
Exact Simulation Techniques in Applied Probability
and Stochastic Optimization

Yanan Pei

Submitted in partial fulfillment of the

requirements for the degree

of Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161515342?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

c©2018

Yanan Pei

All Rights Reserved

ABSTRACT

Exact Simulation Techniques in Applied Probability
and Stochastic Optimization

Yanan Pei

This dissertation contains two parts. The first part introduces the first class of perfect sampling

algorithms for the steady-state distribution of multi-server queues in which the arrival process is a

general renewal process and the service times are independent and identically distributed (iid); the

first-in-first-out FIFO GI/GI/c queue with 2 ≤ c <∞. Two main simulation algorithms are given

in this context, where both of them are built on the classical dominated coupling from the past

(DCFTP) protocol. In particular, the first algorithm uses a coupled multi-server vacation system

as the upper bound process and it manages to simulate the vacation system backward in time from

stationarity at time zero. The second algorithm utilizes the DCFTP protocol as well as the Random

Assignment (RA) service discipline. Both algorithms have finite expected termination time with

mild moment assumptions on the interarrival time and service time distributions. Our methods

are also extended to produce exact simulation algorithms for Fork-Join queues and infinite server

systems.

The second part presents general principles for the design and analysis of unbiased Monte Carlo

estimators in a wide range of settings. The estimators possess finite work-normalized variance

under mild regularity conditions. We apply the estimators to various applications including un-

biased steady-state simulation of regenerative processes, unbiased optimization in Sample Average

Approximations and distribution quantile estimation.

Table of Contents

List of Figures v

List of Tables vi

Acknowledgements vii

1 Introduction 1

I Exact Simulation of Multi-Dimensional Queueing Models with Renewal

Input 3

2 Introduction to Part I 4

3 Exact Simulation with Vacation Systems 8

3.1 Simulation strategy and main result . 8

3.1.1 Elements of the simulation strategy: upper bound and coupling 9

3.1.2 Monotonicity properties and the stationary GI/GI/c queue 13

3.1.3 Description of simulation strategy and main result 17

3.2 Coalescence detection in finite time . 18

3.3 Simulation procedure . 23

3.3.1 Simulate a random walk with negative drift jointly with “milestone” events . 28

3.3.2 Simulate the vacation system between inspection times 30

3.3.3 Overall exact simulation procedure . 31

3.4 Numerical experiments . 32

i

4 Exact Simulation with Random Assignment 37

4.1 The FIFO and RA GI/GI/c model . 37

4.1.1 The FIFO GI/GI/c model . 37

4.1.2 The RA GI/GI/c model . 38

4.2 Simulating exactly from the stationary distribution of the RA GI/GI/c model . . . 41

4.2.1 Algorithm for simulating exactly from π for the FIFO GI/GI/c queue: The

case P (A > V) > 0 . 45

4.2.2 Why we can assume that interarrival times are bounded 46

4.2.3 A more efficient algorithm: sandwiching . 48

4.2.4 Continuous-time stationary constructions . 51

4.3 Numerical experiments . 53

4.4 Infinite server systems and other service disciplines 57

4.5 Fork-Join models . 59

4.6 The case when P (A > V) = 0: Harris recurrent regeneration 60

II Unbiased Monte Carlo Computations and Applications 62

5 Introduction to Part II 63

5.1 The general principles . 65

6 Unbiased Multi-level Monte Carlo 70

6.1 Non-linear functions of expectations and applications 71

6.1.1 Application to steady-state regenerative simulation 75

6.1.2 Additional applications . 76

6.2 Stochastic convex optimization . 77

6.2.1 Unbiased estimator of optimal solution . 80

6.2.2 Unbiased estimator of optimal value . 84

6.2.3 Applications and numerical examples . 86

6.3 Quantile estimation . 89

ii

III Bibliography 92

Bibliography 93

IV Appendices 98

A Appendix to Chapter 3 99

A.1 The iid property of the coupled service times and independence of the arrival process 99

A.2 Proof of technical lemmas of monotonicity . 102

B Appendix to Chapter 4 104

B.1 Detailed algorithm steps in Section 4.2.1 . 104

B.1.1 Simulation algorithm for the process {Y−n : n ≥ 0} 105

B.1.2 Simulation algorithm for the process {X−n : n ≥ 0} 111

B.1.3 Simulation algorithm for {S(r)
n : n ≥ 0} and coalescence detection 115

B.2 Proof of propositions . 116

iii

List of Figures

3.1 Renewal processes . 11

3.2 The relationship between the renewal processes and the random walks (a) N0(t)−at
and S

(0)
n (b) (a/c)t−N i(t) and S

(i)
n . 25

3.3 This figure plots a realization of the sample path {S(0)
n : 0 ≤ n ≤ 11}. Here we set

m = 1 and L = 3. Then, Φ0
1 = 3, Υ0

1 = 4, Φ0
2 = 7. If Υ0

2 = ∞, then for n ≥ 7,

S
(0)
n will stay below the level S

(0)
7 + m, which is demonstrated by the bold dashed

line. Thus, M
(0)
2 = maxn≥2{S(0)

n } = S
(0)
2 by only comparing the random walk values

between step 2 and step 7. 27

3.4 Number of customers for an M/M/c queue in stationarity when λ = 3, µ = 2 and

c = 2. 33

3.5 Number of customers for an M/M/c queue in stationarity when λ = 10, µ = 2 and

c = 10. 34

3.6 Number of customers for an Erlang(k1, λ)/Erlang(k2, µ)/c queue in stationarity when

k1 = 3, λ = 4.5, k2 = 2, µ = 2/3, c = 5 and ρ = 0.9. 34

4.1 Number of customers for an M/M/c queue in stationarity when λ = 3, µ = 2, c = 2. 54

4.2 Number of customers for an M/M/c queue in stationarity when λ = 10, µ = 2, c = 10. 54

4.3 Number of customers for an Erlang(k1, λ)/Erlang(k2, µ)/c queue in stationarity

when k1 = 2, λ = 9, k2 = 2, µ = 5, c = 2 and ρ = 0.9. 55

4.4 Distributions of time taken to detect coalescence under two algorithms for an M/M/c

queue . 56

6.1 Linear regression test on Beijing’s PM2.5 data . 87

iv

6.2 Logistic regression test on AOL’s campaign data . 88

A.1 Matching procedure of service times to arrival process 100

v

List of Tables

3.1 Simulation estimates for the mean coalescence time of M/M/c queue (QD) 35

3.2 Simulation estimates for the mean coalescence time of M/M/c queue (QED) 35

3.3 Simulation result for computational complexities with varying traffic intensities . . . 36

4.1 Simulation result for computational complexities with varying traffic intensities . . . 57

vi

Acknowledgments

First and foremost, I would like to express my gratitude to my advisor Professor Jose Blanchet

for his enthusiastic inspiration, patient guidance and continuous support through the five years of

studies and research. Jose is a talented researcher, an insightful mentor and a caring friend. It has

been an honor and a privilege working with Jose closely over my entire PhD years, and I enjoy

every discussion with him as he always impress me with his ample knowledge, keen intuition and

deep passion for research. The strong example he has set will continue to inspire me to stay curious,

be passionate and strive towards excellence in my future work and life.

I am grateful to Professor Karl Sigman, Professor Ton Dieker, Professor Jing Dong and Professor

Henry Lam for generously offering their time serving on my dissertation committee and providing

invaluable advice. Special thanks go to Professor Jing Dong and Professor Karl Sigman, whom

I collaborated along with Jose in the work of Chapter 3 and 4. I also want to thank Professor

Xinyun Chen, with whom I worked on another research project about applying stochastic analysis

techniques to uncover the structure of limit order books in financial markets. Although I finally

decided not to include that work in the thesis because of the topic difference, I do appreciate this

research experience, as it enlightened me on huge possibilities of connecting theories from academia

to various practices in industry.

I would like to extend my sincere thanks to all the amazing professors who have taught me at

Columbia University for sharing their knowledge without reservation, and all the members of staff

at the department of IEOR for creating such a friendly and supportive environment.

Thanks to all my friends at Columbia, this journey has been colorful and enjoyable with your

company. I will always cherish the memories of us attending the same courses, preparing qualifi-

cation exams, discussing research ideas, exploring the great New York City, and sharing tears and

joy together. My PhD life would be dull without you and I sincerely hope our friendship will last

lifelong.

vii

Lastly and most importantly, I owe my deepest gratitude towards my parents and grandmother,

for their unconditional love and endless support throughout my life. They are my constant source

of inspiration and strength. Special thanks to my husband for always believing in me and cheering

me up. I would like to dedicate this work to them.

viii

To Xiaoqin Liu, Yongqiang Pei, Luming Wang

ix

CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

This dissertation studies various bias-removal simulation techniques in applied probability and

stochastic optimization problems. These techniques are developed based on a wide range of clas-

sic tools including queueing theory, steady-state analysis, perfect sampling, large deviation theory,

multi-level Monte Carlo and sample average approximations. By different natures of such tech-

niques, we divide the dissertation into two main parts.

Part I presents two sets of algorithms for simulating exactly from the stationary distribution of

multi-server queues with general interarrival time and service time distributions in finite expected

run time, and our work closes a gap in the perfect sampling literature. Perfect sampling aims to

sample without any bias from the steady-state distribution of a given ergodic process, and it has

evolved as a powerful way of sampling from stationary distributions of queueing models for which

such distributions can not be derived explicitly. Both of the algorithms are developed by utilizing

a perfect sampling protocol named Dominated Coupling From The Past (DCFTP), yet they are

significantly different by design; one solves the problem by using a coupled multi-server vacation

system as the upper bound process while the other directly simulates the Random Assignment

(RA) model backward in time. We will have a thorough discussion about the background and

relevant literatures of perfect sampling in Chapter 2, then we describe the two sets of algorithms

respectively in Chapter 3 and Chapter 4.

Part II presents general de-biasing principles for Monte Carlo computations based on the multi-

level Monte Carlo method and the bias removal ideas studied in the literature. Within the general

framework, we propose unbiased estimators to various applied probability and operations research

CHAPTER 1. INTRODUCTION 2

settings such as steady-state simulation of regenerative processes, stochastic convex optimization,

and distribution quantiles estimation. A key contribution of the development of such unbiased

estimators is that it enables the use of parallel computing to improve the estimation accuracy and

computation efficiency. In Chapter 5, we review the literatures and give the general principles to

provide the high-level intuition. In Chapter 6, we discuss the construction of unbiased estimators

for different settings of interest.

3

Part I

Exact Simulation of

Multi-Dimensional Queueing Models

with Renewal Input

CHAPTER 2. INTRODUCTION TO PART I 4

Chapter 2

Introduction to Part I

In this part, we present two exact simulation algorithms for the steady-state distribution of multi-

server queues with general interarrival time and service time distributions. Both of our algorithms

have finite expected termination time under the assumption that the interarrival times and service

times have finite 2 + ε moments for some ε > 0.

In recent years, the method of exact simulation has evolved as a powerful way of sampling from

stationary distribution of a given ergodic process for which such distributions cannot be derived

explicitly. The most popular perfect sampling protocol, known as Coupling From The Past (CFTP),

was introduced in the seminal paper [Propp and Wilson, 1996]; see also [Asmussen et al., 1992]

for another important early reference on perfect simulation. Foss and Tweedie [Foss and Tweedie,

1998] proved that CFTP can be applied if and only if the underlying process is uniformly ergodic,

which is not a property applicable to multi-server queues. So, we use a variation of the CFTP

protocol called Dominated CFTP (DCFTP) introduced by Kendall in [Kendall, 1998] and later

extended in [Kendall and Møller, 2000; Kendall, 2004].

A typical implementation of DCFTP requires at least four ingredients:

(a) a stationary upper bound process for the target process,

(b) a stationary lower bound process for the target process,

(c) the ability to simulate (a) and (b) backward in time (i.e., from time 0 to −t, for any t > 0),

(d) a finite time −T < 0 at which the state of the target process is determined (typically by

CHAPTER 2. INTRODUCTION TO PART I 5

having the upper and lower bound processes coalesce), and the ability to reconstruct the

target process from −T up to time 0 coupled with the two bounding processes.

The time −T is called the coalescence time, and it is desirable to have E [T] <∞. The ingredients

are typically combined as follows. One simulates (a) and (b) backward in time (by applying (c))

until the processes meet. The target process is sandwiched between (a) and (b). Therefore, if we

can find a time −T < 0 when processes (a) and (b) coincide, the state of the target process is

known at −T as well. Then, applying (d), we reconstruct the target process from −T up to time

0. The algorithm outputs the state of the target process at time 0.

It is quite intuitive that the output of the above construction is stationary. Specifically, assume

that the sample path of the target process coupled with (a) and (b) is given from (−∞, 0]. Then,

we can think of the simulation procedure in (c) as simply observing or unveiling the paths of (a)

and (b) during [−t, 0]. When we find a time −T < 0 at which the paths of (a) and (b) take the

same value, because of the sandwiching property, the target process must share this common value

at −T . Starting from that point, property (d) simply unveils the path of the target process. Since

this path has been coming from the infinite distant past (we simply observed it from time −T), the

output is stationary at time 0. Notice that while −T is a random time, the output is the state of

the target process at the fixed time 0.

One can often improve the performance of a DCFTP protocol if the underlying target process

is monotone [Kendall, 2004], as in the multi-server queue setting. A process is monotone if there

exists a certain partial order, �, such that if w and w′ are initial states where w � w′, and one uses

common random numbers to simulate two paths, one starting from w and the other from w′, then

the order is preserved when comparing the states of these two paths at any point in time. Thus,

instead of using the bounds (a) and (b) directly to detect coalescence, one could apply monotonicity

to detect coalescence as follows: At any time −t < 0, one can start two paths of the target process,

one from the state w′ obtained from the upper bound (a) observed at time −t, and the other from

the state w � w′ obtained from the lower bound (b) observed at time −t. Then, we run these two

paths using common random numbers, which are consistent with the backward simulation of (a)

and (b), in reverse order according to the dynamics of the target process, and check whether these

two paths meet before time zero. If they do, the coalescence occurs at such a meeting time. We

also notice that because we are using common random numbers and system dynamics, these two

CHAPTER 2. INTRODUCTION TO PART I 6

paths will merge into a single path from the coalescence time forward, and the state at time zero

will be the desired stationary draw. If coalescence does not occur, then one can simply let t← 2t,

and repeat the above procedure. For this iterative search procedure, we must show that the search

terminates in finite time.

While the DCFTP protocol is relatively easy to understand, its application is not straightfor-

ward. In most applications, the most difficult part has to do with element (c). Then, there is an

issue of finding good bounding processes (elements (a) and (b)), in the sense of having short coa-

lescence times – which we interpret as making sure that E [T] <∞. There has been a substantial

amount of research that develops generic algorithms for Markov chains (see, for example, [Corcoran

and Tweedie, 2001] and [Connor and Kendall, 2007]). These methods rely on having access to the

transition kernels, which are difficult to obtain in our case. Perfect simulation for queueing systems

has also received a significant amount of attention in recent years, though most perfect simulation

algorithms for queues impose Poisson assumptions on the arrival process. Sigman [Sigman, 2011;

Sigman, 2012] applied the DCFTP and regenerative idea to develop perfect sampling algorithms for

stable M/G/c queues. The algorithm in [Sigman, 2011] requires the system to be super-stable (i.e.,

the system can be dominated by a stable M/G/1 queue). The algorithm in [Sigman, 2012] works

under natural stability conditions by using a forward time regenerative method (a general method

developed in [Asmussen et al., 1992]) and using the M/G/c model under a random assignment

(RA) discipline as an upper bound, but it has infinite expected termination time. A recent work

by Connor and Kendall [Connor and Kendall, 2015] extends Sigman’s algorithm [Sigman, 2012] by

using the RA model. They accomplish this by first exactly simulating the RA model in stationary

backward in time under process sharing (PS) at each node, then reconstructing it to obtain the

RA model with FIFO at each node and doing so in such a way that a sample-path upper bound of

the FIFO M/G/c queue is achieved. Their algorithm has finite expected termination time, but it

still requires the arrivals to be Poisson. The main reason for the Poisson arrival assumption is that

under this assumption, one can find dominating processes which are quasi-reversible (see Chapter

3 of [Kelly, 1979]) and therefore can be simulated backward in time using standard Markov chain

constructions (element (c)).

In general, constructing elements (a) and (b), (a) in particular, as (b) can often be taken as

the trivial lower bound, 0, in the multi-server queue setting requires proving sample path (almost

CHAPTER 2. INTRODUCTION TO PART I 7

sure) dominance under different service/routing disciplines. The sample path method has been

widely used in the control of queues [Liu et al., 1995]. Comparison of multi-server queues, under

the almost sure dominance or the stochastic dominance, has been studied in the literature (see, for

example, [Wolff, 1977; Foss, 1980; Foss and Chernova, 2001] and references therein).

For general renewal arrival process, our work is close in the spirit to [Ensor and Glynn, 2000],

[Blanchet and Dong, 2013] and [Blanchet and Wallwater, 2015], but the models treated are funda-

mentally different. Thus, it requires some new developments.

For the first algorithm, we use a different coupling construction than that introduced in [Sigman,

2012] and refined in [Connor and Kendall, 2015]. In particular, we take advantage of a vacation

system which allows us to transform the problem into simulating the running infinite horizon

maximums (from time t to infinity) of renewal processes, compensated with negative drifts so that

the infinite horizon maximums are well defined. Finally, we note that a significant advantage of our

method, in contrast to [Sigman, 2012], is that we do not need to wait until the upper bound system

empties to achieve coalescence. Due to the monotonicity of our process, we can apply the iterative

method introduced above. This is important in many-server queues in heavy traffic for which it

would take an exponential amount of time (in the arrival rate), or sometimes be impossible, to

observe an empty system.

For the second set of algorithms, we utilize DCFTP by directly simulating the RA model in

reverse-time (under FIFO at each node). The method involves extending, to a multi-dimensional

setting, a recent result of [Blanchet and Wallwater, 2015] for exactly simulating the maximum of

a negative drift random walk endowed with iid increments. An initial version of the algorithm is

to simulate the upper bound process backward in time until an empty system is detected; then a

more efficient “sandwiching” algorithm is given to deal with the cases where the empty status is

difficult or impossible to observe. We also remark on how our approach can lead to new results

for other models too, such as infinite server queues, multi-server queues under the last-in-first-out

(LIFO) discipline, or the randomly choose next discipline, and even Fork-Join models (also called

split and match models).

CHAPTER 3. EXACT SIMULATION WITH VACATION SYSTEMS 8

Chapter 3

Exact Simulation with Vacation

Systems

We give our first exact simulation algorithm, which utilizes a so-called “vacation system” as an

upper bound, in this chapter. In Section 3.1 we describe our simulation strategy, involving elements

(a) – (d), and we conclude the section with the statement of a result which summarizes our main

contribution (Theorem 1). Subsequent sections (Sections 3.2 and 3.3) provide more details of our

simulation strategy. In Section 3.4, we conduct some numerical experiments. Appendix A contains

the proofs of some technical results.

3.1 Simulation strategy and main result

Our target process is the stationary process generated by a multi-server queue with iid interarrival

times and iid service times which are independent of the arrivals. There are c ≥ 1 identical servers,

each can serve at most one customer at a time. Customers are served on a first-in-first-out (FIFO)

basis. Let G(·) and Ḡ(·) = 1 − G(·) (resp. F (·) and F̄ (·) = 1 − F (·)) denote the cumulative

distribution function, CDF, and the tail CDF of the interarrival times (resp. service times). We

shall use A to denote a random variable with CDF G, and V to denote a random variable with

CDF F .

Assumption 1. Both A and V are strictly positive with probability one, and there exists ε > 0

CHAPTER 3. EXACT SIMULATION WITH VACATION SYSTEMS 9

such that

E[A2+ε] <∞, E[V 2+ε] <∞.

The previous assumption will allow us to conclude that the coalescence time of our algorithm

has finite expectation. The algorithm will terminate with probability one if E[A1+ε]+E[V 1+ε] <∞.

We assume that G (·) and F (·) are known so that the required parameters in our algorithmic

development can be obtained. We write λ = (
∫∞

0 Ḡ(t)dt)−1 = 1/E [A] as the arrival rate, and

µ = (
∫∞

0 F̄ (t)dt)−1 = 1/E[V] as the service rate. In order to ensure the existence of the stationary

distribution of the system, we require the following stability condition: λ/(cµ) < 1.

3.1.1 Elements of the simulation strategy: upper bound and coupling

We refer to the upper bound process as the vacation system, the construction that we use is based

on that given in [Garmarnik and Goldberg, 2013]. Let us first explain in words how the vacation

system operates. Customers arrive at the vacation system according to the renewal arrival process,

and the system operates similarly to a GI/GI/c queue, except that every time a server (say server

i∗) finishes an activity (i.e., a service or a vacation), if there is no customer waiting to be served

in the queue, server i∗ takes a vacation which has the same distribution as the service times. If

there is at least one customer waiting, the first customer waiting in the queue starts to be served

by server i∗.

Using a suitable coupling, the work of [Garmarnik and Goldberg, 2013] shows that the total

number of jobs in the vacation system is an upper bound of the total number of jobs in the

corresponding multi-server queue. In this paper, we establish bounds for other system-related

processes, such as the Kiefer-Wolfowitz vectors, which are of independent interest.

We next provide more details about the vacation system. We introduce (c+ 1) time-stationary

renewal processes, which are used to describe the vacation system.

Let

T 0 := {T 0
n : n ∈ Z\{0}}

be a time-stationary renewal point process with T 0
n > 0 and T 0

−n < 0, n ≥ 1 (the T 0
n are sorted in

a non-decreasing order in n). For n ≥ 1, T 0
n represents the arrival time of the n-th customer into

the system after time zero, and T 0
−n is the arrival time of the n-th customer, counting backward in

CHAPTER 3. EXACT SIMULATION WITH VACATION SYSTEMS 10

time, from time zero. We also define

T 0,+
n := inf{T 0

m : T 0
m > T 0

n},

that is, the arrival time of the next customer after T 0
n . If n ≥ 1 or n ≤ −2, T 0,+

n = T 0
n+1. However,

T 0,+
−1 = T 0

1 . Similarly, we write

T 0,−
n := sup{T 0

m : T 0
m < T 0

n},

i.e., the arrival time of the previous customer before T 0
n . Define An := T 0,+

n −T 0
n for all n ∈ Z\{0}.

Note that An is the interarrival time between the customer arriving at time T 0
n and the next

customer. An has CDF G (·) for n ≥ 1 and n ≤ −2, but A−1 has a different distribution due to the

inspection paradox. Figure 3.1 (a) provides a pictorial illustration of the renewal process T 0.

Similarly, for i ∈ {1, 2, ..., c}, we introduce iid time-stationary renewal point processes

T i := {T in : n ∈ Z\{0}}.

As before, we have that T in > 0 and T i−n < 0 for n ≥ 1 with the T in sorted in a non-decreasing

order. We also define T i,+n := inf{T im : T im > T in} and T i,−n := sup{T im : T im < T in}. Then, we let

V i
n := T i,+n − T in. We assume that V i

n has CDF F (·) for n ≥ 1 and n ≤ −2. The V i
n are activities

(services and vacations), which are executed by the i-th server in the vacation system.

Next, we define, for each i ∈ {0, 1, ..., c}, and any u ∈ (−∞,∞), a counting process

N i
u (t) :=

∣∣[u, u+ t] ∩ T i
∣∣ ,

for t ≥ 0, where | | denotes cardinality. Note that as T i−1 < 0 < T i1 by stationarity, N i
0 (0) = 0.

In particular, the quantity N0
u (t) is the number of customers who arrive during the time interval

[u, u + t] (see Figure 3.1 (b)). The quantity N i
u (t) is the number of activities initiated by server

i during the time interval [u, u + t] when i 6= 0. For simplicity of the notation, let us write

N i (t) = N i
0 (t) if t ≥ 0 and N i (t) = N i

t (−t) if t ≤ 0.

3.1.1.1 The upper bound process: vacation system

Let Qv(t) denote the number of people waiting in queue at time t in the stationary vacation system.

We write Qv(t−) := lims↑tQv (s) and dQv(t) := Qv(t) −Qv(t−). Also, for any t ≥ 0, i ∈ {0, ..., c}

CHAPTER 3. EXACT SIMULATION WITH VACATION SYSTEMS 11

Figure 3.1: Renewal processes

(a) Definition of Ai’s

0T−1
0T−2

0T−3
0 T1

0 T2
0 T3

0

A−1A−3 A−2 A1 A2

(b) Defintion of N0
u(t)

0T−1
0T−2

0T−3
0 T1

0 T2
0 T3

0
t

Nt
0 (−t) = 2

and each u ∈ (−∞,∞), define

N i
u(t−) := lim

h↓0
N i
u−h (t) ,

and let dN i
u (t) := N i

u(t) − N i
u(t−) for all t ≥ 0 (note that as N i

u (0−) = 0, dN i
u (0) should equal

N i
u (0)). Similarly, for t ≤ 0, N i (t−) = N i

t

(
|t|−
)
.

We also introduce Xu(t) := N0
u(t) −∑c

i=1N
i
u(t). For simplicity of the notation, we also write

X(t) = X0(t) if t ≥ 0, and X(t) = Xt(−t) if t ≤ 0. Then, the dynamics of (Qv (t) : t > 0) satisfy

dQv (t) = dX (t) + I (Qv (t−) = 0)

c∑
i=1

dN i(t), (3.1)

given Qv (0). Note that here we are using the fact that arrivals do not occur at the same time as

the start of activity times; this is because the processes T i are independent time-stationary renewal

processes in continuous time so that T i−1 and T i1 have a density.

It follows from standard arguments of Skorokhod mapping [Chen and Yao, 2013] that, for t ≥ 0,

Qv(t) = Qv(0) +X(t)− inf
0≤s≤t

(X(s) +Qv(0))− ,

where (X(s) +Qv(0))− = min (X (s) +Qv(0), 0). Moreover, using Loynes’ construction, we have

that, for t ≤ 0,

Qv(t) = sup
s≤t

X (s)−X (t) (3.2)

(see, for example, Proposition 1 of [Blanchet and Chen, 2015]). (Qv(t) : t ∈ (−∞,∞)) is a well-

defined process by virtue of the stability condition λ/(µc) < 1.

3.1.1.2 The coupling: extracting service times for each customer

The vacation system and the target process (the GI/GI/c queue) will be coupled by using the

same arrival stream of customers, T 0, and assuming that each customer brings his own service

CHAPTER 3. EXACT SIMULATION WITH VACATION SYSTEMS 12

time. In particular, the evolution of the underlying GI/GI/c queue is described using a sequence

of the form
((
T 0
n , Vn

)
: n ∈ Z\{0}

)
, where Vn is the service time of the customer arriving at time

T 0
n . In simulation, we start by simulating the upper bound process (vacation system). Thus, the

Vn must be extracted from the evolution of Qv (·) so that the same service times are matched to

the common arrival stream both in the vacation system and in the target process.

In order to match the service times to each of the arriving customers in the vacation system, we

define the following auxiliary processes: For every i ∈ {1, ..., c}, any t > 0, and any u ∈ (−∞,∞),

let σiu (t) denote the number of service initiations by server i during the time interval [u, u + t].

Observe that

σiu (t) =

∫
[u,u+t]

I (Qv (s−) > 0) dN i
u (s− u) .

That is, we count activity initiations at time T ik ∈ [u, u + t] as service initiations if and only if

Qv
(
T ik−

)
> 0. Once again, here we use the fact that arrival times and activity initiation times do

not occur simultaneously.

We now explain how to match service time for the customer arriving at T 0
n , n ∈ Z\{0}. First,

such a customer occupies position Qv
(
T 0
n

)
≥ 1 when he enters the queue. Let D0

n be the delay (or

waiting time) inside the queue of the customer arriving at T 0
n . Then we have that

D0
n = inf

{
t ≥ 0 : Qv

(
T 0
n

)
=

c∑
i=1

σiT 0
n

(t)

}
,

and therefore,

Vn =
c∑
i=1

V i
N i(T 0

n+D0
n) · dN i

(
T 0
n +D0

n

)
. (3.3)

Observe that the previous equation is valid, because for each n ∈ Z\{0}, there is a unique i (n) ∈
{1, ..., c} for which dN i(n)

(
T 0
n +D0

n

)
= 1 and dN j

(
T 0
n +D0

n

)
= 0 if j 6= i (n) (ties are not possible

because of the time stationarity of the T i), so we obtain that (3.3) is equivalent to

Vn = V
i(n)

N i(n)(T 0
n+D0

n)
.

We shall explain in Section A.1 that (Vn : n ∈ Z\{0}) and
(
T 0
n : n ∈ Z\{0}

)
are two independent

sequences and the Vn are iid copies of V , i.e., the extraction procedure here does not create any

bias.

CHAPTER 3. EXACT SIMULATION WITH VACATION SYSTEMS 13

3.1.2 Monotonicity properties and the stationary GI/GI/c queue

3.1.2.1 A family of GI/GI/c queues and the target GI/GI/c stationary system

We now describe the evolution of a family of standard GI/GI/c queues. Once we have the sequence((
T 0
n , Vn

)
: n ∈ Z\{0}

)
, we can proceed to construct a family of continuous-time Markov processes

(Zu(t; z) : t ≥ 0) for each u ∈ (−∞,∞), given the initial condition Zu (0; z) = z. We write z =

(q, r, e(u)), and set

Zu(t; z) := (Qu (t; z) , Ru (t; z) , Eu (t; z)) ,

for t ≥ 0, where Qu (t; z) is the number of people in the queue at time u+t (Qu (0; z) = q), Ru(t; z) is

the vector of ordered (ascending) remaining service times of the c servers at time u+t (Ru(0; z) = r),

and Eu(t; z) is the time elapsed since the previous arrival at time u+ t (Eu(0; z) = e(u)).

We shall always use Eu(0; z) = e(u) = u − sup{T 0
n : T 0

n ≤ u}, and we shall select q and r

appropriately based on the upper bound. The evolution of the process (Zu (s; z) : 0 < s ≤ t) is

obtained by feeding the traffic {
(
T 0
n , Vn

)
: u < T 0

n ≤ u + s} for s ∈ (0, t] into a FIFO GI/GI/c

queue with initial conditions given by z. Constructing (Zu (s; z) : 0 < s ≤ t) using the traffic trace

{
(
T 0
n , Vn

)
: u < T 0

n ≤ u + s} for s ∈ (0, t] is standard (see, for example, Chapter 3 of [Rubinstein

and Kroese, 2011]).

