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ABSTRACT

Minimax-inspired Semiparametric Estimation and Causal Inference

David A. Hirshberg

This thesis focuses on estimation and inference for a large class of semiparametric estimands: the

class of continuous functionals of regression functions. This class includes a number of estimands

derived from causal inference problems, among then the average treatment effect for a binary treat-

ment when treatment assignment is unconfounded and many of its generalizations for non-binary

treatments and individualized treatment policies.

Chapter 2, based on work with Stefan Wager, introduces the augmented minimax linear esti-

mator (AMLE), a general approach to the problem of estimating a continuous linear functional of

a regression function. In this approach, we estimate the regression function, then subtract from a

simple plug-in estimator of the functional a weighted combination of the estimated regression func-

tion’s residuals. For this, we use weights chosen to minimize the maximum of the mean squared

error of the resulting estimator over regression functions in a chosen neighborhood of our estimated

regression function. These weights are shown to be a universally consistent estimator our linear

functional’s Riesz representer, the use of which would result in an exact bias correction for our plug-

in estimator. While this convergence can be slow, especially when the Riesz representer is highly

nonsmooth, the action of these weights on functions in the aforementioned neighborhood imitates

that of the Riesz representer accurately even when they are slow to converge in other respects. As a

result, we show that under no regularity conditions on the Riesz representer and minimal regularity

conditions on the regression function, the proposed estimator is semiparametrically efficient. In

simulation, it is shown to perform very well in the context of estimating the average partial effect

in the conditional linear model, a simultaneous generalization of the average treatment effect to

address continuous-valued treatments and of the partial linear model to address treatment effect

heterogeneity.

Chapter 3, based on work with Arian Maleki and José Zubizarreta, studies the minimax linear

estimator, a simplified version of the AMLE in which the estimated regression function is taken to

be zero, for a class of estimands generalizing the mean with outcomes missing at random. We show

semiparametric efficiency under conditions that are only slightly stronger than those required for

the AMLE. In addition, we bound the deviation of our estimator’s error from the averaged efficient

influence function, characterizing the degree to which the first order asymptotic characterization

of semiparametric efficiency is meaningful in finite samples. In simulation, this estimator is shown

to perform well relative to alternatives in high-noise, small-sample settings with limited overlap



between the covariate distribution of missing and nonmissing units, a setting that is challenging

for approaches reliant on accurate estimation of either or both of the regression function and the

propensity score.

Chapter 4 discusses an approach to rounding linear estimators for the targeted average treatment

effect into matching estimators. The targeted average treatment effect is a generalization of the

average treatment effect and the average treatment effect on the treated units.
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Chapter One

Introduction

1.1 Observational Studies and Causality

Randomized experiments are the gold standard for comparing treatments and pervasive in many dis-

ciplines: medicine, public health, economics, and psychology among them (Hernán and Robins, 2015;

Imbens and Rubin, 2015; Rosenbaum, 2002). But often we are interested in comparing treatments

we cannot randomize because it is either infeasible or unethical, for example when the comparison is

between home and hospital birth (Daysal et al., 2016) or when we are interested in adverse effects of

a medication that has already become available (Bernardo et al., 2011). Considering the former, we

could compare the rate of infant mortality for babies born at home to that of babies born in hospi-

tals, but the result will be difficult to interpret, as association is not causation. Taking a difference

of these rates would give us a mixture of the effect of the difference in birth setting and the baseline

difference in infant mortality between those who elect home birth and those who elect hospital birth.

These groups are systematically different, so it is reasonable to expect a baseline difference, possibly

due to age, diet, exposure to toxins, etc. Because of this, the observed difference in infant mortality

rates is not necessarily predictive of how the aggregate infant mortality rate would change if home

birth became more (or less) popular. If we are able to disentangle the effect of the difference in

birth setting from these baseline differences, we have a stronger basis for individual decisionmaking,

advocacy, and policy.

However, with rare exceptions, we need to make strong untestable assumptions to disentangle

causal effects like this one from baseline differences in observational studies. To discuss these, we

need language we can use to define our assumptions. Working with such language has allowed

scholars to more precisely define and compare estimands and evaluate estimators (Sobel, 2000). In

this dissertation, I will use the framework of potential outcomes, in which we imagine that for each

study participant i and treatment of interest w ∈ W, there is an outcome Y
(w)
i that would have

happened if, possibly contrary to fact, participant i had received treatment w (Neyman, 1923; Rubin,

1974). The vector all potential outcomes will be written YWi and the index set W can be arbitrary.
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Categorical indices w may represent totally distinct treatments or discrete levels of a treatment dose,

continuous indices w may represent doses, mixed categorical/continuous indices may represent doses

of distinct treatments, etc. We observe only Wi, indicating which treatment occurred; Yi = Y
(Wi)
i ,

the outcome under that treatment; and Xi, a vector of covariates describing the participant. I

will also assume that our participants are independently drawn from an infinite superpopulation,

i.e. the complete data vectors (Xi,Wi, Y
W
i ) are independent and identically distributed random

variables from some distribution P . In these terms, we define the comparison we want to make, or

causal estimand, as a function of this distribution. When the treatment w is binary, two of the most

common are the average treatment effect (ATE), τ := E[Y
(1)
i ]− E[Y

(0)
i ], and the average treatment

effect on the treated (ATT), τT := E[Y
(1)
i |Wi = 1]− E[Y

(0)
i |Wi = 1]. Each of these estimands is

a difference in potential outcomes under the two treatments averaged; the ATT is an average over

the distribution of all the units in our study whereas the ATT is an average over that of the units

that receive treatment.

The assumptions we feel most comfortable making dictate our identification strategy, the means

by which we convert a causal estimand defined in terms of unobserved potential outcomes, into a

statistical estimand, defined in terms of the distribution of the observed data. I will focus on the

assumption that no unobserved factor influences both the selection of treatment and the vector of

potential outcomes, often called unconfounded treatment assignment, strong ignorability, selection on

observables, or exogenous noise. This assumption justifies estimation of causal effects by adjusting

for the observed covariates X. It is rare that any identifying assumptions are satisfied in practice;

for that reason once we’ve estimated the statistical estimand, we study how it can deviate from the

causal estimand as a function of the degree to which our identifying assumptions are violated. This

last step, called sensitivity analysis, allows in some cases a quantitative defense against arguments

that ‘an association does not imply causation.’ This was used convincingly by Cornfield in 1959

when prominent statisticians questioned the causal relationship between cigarettes and lung cancer

on that basis (Cornfield et al., 1959).

1.2 Causal Estimands and Identification

In this section, we will consider a simple causal estimand, the ATT τT . First note that Y
(1)
i = Yi

when Wi = 1, so the first term in τT is simply E[Yi | Wi = 1] and can be estimated by a sample

mean. The latter term, E[Y
(0)
i | Wi = 1], is what requires our attention. We make the simplest

nontrivial assumption that allows us to estimate it, the unconfoundedness assumption that E[Y
(0)
i |
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Xi,Wi = 1] = E[Y
(0)
i | Xi,Wi = 0]. Then,

E
[
Y

(0)
i |Wi = 1

]
= E

[
E
[
Y

(0)
i | Xi,Wi = 1

]
|Wi = 1

]
= E

[
E
[
Y

(0)
i | Xi,Wi = 0

]
|Wi = 1

]
= E [E [Yi | Xi,Wi = 0] |Wi = 1] .

(1.1)

In order to ensure these expectations are defined, we make a so-called positivity assumption, P{Wi =

1 | Xi} > 0. We call the last expression in (1.1), which is defined in terms of the distribution of

the observed data, the statistical estimand. It is a scalar-valued function, henceforth functional,

of the conditional mean function m(x,w) = E[Yi | Xi = x,Wi = w]. In particular, we have

E[Y
(0)
i | Wi = 1] = ψ(m) where ψ(f) = E[f(Xi, 0) | Wi = 1] is a linear functional. Many of

the simpler causal estimands, including all of those that we will discussed in this dissertation, can

be identified as linear functionals of conditional mean functions using essentially this argument.

The appropriate unconfoundedness assumption varies slightly depending on the estimand, but the

core notion at play is that given covariates, the outcome Y
(w)
i that would occur under some fixed

treatment w does not depend on the treatment Wi that is actually observed.

1.3 Estimation

Having identified our causal estimand as some kind of function or functional of the observed data,

we can now forget about causality until it comes time to do sensitivity analysis. This is slightly

cavalier, as some sensitivity analysis methods are available only for estimators of specific forms,

but very general and even completely estimator-agnostic approaches are available (see Zhao et al.

(2017a) and Ding and VanderWeele (2016) respectively). I say this to emphasize that the estimation

problems in causal inference need not be the specific domain of the causal inference community —

they are ordinary nonparametric or semiparametric estimation problems.

1.3.1 Estimation of Linear Functionals and Riesz Representation

In this dissertation, I focus on semiparametric problems, and in particular on the estimation of

continuous linear functionals ψ of conditional means m(x,w).1 One of the core objects that we will

be discussing is the Riesz representer γψ, the unique function that satisfies

E γψ(Xi,Wi)f(Xi,Wi) = ψ(f) for all square integrable functions f(x,w). (1.2)

1 The method considered in the first chapter can be applied to linearizations of differentiable functionals around
an initial estimator m̂(x,w), but this will not be discussed.
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The Riesz representation theorem guarantees that such a function exists and is unique for any

continuous functional ψ (see e.g. Peypouquet, 2015, Theorem 1.4.1). The relevant notion of con-

tinuity is continuity in mean square, i.e. ψ(f) ≤ C‖f‖L2(P ) for all f and some constant C where

‖f‖L2(P ) =
√

E f(Xi,Wi)2. If we know γψ, we have a good estimator: n−1
∑n
i=1 γψ(Xi,Wi)Yi →

E[γψ(Xi,Wi)E[Yi | Xi,Wi]] = ψ(m) at n−1/2 rate by the central limit theorem.

While this sort of Riesz representer is not frequently discussed as a general phenomenon in this

context, instances are discussed pervasively. For example, the Riesz representer for the functional

ψ(f) = E[f(Xi, 0) | Wi = 1] that we identified in the context of the ATT is the inverse propensity

weighting function2

γψ(w, x) =
1{w=0}(1− e(x))

p1e(x)
where e(x) = P{Wi = 0 | Xi = x}, p1 = P{Wi = 1}.

This function e(X) is called the propensity score. The ‘overlap’ condition 0 < e(x) that we need to

identify the ATT implies continuity of the functional ψ that we identify as the ATT. Furthermore, the

‘strong overlap’ condition 0 < η ≤ e(x) that is typically assumed is equivalent to boundedness of the

Riesz representer γψ. This boundedness property is almost invariably assumed in the semiparametric

estimation literature, and it has in fact been shown by Khan and Tamer (2010) that it is required

for n−1/2-rate estimation of the ATE and other estimands. We will assume it throughout.

Estimation of the Riesz representer γψ is straightforward in general, as the defining property

(1.2) of the Riesz representer is a set of moment conditions. These moment conditions have been

used for some time in the causal inference literature for checking the adequacy of inverse propensity

score estimators (see e.g Rubin, 2004) and for estimation of weights that act like γψ (Graham

et al., 2012; Hainmueller, 2012; Imai and Ratkovic, 2014; Robins et al., 2007; Zubizarreta, 2012).

In that tradition, the approximate satisfaction of the equations (1.2) is called ‘balance,’ and arises

from minimax considerations. More recently, Chernozhukov et al. (2016, 2018); Newey and Robins

(2018) have begun speaking more explicitly about estimating Riesz representers using the moment

conditions (1.2), and have done so in fairly general settings. Both influences appear in what follows.

In the next chapter, I will discuss a general approach to the estimation of linear functionals ψ of

conditional mean function m. The essential approach is to bias-correct simple plugin estimator ψ(m̂)

by subtracting a weighted sum of the regression residuals Yi − m̂(Xi,Wi). The weights we choose

solve a sort of minimax problem — minimizing the maximum, over conditional mean functions m in

2It is common to write this without the factor of p1 in the denominator use it in a weighted average
n−1
1

∑n
i=1 1{Wi=0}(1 − e(Xi))/e(Xi)Yi where n1 =

∑n
i=1 1{Wi=1}, which behaves like n−1

∑n
i=1 γψ(Xi,Wi)Yi be-

cause n1 ≈ p1n.
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a neighborhood of our estimate m̂, of the design-conditional mean squared error of the bias-corrected

estimator. This minimax criterion demands that our weights act like and ultimately converge to the

Riesz representer γψ of our functional, and as a consequence of this behavior we are able to establish

semiparametric efficiency under weak regularity conditions for a large class of estimands. This

class includes the ATE for a categorical treatment and various generalizations for continuous-valued

treatments and individualized treatment assignment policies.

In the chapter following, I focus on the estimation of average treatment effects using minimax

linear estimators, a degenerate case of the approach discussed in the first chapter in which we use a

trivial estimate m̂ = 0 of the conditional mean. Using a sharper characterization of this estimator’s

design-conditional bias than the one offered in the first chapter, I establish semiparametric efficiency

for these estimators under similarly weak conditions and characterize the degree to which this first-

order asymptotic characterization justifies inference by bounding higher order terms.
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Chapter Two

Augmented Minimax Linear Estimation

In this chapter, we address problems in which we observe n independent and identically distributed

samples (Zi, Yi) ∼ P with support in Z ×R, and we want to estimate a continuous linear functional

of the form

ψ(m) = E [h(Zi, m)] at m(z) = E
[
Yi
∣∣Zi = z

]
. (2.1)

Our main result establishes that we can build efficient estimators for a wide variety of such problems

simply by subtracting from a plugin estimator ψ(m̂) a minimax linear estimate of its error ψ(m̂)−

ψ(m).

The following estimands from the literature on causal inference and missing data are of this type

and can be estimated efficiently by our approach.

Example 2.1 (Mean with Outcomes Missing at Random). Suppose we observe covariates Xi and

some but not all of the corresponding outcomes Y ?i . Then for an indicator Wi that the outcome

Y ?i was observed, we have observed Zi = (Xi,Wi) and Yi = WiY
?
i , and we may estimate the linear

functional ψ(m) = E [m(Xi, 1)] at m(x,w) = E
[
Yi
∣∣Xi = x,Wi = w

]
. This will be equal to the

mean E [Y ?i ] if, conditional on covariates Xi, each outcome Y ?i is independent of its nonmissingness

Wi (Rosenbaum and Rubin, 1983).

Example 2.2 (Average Partial Effect). Letting Zi = (Xi, Wi) ∈ X × R, we estimate the average of

the derivative of the response surface m(x,w) with respect to w, ψ(m) = E
[
d
dw {m(Xi, w)}w=Wi

]
.

This estimand—and weighted generalizations of it—present a natural quantification of the average

effect of a continuous treatment Wi under exogeneity (Powell, Stock, and Stoker, 1989).

Example 2.3 (Average Partial Effect in the Conditionally Linear Model). Considering the estimand

discussed in the previous example, we make the additional assumption that the regression function

m is conditionally linear in w, m(x,w) = µ(x) + wτ(x). Then the average partial effect is ψ(m) =

E [τ(Xi)] (Robinson, 1988).

Example 2.4 (Distribution Shift). We estimate the effect of a shift in the distribution of the condition-

ing variable Z from one known distribution, P0, to another, P1. ψ(m) =
∫
m(z)(dP1(z)− dP0(z))

6



for m(z) = E [Yi | Zi = z]. Under exogeneity assumptions, this estimand can be used to compare

policies for assigning personalized treatments, and estimators for it form a key building block in

methods for estimation of optimal treatment policies (Athey and Wager, 2017).

In this section, we will discuss our estimator in the simple case that our functional of interest

ψ(·) is known, in the sense that given a function f , we are able to evaluate ψ(f). This is the

case in Example 2.4. Our problem formulation (2.1) is more general, allowing ψ(·) to depend on

the unknown distribution P in a limited way, as E [h(Z, ·)] depends on the marginal distribution

of Z. We address this sort of dependence later in Section 2.1 by working with sample average

approximations to ψ(·).

2.0.1 Estimation of Known Linear Functionals

Consider the estimation of ψ(m) where ψ(·) is a known mean-square-continuous linear functional.

As discussed in our introductory remarks, the estimator we propose is a plugin estimator ψ(m̂) with

a estimate of its error ψ(m̂)− ψ(m) = ψ(m̂−m) subtracted,

ψ̂ = ψ(m̂)− 1

n

n∑
i=1

γ̂i (m̂(Zi)− Yi) . (2.2)

Our focus will be on this error estimate n−1
∑n
i=1 γ̂i (m̂(Zi)− Yi). The existence of a good estimate

of this form follows from the Riesz representation theorem, which implies that any continuous linear

functional ψ(·) on the square integrable functions from Z to R has a Riesz representer γψ(·), i.e. a

function satisfying E [γψ(Zi)f(Zi)] = ψ(f) for all square-integrable functions f (see e.g. Peypouquet,

2015, Theorem 1.4.1).

Chernozhukov, Escanciano, Ichimura, and Newey (2016) show that using this function γψ, it

is possible to define an oracle estimator of the proposed form. To do this, consider the function

f = m̂ −m, approximate this expectation by a sample average n−1
∑n
i=1 γi(m̂(Zi) −m(Zi)) with

γi = γψ(Zi), and substitute for the unknown quantity m(Zi) the unbiased estimator Yi:

ψ(m̂−m) = E [γψ(Z)(m̂−m)(Z)]

≈ 1

n

n∑
i=1

γi(m̂(Zi)−m(Zi))

=
1

n

n∑
i=1

γi(m̂(Zi)− Yi) +
1

n

n∑
i=1

γi (Yi −m(Zi)) .

(2.3)

As a result, the error of the estimator (2.2) with the oracle weights γ̂i = γψ(Zi) will be roughly equal

to a weighted sum of mean-zero noise n−1
∑n
i=1 γiεi where εi = Yi −m(Zi). This behavior is known

to be asymptotically optimal with a great deal of generality (see e.g. Newey, 1994, Proposition 4).
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Our goal will be to imitate the behavior of this oracle estimator. One possible approach is to

determine the form of the Riesz representer γψ(·) by solving the set of equations that define it,

E [γψ(Z)f(Z)] = ψ(f) for all f satisfying E
[
f(Z)2

]
<∞, (2.4)

then estimate it and plug the resulting weights γ̂i = γ̂ψ(Zi) into (2.2). In the context of our first

example, the estimation of a mean with outcomes missing, the Riesz representer is the inverse

probablility weight γψ(w, x) = w/e(x) where e(x) = P [Wi = 1 | Xi = x], and this approach

results in the well-known Augmented Inverse Probability Weighting (AIPW) estimator of Robins

and Rotnitzky (1995).

We take another approach. Considering our regression estimator m̂ and the design Z1 . . . Zn to be

fixed1, we simply choose the weights γ̂ ∈ Rn that make our correction term n−1
∑n
i=1 γ̂i (m̂(Zi)− Yi)

a minimax linear estimator of what it is intended to correct for, ψ(m̂−m). To be precise, we choose

the weights that perform best in terms of mean squared error in the worst case over regression

functions m in a neighborhood m̂− F of our regression estimator m̂ and over conditional variance

functions Var [Yi | Zi = z] bounded by σ2, having chosen F to be an absolutely convex set of func-

tions which, given our beliefs about the regression function m and the properties of our estimator m̂,

should contain the regression error m̂−m. This specifies the weights γ̂ as the solution to a convex

optimization problem,

γ̂ = argmin
γ∈Rn

I2
ψ,F (γ) +

σ2

n2
‖γ‖2, Iψ,F = sup

f∈F

1

n

n∑
i=1

γif(Zi)− ψ(f). (2.5)

The good properties of minimax linear estimators like this one are well known. Donoho (1994)

and related papers (Armstrong and Kolesár, 2018; Cai and Low, 2003; Donoho and Liu, 1991;

Ibragimov and Khas’minskii, 1985; Johnstone, 2015; Juditsky and Nemirovski, 2009) show that when

a regression function m is in a convex set F and Yi
∣∣Zi ∼ N(0, σ2

i ), a minimax linear estimator of

a linear functional ψ(m) will come within a factor 1.25 of the minimax risk over all estimators. In

addition to strong conceptual support, estimators of the type have been found to perform well in

practice across several application areas (Armstrong and Kolesár, 2018; Imbens and Wager, 2017;

Kallus, 2016; Zubizarreta, 2015). Because we ‘augment’ the minimax linear estimator by applying

it after regression adjustment in the same way that the AIPW estimator augments the inverse

probability weighting estimator, we refer to this approach as the Augmented Minimax Linear (AML)

estimator.

1If we estimate m̂ on an auxilliary sample, this is the case when we condition on both that sample and on Z1 . . . Zn.
While it is not necessary to estimate m̂ on an auxilliary sample when estimating linear functionals, we do this in the
nonlinear case discussed in a forthcoming commentary (Hirshberg and Wager, 2018).
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These weights γ̂ can be interpreted as a penalized least-squares solution to a set of estimating

equations suggested by the definition (2.4) of the Riesz representer γψ,

1

n

n∑
i=1

γif(Zi) ≈ ψ(f) for all f ∈ F (2.6)

Note that the restriction of f to a strict subset F of the square-integrable functions is necessary, as

there are infinitely many square-integrable functions f that agree our sample Z1 . . . Zn and they need

not even approximately agree in terms of ψ(f). Our choice of this subset F , a set that characterizes

our uncertainty about the regression error function m̂−m, focuses our estimated weights γ̂ on the

role they play in our correction term’s derivation (2.3) — the role of ensuring that (2.6) is satisfied

for this function f = m̂−m. The size of this subset F , measured e.g. by its Rademacher Complexity,

determines the accuracy with which these equations (2.6) can be simultaneously satisfied. So that

we do not ‘waste’ accuracy at f = m̂−m by working with too large a set F , it is helpful to encode the

complexity-limiting assumptions that we believe are satisfied by m̂−m in our choice. For example,

we may take F to be a set of smooth functions, functions that are approximately sparse in some

basis, functions of bounded variation, etc.

That our weights γ̂i approximately solve these estimating equations (2.6) does not imply that

they estimate the Riesz representer γψ(·) well in the mean-square sense. However, to whatever

degree the oracle weights γi = γψ(Zi) also approximately solve (2.6), it will imply that γ̂ and γψ(·)

are close in the sense that

1

n

n∑
i=1

[γ̂i − γψ(Zi)]f(Zi) ≈ 0 for all f ∈ F . (2.7)

This property will hold if the vector with elements γ̂i − γψ(Zi) is small or if it is approximately

orthogonal to the vector with elements f(Zi) for all functions f ∈ F , and so long as m̂−m is in F

or a scaled version of it, this will imply that our estimator with weights γ̂i and our oracle estimator

with weights γi = γψ(Zi) will be close as well — the difference between them is n−1
∑n
i=1[γ̂i −

γψ(Zi)][m̂(Zi)−m(Zi)− εi].

We state below a simple version of our main result. In essence, if an estimator m̂ converges to m

in mean square and our regression error m̂−m is in a uniformly bounded Donsker class F or more

generally satisfies (m̂−m)/Op(1) ∈ F , then our approach can be used to define an asymptotically

efficient estimator of a known continuous linear functional ψ(m) at m(z) = E [Yi | Zi = z].

2.0.2 Definitions

As a measure of the scale of a function f relative to an absolutely convex set F , we define the gauge2

‖f‖F := inf{α ≥ 0 : f ∈ αF}. We will write L2(P ) to refer to {f : E
[
f(Z)2 ≤ 1

]
} and L2(Pn) for

9



{f : n−1
∑n
i=1 f(Zi)

2 ≤ 1}, so that the gauges ‖·‖L2(P ) and ‖·‖L2(Pn) have their typical meanings

as the root mean squared error and empirical root mean squared error. We will write M to denote

the closure of a subspace M of the square-integrable functions and will also also write spanF to

denote the closure of spanF . We say a class F is pointwise separable if it has a countable subset

F0 such that for every function f ∈ F , there is a sequence fm ∈ F0 converging to g pointwise and

in ‖·‖L2(P ) (see, e.g., van der Vaart and Wellner, 1996, section 2.3.3).

2.0.3 Setting

We observe (Y1, Z1) . . . (Yn, Zn)
iid∼ P with Yi ∈ R, Zi ∈ Z for a complete separable metric space Z.

We assume that m(z) = EP [Yi | Zi = z] is in a subspace M of the square integrable functions and

that v(z) = Var [Yi | Zi = z] is bounded. And we let F be absolutely convex set of square integrable

functions F that believed to contain, at least up to scale, the regression error m̂−m.

Our estimand is ψ(m) for a known and continuous linear functional ψ(·) on a subspaceM∪spanF

of the square integrable functions. The Riesz representation theorem guarantees the existence and

uniqueness of a function γψ ∈ spanF satisfying the set of equations {EP γψ(Z)f(Z) = ψ(f) : f ∈

spanF}.3 We call this function the Riesz representer of ψ on the tangent space spanF and observe

that when spanF is the space of square integrable functions, this agrees with our prior definition

(2.4).

We will assume that ψ(·) satisfies the following continuity property, which ensures that our Riesz

representer γψ is bounded.4

‖ψ‖L?1(P ) <∞ for ‖ψ‖L?1(P ) := sup
f∈spanF
‖f‖L1(P )≤1

ψ(f). (2.8)

Theorem 2.1. In the setting above, consider the estimator

ψ̂AML = ψ(m̂)− 1

n

n∑
i=1

γ̂i (m̂(Zi)− Yi) ,

γ̂ = argmin
γ∈Rn

I2
ψ,F̃n

(γ) +
σ2

n2
‖γ‖2, Iψ,F = sup

f∈F

1

n

n∑
i=1

γif(Zi)− ψ(f).

(2.9)

2We write the gauge ‖·‖F because for the sets F we will be working with, the gauge is a norm. While in general,
the gauge of an absolutely convex set is a pseudonorm, we will be working with sets for which point evaluation is
gauge-continuous, i.e. f(x) ≤ c(x)‖f‖F for c(x) <∞, and which therefore satisfy ‖f‖F = 0 =⇒ f(x) = 0 for all x.

3In this statement we implicitly work with the unique extension of the continuous functional ψ(·) defined on
spanF to a functional defined on its closure spanF (Lang, 1993, Theorem IV.3.1).

4 Boundedness of the Riesz representer γψ follows from the Hahn-Banach extension theorem (Lang, 1993, Theorem
IV.1.1), which guarantees that the equivalent linear functionals f → ψ(f) and f → E

[
γψ(Z)f(Z)

]
defined on the

tangent space have an extension to the space L1(P ) of all integrable functions which satisfies the same ‖·‖L?1(P ) bound

and therefore satisfies ‖γψ‖∞ = supf∈L1(P ) E
[
γψ(Z)f(Z)

]
= supf∈L1(P ) ψ(f) <∞.
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for F̃n = F ∩ ρnL2(Pn), ρn ∈ R+ ∪ {∞} satisfying n1/2ρn → ∞, and any finite σ > 0. If F

is a pointwise separable uniformly bounded Donsker class, then the weights converge to the Riesz

representer of ψ on the tangent space spanF in the sense

1

n

n∑
i=1

(γ̂i − γψ(Zi))
2 →P 0. (2.10)

If, in addition, m̂ has the tightness and consistency properties

a. ‖m̂−m‖F ∈ OP (1) and ‖m̂−m‖L2(Pn) ∈ OP (ρn) if ρn → 0,

b. ‖m̂−m‖F ∈ oP (1) otherwise,

then our estimator ψ̂AML has the asymptotic linear characterization

ψ̂AML − ψ(m) =
1

n

n∑
i=1

ι(Yi, Zi) + oP (n−1/2) where

ι(y, z) = γψ(z)(y −m(z))

(2.11)

and therefore
√
n(ψ̂AML − ψ(m))/V 1/2 ⇒ N (0, 1) with V = E

[
ι(Y, Z)2

]
. When this happens,

ψ̂AML is regular if M ⊆ spanF and is semiparametrically efficient iff it is regular and v(·)γψ(·) ∈

M.

This theorem is a straightforward consequence of a more general asymptotic result, Theorem 2.4,

discussed in Section A.1. It is proven in Appendix A.1. We end this section with a few remarks.

Remark 2.1. Our assumptions boil down to continuity of the functional ψ(·) and the tightness

and consistency properties ‖m̂ − m‖F ∈ OP (1) and ‖m̂ − m‖L2(Pn) ∈ OP (ρn) that we require of

our estimator. While we can do nothing about the continuity of the functional ψ(·), there is a

general recipe for ensuring these tightness and consistency properties. If we can choose F to be

an absolutely convex Donsker class such that ‖m‖F < ∞, then the estimator m̂ minimizing the

penalized empirical risk n−1
∑n
i=1(Yi−m(Zi))

2 +λ‖m‖νF for appropriately chosen λ, ν will typically

have these properties with ρn = n−1/4 (see e.g. Lecué et al. (2018, Theorem 3.2) and van de Geer

(2000, Theorem 10.2)).

Remark 2.2. Our estimator does not require knowledge of the form of the Riesz representer γψ(·).

This spares us the trouble of determining it for each estimand we consider. And while our efficiency

condition v(·)γψ(·) ∈ M is phrased in terms of γψ, we can often think in terms of the sufficient

condition {v(·)f(·) : f ∈ spanF} ⊆M.

Remark 2.3. We note two particular ways to define our weights in this theorem. A simple approach

is to just take ρn = ∞, which results in weights which control our error uniformly over functions
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in a fixed class F . This takes advantage of the decay of the regression error m̂−m as measured

by the gauge ‖·‖F , a very strong type of convergence, but not its decay in any weaker norm like

‖·‖L2(Pn). In this case, our theorem applies if m̂ is ‖·‖F -consistent for m. However, we can also

exploit a known rate of convergence ρn for m̂−m in ‖·‖L2(Pn) to work uniformly over a smaller class

F̃n = F ∩ ρnL2(Pn) appropriate to our sample size; in this case, it is sufficient to have tightness of

m̂−m in ‖·‖F rather than consistency.

Remark 2.4. This theorem is valid in the general case that ψ(m) = E [h(Zi,m)] if we substitute

ψ̃(·) = n−1
∑n
i=1 h(Zi, ·) for ψ(·) where it appears in (2.9), change the influence function to ι(y, z) =

h(z,m)−ψ(m) + γψ(y−m(z)), and make the additional assumptions that (i) {h(z, f) : f ∈ F} is a

pointwise separable uniformly bounded Donsker class and that (ii) h(Z, f) is uniformly continuous at

zero in the sense that supf∈F∩rL2(P ) Var [h(Z, f)]
1/2 → 0 as r → 0. This is proven in Appendix A.1.

Remark 2.5. Our estimator ψ̂AML is defined in terms of an estimator m̂ of our regression function

and the class F of possible regression errors m̂−m that we correct for. The choices we make for m̂ and

F correspond to assumptions about the regression function m. In addition to complexity-limiting

assumptions like smoothness, we may in some cases choose to make parametric or semiparametric

assumptions about the form of the model. Such an assumption distinguishes Examples 2.2 and 2.3,

which consider the Average Partial Effect for arbitrary functions m(w, x) and for functions of the

form m(w, x) = µ(x) + wτ(x) respectively.

In the latter case, which we discuss in detail in Section 2.2, it is natural to use an estimator m̂ of

this form and to take F to be a class of functions having this form. As a result, the tangent space

spanF is smaller than the space of all square integrable functions, and the Riesz representer γF for

ψ(·) will be the orthogonal projection of the Riesz representer γL2
for ψ(·) on the tangent space of all

square-integrable functions onto spanF . An important consequence is that the optimal asymptotic

variance in Example 2.3 is strictly lower than that in Example 2.2 so long as our stated conditions

for efficiency are satisfied.5 This reflects the ease of estimating the APE in the Conditionally Linear

Model relative to the general case.

We pay for this reduction in asymptotic variance with a corresponding reduction in robust-

ness. When these parametric or semiparametric assumptions are violated and m̂ − m /∈ spanF ,

the theorem above says nothing about the performance of our estimator. Characterization of the

behavior of our estimator in settings in which these assumptions tend to be violated in practice, as

in Example 2.2, is important but beyond the scope of this paper.

5 The the difference in asymptotic variance between estimators using weights converging to γL2
(Exam-

ple 2.2) and weights converging to γF (Example 2.3) is E v(Z)[γ2L2
(Z) − γ2F (Z)] = E v(Z)[γL2 (Z) − γF (Z)]2 +
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Remark 2.6. Although we assume no regularity conditions on the Riesz representer γψ(·) beyond

boundedness, our weights γ̂i still estimate it consistently. This is a universal consistency result, in

line with well known results about k-nearest neighbors regression and related estimators (Lugosi and

Zeger, 1995; Stone, 1977). Heuristically, the reason for this phenomenon is that the Riesz representer

γψ is the unique6 weighting function that sets a population-analogue of Iψ,F to 0; because γ̂ comes

close to doing the same, it must also approximate γψ. This universal consistency property is not

what controls the bias of our estimator ψ̂ (in fact the rate of convergence of γ̂i to γψ(Xi) is in

general too slow for standard arguments for plugin estimators to apply); however, it plays a key role

in understanding why we get efficiency under heteroskedasticity even though we choose our weights

by solving an optimization problem (2.5) that is not calibrated to the conditional variance structure

of Yi.

To understand this phenomenon, observe that under the conditions of Theorem 2.1, the condi-

tional bias term n−1
∑n
i=1 γ̂i(m̂(Zi)−m(Zi)) in our error is oP (n−1/2). It is therefore unnecessary

to make an optimal bias-variance tradeoff by this sort of calibration to get efficiency under het-

eroskedasticity and heteroskedasticity-robust confidence intervals; the asymptotic behavior of our

estimator is determined by the asymptotic behavior of our noise term n−1
∑n
i=1 γ̂iεi and therefore

by the limiting weights γψ(Zi).

For the same reason, it is not necessary to know the error scale ‖m̂−m‖F to form asymptotically

valid confidence intervals. We stress that this is an asymptotic statement; in finite samples, there

are strong impossibility results for uniform inference that is adaptive to the scale of an unknown sig-

nal(Armstrong and Kolesár, 2018). Furthermore, tuning approaches that estimate and incorporate

individual variances σi into the minimax weighting problem (2.5) like those discussed in Armstrong

and Kolesár (2018) may offer some finite-sample improvement.

2.0.4 Comparison with Double-Robust Estimation

Perhaps the most popular existing paradigm for building semiparametrically efficient estimators in

this setting is via constructions that first compute stand-alone estimates m̂(·) and γ̂ψ(·) for the

regression function and the Riesz representer, and then plug them into (Chernozhukov et al., 2016;

2E v(Z)γF (Z)[γL2
(Z) − γF (Z)]. The first term in this decomposition is positive and the second term is zero if

v(·)γF (·) ∈ spanF , as in this case therefore E γL2
(Z)[v(Z)γF (Z)] = ψ(v(Z)γF (Z)) = E γF [v(Z)γF ]. This condition

is satisfied under our efficiency conditions.

