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ABSTRACT

A Bayesian Approach to the Understanding of Exoplanet

Populations and the Origin of Life

Jingjing Chen

The study of extrasolar planets, or exoplanets for short, has developed rapidly over

the last decade. While we have spent much effort building both ground-based and

space telescopes to search for exoplanets, it is even more important that we use the

observational data wisely to understand them. Exoplanets are of great interest to both

astronomers and the general public because they have shown varieties of characteristics

that we couldn’t have anticipated from planets within our Solar System. To properly

analyze the exoplanet populations, we need the tools of statistics. Therefore, in Chapter 1,

I describe the science background as well as the statistical methods which will be applied

in this thesis. In Chapter 2, I discuss how to train a hierarchical Bayesian model in detail

to fit the relationship between masses and radii of exoplanets and categorize exoplanets

based on that. A natural application that comes with the model is to use it for future

observations of mass/radius and predict the other measurement. Thus I will show two

application cases in Chapter 3. Composition of an exoplanet is also very much constrained

by its mass and radius. I will show an easy way to constrain the composition of exoplanets

in Chapter 4 and discuss how more complicated methods can be applied in future works.

Of even greater interest is whether there is life elsewhere in the Universe. Although



the future discovery of extraterrestrial life might be totally a fluke, a clear sketched plan

always gives us some directions. Research in this area is still very preliminary. Fortunately,

besides directly searching for extraterrestrial life, we can also apply statistical reasoning

to first estimate the rate of abiogenesis, which will give us some clue on the question of

whether there is extraterrestrial life in a probabilistic way. In Chapter 5, I will discuss how

different methods can constrain the abiogenesis rate in an informatics perspective.

Finally I will give a brief summary in Chapter 6.

• Probabilistic forecasting of the masses and radii of other worlds, J. Chen & D.
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• Forecasted masses for 7000 Kepler Objects of Interest, J. Chen & D. Kipping, Monthly
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• Forecasting the detectability of known radial velocity planets with the upcoming
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nomical Society 475(3), 3090-3097

• A HARDCORE model for constraining an exoplanet’s core size, G. Suissa, J. Chen,
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Chapter 1

Introduction

1.1 Population Properties of Exoplanets and Prediction of

Missing Features

The study of exoplanets, planets outside the Solar System, is currently one of the most

active research areas in astronomy. In 1992, the very first exoplanetary system was found

around a millisecond pulsar, PSR1257+12, using precise timing measurements (Wolszczan

& Frail 1992). Over the past decade, astronomers have developed a diverse array of

detection methods such as transits, radial velocity, micro-lensing etc. By May 2018,

more than 3,700 confirmed exoplanets are cataloged (Exo 2018), and the number is still

increasing. The great advance in exoplanet discoveries is largely due to survey projects

such as ground-based HARPS (High Accuracy Radial Velocity Planet Searcher), HAT

(HATNet and HATSouth Projects), OGLE (Optical Gravitational Lensing Experiment),

space mission COROT (Convection, Rotation and planetary Transits), Kepler, K2, and there

1



are more to come in the near future such as TESS (Transiting Exoplanet Survey Satellite),

CHEOPS (Characterizing ExOPlanets Satellite), and JWST (James Webb Space Telescope).

Thanks to these efforts in searching for and gathering information of exoplanets, we are

now able to perform statistical analyses on exoplanet populations and gain insights of

their population properties.

In recent years, along with the rise of data science, statistical methods and models

have become more and more widely used in astronomy. Besides some basic statistical

techniques like least-square regressions, astronomers have delved deeper into realms

such as Bayesian models, survival analysis, and machine learning. A Bayesian approach

has become widely adopted in exoplanetary research as it easily incorporates updated

information from previously conducted measurements, and gives posterior distribution

estimates for the model parameters as opposed to point estimates by frequentist methods.

Hierarchical Bayesian models (HBM), by adding more complexities to the basic Bayesian

models, have been applied to many problems, inferring, for example, the eccentricty

distribution of exoplanets (Hogg et al. 2010), the obliquities of Kepler stars (Morton &

Winn 2014), the abundance of Earth analogs (Foreman-Mackey et al. 2014), the albedos of

super-Earths (Demory 2014), the mass and radius relationship (Wolfgang et al. 2016) etc.

In this thesis, I will focus on using the Bayesian approach to build models to under-

stand properties of exoplanets as an ensemble and use the models to make predictions on

unobserved features. By using the Bayesian methods, Chapter 2 describes how I train a

probabilistic model to fit a hierarchical relationship between mass and radius features of

exoplanets. This model not only tells us the underlying population properties of exoplan-

2



ets, but also can be used to predict an unknown feature provided measurements of the

related features. The prediction can then be used to estimate the range of the unknown

feature and help with follow-up observations.