One can further describe the evolution of the underlying GI/GI/c queue at arrival epochs,

using the Kiefer-Wolfowitz vector [Asmussen, 2003]. In particular, for every non-negative vector

w ∈ Rc such that w(i) ≤ w(i+1) (where w(i) is the i-th entry of w) for 1 ≤ i ≤ c − 1, and each

k ∈ Z\{0}, the family of processes {Wk

(
T 0
n ;w

)
: n ≥ k, n ∈ Z\{0}} satisfies

Wk

(
T 0,+
n ;w

)
= S

((
Wk

(
T 0
n ;w

)
+ Vne1 −An1

)+)
, (3.4)

with initial condition Wk

(
T 0
k ;w

)
= w, where e1 = (1, 0, ..., 0)T ∈ Rc, 1 = (1, ..., 1)T ∈ Rc, and S

is a sorting operator which arranges the entries in a vector in ascending order. In simple words,

Wk

(
T 0
n ;w

)
for k ∈ Z\{0} describes the Kiefer-Wolfowitz vector as observed by the customer

arriving at T 0
n , assuming that customer who arrived at T 0

k , k ≤ n, experienced the Kiefer-Wolfowitz

state w.

Recall that the first entry of Wk

(
T 0
n ;w

)
, namely W

(1)
k

(
T 0
n ;w

)
, is the waiting time of the cus-

tomer arriving at T 0
n (given the initial condition w at T 0

k). More generally, the i-th entry of

CHAPTER 3. EXACT SIMULATION WITH VACATION SYSTEMS 14

Wk

(
T 0
n ;w

)
, namely W

(i)
k

(
T 0
n ;w

)
, is the virtual waiting time of the customer arriving at T 0

n if he

decides to enter service immediately after there are at least i servers free once he reaches the head

of the line. In other words, one can also interpret Wk

(
T 0
n ;w

)
as the vector of remaining workloads

(sorted in ascending order) that would be processed by each of the c servers at T 0
n , if there are no

more arrivals after time T 0
n .

We are now ready to construct the stationary version of the GI/GI/c queue. Namely, for each

n ∈ Z\{0} and every t ∈ (−∞,∞), we define W (n) and Z (t) via

W (n) := lim
k→−∞

Wk

(
T 0
n ; 0
)
, (3.5)

Z (t) := (Q (t) , R (t) , E (t)) = lim
u→−∞

Zu (t− u, z−(u)) ,

where z−(u) = (0, 0, e(u)). We shall show in Proposition 1 that these limits are well defined.

3.1.2.2 The analogue of the Kiefer-Wolfowitz process for the upper bound system

In order to complete the coupling strategy, we also describe the evolution of the analog Kiefer-

Wolfowitz vector induced by the vacation system, which we denote by (Wv (n) : n ∈ Z\{0}), where

v stands for vacation. As with the i-th entry of the Kiefer-Wolfowitz vector of a GI/GI/c queue,

the i-th entry of Wv (n), namely W
(i)
v (n), is the virtual waiting time of the customer arriving at

time T 0
n if he decides to enter service immediately after there are at least i servers free once he

reaches the head of the line (assuming that servers become idle once they see, after the completion

of current activity, the customer in queue waiting in the head of the line).

To describe the Kiefer-Wolfowitz vector induced by the vacation system precisely, let U i (t) be

the time until the next renewal after time t in T i, that is U i (t) = inf{T in : T in > t} − t. So, for

example, U0
(
T 0
n

)
= An for n ∈ Z\{0}. Let U (t) =

(
U1 (t) , ..., U c (t)

)T
.

We then have that

Wv (n) = D0
n1+S

(
U
((
T 0
n +D0

n

)
−

))
. (3.6)

In particular, note that W
(1)
v (n) = D0

n, i.e., the delay the customer arriving at T 0
n would experience.

We next introduce a recursive way of constructing/defining the Kiefer-Wolfowitz vector induced by

the vacation system. We define

W̄v (n) = Wv (n) + Vne1 −An1,

CHAPTER 3. EXACT SIMULATION WITH VACATION SYSTEMS 15

and let W̄
(i)
v (n) to be the i-th entry of W̄v (n). Let Wv (n+) denote the Kiefer-Wolfowitz vector

seen by the customer arriving at T 0,+
n . From the definition of Wv (n), we have

Wv (n+) = S
((
W̄v (n)

)+
+ Ξn

)
,

where

Ξ(i)
n = I(W̄ (i)

v (n) < 0) · U ji(n)
((
T 0,+
n

)
−

)
(i.e., ji (n) is the server whose remaining activity time immediately before T 0

n is the i-th smallest

in order).

So, (3.6) actually satisfies

Wv (n+) = S
(
(Wv (n) + Vne1 −An1)+ +Ξn

)
, (3.7)

where Ξn =
(

Ξ
(1)
n , ...,Ξ

(c)
n

)T
.

3.1.2.3 Monotonicity properties

In this section we will present several lemmas which contain useful monotonicity properties. The

proofs of the lemmas are given in Section A.2 in order to quickly arrive at the main point of this

section, which is the construction of a stationary version of the GI/GI/c queue.

First, we recall that the Kiefer-Wolfowitz vector of a GI/GI/c queue is monotone in the initial

condition (3.8) and invoke a property (3.9) which will allow us to construct a stationary version of

the Kiefer-Wolfowitz vector of our underlying GI/GI/c queue, using Loynes’ construction.

Lemma 1. For n ≥ k, k, n ∈ Z\{0}, w+ > w−,

Wk

(
T 0
n ;w+

)
≥Wk

(
T 0
n ;w−

)
. (3.8)

Moreover, if k ≤ k′ ≤ n,

Wk

(
T 0
n ; 0

)
≥Wk′

(
T 0
n ; 0

)
. (3.9)

The second result allows us to make precise how the vacation system dominates a suitable family

of GI/GI/c systems, in terms of the underlying Kiefer-Wolfowitz vectors.

Lemma 2. For n ≥ k, k, n ∈ Z\{0},

Wv (n) ≥Wk

(
T 0
n ;Wv (k)

)
.

CHAPTER 3. EXACT SIMULATION WITH VACATION SYSTEMS 16

The next result shows that in terms of queue length processes, the vacation system also domi-

nates a family of GI/GI/c queues, which we shall use to construct the upper bounds.

Lemma 3. Let q = Qv(u), r = S (U (u)), and e = u− sup{T 0
n : T 0

n ≤ u}, so that z+ = (q, r, e) and

z− = (0,0, e) then for t ≥ u,

Qu(t− u; z−) ≤ Qu(t− u; z+) ≤ Qv(t).

Using Lemmas 1, 2, and 3, we can establish the following result.

Proposition 1. The limits defining W (n) and Z (t) in (3.5) exist almost surely. Moreover, we

have

Wk

(
T 0
n ; 0

)
≤W (n) ≤Wk

(
T 0
n ;Wv (k)

)
. (3.10)

Proof. Using Lemma 1 and 2, we have that

Wv (n) ≥Wk

(
T 0
n ;Wv (k)

)
≥Wk

(
T 0
n ; 0

)
.

Then, by property (3.9) in Lemma 1, we conclude that the limit defining W (n) exists almost surely

and that

W (n) ≤Wv (n) . (3.11)

Similarly, using Lemma 3, we can obtain the existence of the limit Q(t) and we have that Q (t) ≤
Qv (t). Moreover, by convergence of the Kiefer-Wolfowitz vectors, we obtain the i-th entry of

R
(
T 0
n +W (1)(n)

)
, namely

R(i)
(
T 0
n +W (1)(n)

)
=
(
W (i) (n)−W (1) (n)

)+
,

where i ∈ {1, ..., c}. Lastly, since the age process has been taken from the underlying renewal

process T 0, we have that E (t) = t − sup{T 0
n : T 0

n ≤ t}. The fact that the limits are stationary

follows directly from the limiting procedure and it is standard in Loynes-type constructions.

For (3.10), we use the identity W (n) = Wk

(
T 0
n ;W (k)

)
, combined with Lemma 1, to obtain

Wk

(
T 0
n ; 0

)
≤Wk

(
T 0
n ;W (k)

)
= W (n) ,

and then we apply Lemma 2, together with (3.11), to obtain

W (n) = Wk

(
T 0
n ;W (k)

)
≤Wk

(
T 0
n ;Wv (k)

)
.

CHAPTER 3. EXACT SIMULATION WITH VACATION SYSTEMS 17

3.1.3 Description of simulation strategy and main result

We now describe how the variation of DCFTP that we mentioned in Chapter 1, using monotonicity

of the multi-server queue, and elements (a)–(d), apply to our setting.

Define a fixed inspection sequence {κj : j ≥ 1} with κj < κj−1 < 0, and define κ0 = 0. We start

from the first inspection time T 0
κ1 (j = 1). The upper bound is initialized using the Kiefer-Wolfowitz

process associated with the vacation system at T 0
κj . The lower bound is initialized with a null vector

0. We run the two bounding GI/GI/c queues forward in time using {(T 0
n , Vn) : κj ≤ n ≤ κj−1}. If

the two processes meet before time zero, then we can “unveil” the state of the stationary GI/GI/c

queue; otherwise, we go backward in time to the next inspection time T 0
κj+1

(j ← j+1) and construct

two new bounding GI/GI/c queues accordingly. We repeat the procedure until the coalescence is

detected.

The strategy combines the following facts (which we shall discuss in the sequel).

– Fact I We can simulate sups≥tX (−s) and (N i (−t) : t ≥ 0)ci=0 jointly for any given t ≥ 0.

This part, which corresponds to item (c), is executed by applying an algorithm from [Blanchet

and Wallwater, 2015] designed to sample the infinite horizon running time maximum of a

random walk with negative drift. We shall provide more details about this in Section 3.3.

– Fact II For all k ≤ −1 and every k ≤ n ≤ −1, by Proposition 1, we have that

Wk

(
T 0
n ; 0

)
≤W (n) ≤Wk

(
T 0
n ;Wv (k)

)
.

This portion exploits the upper bound (a) (i.e., Wv (k)) and the lower bound (b) (i.e., 0).

– Fact III We can detect that coalescence occurs at some time T ∈ [T 0
k , 0] for some k ≤ −1 by

finding some n ∈ Z−, n ≥ k, such that T 0
n +W

(1)
k

(
T 0
n ;Wv (k)

)
≤ 0 and

Wk

(
T 0
n ;Wv (k)

)
= Wk

(
T 0
n ; 0

)
.

This is precisely the coalescence detection strategy which uses monotonicity of the Kiefer-

Wolfowitz vector and the coalescence time T = T 0
n +W

(1)
k

(
T 0
n ;Wv (k)

)
.

– Fact IV We can combine Facts I-III to conclude that

Z0
Tk

(∣∣T 0
k

∣∣ ;Q (T 0
k

)
,S
(
U
(
T 0
k

))
, 0
)

= Z (0) (3.12)

CHAPTER 3. EXACT SIMULATION WITH VACATION SYSTEMS 18

is stationary. We also have that

Wk

(
T 0

1 ; 0
)

= W (1) ,

which follows the stationary distribution of the Kiefer-Wolfowitz vector of a GI/GI/c queue.

The main result of this paper is stated in the following theorem.

Theorem 1. If Assumption 1 is in force, with λ/(cµ) ∈ (0, 1). Then, Facts I–IV hold true. We

can detect coalescence at a time −T < 0 such that E [T] <∞.

The rest of the chapter is dedicated to the proof of Theorem 1. We have verified a number

of monotonicity properties in Section 3.1.2.3, which in particular allow us to conclude that the

construction of W (n) and Z (t) is legitimate (i.e., the limits exist almost surely). The monotonicity

properties also yield Fact II and pave the way to verify Fact III. Section 3.2 proves the finite

expectation of the coalescence time. In Section 3.3, we provide more algorithmic details about our

perfect sampling construction.

3.2 Coalescence detection in finite time

In this section, we give more details about the coalescence detection scheme. The next result

corresponds to Fact III and Fact IV.

Proposition 2. Suppose that w+ = Wv (k) for some k ≤ −1, and w− = 0. If Wk

(
T 0
n ;w+

)
=

Wk

(
T 0
n ;w−

)
for some k ≤ n ≤ −1, then Wk

(
T 0
m;w+

)
= W (m) = Wk

(
T 0
m;w−

)
for all m ≥ n.

Moreover, for all t ≥ T 0
n +W

(1)
k

(
T 0
n ;w+

)
,

ZT 0
k

(
t− T 0

k ;
(
Qv(T

0
k),S(U(T 0

k)), 0
))

= ZT 0
k

(
t− T 0

k ; (0,0, 0)
)

= Z (t) . (3.13)

Proof. The fact that

Wk

(
T 0
m;w+

)
= W (m) = Wk

(
T 0
m;w−

)
for m ≥ n follows immediately from the recursion defining the Kiefer-Wolfowitz vector. Now, to

show the first equality in (3.13), it suffices to consider t = T 0
n + W

(1)
k

(
T 0
n ;w+

)
, since from t ≥ T 0

n

the input is exactly the same and everyone coming after T 0
n will depart the queue and enter service

CHAPTER 3. EXACT SIMULATION WITH VACATION SYSTEMS 19

after time T 0
n +W

(1)
k

(
T 0
n ;w+

)
. The arrival processes (i.e., Eu (·)) clearly agree, so we just need to

verify that the queue lengths and the residual service times agree. First, note that

RT 0
k
(T 0
n +W

(1)
k

(
T 0
n ;w+

)
− T 0

k ;
(
Qv(T

0
k),S(U(T 0

k)), 0)
)

=Wk

(
T 0
n ;w+

)
−W (1)

k

(
T 0
n ;w+

)
· 1

=Wk

(
T 0
n ;w−

)
−W (1)

k

(
T 0
n ;w−

)
· 1

=RT 0
k
(T 0
n +W

(1)
k

(
T 0
n ;w−

)
− T 0

k ; (0,0, 0)). (3.14)

So, the residual service times of both upper and lower bound processes agree. The agreement of the

queue lengths follows from Lemma 3. Finally, the second equality in (3.13) follows from Proposition

1.

Next, we analyze properties of the coalescence time. Define

T− = sup{T 0
k ≤ 0 : inf

T 0
k≤t≤0

‖ ZT 0
k

(
t− T 0

k ;
(
Qv
(
T 0
k

)
,S(U(T 0

k)), 0
))

−ZT 0
k

(
t− T 0

k ; (0,0, 0)
)
‖∞ = 0}.

Notice that if at time T− we start an upper bound queue,

ZT− (·; (Qv(T−),S(U(T−)), 0)) ,

and a lower bound queue, ZT− (·; (0,0, 0)), they will coalesce before time 0. Thus, if we simulate

the system up to T−, we will be able to detect a coalescence. We next establish that E[|T−|] <∞.

By stationarity, we have that |T−| is equal in distribution to

T = inf

{
T 0
k ≥ 0 : inf

0≤t≤T 0
k

‖Z0 (t; (Qv(0),S(U(0)), 0))− Z0 (t; (0,0, 0))‖∞ = 0

}
.

Proposition 3. If E[Vn] < cE[An] for n ≥ 1 and Assumption 1 holds,

E[T] <∞.

Proof. Define

τ = inf
{
n ≥ 1 : W1

(
T 0
n ;Wv (1)

)
= W1

(
T 0
n ; 0
)}
.

By Wald’s identity, E[An] <∞, for any n ≥ 1; it suffices to show that E[τ] <∞.

CHAPTER 3. EXACT SIMULATION WITH VACATION SYSTEMS 20

We start with an outline of the proof, which involves two main components. I) We first construct

a sequence of events which lead to the occurrence of τ . The events that we construct put constraints

on the interarrival times and service times so that we see a decreasing trend on the Kiefer-Wolfowitz

vectors. When putting a number of these events together (consecutively), the waiting time of the

upper bound system will drop to zero. We further impose the events for c more arrivals after the

waiting time drops to zero. Notice that these c arrivals do not have to wait in both the upper bound

and the lower bound systems. Thus, by the time of c-th such arrival, the two systems will have the

same set of customers with the same remaining service times. II) Based on events constructed in

I, we then split the process {W1(T 0
n ;Wv(1)) : n ≥ 1} into cycles where: IIa) the probability that

the desired event, which leads to coalescence, happens during each cycle is bounded from below by

a positive constant, and IIb) the expected cycle length is bounded from above by a constant. IIa

allows us to bound the number of cycles we need to check before finding τ by a geometric random

variable. Then, we apply Wald’s identity using IIb to establish an upper bound for E[τ].

We next provide more details of the proof, which are divided into part I and II as outlined

above.

Part I We first construct the sequence of events, {Ωk : k ≥ 2}, which enjoys the property that if

Ωk happens, the two bounding systems would have coalesced by time of the (k + dcK/εe − 1)-th

arrival.

As E[Vn] < cE[An], for n ≥ 2, we can find m, ε > 0 such that for every n ≥ 2, the event

Hn = {Vn < cm− ε, An > m} is nontrivial in the sense that P (Hn) > δ for some δ > 0. Now, pick

K > cm large enough, and define, for k ≥ 2,

Ωk =
{
W

(c)
1

(
T 0
k ;Wv(1)

)
≤ K

} k+dcK/εe−1⋂
n=k

Hn.

To see the coalescence of the two bounding systems, let W̃k = (K,K, . . . ,K)T be a c-dimensional

vector with each element equal to K. We notice that, under Ωk,

W̃k ≥W1

(
T 0
k ;Wv (1)

)
.

For n ≥ k, define Ṽn = cm− ε, Ãn = m, and the (auxiliary) Kiefer-Wolfowitz sequence

W̃n+1 = S
((

W̃n + Ṽne1 − Ãn1
)+
)
.

CHAPTER 3. EXACT SIMULATION WITH VACATION SYSTEMS 21

Then, Ωk implies Vn < Ṽn and An > Ãn for n ≥ k, which in turn implies

W1

(
T 0
n ;Wv (1)

)
≤ W̃n.

Moreover, under Ωk, we have

W̃ (1)
n = 0 and W̃ (c)

n < cm for n = k + dcK/εe − c+ 1, . . . , k + dcK/εe.

Then, W
(1)
1

(
T 0
n ;Wv (1)

)
= 0 and W

(c)
1

(
T 0
n ;Wv (1)

)
< cm for n = k+dcK/εe−c+1, . . . , k+dcK/εe.

This indicates that under Ωk, (1) all the arrivals between the (k + dcK/εe − c + 1)-th arrival and

the (k + dcK/εe)-th arrival (included) enter service immediately upon arrival (have zero waiting

time), and (2) the customers initially seen by the (k + dcK/εe − c + 1)-th arrival would have left

the system by the time of the (k + dcK/εe)-th arrival. The same analysis holds assuming that we

replace W1

(
T 0
k ;Wv (1)

)
by W1

(
T 0
k ; 0
)
. Therefore, by the time of the (k + dcK/εe − 1)-th arrival,

the two bounding systems would have exactly the same set of customers with exactly the same

remaining service times, which is equal to their service times minus the time elapsed since their

arrival times (since all of them start service immediately upon arrival). We also notice that since

there is no customer waiting, the sorted remaining service time at T 0
k+dcK/εe−1 coincides with the

Kiefer-Wolfowitz vector Wk+dcK/εe−1.

Part II We first introduce how to split the process into cycles, which are denoted as {(κ̃i, κ̃i+1), i ≥
1}. Let UK := {w : w(c) ≤ K}. We define

κ̃1 := inf{n ≥ 1 : W1

(
T 0
n ;Wv (1)

)
∈ UK},

and for i ≥ 2, define

κ̃i :=
{
n > κ̃i−1 + dcK/εe − 1 : W1(T 0

n ;Wv(1)) ∈ UK
}
.

We denote Θi =
⋂κ̃i+dcK/εe−1
n=κ̃i

Hn for i ≥ 1. We next show that the event Θi happens during the

i-th cycle with positive probability. Since P (Hn) > δ, P (Θi) ≥ δdcK/εe > 0. Let N denote the first

i for which Θi occurs. Then, N is stochastically bounded by a geometric random variable with

probability of success δdcK/εe. In particular, E[N] ≤ δ−dcK/εe <∞.

We next show that E[κ̃i+1 − κ̃i] is bounded using the standard Lyapunov argument. Under

Assumption 1 and λ < cµ, {W1

(
T 0
n ;w (1)

)
: n ≥ 1} for any fixed initial condition w(1) is a positive

CHAPTER 3. EXACT SIMULATION WITH VACATION SYSTEMS 22

recurrent Harris chain [Asmussen, 2003]. Under Assumption 1, we also have that (Qv(t) : t ∈
(−∞,∞)) is a well-defined process with E[Qv(t)] < ∞ (see the random-walk bound in (3.18)).

Thus,

E

[
c∑
i=1

W (i)
v (1)

]
<∞.

Consider the Lyapunov function g(W) = W (c), i.e., g(W) ≥ 0 and g(W) → ∞ as ||W || → ∞.

Then, for K large enough, as λ < cµ, we can find δ ∈ (0, c/λ− 1/µ) such that

E
[
g
(
W1(T 0

c+1, w(1)
)]
≤ g(w(1))− δ for w(1) 6∈ UK . (3.15)

We also have

E
[
g
(
W1(T 0

c+1, w(1)
)]
≤ K + c/µ for w(1) ∈ UK .

Then, by Theorem 2 in [Foss and Konstantopoulos, 2006], E[κ̃1] < ∞ and we can find a constant

M > 0 such that E[κ̃i− κ̃i−1] < M for i ≥ 2. We comment that here we need to look c steps ahead

to identify the downward drift in (3.15), Thus, we use a general version of Lyapunov argument

developed in [Foss and Konstantopoulos, 2006].

Lastly, by Wald’s identity we have (setting κ̃0 = 0) that

E[τ] ≤ E[κ̃N] + dcK/εe − 1

= E

N∑
i=1

(κ̃i − κ̃i−1) + dcK/εe − 1

≤ E[N]×M + E[κ̃1] + dcK/εe − 1 <∞.

Remark 1. Following the proof, we can also conclude that the number of “activities” (either

vacations or services) to simulate in the vacation system, denoted as NV , is also finite in expectation.

Since coalescence is detected by the τ -th arrival, we only need to simulate the vacation system

forward in time from time 0 until we are able to extract the first Qv(0)+τ service time requirements

to match the customers waiting in queue at time 0 and the arrivals from time 0 to coalescence time

T .

For any m′ <∞ such that E[V ∧m′] > 0, we let N̄ i(t), i = 1, . . . , c, denote the counting process

corresponding to the i-th “truncated” vacation process with independent activity times capped by

CHAPTER 3. EXACT SIMULATION WITH VACATION SYSTEMS 23

m′, i.e., V ∧m′. Following a standard argument as in the proof of Ward’s identity in [Asmussen,

2003], a loose upper bound for E[Nv] is given by

E [NV] ≤
c∑
i=1

E
[
N i(T) + 1

]
+ E [Qv(0) + τ]

≤
c∑
i=1

E
[
N̄ i(T) + 1

]
+ E [Qv(0)] + E [τ]

≤ c · E [T] +m′

E [V ∧m′] + E [Qv(0)] + E [τ] <∞.

3.3 Simulation procedure

In this section, we first address the validity of Fact I, namely, that we can simulate the vacation

system backward in time, jointly with
{
T in : m ≤ n ≤ −1

}
for 0 ≤ i ≤ c, for any m ∈ Z−.

Let Ge(·) = λ
∫ ·

0 Ḡ(x)dx and Fe(·) = µ
∫ ·

0 F̄ (x)dx denote equilibrium CDFs of the interarrival

time and service time distributions, respectively. We first notice that simulating the stationary

arrival process
{
T 0
n : n ≤ −1

}
and stationary service/vacation completion process

{
T in : n ≤ −1

}
for each 1 ≤ i ≤ c is straightforward by the reversibility of T in for 0 ≤ i ≤ c. Specifically, we can

simulate the renewal arrival process forward in time from time 0 with the first interarrival time

following Ge and subsequent interarrival times following G. We then set T 0
−k = −T 0

k for all k ≥ 1.

Likewise, we can also simulate the service/vacation process of server i, for i = 1, . . . , c, forward

in time from time 0 with the first service/vacation initiation time following Fe and subsequent

service/vacation time requirements distributed as F . Let T ik, k ≥ 1, denote the k-th service/vacation

initiation time of server i counting forward in time. Then, we set T i−k = −T ik.
Similarly, we have the equality in distribution, for all t ≥ 0 (jointly),

X (−t) d
= X (t) ;

therefore, we have from (3.2) that the following equality in distribution holds for all t ≥ 0 (jointly):

Qv(−t) d
= sup

s≥t
X (s)−X (t) .

The challenge in simulating Qv(−t) involves sampling M(t) = maxs≥t{X(s)} jointly with X(t)

during any time interval of the form [0, T] for T > 0. The rest of the section is devoted to solve

this challenge.

CHAPTER 3. EXACT SIMULATION WITH VACATION SYSTEMS 24

The idea is to identify a sequence of random times ∆k such that

max
T 0
k≤t≤T

0
k+∆k

{X(t)} ≥ max
t≥T 0

k+∆k

{X(t)}.

Then, M(T 0
k) = maxt≥T 0

k
{X(t)} = maxT 0

k≤t≤T
0
k+∆k

{X(t)}. In particular, to calculate M(T 0
k), we

only need to look at the maximum of X(t) over a finite time interval, [T 0
k , T

0
k + ∆k]. To find such

∆k, we apply two tricks here. The first trick is to decompose X(t) into (c+ 1) random walks with

negative drift associated with N i for i = 0, 1, . . . , c. This is based on the fact that for λ < cµ, we

can pick a ∈ (λ, cµ), such that N0(t)− at and
(
(a/c)t−N i(t)

)
are “drifted downward” to negative

infinity. We can then bound M(t) by the “corresponding” running time maximum of the random

walks with negative drift. The second trick is a “milestone event” construction, which allows us

to identify random times beyond which a random walk with negative drift will never go above a

previously achieved level.

The “milestone events” are similar to the ladder height decomposition of a random walk, but we

cannot directly use ladder height theory because the corresponding expressions for the probabilities

of interest (for example the probability of an infinite strictly increasing ladder epoch) are rarely

computable in closed form. The “milestone construction” introduces a parameter m which, together

with change of measure ideas, allows to simulate without bias the occurrence of object such as the

time the random walk reaches a certain barrier, for example.

Putting these “milestone events” of the random walks together and using the fact that M(t)

can be bounded by the appropriate running time maximums of the random walks, we can find the

desired ∆k. We next provide the details of the construction.

Decomposition Choose a ∈ (λ, cµ). Then, for t > 0,

X(t) = N0(t)−
c∑
i=1

N i(t) = (N0(t)− at) +
c∑
i=1

(a
c
t−N i(t)

)
.

We define (c+ 1) random walks with negative drift associated with N i(t) as follows:

S
(0)
0 = 0, S

(0)
1 = −aT 0

1 + 1, S(0)
n = S

(0)
n−1 + (−aAn−1 + 1) for n ≥ 2. (3.16)

If particular, S
(0)
n = N0(T 0

n)− aT 0
n . For i = 1, . . . , c,

S
(i)
0 =

a

c
T i1, S(i)

n = S
(i)
n−1 +

(
−1 +

a

c
V i
n

)
for n ≥ 1. (3.17)

CHAPTER 3. EXACT SIMULATION WITH VACATION SYSTEMS 25

Here, S
(i)
n = N i(T in−) − aT in. Figure 3.2 plots the relationship between {N0(t) − at : t ≥ 0} and

{S(0)
n : n ≥ 0}, and the relationship between {ac t−N i(t) : t ≥ 0} and {S(i)

n : n ≥ 0} for i = 1, . . . , c.

In particular, we notice from Figure 3.2 that

max
s≥t

{
N0(s)− as

}
= max

{
N0(t)− at, max

n≥N0(t)+1
{S(0)

n }
}
≤ max

n≥N0(t)

{
S(0)
n

}
,

and for i = 1, . . . , c,

max
s≥t

{a
c
s−N i(s)

}
= max

n≥N i(t−)

{
S(i)
n

}
≤ max

n≥(N i(t)−1)+

{
S(i)
n

}
.

N0
0 (t)− at

t

S1
(0)

S2
(0)

S3
(0)

S4
(0)

S0
(0)

0

(a)

a
c
t − N0

i (t)

tS1
(i)

S2
(i)

S3
(i)

S4
(i)

S0
(i)

0

(b)

Figure 3.2: The relationship between the renewal processes and the random walks (a) N0(t)− at
and S

(0)
n (b) (a/c)t−N i(t) and S

(i)
n

We then notice that, for any given T ,

M(T) = max
t≥T
{X(t)} = max

t≥T

{
(N0(t)− at) +

c∑
i=1

(a
c
t−N i(t)

)}

≤ max
t≥T

{
N0(t)− at

}
+

c∑
i=1

max
t≥T

{a
c
t−N i(t)

}
≤ max

n≥N0(T)

{
S(0)
n

}
+

c∑
i=1

max
n≥N i(T)−1

{
S(i)
n

}
. (3.18)

Milestone construction We use the “milestone events” construction to generate the (c+ 1) random

walks with negative drift, S(i), together with their running time maxima, M
(i)
k := maxn≥k{S(i)

n },
k ≥ 0, i = 0, 1, . . . c. This construction is introduced in [Blanchet and Sigman, 2011; Blanchet and

Wallwater, 2015], and we shall provide a brief overview here.

CHAPTER 3. EXACT SIMULATION WITH VACATION SYSTEMS 26

Fix m > 0 and L ≥ 1 such that P (m < M
(i)
0 ≤ (L+ 1)m) > 0 for i = 0, . . . , c. The values of m

and L do not seem to have significant impact on algorithm performance, as long as they are chosen

to be small. In our numerical implementations, we choose m = 1 and L = 3.

For each random walk {S(i)
n : n ≥ 0}, i = 0, 1, . . . , c, we shall define a sequence of downward

and upward “milestone events”, which we denoted as Φi
j and Υi

j , respectively, for j ≥ 0 as follows:

Φi
0 := 0, Υi

0 := 0,

and for j ≥ 1,

Φi
j := inf

{
n ≥ Υi

j−1I(Υi
j−1 <∞) ∨ Φi

j−1 : S(i)
n < S

(i)

Φij−1
− Lm

}
,

Υi
j := inf

{
n ≥ Φi

j : S(i)
n > S

(i)

Φij
+m

}
.

Notice that P (Φi
j <∞) = 1 while P (Υi

j <∞) < 1, as the random walks have negative drift. In fact,

under Assumption 1, Proposition 2.1 in [Blanchet and Wallwater, 2015] shows P (Υi
j =∞, i.o.) = 1.

We observe that when the event {Υi
j =∞} happens, we know that the random walk will never go

above S
(i)

Φij
+m beyond Φi

j . This important observation allows us to find the running time maximum

M
(i)
k . In particular, let Φi

k∗ denote the first downward milestone at or after step k, and let Φi
k∗∗ be

the first downward milestone after Φ0
k∗ with Υi

k∗∗ = ∞. Then, after step Φi
k∗∗, the random walk

S(i) will never go above the level S
(i)

Φ0
k∗∗

+m, and S
(i)

Φ0
k∗∗

+m < S
(i)

Φ0
k∗
− Lm+m ≤ S(i)

Φik∗
. Therefore,

M
(i)
k = maxn≥k{S(i)

n } = maxk≤n≤Φik∗∗
{S(i)

n }, i.e., we just need to find the maximum value of the

random walk between step k and step Φi
k∗∗. Figure 3.3 provides a pictorial explanation of the

construction.