6This uniqueness is violated when the tangent space spanF that ψ acts on is not dense in the space of square
integrable functions. However, the dual characterization Lemma 2.5 shows that our weights must converge to a
function in the closure of this tangent space, and it follows that they converge to the unique Riesz representer γψ on
this tangent space.
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Newey, 1994; Robins and Rotnitzky, 1995)

ψ̂DR = γ(m̂)− 1

n

n∑
i=1

γ̂ψ(Zi) (m̂(Zi)− Yi) (2.12)

or an asymptotically equivalent expression (see e.g. van der Laan and Rubin, 2006). This estimator

has a long history in the context of many specific estimands, e.g. the aforementioned AIPW estimator

for the estimation of a mean with outcomes missing at random (Cassel, Särndal, and Wretman, 1976;

Robins, Rotnitzky, and Zhao, 1994). In recent work, Chernozhukov, Newey, and Robins (2018)

describe a general approach of this type, making use of a novel estimator for the Riesz representer

of a functional γψ in high dimensions motivated by the Dantzig selector of Candès and Tao (2007).

In considerable generality, this estimator ψ̂DR is efficient when we use sample splitting7 to

construct m̂ and γ̂ψ and these estimators satisfy

1

n

n∑
i=1

[γ̂ψ(Zi)− γψ(Zi)][m̂(Zi)−m(Zi)] ∈ oP (n−1/2) (2.13)

(Chernozhukov et al., 2017; Zheng and van der Laan, 2011). Taking the Cauchy-Schwartz bound

on this bilinear form results in the well known sufficient condition on the product of the errors,

‖γ̂ψ − γψ‖L2(Pn)‖m̂−m‖L2(Pn) ∈ oP (n−1/2). This phenomenon, that we can trade off accuracy in

how well the two nuisance functions m and γψ are estimated, is called double-robustness.

While the estimator ψ̂AML defined in (2.9) shares the form of ψ̂DR, it is in no reasonable sense

doubly robust. This is by design. The weights γ̂ used in ψ̂AML are optimized for the task of

correcting the error of the plugin estimator ψ(m̂) when our assumptions on the regression error

function m̂ −m are correct. When this is the case and the class F characterizing our uncertainty

about this function is sufficiently small (e.g. Donsker), this allows us to be completely robust to

the difficulty of estimating the Riesz representer γψ. Our estimator will be efficient essentially

because the error γ̂ − γψ will be sufficiently orthogonal to all functions f ∈ F that (2.13) will be

satisfied uniformly over the class of possible regression error functions m̂−m ∈ F . As the existence

of an estimator m̂ whose error m̂−m is tight in the gauge of some Donsker class F is essentially

equivalent to the existence of an oP (n−1/4)-consistent regression estimator of m, one way to interpret

this is that our use of minimax linear weights γ̂i rather than plug-in estimates of γψ(Zi) has let us

completely eliminate the regularity requirements on the Riesz representer γψ while requiring the

same level of regularity on the regression function m(·).

On the other hand, we sacrifice robustness to the difficulty of estimating the regression function

m. In terms of the regularity assumptions necessary for asymptotic efficiency, ψ̂DR is preferable to

7In particular, this result holds if we use the cross-fitting construction of Schick (1986), where separate data
folds are used to estimate the nuisance components m̂(·) and γ̂ψ(·) and to compute the expression (2.12) given those
estimates.
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ψ̂AML whenever estimates of γψ with faster than OP (n−1/4) convergence are available (and vice-

versa). Furthermore, for some specific choices of estimators γ̂ψ(·) and m̂(·), it has been shown that

the errors in estimating the nuisance parameters are sufficiently orthogonal that the rate-product

bound can be relaxed (Newey and Robins, 2018). Thus, our aim is by no means to suggest that the

AMLE dominates existing doubly-robust methods, but rather only to show that the approach can

achieve efficiency under surprisingly general conditions.

In addition, we typically sacrifice robustness to any semiparametric or parametric assumptions we

make on the form our regression function m. For example, when estimating a mean with outcomes

missing at random in a high-dimensional linear model m(w, z) = wxTβ, it is natural to control error

over a set F of similar linear models. In this case, the Riesz representer for ψ(·) on the tangent

space spanF will be not the inverse propensity weight w/e(x) but its best linear approximation.

This can result in greater efficiency of estimation than using the true or estimated inverse propensity

weights but it does not correct for misspecification of the linear model as the use of inverse propensity

weights would. This phenomenon is not unique to our approach, as some other methods can estimate

something like a Riesz representer on a tangent space of their choosing. See e.g. Remark 2.5 of

Chernozhukov et al. (2017) or Section 3 of Robins et al. (2007).

Thus, while our estimator (2.9) can potentially be seen as an instance of (2.12) because our

weights γ̂i do converge to γψ(Zi), the way the two estimators work is very different. Convergence

of our weights to the Riesz representer is slow and plays only a second-order role in our analysis.

The reason our weights succeed in debiasing ψ(m̂) is the form of the optimization problem (2.5),

not our universal consistency result. Thus, we often find it more helpful to think of our method in

the context of minimax linear estimation rather than that of doubly robust methods.

However, these two approaches are not really discrete alternatives. The following section’s The-

orem 2.2 shows that our weights γ̂ will, if our tuning parameter σ in (2.9) is allowed to grow with

sample size at the correct rate, typically give a rate-optimal estimate of the Riesz representer γ̂ψ.

Thus, by varying this parameter σ in our estimator (2.9), we trace out a family of estimators in-

cluding the AMLE and a doubly-robust estimator using a very reasonable estimate of γ̂ψ. This is

discussed briefly in Appendix A.1. In this paper, we will focus on the AMLE case, deferring the

exploration of this continuum and strategies for choosing this tuning parameter σ to later work.

2.0.5 Related Work

As discussed above, our approach is primarily motivated as a refinement of minimax linear estimators

as developed and studied by a large community over the past decades (Armstrong and Kolesár, 2018;
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Cai and Low, 2003; Donoho, 1994; Donoho and Liu, 1991; Ibragimov and Khas’minskii, 1985; Imbens

and Wager, 2017; Johnstone, 2015; Juditsky and Nemirovski, 2009; Kallus, 2016; Zubizarreta, 2015);

meanwhile, our main efficiency result is most closely comparable to results from the literature on

semiparametrically efficient inference, including results on doubly robust methods (Belloni et al.,

2017; Bickel et al., 1998; Chen et al., 2008; Chernozhukov et al., 2017, 2018; Farrell, 2015; Hahn,

1998; Hirano et al., 2003; Mukherjee et al., 2017; Newey, 1994; Newey and Robins, 2018; Scharfstein

et al., 1999; Robins and Rotnitzky, 1995; Robins et al., 2017; van der Laan and Robins, 2003; van der

Laan and Rose, 2011; van der Vaart, 1991).

We are aware of two estimators that can be understood as special cases of our augmented

minimax linear estimator (2.2). In the case of parameter estimation in high-dimensional linear

models, Javanmard and Montanari (2014) propose a type of debiased lasso that combines a lasso

regression adjustment with weights that debias the L1-ball (i.e., a convex class known to capture

the error of the lasso); meanwhile, Athey, Imbens, and Wager (2016) develop a related idea for

average treatment effect estimation with high-dimensional confounding. The contribution of our

paper relative to this line of work lies in the generality of our results, and also in characterizing the

asymptotic variance of the estimator under heteroskedasticity and proving efficiency in the fixed-

dimensional nonparametric setting. Given heteroskedasticity, Athey, Imbens, and Wager (2016)

and Javanmard and Montanari (2014) only prove
√
n-consistency but do not characterize the the

asymptotic variance directly in terms of the distribution of the data; rather, they have an expression

for the variance that depends explicitly on the solution to an optimization problem analogous to

(2.5).

In the special case of mean estimation with data missing at random, the optimization problem

(2.5) takes on a particularly intuitive form, and

IF = sup
f∈F

1

n

n∑
i=1

(1−Wiγ̂i) f(Xi, 1) (2.14)

measures how well the γ̂-weighted average of f over the observed samples matches its average over

everyone. In other words, the minimax linear weights enforce “balance”, which has been emphasized

as fundamental to this problem by several authors including Rosenbaum and Rubin (1983) and

Hirano, Imbens, and Ridder (2003). More recently, there has been considerable interest in practical

methodologies that emphasize balance when paired with AIPW methodology (Athey et al., 2016;

Chan et al., 2015; Graham et al., 2012, 2016; Hainmueller, 2012; Hirano et al., 2001, 2003; Imai

and Ratkovic, 2014; Kallus, 2016; Wang and Zubizarreta, 2017; Zhao, 2016; Zubizarreta, 2015). In

addition to generalizing beyond the missing-at-random problem, our Theorem 2.4 also provides the
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sharpest results we are aware of for balancing-type estimators in this specific problem.

2.1 Estimating Linear Functionals

In this section, we will address the problem of estimating continuous linear functionals of the form

ψ(m) = E [h(Z,m)] at m = E [Yi | Zi = z]. We will be working with a generalization of the estimator

described in the previous section that substitutes sample averages of h(Zi, ·) for the possibly unknown

functional ψ(·),

ψ̂AML =
1

n

n∑
i=1

h(Zi, m̂)− 1

n

n∑
i=1

γ̂i (m̂(Zi)− Yi) ,

γ̂ = argmin
γ∈Rn

I2
h,F̃ (γ) +

σ2

n2
‖γ‖2, Ih,F = sup

f∈F

1

n

n∑
i=1

[γif(Zi)− h(Zi, f)].

(2.15)

Note that in the case that ψ(·) is known, h(Zi, ·) = ψ(·) for all Zi, and this reduces to our estimator

from Theorem 2.1 when we take F̃ = F∩ρnL2(Pn). Here we allow F̃ to be an arbitrary set defined in

terms of Z1 . . . Zn and we will characterize our estimator primarily in terms of a pair of nonrandom

‘bounds’ FL and F satisfying FL ⊆ F̃ ⊆ F with high probability.

To better understand the behavior of our estimator, we decompose its error into a bias-like term

and a noise-like term. We will consider estimation of a sample-average version of our estimand,

ψ̃(m) := n−1
∑n
i=1 h(Zi,m), as the behavior of the latter term in the error decomposition ψ̂AML −

ψ(m) = (ψ̂ − ψ̃(m)) + (ψ̃(m)− ψ(m)) is entirely out of our hands. We write

ψ̂AML − ψ̃(m) =
1

n

n∑
i=1

(h(Zi, m̂)− h(Zi,m))− γ̂i (m̂(Zi)− Yi)

=
1

n

n∑
i=1

h(Zi, m̂−m)− γ̂i(m̂−m)(Zi)︸ ︷︷ ︸
bias

+ γ̂i (Yi −m(Zi))︸ ︷︷ ︸
noise

.

(2.16)

We will establish finite sample bounds on the bias term and the difference between the noise

term and the noise term of the oracle estimator with weights γψ(Zi). If both of these quanti-

ties are op(n
−1/2), our estimator will be asymptotically linear with influence function ι(y, z) =

h(z,m)−ψ(m)+γψ(z)(y−m(z)), which implies asymptotic efficiency under a few conditions stated

in Proposition 2.3.

We establish these bounds in essentially three steps.

1. Establish a bound on n−1
∑n
i=1(γ̂i − γ?i )2 for γ?i = γψ(Zi).

2. Our bias term can be bounded by ‖m̂ −m‖F̃Ih,F̃ (γ̂). Observe that as a consequence of the

definition of our weights γ̂ in (2.15), they satisfy

Ih,F̃ (γ̂)2 ≤ Ih,F̃ (γ?)2 +
σ2

n2

n∑
i=1

γ?i
2 − γ̂2

i . (2.17)
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Empirical process techniques can be used to characterize the first term in this bound, as

the weights γ? have the property that Ih,F (γ?) is the supremum of the empirical process

n−1
∑n
i=1 δXi indexed by the class of mean-zero functions H = {z → h(z, f)− γψ(z)f(z) : f ∈

F}, while the second term can be bounded using the previous step and some simple arithmetic.

This bound, in combination with a bound on ‖m̂−m‖F̃ , will imply a bound on our bias term.

3. Bound the difference between our noise term and that of the oracle estimator, n−1
∑n
i=1(γ̂i −

γ?i )(Yi −m(Zi)), using our the first step.

The first step represents the core technical contribution of our paper. Following a few definitions,

we will state and prove these bounds.

2.1.1 Definitions

As it will be useful to discuss the behavior of h(Zi, f) for f ∈ F − γψ, if γψ /∈ spanF we will we will

work implicitly with the extension of the z-indexed family of linear functionals h(z, ·) to the space

spanned by this set that satisfies h(z, γψ) = γψ(z)2 for all z. Note that when working on this larger

space, γψ is still a Riesz representer, as ψ(f) = E [h(Zi, f)] = E [γψ(Zi)f(Zi)] for all f in it. It will

often be convenient to work on a slight enlargement of this set, F − [0, 1]γψ, which is star-shaped

around zero.

To characterize the size of a set G, we will use its Rademacher complexity, defined Rn(G) :=

E supg∈G |n−1
∑n
i=1 εig(Zi)| where εi = ±1 each with probability 1/2 independently and indepen-

dently of the sequence Z1 . . . Zn. A useful type of fixed point of the Rademacher complexity of a

parameterized family of classes G(r) will be written R?n(c,G(r)) := inf{r > 0 : Rn(G(r)) ≤ cr2}.

In this context, we will take G(r) = F ∩ rL2(P ) or a related class, and we call Rn(G(r)) a local

Rademacher Complexity (see, e.g., Bartlett et al., 2005; Koltchinskii, 2006). We will also use its

maximal supremum norm MG := supg∈G‖g‖∞.

We will be interested in the Rademacher complexity and local Rademacher complexities of the

classes F(r) = F∩rL2(P ), H(r) = {h(z, f)−γψ(z)f(z) : f ∈ F(r)}, F?(r) = (F−[0, 1]γψ)∩rL2(P ),

H?(r) = {h(z, f) − γψ(z)f(z) : f ∈ F?(r)}, and as a shorthand will write H = H(∞),F? =

F?(∞),H? = H?(∞) for the non-localized versions. Specifically, the primary factors determining

our bound will be a measure rQ of the local complexity of F?, measures u(H) and rC of the

complexity and local complexity of the classes H and H?, and a measure κ of the degree of ‖·‖FL-

size necessary to approximate γψ well. We define these measures, which are similar to those in Lecué

and Mendelson (2017), below.
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rQ(ηQ) =

√
24(1 + ηQ)

1− ηQ
R?n

(
1

2MF?
,F?(·)

)
;

rC(ηC , δ) = inf
{
r > 0 : u(H?(r), δ) ≤ ηCr2

}
where

u(H, δ) > sup
h∈H

n−1
n∑
i=1

h(Zi) with probability 1− δ; 8

κ2(σ, δ) = inf
γ̃

{
‖γ̃ − γψ‖2L2(P ) +

δσ2‖γ̃‖2FL
2n

}
;

(2.18)

It may be helpful to have a sense of the behavior of these quantities before we state our main

result. If F̃ has an upper bound F that is a Donsker class, typically the local complexity fixed

points rQ(ηQ) and rC(ηC , δ) will be o(n−1/4) and u(Hn, δ) will be O(n−1/2) — typically the latter

will be o(n−1/2) when we exploit the consistency of the regression m̂ by choosing F̃n satisfying with

high probability supf∈F̃n‖f‖L2(P ) → 0.9 And for fixed σ > 0, we will have κ(σ, δ) → 0 essentially

without assumptions. Roughly speaking, these properties will be sufficient to establish asymptotic

results analogous to Theorem 2.1.

2.1.2 Main Results

Theorem 2.2. Suppose that we observe iid (Y1, Z1) . . . (Yn, Zn) with Yi ∈ R, Zi in an arbitrary

set Z, and v(z) = Var [Yi | Zi = z] bounded. Let {h(z, ·) : z ∈ Z} be a family of linear functionals

and the linear functional ψ(·) = E [h(Zi, ·)] be continuous. Consider the estimator ψ̂AML defined in

(2.15) in terms of σ > 0 and an absolutely convex set F̃ defined in terms of Z1 . . . Zn. Let there

exist nonrandom sets FL and F satisfying FL ⊆ F̃ ⊆ F with probability 1 − δF̃ with F pointwise

separable, absolutely convex, and either reflexive or totally bounded in ‖·‖∞. If {h(z, f) : f ∈ F} is

pointwise separable and h(Z1, ·) . . . h(Zn, ·) are continuous on the normed vector space (spanF , ‖·‖F )

and on (spanF , ‖·‖∞) as well if the former space is not reflexive, then on an event of probability at

least 1− exp{−c1(ηQ)nrQ(ηQ)2/M2
F?} − 5δ − 2δF̃ ,

1. The weights γ̂ defined in (2.15) satisfy n−1
∑n
i=1(γ̂i − γ̂ψ(Zi))

2 ≤ a ∧ b where

8We may use the bound u(H, δ) = 2δ−1Rn(H), which arises from Markov’s inequality and symmetrization (see
e.g. van der Vaart and Wellner, 1996, Lemma 2.3.1). Bounds based on Talagrand-type concentration inequalities (see
e.g. Bartlett et al., 2005, Theorem 2.1) offer much weaker dependence on δ when suph∈H‖h‖L2(P ) is comparable to

Rn(H), which will typically be the case.

9This is tantamount to saying that the deviation of an empirical process from its mean is op(n−1/2) when the
class indexing it decays to zero in ‖·‖L2(P ), a phenomenon typically referred to as the asymptotic equicontinuity of

the empirical process.
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a = αu(H?, δ) + R̄;

b = 2α2r2 ∨ 2
R̄+ σ2/n

ηQ − 2α−1ηC
∨ 44M2

F?α
2 log(δ−1)

n
;

r = rQ(ηQ) ∨ rC(ηC) ∨ ση−1/2
Q n−1/2;

α = 1 ∨
[
2ηCσ

−2nr2 + σ−1n1/2R̄1/2
]

R̄ = 2δ−1

F̃

[
κ2 + 2σ−1κσ(H?(κ))

]
+ 4δ

−1/2

F̃ n−1/2σ(H?(κ)), κ = κ(σ, δF̃ ).

(2.19)

2. The uniform version of our bias term satisfies the bound

Ih,F̃ ≤ u(H, δ) + 21/2‖γψ‖1/2L2(Pn)σn
−1/2(a ∧ b)1/4. (2.20)

3. The difference between our noise term and that of the oracle estimator satisfies∣∣∣∣∣n−1
n∑
i=1

(γ̂i − γψ)(Y −m(Zi))

∣∣∣∣∣ ≤ δ−1/2‖v‖∞n
−1/2(a ∧ b)1/2. (2.21)

Here ηQ ∈ (0, .47) and ηC > 0 are arbitrary and the function c2 is defined in Lemma 2.7.

These bounds yield straightforward conditions under which our estimator is asymptotically linear,

i.e.

ψ̂AML − ψ̃(m) = n−1
n∑
i=1

ι̃(Yi, Zi) + oP (n−1/2), ι̃(y, z) = γψ(z)(y −m(z)); therefore

ψ̂AML − ψ(m) = n−1
n∑
i=1

ι(Yi, Zi) + oP (n−1/2), ι(y, z) = h(z,m)− ψ(m) + ι̃(y, z).

(2.22)

Typically, such estimators are asymptotically efficient. The following proposition, proven in Ap-

pendix A.1.4, generalizes the conditions for efficiency stated in Theorem 2.1

Proposition 2.3. Suppose we observe an iid sample (Zi, Yi)i≤n from P where Yi ∈ R and Zi ∈

Z, a complete separable metric space, and that the set of possible regression functions m(z) =

E [Yi | Zi = z] is a linear space M. An estimator for a continuous linear functional of the form

ψ(m) = E [h(Zi,m)] at m(z) = E [Yi | Zi = z] is regular if (2.22) holds where γψ is the Riesz

representer for the functional ψ(·) on a space containing the closure of M. It is semiparametrically

efficient if, in addition, the function z → γψ(z) Var [Yi | Zi = z] is in the closure of M.

Now consider the expansion of our estimator around this characterization.∣∣∣∣∣ψ̂AML − ψ̃(m)− 1

n

n∑
i=1

ι̃(Yi, Zi)

∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑
i=1

[h(Zi, m̂−m)− γ̂i(m̂−m)(Zi)] +
1

n

n∑
i=1

(γ̂i − γψ)(Y −m(Zi))

∣∣∣∣∣
≤ ‖m̂−m‖F̃Ih,F̃ (γ̂) +

1

n

n∑
i=1

(γ̂i − γψ)(Yi −m(Zi)).

(2.23)
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This difference will be negligible if both the product of ‖m̂ −m‖F̃ and our bound (2.20) and our

bound (2.21) are oP (n−1/2). An inspection of these bounds, which we carry out in Appendix A.1,

shows that this happens under conditions generalizing those of Theorem 2.1. This yields the following

asymptotic result.

Theorem 2.4. Let (Zi,n, Yi,n)i≤n be an iid sample from Pn with Yi,n ∈ R, Zi,n in an arbitrary set

Zn, and vn(z) = Var [Yi,n | Zi,n = z] bounded uniformly in n, and define mn(z) = E [Yi,n | Zi,n = z].

In terms of a family of linear functionals {hn(z, ·) : z ∈ Zn}, define the continuous linear functional

ψn(·) = E [h(Zi,n, ·)]. Choose F̃n to be an absolutely convex set, defined in terms of Z1 . . . Zn,

of square integrable functions on Zn. In terms of that set, an estimator m̂ for mn, and tuning

parameters σn = O(1), define the estimator

ψ̂ =
1

n

n∑
i=1

hn(Zi,n, m̂)− 1

n

n∑
i=1

γ̂i (m̂(Zi,n)− Yi,n) ,

γ̂ = argmin
γ∈Rn

I2
hn,F̃n

(γ) +
σ2
n

n2
‖γ‖2, Ih,F = sup

f∈F

1

n

n∑
i=1

[γif(Zi,n)− h(Zi,n, f)].

(2.24)

Let there exist nonrandom sets FL,n and Fn such that Pn{FL,n ⊆ F̃n ⊆ Fn} → 1 with Fn point-

wise separable and either reflexive or totally bounded in ‖·‖∞; let γψn be the Riesz representer of ψn

on the tangent space spanFn; and define Hn(r), F?n(r), H?n(r) as is Section 2.1.1 in terms of Fn,

hn, and γψn . Then if

i. for each Zi,n, the functional h(Zi,n, ·) is continuous on (spanFn, ‖·‖Fn) and if this space is

not reflexive, on (spanFn, ‖·‖∞) as well.

ii. our functional ψn(·) satisfies the condition sup{|ψn(f)| : f ∈ Fn, ‖f‖L1(Pn) ≤ 1} = O(1),

which is equivalent to uniform boundedness of its Riesz representer;

iii. its Riesz representer is approximable in the sense that there exist functions γ̃n satisfying ‖γ̃n−

γψn‖L2(Pn) → 0 and ‖γ̃n‖FL,n = o(n1/2);

iv. Fn is uniformly bounded in the sense that MFn = O(1);

v. R?n(1,F?n(·)), R?n(1,H?n(·)) = o(n−1/4);

vi. ‖m̂−m‖F̃n = OPn(1), Rn(Hn) = OPn(n−1/2), ‖m̂−m‖F̃nRn(Hn) = oPn(n−1/2);
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our weights γ̂ converge to the Riesz representer and our estimator ψ̂ is asymptotically linear, i.e.

n−1
n∑
i=1

(γ̂i − γ̂ψn(Zi,n))→Pn 0; (2.25)

ψ̂ − ψn(mn) = n−1
n∑
i=1

ιn(Yi,n, Zi,n) + oPn(n−1/2) with (2.26)

ιn(y, z) = hn(z,mn)− ψn(mn) + γψn(z)(y −m(z))

Here our assumptions (i,ii,iv) are triangular-array equivalents of assumptions stated in Theo-

rem 2.1; (v,vi) generalize the Donskerity assumption and assumptions on the tightness and consis-

tency of m̂ in Theorem 2.1 for the estimation of a non-known functional and to the triangular-array

setting; and (iii) is a new assumption that is essentially vacuous in the non-triangular asymptotic

setting (Pn = P ). This is the case for (iii) because any fixed function in spanF including γψ can

be approximated by a sequence γ̃n with ‖γ̃n‖F → ∞. We need to include this condition in the

triangular-array asymptotics because γψn is not a fixed function. It may, for example, be be a

function of increasing dimension.

When our estimator has the asymptotic characterization (2.26),
√
n(ψ̂ − ψn(mn)) is asymptoti-

cally normal with variance Vn = E
[
ιn(Yi, Zi)

2
]
.We can then form confidence intervals ψ̂ ± zα/2n−1/2V̂ 1/2

of asymptotic size 1− α using a consistent variance estimate V̂ . A simple choice is

V̂ =
1

n

n∑
i=1

(
hn(Zi,n, m̂)− ψ̂

)2

+ γ̂2
i (Yi,n − m̂ (Zi,n))

2
. (2.27)

2.1.3 Proof of Finite Sample Results

We will now prove Theorem 2.2. In our proof, we will write Pnf and Pf for averages of the function

f over the empirical and population distributions of Z respectively in accordance with convention

in the empirical process literature (see e.g. van der Vaart and Wellner, 1996). As a slight abuse of

notation, we also write Pn to indicate an empirical sum in other expressions.

2.1.3.1 Consistency of the Minimax Linear Weights

To show that our weights converge to the γ̂, we will first characterize them as γ̂i = ĝ(Xi) for a least

squares estimator ĝ of the Riesz representer γ. This least squares problem is the dual of the problem

(2.15) solved by our weights γ̂.

2.1.3.2 Dual Characterization as a Least Squares Problem

Lemma 2.5. Let G be an absolutely convex set and the space (spanG, ‖·‖G) be a reflexive vector

space. Let a linear functional L(f) and the point evaluation functionals δz(f) := f(z) for all z ∈
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Z1 . . . Zn be continuous in ‖·‖G. Then,

inf
γ∈Rn

`n,G(γ) = sup
g∈spanG

Mn,G(g) where

`n,G(γ) = Pnγ
2
i + sup

f∈G
[L(f)− Pnγif(Zi)]

2
will be called the primal and

Mn,G(g) = −‖g‖2G − Png(Zi)
2 + 2L(g) will be called the dual.

Furthermore, the primal has a unique minimum at γ̂ irrespective of the reflexiveness of our space,

the dual has a potentially non-unique maximum at ĝ, and for any ĝ at which the dual maximum is

attained, γ̂i = ĝ(Zi).

This result is proven in the Section A.2 of the appendix by working with a constrained optimiza-

tion problem equivalent to the primal. After introducing a Lagrange multiplier for the constraint,

the resulting saddle point problem is reduced to maximization of Mn,G by explicitly solving for γ

and our Lagrange multiplier as functions of ĝ.

In our estimator (2.15), we use the weights γ̂ that minimize (σ2/n)`n,G where L(f) = Pnh(Zi, f)

and G = σ−1n1/2F̃ , so we may characterize our weights via the function ĝ that maximizes Mn,λF̃ for

λ = σ−1n1/2. This characterization will be valid at least on the high-probability event that F̃ ⊆ F ,

as on this event ‖·‖F ≤ ‖·‖F̃ and therefore the functionals δZ1 . . . δZn and L will be continuous in

‖·‖F̃ and therefore in ‖·‖G . There is one remaining assumption that we’ve made in Lemma 2.5 but

not in Theorem 2.2: the assumption that the space (span F̃ , ‖·‖F̃ ) is reflexive. We will assume

this holds for now, as it lets us simplify exposition but does not materially affect the final result.

Later, we will derive a bound without this assumption by application of this Lemma to a sequence

finite-dimensional and therefore reflexive approximations to F̃ .

It is perhaps not immediately obvious that maximizing Mn,λF̃ is a penalized least squares problem

for estimation of γψ. To show this, we will consider the excess loss Lγ̃(g) := −Mn,λF̃ (g) +Mn,λF̃ (γ̃)

relative to an approximation γ̃ of the Riesz representer γψ. This excess loss is minimized and no

larger than zero at ĝ. We work with an approximation γ̃ because we are not assuming that γψ

is in the span of F , so ‖γψ‖λF̃ may be infinite and therefore the excess loss relative to γψ itself

uninformative. We then write10

10This expression can be checked via simple algebra as follows, Lγ̃(g) = Pn(g2 − γ̃2) − 2Pn [h(Z, g)− h(Z, γ̃)] +

(‖g‖2F̃−‖γ̃‖
2
F̃ )/λ2 = Pn

[
(g − γψ)2 − (γ̃ − γψ)2 + 2γψ(g − γ̃)

]
−2Pn [h(Z, g)− h(Z, γ̃)]+(‖g‖2F̃−‖γ̃‖

2
F̃ )/λ2 = Pn(g−

γψ)2 − 2Pn
[
h(Z, g − γψ)− γψ(g − γψ)

]
+ ‖g‖2F̃/λ

2 − {Pn(γ̃ − γψ)2 − 2Pn
[
h(Z, γ̃ − γψ)− γψ(γ̃ − γψ)

]
− ‖γ̃‖2F̃/λ

2}.
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Lγ̃(g) = Pn(g − γψ)2 − 2Pnȟ(Z, g − γψ) + ‖g‖2F̃/λ
2 −Rn,λF̃ (γ̃)2, where

ȟ(Z, g) = h(Z, g)− γψ(Z)g(Z) and

Rn,λF (γ̃) = Pn(γ̃ − γψ)2 − 2Pnȟ(Z, γ̃ − γψ) + ‖γ̃‖2F/λ
2

(2.28)

Here ȟ is, in a sense, a centered version of our linear functional h, as our Riesz representer γψ

satisfies Pγψ(Z)g(Z) = Ph(Z, g) for all g ∈ span(F ∪ {γψ}). Consequently, we have the typical

form of the excess loss for a penalized least squares estimator: it is a sum of the empirical MSE,

a centered empirical process, and a difference in penalties ‖g‖2F̃/λ2 −Rn,λF̃ (γ̃)2. Note that in the

case that we take γ̃ = γψ, this difference in penalties is the more familiar ‖g‖2F̃/λ2 − ‖γψ‖2F̃/λ2. We

work with the noisy measurement Rn,λF̃ (γ̃) of the regularity of γψ indirected through γ̃ to establish

useful bounds even when ‖γψ‖F =∞.

2.1.3.3 Consistency of the Dual Solution

We will use this dual characterization to prove a high-probability finite-sample bound on ‖ĝ −

γψ‖L2(Pn). To do this, we will show that on a high-probability event, Lγ̃(g) > 0 for all g such that

‖g− γψ‖L2(Pn) > r for some radius r. Our main workhorse is the following inequality for Lγ̃(g): for

any R̄ and F such that R̄ > Rn,λF̃ (γ̃) and F ⊇ F̃ ,

Lγ̃(g) ≥ Ľ(g − γψ)− 1 (‖g‖F < 1) ‖g − γψ‖2F?/λ
2 for

Ľ(ǧ) := Pnǧ
2 − 2

∣∣Pnȟ(Z, ǧ)
∣∣+ ‖ǧ‖2F?/λ

2 − R̄,
(2.29)

where F? := F − [0, 1]γψ and ǧ should be interpreted as short-hand for g−γψ. In our argument, we

will choose R̄ and F to be deterministic, and then verify that the required conditions R̄ > Rn,λF̃ (γ̃)

and F ⊇ F̃ hold with high probability. The lower bound (2.29) follows directly from the definition

(2.28) once we verify that

1 (‖g‖F ≥ 1) ‖g − γψ‖2F? ≤ ‖g‖
2
F̃ .

To do so, first observe that the containment F ⊇ F̃ implies that ‖g‖F̃ ≥ ‖g‖F . Then observe

that if g ∈ αF , g − γψ ∈ α(F − α−1γψ) ⊆ αF? as long as α−1 ∈ [0, 1]. This implies that

‖g‖F̃ ≥ ‖g‖F ≥ ‖g − γψ‖F? whenever ‖g‖F ≥ 1, which is equivalent to what we wanted to check.

From this point, our argument will be fairly standard, and we will base our presentation on

that in Lecué and Mendelson (2017). We will first establish a sort of tightness result, in which we

show that for ǧ outside a ‖·‖F? -ball, we will have Ľ(ǧ) > 0. And with it, we will get a ‖·‖L2(P )

bound, although we will express it strangely for a reason that will become clear later when we prove
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Lemma 2.8. Our core approach will be to lower bound the difference Pnǧ
2 − 2

∣∣Pnȟ(Z, ǧ)
∣∣ between

our empirical MSE and our empirical process term as a proportion of the population MSE P ǧ2. We

will first state a purely deterministic result in terms of two uniform-over-F? bounds: a lower bound

on the ratio of the empirical and population MSE and an upper bound on our empirical process

term. We prove this lemma at the end of this section.

Lemma 2.6. Let F? be a class of functions mapping support(P ) → R that is star-shaped around

zero and {h(z, ·) : z ∈ support(P )} be a set of linear functionals on the span of F? and and define

Ľ(ǧ) as in (2.29). Suppose rQ, ηQ, rC , and ηC satisfy

inf
ǧ∈F?:P ǧ2≥r2Q

Pnǧ
2

P ǧ2
≥ ηC (2.30)

sup
ǧ∈F?∩rCL2(P )

∣∣Pnȟ(Z, ǧ)
∣∣ ≤ ηCr2

C . (2.31)

Then for r = rQ∨rC ∨λ−1η
−1/2
Q and α = 2λ2ηCr

2 +λR̄1/2, Ľ(ǧ) > 0 for all ǧ satisfying ‖ǧ‖F? ≥ α.

Furthermore, Ľ(ǧ) > t for all ǧ satisfying ‖ǧ‖F? ≤ α and ‖ǧ‖2L2(P ) > α2r2 ∨ [R̄+ t]/[ηQ − 2α−1ηC ].

The given value of α is determined by the behavior of bounds like (2.30) and (2.31) over a scale

of classes sF? for s ∈ R+.

The condition (2.31) holds with probability 1 − δ for rC = rC(ηC , δ) as defined in (2.18). To

establish (2.30) with high probability, we use the following conveniently rewritten form of Bartlett

et al. (2005, Theorem 3.3). It is proven in Appendix A.2.

Lemma 2.7. Let F be pointwise separable, star-shaped around zero, and uniformly bounded in

sup-norm. For any ηQ ∈ (0, 1),

inf
f∈F :Pf2≥r2Q

Pnf
2

Pf2
≥ ηQ with probability 1− exp

{
−
c1(ηQ)nr2

Q

M2
F

}
with

rQ = c0(ηQ) inf

{
r > 0 : Rn (F ∩ rL2(P )) ≤ r2

2MF

}
and c0(ηQ) =

√
24(1+ηQ)

(1−ηQ) , c1(ηQ) =
(1−ηQ)2

2(1+ηQ)(21−11ηQ) .

Having established conditions under which the assumptions of Lemma 2.6 hold, it will now be

straightforward to prove a bound of the form ‖ĝ − γψ‖L2(Pn) < a ∧ b like the one in Theorem 2.2.