1.2 Extraterrestrial Life

One of the reasons behind the fever of searching for exoplanets is to answer the long-

standing question on our mind – are we alone?

Actual detections of extraterrestrial life might be the only way that can answer this

question with certainty. Many life explorers had been launched within the Solar System,

especially on Mars, such as NASA’s Curiosity rover. And there are more to come in the

next decade, such as NASA’s Mars 2020 rover and ESA’s ExoMars rover. These previous

life detection missions have been fruitful in finding life related evidence such as methane

(Krasnopolsky et al. 2004; Atreya et al. 2007), organic matter (Grotzinger 2014; Eigenbrode

et al. 2018), and water (Orosei et al. 2018). But direct evidence is still lacking.

Outside the Solar System, people have researched on a wide range of topics from

theoretically how life originates and sustains (Pepe et al. 2011; Quintana et al. 2014;

Khodachenko et al. 2007; Lammer et al. 2007), to observationally finding the signatures

of life (Segura et al. 2005). For example, assuming that life is produced photochemically

with UV light, Rimmer et al. (2018) calculates where abiogenesis zone lies and where it

overlaps with the habitable zone.

In this thesis, I will show how one can use statistical methods to estimate the rate of

abiogenesis, or how often life spontaneously originates from the environment, on Earth-

3



like planets. If the abiogenesis rate turns out to be high, it is more likely that extraterrestrial

life exist. However, at the current stage, we have very limited information on the abio-

genesis rate. First, abiogenesis events greatly depend on the specific environment and

the evolution history of the given planet. Besides, since the Earth is the only known

example with life, we have very little data upon which to condition our inference. Thus,

the result of previous work showed that any estimate on the abiogenesis rate can be dra-

matically affected by assumptions (Spiegel & Turner 2012). In other words, additional

information is required for meaningful estimates. In this thesis, I speculate three scenar-

ios, inspired by possible results from other areas of research, which might provide some

additional information to help better constrain the abiogenesis rate under the Bayesian

statistic framework. I then show how these scenarios affect the final inferred distribution

of abiogenesis rates.

1.3 The Bayesian Method

In the previous two sections, I briefly introduced the science background of the thesis. In

this section, I will mainly talk about the methodology background.

The Bayesian framework has three elements: pre-existing information, which is

called prior; new information, which is called data; and result, which is called posterior.

For a parameter of interest, Bayesian inference uses the newly observed data to update

the prior belief of the parameter’s distribution and results in the posterior distribution

of the parameter. For example, in weather forecast, tomorrow’s probability of rain can

be interpreted as a summary of the rain history updated with currently observed cloud

4



pattern in a Bayesian framework .

In this section, I will briefly introduce the Bayesian methods used throughout the

thesis. For a more detailed explanation, the readers should refer to some standard text-

books in Bayesian statistics, such as Bayesian Data Analysis by Andrew Gelman (Gelman

2004).

1.3.1 Bayes’ Rule

The idea of Bayesian analysis is to update the uncertainty in parameters of interest from

their previous estimates conditioned on newly obtained data. The Bayes’ rule can be

described mathematically as the following equation,

P(θ|y) =
P(y|θ)P(θ)

P(y)
,

where θ is the parameter of interest and y is the observation data.

The left hand side represents the posterior distribution of θ, which is the probability

distribution of parameter θ conditioned on observation y. On the right hand side, P(y)

can be considered as a constant because y is observed and has no randomness. P(θ) is

called prior distribution of parameter θ because it represents our assumption on θ prior

to the observation of y. P(y|θ) means the probability of obtaining data y given θ, which

is also known as the likelihood when considered as a function of θ. The specific forms of

P(θ) and P(y|θ) depend on the mathematical model we want to use and the details of the

problem.

5



1.3.2 Metropolis Algorithm

Most of the time in real-world applications, posteriors cannot be easily calculated with

an analytical form. In those cases, we need simulation methods to derive an empirical

distribution of the posterior. The Metropolis algorithm via random walk is one of the

most widely used simulation methods. The algorithm generates a chain of samples step

by step, which converges to the true distribution (Roberts et al. 1997). The algorithm

operates as follows (Gelman 2004) to find the posterior distribution of θ.

1. Initialization: sample a random starting point θ0 from the prior distribution of θ.

2. Jumping: for each step t (n = 1, 2, ...), sample a proposed θ∗ from a symmetric

jumping distribution J(θ|θt−1). By symmetric, it means that the probability of θ jumping

from θ∗ to θt−1 is equal to the probability of jumping from θt−1 to θ∗.