We are now ready to use the milestone events across the (c + 1) random walks to identify ∆k

associated with each T 0
k (k ≥ 1), such that N i(T 0

k) ≥ 1 for i = 1, . . . , c. Define

Λ0
k := min

j≥1

{
Φ0
j > N0(T 0

k) : S
(0)

Φ0
j
≤ S(0)

N0(T 0
k)
−m,Υ0

j =∞
}
, (3.19)

and, for i = 1, · · · , c,

Λik := min
j≥1

{
Φi
j > N i(T 0

k)− 1 : S
(i)

Φij
≤ S(i)

N i(T 0
k)−1

−m,Υi
j =∞

}
. (3.20)

CHAPTER 3. EXACT SIMULATION WITH VACATION SYSTEMS 27

�1

�2

�3

�4

�5

�6

�7

�8

�9

0

1 2 3 4 5 6 7 8 9 10 11

S(0)
n

Figure 3.3: This figure plots a realization of the sample path {S(0)
n : 0 ≤ n ≤ 11}. Here we set m = 1

and L = 3. Then, Φ0
1 = 3, Υ0

1 = 4, Φ0
2 = 7. If Υ0

2 = ∞, then for n ≥ 7, S
(0)
n will stay below the

level S
(0)
7 +m, which is demonstrated by the bold dashed line. Thus, M

(0)
2 = maxn≥2{S(0)

n } = S
(0)
2

by only comparing the random walk values between step 2 and step 7.

CHAPTER 3. EXACT SIMULATION WITH VACATION SYSTEMS 28

In particular, the random walk {S(i)
n : n ≥ 0} will never go above the level S

(i)

Λik
+ m for n ≥ Λik,

i = 0, . . . , c. Let

∆k := max

{
T 0

Λ0
k
, max

1≤i≤c

{
T iΛik+1

}}
− T 0

k , (3.21)

Since N0
(
T 0
k + ∆k

)
≥ Λ0

k and N i(T 0
k + ∆k)− 1 ≥ Λik for i = 1, · · · , c,

max
n≥N0(T 0

k+∆k)

{
S(0)
n

}
≤ S(0)

Λ0
k

+m and max
n≥N i(T 0

k+∆k)−1

{
S(i)
n

}
≤ S(i)

Λik
+m.

Therefore,

max
t≥T 0

k+∆k

{X(t)} ≤ max
n≥N0(T 0

k+∆k)

{
S(0)
n

}
+

c∑
i=1

max
n≥N i(T 0

k+∆k)−1

{
S(i)
n

}
≤ S

(0)

Λ0
k

+m+
c∑
i=1

(
S

(i)

Λik
+m

)
≤ S

(0)

N0(T 0
k)

+
c∑
i=1

S
(i)

N i(T 0
k)−1

≤ N0(T 0
k)− aT 0

k +
c∑
i=1

(a
c
T 0
k −N i(T 0

k)
)

= X(T 0
k) ≤ max

T 0
k≤t≤T

0
k+∆k

{X(t)}.

Under Assumption 1, the time it takes to find ∆k using the “milestone” construction has finite

expectation (Theorem 2.2 in [Blanchet and Wallwater, 2015]). We shall provide the algorithmic

details to generate the random walk with negative drift together with the “milestone” events for

the light-tailed case in Section 3.3.1 to demonstrate the basic idea. The general case can be found

in [Blanchet and Wallwater, 2015]. We also provide the algorithm to match the service time

requirements to the customers in vacation system between two consecutive inspection times in

Section 3.3.2. Lastly, the exact simulation algorithm of GI/GI/c queue is summarized in Section

3.3.3.

3.3.1 Simulate a random walk with negative drift jointly with “milestone”

events

To demonstrate the basic idea, we work with a generic random walk with negative drift Sn :=

Sn−1 + Xn, for n ≥ 0, with S0 given. We also impose the light-tail assumption on Xn, i.e., there

exist θ > 0 such that E[exp(θXn)] <∞. Let

CHAPTER 3. EXACT SIMULATION WITH VACATION SYSTEMS 29

Φ0 := 0, Υ0 := 0,

and, for j ≥ 1,

Φj := inf
{
n ≥ Υj−1I(Υj−1 <∞) ∨ Φj−1 : Sn < SΦj−1 − Lm

}
Υj := inf

{
n ≥ Φj : Sn > SΦj +m

}
.

We also denote τm = inf{n ≥ 0 : Sn > m,S0 = 0}. Notice that P (Υj =∞) = P (τm =∞) > 0.

Sampling Φj is straightforward. We just sample the random walk, Sn, until Sn < SΦj−1 − Lm.

Sampling Υj and the path conditional on Υj < ∞ requires more advanced simulation techniques,

as P (Υj = ∞) > 0. In particular, we use the exponential tilting idea discussed in [Asmussen,

2003]. Let ψX(θ) = logE [exp(θXn)] be the log moment generating function of Xn, then we have

E[Xn] = ψ′X(0) < 0 and V ar(Xn) = ψ′′X(0) > 0. By the convexity of ψX(·), we can always find

η > 0 with ψX(η) = 0 and ψ′X(η) ∈ (0,∞). Hence, we can define a new measure Pη based on

exponential tilting so that
dPη
dP

(Xn) = exp(ηXn).

Under Pη, Sn is a random walk with positive drift ψ′X(η). Thus Pη(τm < ∞) = 1. By our choice

of η, we also have P (τm < ∞) = Eη exp(−ηSτm). In implementation, we shall we generate the

path Sn under Pη until τm and check whether U ≤ exp(−ηSτm)), where U is a uniform random

variable independent of everything. If U ≤ exp(−ηSτm)), we claim that τm < ∞ and accept the

path (Sn : n ≤ τm) as the path of the random walk conditional on τm <∞.

The algorithm to sample the random walk together with the milestone events goes as follows.

Throughout this thesis, “sample” in the pseudocode means sampling independently from everything

that has already been sampled.

Algorithm RWS: Sample a random walk with negative drift until stopping criteria are met

Input: L, m, {S0, · · · , Sn}, {Φ0, · · · ,Φj}, {Υ0, · · · ,Υj} and stopping criteria H.

(Note that n = Φj if Υj = ∞, and n = Υj otherwise. If there is no previous simulated partial

random walk, then we initialize n = 0, j = 0, Φ0 = 0, Υ0 = 0, and S0 as needed.)

1. While the stopping criteria H are not satisfied, set j ← j + 1.

CHAPTER 3. EXACT SIMULATION WITH VACATION SYSTEMS 30

(a) (Downward milestone simulation)

Sample {Sk : n + 1 ≤ k ≤ Φj} under the nominal measure, i.e., generate the random

walk until Sn < SΦj−1 − Lm. Update n = Φj .

(b) (Upward milestone simulation)

Sample S̃1, · · · , S̃τm from the tilted measure Pη(·). Sample U ∼ Uniform[0,1]. If U ≤
exp

(
−ηS̃τm

)
, set Υj = n+τm, Sn+k = Sn+S̃k for k = 1, · · · , τm and update n← n+τm;

otherwise set Υj =∞.

2. Output updated {S0, · · · , Sn}, {Φ0, · · · ,Φj} and {Υ0, · · · ,Υj}.

3.3.2 Simulate the vacation system between inspection times

To summarize our discussion above, in this section, we provide the pseudocode for generating the

vacation system between the inspection time T 0
κl

and T 0
κl+1

, for l ≥ 0, κ0 = 0, and κl+1 < κl.

Algorithm VSS: Sample vacation system between T 0
κl

and T 0
κl−1

, and extract corresponding service

times

Input: m, L, κl, κl−1, {S(i)
0 , · · · , S(i)

ni }, {Φi
0, · · · ,Φi

ji
}, {Υi

0, · · · ,Υi
ji
} for i = 0, 1, · · · , c.

1. Apply Algorithm RWS to further sample S(0) with the stopping criteria H being n0 ≥ |κl|.
Then, find T 0

|κl|.

2. Apply Algorithm RWS to further sample S(0) with the stopping criteria H being n0 = Λ0
|κl|,

with Λ0
|κl| defined in Eq. (3.19).

3. For i = 1, · · · , c, apply Algorithm RWS to further sample S(i) until the stopping criteria H
being ni = Λi|κl|, with Λi|κl| defined in Eq. (3.20).

4. Compute ∆|κl| as defined in Eq. (3.21). For i = 0, 1, · · · , c, apply Algorithm RWS to further

sample S(i) with the stopping criteria H being T ini ≥ T 0
|κl| + ∆|κl|.

5. Construct the backward renewal processes {N i(t) : T 0
κl
− ∆|κl| ≤ t ≤ 0} using {S(i)

n : 0 ≤
n ≤ ni} for i = 0, 1, · · · , c. In particular, we shall set T i−n = −T in. Then, construct X(t) =

N0(t)−∑c
i=1N

i(t) for t ∈ [T 0
κl
−∆|κl|, 0].

CHAPTER 3. EXACT SIMULATION WITH VACATION SYSTEMS 31

6. Set M(T 0
κl

) = maxT 0
κl
−∆|κl|≤t≤T

0
κl
{X(t)} and then compute Qv(T

0
κl

) = M(T 0
κl

) − X(T 0
κl

) to

be the number of people waiting in the queue at time T 0
κl

. The remaining activity times are

U i(T 0
κl

), for i = 1, · · · , c.

7. If Qv(T
0
κl

) > 1, then for 1 ≤ j ≤ Qv(T
0
κl

) − 1, the j-th people waiting in queue arrive at

time T 0
κl−Qv(T 0

κl
)+j . Let D̃j = inf{t ≥ 0 : j =

∑c
i=1 σ

i
T 0
κl

(t)}, then extract Vκl−Qv(T 0
κl

)+j =∑c
i=1 V

i
N i(T 0

κl
+D̃j)

dN i(T 0
κl

+ D̃j) as his service time.

8. For κl ≤ n ≤ −1, use Eq. (3.3) to extract their service times Vκl , · · · , V−1.

9. Output

(a) service times of the people waiting in queue at time T 0
κl

(excluding the arrival at T 0
κl

), i.e.,

null if Qv(T
0
κl

) = 1 and (Vκl−Qv(T 0
κl

)+1, · · · , Vκl−1) in the order of arrivals if Qv(T
0
κl

) > 1.

(b) matched arrival times and service times
{(
T 0
j , Vj

)
: κl ≤ j ≤ −1

}
in the order of arrival.

(c) updated random walks {S(i)
0 , · · · , S(i)

ni } with updated milestone events {Φi
0, · · · ,Φi

ji
},

{Υi
0, · · · ,Υi

ji
} for i = 0, 1, · · · , c.

3.3.3 Overall exact simulation procedure

In this section, we provide the overall pseudocode for our exact simulation algorithm.

Algortihm PS: sample stationary GI/GI/c queue at time 0

Input: m, L, F , G, c

1. For i = 0, 1, · · · , c, initiate Φi
0 = Υi

0 = 0, and S
(i)
0 as defined in Eqs. (3.16, 3.17).

2. Set κ0 = 0, κ1 = −10, l = 1.

3. (a) Apply Algorithm VSS to sample vacation system between T 0
κl

and T 0
κl−1

, and extract

corresponding service times.

(b) Start two GI/GI/c queues, both from T 0
κl

, one initialized with

(
Qv(T

0
κl

),S(U(T 0
κl

)), 0
)

CHAPTER 3. EXACT SIMULATION WITH VACATION SYSTEMS 32

and the other initialized with 0. Evolve the two queues forward in time until time 0 and

calculate

C = min
κl≤j≤−1

||ZT 0
κl

(
T 0
j − T 0

κl
;
(
Qv(T

0
κl

),S(U(T 0
κl

)), 0
))

− ZT 0
κl

(
T 0
j − T 0

κl
; 0
)
||∞.

4. If C = 0, output Z(0) = ZT 0
κl

(
|T 0
κl
|; 0
)
. Otherwise (C > 0), set l ← l + 1, κl = 2κl−1, then

go back to Step 3.

3.4 Numerical experiments

As a sanity check, we have implemented our MATLAB code in the case of an

Erlang (k1, λ) /Erlang (k2, µ) /c queue.

Firstly, in the context of the M/M/c queue, which is a special case of

Erlang(k1, λ)/Erlang(k2, µ)/c when k1 = k2 = 1 and whose stationary distribution can be

computed in closed form, we have compared the theoretical distribution to the empirical distri-

bution of the number of customers in the system at stationarity. The empirical distribution is

produced from a large number of runs using our perfect simulation algorithm. Figure 3.4 shows

a comparison of these distributions when λ = 3, µ = 2 and c = 2. Grey bars show the empirical

result of 5000 draws using our perfect simulation algorithm, and black bars show the theoretical

distribution of the number of customers in the system. The two are very close to each other.

Following [Connor and Kendall, 2015], we test the goodness of fit using a Pearson’s chi-squared

test; under the null hypothesis, the empirical histogram converges to theoretical distribution as

the sample size increases. The test yields a p-value equal to 0.6806, indicating close agreement

(i.e., we can not reject the null hypothesis). Similarly, Figure 3.5 provides another comparison

with a different set of parameters, λ = 10, µ = 2, c = 10, with a p-value being 0.6454 from the

chi-squared test.

Also, for a general Erlang(k1, λ)/Erlang(k2, µ)/c queue (k1 > 1, k2 > 1) when traffic intensity

ρ = (λ1k2) / (cλ2k1) = 0.9, we have compared the empirical distribution obtained from simulation

with the numerical results (with precision at least 10−4) provided in Table III of [Hillier and Lo,

1971]. Figure 3.6 shows the comparison for an E3/E2/5 queue with ρ = 0.9. We observe that the

CHAPTER 3. EXACT SIMULATION WITH VACATION SYSTEMS 33

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25
Number of Customers for an M/M/c queue in equilibrium with lambda = 3, mu = 2, c = 2 (5000 draws)

Perfect Simulation
Theoretical

Figure 3.4: Number of customers for an M/M/c queue in stationarity when λ = 3, µ = 2 and

c = 2.

two histograms are very close to each other. A Pearson’s chi-squared test between the simulated

distribution and the numerical one gives a p-value of 0.6815.

Next, we run numerical experiments in M/M/c case to see how the running time of our al-

gorithm, measured by mean coalescence time of two bounding systems, scales as the number of

servers grows and the traffic intensity ρ changes. Starting from time 0, the upper bound queue

has its queue length sampled from the theoretical distribution of an M/M/c vacation system and

all servers busy with remaining service times drawn from the equilibrium distribution of the ser-

vice/vacation time; and the lower bound queue is empty. Then, we run both the upper bound and

lower bound queues forward in time with the same stream of arrival times and service requirements

until they coalescence. Table 3.1 shows the estimated mean coalescence time, E[T], based on 5000

iid samples, for different system scales in the quality-driven regime (QD). We observe that E[T]

does not increase much as the system scale parameter, s, grows. Table 3.2 shows similar results for

the quality-and-efficiency driven operating regime (QED). In this case, E[T] increases at a faster

rate with s than the QD case, but the magnitude of increment is still not significant.

Finally we run a numerical experiment in the M/M/c case aiming to test how computational

complexity of our algorithm changes with traffic intensity, ρ = λ/(cµ). Here, we define the com-

putational complexity as the total number of renewals (including arrivals and services/vacations)

CHAPTER 3. EXACT SIMULATION WITH VACATION SYSTEMS 34

0 5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18
Number of Customers for an M/M/c queue in equilibrium with lambda = 10, mu = 2, c = 10 (5000 draws)

Perfect Simulation
Theoretical

Figure 3.5: Number of customers for an M/M/c queue in stationarity when λ = 10, µ = 2 and

c = 10.

0 5 10 15 20 25 30
0

0.05

0.1

0.15
Number of Customers for an E3/E2/5 queue in equilibrium with rho=0.9 (5000 draws)

Perfect Simulation
Numerical Table

Figure 3.6: Number of customers for an Erlang(k1, λ)/Erlang(k2, µ)/c queue in stationarity when

k1 = 3, λ = 4.5, k2 = 2, µ = 2/3, c = 5 and ρ = 0.9.

CHAPTER 3. EXACT SIMULATION WITH VACATION SYSTEMS 35

Table 3.1: Simulation estimates for the mean coalescence time of M/M/c queue (QD)

(λs = s, cs = 1.2s, µ = 1)

s Mean 95% confidence interval

100 6.4212 [6.2902, 6.5522]

500 7.0641 [6.9848, 7.1434]

1000 7.7465 [7.6667, 7.8263]

Table 3.2: Simulation estimates for the mean coalescence time of M/M/c queue (QED)

(λs = s, cs = s+ 2
√
s, µ = 1)

s Mean 95% confidence interval

100 6.5074 [6.3771, 6.6377]

500 8.5896 [8.4361, 8.7431]

1000 9.4723 [9.3041, 9.6405]

the algorithm samples in total to find the coalescence time. We expect the complexity to scale like

(c + 1)(1 − ρ)−2E[T (ρ)], where (c + 1) is the number of renewal processes we need to simulate,

(1−ρ)−2 is on average the amount of renewals we need to sample to find its running time maximum

for each renewal process, and E[T (ρ)] is the mean coalescence time when the traffic intensity is

ρ. Table 3.3 summarizes our numeral results, based 5000 independent runs of the algorithm for

each ρ. We run the coalescence check at κ = 10 × 2k, for k = 1, 2, . . . , until we find the coales-

cence. We observe that as ρ increase, the computational complexity increases significantly, but

when multiplied by (1 − ρ)2, the resulting products are of about the same magnitude – up to a

factor proportional to λ, given that the number of arrivals scales as λ per unit time. Therefore, the

main scaling parameter for the complexity here is (1− ρ)−2. Notice that if we simulate the system

forward in time from empty, it also took around O
(
(1− ρ)−2

)
arrivals to get close to stationary.

CHAPTER 3. EXACT SIMULATION WITH VACATION SYSTEMS 36

Table 3.3: Simulation result for computational complexities with varying traffic intensities

M/M/c queue with fixed µ = 5 and c = 2

λ traffic

intensity (ρ)

mean number of

renewals sampled

mean index of successful

inspection time

mean number of renewals

sampled × (1− ρ)2

5 0.5 225.6670 11.7780 56.4168

6 0.6 377.0050 14.7780 60.3208

7 0.7 764.3714 21.9800 68.7934

8 0.8 2,181.3452 44.2320 87.2538

9 0.9 12,162.6158 161.0840 121.6262

CHAPTER 4. EXACT SIMULATION WITH RANDOM ASSIGNMENT 37

Chapter 4

Exact Simulation with Random

Assignment

We give our second set of exact simulation algorithms, which utilizes dominated coupling from the

past (DCFTP) protocol and the random assignment (RA) discipline, in this chapter. In Section

4.1, we give some theoretical background of multi-server queues under FIFO and RA, and establish

the dominance relationship of workload between these two different service disciplines. In Section

4.2, we describe our simulation strategies and the main theoretic result. In Section 4.3, we provide

the numerical experiments results for sanity check and performance comparison. In Sections 4.4

and 4.5, we extend the developed algorithm to perform perfect sampling for various other queueing

settings. Detailed simulation algorithm steps and the proof of the main technical result are provided

in Appendix B.

4.1 The FIFO and RA GI/GI/c model

4.1.1 The FIFO GI/GI/c model

In what follows, as input to a c-server in parallel multi-server queue, we have iid service times

{Vn : n ≥ 0} distributed as F (x) = P (V ≤ x), x ≥ 0, with finite and non-zero mean 0 < E[V] =

1/µ < ∞. Independently, the arrival times {tn : n ≥ 0} (t0 = 0) to the model form a renewal

process with iid interarrival times An = tn+1 − tn, n ≥ 0 distributed as G(x) = P (A ≤ x), x ≥ 0,

CHAPTER 4. EXACT SIMULATION WITH RANDOM ASSIGNMENT 38

and finite non-zero arrival rate 0 < λ = E[A]−1 < ∞. The FIFO GI/GI/c model has only one

queue (line), and we let Wn = (Wn(1), . . . ,Wn(c))T denote the Kiefer-Wolfowitz workload vector

(see, for example, Page 341 in Chapter 12 of [Asmussen, 2003]). It satisfies the recursion

Wn+1 = S (Wn + Vne1 −An1)+ , n ≥ 0, (4.1)

where e1 = (1, 0, . . . 0)T , 1 = (1, 1, . . . , 1)T , S places a vector in ascending order, and + takes the

positive part of each coordinate, as we mentioned earlier in Eq. (3.4). Let Cn denote the nth

arriving customer. For i = 1, . . . , c, Wn(i) is the waiting time of Cn if he decides to enter service

immediately after there are at least i servers available once he reaches the head of the queue, i.e.,

Dn = Wn(1) is the customer delay in queue (line) of Cn. Recursion (4.1) defines a Markov chain

due to the given iid assumptions.

With stability condition ρ = λ/(cµ) < 1, it is well known that Wn converges in distribution as

n → ∞ to a proper stationary distribution. Let π denote this stationary distribution. Again, our

main objective is to provide a simulation algorithm for sampling exactly from π.

4.1.2 The RA GI/GI/c model

Given a c-server queueing system, the random assignment model (RA) is the case when each of the

c servers forms its own FIFO single-server queue, and each arrival to the system, independent of

the past, randomly chooses queue i to join with equal probability 1/c, 1 ≤ i ≤ c. In the GI/GI/c

case, we refer to this as the RA GI/GI/c model. The following is a special case of Lemma 1.3, Page

342 in [Asmussen, 2003]. Such results and others even more general are based on [Wolff, 1987],

[Foss, 1980], and [Foss and Chernova, 2001].

Lemma 4. Let QF (t) denote total number of customers in system at time t ≥ 0 for the FIFO

GI/GI/c model, and let QRA(t) denote total number of customers in system at time t ≥ 0 for the

corresponding RA GI/GI/c model in which both models are initially empty and fed with exactly the

same input of renewal arrivals {tn : n ≥ 0} and iid service times {Vn : n ≥ 0}. Assume further that

for both models the service times are used by the servers in the order in which service initiations

occur (Vn is the service time used for the n-th such initiation). Then,

P (QF (t) ≤ QRA(t), for all t ≥ 0) = 1. (4.2)

CHAPTER 4. EXACT SIMULATION WITH RANDOM ASSIGNMENT 39

The importance of Lemma 4 is that it allows us to jointly simulate versions of the two stochastic

processes {QF (t) : t ≥ 0} and {QRA(t) : t ≥ 0} while achieving a coupling such that (4.2) holds. In

particular, whenever an arrival finds the RA model empty, the FIFO model is found empty as well.

(But we need to impose further conditions if we wish to ensure that indeed the RA GI/GI/c queue

will empty with certainty.) Letting time t be sampled at arrival times of customers, {tn : n ≥ 0},
we thus also have

P (QF (tn−) ≤ QRA(tn−), for all n ≥ 0) = 1. (4.3)

In other words, the total number in system as found by the n-th arrival is sample-path ordered

as well. Note that for the FIFO model, the n-th arriving customer Cn initiates the n-th service

since FIFO means “First-In-Queue-First-Out-of-Queue” where by “queue” we mean the line before

entering service. This means that for the FIFO model we can attach Vn to Cn upon arrival if we

so wish when applying Lemma 4. For the RA model, however, customers are not served in the

order they arrive. For example, consider c = 2 servers (system initially empty) and suppose C1 is

assigned to server 1 with service time V1, and C2 also is assigned to server 1 (before C1 departs)

with service time V2. Meanwhile, before C1 departs, suppose C3 arrives and is assigned to the

empty server 2 with service time V3. Then, V3 is used for the second service initiation. For RA, the

service times in the order of initiation are a random permutation of the originally assigned {Vn}.
To use Lemma 4, it is crucial to simply let the servers hand out service times one at a time

when they are needed for a service initiation. Thus, customers waiting in a queue before starting

service do not have a service time assigned until they enter service. In simulation terminology, this

amounts to generating the service times in order of when they are needed.

One disadvantage of generating service times only when they are needed, is that it then does

not allow workload1 to be defined; only the amount of work in service. To get around this if need

be, one can simply generate service times upon arrival of customers, and give them to the servers

to be used in the order of service initiation. The point is that when Cn arrives, the total work in

system jumps up by the amount Vn. But Vn is not assigned to Cn, it is assigned (perhaps later) to

which ever customer initiates the n-th service. This allows Lemma 4 to hold true for total amount

1Workload (total) at any time t is defined as the sum of all whole and remaining service times in the system at

time t.

CHAPTER 4. EXACT SIMULATION WITH RANDOM ASSIGNMENT 40

of work in the system: If we let {νF (t) : t ≥ 0} and {νRA(t) : t ≥ 0} denote total workload in the

two models with the service times used in the manner just explained, then in addition to Lemma 4

we have

P (νF (t) ≤ νRA(t), for all t ≥ 0) = 1, (4.4)

P (νF (tn−) ≤ νRA(tn−), for all n ≥ 0) = 1. (4.5)

It is important, however, to note that what one can’t do is define workload at the individual

server i by doing this, because that forces us to assign Vn to Cn so that workload at the server that

Cn attends (i say) jumps by Vn and Cn enters service using Vn; that destroys the proper coupling

needed to obtain Lemma 4. We can only handle the total (sum over all c nodes) workload. In the

present chapter, our use of Lemma 4 is via a kind of reversal:

Lemma 5. Let {V ′n} be an iid sequence of service times distributed as F , and assign V ′n to Cn in

the RA model. Define Vn as the service time used in the n-th service initiation. Then, {Vn} is also

iid distributed as F .

Proof. The key is noting that we are re-ordering based only on the order in which service times

begin being used, not when they are completed (which would thus introduce a bias). The service

time chosen for the next initiation either enters service immediately (e.g., is one that is routed to

an empty queue by an arriving customer) or is chosen from among those waiting in lines, and all

those waiting are iid distributed as F . Let t̂n denote the time at which the n-th service initiation

begins. The value Vn of the n-th service time chosen (at time t̂n) by a server is independent of

the past service time values used before time t̂n, and is distributed as F (the choice of service time

chosen as the next to be used is not based on the value of the service time, only its position in

the lines). Letting k(n) = the index of the {V ′n} that is chosen, i.e., Vn = V ′k(n), it is this index (a

random variable) that depends on the past, but the value Vn is independent of k(n) since it is a

new one. Thus, {Vn} are iid distributed as F .

The point of the above Lemma 5 is that we can, if we so wish, simulate the RA model by

assigning V ′n to Cn (to be used as their service time), but then assigning Vn, i.e. V ′k(n), to Cn in the

FIFO model. By doing so the requirements of Lemma 4 are satisfied and Eqs. (4.2, 4.3, 4.4, 4.5)

hold. Interestingly, however, it is not possible to first simulate the RA model up to a fixed time t,

CHAPTER 4. EXACT SIMULATION WITH RANDOM ASSIGNMENT 41

and then stop and reconstruct the FIFO model up to this time t: At time t, there may still be RA

customers waiting in lines and hence not enough of the Vn have been determined yet to construct

the FIFO model. But all we have to do, if need be, is to continue the simulation of the RA model

beyond time t until enough Vn have been determined to construct fully the FIFO model up to time

t.

4.2 Simulating exactly from the stationary distribution of the RA

GI/GI/c model

By Lemma 4, the RA GI/GI/c queue, which shares the same arrival stream {tn : n ≥ 0} (t0 = 0)

and same service times in the order of service initiations {Vn : n ≥ 0}, will serve as a sample path

upper bound (in terms of total number of customers in system and total workload) of the target

FIFO GI/GI/c queue. Independent of {An : n ≥ 0} and {Vn : n ≥ 0}, we let {Un : n ≥ 0} be an iid

sequence of random variables from discrete uniform distribution on {1, 2, . . . , c}; Un represents the

choice that customer Cn makes about which single-server queue to join under RA discipline. Let

W̄n =
(
W̄n(1), . . . , W̄n(c)

)T
denote the workload vector as found by Cn in the RA GI/GI/c model,

and for i = 1, . . . , c, W̄n(i) is the waiting time of Cn if he chooses to join the FIFO single-server

queue of server i. So, W̄0(i) = 0 and

W̄n+1(i) =
(
W̄n(i) + VnI (Un = i)−An

)+
, n ≥ 0. (4.6)

These c processes are dependent through the common arrival times {tn : n ≥ 0} (equivalently

common interarrival times {An : n ≥ 0}) and the common {Un : n ≥ 0} random variables. Because

of all the iid assumptions, {W̄n : n ≥ 0} forms a Markov chain. Define Ṽn =
(
Ṽn(1), . . . , Ṽn(c)

)T
=

(VnI (Un = 1) , . . . , VnI (Un = c))T , then we can express (4.6) in vector form as

W̄n+1 =
(
W̄n + Ṽn −An1

)+
, n ≥ 0. (4.7)

W̄n uses the same interarrival times {An : n ≥ 0} and service times {Vn : n ≥ 0} as we fed Wn in

(4.1), however the coordinates of W̄n are not in ascending order, though all of them are nonnegative.

Each node i as expressed in (4.6) can be viewed as a FIFO GI/GI/1 queue with common renewal

arrival process {tn : n ≥ 0}, but with iid service times {Ṽn(i) = VnI(Un = i) : n ≥ 0}. Across

CHAPTER 4. EXACT SIMULATION WITH RANDOM ASSIGNMENT 42

i, the service times (Ṽn(1), . . . , Ṽn(c)) are not independent, but they are identically distributed:

marginally, with probability 1/c, Ṽn(i) is distributed as F , and with probability (c − 1)/c it is

distributed as the point mass at 0; i.e., E[Ṽ (i)] = E[V]/c. The point here is that we are not

treating node i as a single-server queue endowed only with its own arrivals (a thinning of the

{tn : n ≥ 0} sequence) and its own service times iid distributed as F . Defining iid increments

∆n(i) = Ṽn(i) − An for n ≥ 0, each node i has an associated random walk with negative drift

{Sn(i) : n ≥ 0}, where S0(i) = 0 and

Sn(i) =

n∑
j=1

∆j(i), n ≥ 1. (4.8)

With ρ = λE[V]/c < 1, we define ρi = λE[Ṽ (i)] = λE[V]/c = ρ < 1; equivalently E[∆(i)] < 0

for all i = 1, . . . , c. Let W̄ 0(i) denote a random variable with the limiting (stationary) distribution

of W̄n(i) as n → ∞, it is well known (due to the iid assumptions) that W̄ 0(i) has the same

distribution as

M(i) := max
m≥0

Sm(i)

for i = 1, . . . , c.