Lemma 2.8. Suppose that we observe Z1 . . . Zn
iid∼ P and that for each z ∈ support(P ), we have

a real linear functional h(z, ·) acting on the real-valued functions f(z) on support(P ). Let F̃ be an

absolutely convex set that may depend on the sample Z1 . . . Zn and define Mn,λF̃ (g) = −‖g‖2F̃/λ2 −

Png(Zi)
2 + 2Pnh(Zi, g).
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Let F be a nonrandom set of real-valued functions on support(P ) that is pointwise measurable and

absolutely convex; {h(z, f) : f ∈ F} also be pointwise measurable; ψ(·) = E [h(Z, ·)] be a continuous

linear functional on the space (spanF , ‖·‖L2(P )) and γψ ∈ spanF be its Riesz representer; and define

Rn,λF as in (2.28), F?(r) = (F−[0, 1]γψ)∩rL2(P ), and H?(r) = {z → h(z, f)− γψ(z)f(z) : f ∈ F?(r)}.

Let ĝ and γ̃ be two random functions on support(P ). If F̃ ⊆ F , Rn,λF̃ (γ̃) < R̄, and Mn,λF̃ (ĝ) ≥

Mn,λF̃ (γ̃) on an event of probability 1 − 2δ′ for some nonrandom R̄ > 0, then on an event A of

probability 1− exp{−c2(ηQ)nrQ(ηQ)2/M2
F?} − 3δ − 2δ′, Pn(ĝ − γψ)2 ≤ a ∧ b where

a = αu(H?, δ) + R̄;

b = 2α2r2 ∨ 2
R̄+ λ−2

ηQ − 2α−1ηC
∨ 44M2

F?α
2 log(δ−1)

n
;

α = 1 ∨
[
2λ2ηCr

2 + λR̄1/2
]

;

r = rQ(ηQ) ∨ rC(ηC , δ) ∨ λ−1η
−1/2
Q ;

(2.32)

for ηQ ∈ (0, .47) and ηC > 0.

We prove this lemma shortly, using different arguments to establish our bounds a and b. Our

bound a will follow from a simple consistency-given-tightness argument: we show that when the

empirical MSE is greater than a, it will exceed the centered empirical process term Pnh(Z, ǧ) uni-

formly over ǧ ∈ αF? and therefore imply that the excess loss is positive. Our bound b will follow

from the ‖·‖L2(P ) from Lemma 2.6.

This gets us nearly to our goal. But this shows convergence of the solution ĝ to our dual problem

to the Riesz representer γψ, whereas we want convergence of the weights γ̂ minimizing `n,λF̃ to γψ.

By Lemma 2.5, this is equivalent when F̃ is reflexive. The following lemma, proven in Appendix A.2,

uses a finite dimensional approximation argument to show that reflexiveness is not necessary.

Lemma 2.9. Under the assumptions of Lemma 2.5 excepting reflexiveness, the assumptions of

Lemma 2.8 with the condition Mn,λF̃ (ĝ) ≥ Mn,λF̃ (γ̃) involving ĝ dropped, and the additional as-

sumption that F is totally bounded in ‖·‖∞, the weights γ̂ minimizing the primal `n,λF̃ satisfy

Pn(γ̂i − γψ(Zi))
2 ≤ a ∧ b on A with those quantities defined as in Lemma 2.8.

We conclude our proof of our theorem’s first claim by establishing a specific value of R̄ to use in

this bound. To do this, we make use of our theorem’s assumption that F̃ satisfies FL ⊆ F̃ ⊆ F on

an event of probability 1− δ′. On the event,Rn,λF̃ ≤ Rn,λFL . Therefore given R̄ such that for some

γ̃, Rn,λFL(γ̃) ≤ R̄ on an event of probability 1 − δ′, the conditions F̃ ⊆ F and Rn,λF (γ̃) ≤ R̄ will

be satisfied on the interestion of these events which has probability 1 − 2δ′ as required. To choose
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R̄ satisfying this condition for a deterministic function γ̃, we use the following bound, proven in

Appendix A.2.

Lemma 2.10. Under the assumptions of Theorem 2.2, with probability 1− δ,

Rn, λFL(γ̃) < 2δ−1[κ2 + 2λn−1/2κσ(H?(κ))] + 23/2δ−1/2n−1/2σ(H?(κ)),

κ2(γ̃) = ‖γ̃ − γψ‖2L2(P ) + δ‖γ̃‖2FL/(2λ
2).

(2.33)

Letting κ2
? be the infimum of κ2

?, for any ε > 0 we may take R̄ to be the value of our bound

at a point γ̃ with κ(γ̃) = κ? + ε. And then, as the linearity of h(Z, ·) implies the continuity of

κ → σ(H?(κ)), the effect of this ε on our bound R̄ is infinitesimal. To state a cleaner result, we

increase our factor of 23/2 to 4 and drop this ε in our statement of Theorem 2.2.

We close the section with proofs of our core lemmas, Lemma 2.6 and Lemma 2.8.

Proof of Lemma 2.6. We will first prove the following claim. Suppose we have the bounds

inf
ǧ∈αF?:P ǧ2≥r2Q,α

Pnǧ
2

P ǧ2
≥ ηQ,α (2.34)

sup
ǧ∈αF?

|Pnȟ(Z, ǧ)|
P ǧ2 ∨ r2

C,α

≤ ηC,α. (2.35)

Then if ηQ,α > 2ηC,α and (rQ,α ∨ rC,α)2 < α2/λ2−R̄
2ηC,α

, Ľ(ǧ) > 0 for all ǧ satisfying ‖ǧ‖F? ≥ α and

furthermore Ľ(ǧ) > t for all ǧ satisfying ‖ǧ‖F? ≤ α and ‖ǧ‖2L2(P ) > (rQ,α ∨ rC,α)2 ∨ [R̄+ t]/[ηQ,α −

2ηC,α].

To prove this claim, we begin by showing that Ľ(ǧ) > 0 for all ǧ in the sphere αS := {ǧ : ‖g‖F? =

α}. If ǧ ∈ αS satisfies P ǧ2 ≥ (rQ,α∨ rC,α)2, then Ľ(ǧ) ≥ [ηQ,α − 2ηC,α]P ǧ2 +
[
α2/λ2 − R̄

]
> 0. All

other ǧ ∈ αS satisfy P ǧ2 ≤ (rQ,α∨rC,α)2, in which case Ľ(ǧ) ≥ −2ηC,α(rQ,α∨rC,α)2+α2/λ2−R̄ > 0

under our assumption (rQ,α ∨ rC,α)2 < α2/λ2−R̄
2ηC,α

.

We will now extend this result to show that Ľ > 0 outside the sphere αS as well, on the set

{ǧ′ : ‖ǧ′‖F? > α}. Because F? is star-shaped around zero, any point ǧ′ with ‖ǧ′‖F? < ∞ can be

written in the form ǧ′ = Rǧ for ǧ ∈ αS, and the aforementioned points outside the sphere may be

written in this form for R > 1. Consider such a point.

Ľ(Rǧ) = R2Pnǧ
2 − 2R|Pnȟ(Z, ǧ)|+R2‖ǧ‖2F?/λ

2 − R̄

≥ R2
[
Pnǧ

2 − 2|Pnȟ(Z, ǧ)|+ ‖ǧ‖2F?/λ
2 − R̄

]
= R2Ľ(ǧ) > 0.

Consequently, under the stated conditions Ľ(ǧ) > 0 if ‖ǧ‖F? ≥ α as claimed.

27



We will complete our proof of this initial claim by checking that Ľ(ǧ) > t when ‖ǧ‖F? ≤ α and

‖ǧ‖2L2(P ) > (rQ,α ∨ rC,α)2 ∨ [R̄ + t]/[ηQ,α − 2ηC,α]. For such ǧ, Ľ(ǧ) ≥ [ηQ,α − 2ηC,α]P ǧ2 − R̄, and

this exceeds t because P ǧ2 > [R̄+ t]/[ηQ,α − 2ηC,α].

Our initial claim proven, we will now establish that its assumptions hold under the assumptions

of our Lemma. First, observe that (2.35) is implied by the bound

sup
ǧ∈αF?∩rCL2(P )

∣∣Pnȟ(Z, ǧ)
∣∣ ≤ ηCr2

C . (2.36)

This follows from an argument used in the proof of Mendelson (2014, Theorem 3.1), which we

restate for convenience. For ‖ǧ‖L2(P ) ≤ rC , the bound above directly implies |Pnȟ(Z, ǧ)| ≤ ηCr2
C .

For ‖ǧ‖L2(P ) ≥ rC , we may apply (2.36) to ǧ′ = (rC/‖ǧ‖L2(P ))ǧ, which satisfies the condition

‖ǧ′‖L2(P ) ≤ rC by construction and is in F? because it is a scaled-down version of ǧ and F? is

star-shaped around zero. Therefore

∣∣Pnȟ(Z, ǧ)
∣∣ =

∣∣Pnȟ(Z, ǧ′)
∣∣‖ǧ‖L2(P )

rC
≤ ηCr2

C

‖ǧ‖L2(P )

rC
≤ ηC‖ǧ‖2L2(P ).

Taking the maximum of the upper bounds for the two cases ‖ǧ‖L2(P ) ≤ rC and ‖ǧ‖L2(P ) ≥ rC gives

a bound |Pnȟ(Z, ǧ)| ≤ ηC(r2
C ∨ P ǧ2) valid for all ǧ ∈ αF? and therefore our claimed bound (2.35).

Because the ratio Pnǧ
2/P ǧ2 is invariant to scale,

inf
ǧ∈F?:P ǧ2≥r2Q

Pnǧ
2

P ǧ2
≥ ηQ ⇐⇒ inf

ǧ∈αF?:P ǧ2≥(αrQ)2

Pnǧ
2

P ǧ2
≥ ηQ.

Similarly, scaling (2.36) by α gives

sup
ǧ∈F?∩rCL2(P )

∣∣Pnȟ(Z, ǧ)
∣∣ ≤ ηCr2

C ⇐⇒ sup
ǧ∈αF?∩αrCL2(P )

∣∣Pnȟ(Z, ǧ)
∣∣ ≤ (ηC/α)(αrC)2.

Therefore under the assumptions of our Lemma, the conditions (2.34) and (2.35) for our claim are

satisfied with parameters ηQ,α = ηQ, ηC,α = ηC/α, rQ,α = αrQ, rC,α = αrC .

For those parameters, the additional condition (rQ,α ∨ rC,α)2 < α2/λ2−R̄
2ηC,α

can be equivalently

written as the quadratic inequality α2/λ2− 2ηCr
2α− R̄ > 0 for r = rQ ∨ rC . This convex quadratic

function of α has one positive and one negative root, so it will be positive for α > 0 iff α exceeds its

positive root

2ηCr
2 +

√
4η2
Cr

4 + 4R̄/λ2

2/λ2
= λ2

[
ηCr

2 +
√
η2
Cr

4 + R̄/λ2

]
.

Because
√
a+ b <

√
a+
√
b for a, b > 0, the condition α ≥ 2λ2ηCr

2 + λ
√
R̄ is sufficient.

The final condition for our initial claim is ηQ,α > 2ηC,α, i.e., αηQ > 2ηC . For α ≥ 2λ2ηCr
2+λ
√
R̄,

it suffices to take ηC satisfying (2λ2ηCr
2 + λ

√
R̄)ηQ > 2ηC or equivalently 2(λ2r2ηQ − 1)ηC +

λ
√
R̄ηQ > 0, which is satisfied for all ηC when r ≥ λ−1η

−1/2
Q .
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Proof of Lemma 2.8. To simplify our proof, we will assume that u(H?(rC(ηC , δ)), δ) ≤ ηCrC(ηC , δ)
2,

i.e. that the infimum defining rC(ηC , δ) is attained. We will work on an event A on which F̃ ⊆ F ,

Rn,λF̃ (γ̃) ≤ R̄, and Mn,λF̃ (ĝ) ≥ Mn,λF̃ (γ̃); the conditions (2.30) and (2.31) for Lemma 2.6 are

satisfied; and we have

sup
h∈H?

|Pnh| < u(H?, δ); (2.37)

F? ∩ rEL2(P ) ⊆ F? ∩
√

2rEL2(Pn) for rE =

√
22M2

F? log(δ−1)

n
∨R?n

(
1

20MF?
,F?(·)

)
. (2.38)

Our first set of three conditions is satisfied w.p. 1 − 2δ′ by assumption; the conditions (2.30) and

(2.31) hold w.p. 1 − exp{−c2(ηQ)nrQ(ηQ)2/M2
F?} and 1 − δ respectively by Lemmas 2.7 and our

definition of u(·, δ); (2.37) holds with probability 1− δ again by our definition of u(·, δ); and (2.38)

holds with probability 1 − δ by Bartlett et al. (2005, Corollary 2.2). Consequently, by the union

bound this event A has probability 1− exp{−c2(ηQ)nrQ(ηQ)2/M2
F?} − 3δ − 2δ′.

We have set up our problem so that ĝ satisfies Lγ̃(ĝ) ≤ 0, so we will derive bounds on ĝ from

conditions on g that rule out the possibility that Lγ̃(g) ≤ 0. We will work with the lower bound

Lγ̃(g) ≥


Ľ(g − γψ) if ‖g − γψ‖ > 1

Ľ(g − γψ)− λ−2 if ‖g − γψ‖ ≤ 1

.

This follows from (2.29), as because g ∈ F =⇒ g− γψ ∈ F?, we have 1 (‖g‖F < 1) ‖g − γψ‖2F? = 0

if ‖g − γψ‖F? > 1 and 1 (‖g‖F < 1) ‖g − γψ‖2F? ≤ 1 otherwise.

First, consider the case that ‖g−γψ‖F? > α. Then as α ≥ 1, Lγ̃(g) ≥ Ľ(g−γψ), and by Lemma

2.6, Ľ(g − γψ) > 0. It follows that ĝ must satisfy ‖ĝ − γψ‖F? ≤ α.

Now consider the case that ‖g− γψ‖F? ≤ α. Substituting into our definition (2.28) of Lγ̃(g) our

bounds (2.37) and Rn,λF̃ (γ̃) ≤ R̄, we have Lγ̃(g) > ‖g− γψ‖2L2(Pn) − 2αu(H?, δ)− R̄. Thus, we will

have Lγ̃(g) > 0 if ‖g − γψ‖2L2(Pn) > 2αu(H?, δ) + R̄. This implies our bound a on ‖ĝ − γψ‖2L2(Pn).

Finally, consider again the case that ‖g − γψ‖F? ≤ α. Lγ̃(g) ≥ Ľ(g − γψ)− λ−2 will be strictly

positive if Ľ(g−γψ) > λ−2. By Lemma 2.6, this will happen if ‖g−γψ‖2L2(P ) > α2r2∨[R̄+λ−2]/[ηQ−

2α−1ηC ]. And by (2.38), this will happen if ‖g−γψ‖2L2(Pn) > 2α2(r∨rE)2∨2[R̄+λ−2]/[ηQ−2α−1ηC ].

This implies that ‖ĝ − γψ‖2L2(Pn) is no larger than the right side above.

To derive our bound b, we upper bound the right side by something without this new constant

rE . To do this, first separate out the two components of rE , writing this quantity as

2α2(r ∨ sE)2 ∨ 22α2M2
F? log(δ−1)

n
∨ 2

R̄+ λ−2

ηQ − 2α−1ηC
for sE = R?n

(
1

20MF?
,F?(·)

)
.
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Then we will bound sE in terms of rQ, which we will write rQ = csQ where c =

√
14(1+ηQ)

1−ηQ

and sQ = R?n

(
1

2MF?
,F?(·)

)
. Recall the definition R?n(η,F?(·)) = inf{s > 0 : τ(s) ≤ ηs2} for

τ(s) = Rn(F? ∩ sL2(P )). Here the ratio τ(s)/s is decreasing (Bartlett et al., 2005, Lemma 3.4) and

these infima are attained with equality, i.e. τ(sQ) = s2
Q/(2MF?) and τ(sE) = s2

E/(20MF?) (Bartlett

et al., 2005, Lemma 3.2). Because sE satisfies τ(s) ≤ s2/(2MF?) and sQ is the minimal point with

this property, we have sE ≥ sQ, and therefore sE/(20MF?) = τ(sE)/sE ≤ τ(sQ)/sQ = sQ/(2MF?)

and therefore sE ≤ 10sQ = (10/c)rQ. This constant (10/c) will be less than one if ηQ ≤ .47, so we

simply add this restriction and drop sE from the bound above.

2.1.3.4 Bounding the bias term

In this section, we will use our bound Pn(γ̂i − γψ)2 ≤ a ∧ b to bound the quantity Ih,F̃ (γ̂). We will

work on the intersection A′ of the event A from Lemma 2.8 and an event on which suph∈H Pnh <

u(H, δ). As this new condition holds with probability 1 − δ, our new event A′ has probability

1− exp{−c2(ηQ)nrQ(ηQ)2/M2
F?} − 4δ − 2δ′ by the union bound.

Recall from our sketch that

Ih,F̃ ≤ Ih,F̃ (γ?)2 +
σ2

n2

n∑
i=1

γψ(Zi)
2 − γ̂2

i where γ?i = γψ(Zi).

To bound the first term of the right side, observe that because F̃ ⊆ F , Ih,F̃ (γ?) ≤ Ih,F (γ?) =

suph∈H Pnh ≤ u(H, δ). To bound the second term, we use the elementary identity a2 − b2 =

2a(a− b)− (a− b)2. Using this and Cauchy-Schwartz,

1

n

n∑
i=1

γψ(Zi)
2 − γ̂2

i ≤ 2‖γψ‖L2(Pn)‖γψ − γ̂‖L2(Pn) ≤ 2‖γψ‖L2(Pn)(a ∧ b)
1/2.

Thus, using the elementary inequality
√
a+ b ≤

√
a+
√
b,

Ih,F̃ ≤ u(H?, δ) + 21/2σ‖γψ‖1/2L2(Pn)n
−1/2(a ∧ b)1/4.

2.1.3.5 Convergence of the noise term

In this section, we will use our bound Pn(γ̂i−γψ)2 ≤ a∧b to bound the difference between our noise

term and the iid sum Pnγψ(Zi)εi, εi = Yi −m(Zi). Because γ̂ is a function of Z1 . . . Zn, we can

apply Chebyshev’s inequality conditionally on Z1 . . . Zn to the difference between our noise term

and this sum. With conditional probability 1− δ,

|Pn(γ̂i − γψ(Zi))εi| ≤ δ−1/2n−1/2
√
Pn[γ̂ − γψ(Zi)]2v(Zi).
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If we instead do this with an indicator for our event A, on which ‖γ̂ − γψ‖L2(Pn) ≤ (a ∧ b)1/2, and

apply Cauchy-Schwarz to the inner product appearing in the right side above, we get the bound

1A|Pn(γ̂i − γψ(Zi))εi| ≤ 1Aδ
−1/2n−1/2‖γ̂ − γψ‖L2(Pn)‖v‖L2(Pn) ≤ δ

−1/2n−1/2(a ∧ b)1/2‖v‖∞.

This last bound does not depend on Z1 . . . Zn and therefore holds unconditionally. Thus, on the

intersection of our event A′ from the previous section and our probability 1 − δ event here and

therefore with probability 1 − exp{−c2(ηQ)nrQ(ηQ)2/M2
F?} − 5δ − 2δ′, all of our theorem’s claims

hold.

2.2 Example: Estimating Average Partial Effects

As a concrete instantiation of our augmented minimax linear approach, we consider the problem of

average partial effect estimation in the conditionally linear treatment effect model: A statistician

observes features X ∈ X , a treatment assignment W ∈ R and an outcome Y ∈ R related by a

functional form restriction as below and wants to estimate ψ, where

E
[
Y
∣∣X = x, W = w

]
= µ(x) + w τ(x), ψ = E [τ(X)] . (2.39)

By Proposition 2.3, our AML estimator will be efficient for ψ under regularity conditions when

Var
[
Yi
∣∣Xi, Wi

]
= σ2(Xi) is only a function of Xi.

In the classical case of an unconfounded binary treatment, the model (2.39) is general and the

estimand ψ corresponds to the average treatment effect (Rosenbaum and Rubin, 1983; Imbens and

Rubin, 2015). At the other extreme, if W is real valued but τ(x) = τ is constrained not to depend

on x, then (2.39) reduces to the partially linear model as studied by Robinson (1988). The specific

model (2.39) has recently been studied by Athey, Tibshirani, and Wager (2018) and Zhao, Small,

and Ertefaie (2017b). We consider the motivation for (2.39) further in Section 2.3 in the context a

real-world application; here, we focus on estimating ψ for this model.

Both µ(·) and τ(·) in the model (2.39) are assumed to have finite gauge with respect to an

absolutely convex class M, and we define

FM =
{
m(·) : m(x, w) = µ(x) + wτ(x), ‖µ‖2M + ‖τ‖2M ≤ 1

}
. (2.40)

Then we can define a minimax linear estimator conditional on X and W ,
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ψ̂MLIN = 1
n

∑n
i=1 γ̂iYi with

γ̂ = argmin

‖γ‖2n2
+ sup
µ∈M

{
1

n

n∑
i=1

γ̂iµ(Xi)

}2

+ sup
τ∈M

{
1

n

n∑
i=1

(Wiγ̂i − 1) τ(Xi)

}2
.

(2.41)

Given any estimators µ̂(·) and τ̂(·), we can define an augmented minimax linear estimator

ψ̂AML =
1

n

n∑
i=1

(τ̂(Xi)− γ̂i (µ̂(Xi) +Wiτ̂(Xi)− Yi)) . (2.42)

And as the Riesz representer can be shown to have the form γψ(x,w) = (w−e(x))/v(x) with e(x) =

E
[
W
∣∣X = x

]
and v(x) = Var

[
W
∣∣X = x

]
, we also consider a natural doubly robust estimator

based on plug-in estimates of these quantities,11

ψ̂DR =
1

n

n∑
i=1

(
τ̂(Xi)−

(
Wi − ê(Xi)

v̂(Xi)

)
(µ̂(Xi) +Wiτ̂(Xi)− Yi)

)
. (2.43)

The goal of our simulation study is to compare the relative merits of minimax linear, augmented

minimax linear, and plug-in doubly robust estimation of the average partial effect.12

All experiments can be replicated using the R package amlinear. We computed minimax linear

weights via the cone solver ECOS (Domahidi, Chu, and Boyd, 2013), available in R via the package

CVXR (Fu et al., 2017). When needed, we run penalized regression using the R package glmnet

(Friedman, Hastie, and Tibshirani, 2010).

2.2.1 Simulation Design

In all our simulations, we start by generating data (Xi, Yi, Wi), such that the expectation of Yi and

Wi has a non-linear dependence on a low-dimensional set of covariates Xi. We then fit our signal

of interest using a sparse linear combination of transformations Ψi of the original features Xi. We

considered data-generating distributions of the form

Xi ∼ N (0, Id×d) , Wi

∣∣Xi ∼ LXi , Yi
∣∣Xi, Wi = N (b(Xi) +Wiτ(Xi), 1) , (2.44)

for different choices of dimension d, treatment assignment distribution LXi , baseline main effect b(·)

and treatment effect function τ(·). We considered the following 4 setups, each of which depends on

a sparsity level k that controls the complexity of the signal.

11For example, a random forest version of this estimator is available in the grf package of Athey, Tibshirani, and
Wager (2018).

12In the binary treatment assignment case Wi ∈ {0, 1}, we know that v(x) = e(x)(1 − e(x)); and if we set
v̂(x) = ê(x)(1− ê(x)), then the estimator in (2.43) is equivalent to the augmented inverse-propensity weighted esti-
mator of Robins, Rotnitzky, and Zhao (1994). For more general Wi, however, v(x) is not necessarily determined by
e(x) and so we need to estimate it separately.
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1. Beta-distributed treatment, Wi

∣∣Xi ∼ B(α(Xi), β(Xi)), with ζ(x) =
∑k
j=1 xj/

√
k, ψ(x) =

sign(ζ(x))ζ2(x), α(x) = max {0.05, min {0.95, 1/(1 + exp[−ψ(x)])}}, β(x) = 1− α(x), b(x) =

ψ(x) + 0.2(α(x)− 0.5), and τ(x) = −0.2.

2. Scaled Gaussian treatment, Wi

∣∣Xi ∼ N
(
λ(Xi), λ

2(Xi)
)
, with ψ(x) = 2k−1

∏k
j=1 xj , b(x) =

sign(ψ(x))
√
|ψ(x)|, λ(x) = 0.1 sign(b(x)) + b(x), and τ(x) = max {x1 + x2, 0} /2.

3. Poisson treatment, Wi

∣∣Xi ∼ Poisson(λ(Xi)), with τ(x) = k−1
∑k
j=1 cos (πxj/3), λ(x) = 0.2+

τ2(x), and b(x) = 4d−1
∑d
j=1 xj + 2λ(x).

4. Log-normal treatment, log(Wi)
∣∣Xi ∼ N

(
λ(Xi), 1/32

)
, with ζ(x) =

∑k
j=1 xj/

√
k, b(x) =

max {0, 2ζ(x)}, λ(x) = 1/(1 + exp[− sign(ζ(x))ζ2(x)]), and τ(x) = sin (2πx1).

2.2.2 Methods under Comparison

We first consider two variants of the minimax linear estimator. The simpler option is minimax

over the class FM described in (2.40) where M is defined in terms of a basis expansion Ψ of our

covariates,

M =

f(x) : f(x) =

∞∑
j=1

βjψj(x),

∞∑
j=1

|βj | ≤ 1

 . (2.45)

Throughout, we use a basis sequence ψj = ajψ
′
j , where ψ′j are d-dimensional interactions of standard-

ized Hermite polynomials that are orthonormal with respect to the standard Gaussian distribution.

The sequence of weights {aj} varies with order k of the polynomial ψj ; aj = 1/(k
√
nk,d) where nk,d

is the number of terms of order k. Observe that
∑∞
j=1 a

2
j = 1 and therefore, for standard normal

X,
∑∞
j=1 Eψj(X)2 = 1. It follows that if the density of X with respect to Gaussian measure is

bounded,
∑∞
j=1 Eψj(X)2 <∞, and so M is Donsker. When Wi is bounded, this implies that FM

is also Donsker; see, e.g., van der Vaart and Wellner (1996, Section 2.13.2 and Section 2.10).

Then, motivated by popular idea of propensity-stratified estimation in the causal inference lit-

erature (Rosenbaum and Rubin, 1984), we consider minimax linear estimation over the expanded

class FM+ where M+ extends M by adding to our basis expansion Ψ the following random basis

functions:

• Multi-scale strata of the estimated average treatment intensity ê(Xi) (we balanced over his-

togram bins of length 0.05, 0.1, and 0.2),

• Basis elements obtained by depth-3 recursive dyadic partitioning (i.e., pick a feature, split

along its median, and recurse), and
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• Leaves generated by a regression tree on the Wi (Breiman et al., 1984).

The idea behind using this expanded class is that we may be able to improve the practical per-

formance of the method by opportunistically adding a small number of basis functions that help

mitigate bias in case of misspecification (i.e., when µ and τ do not have finite gauge ‖·‖M). The

motivation for focusing on transformations of ê(Xi) is that accurately stratifying on e(Xi) would

suffice to eliminate all confounding in the model (2.39).13 We emphasize that this estimator is a

heuristic method motivated by popular ideas in the applied literature, and is not covered by the

formal results developed in this paper.

The remaining methods we consider all combine a regression adjustment (µ̂(x), τ̂(x)) with various

weighting schemes. To get such regression adjustments, we first fit the conditional marginal response

functions E
[
Yi
∣∣Xi = x

]
and e(x) via a cross-validated lasso (Tibshirani, 1996) on the design Ψ. We

then fit the τ(x) function via the R-lasso method proposed by Nie and Wager (2017), again on Ψ, and

finally set µ̂(x) = Ê
[
Yi
∣∣Xi = x

]
− τ̂(x)ê(x). As discussed in Nie and Wager (2017), this method is

appropriate when the treatment effect function τ(x) is simpler than E
[
Yi
∣∣Xi = x

]
and e(x), and

allows for faster rates of convergence on τ(x) than the other regression components whenever the

nuisance components can be estimated at op(n
−1/4) rates in root-mean squared error. We use the

same regression adjustment for all 4 methods listed below. Note that we only use the basis Ψ for

this regression; we do not use the random basis functions that we used to define M+.

We consider an augmented minimax linear estimator that combines this regression adjust-

ment with minimax linear weights as in (2.42), as well as augmented minimax linear estimation

over an extended class that uses the same functional form but with the minimax linear weights

for FM+
instead of FM. We also consider the plug-in doubly robust estimator defined in (2.43),

where v̂(·) is estimated via a separate lasso on Ψ as above, as well as an oracle doubly robust

estimator that uses the same functional form (2.43) but with oracle values of e(Xi) and v(Xi).

2.2.3 Results

We first compare the two minimax linear estimators with the corresponding augmented minimax

linear estimators. Figure 2.1 compares the resulting mean-squared errors for ψ across several variants

of the simulation designs considered in Section 2.2.1 (the exact parameters used are the same as

13In the case of binary treatments Wi, this corresponds to the classical result of Rosenbaum and Rubin (1983),
who showed that the propensity score is a balancing score. With non-binary treatments, E

[
Wi

∣∣Xi] is not in general
a balancing score (Imbens, 2000); however, it is a balancing score for our specific model (2.39).
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Figure 2.1: Comparing augmented minimax linear estimation with minimax linear estimation. The
solid line y = x indicates equivalent performance, while the dashed line y = 1.25x corresponds to
the best possible improvement over the minimax linear estimation in the setup of Donoho (1994),
i.e., where M is known and convex.

those used in Table 2.1). The left panel shows results where the weights are minimax overM, while

the right panel has minimax weights over M+.

Overall, we see that the augmented minimax linear estimator is sometimes comparable to the

minimax linear one, and sometimes substantially better. As discussed earlier, the improvements due

to augmenting the minimax linear estimator can come from several different sources. First, even

whenm ∈ F , the minimax linear estimator is only guaranteed to be within a factor of 1.25 of minimax

in terms of mean-squared error (Donoho, 1994), meaning that there is room for small improvements

even in this well specified setting. Second, perhaps more importantly, our method is less sensitive to

the unknown signal-to-noise ratio because the bias-like term tends to decay faster than that of the

minimax linear estimator; and finally, our approach only requires that ‖m̂−m‖F ∈ OP (1) instead

of ‖m‖F ∈ OP (1), meaning that we can accommodate signals in non-convex model classes, e.g.

sparsity classes, as long as the residual error m̂−m is captured by the convex class F . In Figure

2.1, we see that augmenting the minimax linear estimator often improves mean-squared error by

substantially more than a factor 1.25, meaning that this second and third factors play a role in at

least some examples.

Second, in Table 2.1, we compare augmented minimax linear estimation with doubly robust

estimators, both using an estimated and an oracle Riesz representer. In terms of mean-squared

error, our simple AML estimator already performs well relative to the main baseline (i.e., plug-in
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doubly robust estimation), and the heuristically improved AML+ estimator does better yet. Perhaps

more surprisingly, our methods sometimes also beat the doubly robust oracle, suggesting that the

AML approach has good second order properties that manifest themselves in finite samples. In terms

of coverage, some of our simulation designs are extremely difficult and all non-oracle estimators have

substantial relative bias. However, settings 1 and 4, the asymptotics appear to be kicking in and

our estimators get close to nominal coverage.

method double rob. plugin augm. minimax augm. minimax+ double rob. oracle
n p κ rmse bias covg rmse bias covg rmse bias covg rmse bias covg

se
tu

p
1

600 6 3 0.13 0.03 0.98 0.14 0.03 0.98 0.13 0.00 0.98 0.18 -0.01 0.96
600 6 4 0.16 0.06 0.92 0.16 0.04 0.94 0.15 0.03 0.93 0.21 0.00 0.92
600 12 3 0.22 0.09 0.78 0.18 -0.00 0.87 0.17 0.05 0.90 0.27 -0.04 0.90
600 12 4 0.21 0.14 0.78 0.15 0.01 0.94 0.17 0.09 0.90 0.23 -0.03 0.93

1200 6 3 0.10 0.03 0.94 0.11 0.06 0.92 0.10 0.02 0.96 0.12 0.00 0.98
1200 6 4 0.11 0.03 0.94 0.11 0.05 0.92 0.10 0.02 0.96 0.13 0.00 0.94
1200 12 3 0.11 0.02 0.90 0.10 0.01 0.95 0.10 0.02 0.94 0.14 0.00 0.94
1200 12 4 0.15 0.06 0.86 0.11 0.00 0.92 0.12 0.04 0.90 0.16 -0.00 0.94

se
tu

p
2

600 6 1 0.15 0.12 0.52 0.11 0.09 0.74 0.08 0.02 0.94 0.09 0.00 0.92
600 6 2 0.23 0.22 0.08 0.21 0.20 0.04 0.09 0.07 0.85 0.10 0.00 0.94
600 12 1 0.16 0.14 0.44 0.12 0.11 0.62 0.08 0.03 0.93 0.08 0.00 0.98
600 12 2 0.27 0.26 0.02 0.25 0.24 0.00 0.11 0.09 0.76 0.10 0.01 0.95

1200 6 1 0.12 0.11 0.30 0.09 0.08 0.52 0.05 0.01 0.95 0.06 -0.00 0.96
1200 6 2 0.20 0.20 0.00 0.20 0.19 0.00 0.06 0.04 0.90 0.06 -0.00 0.96
1200 12 1 0.12 0.11 0.31 0.10 0.09 0.48 0.05 0.01 0.96 0.06 -0.00 0.98
1200 12 2 0.22 0.22 0.00 0.21 0.20 0.00 0.07 0.04 0.86 0.07 0.00 0.94

se
tu

p
3

600 6 3 0.23 0.23 0.04 0.14 0.13 0.44 0.11 0.09 0.72 0.08 -0.00 0.96
600 6 4 0.20 0.20 0.12 0.13 0.11 0.54 0.10 0.09 0.72 0.07 -0.00 0.96
600 12 3 0.25 0.24 0.03 0.21 0.20 0.10 0.12 0.10 0.70 0.08 -0.01 0.95
600 12 4 0.21 0.20 0.09 0.18 0.17 0.16 0.11 0.10 0.72 0.08 -0.01 0.94

1200 6 3 0.20 0.19 0.01 0.10 0.09 0.55 0.07 0.05 0.78 0.05 -0.01 0.97
1200 6 4 0.18 0.18 0.01 0.08 0.07 0.68 0.06 0.05 0.85 0.05 -0.01 0.96
1200 12 3 0.23 0.22 0.00 0.16 0.15 0.02 0.08 0.07 0.76 0.05 -0.00 0.96
1200 12 4 0.19 0.19 0.00 0.14 0.14 0.13 0.08 0.07 0.70 0.05 0.00 0.94

se
tu

p
4

600 6 4 0.22 0.16 0.84 0.16 -0.03 0.94 0.11 -0.02 1.00 0.16 0.03 0.94
600 6 5 0.20 0.14 0.88 0.15 -0.05 0.93 0.11 -0.02 1.00 0.15 0.00 0.93
600 12 4 0.23 0.15 0.86 0.18 -0.09 0.88 0.14 -0.04 0.96 0.17 -0.01 0.91
600 12 5 0.24 0.17 0.82 0.19 -0.09 0.89 0.13 -0.05 0.97 0.17 -0.01 0.94

1200 6 4 0.13 0.09 0.90 0.10 -0.03 0.94 0.07 -0.01 1.00 0.10 0.00 0.96
1200 6 5 0.14 0.08 0.91 0.11 -0.05 0.94 0.08 -0.01 1.00 0.11 0.00 0.94
1200 12 4 0.14 0.08 0.88 0.13 -0.07 0.88 0.08 -0.02 0.98 0.11 -0.00 0.94
1200 12 5 0.14 0.09 0.87 0.13 -0.07 0.90 0.08 -0.02 1.00 0.11 -0.00 0.96

Table 2.1: Performance of 4 methods described in Section 2.2.2 on the simulation designs from
Section 2.2.1. We report root-mean squared error, bias, and coverage of 95% confidence intervals
averaged over 200 simulation replications.
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2.3 Application: The Effect of Lottery Winnings on Earnings

To test the behavior of our method in practice, we revisit a study of Imbens, Rubin, and Sacerdote

(2001) on the effect of lottery winnings on long-term earnings. It is of considerably policy interest

to understand how people react to reliable sources of unearned income; such questions come up, for

example, in discussing how universal basic income would affect employment. In an attempt to get

some insight about this effect, Imbens, Rubin, and Sacerdote (2001) study a sample of people who

won a major lottery whose prize is paid out in installments over 20 years. The authors then ask

how $1 in yearly lottery income affects the earnings of the winner.