3. Acceptance/Rejection: accept the proposed θ∗ with probability min(r, 1), where

r =
P(θ∗|y)

P(θt−1|y)

The algorithm will end up with a chain of θ. The chain has two different phases

delineated by a ”burn-in” point. Before burn-in, the chain is going in one direction in

general to search for the area where the final samples will lie in. After burn-in, the chain

becomes steady and converges to the posterior distribution. In practice, the initial samples

of θ before burn-in will be thrown away.

6



1.3.3 Hierarchical Bayesian Model

Hierarchical models add another layer of parameters called hyper-parameters, that con-

trol the distribution of the original parameters, which are called local-parameters in a

hierarchical model. Hierarchical Bayesian Models (HBM in short) are usually used in the

analysis of a population of objects. In application, hyper-parameters are usually used to

describe population properties while local-parameters are used to describe each single

object. The goal of using hierarchical models is to fit both hyper and local parameters in

a single framework. A general model can be described as the following.

P(α, θ|y) =
P(y|α, θ)P(α, θ)

P(y)

where α, θ, y represents hyper-parameters, local-parameters and data respectively.

Because the observation y is only directly related to θ, P(y|α, θ) can be written as

P(y|θ). P(α, θ) can be written as P(α)P(θ|α). So to build a hierarchical model we need to

specify three things, the prior distribution of hyper parameters, the distribution of local-

parameters conditioned on hypers, and the distribution of data conditioned on locals.

Graphical models are usually used to help explain the hierarchy in practice. Through-

out this thesis, as is shown in Figure 1.1, hyper-parameters will be represented in yellow

ovals, local-parameters will be in white ovals, and data will be in grey ovals. Within the

box, there will be N samples of data and their corresponding local parameters.
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Local

Data

N

Figure 1.1 Graphical representation of hierarchical Bayesian models.

1.3.4 Information Gain

In Bayesian inference, the posterior distribution is considered to be the updated beliefs of

a parameter with data from prior beliefs. Therefore we can ask the question, how much

has the belief changed from the previous one? In information theory, the characteristics

of a distribution are quantified through the entropy of the distribution, or the average

amount of information carried in the distribution. The entropy of a continuous random

8



variable X with distribution p(x) is defined as

H(X) = −

∫
p(x)logp(x)dx

Relative entropy, also known as the Kullback-Leibler divergence (KLD for short), between

distributions P and Q is defined as

DKL(P||Q) =

∫
p(x)log

p(x)
q(x)

dx

As entropy measures the amount of information, relative entropy measures the informa-

tion gain. Relative entropy can be applied to compare the posterior distribution with the

prior distribution and quantify the impact of observation which plays in between.
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Chapter 2

Forecasting the Masses and Radii of

Other Worlds

Mass and radius are two of the most fundamental properties of an astronomical object.

Increasingly, new planet discoveries are being announced with a measurement of one of

these terms, but not both. This has led to a growing need to forecast the missing quantity

using the other, especially when predicting the detectability of certain follow-up observa-

tions. We present an unbiased forecasting model built upon a probabilistic mass-radius

relation conditioned on a sample of 316 well-constrained objects. Our publicly available

code, Forecaster, accounts for observational errors, hyper-parameter uncertainties and

the intrinsic dispersions observed in the calibration sample. By conditioning our model

upon a sample spanning dwarf planets to late-type stars, Forecaster can predict the

0This chapter is a reproduction of a paper that has been published by The Astrophysical Journal. It can
be found at http://iopscience.iop.org/article/10.3847/1538-4357/834/1/17/meta. The article has
been reformatted for this section.
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mass (or radius) from the radius (or mass) for objects covering nine orders-of-magnitude

in mass. Classification is naturally performed by our model, which uses four classes we

label as Terran worlds, Neptunian worlds, Jovian worlds and stars. Our classification

identifies dwarf planets as merely low-mass Terrans (like the Earth), and brown dwarfs as

merely high-mass Jovians (like Jupiter). We detect a transition in the mass-radius relation

at 2.0+0.7
−0.6 M⊕, which we associate with the divide between solid, Terran worlds and Nep-

tunian worlds. This independent analysis adds further weight to the emerging consensus

that rocky Super-Earths represent a narrower region of parameter space than originally

thought. Effectively, then, the Earth is the Super-Earth we have been looking for.