More generally, even when the increment sequence is just stationary ergodic, not necessarily

iid (hence not time reversible as in the iid case), it is the backward in time maximum that is used

in constructing a stationary version of {W̄n(i)}. We will need this backwards approach in our

simulation so we go over it here; it is usually referred to as Loynes’ Lemma. We extend the arrival

point process {tn : n ≥ 0} to be a two-sided point stationary renewal process {tn : n ∈ Z}

· · · t−2 < t−1 < 0 = t0 < t1 < t2 · · ·

Equivalently, An = tn+1 − tn, n ∈ Z, form iid interarrival times; {An : n ∈ Z} forms a two-sided

iid sequence.

Similarly, the iid sequences {Vn : n ≥ 0} and {Un : n ≥ 0} are extended to be two-sided iid,

{Vn : n ∈ Z} and {Un : n ∈ Z}. These extensions further allow two-sided extension of the iid

increment sequences {∆n(i) : n ∈ Z} for i = 1, . . . , c, i.e.,

∆n(i) = Ṽn −An = VnI (Un = i)−An, n ∈ Z.

CHAPTER 4. EXACT SIMULATION WITH RANDOM ASSIGNMENT 43

Then, we define c time-reversed (increments) random walks {S(r)
n (i) : n ≥ 0} for i = 1, . . . , c,

by S
(r)
0 (i) = 0 and

S(r)
n (i) =

n∑
j=1

∆−j(i), n ≥ 1. (4.9)

A (from the infinite past) stationary version of {W̄n(i)} denoted by {W̄ 0
n(i) : n ≤ 0} is then

constructed via

W̄ 0
0 (i) = max

m≥0
S(r)
m (i), (4.10)

W̄ 0
−1(i) = max

m≥1
S(r)
m (i)− S(r)

1 (i), (4.11)

W̄ 0
−2(i) = max

m≥2
S(r)
m (i)− S(r)

2 (i), (4.12)

...

W̄ 0
−n(i) = max

m≥n
S(r)
m (i)− S(r)

n (i), (4.13)

for all i = 1, . . . , c.

By construction, the process
{
W̄ 0
n =

(
W̄ 0
n(1), . . . , W̄ 0

n(c)
)T

: n ≤ 0
}

, is jointly stationary repre-

senting a (from the infinite past) stationary version of
{
W̄n : n ≤ 0

}
, and satisfies the forward-time

recursion (4.7):

W̄ 0
n+1 =

(
W̄ 0
n + Ṽn −An1

)+
, n ≤ −1. (4.14)

Thus, by starting at n = 0 and walking backward in time, we have (theoretically) a time-reversed

copy of the RA model. Furthermore, {W̄ 0
n : n ≤ 0} can be extended to include forward time n ≥ 1

via using the recursion further:

W̄ 0
n =

(
W̄ 0
n−1 + Ṽn−1 −An−11

)+
, n ≥ 1, (4.15)

where Ṽn = (VnI(Un = 1), . . . , VnI(Un = c))T for n ∈ Z.

In fact once we have a copy of just W̄ 0
0 , we can start off the Markov chain with it as initial

condition and use (4.15) to obtain a forward in time stationary version {W̄ 0
n : n ≥ 0}.

The above “construction”, however, is theoretical. We do not yet have any explicit way of

obtaining a copy of W̄ 0
0 , let alone an entire from-the-infinite-past sequence {W̄ 0

n : n ≤ 0}. In

[Blanchet and Wallwater, 2015], a simulation algorithm is given that yields (when applied to each

of our random walks), for each 1 ≤ i ≤ c, a copy of {(S(r)
n (i), W̄ 0

−n(i)) : 0 ≤ n ≤ N} for any desired

CHAPTER 4. EXACT SIMULATION WITH RANDOM ASSIGNMENT 44

0 ≤ N < ∞ including N being stopping times. We modify the algorithm so that it can do the

simulation jointly across the c systems, that is, we extend it to a multi-dimensional form.

In particular, it yields an algorithm for obtaining a copy of W̄ 0
0 , as well as a finite segment (of

length N) of a backward in time copy of the RA model; {W̄ 0
−n : 0 ≤ n ≤ N}, a stationary into the

past construction up to discrete time n = −N .

Finite exponential moments are not required (because only truncated exponential moments are

needed E(eγ∆(i)I{|∆(i)| ≤ a}), which in turn allow for the simulation of the exponential tilting

of truncated ∆(i), via acceptance-rejection). To get finite expected termination time at each

individual node, one needs the service distribution to have finite moment slightly beyond 2: For

some (explicitly known) ε > 0,

E
[
V 2+ε

]
<∞. (4.16)

As our first case, we will be considering a stopping time N such that W̄−N = 0. Before we give

the definition of the stopping time N , we introduce the main idea of our simulation algorithm.

Let us define the maximum of a sequence of vectors. Suppose we have k vectors Z1, · · · , Zk,
where Zi ∈ Rd with d ≥ 1 and k ∈ N+ ∪ {∞}, define

max (Z1, · · · , Zk) =

(
max
1≤i≤k

Zi(1), . . . , max
1≤i≤k

Zi(d)

)T
.

Next define, for n ∈ Z, that

un = (I(Un = 1), . . . , I(Un = c))T and ∆n = Ṽn −An1 = Vnun −An1,

where {Un : n ∈ Z} are iid from discrete uniform distribution over {1, 2, . . . , c}, and independently

{An : n ∈ Z} are iid from distribution G (as introduced in Section 4.1.1). Our goal is to simulate

the stopping time N ∈ N such that W̄ 0
−N = 0, defined as

N = inf{n ≥ 0 : W̄ 0
−n = max

k≥n
S

(r)
k − S(r)

n = 0}, (4.17)

i.e., the first time walking in the past, that all coordinates of the workload vector are 0, jointly

with {(S(r)
n , W̄ 0

−n) : 0 ≤ n ≤ N}. (By convention, the value of any empty sum of numbers is zero,

i.e.,
∑0

j=1 aj = 0.)

To ensure that E[N] < ∞, in addition to ρ < 1 (stability), it is required that P (A > V) > 0

(see the proof of Theorem 2 in [Sigman, 1988]), for which the most common sufficient conditions

CHAPTER 4. EXACT SIMULATION WITH RANDOM ASSIGNMENT 45

are that A has unbounded support, P (A > t) > 0, t ≥ 0, or V has mass arbitrarily close to 0,

P (V < t) > 0, t > 0. But as we shall show in Section 4.2.2, given we know that P (A > V) > 0, we

can assume without loss of generality that interarrival times are bounded. It is that assumption

which makes the extension of [Blanchet and Wallwater, 2015] to a multidimensional form easier to

accomplish. Then, we show (in Section 4.2.3 and Section 4.6) how to still simulate from π even

when P (A > V) = 0. We do that in two different ways, one as sandwiching argument and the

other involving Harris recurrent Markov chain regenerations.

4.2.1 Algorithm for simulating exactly from π for the FIFO GI/GI/c queue:

The case P (A > V) > 0

As mentioned earlier, we will assume that P (A > V) > 0, so that the stable (ρ < 1) RA and

FIFO GI/GI/c Markov chains (4.7) and (4.1) will visit 0 infinitely often with certainty. (That

the RA model empties infinitely often when P (A > V) > 0 is proved, for example, in [Sigman,

1988]). We imagine that at the infinite past n = −∞, we start both (4.7) and (4.1) from empty.

We construct the RA model forward in time, while using Lemma 5 for the service times for the

FIFO model, so that Lemma 4 applies and we have it in the form of (4.3), for all tn ≤ 0 up to and

including at time t0 = 0, at which time both models are in stationarity. We might have to continue

the construction of the RA model so that W0 (distributed as π) can be constructed (i.e., enough

service times have been initiated by the RA model for using Lemmas 4 and 5). Formally, one can

theoretically justify the existence of such infinite from the past versions (that obey Lemma 4) –

by using Loynes’ Lemma. Each model (when started empty) satisfies the monotonicity required to

use Loynes’ Lemma. In particular, noting that QRA(tn−) = 0 if and only if W̄n = 0, we conclude

that if at any time n it holds that W̄n = 0, then Wn = 0. By the Markov property, given that

W̄n = 0 = Wn, the future is independent of the past for each model, or said differently, the past is

independent of the future. This remains valid if n is replaced by a stopping time (strong Markov

property).

We outline the simulation algorithm steps as follows.

1. Simulate {{(S(r)
n (i), W̄ 0

−n(i)) : 0 ≤ n ≤ N}, 1 ≤ i ≤ c} with N as defined in (4.17). If N = 0,

go to next step. Otherwise, having stored all data, reconstruct W̄ 0
n forward in time from

n = −N (initially empty) until n = 0, using the recursion (4.14). During this forward-time

CHAPTER 4. EXACT SIMULATION WITH RANDOM ASSIGNMENT 46

reconstruction, re-define Vj as the j-th service initiation used by the RA model (i.e., we

are using Lemma 5 to gather service times in the proper order to feed in the FIFO model,

which is why we do the re-construction). If at time n = 0, there have not yet been N

service initiations, then continue simulating the RA model out in forward time until finally

there is a N -th service initiation, and then stop. This will require, at most, simulating out

to tn with n = N (+) = min{n ≥ 0 : W̄ 0
−n = 0}. Take the vector (V−N , V−N+1, . . . , V−1)

and reset (V0, V1, . . . , VN−1) = (V−N , V−N+1, . . . , V−1). Also, store the interarrival times

(A−N , A−N+1, . . . , A−1), and reset (A0, . . . , AN−1) = (A−N , A−N+1, . . . , A−1).

2. If N = 0, then set W0 = 0 and stop. Otherwise use (4.1) with W0 = 0, recursively go forward

in time for N steps until obtaining WN , by using the N re-set service times (V0, V1, . . . , VN−1)

and interarrival times (A0, . . . , AN−1). Reset W0 = WN .

3. Output W0.

Detailed simulation steps are discussed in Appendix B.1. Let τ denote the total number of

interarrival times and service times to simulate in order to detect the stopping timeN . The following

proposition shows that our algorithm will terminate in finite expected time, i.e., E[τ] < ∞. The

proof is given in Appendix B.2.

Proposition 4. If ρ = λ/(cµ) < 1, P (A > V) > 0, and there exists some ε > 0 such that

E
[
V 2+ε

]
<∞, then

E [N] <∞ and E [τ] <∞.

4.2.2 Why we can assume that interarrival times are bounded

Lemma 6. Consider the recursion

Dn+1 = (Dn + Vn −An)+, n ≥ 0, (4.18)

where both {Vn} and {An} are non-negative random variables, and D0 = 0.

Suppose for another sequence of non-negative random variables {Ân}, it holds that

P (Ân ≤ An, n ≥ 0) = 1.

CHAPTER 4. EXACT SIMULATION WITH RANDOM ASSIGNMENT 47

Then for the recursion

D̂n+1 = (D̂n + Vn − Ân)+, n ≥ 0, (4.19)

with D̂0 = 0, it holds that

P (Dn ≤ D̂n, n ≥ 0) = 1. (4.20)

Proof. The proof is by induction on n ≥ 0: Because (w.p.1 in the following arguments) Â0 ≤ A0,

we have

D1 = (V0 −A0)+ ≤ (V0 − Â0)+ = D̂1.

Now suppose the result holds for some n ≥ 0. Then, Dn ≤ D̂n and by assumption Ân ≤ An; hence

Dn+1 = (Dn + Vn −An)+ ≤ (D̂n + Vn − Ân)+ = D̂n+1,

and the proof is complete.

Proposition 5. Consider the stable RA GI/GI/c model in which P (A > V) > 0. In order to use

this model to simulate from the corresponding stationary distribution of the FIFO GI/GI/c model

as explained in the Section 4.2.1, without loss of generality we can assume that the interarrival

times {An} are bounded: There exists b > 0 such that

P (An ≤ b, n ≥ 0) = 1.

Proof. By stability, cE[A] > E[V], and by assumption P (A > V) > 0. If the {An} are not bounded,

then for b > 0, define Ân = min{An, b}, n ≥ 0; truncated An. Choose b sufficiently large so that

cE[Â] > E[V] and P (Â > V) > 0 still holds. Now use the {Ân} in place of the {An} to construct

an RA model, denoted by R̂A. Denote this by

Ŵn =
(
Ŵn(1), . . . , Ŵn(c)

)
,

where it satisfies the recursion (4.7) in the form

Ŵn+1 =
(
Ŵn + Ṽn − Ân1

)+
, n ≥ 0.

Starting from W̄0 = Ŵ0 = 0, then from Lemma 6, it holds (coordinate-wise) that

W̄n ≤ Ŵn, n ≥ 0,

CHAPTER 4. EXACT SIMULATION WITH RANDOM ASSIGNMENT 48

and thus, if for some n ≥ 0 it holds that Ŵ = 0, then W̄n = 0 and hence Wn = 0 (as explained

in our previous section). Since b was chosen ensuring that cE[Â] > E[V] and P (Â > V) > 0,

Ŵn is a stable RA GI/GI/c queue that will indeed empty infinitely often. Thus, we can use it

to do the backwards in discrete-time stationary construction until it empties, at time (say) −N̂ ;

N̂ = min{n ≥ 0 : Ŵ−n = 0}. Then, we can re-construct the original RA model (starting empty

at time −N̂) using the (original untruncated) N̂ interarrival times (A−N̂ , A−N̂+1, ..., A−1) in lieu

of (Â−N̂ , Â−N̂+1, ..., Â−1), so as to collect N̂ re-ordered Vn needed in construction of W0 for the

target FIFO model.

Remark 2. One would expect that the reconstruction of the original RA model in the above proof

is unnecessary, that instead we only need to re-construct the R̂A model until we have N̂ service

initiations from it, as opposed to N̂ service initiations from the original RA model. Although this

might be true, the subtle problem is that the order in which service times are initiated in the R̂A

model will typically be different than for the original RA model; they have different arrival processes

(counterexamples are easy to construct). Thus, it is not clear how one can utilize Lemma 4 and

Lemma 5, and so on. One would need to generalize Lemma 4 to account for truncated arrival times

used in the RA model, but not the FIFO model, in perhaps a form such as a variation of Eq. (4.3),

P (QF (tn−) ≤ Q
R̂A

(t̂n−), for all n ≥ 0) = 1, (4.21)

where {t̂n} is the truncated renewal process. We do not explore this further.

4.2.3 A more efficient algorithm: sandwiching

In this section, we no longer need to assume that P (A > V) > 0. (Another method allowing for

P (A > V) = 0 involving Harris recurrent regeneration is given later in Section 4.6.) Instead of

waiting for the workload vector of the GI/GI/c queue under RA discipline to become 0 , we choose

an “inspection time” t−κ < 0 for some κ ∈ Z+ to stop the backward simulation of the RA GI/GI/c

queue, then construct two bounding processes of the target FIFO GI/GI/c queue and evolve them

forward in time, using the same stream of arrivals and service time requirements (in the order of

service initiations), until coalescence or time zero. In particular, we let the upper bound process to

be a FIFO GI/GI/c queue starting at time t−κ with workload vector being W̄ 0
−κ, and let the lower

CHAPTER 4. EXACT SIMULATION WITH RANDOM ASSIGNMENT 49

bound process to be a FIFO GI/GI/c queue starting at the same time, t−κ, from empty, i.e., with

workload vector being 0.

Let W (t) denote the ordered (ascendingly) workload vector of the original FIFO GI/GI/c

queueing process, starting from the infinite past, evaluated at time t. For t ≥ t−κ, we define

W u
−κ(t) and W l

−κ(t) to be the ordered (ascendingly) workload vectors of the upper bound and lower

bound processes, initiated at the inspection time t−κ, evaluated at time t. By our construction and

Theorem 3.3 in [Connor and Kendall, 2015],

W u
−κ(t−κ) = S

(
W̄ 0
−κ
)
≥W (t−κ) ≥W l

−κ(t−κ) = 0,

and for all t > t−κ

W u
−κ(t) ≥W (t) ≥W l

−κ(t),

where all the above inequalities hold coordinate-wise.

Note that we can evolve the ordered workload vectors of the two bounding processes as follows:

For tn−1 ≤ t < tn where −κ < n ≤ −1,

W u
−κ(t) = S

(
W u
−κ(tn−1) + Vn−1e1 − (t− tn−1)1

)+
,

W l
−κ(t) = S

(
W l
−κ(tn−1) + Vn−1e1 − (t− tn−1)1

)+
.

(4.22)

Similarly, letQ(t) denote the number of customers in the target FIFOGI/GI/c queueing process

(including both waiting in queue and being served), starting from the infinite past, evaluated at

time t. For t ≥ t−κ, we let Qu−κ(t) and Ql−κ(t) denote the number of customers (including both

waiting in queue and being served) in the upper and lower bound queueing processes, respectively,

both initiated at the inspection time t−κ, evaluated at time t. If at some time T ∈ [t−κ, 0], we

observe that W u
−κ(T) = W l

−κ(T), then it must be true that W (T) = W u
−κ(T) = W l

−κ(T) and

Q(T) = Qu−κ(T) = Ql−κ(T) (because the ordered remaining workload vectors of two bounding

processes can only meet when they both have idle servers). We call such time T “coalescence

time”, and from then on we have full information of the target FIFO GI/GI/c queue, hence we

can continue simulate it forward in time until time 0.

However, if coalescence does not happen by time 0, we can adopt the so-called “binary back-off”

method by letting the arrival time t−2κ be our new inspection time and redo the above procedure

CHAPTER 4. EXACT SIMULATION WITH RANDOM ASSIGNMENT 50

to detect coalescence. Theorem 3.3 in [Connor and Kendall, 2015] ensures that for any t−κ ≤ t ≤ 0

W u
−κ(t) ≥W u

−2κ(t) ≥W (t) ≥W l
−2κ(t) ≥W l

−κ(t).

We summarize the sandwiching algorithm as follows.

1. Simulate {(S(r)
n , W̄ 0

−n : 0 ≤ n ≤ κ} with all data stored.

2. Use the stored data to reconstruct W̄ 0
n forward in time from n = −κ until n = 0, using Eq.

(4.14), and re-define Vj as the jth service initiation used by the RA model.

3. Set W u
−κ(t−κ) = S(W̄ 0

−κ) and W l
−κ(t−κ) = 0. Use the same stream of interarrival times

(A−κ, A−κ+1, . . . , A−1) and service times (V−κ, V−κ+1, . . . , V−1) to simulate W u
−κ(t), W l

−κ(t)

forward in time using Eq. (4.22).

4. If at some time t ∈ [t−κ, 0] we detect W u
−κ(t) = W l

−κ(t), set T = t, W (T) = W u
−κ(T),

Q(T) =
∑c

i=1 I(W (i)(T) > 0), where W (i)(t) is the i-th entry of vector W (t). Then, use the

remaining interarrival times and service times to evolve the original FIFO GI/GI/c queue

forward in time until time t0 = 0, output (W (0), Q(0)) and stop.

5. If no coalescence is detected by time 0, set κ ← 2κ, then continue to simulate the backward

RA GI/GI/c process until (−κ)-th arrival, i.e., {(S(r)
n , W̄ 0

−n) : 0 ≤ n ≤ κ}, with all data

stored. Go to Step 2.

Next we analyze properties of the coalescence time. Define

κ∗− = inf

{
n ≥ 0 : inf

t−n≤t≤0
‖W u
−n(t)−W l

−n(t)‖∞ = 0

}
.

If at time t−κ∗− we start an upper bound FIFO GI/GI/c queue with workload vector being

W u
−κ∗−

(t−κ∗−), and a lower bound FIFO GI/GI/c queue with workload vector being 0, they will

coalesce by time t0 = 0. Therefore, if we simulate the RA system backward in time to t−κ∗− , we

will be able to detect a coalescence. We next show that E[−t−κ∗−] <∞.

By stationarity, we have that κ∗− is equal in distribution to

κ∗+ = inf

{
n ≥ 0 : inf

0≤t≤tn
‖W u

0 (t)−W l
0(t)‖∞ = 0

}
,

hence −t−κ∗−
d
= tκ∗+ .

CHAPTER 4. EXACT SIMULATION WITH RANDOM ASSIGNMENT 51

Proposition 6. If ρ = E [V] /(cE [T]) < 1 and Assumption 1 is in force, then

E
[
tκ∗+

]
<∞.

The proof follows the same argument as in the proof of Proposition 3, so we give a brief proof

outline in Appendix B.2.

4.2.4 Continuous-time stationary constructions

For a stable FIFO GI/GI/1 queue, let D denote stationary customer delay (time spent in queue

(line) waiting); i.e., it has the limiting distribution of Dn+1 = (Dn + Vn −An)+ as n→∞.

Independently, let Ve denote a random variable distributed as the equilibrium distribution Fe of

service time distribution F ,

Fe(x) = µ

∫ x

0
P (V > y)dy, x ≥ 0, (4.23)

where V ∼ F . Let ν(t) denote total work in system at time t; the sum of all whole or remaining

service times in the system at time t. Dn = ν(tn−), and one can construct {ν(t)} via

ν(t) = (Dn + Vn − (t− tn))+, tn ≤ t < tn+1.

(It is to be continuous from the right with left limits.) Let ν denote stationary workload; i.e., it

has the limiting distribution

P (ν ≤ x) = lim
t→∞

1

t

∫ t

0
P (ν(s) ≤ x)ds, x ≥ 0. (4.24)

The following is well known to hold (see Section 6.3 and 6.4 in [Sigman, 1995], for example):

P (ν > x) = ρP (D + Ve > x), x ≥ 0. (4.25)

Letting HD(x) = P (D ≤ x) denote the probability distribution of D, and δ0 denote the point

mass at 0, and ∗ denote convolution of distributions, this means that the distribution of ν can be

written as a mixture

(1− ρ)δ0 + ρHD ∗ Fe.

This leads to the following:

CHAPTER 4. EXACT SIMULATION WITH RANDOM ASSIGNMENT 52

Proposition 7. For a stable (0 < ρ < 1) FIFO GI/GI/1 queue, if ρ is explicitly known, and one

can exactly simulate from D and Fe, then one can exactly simulate from ν.

Proof. 1. Simulate a Bernoulli (ρ) r.v. B.

2. If B = 0, then set ν = 0. Otherwise, if B = 1, then simulate D and independently simulate

a copy Ve ∼ Fe. Set ν = D + Ve. Stop.

Another algorithm requiring instead the ability to simulate from Ge (equilibrium distribution

of the interarrival time distribution G) instead of Fe follows from another known relation:

ν
d
= (D + V −Ae)+, (4.26)

where D,V and Ae ∼ Ge are independent (see, for example, Eq. (88) on Page 426 in [Wolff,

1989]). Thus by simulating D,V , and Ae, simply set ν = (D + V − Ae)
+. Eq. (4.26)

extends analogously to the FIFO GI/GI/c model, where our objective is to exactly simulate

from the time-stationary distribution of the continuous-time Kiefer-Wolfowitz workload vector,

W (t) = (W (1)(t), . . . ,W (c)(t))T , t ≥ 0, where it can be constructed via

W (t) = S(Wn + Vne1 − (t− tn)1)+, tn ≤ t < tn+1.

It is to be continuous from the right with left limits; Wn = W (tn−). Total workload ν(t), for

example, is obtained from this via

ν(t) =
c∑
i=1

W (i)(t).

Let W ∗ have the time-stationary distribution of W (t) as t→∞, let W0 have the discrete-time

stationary distribution π and let V , Ae and W0 be independent, then

W ∗
d
= S(W0 + V e1 −Ae1)+. (4.27)

So, once we have a copy of W0 (distributed as π) from our algorithm in Section 4.2.1 or Section 4.2.3,

we can easily construct a copy of W ∗ as long as we can simulate from Ge. Of course, if arrivals

are Poisson then the distribution of W ∗ is identical to that of W0 by Poisson Arrivals See Time

Averages (PASTA) property, but otherwise we can use (4.27).

CHAPTER 4. EXACT SIMULATION WITH RANDOM ASSIGNMENT 53

4.3 Numerical experiments

As a sanity check, we have implemented our perfect sampling algorithm in MATLAB for the case

of Erlang(k1, λ)/Erlang(k2, µ)/c queue.

Firstly we consider M/M/c queues, which are special cases of Erlang(k1, λ)/Erlang(k2, µ)/c

with k1 = k2 = 1. For the quantity of interest, number of customers in the FIFO M/M/c queue

at stationary, we obtain its empirical distribution from a large number of independent runs of our

algorithm, and compare it to the theoretical distribution which has a well-established closed form

as below:

π0 =

(
c−1∑
k=0

(cρ)k

k!
+

(cρ)c

c!

1

1− ρ

)−1

,

πk =

π0 · (cρ)k/k! if 0 < k < c

π0 · ρkcc/c! if k ≥ c
,

where ρ = λ/(cµ) < 1.

As an example, Figure 4.1 shows the result of such test when λ = 3, µ = 2 and c = 2. Grey

bars are the empirical results of 5000 independent draws using our algorithm, and black bars are

the theoretical distribution of the number of customers in system from stationarity. A Pearson’s

chi-squared test between the theoretical and empirical distributions gives a p-value equal to 0.8781,

indicating close agreement (i.e., we cannot reject the null hypothesis that there is no difference

between these two distributions). For another set of parameters λ = 10, µ = 2 and c = 10, the

results are shown in Figure 4.2 with a p-value being 0.6069 for the Pearson’s chi-squared fitness

test.

For the general Erlang(k1, λ)/Erlang(k2, µ)/c queue when k1 > 1 and k2 > 1 when ρ =

λk2/(cµk1) = 0.9, we compare the empirical distribution of the number of customers in system

at stationarity, obtained from a large number of runs of our perfect sampling algorithm, to the

numerical results (with precision at least 10−4) provided in Table III of [Hillier and Lo, 1971]. The

results for an Erlang(2, 9)/Erlang(2, 5)/c queue are given in Figure 4.3. Grey bars are the empirical

results of 5000 independent draws using our algorithm and black bars are the numerical values given

in [Hillier and Lo, 1971]; Again, they are very close to each other. A Pearson’s chi-squared test

gives a p-value of 0.9464, therefore we cannot reject the null hypothesis that these two distributions

CHAPTER 4. EXACT SIMULATION WITH RANDOM ASSIGNMENT 54

agree well.

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25
Number of Customers for an M/M/c queue in equilibrium with lambda = 3, mu = 2, c = 2 (5000 draws)

Perfect Simulation
Theoretical

Figure 4.1: Number of customers for an M/M/c queue in stationarity when λ = 3, µ = 2, c = 2.

0 5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18
Number of Customers for an M/M/c queue in equilibrium with lambda = 10, mu = 2, c = 10 (5000 draws)

Perfect Simulation
Theoretical

Figure 4.2: Number of customers for an M/M/c queue in stationarity when λ = 10, µ = 2, c = 10.

CHAPTER 4. EXACT SIMULATION WITH RANDOM ASSIGNMENT 55

0 5 10 15 20 25 30
0

0.05

0.1

0.15
Number of Customers for an E2/E2/2 queue in equilibrium with rho=0.9 (5000 draws)

Perfect Simulation
Theoretical

Figure 4.3: Number of customers for an Erlang(k1, λ)/Erlang(k2, µ)/c queue in stationarity when

k1 = 2, λ = 9, k2 = 2, µ = 5, c = 2 and ρ = 0.9.

Next, we run another numerical experiment to compare how far we need to simulate the domi-

nating process backward in time to detect coalescence before (or at) time 0. For the first algorithm

given in Section 4.2.1, we let running time T̂ =
∑N

i=1A−i, i.e., the time taken for the queueing

system under RA discipline to become empty the first time; and for the second sandwiching al-

gorithm given in Section 4.2.3, we let running time T̂ =
∑κ

i=1A−i, i.e., the time taken for the

first successful inspection time in order to detect coalescence before (or at) time 0. In Figure 4.4,

we plot the distributions of the time taken for the first time coalescence ever detected under two

algorithms, for an M/M/c queue with parameters λ = 10, µ = 2, c = 10, from 5000 runs. The

result indicates that the second sandwiching algorithm performs significantly faster than the first

one.

CHAPTER 4. EXACT SIMULATION WITH RANDOM ASSIGNMENT 56

log
2
(run time + 1)

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Distribution of Time Taken For Coalescence To Be Detected

First Algorithm
Second Algorithm (sandwiching)

Figure 4.4: Distributions of time taken to detect coalescence under two algorithms for an M/M/c

queue

Finally, we test how the computational complexity of the sandwiching algorithm compares to

that of the algorithm given in Section 3.3. Notice these two algorithms do look similar: they both

use back-off strategies to run two bounding processes from some inspection time and check whether

they meet before (or at) time 0. The difference is that in Chapter 3, we use a so-called “vacation

system” to construct upper bound process, whereas here we use the same queue but under RA

service discipline instead. In the following numerical experiment, we define the computational

complexity as the total number of arrivals each algorithm samples backward in time to detect

coalescence. Table 4.1 shows how they vary with different values of traffic intensity, ρ, based on

5000 independent runs of both algorithms using the same back-off strategy with same initial κ = 1.

The result suggests that our second sandwiching algorithm outperforms the one proposed in Section

3.3, since the magnitude of the computational complexity does not increase as fast as that of the

latter one as traffic intensity increases.

CHAPTER 4. EXACT SIMULATION WITH RANDOM ASSIGNMENT 57

Table 4.1: Simulation result for computational complexities with varying traffic intensities

M/M/c queue with fixed µ = 5 and c = 2

λ ρ
95% confidence interval of the number of arrivals simulated backwards

Algorithm in Section 4.2.3 Algorithm in Section 3.3

5 0.5 54.8194 ± 0.5758 146.5618 ± 2.3598

6 0.6 86.5394 ± 1.0536 308.4448 ± 4.9413

7 0.7 152.6552 ± 2.2695 730.1130 ± 11.2783

8 0.8 337.9544 ± 6.3021 2,201.8254 ± 32.1556

9 0.9 1,521.3502 ± 31.8267 12,277.8686 ± 161.5824

4.4 Infinite server systems and other service disciplines

In this section we sketch how one can utilize our FIFO GI/GI/c results to obtain exact sampling

of some other models including the infinite server queue, and the multi-server queue under other

service disciplines.

In [Blanchet and Dong, 2013], an exact simulation algorithm is presented for simulating from

the stationary distribution of the infinite server queue; the GI/GI/∞ queue. Here we sketch how

to utilize our new FIFO GI/GI/c results to accomplish this by using a FIFO GI/GI/c model as

an upper bound. The GI/GI/∞ model has an infinite number of servers, there is no line, every

arrival enters service immediately upon arrival; the n-th customer arrives at time tn and departs

at time tn + Vn.

For 0 < λ/µ <∞, this model is always stable. Let c denote the smallest integer strictly larger

than λ/µ; c−1 ≤ λ/µ < c. Letting ν∞(t) denote the total amount of work in the GI/GI/∞ model,

and νc(t) denote the total amount of work in the (necessarily stable) FIFO GI/GI/c model being

fed exactly the same input (of service time requirements and interarrival times), and both starting

initially empty, the following is easily established:

CHAPTER 4. EXACT SIMULATION WITH RANDOM ASSIGNMENT 58

P (ν∞(t) ≤ νc(t), for all t ≥ 0) = 1, (4.28)

hence

P (ν∞(tn−) ≤ νc(tn−), for all n ≥ 0) = 1. (4.29)

(Note that both models use the service times in the same order of initiation, which makes the

coupling easy from the start.)

