≤ τ s.t. rθi = γi(τ ′) and rθ ≤ γ(τ ′)}

denote the set of students who were offered a seat by school i before time τ , let

T i (γ; τ) def= {θ ∈ Θ | rθ � γ(τ) and Chθ
(
C
(
rθ
))

= i}

denote the set of students who were assigned a seat at school i before time τ , and let T i|C (γ; τ) def=

{θ ∈ Θ | rθ � γ(τ) and Chθ (C) = i} denote the set of students who would be assigned a seat at

school i before time τ if the set of available schools was C and the path followed was γ.3

For each interval T = [t, t] let Ti (γ;T ) def= Ti (γ; t) \∪t<tTi (γ; t) be the set of students who were

offered a seat by school i at some time τ ∈ T , and let T i|C(T ; γ) def= T i|C (γ; t) \ T i|C (γ; t) be the

set of students who were assigned to a school i at some time τ ∈ T , given that the set of available

schools was C (γ (τ)) = C for each τ ∈ T . For each union of disjoint intervals T = ∪nTn similar

define Ti (γ;T ) def= ∪nTi (γ;Tn) and T i|C(T ; γ) def= ∪nT i|C (Tn; γ). Figure B.1 illustrates examples

of Ti and T i for an economy with two schools.

Finally let us set up the definitions for solving the marginal trade balance equations. For a set

of schools C and individual schools i, j ∈ C, recall that

H
j|C
i (x) = lim

ε→0

1
ε
η
({
θ ∈ Θ | rθ ∈ [(xi − ε) · ei,x) and Chθ (C) = j

})
= lim

ε→0

1
ε
η
({
θ ∈ Θj|C | rθ ∈

[
(xi − ε) · ei, x

)})

is the marginal density of students pointed to by school i at the point x whose top choice school in

3Note that Ti (γ; τ) and T i (γ; τ) include students who were offered or assigned a seat in the school in previous
rounds.
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Figure B.1: The sets Ti (γ; t) and T i (γ; t) for an economy with two schools and a fixed path γ and time t. Ti (γ; t)
denotes the set of students who were offered a seat by school i by time t, and T i (γ; t) denotes the set of students who
were assigned to school i by time t. Students in each set are shaded in grey. Note that students are no longer offered
seats once they are assigned, and so only students with priorities on the path γ are offered seats by both schools.

C is j.

Let HC (x) be the |C| × |C| matrix with (i, j)th entry HC (x)i,j = H
j|C
i (x). Let H̃C (x) be the

|C| × |C| matrix with (i, j)th entry

H̃C (x)i,j = 1
v
H
j|C
i (x) + 1i=j

(
1− vj

v

)
,

where vj =
∑
k∈C H

k|C
j (x) is the row sum of H (x), and the normalization v satisfies v ≥ maxj vj .

H̃C (x) is a transformation of HC (x) that will be convenient for formalizing the connection with

continuous time Markov chains presented in Appendix 4.4.3.

Recall that a TTC path γ satisfies the trade balance equations for an economy E = (C,Θ, η, q)

if the following holds:

∑
k∈C

γ′k (t)H i
k (γ (t)) =

∑
k∈C

γ′i (t)Hk
i (γ (t)) ∀i ∈ C, times t.
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These may be equivalently stated in terms of the matrix H̃ (γ (t)) as follows:

γ′ (t) = γ′ (t) · H̃ (γ (t)) .

Let γ (τ) = x. If d = −γ′ (τ) ≥ 0 solves the trade balance equations for x with available schools

C ∑
k∈C

dk ·H
i|C
k (x) =

∑
k∈C

di ·Hk|C
i (x) ∀i ∈ C,

or equivalently

d = d · H̃ (x)

we say that d is a valid gradient at x with available schools C, and if in addition d · 1 = −1 then

we say that d is a valid direction at x with available schools C. We omit the references to x and C

when they are clear from context.

Let MC (x) be the Markov chain with state space C, and transition probability from state i to

state j equal to H̃C (x)i,j . We remark that such a Markov chain exists, since H̃C (x) is a (right)

stochastic matrix for each pair C, x.

We will also need the following definitions. For a matrix H and sets of indices I, J we let HI,J

denote the submatrix of H with rows indexed by elements of I and columns indexed by elements

of J . Recall that, by Assumption 4.1, the measure η is defined by a probability density ν that is

right-continuous and piecewise Lipschitz continuous with points of discontinuity on a finite grid.

Let the finite grid be the set of points {x |xi ∈ Di∀i}, where the Di are finite subsets of [0, 1]. Then

there exists a partition R of [0, 1]C into hyperrectangles such that for each R ∈ R and each face of

R, there exists an index i and yi ∈ Di such that the face is contained in {x |xi = yi}.

The following notion of continuity will be useful, given this grid-partition. We say that a

multivariate function f : Rn → R is right-continuous if f (x) = limy→x,y≥x f (y), where x, y are

vectors in Rn and the inequalities hold coordinate-wise. For an m × n matrix A, let 1 (A) be the

207



m× n matrix with entries

1 (A)ij =


1 if Aij 6= 0,

0 if Aij = 0.

We will want some way of comparing two TTC paths γ and γ̃ obtained under two continuum

economies differing only in their measures η and η̃.

Definition B.1. Let γ and γ̃ be increasing continuous functions from [0, 1] to [0, 1]C with γ (0) =

γ̃ (0). We say that γ (τ) is dominated by γ̃ (τ) via school i if

γi (τ) = γ̃i (τ) , and

γj (τ) ≤ γ̃j (τ) for all j ∈ C.

We also say that γ is dominated by γ̃ via school i at time τ . If γ and γ′ are TTC paths, we

can interpret this as school j being less demanded under γ, since with the same rank at j, in γ

students are competitive with fewer ranks at other schools i. Equivalently, the same rank at j is

less valuable under γ than under γ̃, as it provides the same opportunities for assignment as lower

ranks at other schools (i.e. worse opportunities) under γ compared to γ̃. Another interpretation is

that more students have been offered seats by the time t at which we reach students with a given

j-rank under γ than under γ̃. A third interpretation is that fewer students are offered / trade away

seats at school i at time t under γ than under γ̃.

Basic Lemmas

We will also make use of the following lemmas.

Lemma B.1. Let E = (C,Θ, η, q) be a continuum economy such that H̃ (x) is irreducible for all x

and C. Then there exists a unique valid TTC path γ. Within each round γ (·) is given by

dγ (t)
dt

= d (γ (t))

where d (x) is the unique valid direction from x = γ (t) that satisfies d (x) = d (x) H̃ (x).
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Moreover, if we let A (x) be obtained from H̃ (x) − I by replacing the nth column with the all

ones vector 1, then

d (x) = [0, 0, . . . , 0,−1]A (x)−1 .

Proof. It suffices to show that d (·) is unique. The existence and uniqueness of γ (·) satisfying
dγ(t)
dt = d (γ (t)) follows by invoking Picard-Lindelöf as in the proof of Theorem 4.2.

Consider the equations,
d (x) H̃ (x) = d (x)

d (x) · 1 = −1.

When H̃ (x) is irreducible, every choice of n − 1 columns of H̃ (x) − I gives an independent set

whose span does not contain 1. Therefore if we let A (x) be given by replacing the nth column in

H̃ (x)− I with 1, then A (x) has full rank, and the above equations are equivalent to

d (x)A (x) = [0, 0, . . . , 0,−1] ,

i.e. d (x) = [0, 0, . . . , 0,−1]A (x)−1 .

Hence d (x) is unique for each x, and hence γ (·) is uniquely determined.

We now show that any two non-increasing continuous paths γ, γ̃ starting and ending at the same

point can be re-parametrized so that for all t there exists a school i (τ) such that γ is dominated by γ̃

via school i (τ) at time t. We first show that, if γ (0) ≤ γ̃ (0), then there exists a re-parametrization

of γ such that γ is dominated by γ̃ on some interval starting at 0.

Lemma B.2. Suppose γ, γ̃ are a pair of non-increasing functions [0, 1]→ [0, 1]C such that γ (0) ≤

γ̃ (0). Then there exist coordinates i, j, a time t and an increasing function g : R → R such that

γj (g (t)) = γ̃j (t), and for all τ ∈ [0, t] it holds that

γi (g (τ)) = γ̃i (τ) and γ (g (τ)) ≤ γ̃ (τ) .

That is, if we renormalize the time parameter τ of γ (τ) so that γ and γ̃ agree along the ith
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coordinate, then γ is dominated by γ̃ via school i at all times τ ∈ [0, t], and is also dominated via

school j at time t.

Proof. The idea is that if we take the smallest function g such that there exists a coordinate i such

that for all τ sufficiently small γi (g (τ)) = γ̃i (τ), then γ (g (τ)) ≤ γ̃ (τ) for all τ sufficiently small.

The lemma then follows from continuity. We make this precise.

Fix a coordinate i. Let g(i) be the renormalization of γ so that γ and γ̃ agree along the ith

coordinate, i.e. γi
(
g(i) (τ)

)
= γ̃i (τ) for all τ .

For all τ , we define the set κ(i)
> (τ) =

{
j | γj

(
g(i) (τ)

)
> γ̃j (τ)

}
of schools j along which the

γ curve renormalized along coordinate i has larger j-value at time τ than γ̃j has at time τ , and

similarly define the set κ(i)
= (τ) =

{
j | γj

(
g(i) (τ)

)
= γ̃j (τ)

}
where the renormalized γ curve is equal

to γ̃. It suffices to show that there exists i, j and a time t such that κ(i)
> (τ) = ∅ for all τ ∈ [0, t]

and j ∈ κ(i)
= (t).

Since γ and γ̃ are continuous, there exists some maximal t(i) > 0 such that the functions κ(i)
> (·)

and κ
(i)
= (·) are constant over the interval

(
0, t(i)

)
. If there exists i such that κ(i)

> (τ) = ∅ for all

τ ∈
(
0, t(i)

)
then by continuity there exists some time t ≤ t

(i) and school j such that j ∈ κ(i)
= (t)

and we are done. Hence we may assume that for all i it holds that κ(i)
> (τ) = C

(i)
> for all τ ∈

(
0, t(i)

)
for some fixed non-empty set C(i)

> . We will show that this leads to a contradiction.

We first claim that if j ∈ C(i)
> , then g(j) (τ) > g(i) (τ) for all τ ∈ (0, t). This is because γ is

non-increasing and γj
(
g(j) (τ)

)
= γ̃j (τ) < γj

(
g(i) (τ)

)
for all τ ∈ (0, t), where the equality follows

from the definition of g(j) and the inequality since j ∈ C(i)
> . But this completes the proof, since it

implies that for all i there exists j such that g(j) (τ) > g(i) (τ) for all τ ∈ (0, t), which is impossible

since there are a finite number of schools i ∈ C.

We are now ready to show that there exists a re-parametrization of γ such that γ always is

dominated by γ̃ via some school.

Lemma B.3. Suppose t ≥ 0 and γ, γ̃ are a pair of non-increasing functions [0, t] → [0, 1]C such

that γ (0) ≤ γ̃ (0) = 1 with equality on at least one coordinate, and 0 = γ (1) ≤ γ̃ (1) with equality
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on at least one coordinate. Then there exists an increasing function g : [0, t]→ R such that for all

τ ≥ 0, there exists a school i such that γ (g (τ)) is dominated by γ̃ (τ) via school i.

Proof. Without loss of generality let us assume that t = 1. Fix a coordinate i. We define g(i)

to be the renormalization of γ so that γ and γ̃ agree along the ith coordinate. Formally, let

t(i) = min {τ | γi (0) ≥ γ̃i (τ)} and define g(i) so that γi
(
g(i) (τ)

)
= γ̃i (τ) for all τ ∈

[
t(i), 1

]
. Let

A(i) be the set of times τ such that γ
(
g(i) (τ)

)
is dominated by γ̃ (τ). The idea is to pick g to be

equal to g(i) in A(i). In order to do this formally, we need to show that the sets A(i) cover [0, 1],

and then turn (a suitable subset of) A(i) into a union of disjoint closed intervals, on each of which

we can define g(·) ≡g(i) (·).

We first show that ∪iA(i) = [0, 1]. Suppose not, so there exists some time τ such that for all

i ∈ X def=
{
k : τ ≥ t(k)

}
there exists j such that γj

(
g(i) (τ)

)
> γ̃j (τ). Note that for such i, j, since

γj is non-increasing this implies that γj (0) ≥ γ̃j (τ), and so the function g(j) (·) is defined at τ , i.e.

there exists g(j) (τ) such that γ̃j (τ) = γj
(
g(j) (τ)

)
. In other words, since γ is non-increasing, for all

i ∈ X there exists j such that g(i) (τ) < g(j) (τ), and since γj (0) ≥ γ̃j (τ) it also holds that j ∈ X.

This is a contradiction since X is finite but non-empty (since γ(0) ≤ γ̃ (0) = 1, with equality on at

least one coordinate).

We now turn (a suitable subset of A(i)) into a union of disjoint closed intervals. By continuity,

A(i) is closed. Consider the closure of the interior of A(i), which we denote by B(i). Since the interior

of A(i) is open, it is a countable union of open intervals, and hence B(i) is a countable union of

disjoint closed intervals. To show that ∪i∈CB(i) = [0, 1], fix a time τ ∈ [0, 1]. As ∪iA(i) = [0, 1],

there exists i such that γ
(
g(i) (τ)

)
≤ γ̃ (τ). Hence we may invoke Lemma B.2 to show that there

exists some school j, time τ > τ and an increasing function g such that γj
(
g
(
g(i) (τ ′)

))
= γ̃j (τ ′)

and γ
(
g
(
g(i) (τ ′)

))
≤ γ̃ (τ ′) for all τ ′ ∈ [τ, τ ]. But by the definition of g(j) (·) this means that

γj
(
g
(
g(i) (τ ′)

))
= γ̃j (τ ′) = γj

(
g(j) (τ ′)

)
for all τ ′ ∈ [τ, τ ], and so g ◦g(i) = g(j) and we have shown

that [τ, τ ] ⊆ B(j). Hence we may write [0, 1] = ∪nTn as a countable union of closed intervals Tn

such that any pair of intervals intersects at most at their endpoints, and each interval Tn is a subset

of B(i) for some i. For each Tn fix some i(n) = i so that Tn ⊆ B(i). Intuitively, this means that at

any time τ ∈ Tn it holds that γ
(
g(i(n)) (τ)

)
is dominated by γ̃ (τ) via school i.
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We now construct a function g that satisfies the required properties as follows. If τ ∈ Tn ⊆ B(i),

let g (τ) = g(i) (τ). Now g is well-defined despite the possibility that Tn ∩ Tm 6= ∅. This is because

if τ is in two different intervals Tn, Tm, then γi(n)
(
g(i(n)) (τ)

)
= γ̃i(n) (τ) ≥ γi(n)

(
g(i(m)) (τ)

)
(by

domination via i (n) and i (m) respectively), and γi(m)
(
g(i(m)) (τ)

)
= γ̃i(m) (τ) ≥ γi(m)

(
g(i(n)) (τ)

)
(by domination via i (m) and i (n) respectively), and so g(i(n)) (τ) ≤ g(i(m)) (τ) ≤ g(i(n)) (τ) and

we can pick one value for g that satisfies all required properties. Now by definition γ (g (τ)) is

dominated by γ̃ (τ) via school i, and moreover g is defined on all of [0, 1] since ∪i∈CB(i) = [0, 1].