2.1 Introduction

Over the last two decades, astronomers have discovered thousands of extrasolar worlds

(see exoplanets.org; Han et al. 2014), filling in the parameter space from Moon-sized

planets (e.g. Barclay et al. 2013) to brown dwarfs many times more massive than Jupiter

(e.g. Deleuil et al. 2008). Over 98% of these detections have come from radial velocity,

microlensing or transit surveys, yet each of these methods only directly measures the mass

(M) or radius (R) of a planet, not both1.

This leads to the common situation where it is necessary to forecast what the missing

quantity is based on the other. A typical case would be when one needs to predict the

detectability of a potentially observable effect for a resource-intensive, time-competitive

observing facility, which in some way depends upon the missing quantity. For exam-

1Except for the rare cases of systems displaying invertible transit timing variations.
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ple, the TESS mission (Ricker et al. 2014) will soon start detecting hundreds, possibly

thousands, of nearby transiting planets for which the radius, but not the mass, will be

measured. Planets with radii consistent with Super-Earths will be of great interest for

follow-ups and so radial velocity facilities will need to forecast the detectability, which is

proportional to the planet mass, for each case. Vice versa, the CHEOPS mission (Broeg

et al. 2013) will try to detect the transits of planets discovered with radial velocities,

necessitating a forecast of the radius based upon the mass.

In those two examples, the objective was to forecast the missing quantity in order

to predict the feasibility of actually measuring it. However, the value of forecasting

the mass/radius for the purposes of predicting detectability extends beyond this. As

another example, exoplanet transit spectroscopy is expected to be a major function of the

upcoming JWST mission (Seager et al. 2009). At the first-order level, the detectability of an

exoplanet atmosphere is proportional to the scale height, H, which in turn is proportional

to 1/g ∝ R2/M. Given the limited supply of cryogen onboard JWST, discoveries of future

Earth-analog candidates may be found with insufficient time to reasonably schedule a

radial velocity campaign first (if even detectable at all). Therefore, there will likely be

a critical need to accurately forecast the scale height of new planet discoveries from just

either the mass or (more likely) the radius.

Forecasting the mass/radius of an object, based upon the other quantity is most

obviously performed using a mass-radius (MR) relation. Such relations are known to

display sharp changes at specific locations, such as the transition from brown dwarfs

to hydrogen burning stars (e.g. see Hatzes & Rauer 2015). These transition points can
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be thought of as bounding a set of classes of astronomical objects, where the classes are

categorized using the features of the inferred MR relation. In this case then, it is apparent

that inference of the MR relation enables both classification and forecasting.

Classification is more than a taxonomical enterprise, it can have dramatic implica-

tions in astronomy. Perhaps the most famous example of classification in astronomy is

the Hertzsprung-Russell (HR) diagram (Hertzsprung 1909; Russell 1914) for luminosity

versus effective temperature, which revealed the distinct regimes of stellar evolutions.

A common concern in classification is that the very large number of possible features

against which to frame the problem can be overwhelming. Mass and radius, though, are

not random or arbitrary choices for framing such a problem. Rather, they are two of the

most fundamental quantities describing any object in the cosmos and indeed represent

two of the seven base quantities in the International System of Units (SI).

The value of classification extends beyond guiding physical understanding, it even

affects the design of future instrumentation. As an example, the boundary between

terrestrial planets and Neptune-like planets represents a truncation of the largest allowed

habitable Earth-like body. The location of this boundary strongly affects estimates of the

occurrence rate of Earth-like planets (η⊕) and thus in-turn the design requirements of

future missions needed to characterize such planets (Dalcanton et al. 2015). To illustrate

this, using the occurrence rate posteriors of Foreman-Mackey et al. (2014), η⊕ decreases

by 42% when altering the definition of Earth-analogs from R < 2.0 R⊕ to R < 1.5 R⊕. In

order to maintain the same exoEarth yield for the proposed HDST mission, this change

corresponds to a 27% increase in the required mirror diameter (using yield equation in

13



§3.5.4 of Dalcanton et al. 2015).

We therefore argue that both forecasting and classification using the masses and radii

of astronomical bodies will, at the very least, be of great utility for present/future missions

and may also provide meaningful insights to guide our interpretation of these objects.

Accordingly, the primary objective of this work is to build a statistically rigorous and

empirically calibrated model

I to forecast the mass/radius of an astronomical object based upon a measurement of

the other, and

I for the classification of astronomical bodies based upon their observed masses and/or

radii.