Thus, if, for example P (A > V) > 0, then the FIFO model will empty and can be used to

detect times when the GI/GI/∞ model will empty. Let L∞(tn−) denote the total number of busy

servers in the GI/GI/∞ model as found by Cn.

Simulating the FIFO model backward in time in stationarity (using our previous algorithm),

until it first empties, can then be used to detect a time when the GI/GI/∞ model is empty, and

then one can construct it back up to time 0 to obtain a stationary copy of ν∞(tn−) and of L∞(tn−).

Now we consider alternatives disciplines to FIFO for the GI/GI/c model. It is immediate that

when service times are generated only when needed by a server, the total number of customers in

the system process {Q(t)} remains the same under FIFO as under last-in-first-out (LIFO) in which

the next customer to enter service is the one at the bottom of the line, or random selection next

(RS) in which the next customer to enter service from the line is selected at random by the server.

Thus, they all share the same stationary distribution of Q(t) as t → ∞, as well as the stationary

distribution of Q(tn−) as n → ∞. Let Q0 have this limiting (as n → ∞) distribution. This fact

can be used to exactly simulate, for example, stationary delay D under LIFO or RS (they are not

the same as for FIFO). The method (sketch) is as follows: Simulate a copy of Q0, jointly with the

remaining service times of those in service, by assuming FIFO. This represents the distribution of

the system as found in stationarity (at time 0) by arrival C0. Consider RS for example. If the line

is empty, then define DRS = 0; C0 enters service immediately. Otherwise, place C0 in the line,

and continue simulating but now using RS instead of FIFO. As soon as C0 enters service, stop and

define DRS as that length of time.

CHAPTER 4. EXACT SIMULATION WITH RANDOM ASSIGNMENT 59

4.5 Fork-Join models

The RA recursion (4.7),

W̄n+1 =
(
W̄n + Ṽn −An1

)+
, n ≥ 0, (4.30)

is actually a special case for the modeling of Fork-Join (FJ) queues (also called Split and Match)

with c nodes. In an FJ model, each arrival is a “job” with c components, the i-th component

requiring service at the i-th FIFO queue. So upon arrival at time tn, the job splits into its c

components to be served. As soon as all c components have completed service, then and only then,

does the job depart. Such models are useful in manufacturing applications. The n-th job (Cn) thus

arrives with a service time vector attached of the form Vn = (Vn(1), ..., Vn(c)). Let us assume that

the vectors are iid, but otherwise can be generally jointly distributed; for then (4.30) still forms a

Markov chain. We will denote this model as the GI/GI/c − FJ model. The sojourn time of the

i-th component is given by W̄ (i) +Vn(i), and thus the sojourn time of the n-th job, Cn, is given by

Hn = max
1≤i≤c

{W̄n(i) + Vn(i)}. (4.31)

Of great interest is obtaining the limiting distribution of Hn as n→∞; we denote a r.v. with this

distribution as H0. FJ models are notoriously difficult to analyze analytically: Even the special

case of Poisson arrivals and iid exponential service times is non-trivial because of the dependency

of the c queues through the common arrival process. (A classic paper is [Flatto and Hahn, 1984]).

In fact when c ≥ 3, only bounds and approximations are available. As for exact simulation, there

is a paper by Hongsheng Dai [Dai, 2011], in which Poisson arrivals and independent exponential

service times are assumed. Because of the continuous-time Markov chain (CTMC) model structure,

the author is able to construct (simulate) the time-reversed CTMC to use in a coupling from the

past algorithm. But with general renewal arrivals and or general distribution service times, such

CTMC methods no longer can be used.

Our simulation method for the RA model outlined in Section 4.2, however yields an exact copy

of H0 for the general GI/GI/c − FJ model, under the condition that there exists θ > 0, θ ∈ Rc

such that

E
[
exp(θT (V1 −A11))

]
<∞.

First we simulate W̄ 0
0 exactly using exponential change of measure method introduced in [Blanchet

and Chen, 2015] (we use the same technique for multidimensional simulation in Algorithm 4.2.1),

CHAPTER 4. EXACT SIMULATION WITH RANDOM ASSIGNMENT 60

then simulate a vector of service times V = (V (1), . . . , V (c)) independently and set

H0 = max
1≤i≤c

{W̄ 0
0 (i) + V (i)}.

Even when the service time components within V are independent, or the case when service

time distributions are assumed to have a finite moment generating function (in a neighborhood of

the origin), such results are new and non-trivial.

4.6 The case when P (A > V) = 0: Harris recurrent regeneration

For a stable FIFO GI/GI/c queue, the stability condition can be re-written as E[A1 + . . .+Ac] >

E[V], which implies also that P (A1 + · · · + Ac > V) > 0. Thus assuming that P (A > V) > 0 is

not necessary for stability. When P (A > V) = 0, the system will never empty again after starting,

and so using consecutive visits to 0 as regeneration points is not possible. But the system does

regenerate in a more general way via the use of Harris recurrent Markov chain theory; see [Sigman,

1988] for details and history of this approach. The main idea is that while the system will not

empty infinitely often, the number of customers in system process {QF (tn−) : n ≥ 0} will visit an

integer 1 ≤ j ≤ c− 1 infinitely often.

For illustration here, we will consider the c = 2 case (for the general case c ≥ 2, the specific

regeneration points analogous to what we present here are carefully given in Eq. (4.6) on page 396

of [Sigman, 1988]). Let us assume that 1/2 < ρ < 1. (Note that if ρ < 1/2, then equivalently

E[A] > E[V] and so P (A > V) > 0; that is why we rule out ρ < 1/2 here.) We now assume that

P (A > V) = 0. This implies that for v , inf{v > 0 : P (V > v) > 0} and t , sup{t > 0 : P (A >

t) > 0}, we must have 0 < t < v < ∞. It is shown in [Sigman, 1988] that for ε > 0 sufficiently

small, the following event will happen infinitely often (in n) with probability 1,

{QRA(tn−) = 1, W̄n(1) = 0, W̄n(2) ≤ ε, An > ε, Un = 1}. (4.32)

If n is such a time, then at time n+ 1, we have

{QRA(tn+1−) = 1, W̄n+1(2) = 0, W̄n+1(1) = (Vn −An) | An > ε}. (4.33)

The point is that Cn finds one server (server 1) empty, and the other queue with only one

customer in it, and that customer is in service with a remaining service time ≤ ε. Cn then enters

CHAPTER 4. EXACT SIMULATION WITH RANDOM ASSIGNMENT 61

service at node 1 with service time Vn; but since An > ε, Cn+1 arrives finding the second queue

empty, and the first server has remaining service time Vn − An conditional on An > ε. Under the

coupling of Lemma 4, the same will be so for the FIFO model (see Remark 3 below): At such a

time n,

{QF (tn−) = 1, Wn(1) = 0, Wn(2) ≤ ε, An > ε}, (4.34)

and at time n+ 1, we have

{QF (tn+1−) = 1, Wn(1) = 0, Wn(2) = (Vn −An) | An > ε}. (4.35)

Eqs. (4.33) and (4.35) define positive recurrent regeneration points for the two models (at time

n+1); the consecutive times at which regenerations occur forms a (discrete-time) positive recurrent

renewal process.

To put this to use, we change the stopping time N given in (4.17) to:

N + 1 = min{n ≥ 1 : Q0
RA(t−(n+1)−) = 1, W̄ 0

−(n+1)(1) = 0, (4.36)

W̄ 0
−(n+1)(2) ≤ ε, A−(n+1) > ε, U−(n+1) = 1}.

Then, we do our reconstructions for the algorithm in Section 4.2.1 by starting at time −N , with

both models starting with the same starting value:

{QRA(t−N−) = 1, W̄ 0
−N (2) = 0, W̄ 0

−N (1) = (V−(N+1) −A−(N+1)) | A−(N+1) > ε} (4.37)

and

{QF (t−N−) = 1, W−N (1) = 0, W−N (2) = (V−(N+1) −A−(N+1)) | A−(N+1) > ε}. (4.38)

Remark 3. The service time used in (4.37) and (4.38) for coupling via Lemma 5, V−(N+1), is in

fact identical for both systems because (subtle): At time −(N + 1), both systems have only one

customer in system, and thus total work is in fact equal to the remaining service time; so we use

Eq. (4.5) to conclude that both remaining service times (even if different) are ≤ ε (e.g., that is why

(4.34) follow from (4.32)). Meanwhile, C−(N+1) enters service immediately across both systems, so

it is indeed the same service time V−(N+1) used for both for this initiation.

62

Part II

Unbiased Monte Carlo Computations

and Applications

CHAPTER 5. INTRODUCTION TO PART II 63

Chapter 5

Introduction to Part II

In this part, we propose simple yet powerful techniques that can be used to delete bias that often

arise in the implementation of Monte Carlo computations in a wide range of decision making

and performance analysis settings, for instance, stochastic optimization and distribution quantile

estimation, among others.

There are two key advantages of the estimators that we will present. Firstly, they can be

easily implemented in the presence of parallel computing processors, yielding estimates whose

accuracy improves as the size of available parallel computing cores increases while keeping the work-

per-processor bounded in expectation. Secondly, the confidence intervals can be easily produced

in settings in which variance estimators might be difficult to obtain (for example in stochastic

optimization problems whose asymptotic variances depend on Hessian information).

To appreciate the advantage of parallel computing with bounded cost per parallel processor,

let us consider a typical problem in machine learning applications, which usually involves a sheer

amount of data. Because of the technical issues that arise in using the whole data set for training,

one needs to resort techniques such as stochastic gradient descent, which is not easy to fully run in

parallel, or sample average approximations (SAA), which can be parallelized easily but it carries a

systematic bias. For both the optimal value function and the optimal policies, we provide estimators

that are unbiased, possess finite variance, and can be implemented in finite expected termination

time. Thus, our estimators can be directly implemented in parallel, with each parallel processor

being assigned an amount of work which is bounded in expectation.

A second example that we shall consider as an application of our techniques arises in steady-

CHAPTER 5. INTRODUCTION TO PART II 64

state analysis of stochastic systems. A typical setting of interest is to compute a long-term average

of expected cost or reward for running a stochastic system. This problem is classical in the literature

of stochastic simulation and it has been studied from multiple angles. Our simple approach provides

another way such that the steady-state analysis of regenerative processes can be done without any

bias. A key characteristic is that the approach we study involves the same principle underlying the

stochastic optimization setting mentioned in the previous paragraph.

Another type of problem that we are able to directly address using our methodology is computing

unbiased estimators of distribution quantiles. In addition to being unbiased, all of the estimators

have finite work-normalized variance and can be simulated in finite expected termination time,

which makes their implementation in parallel computation straightforward.

Applications such as stochastic optimization and quantile estimation allow us to highlight the

fact that the variance estimates of our Monte Carlo estimators are straightforward to produce.

These variance estimates are important for us to generate asymptotically accurate confidence in-

tervals. In contrast, even though asymptotically unbiased estimators may be available, sometimes

these estimators require information about Hessians (as in the optimization setting) or even density

information (as in quantile estimation applications) to produce accurate confidence intervals, while

our estimators do not require this type of information.

Our estimator relates to the multilevel-Monte Carlo method developed in [Giles, 2008]. We

apply the de-biasing techniques introduced in [Rhee and Glynn, 2015] and [McLeish, 2012]. Since

the introduction of these techniques, several improvements and applications have been studied,

mostly in the context of stochastic differential equations and partial differential equations with

random input, see for example [Giles and Szpruch, 2014], [Agarwal and Gobet, 2017], [Khodadadian

et al., 2018] and [Crisan et al., 2018].

In [Vihola, 2018], a stratified sampling technique is introduced in order to show that the de-

biasing in multi-level Monte Carlo can be achieved virtually at no cost in either asymptotic efficiency

or sample complexity relative to the standard (biased) MLMC estimator. The results of [Vihola,

2018] can be applied directly to our estimators in order to improve the variance, but the qualitative

rate of convergence (i.e. O
(
1/ε2

)
remains the same). Another recent paper [Dereich and Mueller-

Gronbach, 2017] studies multi-level Monte Carlo in the context of stochastic optimization, but

their setting is different from what we consider here and they give a completely different class of

CHAPTER 5. INTRODUCTION TO PART II 65

algorithms which are not unbiased.

The rest of this part is organized as follows. In Section 5.1 we discuss the general principle

which drives the construction of our unbiased estimators. Then, we apply these principles to the

different settings of interest, namely, unbiased estimators for non-linear functions of expectations,

stochastic convex optimization and quantile estimation, in Chapter 6. Since the topic of this part

is sufficiently different than that of Part I, we will reuse some of the notations that have appeared

in the previous part with different meanings.

5.1 The general principles

The general principles are based on the work of [Rhee and Glynn, 2015]. Suppose that one is inter-

ested in estimating a quantity of the form θ (µ) ∈ R, where µ is a generic probability distribution,

say with support in a subset of Rd, and θ (·) is a non-linear map.

A useful example to ground the discussion in the mind of the reader is θ (µ) = g (Eµ [X]), where

g : Rd → R is a given function (with regularity properties which will be discussed in the sequel).

We use the notation Eµ [·] to denote the expectation operator under the probability distribution µ.

For the sake of simplicity, we will later omit the subindex µ when the context is clear.

We consider the empirical measure µn of iid samples
{
Xi ∈ Rd : 1 ≤ i ≤ n

}
, i.e.,

µn (dx) =
1

n

n∑
i=1

δ{Xi} (dx) ,

where δXi(·) is the point mass at Xi for i = 1, . . . , n. The sample complexity of producing µn (·) is

equal to n. By the strong law of large numbers for empirical measures (Varadarajan’s Theorem),

µn → µ almost surely in the Prohorov space.

Under mild continuity assumptions, we have that

θ (µn)→ θ (µ) (5.1)

as n → ∞ and often one might expect that θ (µn) is easy to compute. Then, θ (µn) becomes a

natural and reasonable estimator for θ (µ). However, there are several reasons that make it desirable

to construct an unbiased estimator with finite variance, say Z, for θ (µ); even if {θ (µn)}n≥1 is

asymptotically normal in the sense that n1/2 (θ (µn)− θ (µ))⇒ N
(
0, σ2

θ

)
with some σ2

θ > 0. First,

CHAPTER 5. INTRODUCTION TO PART II 66

as we mentioned in the introduction, if one copy of Z can be produced in finite expected time,

averaging the parallel replications of Z immediately yields an estimate of θ (µ), whose accuracy

then can be increased by the Central Limit Theorem as the number of parallel replications of Z

increases. Second, the variance of Z can be estimated with the natural variance estimator of iid

replications of Z, when σ2
θ may be difficult to evaluate from the samples (e.g. if θ (µ) represents

some quantile of µ).

Our goal is to construct a random variable Z such that

E [Z] = θ (µ) , V ar (Z) <∞,

and the expected sample complexity to produce Z is bounded. To serve this goal, we first construct

a sequence of random variables {∆m : m ≥ 0} satisfying the following properties:

Assumption 2. General assumptions

(i) There exists some α, c ∈ (0,∞) such that E
[
|∆m|2

]
≤ c · 2−(1+α)m,

(ii)
∑∞

m=0E [∆m] = θ (µ),

(iii) If Cm is the computational cost of producing one copy of ∆m (measured in terms of sampling

complexity), then E [Cm] ≤ c′ · 2m for some c′ ∈ (0,∞).

If we are able to construct the sequence {∆m : m ≥ 1} satisfying Assumption 2, then we can

construct an unbiased estimator Z as follows. First, sample N from geometric distribution with

success parameter r, so that p (k) = P (N = k) = r (1− r)k for k ≥ 0. The parameter r ∈ (0, 1)

will be optimized shortly. At this point it suffices to assume that r ∈
(

1
2 , 1− 1

2(1+α)

)
.

Once the distribution of N has been specified, the estimator that we consider takes the form

Z =
∆N

p (N)
, (5.2)

where N is independent of the iid sequence {∆m}∞m=0. Note that the estimator possess finite

variance because r < 1− 1
2(1+α)

,

E
[
Z2
]

=
∞∑
k=0

E
[
Z2 | N = k

]
p (k) =

∞∑
k=0

E

[
∆2
k

p (k)2 | N = k

]
p (k) (5.3)

=

∞∑
k=0

E
[
∆2
k

]
p (k)

≤ c
∞∑
k=0

2−(1+α)k

p (k)
=
c

r

∞∑
k=0

1(
2(1+α) (1− r)

)k <∞.

CHAPTER 5. INTRODUCTION TO PART II 67

Moreover, the unbiasedness of the estimator is ensured by Assumption 2(ii),

E [Z] =

∞∑
k=0

E [Z | N = k] p (k) =

∞∑
k=0

E

[
∆k

p (k)

]
p (k) = θ (µ) .

Finally, because r > 1/2, the expected sampling complexity of producing Z, denoted by C, is finite

precisely by Assumption 2(iii),

E [C] = E [CN] ≤ c′
∞∑
k=0

2kp (k) = rc′
∞∑
k=0

(2 (1− r))k <∞. (5.4)

In [Rhee and Glynn, 2015] the choice of N is optimized in terms of the E
[
∆2
m

]
and E [Cm]. In

[Blanchet and Glynn, 2015] a bound on the work-normalized variance, namely the product

∞∑
k=0

2−(1+α)k

p (k)
×
∞∑
k=0

2kp (k) ,

corresponding to the bounds in the right hand side of (5.3) and (5.4) is optimized, and the resulting

optimal choice of p (k)’s corresponds to choosing N geometrically distributed with r = 1 − 2−3/2

when α = 1. Following the same logic, the optimal choice of N should be geometrically distributed

with r = 1− 2−(1+α/2) for the general α > 0 case and we advocate this choice for the construction

of Z.

The contribution of our work is to study the construction of the ∆m’s based on the sequence

{µn : n ≥ 1} satisfying Assumption 2 as we now explain. Now our focus is on explaining the high-

level ideas at an informal level and provide formal assumptions later for different settings.

Suppose that there exists a function T θµ : Rd → R such that

d

dt
θ (µ+ t (µn − µ))

∣∣∣∣
t=0

=

∫
T θµ (x) d (µn − µ) = Eµn

[
T θµ (X)

]
− Eµ

[
T θµ (X)

]
.

Typically, T θµ (·) corresponds to the Riesz representation (if it exists) of the derivative of θ (·) at

µ. Going back to the case in which θ (µ) = g (Eµ [X]), assuming that g (·) is differentiable with

derivative Dg (·), we have

d

dt
g (Eµ [X] + t (Eµn [X]− Eµ [X]))

∣∣∣∣
t=0

= Dg (Eµ [X]) · (Eµn [X]− Eµ [X]) ,

so in this setting T θµ (x) = Dg
(∫
zµ (dz)

)
· x = Dg (Eµ [X]) · x.

Now, suppose that θ (·) is smooth in the sense that

θ (µ) = θ (µn) +
(
Eµ

[
T θµ (X)

]
− Eµn

[
T θµ (X)

])
+ ε (n, µn) , (5.5)

CHAPTER 5. INTRODUCTION TO PART II 68

where

|ε (n, µn)| = Op

(∣∣∣Eµ [T θµ (X)
]
− Eµn

[
T θµ (X)

]∣∣∣2) .
Basically, the term ε (n, µn) controls the error of the first order Taylor expansion of the map

t ↪→ θ (µ+ t (µn − µ))

around t = 0. So, in the context in which θ (µ) = g (Eµ [X]), if g (·) is twice continuously differen-

tiable, then we have

ε (n, µn)

=
1

2
(Eµn [X]− Eµ [X)]T ·

(
D2g

)
(Eµ [X]) · (Eµn [X]− Eµ [X]) + o (1) ,

as n→∞.

The key ingredient in the construction of the sequence {∆m : m ≥ 0} is an assumption of the

form

sup
n≥1

n2E

[∣∣∣Eµ [T θµ (X)
]
− Eµn

[
T θµ (X)

]∣∣∣4] <∞, (5.6)

this assumption will typically be followed as a strengthening of a Central Limit Theorem companion

to the limit µn → µ as n→∞, which would typically yield

n1/2 {Eµ [Tµ (X)]− Eµn [Tµ (X)]} =⇒W,

as n→∞ for some W . Under (5.6) the construction of ∆n satisfying Assumption 2(i) proceeds as

follows. Let

µE2n (dx) =
1

2n

2n∑
i=1

δ{X2i} (dx) , µO2n (dx) =
1

2n

2n∑
i=1

δ{X2i−1} (dx)

and set for n ≥ 1,

∆n = θ (µ2n+1)− 1

2

(
θ
(
µE2n
)

+ θ
(
µO2n
))
. (5.7)

The key property behind the construction for ∆n in (5.7) is that

µ2n+1 =
1

2

(
µE2n + µO2n

)
,

so a linearization of θ (µ) will cancel the first order effects implied in approximating µ by µ2n+1 ,µO2n

and µE2n . In particular, using (5.5) directly we have that

|∆n| ≤
∣∣ε (2n+1, µ2n+1

)∣∣+
∣∣ε (2n, µO2n)∣∣+

∣∣ε (2n, µE2n)∣∣ ,

CHAPTER 5. INTRODUCTION TO PART II 69

consequently due to (5.6) we have that

E
[
|∆n|2

]
= O

(
2−2n

)
. (5.8)

Once (5.8) is in place, verification of Assumption 2(ii) is straightforward because

E [∆n] = E [θ (µ2n+1)]− E [θ (µ2n)] ,

so if we define

∆0 = θ (µ2) ,

then
∞∑
n=0

E (∆n) = θ (µ) .

Assumption 2(iii) follows directly because the sampling complexity required to produce ∆m is

Cm = 2m+1 (assuming each Xi required a unit of sample complexity).

The rest of the paper is dedicated to the analysis of (5.7). The abstract approach described here,

in terms of the derivative of θ (µ), sometimes is cumbersome to implement under the assumptions

that are natural in the applications of interest (for example stochastic optimization). So, we may

study the error in (5.7) directly in later applications, but we believe that keeping the high-level

intuition described here is useful to convey the generality of the main ideas.

CHAPTER 6. UNBIASED MULTI-LEVEL MONTE CARLO 70

Chapter 6

Unbiased Multi-level Monte Carlo

We study three main application areas of the general principles discussed in Section 5.1. In each

setting of interest, we give the unbiased estimator with necessary conditions imposed, then we verify

the unbiasedness, finiteness of the variance, and finiteness of the expected computation complexity

(corresponding to Assumption 2 in the general principles).

Section 6.1 discusses unbiased estimators for functions of expectations and applications in class

steady-state analysis of regenerative processes. Section 6.2 discusses unbiased estimators for both

the optimal solution and the optimal objective value of stochastic convex optimization problems,

along with applications including linear regression and logistic regression. We also provide some

numerical experiment results in this section. Section 6.3 gives an unbiased distribution quantile

estimator based on Bahadur representation of sample quantiles.

We will use the order in probability notation Op (·) for stochastic boundedness; Xn = Op (an)

means for every ε > 0, there exist finite Mε > 0 and Nε > 0 such that

P (‖Xn/an‖ > Mε) < ε

for all n ≥ Nε.

CHAPTER 6. UNBIASED MULTI-LEVEL MONTE CARLO 71

6.1 Non-linear functions of expectations and applications

We first apply the general principle to the canonical example considered in our previous discussion,

namely

θ(µ) = g

(∫
ydµ(y)

)
= g (Eµ [X]) .

Let ν = Eµ[X]. We will impose natural conditions on g (·) to make sure that the principles discussed

in Section 5.1 can be directly applied.

We use (Xk : k ≥ 1) to denote an iid sequence of copies of the random variable X ∈ Rd from

distribution µ. For k ≥ 1, we define

XO
k = X2k−1 and XE

k = X2k.

Note that the XO’s correspond to Xk’s indexed by odd values and the XE ’s correspond to the Xk’s

indexed by even values. For k ∈ N+, let

Sk = X1 + . . .+Xk

and similarly let

SOk = XO
1 + . . .+XO

k ,

SEk = XE
1 + . . .+XE

k .

In this setting, we may define

∆n = g

(
S2n+1

2n+1

)
− 1

2

(
g

(
SO2n

2n

)
+ g

(
SE2n

2n

))
for n ≥ 0 and let the estimator to be

Z =
∆N

p (N)
+ g (X1) , (6.1)

where N was defined in Section 5.1.

We now impose precise assumptions on g (·), so that Assumption 2 can be verified for ∆n. Then

we summarize our discussion in Theorem 2 next.

CHAPTER 6. UNBIASED MULTI-LEVEL MONTE CARLO 72

Assumption 3. Function of expectations assumptions:

(i) Suppose that g : Rd → R has linear growth of the form |g(x)| ≤ c1 (1 + ‖x‖2) for some

c1 > 0, where ‖·‖2 denotes the l2 norm in Euclidian space,

(ii) Suppose g is continuously differentiable in a neighborhood of ν = E[X], and Dg(·) is locally

Holder continuous with exponent α > 0, i.e.,

‖Dg(x)−Dg(y)‖2 ≤ κ(x) ‖x− y‖α2 ,

where κ(·) is bounded on compact sets,

(iii) X has finite 3(1 + α) moments, i.e. E
[
‖X‖3(1+α)

2

]
<∞.

Theorem 2. Suppose that Assumption 3 is forced, then E [Z] = g (E [X]), V ar (Z) < ∞ and the

sampling complexity required to produce Z is bounded in expectation.

Proof. We first show the unbiasedness of the estimator Z. From Assumption 3(i) we have that

|g (Sn/n)|2 ≤ c′1
(
1 + ‖Sn/n‖22

)
.

And because of Assumption 3(iii) we have E
[
g(Sn/n)2

]
<∞, which implies that {g(Sn/n) : n ≥ 0}

is uniformly integrable. For each n ≥ 0,

E [∆n] = E
[
g
(
S2n+1/2n+1

)]
− E [g (S2n/2

n)] .

With the condition in Assumption 3(ii) that g is continuous in a neighborhood of ν, we derive

E[Z] = E

[
∆N

p(N)

]
+ E [g(X1)] =

∞∑
n=1

E [∆n] + E [g(X1)]

= lim
n→∞

E [g (S2n/2
n)] = E

[
lim
n→∞

g (S2n/2
n)
]

= g(E[X]).

Next we show E
[
∆2
n

]
= O

(
2−min(2,(1+α))n

)
for all n ≥ 0. We pick δ > 0 small enough so

that g(·) is continuously differentiable in a neighborhood of size δ around ν and the locally Holder

continuous condition holds as well.

|∆n| = |∆n| I
(
max

(∥∥SO2n/2n − ν∥∥2
,
∥∥SE2n/2n − ν∥∥2

)
> δ/2

)
+ |∆n| I

(∥∥SO2n/2n − ν∥∥2
≤ δ/2,

∥∥SE2n/2n − ν∥∥2
≤ δ/2

)
≤ |∆n| I

(∥∥SO2n/2n − ν∥∥2
> δ/2

)
+ |∆n| I

(∥∥SE2n/2n − ν∥∥2
> δ/2

)
+ |∆n| I

(∥∥SO2n/2n − ν∥∥2
≤ δ/2,

∥∥SE2n/2n − ν∥∥2
≤ δ/2

)
.

CHAPTER 6. UNBIASED MULTI-LEVEL MONTE CARLO 73

When
∥∥SO2n/2n − ν∥∥2

≤ δ/2 and
∥∥SE2n/2n − ν∥∥2

≤ δ/2, we have
∥∥S2n+1/2n+1 − ν

∥∥
2
≤ δ and∥∥SO2n/2n − SE2n/2n∥∥2

≤ δ, thus

∆n =
1

2

(
g
(
S2n+1/2n+1

)
− g

(
SO2n/2

n
))

+
1

2

(
g
(
S2n+1/2n+1

)
− g

(
SE2n/2

n
))

=
1

4
Dg
(
ξOn
)T SE2n − SO2n

2n
+

1

4
Dg
(
ξEn
)T SO2n − SE2n

2n

=
1

4

(
Dg
(
ξOn
)
−Dg

(
ξEn
))T SE2n − SO2n

2n
,

where ξOn is some value between SO2n/2
n and S2n+1/2n+1, and ξEn is some value between SE2n/2

n and

S2n+1/2n+1. It is not hard to see that

∥∥ξOn − ξEn ∥∥2
=

∥∥∥∥UOn + UEn
2

·
(
SO2n

2n
− SE2n

2n

)∥∥∥∥
2

≤
∥∥∥∥SE2n2n

− SO2n

2n

∥∥∥∥
2

.

Hence, using the fact that κ (·) is bounded on compact sets, we have that there exists a deterministic

constant c ∈ (0,∞) (depending on δ) such that

E
[
|∆n|2 I

(∥∥SO2n/2n − ν∥∥2
≤ δ/2,

∥∥SE2n/2n − ν∥∥2
≤ δ/2

)]
≤ c E

[
|κ(ξEn)|2

∥∥∥∥SO2n − SE2n2n

∥∥∥∥2(1+α)

2

]
= Op

(
2−(1+α)n

)
where the last estimate follows from [Bahr, 1965].

On the other hand we analyze the order of

E
[
|∆n|2I

(∥∥SO2n/2n − ν∥∥2
> δ/2

)]
. (6.2)

If we could assume that the Xi’s have a finite moment generating function in a neighborhood of

the origin it would be easy to see that (6.2) decays at a speed which is o
(
2−(1+α)n

)
(actually the

rate would be super-exponentially fast in n). However, we are not assuming the existence of a

finite moment generating function, but the existence of finite 3(1+α) moments. The intuition that

we will exploit is that the large deviations event that is being introduced in (6.2) would be driven

(in the worst case) by a large jump (that is, we operate based on intuition borrowed from large

deviations theory for heavy-tailed increments). So, following this intuition, we define, for some

δ′ > 0 small to be determined in the sequel, the set

An = {1 ≤ i ≤ 2n :
∥∥XO

i − ν
∥∥

2
≥ 2n(1−δ′)}

CHAPTER 6. UNBIASED MULTI-LEVEL MONTE CARLO 74

and Nn = |An|. In simple words, Nn is the number of increments defining SO2n that are large. Note

that

E
[
|∆n|2I

(∥∥SO2n/2n − ν∥∥2
> δ/2

)]
= E

[
|∆n|2I

(∥∥SO2n/2n − ν∥∥2
> δ/2

)
I (Nn = 0)

]
+E

[
|∆n|2I

(∥∥SO2n/2n − ν∥∥2
> δ/2

)
I (Nn ≥ 1)

]
.

We can easily verify using Chernoff bound that for any γ > 0,

P
(∥∥SO2n/2n − ν∥∥2

> δ/2|Nn = 0
)

= o
(
2−nγ

)
,

which implies that

E
[
|∆n|2I

(∥∥SO2n/2n − ν∥∥2
> δ/2

)
I (Nn = 0)

]
≤ E

[
|∆n|2(1+α)

]1/(1+α)
P
(∥∥SO2n/2n − ν∥∥2

> δ/2, Nn = 0
)α/(1+α)

= o
(

2−n(1+α)
)
.