This completes the proof.

Lemma B.4. Let C ⊆ C be a set of schools, and let D be a region on which H̃C (x) is irreducible

for all x ∈ D. For each x let A (x) be given by replacing the nth column of H̃C (x)− IC with the all

ones vector 1.4 Then the function f (x) = [0, 0, . . . , 0,−1]A (x)−1 is piecewise Lipschitz continuous

in x.

Proof. It suffices to show that the function which, for each x, outputs the matrix A (x)−1 is piecewise

Lipschitz continuous in x.

Now

H
j|C
i (x) = lim

ε→0

1
ε

∫
θ : rθ≥x,rθ 6≥xi+ε·ei, j�θC

ν (θ) dθ,

where ν (·) is bounded below on its support and piecewise Lipschitz continuous, and the points of

discontinuity lie on the grid. HenceHj|C
i (x) is Lipschitz continuous in x for all i, j, and

∑
kH

k|C
j (x)

nonzero and hence bounded below, and so H̃C (x)i,j is bounded above and piecewise Lipschitz

continuous in x, and therefore so is A (x). Finally, since H̃C (x) is an irreducible row stochastic

matrix for each x ∈ D, it follows that A (x) is full rank and continuous. This is because when

H̃C (x) is irreducible every choice of n− 1 columns of H̃C (x)− IC gives an independent set whose

span does not contain the all ones vector 1C . Therefore if we let A (x) be given by replacing the

nth column in H̃C (x)− IC with 1C , then A (x) has full rank.

Since A (x) is full rank and continuous, in each piece det (A (x)) is bounded away from 0, and

so A (x)−1 is piecewise Lipschitz continuous, as required.

4IC is the identity matrix with rows and columns indexed by the elements in C.
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Connection to Continuous Time Markov Chains

In this section, we formalize the intuition from Appendix 4.4.3. In Appendix 4.4.3, we appealed

to a connection with Markov chain theory to provide a method for solving for all the possible

values of d (x). Specifically, we constructed a continuous time Markov chain with state space C and

transition rates from state i to j equal to Hj
i (x). We argued that if K (x) is the set of recurrent

communication classes of this Markov chain, then the set of valid directions d (x) is identical to the

set of convex combinations of
{

dK
}
K∈K(x)

, where dK is the unique solution to the trade balance

equations (4.2) restricted to K. We present the relevant definitions, results and proofs here in full.

Let us first present some definitions from Markov chain theory.5 A square matrix P is a right-

stochastic matrix if all the entries are non-negative and each row sums to 1. A probability vector is

a vector with non-negative entries that add up to 1. Given a right-stochastic matrix P , the Markov

chain with transition matrix P is the Markov chain with state space equal to the column/row

indices of P , and a probability Pij of moving to state j in one time step, given that we start in

state i. Given two states i, j of a Markov chain with transition matrix P , we say that states i and

j communicate if there is a positive probability of moving to state i to state j in finite time, and

vice versa.

For each Markov chain, there exists a unique decomposition of the state space into a sequence

of disjoint subsets C1, C2, . . . such that for all i, j, states i and j communicate if and only if they are

in the same subset Ck for some k. Each subset Ck is called a communication class of the Markov

chain. A Markov chain is irreducible if it only has one communication class. A state i is recurrent

if, starting at i and following the transition matrix P , the probability of returning to state i is 1.

A communication class is recurrent if it contains a recurrent state.

The following proposition gives a characterization of the stationary distributions of a Markov

chain. We refer the reader to any standard stochastic processes textbook (e.g. Karlin and Taylor

(1975)) for a proof of this result.

Proposition B.1. Suppose that P is the transition matrix of a Markov chain. Let K be the set

5See standard texts such as Karlin and Taylor (1975) for a more complete treatment.
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of recurrent communication classes of the Markov chain with transition matrix P . Then for each

recurrent communication class K ∈ K, the equation π = πP has a unique solution πK such that

||πK || = 1 and supp
(
πK
)
⊆ K. Moreover, the support of πK is equal to K. In addition, if

||π|| = 1 and π is a solution to the equation π = πP, then π is a convex combination of the vectors

in {πK}K∈K.

To make use of this proposition, define at each point x and for each set of schools C a Markov

chain MC (x) with transition matrix H̃C (x). Note that this is equivalent to taking the embedded

discrete-time Markov chain of a continuous-time Markov chain with transition rates Hj|C
i (x) for i 6=

j, and transition rates Hj|C
j (x) = v (where v ≥ maxj∈C

(∑
k∈C H

k|C
j (x)

)
is the normalization term

used to construct H̃C (x)). We will relate the valid directions d (x) to the recurrent communication

classes of MC (x), where C is the set of available schools. We will need the following notation and

definitions. Given a vector v indexed by C, a matrix Q with rows and columns indexed by C and

subsets K,K ′ ⊆ C of the indices, we let vK denote the restriction of v to the coordinates in K, and

we let QK,K′ denote the restriction of Q to rows indexed by K and columns indexed by K ′.

The following lemma characterizes the recurrent communication classes of the Markov chain

MC (x) using the properties of the matrix H̃C (x), and can be found in any standard stochastic

processes text.

Lemma B.5. Let C be the set of available school at a point x. Then a set K ⊆ C is a recurrent

communication class of the Markov chain MC (x) if and only if H̃C (x)K,K is irreducible and

H̃C (x)K,C\K is the zero matrix.

It is easy to see that the same result holds when we replace H̃C by HC .

The following lemma allows us to characterize the valid directions d in terms of the matrix

H̃C (x).

Lemma B.6. The vector d is a valid direction at x with available schools C if and only if

d · 1 = −1 and d = d · H̃C (x) .
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Proof. It suffices to show that d = d · H̃C (x) if and only if

∑
k∈C

dk ·H
i|C
k (x) =

∑
k∈C

di ·Hk|C
i (x) ∀i ∈ C.

Now

d = d · H̃C (x)

⇔di =
∑
k∈C

dk · H̃
i|C
k (x) ∀i ∈ C

⇔di =
∑
k∈C

dk ·
(1
v
H
i|C
k (x) + 1i=k

(
1− vi

v

))
∀i ∈ C

⇔di ·
vi
v

=
∑
k∈C

dk ·
(1
v
H
i|C
k (x)

)
∀i ∈ C

⇔di ·
∑
k∈C

H
k|C
i (x) =

∑
k∈C

dk ·H
i|C
k (x) ∀i ∈ C

which concludes the proof.

Proposition B.1 and Lemmas B.6 and B.5 allow us to characterize the valid directions d (x).

Theorem B.1. Let C be the set of available schools, and let K (x) be the set of subsets K ⊆ C for

which H̃C (x)K,K is irreducible and H̃C (x)K,C\K is the zero matrix. Then for each K ∈ K (x) the

equation d = d · H̃C (x) has a unique solution dK that satisfies dK · 1 = −1 and supp
(
dK
)
⊆ K,

and its projection onto its support K has the form

(
dK
)
K

= [0, 0, . . . , 0,−1]ACK (x)−1 ,

where ACK (x) is the matrix obtained by replacing the (|K| − 1)th column of H̃C (x)K,K − IK with

the all ones vector 1K .

Moreover, if d · 1 = −1 and d is a solution to the equation d = d · H̃C (x) , then d is a convex

combination of the vectors in {dK}K∈K(x).

Proof. Proposition B.5 shows that the sets K are precisely the recurrent sets of the Markov chain

with transition matrix H̃ (x). Hence uniqueness of the dK and the fact that d is a convex combina-
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tion of dK follow directly from Proposition B.1. The form of the solution dK follows from Lemma

B.1.

This has the following interpretation. Suppose that there is a unique recurrent communication

class K, such as when η has full support. Then there is a unique infinitesimal continuum trading

cycle of students, specified by the unique valid direction d satisfying d = d · H̃ (x). Moreover,

students in the cycle trade seats from every school in K. Any school not in K is blocked from

participating, since there is not enough demand to fill the seats they are offering. When there

are multiple recurrent communication classes, each of the dK gives a unique infinitesimal trading

cycle of students, corresponding to those who trade seats in K. Moreover, these trading cycles are

disjoint. Hence the only multiplicity that remains is to decide the order, or the relative rate, at

which to clear these cycles. We will show in Appendix B.1 that, as in the discrete setting, the order

in which cycles are cleared does not affect the final allocation.

Proof of Theorem 4.2

We first show that there exist solutions p, γ, t to the marginal trade balance equations and capacity

equations. The proof relies on selecting appropriate valid directions d (x) and then invoking the

Picard-Lindelöf theorem to show existence.

Specifically, let C be the set of available schools, fix a point x, and consider the set of vectors d

such that d · H̃C (x) = d. Then it follows from Theorem B.1 that if d (x) is the valid direction from

x with minimal support under the shortlex order, then d (x) = dK(x) for the element K (x) ∈ K (x)

that is the smallest under the shortlex ordering.6 As the density ν (·) defining η (·) is Lipschitz

continuous, it follows that K (·) and K (·) are piecewise constant. Hence we may invoke Lemma

B.4 and the form of d (·) as given in Lemma B.1 to conclude that d (·) is piecewise Lipschitz within

each piece, and hence piecewize Lipschitz in [0, 1]C . Since d (·) is piecewise Lipschitz, it follows from

the Picard-Lindelöf theorem that there exists a unique function γ (·) satisfying dγ(t)
dt = d (γ (t)). It

follows trivially that γ satisfies the marginal trade balance equations, and since we have assumed

6We choose the shortlex ordering to ensure that we choose valid directions corresponding to a single recurrent
communication class, rather than unions of recurrent communication classes.
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that all students find all schools acceptable and there are more students than seats it follows that

there exist stopping times t(i) and cutoffs pib.

Proof of the Uniqueness of the TTC Allocation In this section, we prove the uniqueness

claim in Theorem 4.2, that any two valid TTC paths give equivalent allocations. The intuition for

the result is the following. The connection to Markov chains shows that having multiple possible

valid directions in the continuum corresponds to having multiple possible trade cycles in the discrete

model. Hence the only multiplicity in choosing valid TTC directions is whether to implement one

set of trades before the others, or to implement them in parallel at various relative rates. We can

show that the set of cycles is independent of the order in which cycles are selected, or equivalently

that the sets of students who trade with each other is independent of the order in which possible

trades are executed. It follows that any pair of valid TTC paths give the same final allocation.

We remark that the crux of the argument is similar to what shows that discrete TTC gives a

unique allocation. However, the lack of discrete cycles and the ability to implement sets of trades

in parallel both complicate the argument and lead to a rather technical proof.

We first formally define cycles in the continuum setting, and a partial order over the cycles

corresponding to the order in which cycles can be cleared under TTC. We then define the set of

cycles Σ (γ) associated with a valid TTC path γ. Finally, we show that the sets of cycles associated

with two valid TTC paths γ and γ′ are the same, Σ (γ) = Σ (γ′).

Definition B.2. A (continuum) cycle σ = (K,x, x) is a set K ⊆ C and a pair of vectors x ≤ x in

[0, 1]C . The cycle σ is valid for available schools {C (x)}x∈[0,1]C if K ∈ KC(x) (x) ∀x ∈ (x, x].

Intuitively, a cycle is defined by two time points in a run of TTC, which gives a set of students,7

and the set of schools they most desire. A cycle is valid if the set of schools involved is a recurrent

communication class of the associated Markov chains.8 We say that a cycle σ = (K,x, x) appears

7The set of students is given by taking the difference between two nested hyperrectangles, one with upper coor-
dinate x and the other with upper coordinate x.

8Note that we consider validity only in terms of whether the schools are the appropriate schools for a trading
cycle, and not in terms of the feasibility of trade balance for the students in the cycle.
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at time t in TTC (γ) if K ∈ KC(γ(t)) (γ (t)) and γi (t) = xi for all i ∈ K. We say that a student θ

is in cycle σ if rθ ∈ (x, x]9, and a school i is in cycle σ if i ∈ K.

Definition B.3 (Partial order over cycles). The cycle σ = (K,x, x) blocks the cycle σ′ = (K ′, x′, x′),

denoted by σ B σ′, if at least one of the following hold:

(Blocking student) There exists a student θ in σ′ who prefers a school in K to all those in K ′,

i.e. there exist θ and i ∈ K \K ′ such that i �θ i′ for all i′ ∈ K ′.

(Blocking school) There exists a school in σ′ that prefers a positive measure of students in σ to

all those in σ′, i.e. there exists i ∈ K ′ such that η
(
θ | θ in σ, rθi > x′i

)
> 0.10

Let us now define the set of cycles associated with a run of TTC. We begin with some ob-

servations about Hb|C
i (·) and H̃C (·)bi. For all b, i ∈ C the function H

b|C
i (·) is right-continuous

on [0, 1]C , Lipschitz continuous on R for all R ∈ R and uniformly bounded away from zero on

its support. Hence 1
(
H
b|C
i (·)

)
is constant on R for all R ∈ R. It follows that H̃C (·)bi is also

right-continuous, and Lipschitz continuous on R for all R ∈ R. Moreover, there exists some finite

rectangular subpartition R′ of R such that for all C ⊆ C the function 1
(
H̃C (·)

)
is constant on R

for all R ∈ R′.

Definition B.4. Let R′ denote the minimal rectangular subpartition of R such that for all C ⊆ C

the function 1
(
H̃C (·)

)
is constant on R for all R ∈ R′.

For x ∈ [0, 1]C and C ⊆ C, let KC (x) be the recurrent communication classes of the Markov

chain MC (x). The following lemma follows immediately from Proposition B.5, since 1
(
H̃C (·)

)
is

constant on R ∀R ∈ R′, and recurrent communication classes depend only on 1
(
H̃C

)
.

Lemma B.7. KC (·) is constant on R for every R ∈ R′.

For each K ∈ KC (x), let dK (x) be the unique vector satisfying d = dH̃C (x), which exists by

Theorem B.1.