To do so, the authors consider n = 194 people who all won the lottery, but got prizes of different

sizes ($1,000–$100,000 per year).14 They effectively use a causal model

E[Y
(w)
i | Xi = x] = m(x) + τw. (2.46)

for observations Yi = Y
(Wi)
i of the average yearly earnings in the 6 years following the win, Wi of

the yearly lottery payoff, and Xi of a set of p = 12 pre-win covariates (year won, number of tickets

bought, age at win, gender, education, whether employed at time of win, earnings in 6 years prior

to win). The authors also consider several other specifications in their paper.

As discussed at length by Imbens, Rubin, and Sacerdote (2001), although the lottery winnings

were presumably randomly assigned, we cannot assume exogeneity of the form Wi ⊥⊥ Y (W)
i because

of survey non-response. The data was collected by mailing out surveys to lottery winners asking

about their earnings, etc., so there may have been material selection effects in who responded to the

survey. A response rate of 42% was observed, and older people with big winnings appear to have

been relatively more likely to respond than young people with big winnings. For this reason, the

authors only assume exogeneity conditionally on the covariates, i.e., Wi ⊥⊥ Y (W)
i

∣∣Xi, which suffices

to establish that E[Yi | Xi = x,Wi = w] = m(x) + τw for m(x), τ in our causal model (2.46).

Here, we examine the robustness of the conclusions of Imbens, Rubin, and Sacerdote (2001) to

potential effect heterogeneity. Instead of assuming a fixed τ parameter as in (2.46), we let τ(x) vary

with x and seek to estimate ψ = E [τ(X)]; this corresponds exactly to an average partial effect in the

conditionally linear model, as studied in Section 2.2. In our comparison, we consider 3 estimators

that implicitly assume the partially linear specification (2.46) and estimate τ , and 6 that allow τ(x)

to vary and estimate E [τ(X)].

14The paper also considers some people who won very large prizes (more than $100k per year) and some who won
smaller prizes (not paid in installments); however, we restrict our analysis to the smaller sample of people who won
prizes paid out in installments worth $1k–$100k per year.
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estimand estimator estimate std. err
partial effect OLS without controls -0.176 0.039
partial effect OLS with controls -0.106 0.032
partial effect residual-on-residual OLS -0.110 0.032
avg. partial effect plugin Riesz weighting -0.175 —
avg. partial effect doubly robust plugin -0.108 0.042
avg. partial effect minimax linear weighting -0.074 —
avg. partial effect augm. minimax linear -0.091 0.044
avg. partial effect minimax linear+ weighting -0.083 —
avg. partial effect augm. minimax linear+ -0.097 0.045

Table 2.2: Various estimates, estimands and estimators for the effect of unearned income on earnings,
using the dataset of Imbens, Rubin, and Sacerdote (2001). The first 3 methods are justified under
the assumption of no heterogeneity in τ(x) (i.e., τ(x) = τ), in which case the methods estimate τ ,
while the latter 6 allow for heterogeneity and estimate E [τ(X)]. We do not report standard errors
for the 3 weighting-based estimators, as these may be asymptotically biased and so valid confidence
intervals would also need to explicitly account for possible bias.

Among methods that use (2.46), the first runs ordinary least squares for Yi on Wi, ignoring

potential confounding due to non-response. The second, which most closely resembles the method

used by Imbens, Rubin, and Sacerdote (2001), controls for the Xi ordinary least squares, i.e., it

regresses Yi on (Xi,Wi) and considers the coefficient on Wi. The third uses the method of Robinson

(1988) with cross-fitting as in Chernozhukov et al. (2017): it first estimates the marginal effect

of Xi on Wi and Yi via a non-parametric adjustment and then regresses residuals Yi − Ê
[
Yi
∣∣Xi

]
on Wi − Ê

[
Wi

∣∣Xi

]
. In each case, we report robust standard errors obtained via the R-package

sandwich (Zeileis, 2004).

The 6 methods that allow for treatment effect heterogeneity correspond to the 5 methods dis-

cussed in Section 2.2, along with a pure weighting estimator using the estimated Riesz representer,

ψ̂ = n−1
∑n
i=1 ĝ(Xi)Yi, with the same choice of ĝ(·) as used in (2.43). For all non-parametric re-

gression adjustments, we run penalized regression as in Section 2.2, on a basis obtained by taking

order-3 Hermite interactions of the 10 continuous features, and then creating full interactions with

the two binary variables (gender and employment), resulting in a total of 1140 basis elements. For

AML+, we augment the balancing class with multi-scale propensity strata (at scales 0.05, 0.1, and

0.2).

Table 2.2 reports results using the 9 estimators described above, along with standard error

estimates. We do not report standard errors for the 3 pure weighting methods, as these may not

be asymptotically unbiased and so confidence intervals should also account for bias. The reported

estimates are unitless; in other words, the majority of the estimators suggest that survey respondents

on average respond to a $1 increase in unearned yearly income by reducing their yearly earnings by
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roughly $0.10.

Substantively, it appears reassuring that most point estimates are consistent with each other,

whether or not they allow for heterogeneity in τ(x). The only two divergent estimators are the one

that doesn’t control for confounding at all, and the one that uses pure plug-in weighting (which may

simply be unstable here). From a methodological perspective, it is encouraging that our method

(and here, also the plug-in doubly robust method) can rigorously account for potential heterogeneity

in τ(x) without excessively inflating uncertainty.
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Chapter Three

Minimax Linear Estimation

In this chapter, we focus on the estimation of a small class of linear functionals that arises frequently

in causal inference. We consider an observational study in which we observe for each unit a covariate

vector Xi, a categorical treatment status Wi ∈ 0 . . . C, and an outcome Yi = Y
(Wi)
i ∈ R, and assume

that as a function of (Xi,Wi), we can calculate indicators Ti = T (Xi,Wi) that mark units as

members of a target group of scientific interest. Our goal will be to estimate the average, over this

target group, of the potential outcome Y
(0)
i that they would have been experienced had they received

the treatment of interest Wi = 0.

The well-known problem of estimating a mean outcome when some outcomes are missing by

a strongly ignorable mechanism (Rosenbaum and Rubin, 1983) is such a problem. In that case,

we ‘observe the outcome of interest’ if we observe an outcome at all our target group is the entire

population we sample from, i.e. we have Wi = 0 iff we actually observe the outcome Yi and Ti = 1

for all i. However, the flexibility afforded us in this framework to define our target group can be very

valuable. For example, if we are wondering whether to recommend a change to treatment Wi = 0

for those who are above a given age and currently taking another treatment Wi = 1, it is natural to

estimate of the average outcome we’d expect to see for that specific group if that recommendation

were followed, which we can do by defining Ti in terms of both Xi and Wi.

Assumptions that identify a quantity like this as a functional of the distribution of (Xi,Wi, Yi)

are discussed in Dahabreh et al. (2017). We restate them, adapted for our purposes, below.

Assumption 3.1 (Mean Exchangeability). Conditional on the covariates, the potential outcome mean

does not depend on treatment assignment,

E[Y
(0)
i | Xi,Wi = 0] = E[Y

(0)
i | Xi].

To ensure the existence of the conditional mean above, we assume a positivity condition, P{Wi =

0 | Xi} > 0.

Assumption 3.2 (Mean Transportability). Conditional on covariates, the potential outcome mean
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does not depend on membership in the target group,

E[Y
(0)
i | Xi, Ti = 1] = E[Y

(0)
i | Xi].

These assumptions identify our causal estimand E[Y
(0)
i | Ti = 1] as the linear functional

ψ′(m) = E [m(Xi, 0) | Ti = 1] at m(x,w) = E [Yi | Xi = x,Wi = w] . (3.1)

While the problem of estimating ψ′(m) can be solved by the methods described in the previous

chapter, in this chapter we will consider a simple linear estimator of the form ψ̂′ = n−1
T

∑n
i=1 1{Wi=0}γ̂iYi

for nT =
∑n
i=1 Ti. In many applications, estimators of this form are desirable for their ease of in-

terpretation: we observe our potential outcome of interest Y
(0)
i on the subsample receiving the

treatment Wi = 0, so we weight that subsample so that it looks like the target subsample and

calculate the weighted average outcome.

It will be helpful to reframe this problem essentially as a special case of the problem we considered

in the previous chapter, the estimation of a functional of the form ψ(m) = E [h(Xi,Wi,m)]. ψ′(·)

does not have this form itself, but it may be expressed as a ratio ψ′(m) = E [Tim(Xi, 0)] /E [Ti] in

which the numerator has this form,

ψ(m) = E [h(Xi,Wi,m)] with h(Xi,Wi,m) = T (Xi,Wi)m(Xi, 0). (3.2)

We will focus on an estimator for the numerator of the form ψ̂ = n−1
∑n
i=1 1{Wi=0}γ̂iYi, as dividing

by n−1
∑
i=1 Ti will yield an estimator ψ̂′ of the desired form.

The previous chapter’s logic suggests a natural oracle estimator of this form defined in terms of

the Riesz representer for this functional,

γψ(x,w) = 1{w=0}gψ(x) for gψ(x) =
P{Ti = 1 | Xi = x}
P{Wi = 0 | Xi = x}

, (3.3)

the unique square integrable function satisfying E [γψ(Xi,Wi)f(Xi,Wi)] = ψ(f) for all square inte-

grable functions f(x,w). This property, which holds under the ‘overlap’ condition gψ > 0 a.s.,

ensures that this oracle estimator ψ? = n−1
∑n
i=1 γψ(Xi,Wi)Yi will be unbiased, as E [ψ?] =

E [γψ(Xi,Wi)m(Xi,Wi)], and as it is a sum of independent terms, it will converge to its mean

ψ(m) at n−1/2 rate by the central limit theorem. This motivates the use of estimators of the form

ψ̂IPW = n−1
∑n
i=1 γ̂ψ(Xi,Wi)Yi where γ̂ψ(·) is an estimate of the Riesz representer γψ(·). It is

conventional to call weights like γψ(Xi,Wi) ‘inverse probability weights’, as they essentially in-

vert the probabilistic mechanism that assigns units to our treatment and target groups to ensure

unbiasedness, and we call estimators of the form ψ̂IPW Inverse Probability Weighting estimators.
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But as in the previous chapter, we will take a different approach here. Our estimator ψ̂ML will be

a minimax linear estimator of a sample-average version of our estimand ψ̃(m) = n−1
∑n
i=1 Tim(Xi, 0)

conditional on the study design (Xi,Wi)i≤n. Specifically, we choose the weights that result in the

best estimate of ψ̃(m) of the form n−1
∑n
i=1 γiYi in the worst case over regression functions m(·, 0)

in an absolutely convex class F and over conditional variance functions Var [Yi | Xi = x,Wi = w]

bounded by a constant σ2. This defines our weights γ̂ ∈ Rn as the solution to an instance of the

convex optimization problem (2.15) discussed in the previous chapter, which reduces in this case to

the choice of weights satisfying γ̂i = 0 for Wi 6= 0 and minimizing

I2
F (γ) +

σ2

n2
‖γ‖2 where IF (γ) = sup

f∈F

1

n

n∑
i=1

[1{Wi=0}γi − Ti]f(Xi). (3.4)

Much has already been said in favor of such estimators. In regression problems with fixed design

Z1 . . . Zn, if we observe Yi = m(Zi) + εi with independent Gaussian noise εi ∼ N(0, σi)
2, Donoho

(1994) and related papers (Armstrong and Kolesár, 2018; Cai and Low, 2003; Donoho and Liu,

1991; Ibragimov and Khas’minskii, 1985; Johnstone, 2015; Juditsky and Nemirovski, 2009) have

established a number of desirable properties, among them that if the regression function m(·) is in

a convex set F , a minimax linear estimator of a linear functional ψ(m) will come within a factor

1.25 of the minimax risk over all estimators. And these estimators have been found to perform

well in practice in a variety of applications including the missing outcomes problem discussed above

(Armstrong and Kolesár, 2018; Imbens and Wager, 2017; Kallus, 2016; Wang and Zubizarreta, 2017;

Zubizarreta, 2015).

However, there is a mismatch between this fixed-design approach and the typical way of thinking

about these problems, in which the random variation of treatment status Wi plays an essential role.

In particular, while our oracle estimator ψ? is widely considered to be the gold standard among linear

estimators, and inverse probability weighting estimators are very popular, it is difficult to make sense

of them in the fixed-design terms. For that reason, we will focus here on characterizing the random-

design behavior of our estimator ψ̂ML. In essence, what we will show here is that ψ̂ML will be

asymptotically efficient under assumptions similar to those under which we showed the efficiency of

the more complicated estimator ψ̂AML in the previous chapter. This is in part a consequence of the

convergence of the weights γ̂i to the evaluated Riesz representer γψ(Xi,Wi), a result established in

greater generality in the previous chapter and also familiar from Chan et al. (2015) and Wang and

Zubizarreta (2017). This happens because (3.4) requires that our weights satisfy a set of estimating

equations IF (γ̂) ≈ 0 derived from the condition ψ(f) = E γψ(Xi,Wi)f(Xi,Wi) that defines γψ.

While this good random-design asymptotic behavior does seem to line up well with the fixed-design
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near-optimality results discussed in the previous paragraph, these assumptions are substantially

weaker than those that have been used to show efficiency in most previous work. As asymptotics

do not tell the whole story, we include finite sample bounds on the error of our estimator and a

small simulation study as well as an examination of the estimator’s performance on the well-known

LaLonde study.

3.1 Understanding the Estimator

To better understand the behavior of our estimator, we decompose its error into a bias-like term

and a noise-like term. We will consider estimation of the sample-average version of our estimand,

ψ̃(m) := n−1
∑n
i=1 Tim(Xi, 0), as the behavior of the difference ψ̃(m) − ψ(m) is out of our hands.

We write

ψ̂ML − ψ̃(m) =
1

n

n∑
i=1

1{Wi=0}γ̂iYi − Tim(Xi, 0)

=
1

n

n∑
i=1

[
1{Wi=0}γ̂i − Ti

]
m(Xi, 0)︸ ︷︷ ︸

bias

+ 1{Wi=0}γ̂iεi︸ ︷︷ ︸
noise

, εi = Yi −m(Xi,Wi).

(3.5)

It is clear from this expression that what we are minimizing in (3.4) to define our weights is, in fact,

the mean squared error conditional on (Xi,Wi)i≤n. Our bias-like term is E
[
ψ̂ML | X,W

]
− ψ̃(m)

and our noise-like term is ψ̂ML − E
[
ψ̂ML | X,W

]
.

Supposing that m(·, 0) is really in the class F that our estimator is minimax over, our bias term

is bounded by IF . This allows us to bound our bias term using a simple argument. We use the

property that our maximal risk (3.4) at its minimizer γ̂ is smaller than it is at the oracle weights

γ?i = γψ(Xi,Wi). Rearranging this condition yields the bound

I2
F (γ̂) ≤ I2

F (γ?) +
σ2

n2
(‖γ?‖2 − ‖γ̂‖2). (3.6)

As a result, we have IF (γ̂) ≤ IF (γ?) + σ‖γψ‖∞n−1/2. Furthermore, IF (γ?) is the supremum of the

empirical process n−1
∑n
i=1 δXi,Wi

indexed by the class of functions H = {[γψ(x,w)−T (x,w)]f(x) :

f ∈ F}, and for the same reason that weighting by the Riesz representer γψ results in unbiased

estimation, each function in this class has mean zero. Using well known tools from Empirical Process

Theory, this supremum can be shown to be concentrate at n−1/2-rate on a quantity comparable to

the Rademacher complexity Rn(F) of the set of outcome models F .1 Consequently, this argument

shows that our estimator will be consistent at n−1/2 rate when the class F is small enough that

Rn(F) = O(n−1/2).

1The relevant tools are the symmetrization technique, the Ledoux-Talagrand Contraction Lemma, and the
Bounded Difference Inequality (see e.g. Giné and Nickl, 2015, Theorems 3.1.21, 3.2.1, and 3.3.14 respectively).
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However, this is essentially the limit of this argument’s power in this context. While we used a

variant of this argument to show that the bias term of the regression-adjusted weighting estimator

ψ̂AML was op(n
−1/2), it cannot be used for the same purpose without regression adjustment. The

‘bias term’ of the linear estimator with the oracle weights γ?, n−1
∑n
i=1[γψ(Xi,Wi) − Ti]m(Xi, 0),

has mean zero but standard deviation on the order of n−1/2. As a result, arguments relying solely

on the characterization that our estimator performs as well as this oracle estimator cannot be used

to show that our estimator’s bias term is negligible.

Using more refined arguments, many methods like ours have been shown to control the bias

term at op(n
−1/2) rate and as a consequence achieve semiparametric efficiency. These methods

include Empirical Balancing Calibration Weighting (Chan et al., 2015), the Covariate Balancing

Propensity Score (Fan et al., 2016), and the Minimal Approximately Balancing Weights (Wang and

Zubizarreta, 2017). Each of them optimizes for some desirable property of the weights subject to

bounds on the maximal conditional bias IFn over some finite-dimensional class Fn. All of these

arguments rely on the phenomenon that there are weights that achieve better control on IFn than

the inverse probability weights γψ do for sufficiently small classes Fn. Clearly this is the case for

classes Fn of dimension no larger than n, as in that case the condition IFn(γ) = 0 is a solvable

set of linear equations. This phenomenon is quite robust. Under sufficient regularity assumptions,

even methods that estimate inverse propensity weights γ̂ψ by maximum likelihood within some

appropriate sequence of finite-dimensional model classes Gn have been shown to achieve better

control on the bias term and therefore semiparametric efficiency (Hirano et al., 2003).

But these approaches do not line up well with the minimax framework we’ve discussed. After

all, the regression function m(·, 0) is not smoother because we have a small sample size, although

from the perspective of its behavior on the sample X1 . . . Xn, it may admit approximation by a

smoother function. What we show here is that even when we solve the optimization problem (3.4)

for a nontrivially large infinite-dimensional class of possible regression functions F , we see this

phenomenon. That is, the use of these finite-dimensional sieves Fn is not necessary to control the

bias better than the inverse propensity weights γψ. Instead, we will take the class F to be the unit

ball of a Reproducing Kernel Hilbert Space (RKHS), e.g. the Sobolev space Hk of square-integrable

functions with square integrable weak partial derivatives of order up to k > d/2. Kallus (2016)

worked with this class of estimators as well, using the aforementioned argument based on (3.6)

to show consistency at n−1/2 rate. Our primary contribution is a sharper characterization of the

estimator’s behavior.

At the heart of our argument will be a characterization of our estimator ψ̂ML as the average, over
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our target subsample, of a kernel-ridge-regression estimate m̂(·) of the regression function m(·, 0)

based on the subsample {i : Wi = 0} of units receiving the treatment of interest. Specifically,

Lemma 3.1. If F is the unit ball of an RKHS with norm ‖·‖, then

1

n

n∑
i=1

1{Wi=0}γ̂iYi =
1

n

n∑
i=1

Tim̂(Xi) where (3.7)

γ̂ = argmin
γ

I2
F (γ) +

σ2

n2
‖γ‖2, IF (γ) = sup

f∈F

1

n

n∑
i=1

[1{Wi=0}γi − Ti]f(Xi); (3.8)

m̂ = argmin
m

1

nZ

∑
i:Wi=0

(Yi −m(Xi))
2 +

σ2

nZ
‖m‖2 where nZ = |{i : Wi = 0}|. (3.9)

We use this result, proven in Appendix B.4, to characterize the bias term of our estimator as

the bias of this ridge regression estimator, conditional on the design (Xi,Wi)i≤n, averaged over the

target subsample. As the weight σ2/nZ of the penalty term in our ridge regression is small, our

estimator will be fairly unbiased, but it is sufficient to allow generalization to our target sample

so long as our oracle weights γψ are bounded. Using this argument to characterize our estimator’s

bias term and a variant of the previous chapter’s Theorem 2.2 to characterize our noise term, we

establish finite sample bounds on the error of our estimator ψ̂ML.

As a consequence, we obtain a simple characterization of the set of regression functions m(·, 0)

for which our estimator will be semiparametrically efficient: it suffices for m(·, 0) to be in a certain

sense smoother than the least smooth functions in our RKHS. Smoothness in excess of this level

improves the higher order terms in our bound. We will state this result formally after introducing

the necessary definitions in the following section.

3.1.1 A Review of Reproducing Kernel Hilbert Spaces2

Let X be a compact metric space. A Reproducing Kernel Hilbert Space HK of functions on X is a

complete normed vector space with its norm ‖·‖ induced by an inner product 〈·, ·〉 in the sense that

‖f‖2 = 〈f, f〉 and on which point evaluation is continuous in the sense that for all x ∈ X there is

a constant Cx such that f(x) ≤ Cx‖f‖. By the Riesz representation theorem (see e.g. Peypouquet,

2015, Theorem 1.4.1), this implies that each x ∈ X corresponds to a unique element Kx in the

RKHS such that f(x) = 〈Kx, f〉. We call the function K(x, y) = 〈Kx,Ky〉 the kernel associated

HK . If the kernel is continuous, it is bounded as a consequence of the the compactness of X ×X , and

furthermore ‖·‖∞ ≤ MK‖·‖ for the finite constant MK =
√

supxK(x, x), as by Cauchy-Schwartz

‖f‖∞ = supx〈Kx, f〉 ≤
√

supx〈Kx,Kx〉〈f, f〉.

2This review is based largely on Chapters 2 and 4 of Cucker and Zhou (2007), although what is taken as definitional
and what is considered a derived property differ somewhat between this account and that one. Results from those
chapters will be stated without individual citation.
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Given any finite measure ν with support equal to X , we can completely characterize an RKHS

HK with a continuous kernel K in terms of the spectral decomposition of a compact positive integral

operator

(LK,νf)(x) =

∫
K(x, x′)f(x′)dν(x′) (3.10)

mapping the space of square integrable functions L2(ν) to itself. Its eigenfunctions (φj)j∈N form an

orthonormal basis for L2(ν) and its scaled eigenfunctions
√
λjφj , where λj is the eigenvalue corre-

sponding to φj , form an orthonormal basis for HK . One useful consequence is that the square root

of our integral operator, the operator L
1/2
K,ν mapping

∑
j fjφj to

∑
j fj
√
λjφj , maps an orthonormal

basis of L2(ν) to an orthonormal basis of our HK , so (i) HK is the image of the square integrable

functions L2(ν) under L
1/2
K,ν and (ii) ‖f‖L2(ν) = ‖L1/2

K,νf‖.

Generalizing (i), we can think of the space of square integrable functions L2(ν) and our RKHS

HK as elements of a continuum of spaces, the images LκK,ν(L2(ν)) of L2(ν) under powers of LK,ν .

Corresponding to these spaces, we define the family of norms ‖f‖LκK,ν = ‖L−κK,νf‖L2(ν), with ‖·‖ =

‖·‖
L

1/2
K,ν

. This exponent κ will be a useful quantitative notion of smoothness.

One familiar scale of spaces like this is the scale of Sobolev spaces Hs of s-times weakly differen-

tiable periodic functions on the unit cube endowed with Lebesgue measure µ (see e.g. Kühn et al.,

2014). These spaces have the characterization Hs = {
∑
k∈Zd fk(1+‖k‖22)−s/2e2πik :

∑
k∈Zd f

2
k ≤ 1},

with the fourier basis functions as eigenfunctions irrespective of s. It is clear from this that if Ks is

the kernel of Hs, then for all s′, Hs′ is the image of L2(µ) under L
(s′/s)/2
Ks,µ

or equivalently the image

of Hs under L
(s′/s−1)/2
Ks,µ

.

While our space HK itself is not defined with reference to any particular measure ν, many of

the the objects discussed above are. One useful relation between operators LK,ν and Lk,ν′ defined

in terms of different measures is that for all φ,

〈φ,LK,ν′φ〉L2(ν′) =

∫
K(x, y)φ(x)φ(y)

dν′

dν
(x)

dν′

dν
(y)dν(x)dν(y) ≤

∥∥∥∥dν′dν
∥∥∥∥2

∞
〈φ,LK,νφ〉.

As mentioned in Bach (2017), this identity and the extremal characterization of the eigenvalues

λj,ν and λj,ν′ offered by the Courant-Fischer minimax theorem (see e.g. Horn et al., 1990) imply

that λj,ν′ ≤ ‖dν′/dν‖2∞λj,ν for all j. As our finite-sample bounds will depend on the eigenvalues of

integral operators defined in terms of the unknown distribution of our data, this phenomenon makes

our bounds much less opaque than they otherwise would be. In particular, under weak assumptions

the relevant eigenvalues decay at the same rate as those of the operator LK,µ for Lebesgue measure

µ, which can often be calculated straightforwardly. This approach will be used in the proof of

Lemma 3.5.

46



3.1.2 Main Results

Having reviewed these properties, we are prepared to state and prove our results. We’ll start with

the asymptotic results.

Setting We observe (Xi,Wi, Yi)i≤n iid from a distribution P withm(x,w) = E [Yi | Xi = x,Wi = w]

and v(x,w) = Var [Yi | Xi = x,Wi = w]. For some binary function T (x,w), we define Ti = T (Wi, Xi),

and we will assume that T is chosen so that the target and treatment groups overlap in the sense

that gψ(x) < ∞ P − a.s. for gψ defined in (3.3). We consider the estimands ψ′(m) and ψ(m)

defined in (3.1) and (3.2) in terms of these observations as well as the sample variant of ψ(m),

ψ̃(m) = n−1
∑n
i=1 T (Xi,Wi)m(Xi, 0). We write PZ for the distribution of Xi conditional on Wi = 0

and assume that its support is a compact metric space X , working with an RKHS HK of functions

on X with kernel K and norm ‖·‖.

Smoothness assumptions For spaces of functions on subsets of Rd, we measure smoothness by

one of two standards, (i) the maximal Sobolev norm supf :‖f‖≤1‖f‖Hs of an element of the unit ball

of HK or (ii) the Hölder norm ‖K‖C2s of the kernel K. We define the aforementioned norms in

Appendix B.2.

Assumption 3.3. The unit ball of our RKHS is contained in a ball in the Sobolev space Hs, i.e.

sup‖f‖HK≤1‖f‖Hs <∞, for s > d.

Assumption 3.4. The kernel K of our space satisfies the Hölder-type smoothness condition ‖K‖C2s <

∞ for noninteger s > d/2.

This latter assumption implies containment of the unit ball of HK in a ball in a Hölder space,

i.e. sup‖f‖HK≤1‖f‖Cs <∞ (Cucker and Zhou, 2007, Theorem 5.5.).

Theorem 3.2. In the setting described above, let HK be dense in L2(PZ) and satisfy Assumption 3.3

or 3.4, and ‖m(·, 0)‖LκK,PZ
< ∞ for κ > 1/2. Then for any constant σ > 0, the estimator ψ̂ML =

n−1
∑n
i=1 1{Wi=0}γ̂iYi with weights γ̂ defined in (3.8) has the asymptotic characterization

ψ̂ML − ψ(m) =
1

n

n∑
i=1

ι(Xi,Wi, Yi) + op(n
−1/2) where

ι(x,w, y) = T (x,w)m(x, 0)− ψ(m) + γψ(x,w)(y −m(x, 0)).

(3.11)

As a consequence of this characterization,
√
n(ψ̂ML − ψ(m)) is asymptotically normal with

variance V = E ι(Xi,Wi, Zi)
2. Given a consistent estimate V̂ of this variance, ψ̂ML ± zα/2V̂ 1/2/n1/2

is an asymptotically valid confidence interval of level 1− α.
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An analogous result applies for our original estimand ψ′(m), justifying analogous normality-

based inference for this quantity. This follows from the theorem above using the convergence of

nT /n→ pT = P{Ti = 1}.

Corollary 3.3. Under the assumptions of Theorem 3.2, ψ̂′ML = (nT /n)−1ψ̂ML has the asymptotic

characterization

ψ̂′ML − ψ′(m) =
1

n

n∑
i=1

ι′(Xi,Wi, Yi) + op(n
−1/2) where

ι′(x,w, y) = p−1
T T (x,w)m(x, 0)− ψ′(m) + p−1

T γψ(x,w)(y −m(x, 0)).

(3.12)

Proposition 2.3 establishes that these estimators are semiparametrically efficient3, meaning that

no other estimator has better first-order asymptotic behavior uniformly over a neighborhood of

the true data generating process (see e.g. van der Vaart, 2000, Theorem 25.21). But it is not

clear that in any finite sample the op(n
−1/2) ‘remainder term’ in these characterizations will not

invalidate inference based on these first order asymptotic characterizations (3.11) and (3.12). To

inform about the magnitude of this remainder, we will now state a nonasymptotic characterization

of our estimator’s error. As this result is fairly complex, we will discuss the rate at which this

remainder converges to zero in a remark below.

Theorem 3.4. In the setting described above, consider the estimator ψ̂ML = n−1
∑n
i=1 1{Wi=0}γ̂iYi

with weights γ̂ defined in (3.8). Let the decreasing sequences of eigenvalues λj,T and λj,Z of LK,PT

and LK,PZ respectively satisfy the bounds λj,T ≤ Cλ,T j
−α, λj,Z ≤ Cλ,Zj

−α and the eigenfunctions

φj of LK,PZ satisfy the bound ‖φj‖∞ ≤ Cφλ
−β/2
j with α > 1 and α(1 − β) > 1. Define λ = σ2/n,

pZ = P{Wi = 0}, pT = P{Ti = 1}.

For any η > 0, δ ∈ (0, 1) and any κm > 1/2, κγ > 0 such that ‖m(·, 0)‖LκmK,PZ
, ‖gψ‖LκγK,PZ

<∞,

3Specifically, Proposition 2.3 establishes efficiency and therefore regularity of the asymptotically linear estimator
ψ̂; it is clear that we get another regular asymptotically linear estimator when we divide ψ̂ by nT /n to yield ψ̂′; and
all regular asymptotically linear estimators are efficient in problems like this one, in which the space of models we
allow is nonparametric (see e.g. Newey, 1994, Theorem 2.1).
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with probability 1− 3δ,∣∣∣E [ψ̂ML | X,W
]
− ψ̃(m)

∣∣∣ ≤ spZ‖gψ‖L2(PZ) + n−1/2s(r/s)1/α(1 + η)C

+ n−1/2s
(
2pZ‖gψ‖∞ log(2δ−1)

)
+ n−1r

(
2MK (1/3 + 1/η) log(2δ−1)

)
; (3.13)

s =


ζ−1λκm‖m(·, 0)‖LκmK,PZ

κm ∈ [1/2, 1);

ζ−1λλκm−1
1,Z ‖m(·, 0)‖LκmK,PZ

κm ≥ 1;

r =


ζ−1λκm−1/2‖m(·, 0)‖LκmK,PZ

κm ∈ [1/2, 3/2);

ζ−1λλ
κm−3/2
1,Z ‖m(·, 0)‖LκmK,PZ

κm ≥ 3/2;

ζ = max

{
0, 1− 8Cζλ

−(1/α+β) log(4δ−1n2)

npZ −
√

2npZ log(δ−1)
−

√
16Cζλ−(1/α+β) log(4δ−1n2)

npZ −
√

2npZ log(δ−1)

}
;

and with probability 1− exp{−c1(ηQ)nr2/M2
F?} − 4δ,∣∣∣∣∣ψ̂ML − E[ψ̂ML | X,W ]− n−1

n∑
i=1

γψ(Xi,Wi)(Yi −m(Xi, 0))

∣∣∣∣∣ ≤ n−1/2(a ∧ b)1/2‖v‖∞δ
−1/2; (3.14)

a = α
(
Cu,1n

−1/2 + Cu,2n
−1
)

+ R̄+ λ;

b = 2α2r2 ∨ 2
R̄+ λ

ηQ − 2α−1ηC
∨ 44M2

F?α
2 log(δ−1)

n
;

α = 1 ∨
[
2ηCλ

−1r2 + λ−1/2R̄1/2
]

;

r = 7CQn
− 1

2(1+1/α) ∨ λ1/2η
−1/2
Q ;

R̄ =


C1,Rλ

4κγ
1+2κγ + C2,Rn

−1/2λ
2κγ

1+2κγ κγ ∈ (0, 1/2);

λ‖gψ‖2HK κγ ≥ 1/2.

in terms of ‘constants’, which may be functions of δ but not of n or λ, defined in Appendix B.1.

Via the triangle inequality, the sum of these two bounds is a bound on the magnitude of the

remainder, i.e. the deviation of our estimator from our idealized asymptotic characterization ψ(m)+

n−1/2
∑n
i=1 ι(Xi,Wi, Yi) in (3.11), as

ψ̂ML − ψ̃(m)− n−1
n∑
i=1

γψ(Xi,Wi)(Yi −m(Xi, 0)) = ψ̂ML − ψ(m)− n−1
n∑
i=1

ι(Xi,Wi, Yi).

Thus, the claim (3.11) made by Theorem 3.2 holds if the two bounds (3.13) and (3.14) are o(n−1/2)

for all δ > 0. To prove Theorem 3.2, it suffices to establish bounds on the eigenvalues of LK,PZ and

LK,PT and the supremum norm of the eigenfunctions of the former.

The behavior of these eigenvalues and eigenfunctions can be characterized in terms of the mea-

sures of the smoothness of the space HK that we discussed above. We prove the following lemma

in Appendix B.2 and using it prove Theorem 3.2 in Appendix B.3.
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Lemma 3.5. Let HK be an RKHS of functions on a compact set X ⊆ Rd and ν be a measure

on X that is strongly equivalent to Lebesgue measure µ in the sense that η ≤ dν/dµ ≤ η−1 for

some η > 0. Then the decreasing sequence of eigenvalues λj and the corresponding eigenfunctions

φj of LK,ν satisfy λj = O(j−α) and ‖φj‖∞ = O(λ
−β/2
j ) with (i) α = 2s/d and β = d/(2s) if

sup‖f‖HK≤1‖f‖Hs <∞ and (ii) α = (2s+ d)/d and β = d/(2s+ d) if ‖K‖C2s <∞ and s is not an

integer.