The layout of this paper is as follows. In Section 2.2, we outline our model for

the MR relation, which is used for forecasting and classification. In Section 2.3, we

describe the regression algorithm used to conduct Bayesian parameter estimations of

our model parameters. The results, in terms of both classification and forecasting are

discussed separately in Sections 2.4 & 2.5. We summarize the main findings of our work

in Section 2.6.
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2.2 Model

2.2.1 Choosing a Model

We begin by describing the rationale behind the model used in this work. As discussed

in Section 2.1 (and demonstrated later in Section 2.3), the two primary goals of this paper

are both achievable through the use of a MR relation and this defines the approach in

this work. Broadly speaking, such a relation can be cast as either a parametric (e.g. a

polynomial) or non-parametric model (e.g. a nearest neighbor algorithm).

Parametric models, in particular power-laws, have long been popular for modeling

the MR relation with many examples even in the recent literature (e.g. Valencia et al.

2006; Weiss et al. 2013; Hatzes & Rauer 2015; Wolfgang et al. 2016; Zeng et al. 2016). In

our case, we note that such models are more straightforward for hierarchical Bayesian

modeling (which we argue to be necessary later), since they allow for a simple prescription

of the Bayesian framework. Moreover, based on those earlier cited works, power-laws

ostensibly do an excellent job of describing the data and the greater flexibility afforded

by non-parametric methods is not necessary. Accordingly, we adopt the power-law

prescription in this work.

As noted earlier, the use of power-laws to describe the MR relation is common in the

literature. However, many of the assumptions and model details in these previous im-

plementations would make forecasts based upon these relations problematic. We identify

three key aspects of the model proposed in this work which differentiate our work from

previous studies.
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[1] Largest data range: Inferences of the MR relation often censor the available data

to a specific subset of parameter space (for example Wolfgang et al. 2016 consider the

R < 8 R⊕ exoplanets). Whilst it is inevitable that certain subjective choices will be made

by those analyzing the MR relation, a more physically-motivated choice for the parameter

limits can be established. Ideally, this range should be as large as possible such that

forecasting is unlikely to encounter the extrema, leading to truncation errors. A natural

lower bound is an object with sufficient mass to achieve hydrostatic equilibrium leading

to a nearly spherical shape and thus a well-defined radius (a planemo), which would

encompass dwarf planets. As an upper bound, late-type stars take longer than a Hubble

time to leave the main-sequence and should exhibit a relatively tight trend between mass

and radius.

[2] Fitted transitions: As a by-product of using such a wide mass range, several

transitional regions are traversed where the MR relation exhibits sharp changes. For

example, the onset of hydrogen burning leads to a dramatic change in the MR relation

versus brown dwarfs (Hatzes & Rauer 2015). In previous works, such transitional points

are often held as fixed, assumed locations (e.g. Weiss & Marcy 2014 assume a physically

motivated, but not freely inferred, break at 1.5 R⊕). In contrast, we here seek to make a more

agnostic, data-driven inference without imposing any assumed transition points from

theory or previous data-driven inferences. In this way, the uncertainty in these transitions

is propagated into the inference of all other parameters defining our model, leading to

more robust uncertainty estimates for both forecasting and classification. Accordingly, in

this work, the MR relation is described by a broken power-law with freely fitted transition
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points (in addition to the other parameters).

[3] Probabilistic modeling: Whilst mass can be considered to be the primary influ-

ence on the size of an object, many second-order terms will also play a role. As an example,

rocky planets of the same mass but different core mass fractions will exhibit distinct radii

(Zeng et al. 2016). When viewed in the MR plane then, a particular choice of mass will not

correspond to a single radius value. Rather, a distribution of radii is expected, as a con-

sequence of the numerous hidden second-order effects influencing the size. Statistically

speaking then, the MR relation is expected to be probabilistic, rather than deterministic. A

probabilistic model fundamentally relaxes the assumption that the underlying model (in

our case a broken power-law) is the “correct” or “true” description of the data, allowing

an approximate model to absorb some (although it can never be all) of the error caused

by model misspecifications (in our case via an intrinsic dispersion). Naturally, the closer

one’s underlying model is to the truth, the smaller this probabilistic dispersion need to

be, and in the ultimate limit of a perfect model the probabilistic model tends towards a

deterministic one. Since we do not make the claim that a broken power-law is the true

description of the MR relation, the probabilistic model is essential for reliable forecasting,

as it enables predictions in spite of the fact our model is understood to not represent the

truth.