9Recall that since rθ, x and x are vectors, this is equivalent to saying that rθ 6≤ x and rθ ≤ x.
10For i to block the cycle σ it is necessary but not sufficient that xi > x′i, since there also need to be students in σ

with the intermediate ranks at school i.
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Let γ be a TTC path, and assume that the schools are labeled in order. It follows that for all

x there exists ` such that C (x) = C(`) def= {`, `+ 1, . . . , |C|}. For each set of schools K ⊆ C, let

T (`) (K, γ) be the set of times τ such that C (γ (τ)) = C(`) and K is a recurrent communication

class for H̃C(l) (γ (τ)). Since γ is continuous and weakly decreasing, it follows from Lemma B.7 that

T (`) (K, γ) is the finite disjoint union of intervals of the form [t, t). Let I
(
T (`) (K, γ)

)
denote the

set of intervals in this disjoint union. We may assume that for each interval T , γ (T ) is contained

in some hyperrectangle R ∈ R′.11

For a time interval T = [t, t) ∈ I
(
T (`) (K, γ)

)
, we define the cycle σ (T ) = (K,x (T ) , x (T )) as

follows. Intuitively, we want to define it simply as σ (T ) = (K, γ (t) , γ (t)), but in order to minimize

the dependence on γ, we define the endpoints x (T ) and x (T ) of the interval of ranks to be as close

together as possible, while still describing the same set of students (up to a set of η-measure 0).

Define

x (T ) = max
{
x : γ (t) ≤ x ≤ γ (t) , η

(
θ : Chθ

(
C(`)

)
∈ K, rθ ∈ (x, γ (t)]

)
= 0

}
,

x (T ) = min
{
x : γ (t) ≤ x ≤ γ (t) : η

(
θ : Chθ

(
C(`)

)
∈ K, rθ ∈ (γ (t) , x]

)
= 0

}
,

to be the points chosen to be maximal and minimal respectively such that the set of students

allocated by γ during the time interval T has the same η-measure as if γ (t) = x (τ) and γ (t) =

x (τ).12 In other words, x (τ) and x (τ) are chosen to be respectively maximal and minimal under

the lexicographical order such that

η
((
∪i∈KT i (γ; t) \ T i (γ; t)

)
\
{
θ : Chθ

(
C(`)

)
∈ K, rθ ∈ (x (T ) , x (T )]

})
= 0.

In a slight abuse of notation, if σ = σ (T ) we will let x (σ) denote x (T ) and x (σ) denote x (T ).

Definition B.5. The set of cycles cleared by TTC (γ) in round `, denoted by Σ(`) (γ), is given by

Σ(`) (γ) :=
⋃

K⊆C(`)

⋃
T∈I(T (`)(K,γ))

σ (T ) .

11This is without loss of generality, since if γ (T ) is not contained we can simply partition T into a finite number
of intervals ∪R∈R′γ−1 (γ (T ) ∩R), each contained in a hyperrectangle in R′.

12In order to take the maximum and minimum of the set of possible values for x and x respectively we order the
elements of [0, 1]C lexicographically.
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The set of cycles cleared by TTC (γ), denoted by Σ (γ), is the set of cycles cleared by TTC (γ) in

some round `,

Σ (γ) :=
⋃
`

Σ(`) (γ) .

For any cycle σ ∈ Σ (γ) and time τ we say that the cycle σ is clearing at time τ if γ (τ) 6≤ x (σ)

and γ (τ) 6> x (σ). We say that the cycle σ is cleared at time τ or finishes clearing at time τ if

γ(l) (τ) ≤ x (σ) with at least one equality. We remark that for any TTC path γ there may be

multiple cycles clearing at a time τ , each corresponding to a different recurrent set. For any TTC

path γ the set Σ (γ) is finite.

Fix two TTC paths γ and γ′. Our goal is to show that they clear the same sets of cycles,

Σ (γ) = Σ (γ′), or equivalently that Σ (γ)∪Σ (γ′) = Σ (γ)∩Σ (γ′). We will do this by showing that

for every cycle σ ∈ Σ (γ) ∪ Σ (γ′), if all cycles in Σ (γ) ∪ Σ (γ′) that block σ are in Σ (γ) ∩ Σ (γ′),

then σ ∈ Σ (γ) ∩ Σ (γ′). We first show that this is true in a special case, which can be understood

intuitively as the case when the cycle σ appears during the run of TTC (γ) and also appears during

the run of TTC (γ′).

Lemma B.8. Let E = (C,Θ, η, q) be a continuum economy, and let γ and γ′ be two TTC paths for

this economy. Let K ⊆ C and t be such that at time t, γ (γ′) has available schools C (C ′), the paths

γ, γ′ are at the same point when projected onto the coordinates K, i.e. γ (t)K = γ′ (t)K , and K

is a recurrent communication class of MC (γ (t)) and of MC′ (γ′ (t)). Suppose that for all schools

i ∈ K and cycles σ′ B σ involving school i, if σ′ ∈ Σ (γ), then σ′ is cleared in TTC (γ′), and vice

versa. Suppose also that cycle σ = (K,x, x) is cleared in TTC (γ), γ (t) = x, and measure 0 of σ

has been cleared by time t in TTC (γ′). Then σ is also cleared in TTC (γ′).

Proof. We define the ‘interior’ of the cycle σ by X = {x : xi ≤ xi ≤ xi ∀i ∈ K, xi′ ≥ xi′ ∀i′ 6∈ K}.

Fix a time u such that γ′ (u) ∈ X and let D′ denote the set of available schools at time u in

TTC (γ′). Then we claim that K is a recurrent communication class of MD′ (γ′ (u)), and that a

similar result is true for γ and a similarly defined D. The claim for γ,D follows from the fact that σ

is cleared in TTC (γ), σ ∈ Σ (γ). It remains to show that the claim for γ′, D′ is true. Formally, by

Lemma B.5 it suffices to show that H̃D′ (x)K,K is irreducible and H̃D′ (x)K,D′\K is the zero matrix.
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We first examine the differences between the matrices H̃C′ (γ′ (t)) and H̃D′ (γ′ (u)). Since K

is a recurrent communication class of MC′ (γ′ (u)), it holds that there are no transitions from

K to states outside of K, i.e. 1
(
H̃C′ (γ′ (u))K,C′\K

)
= 0. Since K ⊆ D′ ⊆ C ′ it follows that

1
(
H̃D′ (γ′ (u))K,D′\K

)
= 0. Moreover, since 1

(
H̃C′ (γ′ (u))K,C\K

)
= 0, all students’ top choice

schools out of C ′ or D′ are the same (in K), and so H̃C′ (γ′ (u))K,K = H̃D′ (γ′ (u))K,K and both

matrices are irreducible. Hence K is a recurrent communication class of MD′ (γ′ (u)).

We now invoke Theorem B.1 to show that in each of the two paths, all the students in the

cycle σ clear with each other. Specifically, while the path γ is in the ‘interior’ of the cycle, that is

γ (τ) ∈ X, it follows from Theorem B.1 that the projection of the gradient of γ to K is a rescaling

of some vector dK (γ (τ)), where dK (·) depends on H̃ (·) but not on γ. Similarly, while γ′ (τ ′) ∈ X,

it holds that the projection of the gradient of γ′ to K is a rescaling of the vector dK (γ′ (τ ′)), for the

same function dK (·). Hence if we let πK (x) denote the projection of a vector x to the coordinates

indexed by schools in K, then πK
(
γ
(
γ−1 ((x, x])

))
= πK

(
γ′
(
γ′−1 ((x, x])

))
.

Recall that we have assumed that for all schools i ∈ K and cycles σ′ B σ involving school

i, if σ′ ∈ Σ (γ), then σ′ is cleared in TTC (γ′), and vice versa. This implies that for all i ∈ K,

the measure of students assigned to i in time [0, t] under TTC (γ) is the same as the measure

of students assigned to i in time [0, t] under TTC (γ′). Moreover, we have just shown that for

any x ∈ γ
(
γ−1 ((x, x])

)
, x′ ∈ γ′

(
γ′−1 ((x, x])

)
such that xK = x′K , if we let τ = γ−1 (x) and

τ ′ = (γ′)−1 (x′) then the same measure of students are assigned to i in time [t, τ ] under TTC (γ)

as in time [t, τ ′] under TTC (γ′). Since TTC (γ) clears σ the moment it exits the interior of σ, this

implies that TTC (γ′) also clears σ the moment it exits the interior.

We are now ready to prove that the TTC allocation is unique. As the proof takes several steps,

we separate it into several smaller claims for readability.

Proof of uniqueness. Let γ and γ′ be two TTC paths, and let the sets of cycles associated with

TTC (γ) and TTC (γ′) be Σ = Σ (γ) and Σ′ = Σ (γ′) respectively. We will show that Σ = Σ′.

Let σ = (K,x, x) be a cycle in Σ ∪ Σ′ such that the following assumption holds:

Assumption B.1. For all σ̃ B σ it holds that either σ̃ is in both Σ and Σ′ or σ̃ is in neither.
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We show that if σ is in Σ ∪ Σ′ then it is in Σ ∩ Σ′. Since Σ and Σ′ are finite sets, this will be

sufficient to show that Σ = Σ′. Without loss of generality we may assume that σ ∈ Σ.

We give here an overview of the proof. Let ΣBσ = {σ̃ ∈ Σ : σ̃ B σ} denote the set of cycles

that are comparable to σ and cleared before σ in TTC (γ). Assumption B.1 about σ implies that

ΣBσ ⊆ Σ′. We will show that this implies that no students in σ start clearing under TTC (γ′) until

all the students in σ have the same top available school in TTC (γ′) as when they clear in TTC (γ),

or in other words, that if some students in σ start clearing under TTC (γ′) at time t, then the cycle

σ appears at time t. We will then show that once some of the students in σ start clearing under

TTC (γ′) then all of them start clearing. It then follows from Lemma B.8 that σ clears under both

TTC (γ) and TTC (γ′).

Let ` denote the round of TTC (γ) in which σ is cleared, C (x) = C(`) ∀x ∈ σ. We define the

times in TTC (γ) and TTC (γ′) when all the cycles in ΣBσ are cleared, by

tBσ = min
{
t : γ (t) ≤ ˜(x) for all σ̃ =

(
K̃, x̃, ˜(x)

)
∈ ΣBσ and H̃ (γ (t)) 6= 0

}
,

t
′
Bσ = min

{
t : γ′ (t) ≤ ˜(x) for all σ̃ =

(
K̃, x̃, ˜(x)

)
∈ ΣBσand H̃ (γ′ (t)) 6= 0

}
.

We define also the times in TTC (γ) when σ starts to be cleared and finishes clearing,

tσ = max {t : γ (t) ≥ x} , tσ = min {t : γ (t) ≤ x}

and similarly define the times t′σ = max {t : γ′ (t) ≥ x} , tσ = min {t : γ′ (t) ≤ x} for TTC (γ′).

We remark that part of the issue, carried over from the discrete setting, is that these times tBσ

and tσ might not match up, and similarly for t′Bσ and t′σ. In particular, other incomparable cycles

could clear at interwoven times. In the continuum model, there may also be sections on the TTC

curve at which no school is pointing to a positive density of students. However, all the issues in

the continuum case can be addressed using the intuition from the discrete case.

We first show in Claims (B.1), (B.2) and (B.3) that in both TTC (γ) and TTC (γ′), after all

the cycles in ΣBσ are cleared and before σ starts to be cleared, the schools pointed to by students

in σ and the students pointed to by schools in K remain constant (up to a set of η-measure 0).
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Claim B.1. Let σ = (K,x, x) ∈ Σ satisfy Assumption B.1. Suppose there is a school i that some

student in σ prefers to all the schools in K. Then school i is unavailable in TTC (γ) at any time

t ≥ tBσ, and unavailable in TTC (γ′) at any time t ≥ t′Bσ.

Proof. Suppose that school i is available in TTC (γ) after all the cycles in ΣBσ are cleared. Then

there exists a cycle σ̃ clearing at time t̃ ∈ (tBσ, tσ) in TTC (γ) involving school i. But this means

that σ̃ B σ so σ̃ ∈ ΣBσ, which is a contradiction. Hence the measure of students in ΣBσ who are

assigned to school i is qi, and the claim follows.

Claim B.2. In TTC (γ), let Θ̃ denote the set of students cleared in time [tBσ, tσ) who are preferred

by some school in i ∈ K to the students in σ, that is, θ satisfying rθi > xi. Then η
(
Θ̃
)

= 0.

Proof. Suppose η
(
Θ̃
)
> 0. Then, since there are a finite number of cycles in Σ (γ), there exists

some cycle σ̃ =
(
K̃, x̃, ˜(x)

)
∈ Σ (γ) containing a positive η-measure of students in Θ̃. We show

that σ̃ is cleared before σ. Since σ̃ contains a positive η-measure of students in Θ̃, it holds that

there exist t1, t2 ∈ [tBσ, tσ) and a school i ∈ K for which x̃i ≤ γ (t1)i < γ (t2)i ≤ ˜(x)i. Hence

xi ≤ γ (tσ)i ≤ γ (t1)i < γ (t2)i ≤ x̃i, so σ̃ B σ as claimed. But by the definition of t1, t2 it holds

that ˜(x)i ≤ γ (t1)i < γ (t2)i ≤ γ (tBσ)i , so σ̃ is not cleared before tBσ, contradicting the definition

of tBσ.

Claim B.3. In TTC (γ′), let Θ̃ denote the set of students cleared in time
[
t
′
Bσ, t

′
σ

)
who are preferred

by some school in i ∈ K to the students in σ, that is, θ satisfying rθi > xi. Then η
(
Θ̃
)

= 0.

Proof. Suppose η
(
Θ̃
)
> 0. Then, since there are a finite number of cycles in Σ (γ′), there exists

some cycle σ̃ =
(
K̃, x̃, ˜(x)

)
∈ Σ (γ′) containing a positive η-measure of students in Θ̃. We show

that σ̃ is cleared before σ. Since σ̃ contains a positive η-measure of students in Θ̃, it holds that

there exist t1, t2 ∈
[
t
′
Bσ, t

′
σ

)
for which x̃i ≤ γ′ (t1)i < γ′ (t2)i ≤ ˜(x)i. Hence xi ≤ γ′ (t′σ)i ≤ γ′ (t1)i <

γ′ (t2)i ≤ x̃i,so σ̃ B σ and must be cleared before σ. Moreover, ˜(x)i ≤ γ′ (t1)i < γ′ (t2)i ≤ γ
(
t
′
Bσ

)
i
,

so it follows from the definition of t′Bσ that σ̃ 6∈ ΣBσ, but since we assumed that σ̃ ∈ Σ′ it follows

that σ̃ ∈ Σ′ \ Σ, contradicting assumption B.1 on σ.
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We now show in Claims (B.4) and (B.5) that in both TTC (γ) and TTC (γ′) the cycle σ starts

clearing when students in the cycle σ start clearing. We formalize this in the continuum model by

considering the coordinates of the paths γ, γ′ at the time tσ when the cycle σ starts clearing, and

showing that, for all coordinates indexed by schools in K, this is equal to x.