We close the section with a few remarks.

Remark 3.1. Some estimators of ψ′(m) are translation invariant in the sense that estimates based on

observations Yi and translated versions Y ′i = Yi + t differ by exactly t. The estimator ψ̂′ML that we

discuss here is not. This is a consequence of the regularization implicit in our choice of weights. In the

averaged ridge regression interpretation of our estimator (3.7), the penalty ‖·‖2HK that we use when

we estimate m(·, 0) penalizes deviation of our estimator from the constant function f(x) = 0, even if

that deviation takes the form of a constant translation. As penalties on translations are light for most

reasonable RKHS norms, this is not generally a problem if E[Yi |Wi = 0] is not too large. However,

modifying our estimator so that it is translation invariant makes it somewhat more foolproof. A

simple way to do this is to use the estimator ψ̂MLt = (nT /n)Ȳ0 + n−1
∑
i:Wi=0 γ̂i(Yi − Ȳ0) where

Ȳ0 = n−1
Z

∑
i:Wi=0 Yi. This is a very simple augmented minimax linear estimator incorporating

a constant estimate Ȳ0 of m(·, 0). See Kallus (2016, Section 4.5) for an alternative approach to

translation invariance and its generalizations that substitutes a translation invariant seminorm for

the norm ‖·‖HK .

Remark 3.2. Our first-order asymptotic result, Theorem 3.2, requires no assumptions on the Riesz

representer γψ beyond its existence and boundedness. Our assumption that γψ(x) is bounded is

a strict overlap assumption in the sense of D’Amour et al. (2017), which ensures that our target

population and the population that receives our treatment of interest are sufficiently similar that

the rate at which ψ(m) can be estimated is not impacted by identification issues (see e.g. Khan and

Tamer, 2010).

Theorem 3.2 does require smoothness of the regression function m(·, 0). In particular, it requires

that the RKHS HK that we work with satisfies Assumption 3.3 or 3.4 and that m(·, 0) is smoother

than the least smooth function in HK in the sense that ‖m(·, 0)‖LκmK,PZ
<∞ for κm > 1/2.

Under Assumption 3.3, this implies Sobolev-type smoothness of m(·, 0) of order s > d. This

seems to be twice as strong as should be necessary. Efficient estimation of ψ(m) is possible so long

as m(·, 0) is Hölder-smooth of order s > d/2 (Robins et al., 2009), and the linear ‘plug-in’ estimator
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of Newey and Robins (2018) is efficient in this case. Furthermore, Sobolev-type smoothness of

order s > d/2 is sufficient to show that that our estimator is consistent at Op(n
−1/2) rate by the

simple argument based on (3.6) discussed in Section 3.1. Thus, it would be strange if twice this

level of smoothness were required for efficiency of our esitimator. This seemingly excessive level

of smoothness is needed only to ensure an adequately slow rate of growth for the eigenfunctions

of LK,PZ in supremum norm, a significant challenge in the characterization of the performance of

RKHS methods (see discussion in Zhou, 2002). In some cases, it is clear that we do not need this

degree of smoothness. In particular if HK is the Sobolev space of periodic functions on the unit

cube in Rd and PZ is uniform measure on this cube, the eigenfunctions of LK,PZ will be the fourier

basis functions, which are bounded in supremum norm.

The implication of Assumption 3.4 that ‖m(·, 0)‖Cs <∞ for s > d/2 is closer to what we expect.

This is the aforementioned minimal level of Hölder-type smoothness required for efficient estimation

of ψ(m). However, insofar as the finiteness of ‖m(·, 0)‖Cs is implied by and not equivalent to our

assumptions, this should not be taken as a claim that our results are comparable to those of Newey

and Robins (2018).

Remark 3.3. While the first order asymptotic behavior of our estimator is not impacted by the

smoothness of this Riesz representer γψ, the higher order ‘remainder’ terms are strongly affected.

In particular, our bound (3.14) decays no faster than n−1/2λ
min{ 1

2 ,
2κγ

1+2κγ
}

where κγ is the largest κ

such that ‖gψ‖LκK,PZ
<∞.

Remark 3.4. In Theorem 3.2, we take λ = σ2/n for constant σ. This choice is the natural one

in our minimax approach, as σn → ∞ or σn → 0 would yield minimax estimators in settings in

which the noise level was either increasing or decreasing with sample size. In addition, it is a robust

choice, as it results in first-order asymptotic efficiency under no smoothness assumptions on γψ and

a smoothness assumption κm > 1/2 on m(·, 0) that we cannot weaken by tuning λ differently.

However, other perspectives on our estimator motivate the use of λ asymptotically larger than

1/n. In what follows, we will use the notation an � bn meaning an/bn → 0, an . bn meaning

supn an/bn < ∞, and an ∼ bn meaning an . bn and bn . an. Interpreting our estimator as

an averaged ridge regression estimator (3.9) or as an inverse probability weighting estimator with

inverse probability weights estimated by least squares (2.28), the choice λ ∼ 1/n results in unusually

weak regularization. As discussed in Appendix A.1.3, by taking λ� 1/n, it is possible to get faster

convergence of γ̂ to the Riesz representer γψ, and this phenomenon holds for convergence of our

ridge regression estimator m̂ to the regression function m(·, 0) as well.

While this tuning approach requires greater smoothness of γψ and m(·, 0) for first-order asymp-
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totic efficiency, it can lead to faster decay of the remainder. If the Riesz representer is smooth enough

that the conditions of our Lemma are satisfied with κγ ≥ 1/2, characterization of the optimal λ

is straightforward. Our remainder rate is bounded by the sum of the dominant term λκ̃m from (3.13)

and the dominant term n−1/2a1/2 from (3.14), which is on the order of max{(n−3/4r)κ̃m/(κ̃m+1/2), n−κ̃m}

for κ̃m = min{κm, 1} at the optimal choice λ ∼ max{(n−3/4r)1/(κ̃m+1/2), n−1}. As r � n−1/4 when-

ever Theorem 3.4 applies, this rate is faster than n−κ̃m/(κ̃m+1/2), which ranges from n−(1/2+ε) to

n−2/3 as the smoothness parameter κ̃m describing m(·, 0) increases from 1/2 + ε′ to 1. Characteri-

zation of an optimal tuning parameter in terms of κm and κγ ∈ (0, 1/2) is more complicated.

The immediate utility of this knowledge is limited, as this choice of the tuning parameter λ

depends on the unknown parameters κm, κγ . However, it does provide potentially useful intuition:

the tuning parameter λ that results in the smallest remainder is typically between our robust choice

λ ∼ 1/n and the choice λ ∼ r2 that optimizes the rate of convergence of γ̂ to γψ (see Appendix A.1.3).

Thus, we should not necessarily expect optimal performance either from tuning approaches that

assume σ = nλ should be roughly constant as a function of sample size or from approaches that

tune λ for estimation of γψ by cross-validation.

3.2 Proving the finite sample bounds

3.2.1 Proof of the bias term bound (3.13)

In this section, we prove bound (3.13) from Theorem 3.4. We will begin by proving the lemma

below, then show that it implies the bound (3.13).

Lemma 3.6. In the setting described in Section 3.1.2, consider the estimator ψ̂ML = n−1
∑n
i=1 1{Wi=0}γ̂iYi

with weights γ̂ defined in (3.8). Define λ = σ2/n, L = LK,PZ , Lλ = L+ λI, pZ = P{Wi = 0}, and

pT = P{Ti = 1}.
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For any η, δ ∈ (0, 1), on an event of probability 1− 3δ,

∣∣∣E [ψ̂ML | X,W
]
− ψ̃(m)

∣∣∣ ≤ spZ‖gψ‖L2(PZ)

+ 2(1 + η)Rn{T (x,w)b(x) : ‖b‖ ≤ r, ‖b‖L2(PZ) ≤ s}

+ sn−1/2
√

2pZ‖gψ‖∞ log(2δ−1) + 2rMK

(
1

3
+

1

η

)
log(2δ−1) (3.15)

(r, s) = ζ−1λ ·
(
‖L−1

λ m(·, 0)‖, ‖L−1/2
λ m(·, 0)‖

)
;

ζ = max

0, 1− 8U2 log(4δ−1n2
δ)

nδ
−

√
16U2 log(4δ−1n2

δ)

nδ

; (3.16)

U = ess sup
X∼PZ

∥∥∥L−1/2
λ KX

∥∥∥; (3.17)

nδ = npZ −
√

2npZ log(δ−1). (3.18)

Our approach works with the averaged ridge regression interpretation our our estimator. In

(3.5) above, we decomposed the error ψ̂ML−ψ(m) of our estimator, written in weighting form (3.8),

into its design-conditional bias and its variation around it. Consider the same decomposition of our

estimator expressed in averaged ridge regression form (3.9).

ψ̂ML − ψ̃(m) =
1

n

n∑
i=1

Ti[E [m̂(Xi) | X,W ]−m(Xi, 0)]︸ ︷︷ ︸
bias

+
1

n

n∑
i=1

Ti[m̂(Xi)− E [m̂(Xi) | X,W ]]︸ ︷︷ ︸
noise

.

(3.19)

The quantity E[ψ̂ML | X,W ] − ψ̃(m) that we are bounding is an average n−1
∑n
i=1 Tib(Xi) of the

conditional bias function b = E [m̂(Xi) | X,W ]−m(Xi, 0) of our regression estimator.

To bound this quantity, we proceed in two steps. In the first step, we will show that on a high-

probability event A1, this function b is in a set B := {b′ : ‖b′‖ ≤ r, ‖b′‖L2(PZ) ≤ s} for certain r, s.

To do this, we work conditionally on W , considering {Xi : i ≤ n,Wi = 0} to be an iid sequence of

length nZ =
∑n
i=1 1{Wi=0} from the conditional distribution PZ of Xi given Wi = 0. As this will

determine bounds r′, s′ in terms of the random variable nZ , we will show that on a high probability

event A2, nZ/n is nearly as large as its mean P{Zi = 1}, and as a consequence define nonrandom

bounds r, s holding on A1 ∩ A2. In the second step, we will bound supb′∈B|n−1
∑n
i=1 Tib

′(Xi)| on

another high probability event A3. As a consequence, we will have a bound on |n−1
∑n
i=1 Tib(Xi)|

on the event ∩3
k=1Ak, which holds with probability 1−

∑3
k=1 P{Ak} by the union bound.
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3.2.1.1 Characterizing the conditional bias function b

The optimization problem (3.9) definining m̂ has an explicit solution (see e.g. Hsu et al., 2012)

m̂ =

[
1

nZ

∑
i:Wi=0

KXi ⊗KXi + λI

]−1
1

nZ

∑
i:Wi=0

KXiYi,

written in terms of λ = σ2/nZ and the rank-one operator Kx ⊗ Kx defined by [Kx ⊗ Kx]f =

Kx〈f,Kx〉 . Then because for the Wi = 0 units E [Yi | X,W ] = m(Xi, 0) = 〈KXi ,m(·, 0)〉, we

have KXiE [Yi | X,W ] = KXi〈KXi ,m(·, 0)〉 = [KXi ⊗ KXi ]m(·, 0). In terms of the operator L̂ =

n−1
Z

∑
i:Wi=0KXi ⊗KXi we may write

E [m̂ | X,W ] =
[
L̂+ λI

]−1

L̂ m(·, 0) =

(
I − λ

[
L̂+ λI

]−1
)
m(·, 0)

and therefore

b = −λ
[
L̂+ λI

]−1

m(·, 0).

Note that the operator L̂ is an empirical version of our integral operator L := LK,PZ . Our

characterization of b will rely on the convergence of L̂ to its mean L in the operator norm ‖A‖ =

sup‖f‖≤1‖Af‖. Using the shorthand L̂λ := L̂+ λI and Lλ := L+ λI for the regularized versions of

these operators, we may write

b = −λ[L̂−1
λ Lλ][L−1

λ m(·, 0)].

From this decomposition, we get the bound

‖b‖ ≤ λ‖L̂−1
λ Lλ‖‖L−1

λ m(·, 0)‖. (3.20)

Furthermore, because ‖b‖L2(PZ) ≤ ‖L
1/2
λ b‖, analogously we have the bound

‖b‖L2(PZ) ≤ λ
∥∥∥L1/2

λ L̂−1
λ L

1/2
λ

∥∥∥∥∥∥L−1/2
λ m(·, 0)

∥∥∥. (3.21)

These two bounds form the basis for our characterization of b as an element of the set B. The

operator norm factors in the two expressions above are the same, as ‖AB‖ = ‖B1/2AB1/2‖ for any

operator A and positive operator B.4 We bound this quantity using an argument of Hsu, Kakade,

and Zhang (2012, Lemmas 25 and 26), observing first that∥∥∥L1/2
λ L̂−1

λ L
1/2
λ

∥∥∥ ≤ (1− ‖∆λ‖)−1 where ∆λ = L
−1/2
λ (L̂λ − Lλ)L

−1/2
λ .

Here ∆λ is a centered mean of iid rank-one operators,

∆λ = n−1
Z

∑
i:Wi=0

X̃i ⊗ X̃i − EX∼PZ X̃i ⊗ X̃i where X̃i = L
−1/2
λ KXi ,

4Check that when φ is an eigenvector of AB, Bφ is an eigenvector of BA with the same eigenvalue.

54



and it satisfies the condition ‖EX∼PZ X̃i ⊗ X̃i‖ = ‖L−1/2
λ LL

−1/2
λ ‖ ≤ 1. We bound ‖∆λ‖ using a

concentration inequality for such averages (Oliveira et al., 2010, Lemma 1).5 If ‖X̃i‖ ≤ U almost

surely, with probability 1− δ,

∥∥∥∥∥n−1
Z

∑
i:Wi=0

X̃i ⊗ X̃i − EX∼PZ X̃i ⊗ X̃i

∥∥∥∥∥ < 8U2 log(4δ−1n2
Z)

nZ
+

√
16U2 log(4δ−1n2

Z)

nZ

Consequently, with probability 1− δ,

∥∥∥L1/2
λ L̂−1

λ L
1/2
λ

∥∥∥ ≤ max

0, 1− 8U2 log(4δ−1n2
Z)

nZ
−

√
16U2 log(4δ−1n2

Z)

nZ


−1

.

As long as U is small relative to
√
nZ , this operator norm will be essentially one, and our bounds

on ‖b‖ and ‖b‖L2(PZ) will be roughly λ‖L−1
λ m(·, 0)‖ and λ‖L−1/2

λ m(·, 0)‖ respectively. We state our

results in terms of the sharp upper bound U = ess supX∼PT ‖L
−1/2
λ KX‖.

To eliminate this bound’s dependence on nZ , observe that log(4δ−1x)/x is an increasing function,

so our bound will remain valid if we substitute an upper bound on nZ . Furthermore, in terms of

pZ = P{Wi = 0}, nZ ≥ n(1 − ε)pZ with probability 1 − exp{−nε2pZ/2} by the lower tail of

the multiplicative Chernoff bound (see e.g. Mitzenmacher and Upfal, 2005, Theorem 4.5). For

ε = [2 log(δ−1)/(npZ)]1/2, this is probability 1− δ, and we have (1− ε)n = npZ −
√

2npZ log(δ−1).

Therefore by the union bound, with probability 1− 2δ,

∥∥∥L1/2
λ L̂−1

λ L
1/2
λ

∥∥∥ ≤ ζ−1 for ζ = max

0, 1− 8U2 log(4δ−1n2
δ)

nδ
−

√
16U2 log(4δ−1n2

δ)

nδ

;

nδ = npZ −
√

2npZ log(δ−1).

(3.22)

We take r, s in the definition of the set B to be the values of the bounds (3.20) and (3.21) with this

bound substituted.

3.2.1.2 Bounding empirical averages over B

First, note that because B is symmetric, we can drop the absolute value. We then rewrite our

empirical average n−1
∑n
i=1 Tib

′(Xi) as the sum of its mean and its deviation around it, ETib′(Xi)+

n−1
∑n
i=1[Tib

′(Xi)− ETib′(Xi)]. We will take the supremum of each term over B separately.

5Hsu, Kakade, and Zhang (2012) complete this argument by invoking a similar inequality. Theirs involves a log
factor involving a parameter of Lλ, whereas the one we use here involves a factor of log(n) in its place.
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We bound the mean via a change of measure and Cauchy-Schwartz.

ETib′(Xi) = pTE [b′(Xi) | Ti = 1] for pT = P{Ti = 1}

= pZ EX∼PZ [b′(X)gψ(X)] as gψ(x) =
P{Ti = 1 | X = x}
P{Wi = 0 | X = x}

=
pT dPT
pZdPZ

(x)

≤ pZ‖b′‖L2(PZ)‖gψ‖L2(PZ)

≤ spZ‖gψ‖L2(PZ).

(3.23)

Furthermore, by the same line of reasoning we have E(Tib
′(Xi))

2 ≤ s2pZ‖gψ‖∞, as via Hölder’s

inequality,

ETib′(Xi)
2 = pZ EX∼PZ

[
b′(X)2gψ(X)

]
≤ pZ‖b′‖2L2(PZ)‖gψ‖∞.

In addition, we have ‖b′‖∞ ≤ rMK where MK = sup‖f‖≤1‖f‖∞. We use these in our bound on the

deviation term, for which we use a form of Talagrand’s inequality (Bartlett et al., 2005, Theorem

2.1). As the class of functions {T (x,w)b′(x) : b ∈ B} satisfies the bounds ‖T (x,w)b′(x)‖L2(P ) ≤

sp
1/2
Z ‖gψ‖

1/2
∞ and ‖T (x,w)b′(x)‖∞ ≤ rMK , with probability 1− δ,

sup
b′∈B

∣∣∣∣∣n−1
n∑
i=1

(Tib
′(Xi)− ETib′(Xi))

∣∣∣∣∣ ≤ tη for all η > 0;

tη = 2(1 + η)Rn{T (x,w)b′(x) : b′ ∈ B}+ s

√
2pZ‖gψ‖∞ log(2δ−1)

n
+ 2rMK

(
1

3
+

1

η

)
log(2δ−1).

(3.24)

By the union bound, the intersection of this event and the event on which (3.22) holds has probability

at least 1−3δ. On this intersection, our mean and deviation bounds above apply to b. Adding them

yields the bound (3.15) that we set out to prove. This completes our proof of Lemma 3.6.

3.2.1.3 Proving (3.13) from Lemma 3.6

To prove (3.13) from Lemma 3.6, we substitute upper bounds for a few quantities in (3.15). To estab-

lish these bounds, we use the lemmas stated below, which are proven in Appendix B.4. Lemma 3.7

implies that that our expression for ζ in terms of α, β, n in (3.13) bounds the corresponding quantity

ζ in (3.15). Lemma 3.8 implies that our expressions for s and r as multiples of ζ−1 in (3.13) bound

those in (3.15). As in these cases our lemmas give exactly the quantities that appear in (3.13), we

will not discuss those terms further.

To bound the second term in (3.15), we will use Lemma 3.9, a generalization of Mendelson’s

bound on the local Rademacher complexity of the unit ball in an RKHS (Mendelson, 2002). This

term is 2(1 + η)r times the the Rademacher complexity of the set {Tib′(x) : ‖b′‖ ≤ 1, ‖b′‖L2(PZ) ≤

s/r}, and as established above, this ‖·‖L2(PZ) bound on b′ implies that ‖T (x,w)b′(x)‖L2(P ) ≤ t for
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t = (s/r)(pZ‖gψ‖∞)1/2. Thus, it suffices to bound the Rademacher complexity R of the set {Tib(x) :

‖b‖ ≤ 1,E(Tib(Xi))
2 ≤ t2}, and we apply Lemma 3.9 with g = 0, Zi = Ti, and an iid Rademacher

sequence σ1 . . . σn independent of (Xi,Wi)i≤n. This yields the bound R2 ≤ (2/n)
∑∞
j=1 λj ∧ t2 in

terms of the eigenvalues λj of the integral operator LK,ν associated with the measure ν = pT ·PT , a

scaled version of the distribution of the covariate Xi on the target population. Thus, λj = pTλj,T for

eigenvalues λj,T of LK,PT , and our bound may be rewritten in the form R2 ≤ (2/n)
∑∞
j=1(pTλj,T )∧t2

and bounded using Lemma 3.10 to complete our proof.

Lemma 3.7. Let HK be an RKHS of functions on a compact set X , Let ν be a finite measure

with support equal to X , define [LK,νf ](x) =
∫
K(x, t)f(t)dν(t), and let (λj , φj)i∈N be its eigen-

values and eigenfunctions scaled so that ‖φj‖L2(ν) = 1, and assume that λj ≤ Cλj−α and that

‖φj‖L∞(ν) ≤ Cφλ
−β/2
j with α(1− β) > 2. Then,

ess sup
X∼ν

∥∥∥[LK,ν + λI]−1/2Kx

∥∥∥ ≤ Cλ−(1/α+β)/2 where

C = CφC
1/(2α)
λ

[(
β

1− β

)1/α+β

+
α

(1 + αβ)(α− (1 + αβ))

]1/2

.

Lemma 3.8. Let HK be an RKHS of functions on a compact set X , let ν be a finite measure with

support equal to X , and let λ1 be the largest eigenvalue of [LK,νf ](x) =
∫
K(x, t)f(t)dν(t). Then,

‖[LK,ν + λI]−1/2f‖ ≤


λκ−1‖f‖LκK,ν κ ∈ [1/2, 1)

λκ−1
1 ‖f‖LκK,ν κ ≥ 1

‖[LK,ν + λI]−1f‖ ≤


λκ−3/2‖f‖LκK,ν κ ∈ [1/2, 3/2)

λ
κ−3/2
1 ‖f‖LκK,ν κ ≥ 3/2.

.

(3.25)

Lemma 3.9. Let HK be an RKHS of functions on a compact set X , let (X1, Z1) . . . (Xn, Zn)
iid∼

νx,z where the marginal νx on Xi has support equal to X , and let sz(x) = E
[
Z2
i | Xi = z

]
satisfy

sz(x) > 0 a.e.−νx. Define the measure ν by dν = szdνx and let {λj : j ∈ 1 . . .∞} be the eigenvalues

of [LK,νf ](x) =
∫
K(x, t)f(t)dν(t) in decreasing order. For a ν-square-integrable function g, define

the set B? = {f−sg : ‖f‖HK ≤ 1, s ∈ [0, 1]}. In terms of an identically distributed sequence σ1 . . . σn

satisfying E [σiσj | X1, Z1 . . . Xn, Zn] = 0 for i 6= j, the local multiplier complexity

Mn{zf(x) : f ∈ B?, E(Zif(Xi))
2 ≤ t2} := sup

f∈B?
E(Zif(Xi))

2≤t2

∣∣∣∣∣n−1
n∑
i=1

σiZif(Xi)

∣∣∣∣∣
is bounded by

31/2
∥∥E [σ2

i | Xi, Zi
]∥∥
L∞(νx,z)

n−1/2

√√√√ ∞∑
j=0

λj ∧ t2 where λ0 = (1 +
√
λ1)2‖g‖2L2(ν).
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If g = 0, we may take λ0 = 0 and the leading constant to be 21/2. For t = ∞, we have the tighter

bound

21/2
∥∥E [σ2

i | Xi, Zi
]∥∥
L∞(νx,z)

n−1/2

‖g‖L2(ν) +

√√√√ ∞∑
j=1

λi

 .

If g = 0, we may take the leading constant to be 1.

Lemma 3.10. If λj ≤ Cn−α for α > 1,
∑∞
j=1 λj ∧ t2 ≤ C1/α(1− 1/α)−1t2(1−1/α).

3.2.2 Proof of the noise term bound (3.14)

In this section, we prove the bound (3.14) from Theorem 3.4. This is a slight variation on the bound

(2.21) from the previous chapter. We will work with a characterization of the noise term from (3.5),

ψ̂ML − E[ψ̂ML | X,W ] = 1{Wi=0}γ̂iεi where εi = Yi −m(Xi,Wi).

We will show convergence of this quantity to the iid sum n−1
∑n
i=1 γψ(Xi,Wi)εi by showing conver-

gence of 1{Wi=0}γ̂i to γψ(Xi,Wi). To do this, we use the previous chapter’s Lemma 2.8. This suffices,

as in Section 2.1.3.5 we’ve shown that if γ1 . . . γn satisfy the bound n−1
∑n
i=1(γi−γ̂ψ(Xi,Wi))

2 ≤ a∧b

with probability 1− δ′, then the bound (3.14) we aim to prove holds with probability 1− δ − δ′.

In order to apply Lemma 2.8 in this setting, we must establish that the weights γ̂ that we

discuss here are an instance of the weights γ̂ that we discuss in the previous chapter. We use

the following characterization of the solution to optimization problem (2.15), which specializes the

previous chapter’s Lemma 2.5 to our setting. We prove this proposition in Appendix B.4.

Proposition 3.11. Let h(x,w, f) = T (x,w)f(x, 0), let B be the unit ball of a reflexive space of

functions on a set X , and let BC be the unit ball for the cartesian product of C + 1 copies of this

space considered as functions f(x,w) on (X , {0 . . . C}). Then the primal problem

`n,BC (γ) = I2
h,BC (γ) +

σ2

n2
‖γ‖2, Ih,F = sup

f∈F

1

n

n∑
i=1

[h(Xi,Wi, f)− γif(Xi,Wi)] , (3.26)

has a unique minimum at γ̂ satisfying γ̂i = 0 for Wi 6= 0. Furthermore, the dual

Mn,BC (g) = −
σ2‖g‖2BC

n
− 1

n

n∑
i=1

g(Xi,Wi)
2 +

2

n

n∑
i=1

h(Xi,Wi, g), (3.27)

has a possibly nonunique maximum, and for any ĝ at which its maximum is attained, γ̂i = ĝ(Xi,Wi)

and ĝ(·, w) = 0 for w 6= 0.

Here we take B to be the unit ball of our RKHS HK . Subject to the constraint that γ̂i = 0 if

Wi 6= 0, a constraint that is satisfied by the solution of (3.26), this problem reduces to the problem
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(3.8) that defines our weights. Thus, our weights solve it. Having established this, we may now

show convergence of γ̂ to γψ by using Lemma 2.8 to establish convergence of ĝ to γψ.

As we know that both ĝ and γψ satisfy the property g(·, w) = 0 for w 6= 0, we apply Lemma 2.8

with γ̃ satisfying this property and with F̃= F = {f : ‖f(·, 0)‖HK ≤ 1, f(·, w) = 0 for w 6= 0}.

The resulting bound will be stated in terms of a few properties of the sets F?(t) = {f − sγψ : f ∈

F , s ∈ [0, 1], ‖f − γψ‖L2(P ) ≤ t} and H?(t) = {T (x,w)f(x, 0) − γψ(x,w)f(x,w) : f ∈ F?(t)}. The

relevant properties are, in terms of a convenient choice of constant ηQ = (61− 8
√

39)/49 ≈ .23 and

arbitrary ηC > 0,

rQ(ηQ) = 7 inf
{
r > 0 : Rn(F?(r)) ≤ r2/(2MF?)

}
and

rC(ηC , δ) = inf
{
r > 0 : u(H?(r), δ) ≤ ηCr2

}
where

u(H, δ) = min
η>0

2(1 + η)Rn(H) + σ(H)

√
2 log(2δ−1)

n
+ 2MH

(
1

3
+

1

η

)
log(2δ−1)

n
; 6

MG = sup
g∈G
‖g‖∞; σ(G) = sup

g∈G
‖g‖L2(P ).

It will also be stated in terms of a measure of the approximability of the Riesz representer γψ by a

function γ̃ with γ̃(·, 0) ∈ HK , specifically a bound R̄ satisfying with probability 1− δ

R̄ ≥ 1

n

n∑
i=1

[(γ̃ − γψ)(Xi,Wi)]
2 − 2

n

n∑
i=1

(Ti − γψ(Xi,Wi))(γ̃ − γψ)(Xi,Wi) +
σ2‖γ̃(·, 0)‖2HK

n
. (3.28)

In terms of these quantities, Lemma 2.8 yields the bound n−1
∑n
i=1(ĝ(Xi,Wi)−γψ(Xi,Wi))

2 ≤ a∧b

with probability 1− exp{−c1(ηQ)nrQ(ηQ)2/M2
F?} − 4δ where

a = αu(H?, δ) + R̄;

b = 2α2r2 ∨ 2
R̄+ σ2/n

ηQ − 2α−1ηC
∨ 44M2

F?α
2 log(δ−1)

n
;

α = 1 ∨
[
2ηCσ

−2nr2 + σ−1n1/2R̄1/2
]

;

r = rQ(ηQ) ∨ rC(ηC , δ) ∨ σn−1/2η
−1/2
Q ;

c1(ηQ) =
(1− ηQ)2

2(1 + ηQ)(21− 11ηQ)
≈ .02

(3.29)

To complete our proof, it suffices to bound these quantities. We do this in Appendix B.5, bounding

u(H?, δ), rQ(ηQ), and rC(ηC , δ) using Lemmas 3.9 and 3.10. The lemma stated below, which is

proven in Appendix B.4, characterizes R̄ when we take λ = σ2/n.

Lemma 3.12. Suppose that we observe X1,W1 . . . Xn,Wn iid and let PZ be the conditional distri-

bution of Xi given Wi = 0 and have support equal to a compact set X . Let HK be an RKHS of

6Here rather than the general definition (2.18) of u(·, δ) used in the previous chapter, we use a specific instance
based on a convenient form of Talagrand’s inequality (Bartlett et al., 2005, Theorem 2.1).
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functions of X and γψ(x,w) = 1{w=0}gψ(x) be the Riesz representer for the functional f(x,w) →

ET (x,w)f(x, 0) and for an approximation γ̃(x,w) = 1{w=0}g̃(x), define

R̄λ,γ̃ =
1

n

n∑
i=1

(γ̃(Xi,Wi)−γψ(Xi,Wi))
2− 2

n

n∑
i=1

(Ti−γψ(Xi,Wi))(γ̃(Xi,Wi)−γψ(Xi,Wi))+λ‖g̃‖2HK .

1. If ‖gψ‖L2(PZ) <∞, HK is dense in L2(PZ), and λn → 0, then γψ has a sequence of approxi-

mations γ̃n(x,w) = 1{w=0}g̃n(x) such that R̄λn,γ̃n = op(1).

2. Furthermore, if ‖gψ‖LκK,PZ
<∞ for κ ∈ (0, 1/2), γψ has an approximation γ̃(x,w) = 1{w=0}g̃(x)

such that with probability 1− δ,

R̄λ,γ̃ ≤ 2
(
δ−1pZ

) 1−2κ
1+2κ ‖gψ‖

4
1+2κ

L2(PZ)

(
θ−

θ
1+θ + θ

1
1+θ

)
λ

4κ
1+2κ

+ 2
4(1−κ)
1−2κ

(
δ−1pZ

) 1
1+2κ ‖gψ‖L∞(PZ)‖gψ‖

4
1−4κ2

L2(PZ)θ
θ

2(θ+1)n−1/2λ
2κ

1+2κ .

where pZ = P{Wi = 0} and θ = 4κ/(1− 2κ).

3.3 Empirical Performance

We evaluate the performance of our estimator on the famous example of Kang and Schafer (2007).

In this example, we estimate a mean outcome when some outcomes are missing by a strongly

ignorable mechanism (Rosenbaum and Rubin, 1983), an instance of the estimand ψ(m) that we’ve

been discussing in which we take Wi ∈ {0, 1} and Ti = 1 for all i.

The estimators under comparison are (i) an averaged regression estimator n−1
∑n
i=1 m̂(Xi) where

m̂ is an estimate of m(x, 0) by ordinary least squares (OLS) on the treated units; (ii) an inverse

propensity weighting (IPW) estimator n−1
∑n
i=1 1{Wi=0}ê(Xi)

−1Yi where ê(x) is a logistic regression

estimator of P{Zi = 0 | Xi = x}; (iii) an augmented inverse probability weighting (AIPW) estimator

n−1
∑n
i=1 m̂(Xi)+1{Wi=0}ê(Xi)

−1(Yi−m̂(Xi)) incorporating the aforementioned estimators m̂ and

ê; and (iv) the minimax linear estimator ψ̂ML (ML) and (v) the translation invariant variant ψ̂MLt

(MLt) discussed in Remark 3.1. The latter estimators use the Matérn Kernel, K(x, y) = kν(‖x−y‖)

for kν(x) = (
√

2νx)ν

2ν−1Γ(ν)BKν(
√

2νx)) where BKν is a modified Bessel function of the second kind. The

RKHS associated with this kernel is the Sobolev space Hs for s = d/2+ν (Schaback, 2011). We take

ν to be 3/2 and the primary level of the parameter σ in (3.8) to be 0.1, although we will display some

additional results for σ = 1 and σ = 10. Calculation of the estimators is straightforward, amounting

to the solution of a symmetric n × n linear system, as discussed in the Proof of Lemma 3.1 in

Appendix B.4.
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We will look at, in addition to root mean squared error and bias, the width and coverage of 95%

confidence intervals of the form ψ̂ ± z.025V̂
1/2/n1/2, where

V̂ = n−1
∑
i:Ti=1

(
m̂(Xi)− ψ̂

)2

+ n−1
∑

i:Wi=0

γ̂2
i (Yi − m̂(Xi))

2
. (3.30)

Here γ̂i are the weights used in the given estimator7 and m̂ is an OLS estimate of m(x, 0) based on

the sample receiving treatment Wi = 0. V̂ is based on a variant of the asymptotic characterization

(3.11) with the limit of γ̂i substituted for γψ(Xi,Wi), which will hold for these estimators so long

as the conditional bias E[ψ̂ | X,W ]− ψ(m) = op(n
−1/2).

The Kang and Schafer example was designed to illustrate that methods using estimated in-

verse propensity weights can be unstable. Our observations Xi ∈ R4,Wi ∈ {0, 1}, Yi ∈ R are

defined in terms of a latent vector of standard normal random variables Zi ∈ R4: we have Xi1 =

exp(Zi1/2), Xi2 = Zi2/(1+exp(Zi1)+10), Xi3 = (Zi1Zi3/25+.06)3, Xi4 = (Zi2+Zi4+20)2; P{Wi =

0 | Zi} = logit−1(−Zi1+0.5Zi2−0.25Zi3−0.1Zi4); and Yi = 210+27.4Zi1+13.7(Z12+Zi3+Zi4)+σεεi

for standard normal εi when Wi = 0. In this example, the instability of the IPW and AIPW estima-

tors persists even into large sample sizes, while the OLS estimator performs extremely well even in

small samples. These phenomena are explained in detail by a comment on Kang and Schafer (2007)

by Robins et al. (2007). In summary, there are regions of poor overlap between the distributions of

the covariate Xi between the treated and untreated subpopulations, which results in large inverse

probability weights and therefore instability, but m(x, 0) is sufficiently linear throughout the support

of Xi that an estimator fit on the treated units extrapolates well into these regions of poor overlap.