Whilst each of these three key features has been applied to MR relations in some form

independently, a novel quality of our methodology is to adopt all three. For example,

Wolfgang et al. (2016) inferred a probabilistic power-law conditioned on the masses and

radii of 90 exoplanets with radii below 8 R⊕. This range crosses the expected divide
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between solid planets and those with significant gaseous envelopes at 1.5-2.0 R⊕ (Lopez

& Fortney 2014) and so the authors tried truncating the data at 1.6 R⊕ as an alternative

model. In this work, we argue that the transitional points can actually be treated as free

parameters in the model, enabling us to infer (rather than assume) their locations and

test theoretical predictions. Additionally, the data need not be censored at < 4 R⊕ and the

wider range makes a forecasting model less susceptible to truncation issues at the extrema

(we point out that Wolfgang et al. (2016) did not set out to develop a forecasting model

explicitly, and thus this is not a criticism of their work, but rather just an example of how

our work differs from previous studies).

2.2.2 Data Selection

Having broadly established the motivation (see Section 2.1) and the requirements (see

Section 2.2.1) for our model, we will use the rest of Section 2.2 to provide a more detailed

account of our methodology. To begin, we first define our basic criteria for a data point (a

mass and radius measurement) to be included in what follows. Since our work focuses on

the MR relation, all included objects must fundamentally have a well-defined mass and

radius. Whilst the former is universally true, the latter requires that the object have a nearly

spherical shape. Low mass objects, for example the comet 67P/Churyumov-Gerasimenko,

may not have sufficient self-gravity to overcome rigid body forces and be assumed as in

hydrostatic equilibrium shape (i.e. nearly spherical). The corresponding threshold mass

limit should lie somewhere between the most massive body which is known to not be in

hydrostatic equilibrium (Iapetus; 1.8×1021 kg; Sheppard 2016) and the least massive body
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confirmed to be in hydrostatic equilibrium (Rhea; 2.3×1021 kg; Sheppard 2016). This leads

us to adopt a boundary condition of M > 2×1021 kg for all objects considered in this work.

As for the upper limit, we choose the maximum mass to be that of a star that must

still lie on the main-sequence within a Hubble time. The lifetime of a star is dependent

upon its mass and luminosity, to first-order. Given that the Sun will spend 10 Gyr on

the main-sequence and L ∝ M7/2, the lifetime τ ' (M/M�)−5/210 Gyr. This results in an

upper limit of M < 0.87 M� (1.7 × 1030 kg) for τ = H−1
0 Gyr (where we set H0 = 69.7 km/s;

Planck Collaboration et al. 2014). Therefore, between our lower and upper limits, there is

a difference of nine orders-of-magnitude in mass and three orders-of-magnitude in radius.

We performed a literature search for all objects within this range with a mass and

radius measurement available. For Solar System moons, we used The Giant Planet Satellite

and Moon Page (Sheppard 2016) which is curated by Scott Sheppard (Sheppard & Jewitt

2003; Sheppard et al. 2005, 2006) and for the planets we used the NASA Planetary Fact

Sheet (Williams 2016). For extrasolar planets, we used the TEPCat catalog of “well-

studied transiting planets”, curated by John Southworth (Southworth 2008, 2009, 2010,

2011, 2012). Brown dwarfs and low-mass stars were drawn from a variety of sources,

which we list (along with all other objects used in this work) in Table 2.1.

In order to later fit these data sources to an MR model, it is necessary to define a

likelihood function of each datum. We later (see §2.2.9) make the assumption that for a

quoted mass (or radius) measurement of M = (a ± b), one can reasonably approximate

M ∼ N(a, b). This assumption is a poor one for low signal-to-noise data, especially for

upper limit constraints only, where M (or R) is more likely to follow an asymmetric profile
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centered near zero. Without knowledge of the correct likelihood function, we argue that

such data should be best excluded in what follows.

For this reason, we apply a 3 σ cut to both mass ((M/∆M) > 3) and radius ((R/∆R) > 3).

In what follows, we assume that both the mass and radius measurements follow normal

distributions, which are symmetric. For those data which have substantially asymmetric

errors (∆+ , ∆−) then, we only use cases where the errors differ by less than 10% (i.e.

(|∆+ −∆−|)/( 1
2 (∆+ + ∆−)) ≤ 0.1). Together, these cuts remove 16% of the initial data, which,

as discussed later in §2.3.3, do not bias (or even noticeably influence) our final results..

Next, we take the average of both errors 1
2 (∆++∆−) as the standard deviations of the normal

distributions. In the end, we have 316 of objects in total which are listed in Table 2.1.

The data spans a diverse range of environments, with a variety of orbital periods,

insolations, metallicities, etc. Since these terms are not used in our analysis, the results

presented here should be thought of as a MR relation marginalized over all of these other

terms. Once again, we stress that the effects of these terms are naturally absorbed by the

probabilistic framework of our model, meaning that forecasts may be made about any

new data, provided that it can be considered a representative of the data used for our

analysis.
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Pä
tz

ol
d

et
al

.(
20

12
)

C
oR

oT
-2

6
b

(0
.5

2
±

0.
05

)M
J

(1
.2

6
±

0.
13

)R
J

A
lm

en
ar

a
et

al
.(

20
13

)

C
oR

oT
-2

7
b

(1
0.