Claim B.4. γK (tσ) = xK .

Proof. The definition of tσ implies that γ (tσ)i ≥ xi for all i ∈ K. Suppose there exists i ∈ K

such that γ (tσ)i > xi. Since σ starts clearing at time tσ, for all ε > 0 school i must point

to a non-zero measure of students in σ over the time period [tσ, tσ + ε], whose scores rθi satisfy

γ (tσ)i ≥ rθi ≥ γ (tσ + ε)i. For sufficiently small ε the continuity of γ (·) and the assumption that

γ (tσ)i > xi implies that rθi ≥ γ (tσ + ε)i > xi , which contradicts the definition of xi.

Claim B.5. γ′K (t′σ) = xK .

As in the proof of Claim (B.4), the definition of t′σ implies that γ′ (t′σ)i ≥ xi = γ (tσ)i for all

i ∈ K. Since we cannot assume that σ is the cycle that is being cleared at time t′σ in TTC (γ′), the

proof of Claim (B.5) is more complicated than that of the Claim (B.4) and takes several steps.

We rely on the fact that K is a recurrent communication class in TTC (γ), and that all cycles

comparable to σ are already cleared in TTC (γ′). The underlying concept is very simple in the

discrete model, but is complicated in the continuum by the definition of the TTC path in terms of

specific points, as opposed to measures of students, and the need to account for sets of students of

η-measure 0.

Let K= be the set of coordinates in K at which equality holds, γ′ (t′σ)i = γ (tσ)i, and let K> be

the set of coordinates in K where strict inequality holds, γ′ (t′σ)i > γ (tσ)i. It suffices to show that

K> is empty. We do this by showing that under TTC (γ′) at time t′σ, every school in K> points to

a zero density of students, and some school in K= points to a non-zero density of students, and so if

both sets are non-empty this contradicts the marginal trade balance equations. In what follows, let

C denote the set of available schools in TTC (γ) at time tσ, and let C ′ denote the set of available

schools in TTC (γ′) at time t′σ.
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Claim B.6. Suppose that i ∈ K>. Then there exists ε > 0 such that in TTC (γ′), the set of students

pointed to by school i in time [t′σ, t′σ + ε] has η-measure 0, i.e. H̃C′ (γ′ (t′σ))ib = 0.

Proof. Since i ∈ K> it holds that γ′ (t′σ)i > xi, and since γ′ is continuous, for sufficiently small ε it

holds that γ′ (t′σ + ε)i > xi. Hence the set of students that school i points to in time [t′σ, t′σ + ε] is

a subset of those with score rθi satisfying γ′ (t′σ)i ≥ rθi ≥ γ′ (t′σ + ε)i > xi. By assumption B.1 and

Claim (B.3) any cycle σ̃ clearing some of these students contains at most measure 0 of them, since

σ̃ is cleared after ΣBσ and before σ. Since there is a finite number of such cycles the set of students

has η-measure 0.

Claim B.7. If i ∈ K=, b ∈ K and H̃C (γ (tσ))ib > 0, then H̃C′ (γ′ (t′σ))ib > 0.

Proof. Since every H̃C (γ′ (t′σ))ib is a positive multiple of Hb|C
i (γ′ (t′σ)), it suffices to show that

H
b|C′
i (γ′ (t′σ)) > 0. Let Σ′− (ε) def= (γ′ (t′σ)− ε · ei, γ′ (t′σ)]. We first show that for sufficiently small

ε it holds that ηb|C
(
Σ′− (ε)

)
= Ω (ε). Let Σ− (ε) def=

(
γ (tσ)− ε · ei, γ (tσ)

]
. Since H̃C (γ (tσ))ib > 0,

it follows from the definition of Hb|C
i (·) that Hb|C

i (x) .= limε→0
1
εη

b|C (Σ− (ε)) > 0 and hence

ηb|C (Σ− (ε)) = Ω (ε) for sufficiently small ε. Moreover, at most η-measure 0 of the students in Σ− (ε)

are not in the cycle σ. Finally, Σ′− (ε) ⊇ Σ− (ε) \ Σ+ (ε), where Σ+ (ε) def= (γ (tσ) + ε · ei, γ (tσ)].

If ε < xi − xi then η-measure 0 of the students in Σ+ (ε) are not cleared by cycle σ. Hence

ηb|C
(
Σ′− (ε)

)
≥ ηb|C (Σ− (ε))− ηb|C (Σ+ (ε)) = Ω (ε).

Suppose for the sake of contradiction that Hb|C′
i (γ′ (t′σ)) = limε→0

1
εη

b|C′
(
Σ′− (ε)

)
= 0, so that

ηb|C
′ (Σ′− (ε)

)
= o (ε) for sufficiently small ε. Then there is a school b′ 6= b and type θ ∈ Θb|C∩Θb′|C′

such that there is an η-measure Ω (ε) of students in σ with type θ. Since b′ ∈ C ′ it is available in

TTC (γ′) at time t′σ, and by Claim (B.1) it holds that b′ ∈ K . Moreover, θ ∈ Θb|C implies that θ

prefers school b to all other schools in K, so b = b′, contradiction.

Proof of Claim (B.5). Suppose for the sake of contradiction that K> is nonempty. Since some

students in σ are being cleared in TTC (γ′) at time t′σ, by Claim (B.3) there exists i ∈ K = K=∪K>

and b ∈ K such that H̃C′ (γ′ (t′σ))ib > 0. If i ∈ K> this contradicts Claim (B.6). If i ∈ K=, then

H̃C′ (γ (tσ))ib > 0 and so by Claim (B.1) H̃C (γ (tσ))ib > 0. Moreover, K = K= ∪K> is a recurrent
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communication class of H̃C (γ (tσ)), so there exists a chain i = i0 − i1 − i2 − · · · − in such that

H̃C (γ (tσ))iiii+1
> 0 for all i < n, ii ∈ K= for all i < n − 1, and in−1 ∈ K>. By Claim (B.7)

H̃C′ (γ′ (t′σ))iiii+1
> 0 for all i < n. But since in−1 ∈ K>, by Claim (B.6) H̃C′ (γ (t′σ))in−1in

= 0,

which gives the required contradiction.

Proof that Σ = Σ′. We have shown in Claims (B.4) and (B.5) that for our chosen σ = (K,x, x),

it holds that γ (tσ)K = γ′ (t′σ)K = xK . Invoking Claims (B.2) and (B.3) and Lemma B.8 shows

that σ is cleared under both TTC (γ) and TTC (γ′). Hence Σ = Σ′, as required.

Proof of Theorem 4.3

Consider two continuum economies E = (C,Θ, η, q) and Ẽ = (C,Θ, η̃, q), where the measures η and

η̃ satisfy the assumptions given in Section 4.3. Suppose also that the measure η and η̃ have total

variation distance ε and have full support. Let γ be a TTC path for economy E , and let γ̃ be a TTC

path for economy Ẽ . Consider any school i and any points x = γ (t) ∈ Im (γ) , x̃ = γ̃
(
t̃
)
∈ Im (γ̃)

such that xi = x̃i, and both are cleared in the first round of their respective TTC runs, t ≤ t(1)

and t̃ ≤ t̃(1). We show that the set of students allocated to school i under TTC (γ) from time 0 to

t differs from the set of students allocated to school i under TTC (γ̃) from time 0 to t̃ by a set of

measure O(ε|C|).

Proposition B.2. Suppose that γ, γ̃ are TTC paths in one round of the continuum economies E

and Ẽ respectively, where the set of available schools C is the same in these rounds of TTC (γ) and

TTC (γ′). Suppose also that γ starts and ends at x, y, and γ̃ starts and ends at x̃, ỹ, where there

exist j, k ∈ C such that xj = x̃j, yk = ỹk, and xa ≤ x̃a, ya ≤ ỹa for all a ∈ C. Then for all i ∈ C,

the set of students with ranks in (y, x] ∩ (ỹ, x̃]who are assigned to i under TTC (γ) and not under

TTC (γ̃) has measure O (ε |C|).13

Proof. By Lemma B.3, we may assume without loss of generality that γ and γ̃ are parametrized

such that x = γ (0) , y = γ (1) and x̃ = γ̃ (0) , ỹ = γ̃ (1), and for all times τ ∈ [0, 1] there exists a

school i (τ) such that γ (τ) is dominated by γ̃ (τ) via school i (τ).

13This is according to both measures η and η̃.
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Let Ti = {τ ≤ 1 : i (τ) = i} be the times when γ is dominated by γ̃ via school i. We remark

that, by our construction in Lemma B.3, we may assume that Ti is the countable union of disjoint

closed intervals, and that if i 6= i′ then Ti and Ti′ have disjoint interiors.

Since γ is a TTC path for E and γ̃ is a TTC path for Ẽ , by integrating over the marginal trade

balance equations we can show that the following trade balance equations hold,

η (Ti (γ;Ti)) = η
(
T i|C (γ;Ti)

)
for all i ∈ C. (B.1)

η̃ (Ti (γ̃;Ti)) = η̃
(
T i|C (γ̃;Ti)

)
for all i ∈ C. (B.2)

Since γ is dominated by γ̃ via school j at all times τ ∈ Tj , we have that

Tj (γ;Tj) ⊆ Tj (γ̃;Tj) . (B.3)

Moreover, by the choice of parametrization, ∪jTj = [0, 1] and so, since x ≤ x̃,

∪i,j T i|C (γ;Tj) ⊇ ∪i,jT i|C (γ̃;Tj) . (B.4)

Now since η, η̃ have total variation ε, for every school i it holds that

η
(
T i|C (γ;Ti) \ T i|C (γ̃;Ti)

)
≤ η

(
T i|C (γ;Ti)

)
− η

(
T i|C (γ̃;Ti)

)
+ ε (by (B.4))

= η (Ti (γ;Ti))− η̃ (Ti (γ̃;Ti)) + ε (by (B.1) and (B.2))

≤ 2ε (by (B.3)), (B.5)

Also, for all schools i 6= j, since η has full support and bounded density ν ∈ [m,M ], it holds that

η
(
T i|C (γ;Tj) \ T i|C (γ̃;Tj)

)
≤ M

m
η
(
T j|C (γ;Tj) \ T j|C (γ̃;Tj)

)
. (B.6)

227



Hence, as Tj have disjoint interiors,

η
(
T i|C (γ; 1) \ T i|C (γ̃; 1)

)
=

∑
j∈C

(
η(T i|C (γ;Tj))− η(T i|C (γ̃;Tj)

)
(by (B.4))

≤
∑
j∈C

η
(
T i|C (γ;Tj) \ T i|C (γ̃;Tj)

)
≤

∑
j∈C

M

m
η
(
T j|C (γ;Tj) \ T j|C (γ̃;Tj)

)
(by (B.6))

≤ 2|C|εM
m

(by (B.5)).

That is, given a school i, the set of students assigned to school i with score rθ 6≤ x under γ and

not assigned to school i with score rθ 6≤ x̃ under γ̃ has η-measure O (ε |C|). The result for η̃ follows

from the fact that the total variation distance of η and η̃ is ε.

We are now ready to prove Theorem 4.3.

Proof of Theorem 4.3. Assume without loss of generality that the schools are labeled in order. Let

σ be a permutation such that if we reindex school σ (i) to be school i then the schools are labeled

in order under TTC (γ̃). We show by induction on ` that σ (`) = ` and that for all schools i, the

set of students assigned to i under TTC (γ) by the end of the `th round and not under TTC (γ̃)

by the end of the `th round has η-measure O (ε` |C|). This will prove the theorem.

We first consider the base case ` = 1. Let x = x̃ = γ (0) and y = γ
(
t(1)
)
. Define ỹ ∈ Im (γ̃)

to be the minimal point such that y ≤ ỹ and there exists i such that yi = ỹi. We show that ỹ is

near γ̃
(
t̃(1)
)
, i.e.

∣∣∣ỹ − γ̃ (t̃(1)
)∣∣∣

2
= O (ε). Now by Proposition B.2 the set of students with ranks in

(y, γ (0)] ∩ (ỹ, γ (0)] who are assigned to 1 under TTC (γ) and not under TTC (γ̃) has η̃-measure

O (ε |C|). Hence the residual capacity of school 1 at ỹ under TTC (γ̃) is O (ε |C|), and so since

η̃ has full support and has density bounded from above and below by M and m, it holds that∣∣∣ỹ − γ̃ (t̃(1)
)∣∣∣

2
= O

(
M
m ε |C|

)
. (If the residual capacity is negative we can exchange the roles of γ

and γ̃ and argue similarly.)

Let us now show that the inductive assumption holds. Fix a school i. Then by Proposition

B.2 the set of students with ranks in (y, γ (0)]∩ (ỹ, γ (0)] who are assigned to i under TTC (γ) and
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not under TTC (γ̃) has η̃-measure O (ε |C|). Moreover, since
∣∣∣ỹ − γ̃ (t̃(1)

)∣∣∣
2

= O
(
M
m ε |C|

)
and η̃

has full support and has density bounded from above and below by M and m, the set of students

with ranks in (ỹ, γ̃
(
t̃(1)
)
] assigned to school i by TTC (γ̃) has η̃-measure O (ε |C|). Hence the set

of students assigned to i under TTC (γ) by time t(1) and not under TTC (γ̃) by time t̃(1) has η-

measure O (ε |C|). Moreover, if t(1) < t(2) then for sufficiently small ε it holds that t̃(1) = mini t̃(i),

and otherwise there exists a relabeling of the schools such that this is true, and so σ (1) = 1.

We now show the inductive step, proving for ` + 1 assuming true for 1, 2, . . . , `. By inductive

assumption, for all i the measure of students assigned to i under TTC (γ) and not under TTC (γ̃)

by the points γ
(
t(`)
)
, γ̃
(
t̃(`)
)
is O (ε` |C|) for all i.

Let x = γ
(
t(`)
)
and y = γ

(
t(`+1)

)
. Define x̃ ∈ Im (γ̃) to be the minimal point such that x ≤ x̃

and there exists b such that xb = x̃b. We show that x̃ is near γ̃
(
t̃(`)
)
, i.e.

∣∣∣x̃− γ̃ (t̃(`))∣∣∣
2

= O (ε). Now

by inductive assumption η
({
θ | rθ ∈ (x = γ

(
t(`)
)
, γ̃
(
t̃(`)
)
]
})

= O (ε` |C|) and so
∣∣∣x− γ̃ (t̃(`))∣∣∣

2
=

O (ε). Moreover
∣∣∣x̃b − γ̃b (t̃(`))∣∣∣2 =

∣∣∣xb − γ̃b (t̃(`))∣∣∣2 which we have just shown is O (ε). Finally,

since η has full support and has density bounded from above and below by M and m, it holds that

maxb,i,τ
γ′b(τ)
γ′i(τ) = O

(
M
m

)
and so for all i it holds that

∣∣∣x̃i − γ̃i (t̃(`))∣∣∣ ≤ O (Mm ε).
The remainder of the proof runs much the same as in the base case, with slight adjustments to

account for the fact that x 6= x̃. Define ỹ ∈ Im (γ̃) to be the minimal point such that y ≤ ỹ and

there exists i such that yi = ỹi. We show that ỹ is near γ̃
(
t̃(`+1)

)
, i.e.