We show here that our estimator ψ̂MLt , while not reliant on the linearity of m(x, 0), also performs

very well in all sample sizes. Furthermore, when the sample size is small and noise level σε is large,

the inclusion of regularization in our estimator’s implict estimate of m̂ helps us — in these settings,

ψ̂ML and ψ̂MLt with larger values of the tuning parameter σ outperform OLS.

7While the OLS estimator is not typically considered a weighting estimator, it is linear in Y , and can therefore be
expressed in that form. Lemma 3.1 shows that it is, in fact, a limiting (σ → 0) case of our estimator ψ̂ML in which
we work with the RKHS of linear functions f(x) = fT x with the Euclidean inner product 〈f(x), g(x)〉 = fT g.
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AIPW IPW OLS ML MLt AIPW IPW OLS ML MLt AIPW IPW OLS ML MLt

100
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200
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Figure 3.1: Boxplots of our estimates over 1000 replications with σε = 50 at sample sizes 50, 200,
1000. The grey horizontal line indicates the value of estimand. As the IPW and AIPW estimators
were very variable, some larger estimates are cut off to allow some detail to be visible in the plot.
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n 50 200 1000 4000 50 200 1000 4000
rmse half-width
bias coverage

σ
ε

=
1

IPW
40.8 79.3 126.5 169.6 17.6 17.5 26.7 51.5
-3.1 19 33.7 55 0.53 0.51 0.25 0.08

AIPW
8.1 14.9 51.4 92 15.8 17 26.6 51.5
-1.4 -5.4 -11.9 -23.7 0.96 0.98 0.95 0.66

OLS
6.8 3.3 1.7 1.2 14.8 8 3.7 1.9
0.1 -0.5 -0.7 -0.9 0.97 0.98 0.98 0.91

ML
38.2 20 8.8 4.3 16.5 7.5 3.6 1.9
-36.7 -19.5 -8.7 -4.3 0.01 0 0 0

MLt
8.9 5.2 2.6 1.5 12.9 7.1 3.5 1.9
-6.6 -4.4 -2.3 -1.3 0.85 0.83 0.83 0.82

MLt 10σ
9.8 6.4 3.6 2.2 12 6.4 3.1 1.7
-7.7 -5.7 -3.4 -2.1 0.76 0.6 0.44 0.28

MLt 100σ
11.9 10.2 8.7 7.1 11 5.4 2.5 1.3
-9.7 -9.6 -8.6 -7.1 0.57 0.1 0 0

σ
ε

=
5
0

IPW
40.5 308 479.7 842.3 33.9 35.9 54 86.7
-3.3 30.8 59.4 78.7 0.75 0.74 0.5 0.15

AIPW
15.4 69.8 143.4 513.4 32.6 35.2 53.8 86.7
-1.2 -8.5 -20.2 -35.5 0.95 0.98 0.98 0.9

OLS
14.1 6.8 3.1 1.7 34.4 17.6 8 4
0.2 -0.8 -0.9 -0.9 0.97 0.99 0.99 0.98

ML
40.1 20.8 9.4 4.5 29.9 17.2 8.4 4.4
-37.5 -19.6 -8.8 -4.2 0.27 0.37 0.47 0.53

MLt
14.2 8 3.9 2.1 27.9 17 8.4 4.4
-6.9 -4.5 -2.4 -1.3 0.94 0.96 0.97 0.98

MLt 10σ
14.3 8.4 4.4 2.5 22.9 14.1 7.2 3.8
-8.1 -5.8 -3.5 -2 0.88 0.91 0.9 0.89

MLt 100σ
15.8 11.5 9.1 7.1 12.8 5.9 3.7 2.6
-10.1 -9.7 -8.7 -7 0.53 0.25 0.03 0

σ
ε

=
2
0
0

IPW
68.3 631.3 5869.4 442.3 115.8 87.3 159.2 92.7
-1.3 39 236 58.7 0.94 0.94 0.86 0.66

AIPW
55.6 55.5 687 345.4 115.2 85.7 158 92.7
0.1 -3.9 -41.8 -27.3 0.95 0.98 1 1

OLS
51.1 23.3 10.4 5.1 124.5 62.9 28.3 14.2
1.3 -0.4 -0.9 -0.8 0.97 0.99 1 1

ML
53.6 29.9 14.3 6.9 101.1 61.1 30.8 16.1
-36.5 -19.4 -8.8 -4.2 0.93 0.96 0.98 0.99

MLt
44.7 24.2 11.7 5.7 100.5 61 30.8 16.1
-6.6 -4.2 -2.5 -1.3 0.96 0.98 0.99 0.99

MLt 10σ
42.8 22.2 10.5 5.4 79.4 49.9 25.9 13.8
-7.5 -5.6 -3.5 -2.1 0.92 0.96 0.99 0.99

MLt 100σ
42.3 22.5 12.7 8.4 29.1 11.4 11.2 9
-9.9 -9.5 -8.8 -7.1 0.49 0.4 0.59 0.66

σ
ε

=
1
0
0
0

IPW
305.6 458.6 627.1 24863.4 585.9 436.6 352.7 912.8
-0.6 30.4 50.9 928.5 0.96 0.97 0.97 0.97

AIPW
287 281.9 355 5577.7 584.8 436 352.5 912.2
-1.5 2.3 -19.9 -142.7 0.94 0.99 1 1

OLS
257.4 115.8 50.7 26.2 619.7 312.9 140.3 70.3
-3.3 3.4 1.5 -0.4 0.98 0.99 1 0.99

ML
199.7 111.8 56.4 29.5 497.1 305.7 152.6 79.9
-39.3 -18.8 -7.3 -3.7 0.99 0.99 1 0.99

MLt
224.9 116.7 57.1 29.6 496.9 305.6 152.6 79.9
-8.4 -3.3 -0.8 -0.8 0.97 0.99 1 1

MLt 10σ
211.5 105.1 50.1 26 392.3 248.9 128.5 68.8
-8.5 -2 -1.8 -1.4 0.93 0.98 0.99 0.99

MLt 100σ
205.3 99.3 46.4 24.6 137.8 51.5 54.7 44.5
-9.6 -5.6 -6.8 -7.1 0.46 0.37 0.75 0.93

Figure 3.2: Root mean squared error (rmse), bias, and confidence interval half-width and coverage
over 1000 replications. Here we take the tuning parameter σ to be 0.1 in the estimators ML and
MLt. The notation MLt 10σ and 100σ indicates the substitution of 1 and 10 respectively.
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3.4 Application: the LaLonde Study

We apply our method to estimate the impact of the National Supported Work (NSW) Demonstra-

tion, a labor training program, on post-intervention income levels. In this study, participants were

randomly selected for admission to the program, so experimental estimates of a treatment effect

are available. As a result, it has been used to test methods for estimation of treatment effects in

observational studies. Attempts have been made to use larger nonexperimental control groups to

replicate the experimental estimate, but this has proven challenging for many of the methods con-

sidered. This problem was famously discussed in LaLonde (1986) and later in Dehejia and Wahba

(1999).

We follow Dehejia and Wahba (1999) in working with a subset of the male participants in the

experimental sample in which pre-intervention income history is available for at least two years.

The latter restriction allows us to adjust for 4 continuous covariates and 4 binary ones: two years

of pre-intervention income, age (in years), education (in years of schooling), and indicators for

attainment of a high-school diploma, marriage status (married/unmarried), identification as black,

and identification as hispanic. The former is in recognition of both substantially different eligibility

criteria and realization of the intervention for men and women (see LaLonde, 1986). In this subset,

the experimental treatment and control subsamples have 185 and 260 units respectively.

In this context, the primary causal estimand that has been discussed is the average treatment

effect on the treated, τT = E[Y
(1)
i | Wi = 1] − E[Y

(0)
i | Wi = 1]. In the experimental sample,

randomization ensures that E[Y
(0)
i | Wi = 1] = E[Y

(0)
i | Wi = 0] = E[Yi | Wi = 0], and a simple

simple difference-in-means estimate n−1
T

∑
i:Wi=1 Yi − n

−1
Z

∑
i:Wi=0 Yi for nT =

∑n
i=1 1{Wi=1} and

nZ =
∑n
i=1 1{Wi=0} yields a 95% confidence interval of $1794 ± 1315. In our attempt to replicate

this estimate this using a nonexperimental control group, we observe that under our identification

assumptions, E[Y
(0)
i | Wi = 1] = ψ′(m) where ψ′ is defined as in (3.1) for Ti = 1{Wi=1}. For the

treatment effect τT , we use the point estimator τ̂T = n−1
T

∑
i:Wi=1 Yi − ψ̂′ML, taking the parameter

σ in (3.8) to be 0.1 and using the Matérn kernel with ν = 3/2 when calculating ψ̂′ML = (n/nT )ψ̂ML.

Around it, we give 95% confidence intervals τ̂T ± z.025V̂
1/2/n

1/2
T based on the variance estimator

V̂ = V̂1 + V̂2 for

V̂1 = n−1
T

∑
i:Wi=1

Y 2
i −

(
n−1
T

∑
i:Wi=1

Yi

)2

;

V̂2 = n−1
T

∑
i:Wi=1

(
m̂(Xi)− ψ̂ML

)2

+ n−1
T

∑
i:Wi=0

γ̂2
i (Yi − m̂(Xi))

2
;

in which we use an auxilliary ordinary least squares estimator m̂ of m(Xi, 0).
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We consider the use of non-experimental control samples constructed by LaLonde from the

Population Survey of Income Dynamics (PSID-1) and the Current Population Survey (CPS-1) and

well as a small subset of the latter called CPS-3 chosen to have characteristics like the experimental

sample. This data is made available with and summarized in (Dehejia and Wahba, 1999). Our point

estimates vary substantially depending on the control group used. We estimate 95% confidence

intervals of 525 ± 2684, 1233 ± 2733, 1783 ± 1652, and 770 ± 1785 using the additional control

units from the CPS-3 sample, the PSID-1 sample, the CPS-1 sample, and the PSID-1 and CPS-1

samples combined. This may be suggestive of a problem, perhaps caused by adjusting for a fairly

limited set of covariates, but the standard error of our estimators is sufficiently large that differences

between these estimates could simply be explained by random variation. Thus, the experimental

data provide little evidence that can be used to validate or invalidate our approach. The same

qualitative behavior is observed in the results of Dehejia and Wahba (1999).
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Chapter Four

Matching by Rounding

In observational studies, it is common to compare outcomes on matched subsamples of our study

sample which received different treatments. The role of matching is to select subsamples which

are comparable in terms of measured pre-treatment covariates. Insofar as we are able to do this,

and these measured covariates include the ones salient to both selection of treatment and outcome

under treatment, we can attribute observed differences in outcome to differences in treatment. If,

in addition, our matched subsamples are representative of the target population on which we hope

to compare treatments, we may with some reservation act as if we’ve observed exactly what we’d

like best: a randomized experiment conducted on a sample from our target population.

In this chapter, we focus on matching methods for estimation of the targeted average treatment

effect (TATE) for categorical treatments: the average, over our target population, of the difference

Y (w)− Y (w′) between the outcomes that would have occured under treatments w and w′. As in the

previous chapter, we consider an observational study in which we observe for each unit a covariate

vector Xi, a categorical treatment status Wi ∈ 0 . . . C, and an outcome Yi = Y
(Wi)
i ∈ R, and

assume that as a function of (Xi,Wi), we can calculate indicators Ti = T (Xi,Wi) that mark units

as members of a target subsample. Under the previous chapter’s identification assumptions, the

TATE is identified as E[Y (w) | Ti = 1] − E[Y (w′) | Ti = 1], a difference between two quantities like

the estimand we focused on in the previous chapter.

The majority of matching methods in the literature are for estimation of two special cases of the

TATE: the average treatment effect (ATE) and the average treatment effect on the treated units

(ATT). In the former, the target population is the population from which our study sample is drawn;

in the latter, it is the population from which the subsample of treated units is drawn. Additional

specialized methods exist for the pairwise comparison of three or more nominal treatments (Lopez

and Gutman, 2017), which focus on estimation of the TATE for various subpopulations, defined in

terms of received treatment, of the population from which the study sample was drawn. Matching

methods are often categorized as ‘without replacement’, in which individuals are either included in

the matched subsample or not, or ‘with replacement’, in which an individual can appear multiple
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times times in the matched subsample. While methods of both types appear in the literature for

the ATT and similarly-defined estimands, extant methods for the ATE and its ilk are all, to our

knowledge, with replacement. In this paper, we will focus on matching without replacement.

Matching, while favored in many scientific communities for its transparency and its familiarity for

those used to randomized experiments, is not known for its statistical efficiency. For some methods,

this is merited. Nearest neighbor matching methods, in particular, have been shown to suffer badly

from the curse of dimensionality (Abadie and Imbens, 2006). However, approaches have been shown

to be
√
n-consistent, namely matching on an estimated propensity score1 (Abadie and Imbens, 2016)

and integer programming methods which optimize for distributional similarity between matched

groups (Zubizarreta, 2012; Zubizarreta et al., 2014; Kallus, 2016). And while the former has been

established only under parametric assumptions on the propensity score, the latter approaches can be

shown to achieve n−1/2 rates under fairly weak nonparametric assumptions (Kallus, 2016, Theorem

9).

Randomized rounding offers a simple approach to proving rates for these integer programming

methods. In this argument, we think of matching estimators as a subclass of weighting estima-

tors, which may fractionally include individuals in the matched subsamples. More concretely, if

we let Ai,w and Ai,w′ be indicators for membership in the matched groups of equal size receiving

treatments w and w′ respectively, a matched difference in means estimator n−1
∑
i:Wi=w

Ai,wYi −

n−1
∑
i:Wi=w′

Ai,w′Yi is simply a weighted difference in means estimator with binary weights satisfy-

ing the constraint
∑
i:Wi=w

Ai,w =
∑
i:Wi=w′

Ai,w′ . To bound the minimum of an objective function

over binary weights, we first find a bound on its minimum v over the larger set of non-binary weights,

and then exhibit a randomized algorithm that rounds non-binary weights to binary ones in such a

way that with nonzero probability, the value v′ of the objective function at the rounded weights

is close to its value with the weights we round, i.e. v′ ≤ v + ε. As this implies the existence of a

binary solution with value no larger than v+ε, it follows that v+ε bounds the minimum over binary

weights. And insofar as the value of this optimization problem can be used to bound the risk of our

estimator, this results in a risk bound.

For example, consider the approach of Kallus (2016) to estimation of the ATT using a matched

difference in means n−1
1

∑
i:Wi=1 Yi − n

−1
1

∑
i:Wi=0 ÂiYi. Kallus uses matched group membership

indicators Âi solving a constrained variant of the minimax problem (3.4) we considered in the

1 This result was established for matching with replacement.
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previous chapter2,

min
A∈{0,1}n

Ai=0 if Wi=1∑
i:Wi=0 Ai=n1

I2
F (A) +

σ2

n2
1

‖A‖2 where IF (A) = sup
f∈F

1

n1

n∑
i=1

[Ai − 1{Wi=1}]f(Xi). (4.1)

Rounding scaled inverse propensity weights αγψ(Xi) into binary weights Ãi, Kallus bounds the

deviation of IF (Ã) from zero and therefore also that of I2
F (Ã) + σ2

n2
1
‖Ã‖2. As I2

F (Â) + σ2

n2
1
‖Â‖2 will

be no larger than this, it follows that the maximal risk of our estimator satisfies the same bound

(Kallus, 2016, Proof of Theorem 9).

Here we will use an even simpler rounding argument. Starting with a weighting estimator using

non-binary weights, we derive a matching estimator by rounding those weights directly and bound

its error using the triangle inequality, as the sum of the error of the weighting estimator and the de-

viation of the rounded weighting estimator from the weighting estimator it is based on. Considering

again the estimation of the ATT using a matched difference in means, given a weighting estimator

of the form n−1
1

∑
i:Wi=1 Yi−n

−1
1

∑
i:Wi=0 γ̂iYi, we can derive a matching estimator by substituting

for γ̂i matching indicators Âi with the property that n−1
1

∑
i:Wi=0 ÂiYi ≈ n−1

1

∑
i:Wi=0 γ̂iYi. We

propose the use of a rounding method that guarantees that for any possible vector of outcomes y,

n−1
1

∑
i:Wi=0 Âiyi ≈ n−1

1

∑
i:Wi=0 γ̂iyi. A well-known randomized algorithm of Srinivasan (2001)

rounds weights γ̂i ∈ [0, 1] into binary weights Âi which satisfy the constraints in (4.1) deterministi-

cally; are unbiased in the sense that E[Âi | W,X, Y ] = γ̂i; and has a negative dependence property

that guarantees that for any bounded vector y, n−1
1

∑
i:Wi=0 Âiyi = n−1

1

∑
i:Wi=0 γ̂iyi+Z where Z is

Op(n
−1/2
1 ) and subgaussian conditional on the observed data W,X, Y (Brändén and Jonasson, 2012;

Pemantle and Peres, 2014). Thus, when outcomes Yi are bounded, given any
√
n-consistent weight-

ing estimator with weights γ̂i ∈ [0, 1], our rounding approach results in a
√
n-consistent matching

estimator. Furthermore, as the rounding algorithm runs in O(n) time, it does so with essentially no

additional computational cost over the weighting method on which it is based.

This approach to estimating the ATT generalizes straightforwardly to estimation of the TATE

τw,w′ = E[Y (w) | Ti = 1] − E[Y (w′) | Ti = 1]. Suppose we have a weighted difference in means

estimator τ̂w,w′ = n−1
T

∑
i:Wi=w

γ̂iYi − n−1
T

∑
i:Wi=w′

γ̂iYi that uses nonnegative weights γ̂i with

the normalization property
∑
i:Wi=w

γ̂i =
∑
i:Wi=w′

γ̂i = nT that makes them translation-invariant

in the sense of Remark 3.1. Letting γ̃i = γ̂i(nA/nT ) for any nA ≤ bnT /max{i:Wi∈w,w′} γ̂ic, we

have τ̂w,w′ = n−1
A

∑
i:Wi=w

γ̃iYi − n−1
A

∑
i:Wi=w′

γ̃iYi where each weight γ̃i is in [0, 1]. Separately

2Here the latter term (σ2/n2
1)‖A‖2 is equal to the constant σ2 under our constraint

∑n
i=1 Ai = n1, so this

reduces to the minimization of |IF (A)|. This can be expressed as a integer linear program with a possibly infinite set
of constraints.
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rounding the vectors [γ̃i : Wi = w] and [γ̃i : Wi = w′] using the randomized algorithm of Srinivasan

(2001) yields indicators Ai such that τ̂Aw,w′ = n−1
A

∑
i:Wi=w

AiYi − n−1
A

∑
i:Wi=w′

AiYi is a matched

difference in means (
∑
i:Wi=w

Ai =
∑
i:Wi=w′

Ai = nA) and each of its two terms is unbiased for the

corresponding term of τ̂w,w′ conditional of X,W, Y and concentrates around it at Op(n
−1/2
A ‖Y ‖∞)

rate. Specifically, using a concentration inequality of Pemantle and Peres (2014, Theorem 1), we get

the following result.

Theorem 4.1. For τ̂w,w′ and τ̂Aw,w′ above, E[τ̂Aw,w′ | X,Y,W ] = τ̂w,w′ and

∣∣τ̂Aw,w′ − τ̂w,w′ ∣∣ ≤ t‖Y ‖∞√
nA

with probability 1− 2e−t
2/4 conditional on the observed data X,Y,W.

We end our discussion with a few remarks.

Remark 4.1. As the difference τ̂w,w′ − τ̂Aw,w′ between our matching estimator and the rounding

estimator on which it is based has mean zero conditional on the observed data, by using the former

we are essentially just adding noise the the latter. Thus, from the perspective of estimation error only,

we should prefer the weighting estimator. The primary advantage of the matching estimator τ̂Aw,w′ is

its interpretability — it allows us to interpret our estimator as a comparison between two subsamples

of the treatment and control groups that are chosen to be both comparable and representative of

our target population. One option is to use weighting to estimate the treatment effect and the

rounded version as an aid to the interpretation of that estimator. Using the randomized algorithm

of Srinivasan (2001) to sample multiple matched difference-in-means estimators, we get an explicit

representation of our weighting estimator as an average of matching estimators, each of which should

be reasonable on its own.

Remark 4.2. If we are using a matched difference in means as an estimator and not as an in-

terpretation tool for a weighting estimator, integer programming approaches (Zubizarreta, 2012;

Zubizarreta et al., 2014; Kallus, 2016) may be expected to perform better in terms of mean squared

error. After all, those estimators choose the ‘rounding error’ in such a way that a proxy for the

estimator’s maximal risk is minimized. However, these integer programming approaches also have

a few disadvantages.

First, the randomized rounding argument of Kallus described above establishes a rate rn but

does not separately characterize bias and variance, and thus does not justify inference based on

concentration of the scaled estimation error rn(τ̂ − τ) around zero. In contrast, the bias of our

matching estimator τ̂Aw,w′ is equal to that of the weighting estimator τ̂w,w′ on which it is based,

and we can estimate its variance by adding to an estimate of Var [τ̂w,w′ ] a simple sample-based
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estimate of the variance of Var
[
τ̂Aw,w′ − τ̂w,w′

]
which exploits our ability to sample efficiently from

the distribution of τ̂Aw,w′ conditional on τ̂w,w′ .

Second, in cases in which the regression functions m(w)(x) = E[Y | X = x,W = w] are less

smooth than the inverse propensity weights g
(w)
ψ (x) = P{Ti = 1 | Xi = x}/P{Wi = w | Xi = x},

approaches based on estimated inverse propensity weights can perform better than estimators based

on design-conditional minimax criteria like the integer programming approaches we’ve discussed.

Our approach allows us to derive matching estimators from estimated inverse propensity weighting

estimators as well as from minimax-type weighting estimators.

Third, in large sample settings, solving the integer programs in Zubizarreta (2012); Zubizarreta

et al. (2014); Kallus (2016) becomes computationally intractable. Furthermore, expressing non-

parametric minimax-type problems like (4.1) exactly requires an infinite number of constraints, and

insofar as it is necessary to use a large number of constraints to get a good approximation of the

intended problem, solving these problems even in small sample settings can be computationally

demanding. As the computational cost of our matching method is essentially that of the weighting

method on which it is based, and optimization over continuous-valued weights is often substantially

less computationally demanding than integer programming,
√
n-consistent matching estimators in

extremely large samples sizes. Our reduction to weighting is particularly computationally advan-

tageous in nonparametric minimax-type problems, where strong duality (see e.g. Lemma 2.5 and

Lemma 3.1) can dramatically simplify the computation of the weights.

Remark 4.3. We do not require any particular upper bound on γ̂i for estimation of the TATE, but

when we discussed estimation of the ATT above, we required the weights γ̂i to be in [0, 1]. This

bound was necessary to ensure that we could take the size nA of our matched group of control units

(Wi = 0) to be n1, and thus correspond in size to the subsample of units that receive treatment

(Wi = 1). This is typical for matching estimators of the ATT. This requires that our control

subsample be substantially larger than the treatment sample, and thus tends to hold primarily in

case-control studies.
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P. Brändén and J. Jonasson. Negative dependence in sampling. Scandinavian Journal of Statistics,
39(4):830–838, 2012.

L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen. Classification and Regression Trees. CRC
press, 1984.

T. T. Cai and M. G. Low. A note on nonparametric estimation of linear functionals. Annals of
Statistics, pages 1140–1153, 2003.

E. Candès and T. Tao. The Dantzig selector: Statistical estimation when p is much larger than n.
The Annals of Statistics, pages 2313–2351, 2007.

C. M. Cassel, C. E. Särndal, and J. H. Wretman. Some results on generalized difference estimation
and generalized regression estimation for finite populations. Biometrika, 63(3):615–620, 1976.

71



K. C. G. Chan, S. C. P. Yam, and Z. Zhang. Globally efficient non-parametric inference of average
treatment effects by empirical balancing calibration weighting. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 2015.

J. T. Chang and D. Pollard. Conditioning as disintegration. Statistica Neerlandica, 51(3):287–317,
1997.

X. Chen, H. Hong, and A. Tarozzi. Semiparametric efficiency in GMM models with auxiliary data.
The Annals of Statistics, pages 808–843, 2008.

V. Chernozhukov, J. C. Escanciano, H. Ichimura, and W. K. Newey. Locally robust semiparametric
estimation. arXiv preprint arXiv:1608.00033, 2016.

V. Chernozhukov, D. Chetverikov, M. Demirer, E. Duflo, C. Hansen, W. Newey, and J. Robins.
Double/debiased machine learning for treatment and structural parameters. The Econometrics
Journal, 2017.

V. Chernozhukov, W. Newey, and J. Robins. Double/de-biased machine learning using regularized
riesz representers. arXiv preprint arXiv:1802.08667, 2018.

J. Cornfield, W. Haenszel, E. C. Hammond, A. M. Lilienfeld, M. B. Shimkin, and E. L. Wynder.
Smoking and lung cancer: recent evidence and a discussion of some questions. J. Nat. Cancer
Inst, 22:173–203, 1959.

F. Cucker and D. X. Zhou. Learning theory: an approximation theory viewpoint, volume 24. Cam-
bridge University Press, 2007.

I. Dahabreh, S. Robertson, E. Stuart, and M. Hernan. Extending inferences from randomized
participants to all eligible individuals using trials nested within cohort studies. arXiv preprint
arXiv:1709.04589, 2017.

A. D’Amour, P. Ding, A. Feller, L. Lei, and J. Sekhon. Overlap in observational studies with
high-dimensional covariates. arXiv preprint arXiv:1711.02582, 2017.

N. Daysal, M. Trandafir, and R. van Ewijk. Re: A recent study by economists on the impact of
home births on infant outcomes confuses the debate on home birth. BJOG: International Journal
of Obstetrics and Gynaecology, 123:17131714, 2016. doi: 10.1111/1471-0528.14250.

R. H. Dehejia and S. Wahba. Causal effects in nonexperimental studies: Reevaluating the evaluation
of training programs. Journal of the American statistical Association, 94(448):1053–1062, 1999.

P. Ding and T. J. VanderWeele. Sensitivity analysis without assumptions. Epidemiology (Cambridge,
Mass.), 27(3):368, 2016.

A. Domahidi, E. Chu, and S. Boyd. ECOS: An SOCP solver for embedded systems. In European
Control Conference (ECC), pages 3071–3076, 2013.

D. L. Donoho. Statistical estimation and optimal recovery. The Annals of Statistics, pages 238–270,
1994.

D. L. Donoho and R. C. Liu. Geometrizing rates of convergence, III. The Annals of Statistics, pages
668–701, 1991.

J. Fan, K. Imai, H. Liu, Y. Ning, and X. Yang. Improving covariate balancing propensity score: A
doubly robust and efficient approach. Technical report, Tech. rep., Princeton University, 2016.

M. H. Farrell. Robust inference on average treatment effects with possibly more covariates than
observations. Journal of Econometrics, 189(1):1–23, 2015.

J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear models via
coordinate descent. Journal of Statistical Software, 33(1):1, 2010.

72



A. Fu, B. Narasimhan, S. Diamond, and J. Miller. CVXR: Disciplined Convex Optimization, 2017.
URL https://CRAN.R-project.org/package=CVXR. R package version 0.94-4.
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Appendix A

Additional Proofs for Chapter 2

A.1 Asymptotics

In this section, we will examine the asymptotic consequences of Thereom 2.2. Our primary aim

will be to prove Theorem 2.4 and Theorem 2.1, but we will discuss the behavior of our estimator in

other asymptotic regimes (e.g. σn →∞) as well.

A.1.1 Proof of Theorem 2.4

To show that our estimator ψ̂ is asymptotically linear (2.26), by our characterization (2.23) it suffices

to show that

‖m̂−mn‖F̃nIF̃n(γ̂) and
1

n

n∑
i=1

(γ̂i − γψn)(Yi,n −mn(Zi,n))

are oPn(n−1/2).

A.1.1.1 Reduction to Consistency of γ̂

Under the assumptions of Theorem 2.2, (2.20) and (2.21) imply that these are bounded respectively

by

‖m̂−mn‖F̃n
[
u(Hn, δ) + 21/2‖γψn‖

1/2
L2(Pn)σnn

−1/2(a ∧ b)1/4
]

and

δ−1/2‖vn‖∞n
−1/2(a ∧ b)1/2.

In this proof, we will use the simple bound u(Hn, δ) = 2δ−1Rn(Hn) discussed in a footnote to

its definition in (2.18). Thus, when vn and ‖γψn‖∞ are bounded and ‖m̂ − mn‖F̃n = OPn(1) as

assumed, what we have to do is show that ‖m̂−mn‖F̃nRn(Hn) is oPn(n−1/2) and that σn(a∧ b)1/4

and (a ∧ b)1/2 are o(1). The first of these rates is guaranteed by assumption (vi), and as we’ve

assumed σn = O(1), the second follows from the consistency property a ∧ b→ 0.
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A.1.1.2 Establishing Consistency of γ̂

Our claim has been reduced to the claim that a ∧ b → 0, i.e. consistency of γ̂. We will focus on

the sufficient condition a→ 0 because b tends to be a useful bound only when σn →∞. Generally

speaking, a is the bound we use to show consist estimation of γ̂ψ without tuning for that purpose,

and b is the bound we use to establish rates when we do. a has two relevant terms, αu(H?, δ) and

R̄.

Consider R̄. Clearly it goes to zero as κ = κ(σn, δ) does. And the approximation condition (iii)

of Theorem 2.2 is exactly what is necessary to establish that κ(σn, δ) → 0 for σn = O(1). This

property has a simple interpretation in terms of the dual problem, discussed in Section 2.1.3.3. We

study the dual to establish the convergence to γψ of the function ĝ(·) that determines γ̂i in the sense

that γ̂i = ĝ(Zi). It is is a penalized least squares problem, and this condition is what is necessary

to ensure that in the ‘noiseless case’ the penalty term term (σ2/n)‖g(·)‖2FL is small enough that it

does not prevent convergence to γψ.

We will now address the term αu(H?, δ) = 2δ−1αRn(H?). Our first step will be to show

that Rn(H?n) is O(n−1/2). By assumption Rn(Hn) = O(n−1/2); the Rademacher complexity of

H?n = Hn−[0, 1]γψn is bounded by Rn(Hn)+Rn([0, 1]γψn) and the latter is equal to the Rademacher

complexity of its extreme points Rn({0, γψn}), which bounded by
√

2 log(2)E‖γψn‖L2(Pn) by Mas-

sart’s finite class lemma (Massart, 2000, Lemma 5.2). As our L1(Pn)-continuity assumption on ψn

guarantees ‖γψn‖∞ = O(1), this implies that Rn(H?n) = O(n−1/2). Here we’ve used well-known

properties of Rademacher complexity (see e.g. Bartlett and Mendelson, 2002, Theorem 12). What

is left is to show that αn−1/2 = o(1) or equivalently that α = o(n1/2).

Recalling our dual problem in which we are optimizing over functions g that determine weights

γi = g(Zi), the role α plays in our proof is the radius of a ‖·‖F?n ball. Outside this ball, we can reject

the possibility that a recentered function ǧ′ = g′ − γψn is our recentered estimator ǧ = ĝ − γψn .

Insofar as the role of our penalty (σ2/n)‖ǧ′(·)‖2FL is to reduce our problem to minimization over

this ball, we are not requiring it to have done that well. Optimal tuning typically ensures that this

radius α is O(1).

We conclude our proof by bounding the value of α that we actually get. It will be on the

order of n(rQ ∨ rC)2 + n1/2R̄. We’ve previously shown that R̄→ 0, so the latter term is o(n1/2) as

desired. Furthermore, rQ and rQ are proportional to fixed points of localized Rademacher complexity

R?n(1,F?n(·)) and R?n(1,H?n(·)). These fixed points are o(n−1/4) by our assumption (v), so the former

term will also be o(n1/2).
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A.1.2 Proof of Theorem 2.1

In this section, we prove the generalization of Theorem 2.1 mentioned in Remark 2.4. We prove

this theorem by showing that its assumptions imply those of our more general asymptotic theorem,

Theorem 2.4. As for efficiency, we make the same assumptions in Theorem 2.1 that we do in our

efficiency characterization Proposition 2.3.

Notice that for a Donsker class F , F(r) = F ∩ rL2(P ) satisfies satisfies R?n(1,F(·)) = o(n−1/4).

This follows from the following simple lemma,

Lemma A.1. Let τn(r) be a sequence of positive functions, each increasing in r, and satisfying

τn(sn) = o(n−1/2) for all positive sequences sn → 0. For any η, there exists a positive sequence rn

satisfying rn = o(n−1/4) and τn(rn) ≤ ηr2
n.

Proof. Let rn =
√
τn(n−1/4)/η. Then rn = o(n−1/4) and τ(rn) ≤ ηr2

n = τ(n−1/4) for n sufficiently

large that rn ≤ n−1/4. If necessary, increase finitely many elements of rn to ensure that this condition

is satisfied for all n.

Its assumption that τn(r) = Rn(F(r)) satisfies τn(sn) = o(n−1/2) for sn → 0 is, in this case, the

asymptotic equicontinuity of the Rademacher process indexed by a Donsker class (see e.g. Ledoux

and Talagrand, 2013, Theorem 14.6).

First we’ll choose bounds Fn and FL,n in the Theorem 2.4 sense. Theorem 2.1 defines F̃n =

F ∩ ρnL2(Pn) for a Donsker class F . For Fn, we take F(ρ′n) with ρ′n = 21/2(ρn ∨ n−1/4), which

will contain F̃n with probability going to one (Bartlett et al., 2005, Lemma 3.6). The role of n−1/4

here is to ensure that r = ρ′n is large enough that F ∩ rL2(Pn) ⊆ F ∩ 21/2rL2(P ) w.h.p.; for r

smaller than some multiple of R?n(1,F(·)) this will not necessarily be the case. Furthermore, for

such r we also have F ∩ rL2(Pn) ⊇ F ∩ 2−1/2rL2(P ) (Bartlett et al., 2005, Corollary 2.2), and thus

FL,n = (2−1/2ρn/ρ
′
n)F(ρ′n) is a lower bound on F̃n. This set FL,n has the form rnF ∩2−1/2ρnL2(P )

where by assumption ρn � n−1/2 and as a consequence rn = 2−1/2ρn/ρ
′
n = 2−1/2(1 ∧ n1/4ρn) �

n−1/4. Thus there exists a sequence sn � n1/2 such that snrn → ∞ and snρn → ∞ and therefore

∪∞n=1snFL,n = spanF , implying our approximation condition (iii) from Theorem 2.4.

Conditions (i,ii) are satisfied directly by assumption and (iv) follows from the uniform bound-

edness of {h(z, f) : f ∈ F} and the boundedness of γψ. To verify (v), it suffices to show that the

Donskerity of F and {h(z,F) : f ∈ F} implies the Donskerity of the classes F? and H?. F? is

contained in the convex hull of the union of two Donsker classes, F and −[0, 1]γψ; H? is contained

in the convex hull of the union of two Donsker classes, {h(z, f) : f ∈ F}, −[0, 1]h(z, γψ), and the
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product of a bounded function γψ and a uniformly bounded Donsker class class F?; all of these

operations preserve Donskerity each of those operations preserves Donskerity (see e.g. van der Vaart

and Wellner, 1996, Chapter 2.10).