39
±

0.
55

)M
J

(1
.0

07
±

0.
04

4)
R

J
Pa

rv
ia

in
en

et
al

.(
20

14
)

C
oR

oT
-2

8
b

(0
.4

84
±

0.
08

7)
M

J
(0
.9

55
±

0.
06

6)
R

J
C

ab
re

ra
et

al
.(

20
15

)

C
oR

oT
-2

9
b

(0
.8

5
±

0.
2)

M
J

(0
.9
±

0.
16

)R
J

C
ab

re
ra

et
al

.(
20

15
)

EP
IC

-2
03

77
10

98
c

(0
.0

85
±

0.
02

2)
M

J
(0
.6

98
±

0.
06

4)
R

J
Pe

ti
gu

ra
et

al
.(

20
15

)

EP
IC

-2
04

12
96

99
b

(1
.7

74
±

0.
07

9)
M

J
(1
.0

6
±

0.
35

)R
J

G
rz

iw
a

et
al

.(
20

15
)

EP
IC

-2
04

22
12

63
b

(0
.0

38
±

0.
00

9)
M

J
(0
.1

38
±

0.
01

4)
R

J
Si

nu
ko

ff
et

al
.(

20
15

)

G
J-

04
36

b
(0
.0

79
9
±

0.
00

66
)M

J
(0
.3

66
±

0.
01

4)
R

J
La

no
tt

e
et

al
.(

20
14

)

G
J-

12
14

b
(0
.0

19
7
±

0.
00

27
)M

J
(0
.2

54
±

0.
01

8)
R

J
H

ar
ps

øe
et

al
.(

20
13

)

G
J-

34
70

b
(0
.0

43
2
±

0.
00

51
)M

J
(0
.3

46
±

0.
02

9)
R

J
Bi

dd
le

et
al

.(
20

14
)

H
A

T-
P-

01
b

(0
.5

25
±

0.
01

9)
M

J
(1
.3

19
±

0.
01

9)
R

J
N

ik
ol

ov
et

al
.(

20
14

)

H
A

T-
P-

02
b

(8
.7

4
±

0.
27

)M
J

(1
.1

9
±

0.
12

)R
J

So
ut

hw
or

th
(2

01
0)

H
A

T-
P-

03
b

(0
.5

84
±

0.
02

7)
M

J
(0
.9

47
±

0.
03

)R
J

So
ut

hw
or

th
(2

01
2)

C
on

ti
nu

ed
on

ne
xt

pa
ge

27



Ta
bl

e
2.

1
–

co
nt

in
ue

d
fr

om
pr

ev
io

us
pa

ge

N
am

e
M

as
s

R
ad

iu
s

R
ef

er
en

ce

H
A

T-
P-

05
b

(1
.0

6
±

0.
11

)M
J

(1
.2

52
±

0.
04

3)
R

J
So

ut
hw

or
th

et
al

.(
20

12
c)

H
A

T-
P-

06
b

(1
.0

63
±

0.
05

7)
M

J
(1
.3

95
±

0.
08

1)
R

J
So

ut
hw

or
th

(2
01

2)

H
A

T-
P-

07
b

(1
.8

7
±

0.
03

)M
J

(1
.5

26
±

0.
00

8)
R

J
Be

no
m

ar
et

al
.(

20
14

)

H
A

T-
P-

08
b

(1
.2

75
±

0.
05

3)
M

J
(1
.3

21
±

0.
04

)R
J

M
an

ci
ni

et
al

.(
20

13
c)

H
A

T-
P-

09
b

(0
.7

78
±

0.
08

3)
M

J
(1
.3

8
±

0.
1)

R
J

So
ut

hw
or

th
(2

01
2)

H
A

T-
P-

11
b

(0
.0

84
±

0.
00

68
)M

J
(0
.3

96
6
±

0.
00

94
)R

J
So

ut
hw

or
th

(2
01

1)

H
A

T-
P-

12
b

(0
.2

1
±

0.
01

2)
M

J
(0
.9

36
±

0.
01

2)
R

J
Le

e
et

al
.(

20
12

)

H
A

T-
P-

13
b

(0
.9

06
±

0.
03

)M
J

(1
.4

87
±

0.
04

1)
R

J
So

ut
hw

or
th

et
al

.(
20

12
a)