∣∣∣ỹ − γ̃ (t̃(`+1)
)∣∣∣

2
= O (ε).

Now by Proposition B.2 the set of students with ranks in (y, x] ∩ (ỹ, x̃] who are assigned to ` + 1

under TTC (γ) and not under TTC (γ̃) has η̃-measure O (ε |C|). This, together with the inductive

assumption that the difference in students assigned to school ` is O (ε` |C|), shows that the residual

capacity of school ` + 1 at ỹ under TTC (γ̃) is O (ε (`+ 1) |C|), and so since η̃ has full support

and has density bounded from above and below by M and m, it holds that
∣∣∣ỹ − γ̃ (t̃(`+1)

)∣∣∣
2

=

O
(
M
m ε (`+ 1) |C|

)
. (If the residual capacity is negative we can exchange the roles of γ and γ̃ and

argue similarly.)

Let us now show that the inductive assumption holds. Fix a school i. Then by Proposition B.2

the set of students with ranks in (y, x]∩ (ỹ, x̃] who are assigned to i under TTC (γ) and not under

TTC (γ̃) has η̃-measure O (ε |C|). Moreover, since
∣∣∣ỹ − γ̃ (t̃(`+1)

)∣∣∣
2

= O
(
M
m ε (`+ 1) |C|

)
and η̃ has
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full support and has density bounded from above and below by M and m, the set of students with

ranks in (ỹ, γ̃
(
t̃(`+1)

)
] assigned to school i by TTC (γ̃) has η̃-measure O (ε (`+ 1) |C|). Hence the

set of students assigned to i under TTC (γ) by time t(`+1) and not under TTC (γ̃) by time t̃(`+1)

has η-measure O (ε (`+ 1) |C|). Moreover if t(`+1) < t(`+2) then for sufficiently small ε it holds that

t̃(`+1) = mini>` t̃(i), and otherwise there exists a relabeling of the schools such that this is true, and

so σ (`+ 1) = `+ 1.

B.2 Omitted Proofs for Section 4.4

B.2.1 Derivation of Marginal Trade Balance Equations

In this section, we show that the marginal trade balance equations (4.2) hold,

∑
k∈C

γ′k (τ) ·H i
k (x) =

∑
k∈C

γ′i (τ) ·Hk
i (x) .

The idea is that the measure of students who trade into a school i must be equal to the measure

of students who trade out of i.

In particular, suppose that at some time τ the TTC algorithm has assigned exactly the set

of students with rank better than x = γ (τ), and the set of available schools is C. Consider the

incremental step of a TTC path γ from γ(τ) = x over ε units of time. The process of cycle clearing

imposes that for any school i ∈ C, the total amount of seats offered by school i from time τ to

τ + ε is equal to the amount of students assigned to i plus the amount of seats that were offered but

not claimed or traded by the student it was over to over that same time period. In the continuum

model the set of seats offered but not claimed or traded is of η-measure 0.14 Hence the set of

students assigned to school i from time τ to τ + ε has the same measure as the set of students who

14A student can have a seat that is offered but not claimed or traded in one of two ways. The first is the seat is
offered at time τ and not yet claimed or traded. The second is that the student that got offered two or more seats
at the same time τ ′ ≤ τ (and was assigned through a trade involving only one seat). Both of these sets of students
are of η-measure 0 under our assumptions.
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were offered a seat at school i in that time,

η
({
θ ∈ Θi|C | rθ ∈ [γ (τ + ε) , γ (τ))

})
=η

({
θ ∈ Θ | ∃τ ′ ∈ [τ, τ + ε] s.t. rθi = γi

(
τ ′
)

and rθ ≤ γ
(
τ ′
)})

,

or more compactly,

η
(
T i|C (γ; [τ, τ + ε])

)
= η (Ti (γ; [τ, τ + ε])) . (B.7)

We now prove that the marginal trade balance equations follow from equation (B.7). Following

the notation in Appendix 4.4.2, for i, j ∈ C, x ∈ [0, 1]C ,α ∈ R we define the set 15

T
j|C
i (x, α) .=

{
θ ∈ Θj|C | rθ ∈ [x− αei, x)

}
.

We may think of T j|Ci (x, α) as the set of the next α students on school i’s priority list who are

unassigned when γ (τ) = x, and want school j. We remark that the sets used in the definition of

the Hj|C
i (x) are precisely the sets T j|Ci (x, α).

We can use the sets T j|Ci (x, α) to approximate the expressions in equation (B.7) involving

Ti (γ; ·) and T i|C (γ; ·).

Lemma B.9. Let γ (τ) = x and for all ε > 0 let δ (ε) = γ (τ)− γ(τ + ε). For sufficiently small ε,
during the interval [τ, τ + ε], the set of students who were assigned to school i is

T i|C (γ; [τ, τ + ε]) =
⋃
j

T
i|C
j (x, δj (ε))

and the set of students who were offered a seat at school i is

Ti (γ; [τ, τ + ε]) =
⋃
k

T
k|C
i

x−∑
i′ 6=i

δi′ (ε) ei
′
, δi (ε)

 ∪∆

for some small set ∆ ⊂ Θ. Further, it holds that lim
τ→0

1
τ · η (∆) = 0, and for any i 6= i′, k 6= k′ ∈ C

we have lim
τ→0

1
τ · η

(
T
k|C
i (x, δi (ε)) ∩ T k|Ci′ (x, δi′ (ε))

)
= 0 and T k|Ci (x, δi (τ)) ∩ T k

′|C
i (x, δi (ε)) = φ.

15We use the notation [x, x) = {z ∈ Rn | xi ≤ zi < xi ∀i } for x, x ∈ Rn, and ei ∈ RC is a vector whose i-th
coordinate is equal to 1 and all other coordinates are 0.
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Proof. The first two equations are easily verified, and the fact that the last intersection is empty is
also easy to verify. To show the bound on the measure of ∆, we observe that it is contained in the set⋃
i′ ∪k

(
T
k|C
i (x, δi (ε)) ∩ T k|Ci′ (x, δi′ (ε))

)
, so it suffices to show that lim

τ→0
1
τ ·η

(
T
k|C
i (x, δi (ε)) ∩ T k|Ci′ (x, δi′ (ε))

)
=

0. This follows from the fact that the density defining η is upper bounded by M , so

η
(
T
k|C
i (x, δi (ε)) ∩ T k|C

i′ (x, δi′ (ε))
)
≤M |γi(τ)− γi (τ + ε)| |γi′(τ)− γi′ (τ + ε)| .

Since for all schools i the function γi is continuous and has bounded derivative, it is also Lipschitz

continuous, so
1
τ
η (∆) ≤ 1

τ
η
(
T
k|C
i (x, δi (ε)) ∩ T k|Ci′ (x, δi′ (ε))

)
≤MLiLi′ε

for some Lipschitz constants Li and Li′ and the lemma follows.

We now now ready to take limits and verify that equation (B.7) implies that the marginal trade
balance equations hold. Let us divide equation (B.7) by δi (ε) = γi (τ) − γi (τ + ε) and take the
limit as ε→ 0. Then on the left hand side we obtain

lim
ε→0

1
δi (ε)η

(
T i|C (γ; [τ, τ + ε])

)
= lim
ε→0

1
δi (ε)η

(⋃
j

T
i|C
j (x, δj (ε))

)
(Lemma B.9)

= lim
ε→0

[∑
j∈C

1
δi (ε)η

(
T
i|C
j (x, δj (ε))

)
+O

((
‖γ (τ)− γ(τ + ε)‖∞

)2
δi (ε)

)]

(as density is bounded, ν < M)

= lim
ε→0

[∑
j∈C

1
δi (ε)η

(
T
i|C
j (x, δj (ε))

)]
(γ Lipschitz continuous)

= lim
ε→0

[∑
j∈C

δj (ε)
δi (ε) ·

1
δj (ε)η

({
θ ∈ Θi|C | rθ ∈ [x− δj (ε) · ej , x)

})]

=
∑
j∈C

γ′j (τ)
γ′i (τ) ·H

i|C
j (x) (by definition of δ and H)

as required. Similarly, on the right hand side we obtain
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lim
ε→0

1
δi (ε)η (Ti (γ; [τ, τ + ε]))

= lim
ε→0

[∑
k∈C

1
δi (ε)η

(
T
k|C
i

(
x−

∑
i′ 6=i

δi′ (ε) ei
′
, δi (ε)

))
+O

((
‖γ (τ + ε)− γ(τ)‖∞

)2
δi (ε)

)]
(Lemma B.9)

= lim
ε→0

[∑
k∈C

1
δi (ε)η

(
T
k|C
i

(
x−

∑
i′ 6=i

δi′ (ε) ei
′
, δi (ε)

))]
(γ is Lipschitz continuous)

= lim
ε→0

[∑
k∈C

1
δi (ε)η

({
θ ∈ Θk|C | rθ ∈ [x− δ (ε) , x−

∑
i′ 6=i

δi′ (ε) ei
′
)

})]

=
∑
k∈C

H
k|C
i (x) (by definition of δ and H)

as required. This completes the proof.

B.3 Omitted Proofs for Applications (Section 4.5)

Throughout this section, we will say that a vector d is a valid direction at point x if d satisfies the

marginal trade balance equations at x, and d · 1 = −1. We will also augment the notation from

Section 4.3 to specify the economy. Specifically, for an economy E = (C,Θ, η, q) let

Di (x|E) = η
({
θ | rθ 6< x, Chθ (C) = i

})

denote the mass of students whose rank at some school j is better than xj and whose first choice

is school i.

Effects of Changes in the Distribution of School Quality

In this section, we prove the results stated in Section 4.5.1. We will assume that the total measure

of students is 1, and speak of student measures and student proportions interchangeably.

Proof of Proposition 4.4. Given quality δ, let η be the measure over Θ and γ, p,
{
t(1), t(2)

}
be

the TTC path, cutoffs and stopping times. Given quality δ̂, let η̂ be the measure over Θ and

γ̂, p̂,
{
t̂(1), t̂(2)

}
be the TTC path, cutoffs and stopping times.
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For each x ∈ [0, 1]2 let d (x) (resp. d̂ (x)) denote the valid direction at x under Eδ (resp. Eδ̂)

with support that is minimal under the order {1} < {1, 2} < {2}. As there are only two schools,

|d1 (x)| ≥
∣∣∣d̂1 (x)

∣∣∣ and |d2 (x)| ≤
∣∣∣d̂2 (x)

∣∣∣ for all x.16 It follows that γ̂ moves faster in the 2 direction

than γ does, i.e. if γ1 (t) = γ̂1
(
t̂
)
then γ2 (t) ≥ γ̂2

(
t̂
)
, and if γ2 (t) = γ̂2

(
t̂
)
then γ1 (t) ≤ γ̂1

(
t̂
)
.

Hence without loss of generality we may assume that the time parameters in the TTC paths are

scaled so that at all times t the path γ̂ is dominated by γ via school 1, i.e. γ1 (t) = γ̂1 (t) and

γ2 (t) ≥ γ̂2 (t) for all t (see Appendix (B.1)).

Suppose for the sake of contradiction that p1
2 < p̂1

2, i.e. γ2
(
t(1)
)
< γ̂2

(
t̂(1)
)
. We may interpret

this as it becoming more difficult to use priority at school 2 to trade into 1 after 2 gets more

popular. We will show that this will also result in more students being assigned under γ by time

t(1) than under γ̂ by time t̂(1). But since school 1 is also more popular under E this means that

more students are assigned to school 1 under TTC (γ|E) than TTC
(
γ̂|Ê

)
, which gives the required

contradiction.

More formally, since γ̂ is dominated by γ via school 1 at time t(1) it follows that γ̂2
(
t(1)
)
≤

γ2
(
t(1)
)
< γ̂2

(
t̂(1)
)
and so t̂(1) < t(1), i.e. school 1 now fills earlier. Hence γ̂1

(
t̂(1)
)
≥ γ̂1

(
t(1)
)

=

γ1
(
t(1)
)
, where the equality comes from the assumption that γ̂ is dominated by γ via school 1 at

time t(1). But this gives the necessary contradiction, as γ̂
(
t̂(1)
)
≥ γ

(
t(1)
)
implies that

q1 = D1
(
γ̂
(
t̂(1)
)
|Eδ̂
)
< D1

(
γ
(
t(1)
)
|Eδ̂
)
≤ D1

(
γ
(
t(1)|Eδ

))
= q1,

where the first inequality follows from γ̂
(
t̂(1)
)
≥ γ

(
t(1)
)
and the second inequality holds since

δ̂2 ≥ δ2 and δ̂1 = δ1.

We now show that p1
1 ≥ p̂1

1, i.e. it becomes easier to use priority at school 1 to be assigned to

school 1. Suppose for the sake of contradiction that p1
1 < p̂1

1, i.e. γ
(
t(1)
)
< γ̂

(
t̂(1)
)
. We will use

the marginal trade balance equations to show that this means more students traded into school 1

under γ by time t(1) than under γ̂ by time t̂(1), which gives the required contradiction.

Since γ̂ is dominated by γ via school 1 it holds that γ̂
(
t(1)
)

= γ
(
t(1)
)
< γ̂

(
t̂(1)
)

and so

16Note that by definition valid directions have norm 1.

234



t(1) > t̂(1), i.e. school 1 fills earlier under TTC
(
γ̂|Ê

)
. Hence the sets of students offered seats by

school 1 satisfy

T1
(
γ; t(1)

)
) T1

(
γ; t̂(1)

)
⊇ T1

(
γ̂; t̂(1)

)
,

where the first containment follows from the fact that t(1) > t̂(1) and the second containment follows

from the fact that γ̂ is dominated by γ via school 1, and so fewer students are offered/trade away

seats at school 1 by time t̂(1) under γ̂ than under γ.