Considering (vi), the property ‖m̂−m‖ = OP (1) is assumed; the property Rn(Hn) = OP (n−1/2)

follows from Donskerity of the class H, which we established for the superset H? in the previous

step; and the property ‖m̂ − m‖F̃nRn(Hn) follows from the tightness and consistency conditions

Theorem 2.1. To see this last property, consider separately the cases ρn → 0 and ρn 6→ 0. Consider

first the case ρn → 0. Hn lies in a ‖·‖L2(P ) ball dictated by the decreasing radius ρ′n and the

modulus of continuity of the functional f → h(z, f)−γψ(z)f(z) = h(z, f)−ψ(f)+ψ(f)−γψ(z)f(z).

This radius will converge to zero because h(Z, ·) − ψ is uniformly continuous by assumption and

f → ψ(z) − γψ(z)f(z) is by boundedness of γψ and of the functional ψ(·). Note that we lack the

uniform continuity assumption in the original Theorem 2.1, but that h(Z, ·)−ψ = 0 in that case. And

as a consequence of the asymptotic equicontinuity of the Rademacher process indexed by a Donsker

class, this implies that Rn(Hn) = oP (n−1/2). In the case that ρn 6→ 0, we have ‖m̂−m‖F̃n = oP (1)

and its product with Rn(Hn) = OP (n−1/2) will be oP (n−1/2).

This completes our proof of Theorem 2.1 and the generalization mentioned in Remark 2.4.

A.1.3 Improved Rates: Taking σn →∞

By increasing σn with sample size, we can improve the rate at which our weights γ̂ converge to γ̂ψ

in ‖·‖L2(Pn). If we are working with the bound (2.20) that we use to control bias in our proof of

Theorem 2.4, this is not helpful. In particular, σn and our rate of convergence to γψ enter into that

bound in the same term, which is on the order of σn−1/2(a ∧ b)1/4. And at best, when the bound

b is the relevant one and it is dominated by (αr)2 ≈ (σ−2nr3)2, after taking this fourth root our

factors of σ cancel. In short, when we do this, we’ll want to use a different argument to characterize

our estimator. The typical one is the standard argument for doubly robust estimators discussed

in Section 2.0.4: by attaining the best rate of convergence to γψ, we make the rate-product bound

‖m̂−m‖L2(Pn)‖γ̂ − γψ‖L2(Pn) as small as possible.

If this is the approach we want to take, and we are willing to commit to the idea that ‖γψ‖F =

O(1) for some class F , then the optimal tuning strategy is straightforward. So long as this assump-

tion is valid, if we take σ = n1/2r for r = rQ(ηQ) ∨ rC(ηC) our bound will be on the order of r. To

see this in (2.19), observe that with this tuning, α is constant order and and we use the b bound

with the two branches R̄ ≈ σ2/n and (αr)2 ≈ r2 comparable.

While the general problem of estimating a Riesz representer is somewhat nonstandard, one point
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of reference is Example 2.1, the estimation of a mean with outcomes missing at random. In this

case, the Riesz representer is the inverse propensity weight Wi/e(Xi). Here e(x) = E[Wi | Xi = x]

is the mean of the non-missingness indicator conditional the covariates. And in this example, our

functional h(x,w,m) = m(x, 1) is simple enough that F and H have comparable local Rademacher

complexity, so we can take r to be roughly R?n(1,F(·)). If, for example, F is a class with empirical

metric entropy logN(F ;L2(Pn); ε) = O(ε−2ρ), then it can be shown that our rate r = O(n−
1

2(1+ρ) )

using a bound of Giné and Koltchinskii (Koltchinskii, 2006, Equation 2.4). In the case of a Hölder

smoothness class Cs(Rd), we have ρ = d/(2s) (Tikhomirov, 1993; van der Vaart, 1994) and we

recover the well-known minimax rate r = O(n−
s

2s+d ) (Tsybakov, 2009).

A.1.4 Regularity and Efficiency

Our first step is to characterize the tangent space T to our probability measure P . We show that

it is {s(y, z) = a(z) + b(y, z) : E [a(Z)] = 0,E [b(Y,Z) | Z] = 0,E [Y b(Y, Z) | Z] ∈ M}. Consider a

one-dimensional parametric submodel Pt, t ∈ [0, ε) with score s. We will first show that s ∈ T .

First we will deal with the technical details necessary to write our submodel in terms of factored

densities pt(y | z)p(z) with respect to a common σ-finite measure λ. We will use disintegrations

as described in Chang and Pollard (1997), using their notation pt,z for conditional densities rather

pt(· | z). It suffices to consider rational t, as the limit defining the score for the submodel converges

only if it converges on the rationals. This set of rational-indexed submodels is countable and therefore

has a σ-finite dominating measure λ. Under topological assumptions stated in Chang and Pollard

(1997, Theorem 1), λ has a disintegration {λz : z ∈ Z} and each Pt has a disintegration {Pt,z : z ∈ Z}

with Pt,z is dominated by λz. This allows us to define conditional probability densities, denoted

pt,z, for almost all z (Chang and Pollard, 1997, Theorem 5 i,v). Doing this for all rational t gives a

set of probability densities pt,z with respect to λz simultaneously at all rational t for almost all z. It

follows that pt,z(y, z)pt(z) is a density with respect to λ, where pt(z) is the density of the marginal

of Pt on Z with respect to the marginal of λ on Z.

Now the score s will be the derivative at t = 0 of log pt,zpt = log pt,z + log pt with respect to

t. We will call the derivative of the first term sy and the second sz. Our submodel must satisfy

E [Y | Z] = mt(Z) for mt ∈ M, which we may write
∫
ypt,zdλz = mt(z). Differentiating with

respect to t at t = 0, we have
∫
y ∂∂t |t=0pt,zdλz = E [Y sy(Y, Z) | Z] = limt→0 t

−1(mt −m) ∈M. We

make no assumptions on the marginal on z, so we have no conditions on sz other than that it, like

all scores, has mean zero. Consequently, our tangent space T is contained in the proposed set. To

show that T is equal to the proposed set, we exhibit a submodel with every score in the set. As in
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Van der Vaart (1998, Example 25.16), we take densities pt(y, z) = c(t)k(ts(z))p0(y, z) for scores s in

the proposed set where where k is a bounded nonnegative function satisfying k(0) = k′(0) = 1, for

example k(x) = 2(1 + e−2x)−1, and c(t) is a normalizing constant. Note that because m′ −m ∈M

for all m,m′ ∈M, each of these is a valid parametric submodel.

A.1.4.1 The Pathwise Derivative of χ

We will calculate the derivative of our functional χ(P ) with respect to the tangent space discussed

above. As before, we will work with paths with factored densities pt = pt,zpt with respect to the

measure λ. Along a path pt(y, z) ∈ P, our derivative may be written

∂

∂t
|t=0

∫
h(z,mt)pt(y, z)dλ =

∫
h(z,m0)

∂

∂t
|t=0pt(y, z)dλ+

∫
h(z,

∂

∂t
|t=0mt)dλ

The first term is just Eh(Z,m)s(Y, Z) = E(h(Z,m)− Eh(Z,m))s(Y,Z); this equality follows from

the condition E (s(Y, Z) | Z) = 0. If g(Z) is a Riesz representer for the functional Eh(Z, ·) on M,

we can write our second term as E g(Z) ∂∂t |t=0mt, where

∂

∂t
|t=0mt =

∂

∂t
|t=0

∫
ypt(y, z)dλz∫
pt(y, z)dλz

=
[
∫
y ∂∂t |t=0pt(y, z)dλz][

∫
pt(y, z)dλz]− [

∫
ypt(y, z)dλz][

∫
∂
∂t |t=0pt(y, z)dλz]

[
∫
pt(y, z)dλz]2

= E[Y s(Y,Z) | Z]− E[Y |Z]E[s(Y,Z)|Z] = E[(Y −m(Z))s(Y,Z) | Z].

That is, we can write our derivative in the form E[h(Z,m)− Eh(Z,m) + g(Z)(Y −m(Z))]s(Y,Z).

A.1.4.2 Regularity

Paraphrasing Newey (1990, Theorem 2.2), an asymptotically linear estimator of a functional χ(P )

at P0 is regular iff its influence function is a Riesz representer for the derivative of that functional χ

at P0 on a space containing the tangent space. From our characterization of this derivative above,

this happens if the influence function has the form ι(y, z) = h(z,m)− Eh(Z,m) + γψ(z)(y −m(z))

and γψ is a Riesz representer on a space containing the space M.

A.1.4.3 Efficiency

The projection of the bracketed term onto the closure of the tangent space T gives the efficient

influence function. It follows that the bracketed term is the efficient influence function iff it is in

this closure, i.e. if E [Y g(Z)(Y −m(Z)) | Z] is in the closure ofM. As this conditional expectation

is equal to E
[
g(Z)(Y −m(Z))2 | Z

]
= g(Z) Var [Y | Z], the bracketed term is the efficient influence

function if g(Z) Var [Y | Z] = m(Z) for m in the closure of M.
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A.2 Additional proofs for lemmas used in Section 2.1

Proof of Lemma 2.5. Because `n,F and −Mn,F are proper, convex, coercive, continuous functions

on reflexive spaces they have minima γ̂ and ĝ respectively. Because in `n,F is strictly convex, its

minimum is unique (Peypouquet, 2015, Theorem 2.19, Corollary 2.20).

We transform our primal into an equivalent constrained problem and then, by introducing a

Lagrange multiplier, a saddle point problem.

inf
γ∈Rn

`n,F (γ) = inf{Pnγ2
i + t2 : (γ, t) ∈ Rn × R, sup

f∈F
(L(f)− Pnγif(Zi)) ≤ t} (A.1)

= inf
(γ,t)∈Rn×R

sup
λ≥0

sup
f∈F

Pnγ
2
i + t2 + 2λ (L(f)− Pnγif(Zi)− t) . (A.2)

Assume we can reorder the the infimum over (γ, t) and the suprema over λ and f in (A.2), so

(A.2) is equal to

sup
f∈F

sup
λ≥0

inf
(γ,t)∈Rn×R

Pnγ
2
i + t2 + 2λ (L(f)− Pnγif(Zi)− t) . (A.3)

We will simplify this expression. Our first step is to explicitly minimize

Pnγ
2
i + t2 + 2λ (L(f)− Pnγif(Zi)− t)

with respect to (γ, t) for fixed (λ, f). The expression is convex and differentiable in (γ, t) and attains

its infimum at γi = λf(Zi) and t = λ, which can be seen from the first order optimality conditions

0 =
∂

∂γi
Pnγ

2
i + t2 + 2λ (L(f)− Pnγif(Zi)− t) =

2

n
γi −

2

n
λf(Zi),

0 =
∂

∂t
Pnγ

2
i + t2 + 2λ (L(f)− Pnγif(Zi)− t) = 2t− 2λ

Substituting these values shows that (A.3) is equal to

sup
f∈F

sup
λ≥0

Pn(λf(Zi))
2 + λ2 + 2L(λf)− 2Pn(λf(Zi))

2 − 2λ2

= sup
f∈F

sup
λ≥0
−λ2 − Png(Zi)

2 + 2L(g) where g = λf.

Reparameterizing in terms of g, the constraint f ∈ F is equivalent to g ∈ λF , and the supremum of

the expression above over λ is attained at λ = inf{λ : g ∈ λF} = ‖g‖F . Substituting this value of λ

results in the expression supgMn,F (g), and we’ve established that this supremum is attained at ĝ.

Retracing our steps, (A.3) is equal to Mn,F (ĝ).

We conclude by establishing the equality of (A.2) and (A.3). We begin with the constrained

problem (A.1) equivalent to (A.2). This is a finite dimensional convex optimization problem, and

the Slater condition holds, i.e., the constraint supf∈F (L(f)− Pnγif(Zi)) ≤ t is satisfiable with strict
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inequality by taking t sufficiently large, so we have strong Lagrange duality (Boyd and Vandenberghe,

2004, Section 5.2.3). That is, the Lagrange multiplier problem (A.2) is equal to its dual

sup
λ≥0

inf
(γ,t)∈Rn×R

sup
f∈F

Pnγ
2
i + t2 + 2λ (L(f)− Pnγif(Zi)− t)

and furthermore there exists λ? such that is equal to

inf
(γ,t)∈Rn×R

sup
f∈F

Pnγ
2
i + t2 + 2λ? (L(f)− Pnγif(Zi)− t) .

This saddle point problem is convex and continuous in (γ, t) and concave in f , so the Kneser-Kuhn

minimax theorem (Johnstone, 2015, Theorem A.1). implies that if we restrict our infimum to a

compact convex set C, reordering the infimum and supremum does not change the value, i.e.

inf
(γ,t)∈C

sup
f∈F

Pnγ
2
i + t2 + 2λ? (L(f)− Pnγif(Zi)− t)

= sup
f∈F

inf
(γ,t)∈C

Pnγ
2
i + t2 + 2λ? (L(f)− Pnγif(Zi)− t) .

Our final step in showing equality of (A.2) and (A.3) is to show that the restriction to C can be

dropped on each side of this equality without changing the value, i.e.

inf
(γ,t)∈Rn×R

sup
f∈F

Pnγ
2
i + t2 + 2λ? (L(f)− Pnγif(Zi)− t)

= inf
(γ,t)∈C

sup
f∈F

Pnγ
2
i + t2 + 2λ? (L(f)− Pnγif(Zi)− t) (A.4)

and

sup
f∈F

inf
(γ,t)∈C

Pnγ
2
i + t2 + 2λ? (L(f)− Pnγif(Zi)− t)

= sup
f∈F

inf
(γ,t)∈Rn×R

Pnγ
2
i + t2 + 2λ? (L(f)− Pnγif(Zi)− t) . (A.5)

The first equality (A.4) follows because the function of (γ, t) which takes the value

sup
f∈F

Pnγ
2
i + t2 + 2λ? (L(f)− Pnγif(Zi)− t)

is proper and coercive, so its infimum must occur on some bounded set C′. The second equality (A.5)

follows because taking the unconstrained minimum results in the previously discussed problem (A.3),

and we’ve shown that this problem has a solution (γ?, t?) with γ?i = ĝ(Zi), t
? = ‖ĝ‖F . Therefore,

for any compact convex superset C of C′ ∪ {(γ?, t?)}, both equalities (A.4) and (A.5) are satisfied.

This completes our proof.

Proof of Lemma 2.7. This is a straightforward calculation based on Bartlett et al. (2005, Theorem

3.3, Part 2). We apply it to the class F2 = {f2 : f ∈ F} with T (f2) = Pf4 ≤ M2
FPf

2 and
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ψ(r) = 2M3
FRn{f ∈ F : Pf2 ≤ r/M2

F}. This gives the following bound with probability 1 − e−x

and any K > 1.

∀ f ∈ F Pf2 ≤ K

K − 1
Pnf

2 +
6K

M2
F
r? +

x(11 + 5K)M2
F

n

where r? is a unique fixed point of ψ(r). For this, ψ(r) must be a sub-root function satisfying

ψ(r) ≥ M2
FRn{f2 ∈ F2 : Pf4 ≤ r}. Our choice is sub-root by Bartlett et al. (2005, Lemma 3.4).

To see that it is a bound, observe that {f2 ∈ F2 : Pf4 ≤ r} ⊆ {f2 ∈ F2 : Pf2 ≤ r/M2
F} and

Rn{f2 ∈ F2 : Pf2 ≤ r/M2
F} ≤ 2MFRn{f ∈ F : Pf2 ≤ r/M2

F} by the contraction principle for

Rademacher processes (see e.g Bartlett et al., 2005, Theorem A.6), as φ(f) = f2 is 2MF -Lipschitz

for f ∈ [−MF ,MF ]. Define r′ =
√
r?/M2

F , so the condition r? = ψ(r?) = 2M3
FRn{f ∈ F : Pf2 ≤

r?/M2
F} may be written r′

2
/(2MF ) = Rn(F ∩ r′L2(P )). In these terms, we may restate our bound

in the form

∀ f ∈ F Pf2 ≤ K

K − 1
Pnf

2 + 6Kr′
2

+
x(11 + 5K)M2

F
n

.

Take x = sKnr′
2
/[(11 + 5K)M2

F ] so the last two terms sum to (6 + s)Kr′
2
. We may rearrange

our bound as follows.

∀ f ∈ F Pnf
2

Pf2
≥ K − 1

K
− (6 + s)(K − 1)r′

2

Pf2
.

For Pf2 ≥ (6 + s)K(K − 1)r′
2
, this second term is no larger than 1/K, so we have

∀ f ∈ F with Pf2 ≥ (6 + s)K(K − 1)r′
2
,

Pnf
2

Pf2
≥ K − 2

K
.

Letting our lower bound (K − 2)/K = ηQ, we have K = 2/(1− ηQ). Therefore,

∀ f ∈ F with Pf2 ≥ b1(ηQ)r′
2
,

Pnf
2

Pf2
≥ ηQ with probability 1− exp

{
b2(ηQ)nr′

2
/M2
F

}
where

b1(ηQ) = (6 + s)
2

1− ηQ

(
2

1− ηQ
− 1

)
= 2(6 + s)

1 + ηQ
(1− ηQ)2

b2(ηQ) = sK/(11 + 5K) =

2s
1−ηQ

11 + 10
1−ηQ

=
2s

21− 11ηQ
.

Reparameterizing in terms of r2
Q = b1(ηQ)r′

2
yields the bound

∀ f ∈ F with Pf2 ≥ r2
Q,

Pnf
2

Pf2
≥ ηQ with probability 1− exp

{
s

s+ 6
c1(ηQ)nr2

Q/M
2
F

}
where

c1(ηQ) =
b2(ηQ)/s

b1(ηQ)/(s+ 6)
=

(1− ηQ)2

(21− 11ηQ)(1 + ηQ)
.

Taking s = 6 gives the claimed bound.
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Proof of Lemma 2.9. As we care only about the behavior of γ̂ on an event on which F̃ ⊆ F , we will

give a construction specific to that event. In particular, we will use the implications that F̃ inherits

from F the properties that it is totally bounded in ‖·‖∞ and that h(Z1, ·) . . . h(Zn, ·) are continuous

on the space (span F̃ , ‖·‖F̃ ).

Let F̃τ be the absolutely convex hull of the centers of a finite internal τ -cover of F̃ in ‖·‖∞.

The space normed by ‖·‖F̃ is finite-dimensional and therefore reflexive (see e.g. Peypouquet, 2015,

Theorem 1.24), so we can apply Lemma 2.5 and Lemma 2.8. Letting γ̂τ be the weights minimizing

`n,λFτ (γ) and ĝτ be the corresponding maximizer of Mn,λF̃τ , we have γ̂i,τ = ĝ(Zi). We will compare

this solution to an approximate maximizer of Mn,λF̃ .

Let F̃ , ĝ, and γ̃ satisfy the conditions of Lemma 2.8 for given F , R̄: on an event A of the stated

probability, F̃ ⊆ F , Rn,λF̃ (γ̃) < R̄, and Mn,λF̃ (ĝ) ≥ Mn,λF̃ (γ̃). We will show shortly that there

exists γ̃τ such that Rn,λF̃τ (γ̃τ ) < R̄ on this event. Because in addition F̃τ ⊆ F̃ , and ĝτ minimizes

Mn,λF̃τ , Lemma 2.8 applies with the same F , R̄ and therefore the same bound a∧ b applies to both

Pn(ĝ − γψ)2 and Pn(ĝτ − γψ)2 = Pn(γ̂i,τ − γψ)2. We will complete our proof by showing that the

minimizer γ̂ of `n,F̃ is arbitrarily close to γ̂τ , so that our bound a ∧ b applies to Pn(γ̂i − γψ)2 as

claimed.

Before we do that, we will construct γ̃τ such that Rn,λF̃τ (γ̃τ ) < R̄ as promised. Recall that

Rn,λF (γ̃) = Pn(γ̃ − γψ)2 − 2Pnȟ(Z, γ̃ − γψ) + ‖γ̃‖2F/λ2, so

∣∣∣Rn,λF̃τ (γ̃τ )−Rn,λF (γ̃)
∣∣∣

≤
∣∣Pn(γ̃τ − γψ)2 − Pn(γ̃ − γψ)2

∣∣+ 2
∣∣Pnȟ(Z, γ̃τ − γ̃)

∣∣+ λ−2
(
‖γ̃τ‖2F̃τ − ‖γ̃‖F̃

)
.

Letting γ̃τ be the center of the ball in a ‖γ̃‖F̃ -scaled version of our τ -cover that contains ‖γ̃‖F̃ , we

have the properties ‖γ̃τ‖F̃τ ≤ ‖γ̃‖F̃τ and ‖γ̃τ − γ̃‖∞ ≤ τ‖γ̃‖F̃ . The first property ensures that the

last term in the difference above is zero or negative. The second implies the deterministic bound

‖γ̃τ − γ̃‖∞ ≤ τ‖γ̃‖F on the event A, so we can choose τ such that on this event these functions

are arbitrarily close in ‖·‖∞. As the first and second terms of our difference are zero at γ̃τ = γ̃ and

‖·‖∞ continuous, they go to zero as τ does. Consequently, for sufficiently small τ our strict bound

R̄ on Rn,λF (γ̃) applies to Rn,λF̃τ (γ̃τ ) as desired.

We’ll now complete our proof by showing that the minimizer γ̂ of `n,F̃ is arbitrarily close to γ̂τ .

To do this, we use the 2/n-strong convexity of `n,λF̃ , Pn(γ̂τ,i− γ̂i)2 ≤ `n,λF̃ (γ̂τ )− `n,λF̃ (γ̂). In order

to get a useful upper bound on the right side in the expression above, we exploit the similarity of
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`n,λF̃ and `n,λF̃τ , `n,λF̃τ (γ̂τ ) ≤ `n,λF̃ (γ̂) ≤ `n,λF̃ (γ̂τ ) where

`n,λF̃ (γ̂τ )− `n,λF̃τ (γ̂τ ) = λ sup
f∈F̃

[Pnh(Zi, f)− γ̂τ,if(Zi)]
2 − λ sup

f ′∈F̃τ
[Pnh(Zi, f

′)− γ̂τ,if ′(Zi)]
2
.

Given any sequence fn in F̃ along which the first term converges to its supremum, there is a

corresponding sequence fn,τ ∈ F̃τ such that the value of Pnh(Zi, f) − γ̂τ,if(Zi) at f = fn and

f = fn,τ can be made arbitrarily close by choice of τ , and consequently this difference shinks to zero

with τ . This completes our proof.

Proof of Lemma 2.10. We will be bounding

Rn, λFL(γ̃) = Pn(γ̃ − γ)2 − 2Pnȟ(Z, γ̃ − γψ) + ‖γ̃‖2FL/λ
2.

Consider first the middle term. By Chebyshev’s inequality, with probability greater than 1−δ/2,

∣∣Pnȟ(Z, γ̃ − γ)
∣∣ < 21/2δ−1/2n−1/2 Var

[
ȟ(Z, γ̃ − γψ)

]1/2
.

We can bound Var
[
ȟ(Z, γ̃ − γψ)

]1/2
by invoking some uniformity,

Var
[
ȟ(Z, γ̃ − γψ)

]1/2 ≤ ‖γ̃ − γψ‖F?(r) sup
h∈H?(r)

Var [h(Z)]
1/2

where r = ‖γ̃ − γψ‖L2(P ).

Therefore, with probability at least 1− δ/2, our middle term is less than

23/2δ−1/2n−1/2‖γ̃ − γψ‖F?(r)σ(H?(r))

Now consider the first term. By Markov’s inequality, with probability greater than 1− δ/2,

Pn(γ̃ − γψ)2 < 2δ−1P (γ̃ − γψ)2.

Then by the union bound, with probability 1− δ, we have

Rn, λFL(γ̃) ≤ 2δ−1[P (γ̃ − γψ)2 + δ‖γ̃‖2FL/(2λ
2)] + 23/2δ−1/2n−1/2‖γ̃ − γψ‖F?(r)σ(H?(r)). (A.6)

We will call the bracketed term in this bound κ2 and bound the remaining term in terms of it,

using the obvious properties that r = ‖γ̃ − γψ‖L2(P ) ≤ κ and ‖γ̃‖FL ≤ 21/2δ−1/2λκ. Recalling

our discussion of the relationship of ‖γ̃ − γψ‖F? to ‖γ̃‖F in Section 2.1.3.3, we have ‖γ̃ − γψ‖F? ≤

‖γ̃‖F ∨ 1 ≤ ‖γ̃‖FL + 1, and it follows that ‖γ̃ − γψ‖F?(r) ≤ 21/2δ−1/2λκ+ 1.

Substituting this into our bound (A.6), we see that with probability 1− δ,

Rn, λFL(γ̃) ≤ 2δ−1κ2 + 23/2δ−1/2n−1/2[21/2δ−1/2λκ+ 1]σ(H?(κ))

= 2δ−1[κ2 + 2λn−1/2κσ(H?(κ))] + 23/2δ−1/2n−1/2σ(H?(κ)).
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Appendix B

Additional Proofs for Chapter 3

B.1 Constants used in the statement of Theorem 3.4

B.1.0.1 Constants used in Equation 3.13

C =

√
8‖gψ‖1−1/α

∞ (pTCλ,T )1/α
/

(1− 1/α) ;

Cζ = C2
φC

1/α
λ,Z

[(
β

1− β

)1/α+β

+
α

(1 + αβ)(α− (1 + αβ))

]
.

B.1.0.2 Constants used in Equation 3.14

c1(ηQ) =
(1− ηQ)2

2(1 + ηQ)(21− 11ηQ)
≈ .02;

ηQ = (61− 8
√

39)/49 ≈ .23

ηC =
(
C1,C + C2,Cn

− 1
2(α+1) + C3,Cn

− 1
α+1

)/
(7CQ)

1+1/α
;

MF? = MK + ‖gψ‖∞;

MH? = ‖gψ‖∞(MK + ‖gψ‖∞);

Cu,1 = (1 + η)23/2p
1/2
Z max{1, ‖gψ‖∞}

(
‖gψ‖L2(PZ) + C

1/2
λ,Z(1− α)−1/2

)
;

+ 21/2p
1/2
Z max{1, ‖gψ‖∞}

(
λ1,Z + ‖gψ‖L2(PZ)

)√
log(2δ−1);

Cu,2 = 2MH?(1/3 + 1/η) log(2δ−1);

CQ = {12p2
ZM

2
F? [1 + (pZCλ,Z)1/α(1− 1/α)−1])}1/[2(1+1/α)];

C1,C = 2(1 + η)‖gψ‖∞{3[1 + (pZCλ,Z)1/α(1− 1/α)−1]}1/2;

C2,C = max{1, ‖gψ‖∞}
√

2 log(2δ−1);

C3,C = 2MH?

(
1

3
+

1

η

)
log(2δ−1);

C1,R = 2
(
δ−1pZ

) 1−2κγ
1+2κγ ‖gψ‖

4
1+2κγ

L2(PZ);
(
θ−

θ
1+θ + θ

1
1+θ

)
;

C2,R = 2
4(1−κγ )

1−2κγ
(
δ−1pZ

) 1
1+2κγ ‖gψ‖∞‖gψ‖

4
1−4κ2γ

L2(PZ)θ
θ

2(θ+1) for θ = 4κγ/(1− 2κγ).
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B.2 Smoothness, Eigenvalues, and Eigenfunctions

The conditions of Lemma 3.5 are defined in terms of the Hölder norm ‖·‖C2s and the Sobolev norm

‖·‖Hs . We define these norms, then prove the lemma.

‖f‖Cs =
∑

β∈Nd:‖β‖1≤bsc

‖Dβf‖∞ +
∑

β∈Nd:‖β‖1=bsc

sup
x,x′∈Rd

|Dβf(x)−Dβf(x′)|
‖x− x′‖s−bsc`2

;

‖f‖Hs =
∑

β∈Nd:‖β‖1≤bsc

‖Dβf‖L2(µ) +
∑

β∈Nd:‖β‖1=bsc

[∫
|Dβf(x)−Dβf(x′)|2

‖x− x′‖2(s−bsc)+d
`2

dµ(x)dµ(x′)

]1/2

;

Dβf =
∂β1

∂x1
. . .

∂βd

∂xd
f.

Here µ is Lebesgue measure.

Proof of Lemma 3.5. In this proof, we will use the Gagliardo Nirenberg inequality (Hajaiej et al.,

2010, Theorem 1.2), in particular the bounds

‖f‖∞ . ‖f‖1−θCs ‖f‖
θ
L2(µ), θ = 1− d/(2s+ d);

‖f‖∞ . ‖f‖1−θHsµ
‖f‖θL2(µ), θ = 1− d/(2s).

In case (ii), Kühn (1987, Theorem 4) established the claimed eigenvalue bound with α = 2s/d+

1 under a condition supx∈X ‖K(x, ·)‖C2s < ∞ weaker than our assumption on K. In addition,

Cucker and Zhou (2007, Theorem 5.5) established the bound supf :‖f‖HK≤1‖f‖Cs < ∞. This, in

combination with the Gagliardo-Nirenberg inequality, imply that ‖f‖∞ . ‖f‖d/(2s+d)
HK ‖f‖1−d/(2s+d)

L2(µ) .

As ‖φj‖HK = λ
−1/2
j and ‖φ‖L2(µ) ≤ η−1‖φ‖L2(ν) = η−1, we have ‖φj‖∞ . λ

−d/[2(2s+d)]
j as claimed.

In case (i), we use the bound aj(BHsµ) . j−s/d (see e.g. Kühn et al., 2014) where

aj(F) = inf
{rank A<j}

sup
{f∈F}

‖f −Af‖L2(µ) and BHsµ = {f : ‖f‖Hsµ ≤ 1}.

Observe that aj has the homogeneity property aj(sF) = saj(F) and the increasingess property

A ⊆ B =⇒ aj(A) ≤ aj(B). As our assumption sup‖f‖≤1‖f‖Hsµ < ∞ implies that the unit ball

BK of our RKHS is in sBHsµ for some s, we have aj(BK) . j−s/d as well. This is helpful because

aj(BK) = λ
1/2
j where λj is the jth eigenfunction of the integral operator LK,µ. To see this, observe

that if the range of A does not contain the span of the first j − 1 eigenfunctions φ1 . . . φj−1, there

is a function f =
∑j−1
k=1 fkλ

1/2
k φj in BK with ‖f − Af‖L2(µ) = ‖f‖L2(µ) = [

∑n−1
k=1 f

2
kλk]1/2 ≥ λ

1/2
j ,

whereas if it is the identity restricted to that span, we have ‖f −Af‖L2(ν) ≤ λ
1/2
j whenever f ∈ BK .

Thus, our saddle point is attained with A equal to this restricted identity and f = φj . This implies
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that λj . j−2s/d, and as discussed in our review of RKHSes, strong equivalence of µ and ν implies

the same rate for the eigenvalues λj,ν of LK,ν .

To bound the eigenfunctions, recall that ‖f‖Hsµ . ‖f‖HK . This and the Gagliardo-Nirenberg

inequality imply the bound ‖f‖∞ . ‖f‖d/(2s)HK ‖f‖1−d/(2s)L2(µ) . As ‖φj‖HK = λ
−1/2
j and ‖φ‖L2(µ) ≤

η−1‖φ‖L2(ν) = η−1, we have ‖φj‖∞ . λ
−d/(4s)
j as claimed.

B.3 Asymptotics

Proof of Theorem 3.2. Lemma 3.5 implies that the eigenvalue and eigenfunction bounds assumed in

Theorem 3.4 are satisfied with α = 2s/d > 1 and α(1− β) = 2s/d− 1 > 1 under Assumption 3.3 or

α = (2s+ d)/d > 1 and α(1− β) = (2s+ d)/d− 1 > 1 under Assumption 3.4.

Consider the bound (3.13) on the bias term and assume for a moment that ζ−1 is bounded. We

will characterize the order of the leading terms T1 and T2 in our bound for a range of κm, as it is

clear that third and fourth terms are irrelevant.

T1 + T2 ∼


λκm + n−1/2λκm−1/(2α) κm ∈ [1/2, 1)

λ+ n−1/2λ1+(κm−3/2)/α κm ∈ [1, 3/2)

λ+ n−1/2λ κm ∈ [3/2,∞).

T2 = o(n−1/2) irrespective of κm as long as λ� 1, whereas the dominant term T1 will be o(n−1/2)

iff λ� n−1/(2 min{κm,1}). This will be the rate at which the bias term goes to zero if ζ−1 is bounded,

which occurs if λ−(1/α+β) log(n)/n → 0 and equivalently if [log(n)/n]1/(1/α+β) � λ. In summary,

our bias term is op(n
−1/2) iff [log(n)/n]1/(1/α+β) � λ� n−1/(2 min{κm,1}).

Now consider the bound (3.14) on the deviation of our noise term from our desired asymptotic

characterization. This bound will be negligible if the factor a goes to zero. This will happen if (i)

R̄ → 0, (ii) α �
√
n and therefore the first term in a goes to zero. Referring to the first claim of

Lemma 3.12, we have (i) given λ→ 0 and our assumption that HK is dense in L2(PZ). Unpacking

(ii), we are assured that the second term in α is o(
√
n) given (i) if λ & n−1 and the first term in α

is o(
√
n) if λ−1n−1/(1+1/α) is or equivalently n−(1/2+1/(1+1/α)) � λ.

Collecting all of our conditions, we have efficiency if HK is dense, n−1 . λ, and

max{[log(n)/n]1/(1/α+β), n−(1/2+1/(1+1/α))} � λ� n−1/(2 min{κm,1}).

The condition n−1 . λ implies all of our lower bounds, as our condition α(1− β) > 1 is equivalent

to 1/α + β < 1 and therefore [log(n)/n]1/(1/α+β) � n−1 and our assumption α > 1 implies that
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n−(1/2+1/(1+1/α)) � n−1. Thus, if HK is dense, we have efficiency for λ satisfying n−1 . λ �

n−1/(2 min{κm,1}) and, in particular, for λ = σ2/n.

B.4 Proofs for lemmas used in Section 3.2

Here we collect proofs for all the lemmas and propositions stated in the section.

Proof of Lemma 3.1. To simplify our notation, we’ll use Zi as a shorthand for 1{Wi=0}. Our weight-

ing problem (3.8) is

σ2

n2

∑
i:Zi=1

γ2
i + sup

f :‖f‖≤1

[
1

n

∑
i

(Ti − Ziγi)〈KXi , f〉

]2

=
σ2

n2

∑
i:Zi=1

γ2
i +

〈
1

n

∑
i

(Ti − Ziγi)KXi ,
1

n

∑
j

(Tj − Zjγj)KXj

〉

=
σ2

n2

∑
i:Zi=1

γ2
i +

1

n2

∑
i,j

(Ti − Ziγi)(Tj − Zjγj)K(Xi, Xj)

=
1

n2

[
σ2γT γ + 1TKT,T 1− 2γTKZ,T 1 + γTKZ,Zγ

]
=

1

n2

[
1TKT,T 1− 2γTKZ,T 1 + γT

(
KZ,Z + σ2I

)
γ
]

where K is the Gram matrix (Ki,j = K(Xi, Xj)), 1 is a vector of |{i : Ti = 1}| ones, and subscripting

by Z or T takes the rows of columns corresponding to units in those groups. At the minimum over

γ, the derivative with respect to γ will be zero, so our weights solve (KZ,Z + σ2I)γ = KZ,T 1, and

the weighted average of treatment outcomes is

n−1
n∑
i=1

Ziγ̂iYi = n−1Y TZ γ̂ = n−1Y TZ (KZ,Z + σ2I)−1KZ,T 1. (B.1)

Now consider ridge regression on the treated units. We estimate m̂ solving

min
f

∑
i:Zi=1

(Yi − 〈KXi , f〉)
2

+ σ2‖f‖2.