On the other hand, note that

2−2nE
[∥∥XO

i − ν
∥∥2

2
I
(∥∥XO

i − ν
∥∥

2
> 2n(1−δ′)(1+α)

)]
= 2−2n+1

∫ ∞
2n(1−δ′)(1+α)

tP
(∥∥XO

i − ν
∥∥

2
> t
)
dt

≤ 2−2n+1

∫ ∞
2n(1−δ′)(1+α)

E
(∥∥XO

i − v
∥∥3(1+α)

2

)
t2+3α

dt

= O
(

2−2n−n(1+3α)(1−δ′)(1+α)
)
.

Using the previous estimate, it follows easily that

E
[
|∆n|2I (Nn = 1)

]
= O

(
2n · 2−2n−n(1+3α)(1−δ′)(1+α)

)
.

The previous expression is O
(
2−2n

)
if δ′ > 0 is chosen sufficiently small. Similarly, for any fixed k,

E
[
|∆n|2I (Nn = k)

]
= O

(
2(k−2)n2−n·k((1+3α)(1−δ′)(1+α))

)
= O

(
2−2n

)
.

On the other hand,

P (Nn ≥ m) = O
(

2nm2−nm·3(1−δ′)(1+α)
)
.

CHAPTER 6. UNBIASED MULTI-LEVEL MONTE CARLO 75

We then obtain that by selecting δ′ > 0 sufficiently small and m large so that

m · α
(

3
(
1− δ′

)
− 1

1 + α

)
≥ 2,

we conclude

E
[
|∆n|2I (Nn ≥ m)

]
≤ E

[
|∆n|2(1+α)

]1/(1+α)
P (Nn ≥ m)α/(1+α) = O

(
2−2n

)
.

Consequently, we have that

E
[
|∆n|2I

(∥∥SO2n/2n − ν∥∥2
> δ/2

)
I (Nn ≥ 1)

]
≤

m−1∑
k=1

E
[
|∆n|2I (Nn = k)

]
+ E

[
|∆n|2I (Nn ≥ m)

]
= O

(
2−2n

)
.

Finally the sampling complexity of producing one copy of ∆n is

Cn = 2n+1 + c = O (2n)

with some constant c > 0.

6.1.1 Application to steady-state regenerative simulation

The context of steady-state simulation provides an important instance in which developing unbiased

estimators is desirable. Recall that if (W (n) : n ≥ 0) is a positive recurrent regenerative process

taking values on some space Y, then for all measurable set A, we have the following limit holds

with probability one

π(A) := lim
m→∞

1

m

m∑
n=0

I (W (n) ∈ A) =
E0

[∑τ−1
n=0 I (W (n) ∈ A)

]
E0 [τ]

,

where the notation E0 indicates that W (·) is zero-delayed under the associated probability measure

P0 (·). The limiting measure π(·) is the unique stationary distribution of the process W (·); for ad-

ditional discussion on regenerative processes see the appendix on regenerative process in [Asmussen

and Glynn, 2007], and also [Asmussen, 2003]. Most ergodic Markov chain that arise in practice are

regenerative; certainly all irreducible and positive recurrent countable state-space Markov chains

are regenerative.

A canonical example which is useful to keep in mind to conceptualize a regenerative process is

the waiting time sequence of the single server queue. In which case, it is well known that the waiting

CHAPTER 6. UNBIASED MULTI-LEVEL MONTE CARLO 76

time of the n-th customer, W (n), satisfies the recursion W (n + 1) = max (W (n) + Y (n+ 1), 0),

where the Y (n)’s form an iid sequence of random variables with negative mean. The waiting time

sequence regenerates at zero, so if W (0) = 0, the waiting time sequence forms a zero-delayed

regenerative process. Let f(·) be a bounded measurable function and write

X1 =

τ−1∑
n=1

f (W (n)) and X2 = τ,

then we can estimate the stationary expectation Eπf (W) via the ratio

Eπ [f (W)] =
E0 [X1]

E0 [X2]
. (6.3)

Since τ ≥ 1, it follows that for g (x1, x2) = x1/x2. If E
[
|X1|3+ε

]
<∞ and E

[
τ3+ε

]
<∞ for some

ε > 0, then assumptions can be verified and Theorem 2 applies.

6.1.2 Additional applications

In addition to steady-state simulation, ratio estimators such (6.3) arise in the context of particle

filters and state-dependent importance sampling for Bayesian computations, see [Del Moral, 2004]

and [Liu, 2008].

In the context of Bayesian inference, one is interested in estimating expectations from some

density (π(y) : y ∈ Y) fo the form π(y) = h(y)/γ, where h(·) is a non-negative function with a

given (computable) functional form and γ > 0 is a normalizing constant which is not computable,

but is well defined (i.e. finite) and ensures that π(·) is indeed a well defined density on Y. Since

γ > 0 is unknown one must resort to techniques such as Markov chain Monte Carlo or sequential

importance sampling to estimate Eπ [f(Y)] (for any integrable function f(·)), see for instance [Liu,

2008].

Ultimately, the use of sequential importance samplers or particle filters relies on the identity

Eπ [f(Y)] = Eq

[
h(Y)

q(Y)
f(Y)

]
/Eq

[
h(Y)

q(Y)

]
, (6.4)

where (q(y) : y ∈ Y) is a density on Y and Eq [·] denotes the expectation operator associated to

q(·) (and we use Pq(·) for the associated probability). Of course, we must have that the likelihood

ratio π(Y)/q(Y) well defined almost surely with respect to Pq(·) and

Eq

[
π(Y)

q(Y)

]
= 1.

CHAPTER 6. UNBIASED MULTI-LEVEL MONTE CARLO 77

Thus, by using sequential importance sampling or particle filters one produces a ratio estimator

(6.4) and therefore the application of our result in this setting is very similar to the one described

in the previous subsection. The verification of Theorem 2 requires additional assumption on the

selection of q(·), which should have heavier tails than π(·) in order to satisfy Assumption 3.

6.2 Stochastic convex optimization

In this section, we study a wide range of stochastic optimization problems and we show that

the general principle applies. This section studies situations in which, going back to Section 5.1,

the derivative T θµ may be difficult to characterize and analyze, but the general principle is still

applicable. So, in this section we study its applications directly.

Consider the following constrained stochastic convex optimization problem

min f(β) = Eµ [F (β,X)]

s.t. G(β) ≤ 0,
(6.5)

where D = {β ∈ Rd : F (β) ≤ 0} is a nonempty closed subset of Rd. f is a convex map from Rd to

R. G (β) = (g1(β), . . . , gm(β))T is a vector-valued convex function for some m ∈ N. X is a random

vector whose probability distribution µ is supported on a set Ω ⊂ Rk, and F : D × Ω→ R.

Let β∗ denote the optimal solution and f∗ = f(β∗) denote the optimal objective value. La-

grangian of problem (6.5) is

L (β, λ) = f (β) + λTG (β) . (6.6)

If f(·) and gi(·)’s are continuously differentiable for i = 1, . . . ,m, the following Karush-Kuhn-Tucker

(KKT) conditions are sufficient and necessary for optimality:

∇βL (β∗, λ∗) = ∇f(β∗) +∇G (β∗)λ∗ = 0, (6.7)

G (β∗) ≤ 0, (6.8)

λT∗G (β∗) = 0, (6.9)

λ∗ ≥ 0, (6.10)

where λ∗ ∈ Rm is the Lagrangian multiplier corresponding to β∗.

One of the standard tools in such settings is the method of Sample Average Approximation

(SAA), which consists in replacing the expectations by the empirical means. Suppose we have n

CHAPTER 6. UNBIASED MULTI-LEVEL MONTE CARLO 78

iid copies of the random vector X, denoted as {X1, . . . , Xn}, we solve the following optimization

problem

min fn(β) = 1
n

∑n
i=1 F (β,Xi)

s.t. G(β) ≤ 0
(6.11)

as an approximation to the original problem (6.5). Let βn denote the optimal solution and let

f̂n = fn(βn) denote the optimal value of the SAA problem (6.11). The traditional SAA approach

is to use them as estimators to the true optimal solution β∗ and optimal target value f∗ of the

problem (6.5). Although the SAA estimators are easy to construct and consistent, they are biased.

Proposition 5.6 in [Shapiro et al., 2009] shows E[f̂n] ≤ f∗ for any n ∈ N.

We construct unbiased estimators for the optimal solution and optimal value of problem (6.5)

by utilizing the SAA estimators. Let β2n+1 , βO2n , βE2n denote the SAA optimal solutions as

β2n+1 = arg min
G(β)≤0

f2n+1(β) = arg min
G(β)≤0

1

2n+1

2n+1∑
i=1

F (β,Xi) ,

βO2n = arg min
G(β)≤0

fO2n(β) = arg min
G(β)≤0

1

2n

2n∑
i=1

F
(
β,XO

i

)
,

βE2n = arg min
G(β)≤0

fE2n(β) = arg min
G(β)≤0

1

2n

2n∑
i=1

F
(
β,XE

i

)
.

Let f̂2n+1 = f2n+1 (β2n+1), f̂O2n = fO2n
(
βO2n
)

and f̂E2n = fE2n
(
βE2n
)

denote the SAA optimal values.

Similarly we let λ2n+1 , λO2n and λE2n denote the corresponding Lagrange multipliers.

We define

∆n = f̂2n+1 − 1

2

(
f̂O2n + f̂E2n

)
and ∆̄n = β2n+1 − 1

2

(
βO2n + βE2n

)
for all n ≥ 0, then the estimator of the optimal value f∗ is

Z =
∆N

p(N)
+ f̂1 (6.12)

and the estimator of the optimal solution β∗ is

Z̄ =
∆̄n

p(N)
+ β1, (6.13)

where N was defined in Section 5.1. We now impose assumptions in this setting so that Assumption

2 for the general principles can be verified for both ∆n and ∆̄n.

CHAPTER 6. UNBIASED MULTI-LEVEL MONTE CARLO 79

Assumption 4. Stochastic convex optimization assumptions:

(i) The feasible region D ⊂ Rd is compact.

(ii) f has a unique optimal solution β∗ ∈ D.

(iii) F (·, X) is finite, convex and twice continuously differentiable on D a.s.

(iv) There exists a locally bounded measurable function κ : Ω→ R+, γ > 0 and δ > 0 such that

|F
(
β′, X

)
− F (β,X)| ≤ κ(X)‖β′ − β‖γ

for all β, β′ ∈ D with ‖β′− β‖ ≤ δ and X ∈ Ω; and κ(X) has finite moment generating function in

a neighborhood of the origin.

(v) Define,

Mβ(t) = E [exp (t (F (β,Xi)− f(β)))] (6.14)

and assume that there exists δ0 > 0 and σ2 > 0 such that for |t| ≤ δ0,

sup
β∈D

Mβ(t) ≤ exp
(
σ2t2/2

)
.

(vi) There is δ′0 > 0 and t > 0 such that

sup
‖β−β∗‖≤δ′0

E [exp (t ‖∇βF (β,X)‖)] <∞.

(vii) E
[∥∥∥∇2

ββF (β∗, X)
∥∥∥p] <∞ with some p > 2.

(viii) G(β) = (g1(β), . . . , gm(β))T and gi(·) is twice continuously differentiable convex function

for all 1 ≤ i ≤ m.

(ix) There is β ∈ D such that G (β) < 0 (Slater conditions ensures strong duality).

(x) LICQ holds at β∗, i.e., the gradient vectors {∇gi(β∗) : gi(β∗) = 0} are linearly independent

(LICQ is the weakest condition to ensure the uniqueness of Lagrangian multiplier; see [Wachsmuth,

2013] for instance).

(xi) Strict complementarity condition holds, i.e., λ∗(i) > 0 when gi(β∗) = 0 for all i = 1, . . . ,m,

We summarize the discussion of unbiased estimator for the optimal solution β∗ as Theorem 3

in Section 6.2.1, and unbiased estimator for the optimal objective value f∗ as Theorem 4 in Section

6.2.2.

CHAPTER 6. UNBIASED MULTI-LEVEL MONTE CARLO 80

6.2.1 Unbiased estimator of optimal solution

In this section, we will utilize the large deviation principles for the SAA optimal solutions develop

in [Xu, 2010]. We first provide the following lemma to summarize the LDP.

Lemma 7. If Assumptions 4(i), 4(ii), 4(iv), 4(v) hold, then for every ε > 0, there exist positive

constants c(ε) and α(ε), independent of n, such that for n sufficiently large

P (‖β2n − β∗‖ ≥ ε) ≤ cε exp (−2nα(ε)) ,

where α(ε) is locally quadratic at the origin, i.e., α(ε) = α0ε
2 as ε→ 0 with α0 > 0.

Proof. For β ∈ D, let Iβ(z) = supt∈R{zt − logMβ(t)}, where Mβ(t) is as defined in (6.14). The

proof of Theorem 4.1 in [Xu, 2010] has that if the assumptions required in Lemma 7 are all enforced,

then

P (‖β2n − β∗‖ ≥ ε)

≤ exp (−2nλ) +

M∑
i=1

exp
(
−2n min(Iβ̄i(ε/4), Iβ̄i(−ε/4))

)
,

where λ > 0, {β̄i ∈ D : 1 ≤ i ≤M} is a v-net constructed by the finite covering theorem, i.e., there

exits v > 0 such that for every β ∈ D, there exists β̄i, i ∈ {1, . . . ,M}, ‖β − β̄i‖ ≤ v,

|F (β,X)− F (β̄i, X)| ≤ κ(X)‖β − β̄i‖γ and |f(β)− f(β̄i)| ≤ ε/4,

and

min(Iβ̄i(ε/4), Iβ̄i(−ε/4)) ≥ ε2

32σ2
,

by Assumption 4(iv) and Remark 3.1 in [Xu, 2010]. Since the size of v-net, M , grows in polynomial

order of ε, we complete the proof.

Theorem 3. If Assumptions 4 is in force, then E
[
Z̄
]

= β∗, V ar(Z̄) < ∞ and the computation

complexity required to produce Z̄ is bounded in expectation.

Proof. If Assumptions 4(i), 4(iii), 4(viii), 4(ix), 4(ii), 4(x) and 4(xi) hold, the following result is

given on page 171 of [Shapiro et al., 2009]

2n/2

β2n − β∗
λ2n − λ∗

 =⇒ N
(
0, J−1ΓJ

)
, (6.15)

CHAPTER 6. UNBIASED MULTI-LEVEL MONTE CARLO 81

where

J =

H A

AT 0

 and Γ =

Σ 0

0 0

 ,
H = ∇2

ββL (β∗, λ∗) ∈ Rd×d, A is the matrix whose columns are formed by vectors ∇gi(β∗) when

gi(β∗) = 0 for i = 1, . . . ,m, and Σ = E
[
(∇F (β∗, X)−∇f(β∗)) (∇F (β∗, X)−∇f(β∗))

T
]
. Nonsin-

gularity of J is guaranteed by Assumptions 4(x) and 4(xi).

We first show Z̄ is unbiased. For n ≥ 0,

E
[
∆̄n

]
= E [β2n+1]− E [β2n] .

Since the feasible region D ⊂ Rd is closed and bounded by Assumption 4(i), {β2n : n ≥ 0} is

uniformly integrable. With β2n → β∗ in (6.15), we have

E
[
Z̄
]

=
∞∑
n=1

E
[
∆̄n

]
+ E [β1] = lim

n→∞
E [β2n] = β∗.

We next prove V ar(Z̄) < ∞ by showing E
[
∆̄n∆̄T

n

]
= O

(
2−(1+α)n

)
with some α > 0. Let

m (β∗) = E
[
∇2
ββF (β∗, X)

]
. The key ingredients are – firstly we use the large deviation principle

(LDP) of {β2n : n ≥ 0} to get moderate deviation estimates for {β2n : n ≥ 0}, secondly to use

extended contraction principle with modified optimization problems to translate the LDP to the

sequence of Lagrange multipliers {λ2n : n ≥ 0}. For the first part, we have by Lemma 7 that

P (‖β2n − β∗‖ ≥ ε) = exp (−2nα(ε) + o(2n))

for all ε > 0 sufficiently small and α(ε) = α0ε
2(1 + o(1)) as ε→ 0 for α0 > 0. This yields moderate

deviation estimates for {β2n : n ≥ 0}. In particular, we let ε → 0 at a speed of the the form

ε = 2−ρn for 1/4 < ρ < 1/2 and the limit above will still provide the correct rate of convergence,

i.e.,

P
(
‖β2n − β∗‖ ≥ 2−ρn

)
= exp

(
−α02(1−2ρ)n + o

(
2(1−2ρ)n

))
.

Then to translate this LDP to {λ2n : n ≥ 0}, we consider a family of modified optimization problems

(indexed by η)

min fη(β) = Eµ [F (β,X)] + ηTβ

s.t. G(β) ≤ 0
, (6.16)

CHAPTER 6. UNBIASED MULTI-LEVEL MONTE CARLO 82

and its associated optimal solution, β(η), with the associated Lagrange multiplier, λ(η), for the

modified problem. It follows that λ(·) is continuously differentiable as a function of η in a neigh-

borhood of the origin, this is a consequence of Assumptions 4(x) and 4(xi). Both β(η) and λ(η)

are characterized by the following KKT conditions

∇f(β (η)) +∇G (β (η))λ (η) = −η, (6.17)

G (β (η)) ≤ 0, (6.18)

λ (η)T G (β (η)) = 0, (6.19)

λ (η) ≥ 0. (6.20)

By one of the KKT optimality conditions specified in (6.7) for the SAA problem we have that

0 =
1

2n

2n∑
i=1

∇βF (β2n , Xi) +∇G (β2n)λ2n . (6.21)

The previous equality implies that

∇βf (β2n) +∇βG (β2n) · λ2n = −η̄2n ,

where

η̄2n =
1

2n

2n∑
i=1

(∇βF (β2n , Xi)−∇βf (β2n)) .

Written in this form, we can identify that β2n = β (η̄2n) and λ2n = λ (η̄2n). We already know

that {β2n : n ≥ 0} has a large deviations principle, so the LDP can be derived for {η̄2n : n ≥ 0}
by Theorem 2.1 of [Gao and Zhao, 2011] with Assumption 4(vi). Furthermore, the LDP can

then be derived for the Lagrange multipliers {λ2n = λ(η̄2n) : n ≥ 0} because λ(·) is continuously

differentiable as a function of η in a neighborhood of the origin, as we mentioned earlier.

CHAPTER 6. UNBIASED MULTI-LEVEL MONTE CARLO 83

Then, from (6.21) it follows by Taylor expansion that

0 =
1

2n

2n∑
i=1

∇βF (β2n , Xi) +∇G (β2n)λ2n

=
1

2n

2n∑
i=

∇βF (β∗, Xi) +
1

2n

2n∑
i=1

(∇βF (β2n , Xi)−∇βF (β∗, Xi)) +∇G (β2n)λ2n

=
1

2n

2n∑
i=1

∇βF (β∗, Xi) +∇G(β∗)λ∗ +

(
1

2n

2n∑
i=1

∇2
ββF (β∗, Xi)−m(β∗)

)
· (β2n − β∗)

+
(
m(β∗) + λT∗∇2G(β∗)

)
· (β2n − β∗) +∇G(β∗) (λ2n − λ∗)

+ R̄n,(β,β) + R̄n,(λ,λ) + R̄n,(β,λ), (6.22)

where

R̄n,(β,β) = O(‖β2n − β∗‖2),

R̄n,(λ,λ) = O
(
‖λ2n − λ∗‖2

)
,

R̄n,(β,λ) = O (‖β2n − β∗‖‖λ2n − λ∗‖) .

Let

R̄n =

(
1

2n

2n∑
i=1

∇2
ββF (β∗, Xi)−m(β∗)

)
· (β2n − β∗)

and let Λ1 = m(β∗) + λT∗∇2G(β∗) ∈ Rd×d, Λ2 = ∇G (β∗) ∈ Rd×m. Then we can rewrite (6.22) as

Λ1(β2n − β∗) + Λ2(λ2n − λ∗)

= −
(

1

2n

2n∑
i=1

∇βF (β∗, Xi) +∇G (β∗)λ∗ + R̄n + R̄n,(β,β) + R̄n,(λ,λ) + R̄n,(β,λ)

)
.

Note that by Holder’s inequality,

E
[
R̄nR̄

T
n

]
≤ E

∥∥∥∥∥ 1

2n

2n∑
i=1

∇2
ββF (β∗, Xi)−m(β∗)

∥∥∥∥∥
2

· ‖β2n+1 − β∗‖2

≤ E
[∥∥∥∥∥ 1

2n

2n∑
i=1

∇2
ββF (β∗, Xi)−m(β∗)

∥∥∥∥∥
p]2/p

E
[
‖β2n+1 − β∗‖2p/(p−2)

](p−2)/p
, (6.23)

where

E

[∥∥∥∥∥ 1

2n

2n∑
i=1

∇2
ββF (β∗, Xi)−m(β∗)

∥∥∥∥∥
p]

= O
(

2−np/2
)

(6.24)

CHAPTER 6. UNBIASED MULTI-LEVEL MONTE CARLO 84

by [Bahr, 1965], and by using the moderate large deviation estimate

E
[
‖β2n+1 − β∗‖2p/(p−2)

]
=E

[
‖β2n+1 − β∗‖2p/(p−2)I

(
‖β2n+1 − β∗‖ ≥ 2−ρn

)]
(6.25)

+ E
[
‖β2n+1 − β∗‖2p/(p−2)I

(
‖β2n+1 − β∗‖ < 2−ρn

)]
≤c′ exp (−α0(1− 2ρ)n) + 2

− 2pρn
p−2 = O

(
2
− 2pρn
p−2

)
, (6.26)

where c′ > 0 is some constant. Combining them together we get E
[
R̄nR̄

T
n

]
= O

(
2−(1+2ρ)n

)
.

Similarly we can get

E
[
R̄n,(β,β)R̄

T
n,(β,β)

]
= O

(
2−4ρn

)
,

E
[
R̄n,(λ,λ)R̄

T
n,(λ,λ)

]
= O

(
2−4ρn

)
,

E
[
R̄n,(β,λ)R̄

T
n,(β,λ)

]
= O

(
2−4ρn

)
.

Because

Λ1

(
β2n+1 − 1

2

(
βO2n + βE2n

))
+ Λ2

(
λ2n+1 − 1

2

(
λO2n + λE2n

))
=R̄n+1 −

1

2

(
R̄On + R̄En

)
+ R̄n+1,(β,β) −

1

2

(
R̄On,(β,β) + R̄En,(β,β)

)
+ R̄n+1,(λ,λ) −

1

2

(
R̄On,(λ,λ) + R̄En,(λ,λ)

)
+ R̄n+1,(β,λ) −

1

2

(
R̄On,(β,λ) + R̄En,(β,λ)

)
,

we have that E
[
∆̄n∆̄T

n

]
= O

(
2−4ρn

)
. Note that ρ ∈ (1/4, 1/2), it satisfies Assumption 2(i) of the

general principles of unbiased estimators in Section 5.1.

The computational cost for producing ∆̄n, denoted by Cn, is of order O(2n). After generating

2n+1 iid copies of X’s, we can use Newton’s method or other root-finding algorithms to solve the

KKT condition for optimal solution, or use other classic tools such as subgradient method or interior

point method.

6.2.2 Unbiased estimator of optimal value

Theorem 4. If Assumption 4 is in force, then E [Z] = f∗, V ar(Z) < ∞ and the computation

complexity required to produce Z is bounded in expectation.

Proof. Finite expected computation complexity of producing ∆n has been discussed in the proof to

Theorem 3. We now show the unbiasedness of estimator Z. Since fn(β) = 1
n

∑n
i=1 F (β,Xi)→ f(β),

CHAPTER 6. UNBIASED MULTI-LEVEL MONTE CARLO 85

uniformly on D, with the result of Proposition 5.2 in [Shapiro et al., 2009] we have f̂n → f∗ w.p.1

as n→∞. If Assumption 4(v) is in force, {f̂2n : n ≥ 0} is uniformly integrable, hence

E [Z] = lim
n→∞

E
[
f̂2n

]
= f∗.

We next prove the estimator Z has finite variance by showing E
[
∆2
]

= O(2−4ρn) with ρ > 1/4.

By Taylor expansion around the unique true optimal solution β∗ and the KKT condition,

∆n =f2n+1 (β2n+1)− 1

2

(
fO2n
(
βO2n
)

+ fE2n
(
βE2n
))

=
1

2n+1

2n+1∑
i=1

F (β2n+1 , Xi)−
1

2

(
1

2n

2n∑
i=1

F
(
βO2n , X

O
i

)
+

1

2n

2n∑
i=1

F
(
βE2n , X

E
i

))

=

 1

2n+1

2n+1∑
i=1

∇βF (β∗, Xi) +∇G (β∗)λ∗

T

(β2n+1 − β∗) +Rn+1

− 1

2

(
1

2n

2n∑
i=1

∇βF
(
β∗, X

O
i

)
+∇G (β∗)λ∗

)T (
βO2n − β∗

)
+ROn

− 1

2

(
1

2n

2n∑
i=1

∇βF
(
β∗, X

E
i

)
+∇G (β∗)λ∗

)T (
βE2n − β∗

)
+REn

− λT∗∇G (β∗)
T

(
β2n+1 − 1

2

(
βO2n + βE2n

))
,

where Rn+1 = O
(
‖β2n+1 − β∗‖2

)
, ROn = O

(∥∥βO2n − β∗∥∥2
)

and REn = O
(∥∥βE2n − β∗∥∥2

)
. By using

the moderate LDP explained in the proof of Theorem 3, with ρ ∈ (1/4, 1/2), we have

E
[
R2
n

]
≤ c1E

[
‖β2n − β∗‖4 I

(
‖β2n − β∗‖ ≥ 2−ρn

)]
+ c2E

[
‖β2n − β∗‖4 I

(
‖β2n − β∗‖ < 2−ρn

)]
= O

(
2−4ρn

)
,

where c1 > 0 and c2 > 0 are some constants. Also similar analysis as (6.23) (6.24) and (6.24) in

the proof of Theorem 3 yields

E

 1

2n+1

2n+1∑
i=1

∇βF (β∗, Xi) +∇G (β∗)λ∗

T

(β2n+1 − β∗)

2 = O

(
2−(1+2ρ)n

)

Combining the fact that E
[
∆̄n∆̄T

n

]
= O

(
2−4ρn

)
, we finally get E

[
∆2
n

]
= O

(
2−4ρn

)
.

CHAPTER 6. UNBIASED MULTI-LEVEL MONTE CARLO 86

6.2.3 Applications and numerical examples

6.2.3.1 Linear regression

Linear regression is to solve the following optimization problem

min
β∈Rp+1

MSE = Eµ [F (β, (X, y))] = Eµ

[(
y −XTβ

)2]
, (6.27)

where X ∈ Rp+1 is called independent variables, whose first coordinate is 1, and y is real valued

response called dependent variable. The pair (X, y) is from distribution µ. The goal is to find the

optimal β∗ that minimizes the mean-squared-error (MSE).

In many of the real-world problems, we normally have the distribution µ being the empirical

measure of all the data available {(Xi, yi) : 1 ≤ i ≤ n0}, where n0 denote the total number of data

points we have. When n0 is enormous, it would be difficult and slow to load all the data and do

computation at once. Like we mentioned in previous sections, we can take a subsample of the whole

dataset to solve the corresponding SAA linear regression, but it results significant estimation bias.

With the unbiased estimators presented in Eqs. (6.12) and (6.13), we can take relatively small

subsamples and solve them on multiple processors in parallel, without any bias.

We have F (β, (X, y)) = (y −XTβ)2 strictly convex and twice continuously differentiable in β,

so the optimizer is unique. To have all the required conditions listed in Assumption 4 satisfied, we

can let G (β) =
(
g1 (β) , g2(β), . . . , g2(p+1)(β)

)T
with g2i−1(β) = eTi β −M and g2i(β) = −eTi β −M

for 1 ≤ i ≤ p + 1, with M > 0 sufficiently large, so that the unique optimizer β∗ is in the interior

of D =
{
β ∈ Rp+1 : G(β) ≤ 0

}
. Then, all the conditions follow naturally.

The numerical experiment is to test how the unbiased estimators perform on some real-world

dataset. We use Beijing air pollution data (downloaded from the website of UCI machine learning

repository), which has 43, 824 data points, real-valued PM2.5 concentration and 11 real-valued

independent variables including time of a day, temperature, pressure, wind direction and speed,

etc. We first use the entire dataset to get the true optimal solution β∗ and optimal value f∗

as baselines of the experiment. Then, we repeat the SAA approach and our unbiased method for

10, 000 times; for both the SAA problem and the unbiased estimation method, we randomly sample

a subset of size 2N+1 with N geometrically distributed in {B,B+1, B+2, . . .}. We call such integer

value B “burning size”. In Chapter 5.1 we have B = 0, which leads to the smallest possible dataset

we can get is of size 1. To better control the variance, our experiment uses B = 10.

CHAPTER 6. UNBIASED MULTI-LEVEL MONTE CARLO 87

Figure 6.1: Linear regression test on Beijing’s PM2.5 data

0

250

500

750

1000

0 2500 5000 7500 10000

number of samples

Model

SAA

Unbiased Estimation

Linf−norm of coefficients difference

6000

6100

6200

6300

6400

0 2500 5000 7500 10000

number of samples

Model

All Data

SAA

Unbiased Estimation

Optimal Value (mse)
dataset size = 41757, burning size = 10

The left plot of Figure 6.1 has two curves. The red curve shows how ‖βSAA − β∗‖∞ changes as

we increase the number of replications, whereas the blue curve shows the same l∞ distance between

the mean of the unbiased estimators and β∗. At the beginning, both estimators perform volatile,

they stabilize as the number of replications gets increased and finally are both close enough to the

true optimal solution β∗. The right plot of Figure 6.1 shows how the optimal value estimators

from SAA and unbiased estimation method perform as we increase the number of replications. The

black dashed horizontal line indicates the level of true optimal value f∗ (i.e., the MSE computed by

using the entire dataset), the red curve corresponds to the averaged MSE of SAA problems and the

blue curve corresponds to the averaged MSE of unbiased estimation method. Clearly, the unbiased

estimator outperforms the other as it gets close to f∗ after some initial fluctuation, however the

SAA estimator gives consistent negative bias, which verifies the theoretic results given in the SAA

literature as we mentioned earlier.