Moreover, integrating over the marginal trade balance equations gives that under both paths,

the set of students who traded a seat at 2 for a seat at 1 has the same measure as the set of students

who traded a seat at 1 for a seat at 2,

η
({
θ ∈ T2

(
γ; t(1)

)
|Chθ {1, 2} = 1

})
= η

({
θ ∈ T1

(
γ; t(1)

)
|Chθ {1, 2} = 2

})
and (B.8)

η̂
({
θ ∈ T2

(
γ̂; t̂(1)

)
|Chθ {1, 2} = 1

})
= η̂

({
θ ∈ T1

(
γ̂; t̂(1)

)
|Chθ {1, 2} = 2

})
. (B.9)

Hence we can compare the number of students assigned to school 1 using these sets, and find that

q1 =η
({
θ ∈ T1

(
γ; t(1)

)
|Chθ {1, 2} = 1

})
+ η

({
θ ∈ T2

(
γ; t(1)

)
|Chθ {1, 2} = 1

})
=η

({
θ ∈ T1

(
γ; t(1)

)})
(by (B.8))

>η
({
θ ∈ T1

(
γ̂; t̂(1)

)})
(since the sets are strictly contained)

=η̂
({
θ ∈ T1

(
γ̂; t̂(1)

)})
=η

({
θ ∈ T1

(
γ; t(1)

)
|Chθ {1, 2} = 1

})
+ η̂

({
θ ∈ T2

(
γ; t(1)

)
|Chθ {1, 2} = 1

})
(by (B.8))

=q1

which gives the required contradiction.

The fact that p̂2
2 ≥ p2

2 follows from the fact that p̂1
1 ≤ p1

1 decreases, since the total number of

assigned students is the same.

Proof of Proposition 4.5.

In the logit economy we assume that the total measure of students is normalized to 1, and that
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∑
i qi < 1. Recall that we also assume that all students prefer all schools to being unassigned. Note

that the logit economy yields that P
(
Chθ (C) = i

)
= eδi∑

k∈C e
δk
.

We first show that schools are labeled in order if q1
eδ1
≤ q2

eδ2
≤ · · · ≤ qn

eδn
. This holds since

at any point γ (t) = x in the first round the choice probabilities yield that eδi∑
k∈C e

δk

(
1−

∏
j xj

)
students are assigned to school i, and so for all i, j the ratio of students assigned to schools j and i

respectively is eδj

eδi
and if the schools are labeled in order then q1

eδ1
= mini qi

eδi
. The other inequalities

hold by induction, since in any round with remaining schools C and i ∈ C the choice probabilities

yield that a fraction eδi∑
k∈C e

δk
of the students assigned to schools in C are assigned to school i so

again for all i, j ∈ C the ratio of students assigned to schools j and i respectively in that round (or

any preceding round) is eδj

eδi
.

This also shows that Ri = 1 −
∑
i′<i qi′ − πc

eδi
qi is the measure of unassigned, or remaining,

students after the cth round, since if i′ < i then qi′ students are assigned to school i, and if i′ ≥ c

then eδi′

eδi
qi students are assigned to school i.

TTC Cutoffs We calculate the TTC cutoffs under the logit economy for different student

choice probabilities by using the TTC paths and trade balance equations. We show by induction

on i that for all i

pij =


(∏

k≤i

(
Rk

Rk−1

)1/πk
)eδj

if j ≥ i,

pjj otherwise,
(B.10)

where πi =
∑
i′≥i e

δi′ , R0 = 1 and for all i ≥ 1 the quantity Ri = 1−
∑
i′<i qi′ − πi

eδi
qi is the measure

of unassigned, or remaining, students after the ith round. We note that if we let ρi = qi
eδi
− qi−1

eδi−1 ,

where qi−1 = δi−1 = 0, then

Ri−1 −Ri = − πi−1
eδi−1

qi−1 + qi−1 + πi
eδi
qi = ρiπi,

and so

∑
i′≤i

ρi′πi′ =
∑
i′≤i

Ri
′−1 −Ri′ = 1−Ri.
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Consider the base case i = 1. In round 1, the marginals H i
j (x) for i, j ∈ C at each point x ∈ [0, 1]

are given by H i
j (x) = eδi∑

k∈C e
δk

∏
i′ 6=j xi′ . As the valid directions d = d (x) solve the marginal trade

balance equations, they must satisfy
∑
k∈C dkH

i
k (x) =

∑
k∈C diH

k
i (x) , or equivalently

eδi
∑
k∈C

dk
xk

= di
xi

∑
k∈C

eδk .

Now the vector d (x) defined by

di (x) = − eδixi∑
j∈C e

δjxj

clearly satisfies both the marginal trade balance equations and the normalization d (x) · 1 = −1.

Moreover since H (x) is irreducible this is the unique valid direction d.

We now find a valid TTC path γ using the trade balance equations (4.2). Since the ratios of

the components of the gradient dj(x)
di(x) only depend on xj , xi and the δi′ , for all i we solve for xi in

terms of x1, using the marginal trade balance equations and the fact that the path starts at 1.

This gives the path γ defined by γi
(
γ−1

1 (x1)
)

= xe
δi−δ1

1 for all i.

Recall that the schools are indexed so that school i is the most demanded school, that is,
eδ1
q1

= maxi e
δi

qi
. Now school i fills at a time t(1) where the TTC path is given by γi

(
t(1)
)

= xe
δi−δ1

1

and the number of assigned students is given by

1−
∏
i

γi
(
t(1)
)

= 1−R1

where the left hand side is the measure of students with rank at least γi
(
t(1)
)
for at least one

school i, and the right hand side is the number of assigned students.

This yields that

p1
j = γi

(
t(1)
)

=
(∏

i

γi
(
t(1)
)) e

δj

π1
=
(
R1
) eδj
π1 .

where π1 =
∑
i′≥1 e

δi′ . This completes the base case.

For the inductive step, suppose that Equation (B.10) holds for the cutoffs in rounds 1, 2, . . . , i−1.

237



Consider the residual TTC path during the ith round and let it be denoted by γ̃. For all j ≥ i

let xj = γ̃j (t). Recall that by definition γ̃j (t) = pi−1
j = pjj for all j < i and t ≥ t(i−1). The

residual TTC path is non-constant only for schools j in the set C(i) = {i, i+ 1, . . . , n}, and the

marginal trade balance conditions specify that for these schools j and for all x ≤ pi−1 it holds that
dj(x)
di(x) = eδjxj

eδixi
. Therefore we can solve for xj in terms of xi , using the fact that the path starts at

pi−1. The marginal trade balance conditions and initial conditions yield that for all j ≥ i

γ̃j (t)−e
δj

γ̃i (t)−e
δi

=

(
pi−1
j

)e−δj
(
pi−1
i

)e−δi = 1,

where the first equality is obtained by integrating over the marginal trade balance equations and

providing the initial conditions, and the second equality holds by substituting in the values of pi−1

in the inductive assumption. Hence the path γ̃ is defined by γ̃j
(
γ̃−1
i (xi)

)
= xi for all j ≥ i, and

γ̃j
(
t(i)
)

= pjj for all j < i.

Now school i fills at a time t(i) where the TTC path is given by γ̃j
(
t(i)
)

= xi for all j ≥ i and

γ̃j
(
t(i)
)

= pjj for all j < i, and the number of students assigned from time t(i−1) to t(i) is given by

∏
i′∈C

pi−1
i′ −

∏
i′<i

pi−1
i′

∏
j≥i

γ̃j
(
t(i)
)

= Ri−1 −Ri, (B.11)

where the left hand side is the measure of students with rank at least γ̃j
(
t(i)
)
for at least one school

j who is not assigned in one of the first i− 1 rounds. Noting that

∏
j

pi−1
j =

 ∏
j<i−1

pjj

 ∏
j≥i−1

pi−1
j


=

 ∏
k<i−1

(
Rk

Rk−1

)1−πi−1/πk
 ∏

k≤i−1

(
Rk

Rk−1

)πi−1/πk


= Ri−1

allows us to simplify equation (B.11) to
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∏
j≥i

xi = Ri∏
i′<i p

i−1
i′

.

Substituting in pi−1
i′ =

(∏
k≤i′

(
Rk

Rk−1

)1/πk
)eδi′

yields

xj = xi =

Ri∏
k<i

(
Rk

Rk−1

)−(πk−πi)/πk
e

δj /πi

=

∏
k≤i

(
Rk

Rk−1

)1/πk
e

δj

as required.

TTC Cutoffs - Comparative Statics We perform some comparative statics calculations
for the TTC cutoffs under the logit model. For j 6= ` it holds that the TTC cutoff p1

j for using
priority at school j to receive a seat at school 1 is decreasing in δ`. Formally,

∂p1
j

∂δ`
= ∂

∂δ`

[
(1− ρ1π1)

e
δj

π1

]
= −p1

j

(
eδ`+δj

(π1)2

)[
− ln

(
1

1− ρ1π1

)
+ 1

(1− ρ1π1) − 1
]

is negative, since 0 < 1
(1−ρ1π1) < 1 and f (x) = x− ln (x)− 1 is positive for x ∈ [0, 1].

For j = ` the TTC cutoff p1
` is again decreasing in δ`;

∂p1
`

∂δ`
= ∂

∂δ`

[
(1− ρ1π1)

eδ`
π1

]
= −p1

j

(
eδ`
(
π1 − eδ`

)
(π1)2

)
ln
(

1
1− ρ1π1

)
− p1

`

(
e2δ`

(π1)2

)(
1

(1− ρ1π1) − 1
)

is negative since both terms are negative.
Similarly, for i < ` and j ≥ i the TTC cutoff pij is decreasing in δ`. We first show that this

holds for i < ` and j ≥ i, j 6= ` by showing that 1
eδj

ln pij is decreasing in δ`. Now

∂

∂δ`

[ 1
eδj

ln pij
]

= ∂

∂δ`

[∑
k≤i

1
πk

ln
(

Rk

Rk−1

)]

=
∑
k≤i

(
− eδ`

(πk)2

)[
ln
(

Rk

Rk−1

)
− πk
eδ`
· ∂
∂δ`

[
ln
(

Rk

Rk−1

)]]
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where

∂

∂δ`

[
ln
(

Rk

Rk−1

)]
=
Rk−1 ∂Rk

∂δ`
−Rk ∂R

k−1

∂δ`

Rk−1Rk

= − eδ`

Rk−1Rk

[
Rk−1

(
qk
eδk

)
−Rk

(
qa−1

eδa−1

)]
= − eδ`

Rk−1Rk

[
Rk−1ρk + πkρk

(
qa−1

eδa−1

)]
= − eδ`ρk

Rk−1Rk

(
1−

∑
i′<k

qi′

)
.

Hence

∂

∂δ`

[ 1
eδj

ln pij
]

=
∑
k≤i

(
− eδ`

(πk)2

)[
ln
(

Rk

Rk−1

)
+
( 1
Rk
− 1
Rk−1

)(
1−

∑
i′<k

qi′

)]
≤ 0

where the last inequality holds since for all k the first term is negative, and the second term

is given by fk
(
Rk
)
− fk

(
Rk−1

)
where fk (x) = (1−

∑
i′<k qi′) 1

x + ln (x) has negative derivative

f ′k (x) ≤ 0 for all x ≤ (1−
∑
i′<k qi′), and Rk ≤ Rk−1 < (1−

∑
i′<k qi′) so fk

(
Rk
)
−fk

(
Rk−1

)
≥ 0.

For i < ` and j = ` the TTC cutoff pi` is also decreasing in δ`, since

∂

∂δ`

[
ln pi`

]
= ∂

∂δ`

[
eδ`

eδj
ln pii

]
= eδ`

eδj

(
ln pii + ∂

∂δ`

[
ln pii

])
≤ 0

where the last inequality holds since pii < 1 and we have shown that ∂
∂δ`

[
ln pii

]
≤ 0 .

When i = ` and j > `, we note that

∏
k≥`

p`k
∏
i′<`

pi
′
i′ = R`, i.e.

p`j =
(

R`∏
i′<` p

i′
i′

)eδj /π`
.
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Hence

∂

∂δ`

[ 1
eδj

ln p`j
]

= ∂

∂δ`

[
1
π`

(
lnR` −

∑
i′<`

ln pi
′

i′

)]

=
(
− eδ`

(π`)2

)(
lnR` −

∑
i′<`

ln pi
′

i′

)

+ 1
π`

(
∂

∂δ`

[
lnR`

]
−
∑
i′<`

∂

∂δ`

[
ln pi

′

i′

])

≥0.

where the first term is positive since p`j < 1 (from which it follows that lnR` −
∑
i′<` ln (p) < 0),

and the second term is positive since ∂R`

∂δ`
= π`+1

(eδ`)2 q` > 0 and we have shown that for all i′ < ` it

holds that ∂
∂δ`

[
ln pi′i′

]
≤ 0.

Proof of Proposition 4.6.

Welfare Expressions We derive the welfare expressions corresponding to these cutoffs. Let

C(i) = {i, i+ 1, . . . , n}. Since the schools are ordered so that q1
eδ1
≤ q2

eδ2
≤ · · · ≤ qn

eδn
, it follows that

the schools also fill in the order 1, 2, . . . , n.

Suppose that the total mass of students is 1. Then the mass of students with budget set C(1)

is given by N1 = q1

(∑
j
eδj

eδ1

)
= ρ1π1, and the mass of students with budget set C(2) is given by

N2 =
(
q2 − eδ2∑

j
eδj
N1
)(∑

j≥2 e
δj

eδ2

)
=
(
q2
eδ2
− q1

eδ1

) (∑
j≥2 e

δj
)

= ρ2π2. A straightforward inductive

argument shows that the proportion of students with budget set C(i) is

N i =
(
qi
eδi
− qi−1
eδi−1

)∑
j≥i

eδj

 = ρiπi.

which depends only on δj for j ≥ i− 1.

Moreover, each such student with budget set C(i), conditional on their budget set, has expected

utility Small and Rosen (1981)

U i = E
[

max
i′∈C(i)

{δj + εθi′}
]

= ln

∑
j≥i

eδj

 = ln (πi) ,
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which depends only on δj for j ≥ i. Hence the expected social welfare from fixed qualities δi is

given by

UTTC =
∑
i

N i · U i =
∑
i

ρiπi ln πi,

where πi =
∑
j≥i e

δj .

Welfare - Comparative Statics Taking derivatives, we obtain that

dUTTC
dδ`

=
∑
i

(
dN i

dδ`
· U i +N i · dU

i

dδ`

)
=

∑
i≤`+1

dN i

dδ`
· U i +

∑
i≤`

N i · dU
i

dδ`
,

where
∑
i≤`N

i · dU idδ`
=
∑
i≤` ρiπi · e

δ`

πi
= eδ`

∑
i≤` ρi = q`. It follows that

dUTTC
dδ`

= q` +
∑
i≤`+1

dN i

dδ`
· U i.

Proof of Proposition 4.7. We solve for the social welfare maximixing budget allocation. For a fixed
runout ordering (i.e. q1

eδ1
≤ q2

eδ2
≤ · · · ≤ qn

eδn
), the central school board’s investment problem is given

by the program

max
κ1,κ2,...,κn

∑
i

(
qi
κi
− qi−1

κi

)(∑
j≥i

κj

)
ln

(∑
j≥i

κj

)
(B.12)

s.t.
qi−1

κi−1
≤ qi
κi−1

∀i∑
i

κi = K

q0 = 0.