We can write it equivalently in constrained form,

min
r,f

∑
i:Zi=1

r2
i + σ2‖f‖2 where ri = 〈KXi , f〉 − Yi.

This problem is solved by a saddle point of the Lagrangian (Peypouquet, 2015, Theorem 3.6.8),

L((r, f), λ) =
∑
i:Zi=1

r2
i + σ2‖f‖2 + 2

∑
i:Zi=1

λi (〈KXi , f〉 − Yi − ri) .
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For given λ, we can minimize over (r, f) explicitly, solving the conditions ri − λi = 0 and σ2f +∑
i:Zi=1 λiKXi = 0 that arise from setting the derivatives with respect to ri and f to zero. Substi-

tuting the optimal values r̂i = λi and f̂ = −σ−2
∑
i:Zi=1 λiKXi ,

L((r̂, f̂), λ)) =
∑
i∈Z

λ2
i + σ−2

〈 ∑
i:Zi=1

λiKXi,
∑

j:Zj=1

λjKXj

〉
+ 2

∑
i:Zi=1

λi

−σ−2

〈 ∑
j:Zj=1

λjKXj ,KXi

〉
− Yi − λi


=
∑
i:Zi=1

λ2
i + σ−2

∑
i,j:Zi=Zj=1

λiλjK(Xi, Xj)− 2σ−2
∑

i,j:Zi=Zj=1

λiλjK(Xj , Xi)− 2
∑
i:Zi=1

(
λiYi + λ2

i

)
= −λTλ− 2λTYZ − σ−2λTKZ,Zλ

= −2λTYZ − λT
(
σ−2KZ,Z + I

)
λ.

This is maximized at λ̂ = −
(
σ−2KZ,Z + I

)−1
YZ = −σ2

(
KZ,Z + σ2I

)−1
YZ . Thus, we have a saddle

at ((r̂, f̂), λ̂) and the function m̂ solving our problem is f̂ . Substituting in λ̂ into our expression for

f̂ above,

〈Kx, f̂〉 =

〈
−σ−2

∑
i:Zi=1

[
−σ2

(
KZ,Z + σ2I

)−1

i,Z
YZ

]
KXi ,Kx

〉

=
∑
i:Zi=1

Y TZ
(
KZ,Z + σ2I

)−1

Z,i
K(Xi, x).

Therefore our ridge regression prediction f̂ , averaged over our target sample, is〈
n−1

∑
j:Tj=1

KXj , f̂

〉
= n−1

∑
j:Tj=1

∑
i:Zi=1

Y TZ
(
KZ,Z + σ2I

)−1

Z,i
K(Xi, Xj).

= n−1Y TZ
(
KZ,Z + σ2I

)−1
KZ,T 1.

This is the weighted average of treatment outcomes using our minimax weights, completing our

proof.

Proof of Lemma 3.7. Expanding Kx in the orthonormal basis (λ
1/2
j φj)j∈N of HK , we have

Kx =
∑
j

〈Kx, λ
1/2
j φj〉λ1/2

j φj =
∑
j

λ
1/2
j φj(x)λ

1/2
j φj

and consequently

∥∥∥[LK,ν + λI]−1/2Kx

∥∥∥2

=

∥∥∥∥∥∥
∑
j

λ
1/2
j φj(x)

(λj + λ)1/2
λjφj

∥∥∥∥∥∥
2

=
∑
j

λjφj(x)2

λj + λ
≤ C2

φ

∑
j

λ1−β
j

λj + λ
, (B.2)

Here the last step holds ν-almost-everywhere by our assumption ‖φj‖L∞(ν) ≤ Cφλ
−β/2
j .
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The function t1−β/(t + λ) is increasing for 0 ≤ t < λ(1 − β)/β — the sign of its derivative is

that of (1− β)t−β(t + λ)− t1−β = t−β [(1− β)λ− βt]. Thus, we may substitute our bound Cλj
−α

for eigenvalues λj smaller than this threshold. Ordering the eigenvalues λj so they are decreasing

and taking J = max{j ∈ N : λj ≥ λ(1− β)/β}, we bound the sum (B.2) above by

C2
φ

∑
j≤J

λ1−β
j

λj + λ
+ C2

φ

∑
j>J

(Cλj
−α)1−β

Cλj−α + λ
. (B.3)

Furthermore, as (i) for all J terms in the first sum here, λ1−β
j /(λj +λ) ≤ λ−βj ≤ [λ(1−β)/β]−β and

(ii) λ(1− β)/β ≤ λJ ≤ CλJ−α and therefore J ≤ [Cλβ/(λ(1− β))]1/α, we may bound it by

C2
φ

[
Cλβ

λ(1− β)

]1/α [
λ(1− β)

β

]−β
= C2

φC
1/α
λ

[
β

1− β

]1/α+β

λ−(1/α+β).

In addition, we may bound the second sum here by an integral,

C2
φ

∫ ∞
J

(C
−1/α
λ t)−α(1−β)

(C
−1/α
λ t)−α + λ

dt = C2
φC

1/α
λ

∫ ∞
C
−1/α
λ J

s−α(1−β)

s−α + λ
ds,

decompose that integral into two pieces,

∫ λ−1/α

C
−1/α
λ J

s−α(1−β)

s−α + λ
ds+

∫ ∞
λ−1/α

s−α(1−β)

s−α + λ
ds,

and bound each piece as follows:

∫ λ−1/α

C
−1/α
λ J

s−α(1−β)

s−α + λ
ds ≤

∫ λ−1/α

C
−1/α
λ J

sαβ ≤ 1

1 + αβ
λ−(1/α+β)

∫ ∞
λ−1/α

s−α(1−β)

s−α + λ
ds ≤ λ−1

∫ ∞
λ−1/α

s−α(1−β)ds =
λ−1

1− α(1− β)

[
0−

(
λ−1/α

)1−α(1−β)
]

=
λ−(1/α+β)

α(1− β)− 1
.

To guarantee that the latter integral converges, we use our assumption α(1− β) > 1.

Putting everything together, (B.3) and therefore (B.2) is bounded by

C2
φC

1/α
λ

[(
β

1− β

)1/α+β

+
1

1 + αβ
+

1

α(1− β)− 1

]
λ−(1/α+β)

= C2
φC

1/α
λ

[(
β

1− β

)1/α+β

+
α

(1 + αβ)(α− (1 + αβ))

]
λ−(1/α+β).

Thus, the square root of this quantity bounds
∥∥[LK,ν + λI]−1/2Kx

∥∥ ν-a.e. as claimed.

Proof of Lemma 3.8. We may write f =
∑
j fjλ

κ
jψj with ‖f‖2LκK,ν =

∑
j f

2
j . In terms of this decom-
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position,

∥∥∥L−1/2
λ f

∥∥∥2

=

∥∥∥∥∥ fjλ
κ−1/2
j

(λj + λ)
1/2

λ
1/2
j φj

∥∥∥∥∥
2

=
∑
j

f2
j

λ2κ−1
j

λj + λ

≤

∑
j

f2
j

 sup
j

λ2κ−1
j

λj + λ

≤

∑
j

f2
j

 sup
j
λ2κ−2
j ∧ λ−1λ2κ−1

j . (B.4)

The last two steps above are, respectively, via Hölder’s inequality and the substitution of the lower

bound λj ∨ λ for the denominator.

Ordering the eigenvalues λj so that they are decreasing, note that for κ ∈ [1/2, 1), λ2κ−2
j is

increasing and λ−1λ2κ−1
j decreasing in λj . For λj ≤ λ, the minimum of the two expressions is equal

to the first, and because that expression is increasing in λ, it is bounded by λ2κ−2. For λj ≥ λ, the

minimum of the two expressions is equal to the second, and because that expression is decreasing

in λ, it too is bounded by λ2κ−2. Thus, this quantity bounds the supremum (B.4) that we are

interested in. For κ ≥ 1, both of these expressions are increasing in λj , and therefore decreasing in

j. It follows that the supremum (over j) of this minimum is the minimum of the first term in the

left branch and the first term in the right, and we may take either as an upper bound. We choose

the first, λ2κ−2
1 . This establishes our first claim.

The second claim follows by the same argument working with the analogous bound

∥∥L−1
λ f

∥∥2 ≤

∑
j

f2
j

 sup
j
λ2κ−3
j ∧ λ−1λ2κ−2

j .

Proof of Lemma 3.9. The unit ball of HK can be characterized as {
∑∞
j=1 fjλ

1/2
j φj :

∑∞
j=1 f

2
j ≤ 1}

where φj are eigenfunctions of LK,ν that form an orthonormal basis of L2(ν). Let φ0 = g/‖g‖L2(ν)

and φ⊥j = φj − 〈φj , φ0〉L2(ν)φ0 for j ≥ 1. Any function in our set B? can be written in the form

f − sg =

∞∑
j=1

fjλ
1/2
j φ⊥j +

 ∞∑
j=1

fjλ
1/2
j 〈φj , φ0〉L2(ν) − s‖g‖L2(ν)

φ0 for

∞∑
j=1

f2
j ≤ 1, s ∈ [0, 1].

By Cauchy-Schwartz, the bracketed term is bounded by λ
1/2
0 =

√∑∞
j=1 λj〈φj , φ0〉2L2(ν) + ‖g‖L2(ν).

Thus, B? is contained in the set B′ of functions of the form

f = f0λ
1/2
0 φ0 +

∞∑
j=1

fjλ
1/2
j φ⊥j for

∞∑
j=1

f2
j ≤ 1, f2

0 ≤ 1.
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Define the rescaled basis functions φ̃j = φ⊥j /‖φ⊥j ‖L2(ν) and λ̃j = λj‖φ⊥j ‖
2
L2(ν) = λj(1−〈φj , φ0〉2L2(ν))

for j ≥ 1 and let φ̃0 = φ0 and λ̃0 = λ0. Equivalently, we may say that B′ is the set of functions

f =

∞∑
j=0

fj λ̃
1/2
j φ̃j for

∞∑
j=1

f2
j ≤ 1, f2

0 ≤ 1.

From this point we imitate the proof of Mendelson (2002, Theorem 41). If f is a function of the

form above, Zif(Xi) satisfies

E(Zif(Xi))
2 =

∫
f(x)2szdνx =

∫
f(x)2dν(x) =

∞∑
j=1

f2
j λ̃j .

Therefore if f(x) is in the set B′t = {f ∈ B′ : E(Zif(Xi))
2 ≤ t2}, it has coefficients that satisfy

f2
0 ≤ 1,

∞∑
j=1

f2
j ≤ 1,

∞∑
j=0

f2
j λ̃j/t

2 ≤ 1.

Now consider the set Et of functions f with coefficients satisfying
∑∞
j=0 f

2
j (1 ∨ λ̃j/t2) ≤ 1. As∑∞

j=0 f
2
j (1 ∨ λ̃j/t2) ≤ f2

0 +
∑∞
j=1 f

2
j +

∑∞
j=0 f

2
j λ̃j/t

2 ≤ 3 for all functions in B′t,
√

3Et contains B′t

and therefore also B?t = {f ∈ B? : E(Zif(Xi))
2 ≤ t2}. Thus, we will use

√
3Mn{zf(x) : f ∈ Et} to

bound Mn{zf(x) : f ∈ B?t }.

Note that in the case that t = ∞, we can improve this constant
√

3 to
√

2. E∞ is the set

of functions f with coefficients satisfying
∑∞
j=0 f

2
j ≤ 1, and as f2

0 +
∑∞
j=1 f

2
j ≤ 2 for f ∈ B′,

√
2E∞ ⊇ B′ ⊇ B?.

We will bound Mn,2{zf(x) : f ∈ Et} = [E supf∈Et |n
−1
∑n
i=1 σiZif(Xi)|]1/2, as by Jensen’s

inequality this quantity bounds Mn{zf(x) : f ∈ Et} itself. Writing e0,e1,. . . for the standard basis
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for `2, we have

Mn,2{zf(x) : f ∈ Et}2 = E sup
f∈Et

〈 ∞∑
j=0

fjej , n
−1

n∑
i=1

∞∑
j=0

σiZiλ̃
1/2
j φ̃j(Xi)ej

〉2

`2

= E sup
f∈Et

〈 ∞∑
j=0

fj

√
1 ∨ λ̃j/t2 ej , n−1

n∑
i=1

∞∑
j=0

σiZi

√
λ̃j

1 ∨ λ̃j/t2
φ̃j(Xi)ej

〉2

`2

≤ E

∥∥∥∥∥∥n−1
n∑
i=1

∞∑
j=0

σiZi

√
λ̃j ∧ t2φ̃j(Xi)ej

∥∥∥∥∥∥
2

`2

= n−2
n∑
i=1

∞∑
j=0

(
λ̃j ∧ t2

)
E
[
σ2
iZ

2
i φ̃j(Xi)

2
]

= n−1
∞∑
j=0

(
λ̃j ∧ t2

)
E
[
E
[
σ2
i | Xi, Zi

]
E
[
Z2
i φ̃j(Xi)

2
]]

≤ n−1
∞∑
j=0

(
λ̃j ∧ t2

)∥∥E [σ2
i | Xi, Zi

]∥∥
L∞(νx,z)

∥∥∥Z2
i φ̃j(Xi)

2
∥∥∥
L1(νx,z)

=

n−1
∞∑
j=0

λ̃j ∧ t2
∥∥E [σ2

i | Xi, Zi
]∥∥
L∞(νx,z)

.

The inequalities above are via Cauchy-Schwartz and Hölder’s inequality respectively.

All that remains now is to simplify this bound so we need not discuss λ̃j . Recall that λ̃0 =(√∑∞
j=1 λj〈φj , φ0〉2L2(ν) + ‖g‖L2(ν)

)2

and that λ̃j = λj(1−〈φj , φ0〉2L2(ν)) for j ≥ 1. Typically when

we consider the local Rademacher complexity, i.e. the case t < ∞, we take t small, so we will

have t in our sum rather than the large λ̃0 term. Thus, in that case we will not be able to cancel

terms appearing in λ̃0 and the rest of the sum. To bound λ̃0, we apply Hölder’s inequality to the

term inside the square root in our expression for λ̃0, yielding λ̃0 ≤ λ′0 = [(λ
1/2
1 + 1)‖g‖L2(ν)]

2.

Note that typically λ̃0 > t, so the looseness of this bound will be irrelevant. For the other terms,

we use the simple bound λ̃j ≤ λj for j ≥ 1, Thus, letting λ′j = λj , we have our claimed bound

Mn{zf(x) : f ∈ B?, E(Zif(Xi))
2 ≤ t2} ≤

√
3Mn,2{zf(x) : f ∈ Et} ≤ ‖E

[
σ2
i | Xi, Zi

]
‖1/2L∞(νx,z) ·

31/2n−1/2
∑∞
j=0 λ

′
j ∧ t.

In the case t =∞, terms from λ̃0 and the other terms in our sum will cancel, giving us a better

97



bound.

∞∑
j=0

λ̃j =

∞∑
j=1

λj〈φj , φ0〉2L2(ν) + 2‖g‖L2(ν)

√√√√ ∞∑
j=1

λj〈φj , φ0〉2L2(ν) + ‖g‖2L2(ν) +

∞∑
j=1

λj

(
1− 〈φj , φ0〉2L2(ν)

)

= 2‖g‖L2(ν)

√√√√ ∞∑
j=1

λj〈φj , φ0〉2L2(ν) + ‖g‖2L2(ν) +

∞∑
j=1

λj

≤ 2‖g‖L2(ν)

√√√√ ∞∑
j=1

λj + ‖g‖2L2(ν) +

∞∑
j=1

λj

=

‖g‖L2(ν) +

√√√√ ∞∑
j=1

λi

2

.

Therefore Mn{zf(x) : x ∈ B?} ≤ 21/2Mn,2(E∞) ≤ 21/2‖E
[
σ2
i | Xi, Zi

]
‖1/2L∞(νx,z)n

−1/2(‖g‖L2(ν) +√∑∞
j=1 λi) as claimed.

Proof of Lemma 3.10. Let J = max{j : λj ≥ t2}. J satisfies t2 ≤ λJ ≤ CJ−α and therefore

J ≤ (C/t2)1/α. Therefore,

∞∑
j=1

λj ∧ t2 = Jt2 +

∞∑
j=J+1

λj

≤ (C/t2)1/αt2 +

∫ ∞
(C/t2)1/α

Cs−αds

= C1/αt2(1−1/α) + [C/(α− 1)][(C/t2)1/α]1−α

= C1/α[α/(α− 1)]t2(1−1/α).

Proof of Proposition 3.11. Consider the decomposition of the expression maximized in Ih,BC

1

n

n∑
i=1

[h(Xi,Wi, f)− γif(Xi,Wi)] =
1

n

n∑
i=1

[T (Xi,Wi)− 1{Wi=0}γi]f(x, 0) +
1

n

∑
i:Wi 6=0

γif(x,w)

and note that if there were nonzero weights γi in the second sum, functions f(·, 1) . . . f(·, C) could be

chosen from the (symmetric) unit ball B that make the second term match the first in sign. It follows

that the weights γ′i = 1{Wi=0}γi satisfy I2
h,BC (γ′) ≤ I2

h,BC (γ) and, unless γ′i = γi, ‖γ′‖2 < ‖γ′‖2.

Therefore it suffices to optimize over weights of the form 1{Wi=1}γi.

The space normed by BC that we consider is reflexive, as cartesian products of reflexive spaces

are reflexive. Then Lemma 2.5 establishes that Mn,BC has a maximum at some possibly nonunique

function ĝ and that the weights satisfy γ̂i = ĝ(Xi,Wi) for all such functions. To establish our last
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claimed property, observe that taking g(·, w) 6= 0 for w 6= 0 decreases the second term of Mn,BC

without increasing any other term.

Proof of Lemma 3.12. Let Zi = 1{Wi=0}. As γ̃(w, x) takes the form 1{w=0}g
′(x) and γψ(w, x) the

form 1{w=0}g(x), we can rewrite the quantity we are bounding as

1

n

n∑
i=1

Zi(g
′(Xi)− g(Xi))

2 − 2

n

n∑
i=1

(Ti − Zig(Xi))Zi(g
′(Xi)− g(Xi)) + λ‖g′‖2HK .

The middle term is centered, so we bound it using Chebyshev’s inequality. With probability greater

than 1− δ/2,∣∣∣∣∣ 1n
n∑
i=1

(Ti − Zig(Xi))Zi(g
′(Xi)− g(Xi))

∣∣∣∣∣ < (nδ/2)−1/2E
[
(Ti − Zig(Xi))

2Zi(g
′(Xi)− g(Xi))

2
]1/2

≤ (nδ/2)−1/2‖g‖L∞(PZ)E
[
Zi(g

′(Xi)− g(Xi))
2
]1/2

= (nδ/2)−1/2‖g‖L∞(PZ)E [Zi]
1/2 ‖g′ − g‖L2(PZ).

We use Markov’s inequality for the first term. With probability greater than 1− δ/2,

1

n

n∑
i=1

Zi(g
′(Xi)− g(Xi))

2 ≤ (δ/2)−1E
[
Zi(g

′(Xi)− g(Xi))
2
]

= (δ/2)−1E [Zi] ‖g′ − g‖2L2(PZ).

Thus, with probability 1− δ, we have the bound

2δ−1E [Zi] ‖g′ − g‖2L2(PZ) + 23/2(δ−1E [Zi])
1/2n−1/2‖g‖L∞(PZ)‖g

′ − g‖L2(PZ) + λ‖g′‖2HK . (B.5)

Our first claim follows by observing that because HK is dense in L2(PZ), there exists a sequence

g′j satisfying ‖g′j − g‖L2(PT ) → 0 as j → ∞ and ‖g′j‖HK < ∞, as so long as λn → 0, we can take a

subsequence g′n = gjn such that λn‖gn‖HK → 0.

Our second claim is a consequence of Cucker and Zhou (2007, Theorem 4.1), which establishes

that if ‖g‖Lκk,ν <∞,

inf
g′:‖g′‖HK≤r

‖g′ − g‖L2(ν) ≤
(

2‖g‖L2(ν)

) 2
1−2κ

r−
4κ

1−2κ . (B.6)

Thus, (B.5) is bounded by ar−2θ + br−θ +λr2 for θ = 4κ/(1− 2κ), a = 2δ−1E [Zi] (2‖g‖L2(PZ))
4

1−2κ ,

and b = 23/2(δ−1/2E [Zi])
1/2n−1/2‖g‖L∞(PZ)(2‖g‖L2(PZ))

2
1−2κ . As this expression will be difficult to

minimize analytically and b is very small relative to a, we simply evaluate this expression at the

minimizer r? = (aθ/λ)1/[2(θ+1)] of ar−2θ + λr2. This yields the bound

a
1
θ+1 θ−

θ
θ+1λ

θ
θ+1 + a

θ
2(θ+1) b θ

θ
2(θ+1)λ

θ
2(θ+1) + a

1
θ+1 θ

1
θ+1λ

θ
θ+1

= a
1
θ+1

(
θ−

θ
θ+1 + θ

1
θ+1

)
λ

θ
θ+1 + a

θ
2(θ+1) b θ

θ
2(θ+1)λ

θ
2(θ+1)
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and substituting the above definitions of θ, a, b, we have the claimed bound

2
(
δ−1E [Zi]

) 1−2κ
1+2κ ‖g‖

4
1+2κ

L2(PZ)

(
θ−

θ
1+θ + θ

1
1+θ

)
λ

4κ
1+2κ

+ 2
4(1−κ)
1−2κ

(
δ−1E [Zi]

) 1
1+2κ ‖g‖L∞(PZ)‖g‖

4
1−4κ2

L2(PZ)θ
θ

2(θ+1)n−1/2λ
2κ

1+2κ .

B.5 Calculations used in the proof of (3.14)

In this section, we establish bounds on the quantities appearing in the bound (3.29). Note that

because we have f(·, w) = 0 when w 6= 0 for all f ∈ F , we have

F?(t) = {1{w=0}f
′(x) : f ′ ∈ B?, ‖1{w=0}f

′‖L2(P ) ≤ t};

H?(t) = {[T (x, 0)− gψ(x)]1{w=0}f
′(x) : 1{w=0}f

′(x) : f ′ ∈ B?, ‖1{w=0}f
′‖L2(P ) ≤ t};

B? = {f − sgψ(x) : ‖f‖ ≤ 1, s ∈ [0, 1]}.

(B.7)

Via the triangle inequality, MF? ≤MK + ‖gψ‖∞ and MH? ≤ ‖gψ‖∞(MK + ‖gψ‖∞).

B.5.1 Bounding non-aggregate terms

In this section, we bound the terms that appear in our bound: R̄, rQ(ηC), rC(ηC), and u(H?, δ).

B.5.1.1 Bounding R̄.

In the event that ‖gψ‖HK <∞, we may take γ̃ = γψ, in which case the condition (3.28) is satisfied

deterministically with R̄ = (σ2/n)‖gψ‖2HK . If instead we have ‖gψ‖LκγK,PZ
< ∞ for κγ ∈ (0, 1), we

use the second claim of Lemma 3.12.

B.5.1.2 Bounding rQ(ηQ).

rQ(ηQ) is a fixed point of the local Rademacher complexity of the class F?. In the terms of

Lemma 3.9, Rn(F?(t)) = Mn{zf(x) : f ∈ B?,E(Zif(Xi))
2 ≤ t2} for g(x) = gψ(x), Zi = 1{Wi=0},

νx,z = P , an iid Rademacher sequence σ1 . . . σn independent of (Xi,Wi)i≤n. As sz = P{Wi =

0 | Xi}, and dν = pZdPZ for pZ = P{Wi = 0}. Thus, we have the bound Rn(F?(t)) ≤

[(3/n)
∑∞
j=0(pZλj,Z) ∧ t2]1/2 where λ0,Z = pZ(1 +

√
pZλ1,Z)2‖gψ‖2L2(PZ). Via Lemma 3.10, the

assumptions of Theorem 3.4 guarantee that
∑n
j=1 λj,Z ∧ t2 ≤ (pZCλ,Z)1/α(1− 1/α)−1t2(1−1/α), and

so long as t2 ≤ min{1, λ0,Z} adding the first term to this sum increases it by no more than t2

and therefore by no more than t2(1−1/α). Consequently, R(F?(t)) ≤ C ′n−1/2t1−1/α where C ′ =

{3[1 + (pZCλ,Z)1/α(1− 1/α)−1]}1/2. To bound rQ(ηQ), we take 7 times the solution to fixed point
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equation C ′n−1/2t1−1/α = t2/(2MF?), which is t = (2MF?C
′n−1/2)1/(1+1/α) = CQn

−1/[2(1+1/α)] for

CQ = {12p2
ZM

2
F? [1 + (pZCλ,Z)1/α(1 − 1/α)−1])}1/[2(1+1/α)]. Recalling our recent assumption that

t2 ≤ min{1, λ0,Z}, this means that we have the bound

rQ(ηQ) ≤ 7CQn
−1/[2(1+1/α)] (B.8)

if it is no larger than 7 min{1, λ0,Z}1/2 and therefore if it is no larger than 7p
1/2
Z ‖gψ‖L2(PZ).

B.5.1.3 Bounding rC(ηC)

Our approach will be to find a simple function u′(·) for which we can solve the fixed point equation

u′(t) = ηCt
2 and which, at that fixed point t, we have ηCt

2 = u′(t) ≥ u(H?(t), δ) and therefore

t ≥ rC(ηC). Recall that

u(H?(t), δ) = min
η>0

uη, uη = 2(1+η)Rn(H?(t))+σ(H?(t))
√

2 log(2δ−1)

n
+2MH?

(
1

3
+

1

η

)
log(2δ−1)

n
.

Our first step will be to establish that for all η > 0, when t ≤ p1/2
Z ‖gψ‖L2(PZ),

u(H?(t), δ) ≤ C1n
−1/2t1−1/α + C2n

−1/2t+ +C3n
−1

C1 = 2(1 + η)‖gψ‖∞{3[1 + (pZCλ,Z)1/α(1− 1/α)−1]}1/2;

C2 = max{1, ‖γψ‖∞}
√

2 log(2δ−1);

C3 = 2MH?

(
1

3
+

1

η

)
log(2δ−1).

(B.9)

Here we include the third term in u(H?(t), δ) as-is and include a bound on the second using

σ(H?(t)) ≤ ‖T (x, 0)−gψ(x)‖∞t ≤ max{1, ‖gψ(x)‖∞}t, so what remains to do is show that C1n
−1/2t1−1/α

bounds Rn(H?(t)). To do this, we apply Lemma 3.9 with g = gψ, Zi = 1{Wi=0} and σi =

σ′i(T (Xi,Wi) − γψ(Xi,Wi)) for an iid Rademacher sequence σ′i . . . σ
′
n independent of (Xi,Wi)i≤n.

Then, noting that ‖σ2
i ‖∞ = ‖(T (x,w)−γψ)2‖∞ ≤ ‖γψ‖

2
∞ and that as in the previous case ν = pZ ·PZ

and therefore λj = pZλj,Z , we have the bound Rn(H?(t)) ≤ ‖γψ‖∞[(3/n)
∑∞
j=0(pZλj,Z) ∧ t2]1/2

where λ0,Z = pZ(1 +
√
pZλ1,Z)‖gψ‖L2(PZ). Using Lemma 3.10 to bound this, we have Rn(H?(t)) ≤

C1n
−1/2t1−1/α when t ≤ p1/2

Z ‖gψ‖L2(PZ).

Having established the validity of our bound (B.9), we now define something that will act as a

bound on it: ua(t) = an−1/2t1−1/α, a multiple of its asymptotically dominant term. We will solve

the fixed point equation u′a(t) = ηCt
2 and then select a so that ua(ta) upper bounds the right side

above at t = ta, ensuring that ta ≥ rC(ηC) as desired. The solution to this fixed point equation is

ta = (an−1/2/ηC)1/(1+1/α). When our condition ta ≤ p
1/2
Z ‖gψ‖L2(PZ) for the validity of our bound

on Rn(F?(t)) is satisfied, clearly ta at a = C1 bounds the first term in (B.9). To incorporate the
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other terms as well, we will bound their ratios with ua(ta), too. For all a ≥ 1, the ratio of the second

and third terms in (B.9) and ua(ta) are respectively

C2a
−1t1/αa = C2η

−1/(α+1)
C a−1/(1+1/α)n−1/[2(α+1)] ≤ C2η

−1/(α+1)
C n−1/[2(α+1)];

C3n
−1/2a−1t1/α−1

a = C3n
−1/2a−1(an−1/2/ηC)(1−α)/(1+α) ≤ C3η

(α−1)/(α+1)
C n−1/(α+1).

It follows that ta ≥ rC(ηC) if (i) a is no smaller than the sum of our three ratio bounds and also no

smaller than one, the latter being required for the validity of our second and third ratio bounds and

(ii) ta is no larger than p
1/2
Z ‖gψ‖L2(PZ), required for the validity of our local Rademacher complexity

bound. Thus, in terms of C1, C2, C3 defined in (B.9), we have

rC(ηC) ≤ max

{
η−1
C , C1η

−1
C + C2η

−(1+ 1
α+1 )

C n−
1

2(α+1) + C3η
−(1−α−1

α+1 )
C n−

1
α+1

} 1
1+1/α

n−
1

2(1+1/α)

(B.10)

so long as the entire bound is no larger than p
1/2
Z ‖gψ‖L2(PZ). Here the expression within the maxi-

mum plays the role of aη−1
C , and we take this maximum to ensure that our condition a ≥ 1 holds.

We will use a variant of this bound with simpler dependence on ηC ,

rC(ηC) ≤
[
η−1
C

(
C1 + C2n

− 1
2(α+1) + C3n

− 1
α+1

)] 1
1+1/α

n−
1

2(1+1/α) , (B.11)

valid when 2α+1 ≤ ηC ≤
[
[C2/(2C3)]n1/2

]α+1
α−1 , the parenthesized term exceeds 1, and the entire

bound is no larger than p
1/2
Z ‖gψ‖L2(PZ). To show that this is a valid upper bound, we will show

that the bracketed expression in (B.11) exceeds the right branch of the maximum in (B.10). The

difference between these two expressions is

C2n
− 1

2(α+1)

(
η−1
C − η

−(1+ 1
α+1 )

C

)
+ C3n

− 1
α+1

(
η−1
C − η

−(1−α−1
α+1 )

C

)
,

which is positive when the ratio

C2n
− 1

2(α+1)

(
η−1
C − η

−(1+ 1
α+1 )

C

)/
C3n

− 1
α+1

(
η
−(1−α−1

α+1 )
C − η−1

C

)

exceeds one. This ratio is bounded above

(C2/C3)n
1

2(α+1) η
−α−1
α+1

C

(
1− η−

1
α+1

C

)
,

To complete our argument, observe that our lower bound 2α+1 on ηC implies that the parenthesized

factor is at least 1/2, and consequently that our upper bound on ηC implies that the quantity above

is at least one as required.
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B.5.1.4 Bounding u(H?, δ)

To bound u(H?, δ), we bound Rn(H?) and σ(H?). We bound the latter using Hölder’s inequality

and the triangle inequality,

σ(H?) ≤ max{1, ‖gψ‖∞}
√

sup
‖f‖≤1

E 1{Wi=1}(f(Xi) + gψ(Xi))2

= max{1, ‖gψ‖∞}
√

sup
‖f‖≤1

pZE [(f(Xi) + gψ(Xi))2 |Wi = 1]

≤ p1/2
Z max{1, ‖gψ‖∞}

(
sup
‖f‖≤1

‖f‖L2(PZ) + ‖gψ‖L2(PZ)

)

= p
1/2
Z max{1, ‖gψ‖∞}

(
λ

1/2
1,Z + ‖gψ‖L2(PZ)

)
The identity sup‖f‖≤1‖f‖L2(PZ) = λ1,Z used in the last step follows from the representation of this

unit ball as the set {
∑∞
j=1 fjλ

1/2
j,Zψj(x) :

∑∞
j=1 f

2
j ≤ 1} in terms of L2(PZ)-orthonormal eigenfunc-

tions ψj .

We bound the Rademacher complexity using Lemma 3.9 with t = ∞, g = gψ, Zi = 1{Wi=0}

and σi = σ′i(T (Xi,Wi) − γψ(Xi,Wi)) for an iid Rademacher sequence σ′i . . . σ
′
n independent of

(Xi,Wi)i≤n. Then, noting that ‖σ2
i ‖∞ = ‖(T (x,w)− γψ)2‖∞ ≤ ‖γψ‖

2
∞ and that as in the previous

case ν = pZ · PZ and therefore λj = pZλj,Z , we have the bound

Rn(H?) ≤ 21/2‖gψ‖∞n
−1/2

p1/2
Z ‖gψ‖L2(PZ) +

√√√√ ∞∑
j=1

pZλj,Z


≤ 21/2p

1/2
Z ‖gψ‖∞n

−1/2

(
‖gψ‖L2(PZ) +

√
Cλ,Z

∫ ∞
s=1

s−α

)

= 21/2p
1/2
Z ‖‖gψ‖‖∞

(
‖gψ‖L2(PZ) + C

1/2
λ,Z(α− 1)−1/2

)
n−1/2.

and therefore

u(H?, δ) ≤ min
η>0

Cu,1,ηn
−1/2 + Cu,2,ηn

−1; (B.12)

Cu,1,η = (1 + η)23/2p
1/2
Z max{1, ‖gψ‖∞}

(
‖gψ‖L2(PZ) + C

1/2
λ,Z(1− α)−1/2

)
+ 21/2p

1/2
Z max{1, ‖gψ‖∞}

(
λ1,Z + ‖gψ‖L2(PZ)

)√
log(2δ−1);

Cu,2,η = 2MH?(1/3 + 1/η) log(2δ−1).

B.5.2 Aggregating terms

In order to simplify our statement of (3.14) as much as possible, we equate our our bounds (B.8)

and (B.11) on rQ(ηQ) and rC(ηC) by setting

ηC =
(
C1 + C2n

− 1
2(α+1) + C3n

− 1
α+1

)/
(7CQ)

1+1/α
. (B.13)
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Having chosen this value of ηC , r = rQ(ηQ) ∨ rC(ηC) ∨ n−1/2σ−1η
−1/2
Q satisfies the bound r ≤

7CQn
− 1

2(1+1/α) ∨ n−1/2σ−1η
−1/2
Q . This is usually optimal. Among choices of ηC , this one results in

the sharpest bound (3.29) except in the case that b < a and b is equal to the second of the three

expressions of which it is the maximum. This completes our proof. All other bounds above appear

in the bound (3.13) as-is.
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