6.2.3.2 Logistic regression

Logistic regression is to solve the following optimization problem:

min
β∈Rn

f(β) = Eµ [F (β, (X, y))] = Eµ
[
− log

(
1 + exp

(
−yβTX

))]
, (6.28)

CHAPTER 6. UNBIASED MULTI-LEVEL MONTE CARLO 88

where X ∈ Rp+1 has its first coordinate being 1, and y ∈ {−1, 1} is the label of the class that the

data point X falls in. The pair (X, y) is from some distribution µ. The classic logistic regression is

to find the optimal coefficient β∗ to maximize the log-likelihood, and we give in (6.28) an equivalent

problem to minimize the negative of the log-likelihood, i.e., min f(β) with f being strict convex

and twice continuous differentiable. Because

∇βF (β, (X, y)) =
exp

(
−yXTβ

)
1 + exp (−yXT y)

Xy,

Assumption 4(iv) is satisfied with κ(X, y) = ‖Xy‖2 and γ = 1. To have all the required conditions

in Assumption 4 satisfied, we can also let G(β) =
(
g1(β, . . . , g2(p+1)(β))

)T
with g2i−1 = eTi β −M

and g2i(β) = −eTi β −M for 1 ≤ i ≤ p + 1, with M > 0 sufficiently large such that the unique

optimizer β∗ is in the interior of D =
{
β ∈ Rd+1 : G(β) ≤ 0

}
.

We run an numerical experiment to check how our unbiased estimators perform, compared to

the SAA estimators of both the optimal solution and the optimal objective value. The dataset

we use is some online advertising campaign data from Yahoo research, which has 2, 801, 523 data

points, each has 22 real-valued features and one response y ∈ {−1, 1} indicating whether it is a

click or not. We first use the entire dataset to get the true optimal solution β∗ and optimal value

f∗ as baselines. Then, for the SAA method and our unbiased estimating method, we run 10000

replications each to see whether they are able to produce a good estimation to β∗ and f∗. Again

we use the burning size B equal to 10 here.

Figure 6.2: Logistic regression test on AOL’s campaign data

0

5

10

15

0 2500 5000 7500 10000

number of samples

Model

SAA

Unbiased Estimation

Linf−norm of coefficients difference

−0.156

−0.152

−0.148

−0.144

0 2500 5000 7500 10000

number of samples

Model

All Data

SAA

Unbiased Estimation

Optimal Value (llh)
dataset size = 2801523, burning size = 10

CHAPTER 6. UNBIASED MULTI-LEVEL MONTE CARLO 89

In Figure 6.2, the left plot shows how SAA estimator (in red) and the unbiased estimator (in

blue) approach the true optimal solution β∗ as we increase the size of replications, and similarly

the right plot shows the performance of both estimators for the log-likelihood (i.e., negative of the

optimal value f∗), and the baseline level of log-likelihood is represented by the black dashed line.

In both cases, our unbiased estimators beat the SAA estimators in terms of unbiasedness.

6.3 Quantile estimation

Suppose (Xk : k ≥ 1) are iid with cumulative distribution function F (x) = µ((−∞, x]) = P (X ≤ x)

for x ∈ R. We define xp = xp (µ) = inf{x ≥ 0 : F (x) ≥ p} to be the p-quantile of distribution µ

for any given 0 < p < 1. If F (·) is continuous we have that

F (xp) = p.

Connecting to the general framework from Section 5.1, here we have θ (µ) := xp (µ).

We first impose some assumptions.

Assumption 5. Distributional quantile assumptions:

(i) F is at least twice differentiable in some neighborhood of xp,

(ii) F ′′(x) is bounded in the neighborhood,

(iii) F ′(xp) = f(xp) > 0,

(iv) E
[
X2
]
<∞.

Note that Assumptions 5(i), 5(ii) and 5(iii) ensure xp is the unique p-quantile of distribution

µ. By Bahadur representation of sample quantiles in [Bahadur, 1966], we have

Yn = xp +
np− Zn
nfµ (xp)

+Rn, (6.29)

where

Yn = (1− wn)X[np] + wnX[np]+1, wn = np− [np] ∈ [0, 1), (6.30)

i.e., the sample p−quantile of sample (X1, . . . , Xn), Zn =
∑n

i=1 I (Xi ≤ xp) and Rn =

O
(
n−3/4 log n

)
as n→∞ almost surely.

Lemma 8. If Assumption 5 is in force, supn≥1/pE
[
Y 2
n

]
<∞.

CHAPTER 6. UNBIASED MULTI-LEVEL MONTE CARLO 90

Proof. Just follow Bahadur’s proof. Let

Gn(x, ω) = (Fn(x, ω)− Fn(xp, ω))− (F (x)− F (xp)) ,

and let In be an open interval (xp−an, xp+an) with the constant an ∼ log n/
√
n as n→∞. Define

Hn(ω) = sup {|Gn(x, ω)| : x ∈ In} .

By Lemma 1 in [Bahadur, 1966], Hn(ω) ≤ Kn(ω) + βn with βn = O
(
n−3/4 log n

)
,∑

n P (Kn ≥ γn) <∞ and γn = cn−3/4 log n. By Lemma 2 in [Bahadur, 1966] we have Yn ∈ In for

sufficiently large n w.p.1. Let n∗ = supn{Kn ≥ γn or Yn /∈ In} <∞, then for all n ≥ 1/p

E
[
Y 2
n

]
= E

[
Y 2
n I (n ≤ n∗)

]
+ E

[
Y 2
n I (n > n∗)

]
,

where

E
[
Y 2
n I (n ≤ n∗)

]
≤ E

[
n∑
i=1

X2
i I (n ≤ n∗)

]
≤ n∗E

[
X2
]
<∞,

and

E
[
Y 2
n I (n > n∗)

]
= E

[(
xp +

np− Zn
nf (xp)

+Rn

)2

I (n > n∗)

]
≤ 3x2

p +
3pq

nf (xp)
2 + 3E

[
R2
nI (n > n∗)

]
≤ 3x2

p +
3pq

nf (xp)
2 + 3E

[
H2
nI (n > n∗)

]
≤ 3x2

p +
3pq

nf (xp)
2 + 6γ2

n + 6β2
n <∞.

Combining these two parts together we can conclude supnE
[
Y 2
n

]
<∞.

We let Y2n+1 denote the sample p−quantile of (X1, · · · , X2n+1), let Y O
2n denote the sample

p−quantile of the odd indexed sub-sample
(
XO

1 , · · · , XO
2n
)

and let Y E
2n denote the sample p−quantile

of the even indexed sub-sample
(
XE

1 , · · · , XE
2n
)
. Then, define

∆n = Y2n+1 − 1

2

(
Y O

2n + Y E
2n
)
. (6.31)

Let nb = min{n ∈ N : n ≥ 1/p}. We let the geometrically distributed random variable N to take

values on {nb, nb + 1, . . .} with p (n) = P (N = n) > 0 for all n ≥ nb. Define the estimator to be

Z =
∆N

p (N)
+ Y2nb . (6.32)

CHAPTER 6. UNBIASED MULTI-LEVEL MONTE CARLO 91

Theorem 5. If Assumption 5 are in force, then E [Z] = xp, V ar(Z) < ∞ and the computation

complexity required to produce Z is bounded in expectation.

Proof. We first show the unbiasedness of Z. Uniform integrability of {Y2n : n ≥ nb} is established

in Lemma 8 with Assumption 5(iv) holds true, so we have

E [Z] =
∞∑

n=n0

E [∆n] + E [Y2n0] = lim
n→∞

E [Y2n] = E
[

lim
n→∞

Y2n

]
= xp.

We next show V ar(Z) <∞. With (6.29) we have

∆n =

(
xp +

2n+1p− Z2n+1

2n+1f (xp)
+R2n+1

)
− 1

2

[(
xp +

2np− ZO2n
2nf (xp)

+RO2n

)
+

(
xp +

2np− ZE2n
2nf (xp)

+RE2n

)]
= R2n+1 − 1

2

(
RO2n +RE2n

)
= O

(
n · 2−3n/4

)
w.p.1,

thus ∆2
n = O

(
n2 · 2−3n/2

)
. Again by Lemma 8 and (6.29), we have supnE

[
R2
n

]
<∞, hence {∆n :

n ≥ n0} is uniformly integrable and E
[
∆2
n

]
= O

(
n2 · 2−3n/2

)
. If we choose p(n) = r(1 − r)n−nb

with r < 1− 1
2
√

2
for n ≥ nb, then

E

[∣∣∣∣ ∆N

p(N)

∣∣∣∣2
]

=
∞∑

n=nb

E[∆2
n]

p(n)
<∞,

thus V ar(Z) <∞.

Finally we show the computation cost of generating ∆n is finite in expectation. Each replication

of Z involves simulating 2N+1 independent copies of X. If we adopt the selection method based on

random partition introduced in [Blum et al., 1973], then it will cost us O
(
2N+1

)
time to identify the

sample p−quantiles Y2N+1 , Y O
2N

, and Y E
2N

. Therefore by letting N be an independent geometrically

distributed random variable with success parameter r ∈
(
1/2, 1− 2−3/2

)
, Z is an unbiased estimator

of the true unique p-quantile xp and it has finite work-normalized variance.

92

Part III

Bibliography

BIBLIOGRAPHY 93

Bibliography

[Agarwal and Gobet, 2017] A. Agarwal and E. Gobet. Finite variance unbiased estimation of

stochastic differential equations. In 2017 Winter Simulation Conference (WSC), pages 1950–

1961, Dec 2017.

[Asmussen and Glynn, 2007] S. Asmussen and P.W. Glynn. Stochastic Simulation: Algorithms and

Analysis. Springer-Verlag New York, 2007.

[Asmussen et al., 1992] S. Asmussen, P.W. Glynn, and H. Thorisson. Stationarity detection in the

initial transient problem. ACM Transactions on Modeling and Computer Simulation (TOMACS),

2(2):130–157, 1992.

[Asmussen, 2003] S. Asmussen. Applied Probability and Queues. Springer, 2 edition, 2003.

[Bahadur, 1966] R.R. Bahadur. A note on quantiles in large samples. The Annals of Mathematical

Statistics, 37(3):577–580, 06 1966.

[Bahr, 1965] B.V. Bahr. On the convergence of moments in the Central Limit Theorem. The

Annals of Mathematical Statistics, 36(3):808–818, 1965.

[Blanchet and Chen, 2015] J. Blanchet and X. Chen. Steady-state simulation of reflected Brownian

motion and related stochastic networks. Annals of Applied Probability, 25(6):3209–3250, 2015.

[Blanchet and Dong, 2013] J. Blanchet and J. Dong. Perfect sampling for infinite server and loss

systems. Advances in Applied Probability, 47, 12 2013. Forthcoming in Advances in Applied

Probability.

BIBLIOGRAPHY 94

[Blanchet and Glynn, 2015] J. Blanchet and P.W. Glynn. Unbiased Monte Carlo for optimization

and functions of expectations via multi-level randomization. In Proceedings of the 2015 Winter

Simulation Conference, WSC ’15, pages 3656–3667. IEEE Press, 2015.

[Blanchet and Sigman, 2011] J. Blanchet and K. Sigman. On exact sampling of stochastic perpe-

tuities. Journal of Applied Probability, 48(A):165–182, 2011.

[Blanchet and Wallwater, 2015] J. Blanchet and A. Wallwater. Exact sampling fot the station-

ary and time-reversed queues. ACM Transactions on Modeling and Computer Simulation

(TOMACS), 25(4):26:1–26:27, 2015.

[Blum et al., 1973] M. Blum, R.W. Floyd, V. Pratt, R.L. Rivest, and R.E. Tarjan. Time bounds

for selection. Journal of Computer and System Sciences, 7(4):448 – 461, 1973.

[Chen and Yao, 2013] H. Chen and D.D. Yao. Fundamentals of queueing networks: Performance,

asymptotics, and optimization, volume 46. Springer Science & Business Media, 2013.

[Connor and Kendall, 2007] S.B. Connor and W.S. Kendall. Perfect simulation for a class of posi-

tive recurrent Markov chains. The Annals of Applied Probability, 17(3):781–808, 06 2007.

[Connor and Kendall, 2015] S.B. Connor and W.S. Kendall. Perfect simulation of M/G/c queues.

Advances in Applied Probability, 47(4):1039–1063, 12 2015.

[Corcoran and Tweedie, 2001] J.N. Corcoran and R.L. Tweedie. Perfect sampling of ergodic Harris

chains. The Annals of Applied Probability, 11(2):438–451, 05 2001.

[Crisan et al., 2018] D. Crisan, P. Del Moral, J. Houssineau, and A. Jasra. Unbiased multi-index

Monte Carlo. Stochastic Analysis and Applications, 36(2):257–273, 2018.

[Dai, 2011] H. Dai. Exact Monte Carlo simulation for Fork-Join networks. Advances in Applied

Probability, 43(2):484–503, 03 2011.

[Del Moral, 2004] P. Del Moral. Feynman-Kac Formulae Genealogical and Interacting Particle

Systems with Applications. Springer-Verlag, 2004.

[Dereich and Mueller-Gronbach, 2017] S. Dereich and T. Mueller-Gronbach. General multilevel

adaptions for stochastic approximation algorithms. arXiv:1506.05482, 2017.

BIBLIOGRAPHY 95

[Ensor and Glynn, 2000] K. Ensor and P.W. Glynn. Simulating the maximum of a random walk.

Journal of Statistical Planning and Inference, 85:127–135, 2000.

[Flatto and Hahn, 1984] L. Flatto and S. Hahn. Two parallel queues created by arrivals with two

demands. SIAM Journal on Applied Mathematics, 44(5):1041–1053, 1984.

[Foss and Chernova, 2001] S.G. Foss and N.I. Chernova. On optimality of the FCFS discipline

in multiserver queueing systems and networks. Siberian Mathematical Journal, 42(2):372–385,

2001.

[Foss and Konstantopoulos, 2006] S.G. Foss and T. Konstantopoulos. Lyapunov function methods.

Lecture Notes, 2006.

[Foss and Tweedie, 1998] R.L. Foss and R.L. Tweedie. Perfect simulation and backward coupling.

Stochastic Models, 14:187–203, 1998.

[Foss, 1980] S.G. Foss. Approximation of multichannel service systems. Sibirsk. Mat. Zh.,

21(6):132–140, 1980.

[Gao and Zhao, 2011] F. Gao and X. Zhao. Delta method in large deviations and moderate devi-

ations for estimators. The Annals of Statistics, 39(2):1211–1240, 2011.

[Garmarnik and Goldberg, 2013] D. Garmarnik and D. Goldberg. Steady-state GI/GI/n queue in

the Halfin-Whitt regime. Annals of Applied Probability, 23:2382–2419, 2013.

[Giles and Szpruch, 2014] M.B. Giles and L. Szpruch. Antithetic multilevel Monte Carlo estimation

for multi-dimensional SDEs without Lévy area simulation. The Annals of Applied Probability,

24(4):1585–1620, 08 2014.

[Giles, 2008] M.B. Giles. Multilevel Monte Carlo path simulation. Operations Research, 56(3):607–

617, 2008.

[Hillier and Lo, 1971] F.S. Hillier and F.D. Lo. Tables for multiple-server queueing systems involv-

ing Erlang distributions. Technical Report 31, Department of Operations Research, Stanford

University, 1971.

[Kelly, 1979] F.P. Kelly. Reversibility and stochastic networks, volume 40. Wiley, 1979.

BIBLIOGRAPHY 96

[Kendall and Møller, 2000] W.S. Kendall and J. Møller. Perfect simulation using dominating pro-

cesses on ordered spaces, with application to locally stable point processes. Advances in Applied

Probability, pages 844–865, 2000.

[Kendall, 1998] W.S. Kendall. Perfect simulation for the area-interaction point process. In Proba-

bility towards 2000, pages 218–234. Springer, 1998.

[Kendall, 2004] W.S. Kendall. Geometric ergodicity and perfect simulation. Electron. Comm.

Probab., 9:140–151, 2004.

[Khodadadian et al., 2018] A. Khodadadian, L. Taghizadeh, and C. Heitzinger. Optimal multi-

level randomized quasi-Monte-Carlo method for the stochastic drift–diffusion-Poisson system.

Computer Methods in Applied Mechanics and Engineering, 329:480 – 497, 2018.

[Liu et al., 1995] Z. Liu, P. Nain, and D. Towsley. Sample path methods in the control of queues.

Queueing Systems, 21(1-2):293–335, 1995.

[Liu, 2008] J.S. Liu. Monte Carlo Strategies in Scientific Computing. Springer, 2008.

[McLeish, 2012] D. McLeish. A general method for debiasing a Monte Carlo estimator. Monte

Carlo Methods and Applications, 17(4):301–315, 2012.

[Propp and Wilson, 1996] J. Propp and D. Wilson. Exact sampling with coupled Markov chains

and applications to statistical mechanics. Random Structures and Algorithms, 9:223–252, 1996.

[Rhee and Glynn, 2015] C. Rhee and P.W. Glynn. Unbiased estimation with square root conver-

gence for SDE models. Operations Research, 63(5):1026–1043, 2015.

[Rubinstein and Kroese, 2011] R.Y. Rubinstein and D.P. Kroese. Simulation and the Monte Carlo

method, volume 707. John Wiley & Sons, 2011.

[Shapiro et al., 2009] A. Shapiro, D. Dentcheva, and A. RuszczyÅski. Lectures on Stochastic Pro-

gramming. Society for Industrial and Applied Mathematics, 2009.

[Sigman, 1988] K. Sigman. Regeneration in tandem queues with multiserver stations. Journal of

Applied Probability, 25(2):291—403, 1988.

BIBLIOGRAPHY 97

[Sigman, 1995] K. Sigman. Stationary Marked Point Processes. An Intuitive Approach. Chapman

& Hall, New York, 1995.

[Sigman, 2011] K. Sigman. Exact simulation of the stationary distribution of the FIFO M/G/c

queue. Journal of Applied Probability, 48A:209–216, 2011.

[Sigman, 2012] K. Sigman. Exact sampling of the stationary distribution of the FIFO M/G/c

queue: the general case for ρ < c. Queueing Systems, 70:37–43, 2012.

[Vihola, 2018] M. Vihola. Unbiased estimators and multilevel Monte Carlo. Operations Research,

66(2):448–462, 2018.

[Wachsmuth, 2013] G. Wachsmuth. On LICQ and the uniqueness of Lagrange multipliers. Opera-

tions Research Letters, 41(1):78–80, 2013.

[Wolff, 1977] R.W. Wolff. An upper bound for multi-channel queues. Journal of Applied Probability,

14:884–888, 1977.

[Wolff, 1987] R.W. Wolff. Upper bounds on work in system for multichannel queues. Journal of

Applied Probability, 24(2):547–551, 1987.

[Wolff, 1989] R.W. Wolff. Stochastic Modeling and the Theory of Queues. Prentice Hall, New

Jersey, 1989.

[Xu, 2010] H. Xu. Uniform exponential convergence of sample average random functions under

general sampling with applications in stochastic programming. Journal of Mathematical Analysis

and Applications, 368, 2010.

98

Part IV

Appendices

APPENDIX A. APPENDIX TO CHAPTER 3 99

Appendix A

Appendix to Chapter 3

A.1 The iid property of the coupled service times and indepen-

dence of the arrival process

In order to explain why the Vn form an iid sequence, independent of the sequence T 0 = {T 0
n : n ∈

Z\{0}}, it is useful to keep in mind the diagram depicted in Figure A.1, which illustrates a case

involving two servers, c = 2.

The assignment of the service times, as we shall explain, can be thought of as a procedure

similar to a Tetris game. Arrival times are depicted by dotted horizontal lines which go from left

to right, starting at the left most vertical line, which is labeled “Arrivals”. Think of the time line

going, vertically, from the bottom of the graph (past) to the top of the graph (future).

In the right-most column in Figure A.1, we indicate the queue length, right at the time of a

depicted arrival (and thus, including the arrival itself). So, for example, the first arrival depicted

in Figure A.1 observes one customer waiting and thus, including the arrival himself, there are two

customers waiting in queue.

The Tetris configuration observed by an arrival at time T is comprised of two parts: (i) the

receding horizon, which corresponds to the remaining incomplete blocks, and (ii) the landscape,

comprised of the configuration of complete blocks. So, for example, the first arrival in Figure A.1

observes a receding horizon corresponding to the two white remaining blocks, which start from the

dotted line at the bottom. The landscape can be parameterized by a sequence of block sizes, and

APPENDIX A. APPENDIX TO CHAPTER 3 100

Figure A.1: Matching procedure of service times to arrival process

the order of the sequence is given by the way in which the complete blocks appear from bottom

to top – this is precisely the Tetris-game assignment. There are no ties because of the continuous

time stationarity and independence of the underlying renewal processes. The colors are, for the

moment, not part of the landscape. We will explain the meaning of the colors momentarily.

The assignment of the service times is done as follows: The arriving customer reads off the

right-most column (with heading “Queue length at arrival”) and selects the block size labeled

precisely with the number indicated by the “Queue length at arrival”. So, there are two distinctive

quantities to keep in mind assigned to each player (i.e., arriving customer): (a) the landscape (or

landscape sequence, which, as indicated, can be used to reconstruct the landscape), and (b) the

service time, which is the complete block size occupying the “Queue length at arrival”-th position

in the landscape sequence.

The color code in Figure A.1 simply illustrates quantity (b) for each of the arrivals. So, for

example, the first arrival, who reads “Queue length at arrival = 2” (which we have written in green

color), gets assigned the second complete block, which we have depicted in green. Similarly, the

APPENDIX A. APPENDIX TO CHAPTER 3 101

second arrival depicted reads off the number “1” (written in red) and gets assigned the first red

block depicted (from bottom to top). The very first complete block (from bottom to top), which is

depicted in black, corresponds to the service time assigned to the customer ahead of the customer

who collected the green block. The number “1” (in red) is obtained by observing that the customer

with the initial black block has departed.

Now we argue the following properties:

(1) The service times are iid copies of V .

(2) The service times are independent of T 0.

About property (1): The player arriving at time T reads a number, corresponding to the queue

length, which is obtained by the past filtration FT generated by ∪k∈Z\{0},0≤i≤c{T ik : T ik ≤ T}.
Conditional on the receding horizon (i.e., remaining incomplete block sizes), RT , the past filtration

is independent of the landscape. This is simply the Markov property applied to the forward residual

lifetime process of each of the c renewal processes represented by the c middle columns. Moreover,

conditional on RT , each landscape forms a sequence of iid copies of V because of the structure of

the underlying c renewal processes corresponding to the middle columns. So, let Q (T) denote the

queue length at time T (including the arrival at time T), which is a function of the past filtration,

and let {LT (k) : k ≥ 1} be the landscape sequence observed at time T , so that LT (Q (T)) is

the service time of the customer who arrives at time T . We then have that for any positive and

bounded continuous function f (·),

E[f (LT (Q (T))) |RT] = E[f (LT (1)) |RT] = E[f (V)],

precisely because, conditional on RT , Q (T) (being FT measurable) is independent of

{LT (k) : k ≥ 1}.
To verify the iid property, let f1, f2 be non-negative and bounded continuous functions. Assume

that T1 < T2 are arrival times in T 0 (not necessarily consecutive). Then,

E[f1 (LT1 (Q (T1))) f2 (LT2 (Q (T2)))]

= E[E[f1 (LT1 (Q (T1))) f2(LT2 (Q (T2)))|FT2 ,RT2]]

= E[f1 (LT1 (Q (T1)))E[f2(LT2 (Q (T2)))|FT2 ,RT2]]

= E[f1(LT1 (Q (T1)))]E[f2(V)] = E[f1(V)]E[f2(V)].

APPENDIX A. APPENDIX TO CHAPTER 3 102

The same argument extends to any subset of arrival times, and thus the iid property follows.

About property (2): Note that in the calculations involving property (1), the actual values of

the arrival times T , T1 and T2 are irrelevant. The iid property of the service times is established

path-by-path conditional on the observed realization T 0. Thus, the independence of the arrival

process and service times follows immediately.

A.2 Proof of technical lemmas of monotonicity

Proof of Lemma 1. Both facts are standard; the first one can be easily shown using induc-

tion. Specifically, we first notice that Wk(T
0
k ;w+) = w+ > w− = Wk(T

0
n ;w−). Suppose that

Wk(T
0
n ;w+) ≥Wk(T

0
n ;w−) for some n ≥ k, then

Wk(T
0,+
n ;w+) = S

((
Wk(T

0
n ;w+) + Vne1 −An1

)+)
≥ S

((
Wk(T

0
n ;w−) + Vne1 −An1

)+)
= Wk(T

0,+
n ;w−).

For inequality (3.9), we note that Wk

(
T 0
k′ ; 0

)
≥ Wk′

(
T 0
k′ ; 0

)
= 0, and therefore, due to (3.8), we

have that

Wk

(
T 0
n ; 0
)

= Wk′
(
T 0
n ;Wk (Tk′ ; 0)

)
≥Wk′

(
T 0
n ; 0
)
.

Proof of Lemma 2. This fact follows immediately by induction from Eqs. (3.4) and (3.7) using the

fact that Ξn ≥ 0.

Proof of Lemma 3. We first prove the inequality Qu(t − u; z+) ≤ Qv(t). Note that U i (u) > 0 for

all u (the forward residual life time process is right continuous), so the initial condition r indicates

that all the servers are busy (operating) and the initial q ≥ 0 customers will leave the queue (i.e.,

enter service) at the same time as those in the vacation system under the evolution of Zu (·; z+).

Now, let us write N = inf{n : T 0
n ≥ u} (in words, the next arriving customer at or after u arrives

at time T 0
N). It is easy to see that S

(
U
(
T 0
N

))
≥ Ru(T 0

N − u; z+); to wit, if T 0
N occurs before

any of the servers becomes idle, then we have equality, and if T 0
N occurs after, say, l ≥ 1 servers

APPENDIX A. APPENDIX TO CHAPTER 3 103

become idle, then Ru(T 0
N − u; z+) will have l zeroes and the bottom c− l entries will coincide with

those of S
(
U
(
T 0
N

))
, which has strictly positive entries. So, if wN is the Kiefer-Wolfowitz vector

observed by the customer arriving at T 0
N (induced by Qu(· − u; z+)), then we have Wv (N) ≥ wN .

By monotonicity of the Kiefer-Wolfowitz vector in the initial condition and because of Lemma 2,

we have

Wv (k) ≥WN

(
T 0
k ;Wv (N)

)
≥WN

(
T 0
k ;wN

)
,

for all k ≥ N , and hence, T 0
k +D0

k ≥ T 0
k +W

(1)
N

(
T 0
k ;wN

)
. Therefore, the departure time from the

queue (i.e., initiation of service) of the customer arriving at T 0
k in the vacation system occurs no

earlier than the departure time from the queue of the customer arriving at time T 0
k in the GI/GI/c

queue. Consequently, we conclude that the set of customers waiting in the queue in the GI/GI/c

system at time t is a subset of the set of customers waiting in the queue in the vacation system at

the same time. Similarly, we consider Qu(t − u; z−) ≤ Qu(t − u; z+), which is easier to establish,

since, for k ≥ N (with the earlier definition of T 0
N and wN),

WN

(
T 0
k ;wN

)
≥WN

(
T 0
k ; 0
)
,

So the set of customers waiting in the queue in the lower bound GI/GI/c system at time t is a

subset of the set of customers waiting in the queue in the upper bound GI/GI/c system at the

same time.

APPENDIX B. APPENDIX TO CHAPTER 4 104

Appendix B

Appendix to Chapter 4

B.1 Detailed algorithm steps in Section 4.2.1

To simulate the process {(S(r)
n , W̄ 0

−n) : 0 ≤ n ≤ N} with the stopping time N defined in (4.17) as

N = inf

{
n ≥ 0 : W̄ 0

−n = max
k≥n

S
(r)
k − S(r)

n = 0

}
,

we must sample the running time maxima (entry by entry) of the c-dimensional random walk

S(r)
n =

n∑
i=1

∆−i =
n∑
i=1

(V−iu−i −A−i1) n ≥ 0.

We will find a sequence of random times {Nn : n ≥ 1} such that maxn≤k≤Nn S
(r)
k ≥ maxk≥Nn S

(r)
k .

Hence, we will be able to find the running time maxima by only sampling the random walk on a

finite time interval, i.e., Nn is such that

max
k≥n

S
(r)
k = max

n≤k≤Nn
S

(r)
k .

To achieve this, we first decompose the random walk into two random walks, and then construct a

sequence of “milestone” events for each of these two random walks to detect Nn. We will elaborate

the detailed implementations in the following context.

Because of the stability condition ρ = λ/(cµ) < 1, we can find some value a ∈ (1/µ, c/λ). For

APPENDIX B. APPENDIX TO CHAPTER 4 105

any n ≥ 0, define

X−n =
n∑
j=1

(V−j − a) u−j , (B.1)

Y−n =

n∑
j=1

(au−j −A−j1) , (B.2)

hence S
(r)
n =

∑n
j=1 ∆−j = X−n + Y−n and maxk≥n S

(r)
k = maxk≥n(X−n + Y−n).

For all n ≥ 0, let

NX
n = inf{n′ ≥ n : max

k≥n′
X−k ≤ X−n}, (B.3)

NY
n = inf{n′ ≥ n : max

k≥n′
Y−k ≤ Y−n}, (B.4)

Nn = max{NX
n , N

Y
n }. (B.5)

Then, by the definitions above,

max
k≥Nn

S
(r)
k ≤ max

k≥Nn
X−k + max

k≥Nn
Y−k ≤ X−n + Y−n = S(r)

n .

Therefore, to get the running-time maximum maxk≥n S
(r)
k for each n ≥ 0, we only need to sample

the random walk from step n to Nn, because

max
k≥n

S
(r)
k = max{ max

n≤k≤Nn
S

(r)
k , max

n≥Nn
S

(r)
k } = max

n≤k≤Nn
S

(r)
k .

Next, we describe how to sample Nn along with the multi-dimensional random walks {X−n :

n ≥ 0} and {Y−n : n ≥ 0}.

B.1.1 Simulation algorithm for the process {Y−n : n ≥ 0}

We first consider simulating the c-dimensional random walk {Y−n : n ≥ 0} with Y0 = 0. For each

j ≥ 1, E [au−j −A−j1] < 0, we can simulate the running time maximum maxk≥n Y−k jointly with

the path {Y−k : 0 ≤ k ≤ n} via the exponential change of measure method developed in [Blanchet

and Chen, 2015], with the following assumptions.

Assumption 6. There exits θ > 0, θ ∈ Rc such that

E
[
exp

(
θT (au−j −A−j1)

)]
<∞.

APPENDIX B. APPENDIX TO CHAPTER 4 106

Assumption 7. Suppose that in every dimension i = 1, . . . , c, there exists θ∗ ∈ (0,∞) such that

φi(θ
∗) := logE [exp (θ∗ (aI(U−j = i)−A−j))] = 0.

Because for each j ≥ 1, aI(U−j = i)−A−j are marginally identically distributed across i, so θ∗

would work for all i = 1, . . . , c.

Remark 4. Assumption 7 is known as Cramer’s condition in the large deviations literature and

it is a strengthening of Assumption 6. We shall explain briefly at the end of this section that it is

possible to relax this assumption to Assumption 6 by modifying the algorithm a bit without affecting

the exactness/computational effort of the algorithm. For the moment we continue to describe the

main algorithmic idea under Assumption 7.