We can reformulate this as the following program,

max
κ2,...,κn

(
q1

K −
∑
i κi

)
K lnK +

(
q2

κ2
− q1

K −
∑
i κi

)
π2 ln π2 +

∑
i≥3

(
qi
κi
− qi−1

κi−1

)
πi ln πi (B.13)
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s.t.
qi−1

κi−1
≤ qi
κi
∀i ≥ 3

q1

K −
∑
i κi
≤ q2

κ2
,

πi =
∑
j≥i

κj .

Taking the derivatives of the objective U with respect to the budget allocations κk gives

∂U

∂κk
=

(
q1(

K −
∑

i
κi
)2
)

ln
(
KK

ππ2
2

)
+
∑

2≤i<k

qi
κi

ln πi
πi+1

+ qk

(κk)2 ln
(

π
πk
k

π
πk+1
k+1

)
,

where ln
(
KK

π
π2
2

)
≥ 0, ln πi

πi+1
≥ 0, and ln

(
π
πk
k

π
πk+1
k+1

)
and so ∂U

∂κk
≥ 0∀k.

Moreover, if qi−1
κi−1

= qi
κi
, then defining a new problem with n − 1 schools, and capacities q̃ and

budget κ̃

q̃j =



qj if j < i− 1

qi−1 + qi if j = i− 1

qj+1 if j > i− 1

, κ̃j =



κj if j < i− 1

κi−1 + κi if j = i− 1

κj+1 if j > i− 1

leads to a problem with the same objective function, since(
qi−1

κi−1
− qi−2

κi−2

)
πi−1 lnπi−1 +

(
qi
κi
− qi−1

κi−1

)
πi lnπi +

(
qi+1

κi+1
− qi
κi

)
πi+1 lnπi+1

=
(
qi−1 + qi
κi−1 + κi

− qi−2

κi−2

)
πi−1 lnπi−1 + 0 +

(
qi+1

κi+1
− qi−1 + qi
κi−1 + κi

)
πi+1 lnπi+1.

Hence if there exists i for which qi
κi
6= qi−1

κi−1
, we may take i to be minimal such that this occurs,

decrease each of κ1, . . . , κi−1 proportionally so that κ1 + · · ·+κi−1 decreases by ε and increase κi by

ε and increase the resulting value of the objective. It follows that the objective is maximized when
q1
κ1

= q2
κ2

= · · · = qn
κn

, i.e. when the money assigned to each school is proportional to the number of

seats at the school.

Design of TTC Priorities

We demonstrate how to calculate the TTC cutoffs for the two economies in Figure 4.14 by using

the TTC paths and trade balance equations.
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Consider the economy E , where the top priority students have ranks uniformly distributed in

[m, 1]2. If x = (x1, x1) is on the diagonal, then H̃j
i (x) = x1

2 for all i, j ∈ {1, 2}, and so there is

a unique valid direction d (~x) =

 −1
2

−1
2

. Moreover, γ (t) =
(
t
2 ,

t
2
)
satisfies dγ(t)

dt = d (γ (t)) for all

t and hence Theorem 4.2 implies that γ (t) =
(
t
2 ,

t
2
)
is the unique TTC path. The cutoff points

satisfy p1
1 = p1

2 = p2
1 = p2

2 = p for some constant p, and (by symmetry) the capacity equations

D1 (p) = D2 (p) = q for p = (p, p). Since D1 (p) +D2 (p) = 1− p2, it follows that 1− p2 = 2q, or

p =
√

1− 2q. The cutoff points pcb =
√

1− 2q give the unique TTC allocation.

Consider now the economy E , where top priority students have ranks uniformly distributed in

the r̃ × r̃ square (1− r̃, 1]× (m,m+ r̃] for some small r̃, where r̃ ≤ (2m−1)(1−m)
2m .

If x is in (1− r̃, 1] × [m+ r̃, 1] then Hj
1 (x) = 1

2

(
m+ (1−m) 1−m

r̃

)
∀j and Hj

2 (x) = m
2 ∀j, so

there is a unique valid direction d (x) = 1
2+ (1−m)2

r̃m

 −1

−1− (1−m)2

r̃m

 . If x is in (m, 1− r̃]×(m, 1] then

Hj
i (x) = m

2 for all i, j and there is a unique valid direction d (x) =

 −1
2

−1
2

. Finally, if x = (x1, x2)

is in [0, 1] \ (m, 1]2 then Hj
1 (x) = 1

2x2 and Hj
2 = 1

2x1 for all j and there is a unique valid direction

d (x) = 1
x1+x2

 −x1

−x2

 .
Hence the TTC path γ (t) has gradient proportional to

 −1

−1− (1−m)2

r̃m

 from the point (1, 1) to

the point
(
1− r̃, 1− r̃ − (1−m)2

m

)
, to

 −1
2

−1
2

 from the point
(
1− r̃, 1− r̃ − (1−m)2

m

)
to the point

(
m+ (1−m)2

m ,m
)

and to

 −1− (1−m)2

m2

−1

 from the point
(
m+ (1−m)2

m ,m
)

to the cutoff point

(
p, p

)
.

We find that

(
p, p

)
=

√(1− 2q) (1− 2m+ 2m2)
m2 ,

√
(1− 2q) m2

1− 2m+ 2m2


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by observing that 1
2

(
1− p · p

)
= D1

((
p, p

))
= q and that

(
p, p

)
lies on the line passing through(

m+ (1−m)2

m ,m
)
with gradient 1

1+ (1−m)2
m2

.

We now show that the economy E is extremal, i.e. if economy E ′ is given by perturbing the

relative ranks of students in
{
θ | rθc ≥ m ∀c

}
, then the TTC cutoffs for E ’ are given by p1

1 = p2
1 =

x, p1
2 = p2

2 = y where x ≤ p =
√

1−2q
1−2m+2m2 and y ≥ p =

√
(1− 2q) (1− 2m+ 2m2). (By symmetry,

it follows that p ≤ x, y ≤ p.)

Let γ and γ′ be the TTC paths for E and E ′ respectively. Let (xbound,m) be the point where the

TTC path γ′ first hits the boundary of the box [m, 1]× [m, 1] containing all the highly ranked stu-

dents. We remark that the TTC path γ′ for E ′ has gradient 1
xbound+m

 −xbound
−m

 from (xbound,m)

to the TTC cutoffs (x, y).

Consider the aggregate trade balance equations for students assigned before the TTC path

reaches (xbound,m). They stipulate that the measure of students in [0,m]× [m, 1] who prefer school

1 is at most the measure of students who are either perturbed or in [xbound, 1]×[0,m], and who prefer

school 2. This means that 1
2m (1−m) ≤ 1

2

(
(1−m)2 +m (1− xbound)

)
, or xbound ≤ m+ (1−m)2

m . It

follows that γ′ hits the boundary of the box at a point that is to the left of where γ hits the boundary

box, and hence the path γ′ lies above the path γ.17 It follows that x ≤ p and y ≥ 1−2q
p = p.

17That is, for each x′, if (x′, y′) lies on γ′ and (x′, y) lies on γ, then y′ ≥ y.
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Appendix C

Appendix for Chapter 5
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C.1 Regret-Free Mechanisms in Extensive Form

In this section, we provide three extensive-form game descriptions of regret-free mechanisms. We

first define general mechanisms as extensive-form dynamic games of imperfect information. We

note that as regret-free mechanisms are incentive-compatible, we may restrict our attention to

direct mechanisms, where students need only report either their type, or given a set of schools to

inspect need only inspect that set of schools and truthfully report their inspected values. We then

formally define choice-based messages, where we restrict the messages from students to be only

choice-based information about their own preferences, such as choice functions and partial orders,

and we restrict the actions and messages of the mechanism designer to use only the choice-based

information. Finally, we formally define Accept-Waitlist-Reject (AWR) mechanisms, which restrict

the mechanism designer to only tell students which schools will definitely be in their budget set,

which schools definitely will not, and which schools are uncertain.

C.1.1 General Mechanisms

We formally define general mechanisms as dynamic games of incomplete information. There is a

set of players: s ∈ S, possible actions: a ∈ A, and possible messages m ∈ M. There is a set of

nodes Z, with initial node z0 and terminal nodes T . At each node z ∈ Z there is a message history

Mz = {Ms
z}s∈S ; at each non-terminal node there is a set of active students S (z) who are sent

new messages {ιsz = ιs (Mz)}s∈S(z). At each node z every student has private information about

their history hsz = ({asz′ ,Ms
z′ , ι

s
z′}) of their actions. These actions result in inspections χ = χsz and

values vs|χ, which are also privately known to the student.

There is a partition H={H1, H2, . . .} of the nodes into information sets, which represent the

information available to the students. Each student s has a partition Hs = {Hs
1 , . . .} such that

any two nodes z, z′ are in the same information set (i.e. z, z′ ∈ Hs
i ) for some i if and only if,

up to relabeling of other students, they have the same information state Ms
z = Ms

z′ and history

hsz = hsz′ Note that for a given student s the mechanism designer only knows rs as well asMs, and

so if students s, s′ satisfy (rs,Ms
z) =

(
rs
′
,Ms′

z

)
then they are indistinguishable to the mechanism
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designer at node z. Each information set Hi has a set of active students S = S (Hi) of positive

measure such that s ∈ S ⇒ Hi ∈ Hs and if two students s, s′ are indistinguishable to the mechanism

designer at any node z ∈ Hi then s ∈ S ⇔ s′ ∈ S.

The available actions As (Hi) ⊆ A for the set of active students s ∈ S (Hi) at an information

set Hi are as follows. Students first inspect some subset of uninspected schools {i : χsz = 0}, where

the subset can be adaptively chosen based on the observed values of other schools inspected at that

node. Students then report a message m to the mechanism.

At terminal nodes z ∈ T the mechanism outputs a matching µz and inspections χz, where χsz

is consistent with history hsz.

We let Σs denote the set of strategies for student s, i.e. an action a ∈ As (Hi) for each history

Hi such that s ∈ S (Hi).

Definition C.1. We say that a general mechanism is regret-free stable if at all terminal nodes

z = (µz, χz) ∈ T the matching µz is regret-free stable with any underlying economy consistent with

the mechanism designer’s current information stateMz, and χz = χRFz (µ|·).

C.1.2 Choice-Based Mechanisms

We formally define choice-based mechanisms as dynamic games of incomplete information as follows.

There is a set of players s ∈ S, possible actions, a ∈ A, and possible messages m ∈ M. The

main restriction of a choice-based mechanism is thatM is restricted to be the set of choice-based

information states I = {�s}s∈S . There is a set of nodes Z, with initial node z0, and terminal

nodes T . At each node z ∈ Z there is a partial message history, given by a single choice-based

information state Iz = {�sz}s∈S ; at each non-terminal node there is a set of active students S (z)

who are sent new messages {ιsz = ιs (Iz)}s∈S(z) based on the information state Iz. At each node

each student has private information about their history hsz = ({asz′ , Isz′ , ιsz′}) of actions. These

actions result in inspections χ = χsz and values vs|χ, which are also privately known to the student.

There is a H={H1, H2, . . .} of the nodes into information sets. Each student s has a partition

Hs = {Hs
1 , . . .} such that any two nodes z, z′ are in the same information set z, z′ ∈ Hs

i for some

i if and only if, up to relabeling of other students, they have the same choice-based information
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state Isz = Isz′ and history hsz = hsz′ . Note that for a given student s the mechanism designer

only knows rs as well as Is, and so if students s, s′ satisfy (rs, Isz ) =
(
rs
′
, Is′z

)
then they are

indistinguishable to the mechanism designer at node z. Each information set Hi has: (1) a set of

active students S = S (Hi) of positive measure such that s ∈ S ⇒ Hi ∈ Hs and if two students s, s′

are indistinguishable to the mechanism designer at any node z ∈ Hi then s ∈ S ⇔ s′ ∈ S; and (2)

a set of schools c (Hi).

The available actions As (Hi) ⊆ A for the set of active students s ∈ S (Hi) at an information set

Hi are as follows. Students first inspect some subset of uninspected schools {i : χsz = 0} in c (Hi),

where the subset can be adaptively chosen based on the observed values of other schools inspected

at that node. Students then report a refinement of �sz, which encodes their choice of schools in

that set.

At terminal nodes z ∈ T the mechanism outputs a matching µz and inspections χz, where χsz

is consistent with history hsz

We let Σs denote the set of strategies for student s, i.e. an action a ∈ As (Hi) for each history

Hi such that s ∈ S (Hi).

Definition C.2. We say that a choice-based mechanism is regret-free stable if at all terminal

nodes z = (µz, χz) ∈ T the matching µz is regret-free stable with any underlying economy consistent

with the mechanism designer’s current information state Iz, and χz = χRFz (µ|·)

C.1.3 Accept-Watilist-Reject Mechanisms

We formally define Accept-Waitlist-Reject (AWR) mechanisms as dynamic games of incomplete

information as follows.

There is a set of players s ∈ S, possible actions, a ∈ A, and possible messages m ∈ M. The

main restriction of an AWR mechanism is thatM is restricted to be the set messages of the form

C{A,W,R} ∪ C, where each element of C{A,W,R} oncodes a possible message from the mechanism to

a student about the set of schools that accept them (A) as the school is definitely in their budget

set, waitlist them (L) as the school may or may not be in their budget set, or reject them (R)

as the school is definitely not in their budget set. There is a set of nodes Z, with initial node
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z0, and terminal nodes T . At each node z ∈ Z there is a partial message history mz, given by

a single element mz ∈ MS , with ms
z representing the last message sent between the mechanism

and each student. At each non-terminal node there is a set of active students S (z) who are sent

new messages
{
ιsz ∈ C{A,W,R}

}
s∈S(z)

based on the message history mz. At each node each student

has private information about their history hsz = ({asz′ ,ms
z′ , ι

s
z′}) of actions. These actions result in

inspections χ = χsz and values vs|χ, which are also privately known to the student.

There is a H={H1, H2, . . .} of the nodes into information sets. Each student s has a partition

Hs = {Hs
1 , . . .} such that any two nodes z, z′ are in the same information set z, z′ ∈ Hs

i for some i

if and only if they have the same history hsz = hsz′ . Note that for a given student s the mechanism

designer only knows rs as well as Is, and so if students s, s′ satisfy (rs,ms
z) =

(
rs
′
,ms′

z

)
then they

are indistinguishable to the mechanism designer at node z. Each information set Hi has: (1) a set

of active students S = S (Hi) of positive measure such that s ∈ S ⇒ Hi ∈ Hs and ms
z ∈ C{A,W,R},

and if two students s, s′ are indistinguishable to the mechanism designer at any node z ∈ Hi then

s ∈ S ⇔ s′ ∈ S; and (2) a message in mz ∈ C{A,W,R} for those students.