For any s ∈ Rc and b ∈ Rc+ define

Tb = inf{n ≥ 0 : Y−n(i) > b(i) for some i ∈ {1, . . . , c}}, (B.6)

T−b = inf{n ≥ 0 : Y−n(i) < −b(i) for all i = 1, . . . , c}, (B.7)

Ps(·) = P (·|Y0 = s). (B.8)

We will use these definitions in Algorithm LTGM given in Section B.1.1.1.

We next construct a sequence of upward and downward “milestone” events for this multi-

dimensional random walk. Let

m = dlog(c)/θ∗e. (B.9)

Define D0 = 0 and Γ0 =∞. For k ≥ 1, let

Dk = inf{n ≥ Dk−1 ∨ Γk−1I (Γk−1 <∞) : Y−n(i) < Y−Dk−1
(i)−m for all i}, (B.10)

Γk = inf{n ≥ Dk : Y−n(i) > Y−Dk(i) +m for some i}, (B.11)

where m is defined in (B.9). Note that by convention, ΓkI (Γk <∞) = 0 if Γk =∞ for any k ≥ 0.

We let B ∈ Rc, initially set as (∞, . . . ,∞)T ∈ Rc, to be the running time upper bound of process

{Y−n : n ≥ 0}. Let m = m1. From the construction of “milestone” events in (B.10) and (B.11),

we know that if Γk =∞ for some k ≥ 1, the process will never cross over the level Y−Dk + m after

Dk coordinate-wise, i.e., for i = 1, . . . , c,

Y−n(i) ≤ Y−Dk(i) +m, ∀n ≥ Dk.

Hence, in this case we update the upper bound vector B = Y−Dk + m.

APPENDIX B. APPENDIX TO CHAPTER 4 107

B.1.1.1 Global maximum simulation

Define

Λ = inf{Dk : Γk =∞, k ≥ 1}. (B.12)

By the construction of “milestone” events, for all n ≥ Λ

Y−n ≤ Y−Λ + m < 0 = Y0.

Hence, we can evaluate the global maximum level of the process {Y−n : n ≥ 0} to be

M0 := max
k≥0

Y−k = max
0≤k≤Λ

Y−k, (B.13)

and we give the detailed sampling procedure in the following algorithm. The algorithm has elements,

such as sampling from P0(Tm <∞), which will be explained in the sequel.

Algorithm LTGM: Simulate global maximum of c-dimensional process {Y−n : n ≥ 0} jointly with

the sub-path and the subsequence of “milestone” events.

Input: a ∈ (1/µ, c/λ) satisfies Assumption 7, m as in (B.9).

1. (Initialization) Set n = 0, Y0 = 0, D = [0], Γ = [∞], L = 0 and B =∞1.

2. Generate U ∼ Unif{1, . . . , c} and let u = (I(U = 1), . . . , I(U = c))T . Independently sample

A ∼ G. Set n = n+ 1, Y−n = Y−(n−1) + au−A1, U−n = U and A−n = A.

3. If there is some 1 ≤ i ≤ c such that Y−n(i) ≥ L(i) − m, then go to Step 2; otherwise set

D = [D, n] and L = Y−n.

4. Independently sample J ∼ Ber (P0 (Tm <∞)).

5. If J = 1, simulate a new conditional path {
(
Ỹ−k, Ũ−k, Ã−k

)
: 1 ≤ k ≤ Tm} with Ỹ0 = 0,

following the conditional distribution of {Y−k : 0 ≤ k ≤ Tm} given Tm < ∞. Set Y−(n+k) =

Y−n + Ỹ−k, U−(n+k) = Ũ−k, A−(n+k) = Ã−k for 1 ≤ k ≤ Tm. Set n = n+ Tm, Γ = [Γ, n]. Go

to Step 2.

6. If J = 0, set Λ = n, Γ = [Γ,∞] and B = L+ m.

APPENDIX B. APPENDIX TO CHAPTER 4 108

7. Output {(Y−k, U−k, T−k) : 1 ≤ k ≤ Λ}, D, Γ and global maximum M0 = max0≤k≤Λ Y−k.

Now we explain how to execute Steps 4 and 5 in the previous algorithm. The procedure is

similar to the multi-dimensional procedure given in [Blanchet and Chen, 2015], so we describe it

briefly here. As P0(·) denotes the canonical probability, we let P ∗0 (·) = P0(·|Tm < ∞). Our goal

is to simulate from the conditional law of {Y−k : 0 ≤ k ≤ Tm} given that Tm < ∞ and Y0 = 0,

i.e., to simulate from P ∗0 . We will use acceptance/rejection by letting P ′0(·) denote the proposal

distribution. A typical element ω′ sampled under P ′0(·) is of the form ω′ = ((Y−k : k ≥ 0), index),

where index ∈ {1, · · · , c} and it indicates the direction we pick to do exponential tilting. Given

the value of index, the process (Y−k : k ≥ 0) remains a random walk. We now describe P ′0 by

explaining how to sample ω′. First,

P ′0 (index = i) :=
1

c
. (B.14)

Then, conditioning on index = i, for every set Ω ∈ σ ({Y−k : 0 ≤ k ≤ n}),

P ′0 (Ω|index = i) = E0 (exp (θ∗Y−n(i)) IΩ) . (B.15)

To obtain the induced distribution for U and A, we study the moment generating function

induced by definition (B.15). Given η ∈ Rc in a neighborhood of the origin,

E0 exp
(
ηT (au−A1) + θ∗eTi (au−A1)

)
E0 exp

(
θ∗eTi (au−A1)

) =
E0 exp

(
(η + θ∗ei)

Tau
)

E0 exp
(
θ∗eTi au

) · E0 exp
(
−(η + θ∗ei)

TA1
)

E0 exp
(
−θ∗eTi A1

) .

The previous expression indicates that under P ′0(·), A and U are independent. Moreover, we have

E0

[
exp

(
θ∗eTi au

)]
=

exp(θ∗a) + c− 1

c
.

Therefore,

P ′0(U = j|index = i) =

exp(θ∗a)

exp(θ∗a)+c−1 if j = i

1
exp(θ∗a)+c−1 if j 6= i

. (B.16)

On the other hand, conditional on index = i, the distribution of a generic interarrival time A is

obtained by exponential tilting such that

dP0(A|index = i) = dP0(A) · exp(−θ∗A)

E0 exp(−θ∗A)

= dP0(A) · exp(aθ∗) + c− 1

c exp(θ∗A)
, (B.17)

APPENDIX B. APPENDIX TO CHAPTER 4 109

where the second equation follows from Assumption 7.

Following Assumption 7, and because V ar(aI(U−j = i)−A−j) > 0, by convexity,

E′0 (Y−n(index)) =
c∑
i=1

E0 (Y−n(i) exp (θ∗Y−n(i)))P ′0 (index = i)

=
1

c

c∑
i=1

dφi (θ∗)

dθ
> 0,

so Y−n (index) → ∞ as n → ∞ almost surely under P ′0(·), hence Tm < ∞ with probability one

under P ′0(·). Now, to verify that P0(·) is a valid proposal for acceptance/rejection method, we must

verify that dP ∗0/dP
′
0 is bounded by a constant, i.e.,

dP ∗0
dP ′0

(Y−k : 0 ≤ k ≤ Tm)

=
1

P0 (Tm <∞)
× dP0

dP ′0
(Y−k : 0 ≤ k ≤ Tm)

=
1

P0 (Tm <∞)
× 1∑c

i=1wi exp (θ∗Y−Tm(i))

≤ 1

P0 (Tm <∞)
× c

exp (θ∗m)

<
1

P0 (Tm <∞)
,

where the last inequality is guaranteed by (B.9). So, acceptance/rejection is valid.

Moreover, the overall probability of accepting the proposal is precisely P0(Tm <∞). Thus, we

not only execute Step 5, but simultaneously also Step 4. We use this acceptance/rejection method

to replace Steps 4 and 5 in Algorithm LTGM as follows:

4’ Sample
{(
Ỹ−k, Ũ−k, Ã−k

)
: 0 ≤ k ≤ Tm

)
} with Ỹ0 = 0 from P ′0 (·) as indicated via (B.14),

(B.16) and (B.17). Sample a Bernoulli J with success probability

c∑c
i=1 exp

(
θ∗Ỹ−Tm(i)

) .
5’ If J = 1, set Y−(n+k) = Y−n + Ỹ−k, U−(n+k) = Ũ−k, A−(n+k) = Ã−k for 1 ≤ k ≤ Tm. Set

n = n+ Tm and Γ = [Γ, n]. Go to Step 2.

APPENDIX B. APPENDIX TO CHAPTER 4 110

B.1.1.2 Simulate {Y−n : n ≥ 0} with “milestone” events

In this section we provide an algorithm to sequentially simulate the multi-dimensional random walk

{Y−n : n ≥ 0} along with its downward and upward “milestone” events as defined in (B.10) and

(B.11). We first extend Lemma 3 in [Blanchet and Sigman, 2011] to multi-dimensional version as

follows.

Lemma 9. Let 0 < a < b ≤ ∞1 (coordinate-wise) and consider any sequence of bounded positive

measurable functions fk : Rc×(k+1) → [0,∞),

E0

(
fT−a(Y0, · · · , Y−T−a)|Tb =∞

)
=
E0

(
fT−a(Y0, · · · , Y−T−a) · I(Y−j(i) ≤ b(i), 0 ≤ j < T−a, 1 ≤ i ≤ c)

)
· PY−T−a

(Tb =∞)

P0 (Tb =∞)
.

Therefore, if P ∗∗0 (·) := P0(·|Tb =∞), then

dP ∗∗0

dP0
=
I (Y−j(i) ≤ b(i),∀j < T−a, 1 ≤ i ≤ c) · PY−T−a

(Tb =∞)

P0(Tb =∞)
≤ 1

P0 (Tb =∞)
. (B.18)

Lemma 9 enables us to sample a downward patch by using the acceptance/rejection method

with the nominal distribution P0 as proposal. Suppose our current position is Y−Dj (for some j ≥ 1)

and we know that the process will never go above the upper bound B (coordinate-wise). Next we

simulate the path up to time Dj+1. If we can propose a downward patch
(
Ỹ−1, · · · , Ỹ−T−m

)
:=(

Y−1, · · · , Y−T−m

)
, under the unconditional probability given Ỹ0 = 0 and Ỹ−k ≤m for 1 ≤ k ≤ T−m,

then we accept it with probability P0 (Tσ =∞), where σ = B−Y−Dj−Ỹ−T−m . A more efficient way

to sample is to sequentially generate
(
Ỹ−1, · · · , Ỹ−Λ

)
with Ỹ0 = 0 as long as m0 := max0≤k≤Λ Ỹ−k ≤

m coordinate-wise, then concatenate the sequence to previously sampled subpath. We give the

efficient implementation procedure in the next algorithm.

Algorithm LTRW: Continue to sample the process {(Y−k, U−k, A−k) : 0 ≤ k ≤ n} jointly with the

partially sampled “milestone” event lists D and Γ, until some stopping criteria are met.

Input: a, m, previously sampled partial process {(Y−j , U−j , A−j) : 0 ≤ j ≤ l}, partial “milestone”

sequences D and Γ, and the stopping criteria H.

(Note that if there is no previous simulated random walk, we initialize l = 0, D = [0] and Γ = [∞].)

APPENDIX B. APPENDIX TO CHAPTER 4 111

1. Set n = l. If n = 0, call Algorithm LTGM to get Λ, {(Y−k, U−k, A−k) : 0 ≤ k ≤ Λ}, D and Γ.

Set n = Λ.

2. While the stopping criteria H are not satisfied,

(a) Call Algorithm LTGM to get Λ̃, {(Ỹ−j , Ũ−j , Ã−j) : 0 ≤ j ≤ Λ̃}, D̃, Γ̃ and M̃0.

(b) If M̃0 ≤ m, accept the proposed sequence and concatenate it to the previous sub-path,

i.e., set Y−(n+j) = Y−n + Ỹ−j , U−(n+j) = Ũ−j , A−(n+j) = Ã−j for 1 ≤ j ≤ Λ̃. Update the

sequences of “milestone” events to be D = [D, n + D̃(2 : end)], Γ = [Γ, n + Γ̃(2 : end)]

and set n = n+ Λ̃.

3. Output {(Y−k, U−k, A−k) : 0 ≤ k ≤ n} with updated “milestone” event sequences D and Γ.

For n ≥ 0, define

d1(n) = inf{Dk ≥ n : Y−Dk ≤ Y−n}, (B.19)

d2(n) = inf{Dk > d1(n) : Γk =∞}, (B.20)

and d2(n) is an upper bound of NY
n defined in (B.4) because

max
k≥d2(n)

Y−k ≤ Y−d2(n) + m < Y−d1(n) ≤ Y−n.

Remark 5. Although Assumption 7 is a strengthening of Assumption 6, we can accommodate our

algorithms under Assumption 6. The implementation details are the same as that mentioned in the

remark section on page 15 of [Blanchet and Chen, 2015].

B.1.2 Simulation algorithm for the process {X−n : n ≥ 0}

Recall from (B.1) that for n ≥ 0,

X−n(i) =

n∑
j=1

(V−j − a)I(U−j = i) for i = 1, . . . , c.

Define

Nk(i) =
k∑
j=1

I (U−j = i) , (B.21)

Ln(i) = inf {k ≥ 0 : Nk(i) = n} (L0(i) = 0), (B.22)

V̂
(i)
−n = V−Ln(i), (B.23)

APPENDIX B. APPENDIX TO CHAPTER 4 112

for k ≥ 0, n ≥ 0 and i = 1, . . . , c. Nk(i) denotes the total number of customers routed to server i

among the first k arrivals counting backwards in time. Ln(i) denotes the index of the n-th customer

that gets routed to server i in the common arrival stream, counting backwards in time. V̂
(i)
−n denotes

the service time of the n-the customer that gets routed to server i, counting backwards in time.

For each i = 1, . . . , c, let {X̂(i)
−n : n ≥ 0} with X̂

(i)
0 = 0 be an auxiliary process such that

X̂
(i)
−n :=

n∑
j=1

(
V̂

(i)
−j − a

)
= X−Ln(i)(i). (B.24)

For n ≥ 0 and 1 ≤ i ≤ c, define

N̂n(i) = inf

{
n′ ≥ Nn(i) : max

k≥n′
X̂

(i)
−k ≤ X̂

(i)
−Nn(i)

}
, (B.25)

hence by definition, in (B.3), we have

NX
n = max

{
LN̂n(1)(1), . . . , LN̂n(c)(c)

}
. (B.26)

First we develop simulation algorithms for each of the c one-dimensional auxiliary processes

{(X̂(i)
−n : n ≥ 0) : 1 ≤ i ≤ c}. Next we use the common server allocation sequence {U−n : n ≥ 0}

(sampled jointly with the process {Y−n : n ≥ 0} in Section B.1.1) with (B.21), (B.22) and (B.23)

to find NX
n via (B.26) for each n ≥ 0.

“Milestone” construction and global maximum simulation For each one-dimensional aux-

iliary process {X̂(i)
−n : n ≥ 0} with i = 1, . . . , c, we adopt the algorithm developed in [Blanchet and

Wallwater, 2015] by choosing any m′ > 0 and L′ ≥ 1 properly and define the sequences of upward

and downward “milestone” events by letting D
(i)
0 = 0, Γ

(i)
0 =∞, and for j ≥ 1,

D
(i)
j = inf{n(i) ≥ Γ

(i)
j−1I(Γ

(i)
j−1 <∞) ∨D(i)

j−1 : X̂
(i)

−n(i) < X̂
(i)

−D(i)
j−1

− L′m′}, (B.27)

Γ
(i)
j = inf{n(i) ≥ D(i)

j : X̂
(i)

−n(i) − X̂(i)

−D(i)
j

> m′}, (B.28)

with the convention that if Γ
(i)
j =∞, then Γ

(i)
j I(Γ

(i)
j <∞) = 0 for any j ≥ 0.

For each i = 1, . . . , c, define

Λ(i) = inf{D(i)
k : Γ

(i)
k =∞, k ≥ 1}. (B.29)

By the “milestone” construction in (B.27) and (B.28), for all n ≥ Λ(i),

X̂
(i)
−n ≤ X̂

(i)

−Λ(i) +m′ < 0 = X̂
(i)
0 .

APPENDIX B. APPENDIX TO CHAPTER 4 113

Therefore we can evaluate the global maximum of the infinite-horizon process {X̂(i)
−n : n ≥ 0} in

finite steps, i.e.,

M
(i)
0 := max

k≥0
X̂

(i)
−k = max

0≤k≤Λ(i)
X̂

(i)
−k. (B.30)

We summarize the simulation details in the following algorithm.

Algorithm GGM: Simulate global maximum of the one-dimensional process {(X̂(i)
−n, V̂

(i)
−n) : n ≥ 0}

jointly with the sub-path and the subsequence of “milestone” events.

Input: a, m′, L′.

1. (Initialization) Set n = 0, X̂
(i)
0 = 0, D(i) = [0], Γ(i) = [∞], L(i) = 0.

2. Generate V ∼ F . Set n = n+ 1, X̂
(i)
−n = X̂

(i)
−(n−1) + V and V̂

(i)
−n = V .

3. If X̂
(i)
−n ≥ L(i) − L′m′, go to Step 2; otherwise set D(i) = [D(i), n] and L(i) = X̂

(i)
−n.

4. Call Algorithm 1 on page 10 of [Blanchet and Wallwater, 2015] and obtain (J, ω).

5. If J = 1, set X̂
(i)
−(n+l) = L(i) +ω(l), Ŝ

(i)
−(n+l) = X̂

(i)
−(n+l)−X̂

(i)
−(n+l−1) +a for l = 1, . . . , length(ω).

Set n = n+ length(ω), Γ(i) = [Γ(i), n] and go to Step 2.

6. If J = 0, set Λ(i) = n, Γ(i) = [Γ(i),∞].

7. Output {(X̂(i)
−k, V̂

(i)
−k) : 1 ≤ k ≤ Λ(i)}, D(i), Γ(i) and global maximum M

(i)
0 = max0≤k≤Λ(i) X̂

(i)
−k.

B.1.2.1 Simulate {X−n : n ≥ 0} with “milestone” events

In this section, we first explain how to sample the auxiliary one-dimensional processes {X̂(i)
−n : n ≥ 0}

along with the “milestone” events defined in (B.27) and (B.28). Next we will need the service

allocation information {U−n : n ≥ 0}, from the simulation procedure of process {Y−n : n ≥ 0}, to

recover the multi-dimensional process of interest {X−n : n ≥ 0} via Eq. (B.24).

The following algorithm gives the the sampling procedure for each auxiliary one-dimensional

process {X̂(i)
−n : n ≥ 0} for i = 1, . . . , c. The simulation steps are the same as the procedure given

in Algorithm 3 on page 16 of [Blanchet and Wallwater, 2015].

APPENDIX B. APPENDIX TO CHAPTER 4 114

Algorithm GRW: Continute to sample the process {(X̂(i)
−k, V̂

(i)
−k) : 0 ≤ k ≤ n} jointly with the

partially sampled “milestone” event lists D(i) and Γ(i), until a stopping criteria is met.

Input: a, m′, L′, previously sampled partial process {(X̂(i)
−j , Ŝ

(i)
−j) : 0 ≤ j ≤ l}, partial “milestone”

sequences D(i) and Γ(i), and stopping criteria H(i).

(Note that if there is no previously simulated random walk, we initialize l = 0, D(i) = [0] and

Γ(i) = [∞].)

1. Set n = l. If n = 0, call Algorithm GGM to get Λ(i), {(X̂(i)
−k, V̂

(i)
−k) : 0 ≤ k ≤ Λ(i)}, D(i) and

Γ(i). Set n = Λ(i).

2. While the stopping criteria H(i) are not satisfied,

(a) Call Algorithm GGM to get Λ̃(i), {(X̃(i)
−j , Ṽ

(i)
−j) : 0 ≤ j ≤ Λ̃(i)}. D̃, Γ̃ and M̃

(i)
0 .

(b) If M̃
(i)
0 ≤ m′, accept the proposed sequence and concatenate it to the previous sub-path,

i.e., set X̂
(i)
−(n+j) = X̂

(i)
−n + X̃

(i)
−j , V̂

(i)
−(n+j) = Ṽ

(i)
−j for 1 ≤ j ≤ Λ̃(i). Update the sequences

of “milestone” events to be D(i) = [D(i), n+ D̃(i)(2 : end)], Γ(i) = [Γ(i), n+ Γ̃(i)(2 : end)]

and set n = n+ Λ̃(i).

3. Output {(X̂(i)
−k, V̂

(i)
−k) : 0 ≤ k ≤ n} with updated “milestone” event sequences D(i) and Γ(i).

With the service allocation information {U−n : n ≥ 0}, we can construct the c-dimensional

process {X−n : n ≥ 0} (X0 = 0) from the auxiliary processes {(X̂(i)
−n, V̂

(i)
−n) : n ≥ 0}, i = 1, . . . , c.

For n ≥ 1,

V−n = V̂
(U−n)∑n
j=1 I(U−j=U−n)

, (B.31)

X−n(i) =

 X−(n−1)(i) if i 6= U−n

X−(n−1)(i) + V−n − a if i = U−n
. (B.32)

By the definition of “milestone” events in (B.27) and (B.28), for each n ≥ 0, let

d
(i)
1 (n) = inf{D(i)

k ≥ n : X̂
(i)

−D(i)
k

≤ X̂(i)
−n}, (B.33)

d
(i)
2 (n) = inf{D(i)

k > d
(i)
1 (n) : Γ

(i)
k =∞}. (B.34)

APPENDIX B. APPENDIX TO CHAPTER 4 115

Since

max
k≥d(i)2 (Nn(i))

X̂
(i)
−k ≤ X̂

(i)

−d(i)2 (Nn(i))
+m′ < X̂

(i)

−d(i)1 (Nn(i))
≤ X̂(i)

−Nn(i),

we conclude that N̂n(i) ≤ d(i)
2 (Nn(i)) and hence

NX
n ≤ max{L

d
(1)
2 (Nn(1))

(1), . . . , L
d
(c)
2 (Nn(c))

(c)}.

B.1.3 Simulation algorithm for {S(r)
n : n ≥ 0} and coalescence detection

We shall combine the simulation algorithms in Section B.1.1 and Section B.1.2 for processes

{((X̂(i)
−n, V̂

(i)
−n) : n ≥ 0), 1 ≤ i ≤ c} and {(Y−n, U−n, A−n) : n ≥ 0} together to exactly simulate

the multi-dimensional random walk {S(r)
n : n ≥ 0} until coalescence time N defined in (4.17). To

detect the coalescence, we start from n = 0 to compute d2(n) and d
(i)
2 (Nn(i)) (as defined in (B.20)

and (B.34) respectively). If

max
n≤k≤d2(n)

Y−k = Y−n, (B.35)

and

max
Nn(i)≤k≤d(i)2 (Nn(i))

X̂
(i)
−k = X̂

(i)
−Nn(i) (B.36)

for all i = 1, . . . , c, we set the coalescence time N ← n and stop. Otherwise we increase n by 1 and

repeat the above procedure until the first time that (B.35) and (B.36) are satisfied.

In the following algorithm we give the simulation procedure to detect coalescence while sampling

the time-reversed multi-dimensional process {S(r)
n : n ≥ 0}.

Algorithm CD: Sample the coalescence time N jointly with the process {S(r)
n : n ≥ 0}.

Input: a, m, m′, L′.

1. (Initialization) Set n = 0. Set l = 0, Y0 = 0, D = [0], Γ = [∞]. Set li = 0, X̂
(i)
0 = 0,

D(i) = [0], Γ(i) = [∞] for all i = 1, . . . , c.

2. Call Algorithm LTRW to further sample {(Y−j , U−j , A−j) : 0 ≤ j ≤ l}, D and Γ with the

stopping criteria H being
∑l

j=1 I(U−j = i) > li for all i = 1, . . . , c and Y−D(end−1) ≤ Y−n.

3. For each i = 1, . . . , c,

APPENDIX B. APPENDIX TO CHAPTER 4 116

(a) Set ni =
∑n

j=1 I(U−j = i).

(b) Call Algorithm GRW to further sample {(X̂(i)
−k, V̂

(i)
−k) : 0 ≤ k ≤ li}, D(i) and Γ(i) with

the stopping criteria H(i) being
∑l

j=1 I(U−j = i) ≤ li and X̂
(i)

−D(i)(end−1)
≤ X̂(i)

−ni .

4. If maxn≤k≤D(end) Y−k ≤ Y−n and maxni≤k≤D(i)(end) X̂
(i)
−k ≤ X̂

(i)
−ni for all i = 1, . . . , c, go to

next step. Otherwise set n = n+ 1 and go to Step 2.

5. For 1 ≤ k ≤ n, recover V−k and X−k from the auxiliary processes via Eqs. (B.31) and (B.32).

6. Output coalescence time N = n, the sequence {(U−k, A−k, V−k) : 0 ≤ k ≤ n} and process

{S(r)
k : 0 ≤ k ≤ n}.

B.2 Proof of propositions

Proof of Proposition 4. Firstly, E [N] <∞ holds true under assumptions ρ < 1 and P (A > V) > 0

(proved in [Sigman, 1988]). Next we shall prove the computational effort τ has finite expectation

as well.

For n ≥ 0, we have NX
n , NY

n and Nn defined in Eqs. (B.3 - B.5) such that

max
k≥Nn

S
(r)
k ≤ max

k≥Nn
X−k + max

k≥Nn
Y−k ≤ Xn + Yn = S(r)

n .

Therefore, in order to evaluate the running-time maximum over the infinite horizon maxk≥n S
(r)
k ,

it only requires sampling from n to Nn backwards in time, i.e.,

max
k≥n

S
(r)
k = max{ max

n≤k≤Nn
S

(r)
k , max

k≥Nn
S

(r)
k } = max

n≥k≤Nn
S

(r)
k .

An easy upper bound for τ is given by τ̃ =
∑N

n=0Nn. By Wald’s identity, it suffices to show that

E[Nn] <∞ for any n ≥ 0.

By the “milestone” events construction for multi-dimensional process {Y−n : n ≥ 0} in (B.10),

(B.11) and because d2(n) is an upper bound of NY
n , E

[
NY
n

]
≤ E [d2(n)] <∞ follows directly from

elementary properties of compound geometric random variables (see Theorem 1 of [Blanchet and

Chen, 2015]).

APPENDIX B. APPENDIX TO CHAPTER 4 117

For the other process {X−n : n ≥ 0}, we simulate each of its c entries separately, i.e., {{X̂(i)
−n :

n ≥ 0} : 1 ≤ i ≤ c} in Section B.1.2. Eq. (B.26) gives

NX
n = max{LN̂n(1)(1), . . . , LN̂n(c)(c)} ≤

c∑
i=1

LN̂n(i)(i),

where N̂n(i) is defined in (B.25). By Theorem 2.2 of [Blanchet and Wallwater, 2015], E
[
N̂n(i)

]
<

∞. Because

LN̂n(i)(i) = inf{k ≥ 0 :
k∑
j=1

I(U−j = i) = N̂n(i)} ∼ NegBinomial
(
N̂n(i); 1− 1

c

)
+ N̂n(i),

hence

E
[
LN̂n(i)(i)

]
= (c− 1)E

[
N̂n(i)

]
+ E

[
N̂n(i)

]
= cE

[
N̂n(i)

]
<∞,

and

E
[
NX
n

]
≤

c∑
i=1

E
[
LN̂n(i)(i)

]
<∞.

Therefore

E [Nn] ≤ E
[
NX
n

]
+ E

[
NY
n

]
<∞.

Proof of Proposition 6. By Wald’s identity, it suffices to show that E
[
κ∗+
]
<∞ because E [A] <∞.

Next we only provide a proof outline here since it follows the same argument as in the proof of

Proposition 3.

Firstly, we construct a sequence of events {Ωk : k ≥ 1} which leads to the occurrence of κ∗+.

Secondly, we split the process {W u
0 (tn) : n ≥ 0} into cycles with bounded expected cycle length.

We also ensure the probability that the event happens during each cycle is bounded from below by

a constant, which allows us to bound the number of cycles we need to check before finding κ∗+ by

a geometric random variable. Finally we could establish an upper bound for E
[
κ∗+
]

by applying

Wald’s identity again.

	List of Figures
	List of Tables
	Acknowledgements
	1 Introduction
	I Exact Simulation of Multi-Dimensional Queueing Models with Renewal Input
	2 Introduction to Part I
	3 Exact Simulation with Vacation Systems
	3.1 Simulation strategy and main result
	3.1.1 Elements of the simulation strategy: upper bound and coupling
	3.1.2 Monotonicity properties and the stationary GI/GI/c queue
	3.1.3 Description of simulation strategy and main result

	3.2 Coalescence detection in finite time
	3.3 Simulation procedure
	3.3.1 Simulate a random walk with negative drift jointly with ``milestone" events
	3.3.2 Simulate the vacation system between inspection times
	3.3.3 Overall exact simulation procedure

	3.4 Numerical experiments

	4 Exact Simulation with Random Assignment
	4.1 The FIFO and RA GI/GI/c model
	4.1.1 The FIFO GI/GI/c model
	4.1.2 The RA GI/GI/c model

	4.2 Simulating exactly from the stationary distribution of the RA GI/GI/c model
	4.2.1 Algorithm for simulating exactly from for the FIFO GI/GI/c queue: The case P(A > V)>0
	4.2.2 Why we can assume that interarrival times are bounded
	4.2.3 A more efficient algorithm: sandwiching
	4.2.4 Continuous-time stationary constructions

	4.3 Numerical experiments
	4.4 Infinite server systems and other service disciplines
	4.5 Fork-Join models
	4.6 The case when P(A>V)=0: Harris recurrent regeneration

	II Unbiased Monte Carlo Computations and Applications
	5 Introduction to Part II
	5.1 The general principles

	6 Unbiased Multi-level Monte Carlo
	6.1 Non-linear functions of expectations and applications
	6.1.1 Application to steady-state regenerative simulation
	6.1.2 Additional applications

	6.2 Stochastic convex optimization
	6.2.1 Unbiased estimator of optimal solution
	6.2.2 Unbiased estimator of optimal value
	6.2.3 Applications and numerical examples

	6.3 Quantile estimation

	III Bibliography
	Bibliography

	IV Appendices
	A Appendix to Chapter 3
	A.1 The iid property of the coupled service times and independence of the arrival process
	A.2 Proof of technical lemmas of monotonicity

	B Appendix to Chapter 4
	B.1 Detailed algorithm steps in Section 4.2.1
	B.1.1 Simulation algorithm for the process {Y-n:n0}
	B.1.2 Simulation algorithm for the process {X-n:n0}
	B.1.3 Simulation algorithm for {Sn(r):n0} and coalescence detection

	B.2 Proof of propositions