The available actions As (Hi) ⊆ A for the set of active students s ∈ S (Hi) at an information

set Hi are as follows. Students first inspect some subset of uninspected schools {i : χsz = 0} such

that i accepts them (i.e. the element of ms
z corresponding to school i is A), where the subset can be

adaptively chosen based on the observed values of other schools inspected at that node. Students

then report their favorite school i ∈ A.

At terminal nodes z ∈ T the mechanism outputs a matching µz and inspections χz, where χsz

is consistent with history hsz

We let Σs denote the set of strategies for student s, i.e. an action a ∈ As (Hi) for each history

Hi such that s ∈ S (Hi). Note that in an AWR mechanism each student will be an active student

at a node exactly once.

Definition C.3. We say that an AWR mechanism is regret-free stable if at all terminal nodes

z = (µz, χz) ∈ T the matching µz is regret-free stable with any underlying economy consistent with

the mechanism designer’s current information state Iz, and χz = χRFz (µ|·)
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C.2 Examples demonstrating Impossibility of Regret-Free Stable

Mechanisms

We now demonstrate that standard mechanisms can fail spectacularly in learing market-clearing

cutoffs and alleviating the costs associated with information acquisition. Intuitively, in choice-based

mechanisms students need to know other students’ choices in order to determine their optimal in-

spection strategy, and so in general the student who performs the ’first’ inspection will incur addi-

tional inspections costs. Standard Deferred Acceptance mechanisms, which are played as one-shot

games where students submit their full preference lists, perform especially poorly, as students are

given almost no information about their choices before deciding on their inspection strategy. While

in some settings regret can be eliminated by allowing for multi-round mechanisms, we prove the

stronger result that for general economies even multiple-round mechanisms must either incur regret,

or create an information deadlock, where every student waits for others to acquire information first.

C.2.1 Direct One-Shot Mechanisms

To demonstrate the issues in computing regret-free stable matchings, let us first consider the case

where all students are willing to inspect any school as long as it is in their budget set. We may

view this as a setting where the costs affect which schools students are willing to inspect, but not

the order in which they are willing to inspect them. It is clear that the standard implementation of

Deferred Acceptance as a one-shot game will not be regret-free even for such students, as students’

budget sets will depend on the preferences of other students, and so students who have low priority

at the schools they prefer are likely to incur regret. We illustrate this in the following example.

Example C.1. Consider a discrete economy E = (C,S, q) with n students and n schools each with

capacity qi = 1. Suppose that school priorities are perfectly aligned, i.e. rsi = rsj for all s ∈ S,

i, j ∈ C, and students have random preferences and are willing to incur the cost to attend any

school. Such demand can be rationalized e.g. by the priors F si (x) = 0 for all x ∈ [0, 1), F si (x) = 1
4

for all x ∈ [1, 2), F si (x) = 1− 1
2k for all k ≥ 1 and x ∈

[
2k, 2k+1

)
and costs csi = 1 for all s ∈ S.

In any one-shot choice-based mechanism, a student s will have no regret only if she chooses to
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examine precisely the set of all schools not selected by higher-ranked students. This is because a

student is willing to incur the cost to examine any school if and only if it is in her budget set. As

student preferences are random, the probability that every student other than the highest-ranked

student regrets her inspections is at least
∏
i

(
1− 1

(ni)

)
≥
(
n−1
n

)n−1
→ 1

e all n − 1. The example

can also be modified so that with probability → 1
e a proportion → 1 of students incur unbounded

regret.1

This example demonstrates that single-shot choice-based mechanisms cannot hope to find regret-

free stable matchings, even in settings where students are willing to incur the costs of searching

any number of schools, due to their inability to coordinate the students’ search.

C.2.2 Impossibility of Student-Optimal Regret-Free Stable Mechanisms

In this section we provide an example demonstrating that even in settings where it is possible

to implement a regret-free stable choice-based mechanism, it may be impossible to verify that a

matching is student-optimal without incurring regret.

Example C.2. Consider an economy E with two schools C = {1, 2} with capacities q1 = q2 = 1

and 2 students S = {x, y}.2

Suppose that school priorities are given by

priority at 1 : ry1 > rx1

priority at 2 : rx2 > ry2 .

Suppose also that student values at each school have discrete distribution P (vsi = 1) = P (vsi = 2) =
1
4 , P

(
vsi = 2k

)
= 1

2k for all k > 1 and P (vsi = x) = 0 for all x 6∈
{

1
2k
}
k∈N

, i.e. with priors F si (x) = 0

for all x ∈ [0, 1), F si (x) = 1
4 for all x ∈ [1, 2), F si (x) = 1− 1

2k for all k ≥ 1 and x ∈
[
2k, 2k+1

)
, and

1For each bound K the example can be modified so that with probability → 1
e
all n− 1 students other than the

top priority student incur regret at least K times their utility.
2Strictly speaking, as we assumed that there are more students than seats, the economy should have three students

S={x, y, d} where d is a dummy student who has lower priority at every school than the students in {x, y} and who
has arbitrary preferences. For simplicity we omit these students in the description of the economy; however note that
the proof applies as written to both economies.
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that student costs for inspection are given by cx1 = cy2 = 1 and cx2 = cy1 = 2. As E [(vsi − v)] = ∞

for all s, i and v ∈ R it follows that both students’ optimal strategies are to inspect all the schools

that are available to them.3

Note that the matching µ = µschool defined by (µ (x) , µ (y)) = (2, 1) is always regret-free

stable, and is the school-optimal regret-free stable matching. Let µ′ = µstudent be defined by

(µ′ (x) , µ′ (y)) = (1, 2). We will consider two separate events. Let X denote the event that vx1 =

vy2 = 2 and vx2 = vy1 = 4. Let X ′ denote the event that vx1 , v
y
2 > 4 and vx2 = vy1 (ω) = 4. Note

that µschool is the student-optimal regret-free stable matching subject to event X, as both x and

y obtain their highest valued schools, and that µstudent is the student-optimal regret-free stable

matching subject to event X ′, as both x and y again obtain their highest valued schools.

Notice that events X and X ′ are mutually exclusive, and that P (X) = P (X ′) =
(

1
4

)4
> 0.

Furthermore, vx2 = vy1 (ω) = 4 in either event. Thus, conditional on one of the events X or X ′

occurring, the only way to distinguish which event occurred is for student x to inspect school 1 or

student y to inspect school 2.

We now first demonstrate why the existence of such X and X ′ shows that we cannot verify

student-optimality in a regret-free manner. Note that if µ = µschool is the student-optimal regret-

free stable matching then each school is assigned their top choice student, and so based on school

preferences alone there are no blocking pairs and the corresponding student budget sets are Bµ (x) =

{2} , Bµ (y) = {1}. Hence under χRF (µ|·) student x only inspects school 2, and student y only

inspects school 1. However, if µ′ = µstudent is the student-optimal regret-free stable matching then

under χRF (µ′|·) both students inspect both schools. Thus, since it is impossible to distinguish

between events X and X ′ without requiring either student x to inspect school 1 or student y to

inspect school 2, one of these inspections must occur in the event X ∨X ′ in order to determine the

student-optimal regret-free stable matching, which incurs regret under event X. In other words,

it is impossible to verify that µschool is the student-optimal regret-free stable matching without

incurring regret. Since X has positive probability, we conclude that it is impossible to verify that

3It is simple to extend this example so that vsi (·) is continuous random variable with continuous density by
smoothing the density for 2k over the interval

[
2k−1, 2k

]
.
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the student-optimal regret-free stable matching is student-optimal without incurring regret with

positive probability.

C.3 Estimating Regret-Free Stable Cutoffs

C.3.1 Continuity and Convergence of Market-Clearing Cutoffs

We first define a metric on the space of economies and on the space of stable matchings. Fix a set

of schools C and a set of students S. We say that a sequence of continuum economies Ek =
(
ηk, qk

)
converges to the continuum economy E = (η, q) if ηk converges in the weak sense to η, and qk → q.

We define the distance between stable matchings to be the distance between their associated cutoffs,

d (µ, µ′) = maxP,P ′:M(P )=µ,M(P ′)=µ′ ‖P − P ′‖.4 Given a finite economy E = (C, S, q) define the

continuum economy Φ (E) = (C,S, η, q) by taking the distribution η defined by

η
({
s ∈ S | θs = θt, vsi ∈

{
vti (ω) |ω ∈ X

}})
= 1
|S|

p (X) ∀t ∈ S, X ⊆ Ω.

We may think of this as first taking the empirical distribution
∑
t∈S

1
|S|δt and then changing the

point distribution δt for student t to mirror the possible distribution of values vt. We say that a

sequence of finite economies Ek converges to the continuum economy E if the embeddings Φ
(
Ek
)

converge to E .

Theorem C.1. Suppose the continuum economy E admits a unique regret-free stable matching

µ. Then the regret-free stable matching correspondence mapping economies to regret-free stable

matchings is continuous at E within the set of continuum economies.

Proof. The theorem follows from the analogous result in Azevedo and Leshno (2016) as well as

observing that the set of regular measures is open.

Theorem C.2. Suppose the continuum economy E admits a unique regret-free stable matching µ,

and has a C1 demand function that is non-singular at the market-clearing cutoffs (i.e. ∂D (P ∗)

4Note that if E is the embedding of a finite economy then there are many cutoffs that give the same matching µ.
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non-singular). Let Ek =
(
ηk, qk

)
be a randomly drawn finite economy, with k students drawn

independently according to η, and let P k be a market-clearing cutoff of Ek. Then

√
k ·
(
P k − P ∗

)
d→ N

(
0, ∂D (P ∗)−1 · Σq · ∂D (P ∗)−T

)
,

where N (·|·) denotes a C-dimensional normal distribution with given mean and covariance matrix,

and

Σq
ij =


−qiqj if i 6= j

qi (1− qi) if i = j.

Theorem C.2 shows that the estimated cutoffs P k are normally distributed around P ∗, and

follows directly from the analogous result in Azevedo and Leshno (2016). Another interpretation is

that given and underlying population η and cutoffs P ∗, if demand is given by sampling k students

from η then the resulting market-clearing cutoffs P k will be normally distributed around P ∗.

C.3.2 Omitted Proofs for Section 5.5

C.3.2.1 Example 5.2

We show that
√
k
(
q̂k − q

)
d→ N

(
0, (α+ 1)

α
Σq
)
.

Let X be a random variable that gives a student randomly drawn according to η with cor-

responding demand DX , and with probability α
α+1 and 1

α+1 assigns them to be a ’past’ stu-

dent and ’present’ student respectively. Let m (X,P ) = 1 {X is ’past’}
(
DX (P )− q

)
and let

g (X, q, P ) = 1 {X is ’present’}
(
DX (P )− q

)
. Note that as bqkc − qk ≤ 1

k it follows that
√
kP̂

converges in distribution to
√
kP̂ ′ where P̂ ′ satisfies m̂

(
X, P̂ ′

)
def=

∑(α+1)k
i=1

α
α+1

(
D(Xi)(P̂ ′)

k − q
)

=

0. Note also that similarly
√
kq̂k converges in distribution to

√
kq̂k satisfying ĝ

(
X, q̂k, P ∗

)
def=∑(α+1)k

i=1
1

α+1

(
D(Xi)(P ∗)

k − q̂k
)

= 0. Hence
√
k
(
q̂k − q

)
d→ N (0, V ), where

V = (1 + α)var
(
g (X, q, P ∗)− 1

α
m (X,P ∗)

)
.
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Since var (g (·))= 1
1+αvar

(
DX (P ∗)

)
, var (m (·))= α

1+αvar
(
DX (P ∗)

)
and cov (g (·) ,m (·))=0, this

is equal to var
(
DX (P ∗)

)
+ 1

αvar
(
DX (P ∗)

)
= (1+α)

α Σq as required.

C.3.2.2 Example 5.3

We first show that the outcome (µ, χ) after both rounds is regret-free stable with respect to realized

demand q̂k. It suffices to show that for all students s ∈ Sf (E) with free market information it

follows that µ (s) = Ds
(
P̂
)
. Now since s ∈ Sf (E) it holds that ∀i rsi 6∈

⌈
1−

∑
j qj , 1− qi

)
, and

her first-round budget set is Bs = {i | rsi ≥ 1− qi}. Moreover, if i ∈ Bs then if µ (i) = qi it follows

that P̂i < rsi , and so i ∈ Bs
(
P̂
)
. Finally, if i ∈ Bs

(
P̂
)
then 1 − rsi ≤

∑
j qj , as all students find

all schools acceptable and so if rs′i ≥ rsi then student s′ is assigned to some school. In other words,

Bs ⊆ Bs
(
P̂
)
⊆ Bs, and so µ (s) = Ds (Bs) = Ds

(
Bs
(
P̂
))

= Ds
(
P̂
)
.

We now show that

√
k
(
q̂k − q

)
d→ N

(
0,Σq + 2

( 1
α
A+ I

)
ΣqfAT

)
.

Let X be a random variable that gives a student randomly drawn according to η with corresponding

demand DX . Let the first-round cutoffs be P fi = 1−qi, let m (X,Γ) = 1{X∈SF (E)}D
X
(
P f |η (Γ)

)
−

qf and let g (X, q,Γ) = m (X,Γ) + 1{X/∈SF (E)}D
X (P ∗ (Γ) |η (Γ∗)) −

(
q − qf

)
. Note that the esti-

mated Γ̂ satisfies m̂
(
X, Γ̂

)
def=

∑k
i=1 α

(DXi(P f |η(Γ̂))|X∈SF (E))
k − qf = 0, and that the estimate

demand q̂k of all students satisfies

ĝ
(
X, q̂k, Γ̂

) def=
k∑
i=1

α

(
DXi

(
P f |η

(
Γ̂
))
|X ∈ SF (E)

)
k

+ (1− α)
(
DXi

(
P ∗
(
Γ̂
)
|η (Γ∗)

)
|X 6∈ SF (E)

)
k

− q̂k = 0

. Hence
√
k
(
q̂k − q

)
d→ N (0, V ), where

V = var
(
g (X, q,Γ∗)−

(
I + 1

α
A

)
m (X,Γ∗)

)

and A = E [∇Γ (g (X, q,Γ∗)−m (X,Γ∗))]E [∇Γm (X,Γ∗)]−1 .

Note thatA = ∇ΓD (P ∗ (Γ) |η (Γ∗)) |Γ=Γ∗
(
∇ΓD

f (Γ∗)
)−1

. Moreover cov (g (·) ,m (·))=var (m (·))

256



and so

V = var (g (·)) + 1
α
var (m (·))

(
I + 1

α
A

)T
.

Since var (g (·))=var
(
DX (Γ∗)

)
=Σq, var (m (·))=2αvar

(
Df (Γ∗)

)
=2αΣqf , this is equal to Σq+

2AΣqf
(
1 + 1

αA
)T

as required.
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