H
A

T-
P-

14
b

(2
.2

71
±

0.
08

3)
M

J
(1
.2

19
±

0.
05

9)
R

J
So

ut
hw

or
th

(2
01

2)

H
A

T-
P-

15
b

(1
.9

46
±

0.
06

6)
M

J
(1
.0

72
±

0.
04

3)
R

J
K

ov
ác

s
et

al
.(

20
10

)

H
A

T-
P-

16
b

(4
.1

93
±

0.
12

8)
M

J
(1
.1

9
±

0.
03

7)
R

J
C

ic
er

ie
ta

l.
(2

01
3)

H
A

T-
P-

17
b

(0
.5

34
±

0.
01

8)
M

J
(1
.0

1
±

0.
02

9)
R

J
H

ow
ar

d
et

al
.(

20
12

)

H
A

T-
P-

18
b

(0
.1

96
±

0.
00

8)
M

J
(0
.9

47
±

0.
04

4)
R

J
Es

po
si

to
et

al
.(

20
14

)

H
A

T-
P-

19
b

(0
.2

92
±

0.
01

8)
M

J
(1
.1

32
±

0.
07

2)
R

J
H

ar
tm

an
et

al
.(

20
11

a)

C
on

ti
nu

ed
on

ne
xt

pa
ge

28



Ta
bl

e
2.

1
–

co
nt

in
ue

d
fr

om
pr

ev
io

us
pa

ge

N
am

e
M

as
s

R
ad

iu
s

R
ef

er
en

ce

H
A

T-
P-

20
b

(7
.2

46
±

0.
18

7)
M

J
(0
.8

67
±

0.
03

3)
R

J
Ba

ko
s

et
al

.(
20

11
)

H
A

T-
P-

21
b

(4
.0

63
±

0.
16

1)
M

J
(1
.0

24
±

0.
09

2)
R

J
Ba

ko
s

et
al

.(
20

11
)

H
A

T-
P-

22
b

(2
.1

47
±

0.
06

1)
M

J
(1
.0

8
±

0.
05

8)
R

J
Ba

ko
s

et
al

.(
20

11
)

H
A

T-
P-

23
b

(2
.0

7
±

0.
12

)M
J

(1
.2

24
±

0.
03

7)
R

J
C

ic
er

ie
ta

l.
(2

01
5b

)

H
A

T-
P-

30
b

(0
.7

11
±

0.
02

8)
M

J
(1
.3

4
±

0.
06

5)
R

J
Jo

hn
so

n
et

al
.(

20
11

)

H
A

T-
P-

32
b

(0
.8

6
±

0.
16

4)
M

J
(1
.7

89
±

0.
02

5)
R

J
H

ar
tm

an
et

al
.(

20
11

b)

H
A

T-
P-

33
b

(0
.7

62
±

0.
10

1)
M

J
(1
.6

86
±

0.
04

5)
R

J
H

ar
tm

an
et

al
.(

20
11

b)

H
A

T-
P-

35
b

(1
.0

54
±

0.
03

3)
M

J
(1
.3

32
±

0.
09

8)
R

J
Ba

ko
s

et
al

.(
20

12
)

H
A

T-
P-

36
b

(1
.8

52
±

0.
09

5)
M

J
(1
.3

04
±

0.
02

5)
R

J
M

an
ci

ni
et

al
.(

20
15

a)

H
A

T-
P-

37
b

(1
.1

69
±

0.
10

3)
M

J
(1
.1

78
±

0.
07

7)
R

J
Ba

ko
s

et
al

.(
20

12
)

H
A

T-
P-

40
b

(0
.6

15
±

0.
03

8)
M

J
(1
.7

3
±

0.
06

2)
R

J
H

ar
tm

an
et

al
.(

20
12

)

H
A

T-
P-

42
b

(1
.0

44
±

0.
08

3)
M

J
(1
.2

8
±

0.
15

3)
R

J
Bo

is
se

et
al

.(
20

13
)

H
A

T-
P-

50
b

(1
.3

5
±

0.
07

3)
M

J
(1
.2

88
±

0.
06

4)
R

J
H

ar
tm

an
et

al
.(

20
15

b)

H
A

T-
P-

51
b

(0
.3

09
±

0.
01

8)
M

J
(1
.2

93
±

0.
05

4)
R

J
H

ar
tm

an
et

al
.(

20
15

b)

C
on

ti
nu

ed
on

ne
xt

pa
ge

29



Ta
bl

e
2.

1
–

co
nt

in
ue

d
fr

om
pr

ev
io

us
pa

ge

N
am

e
M

as
s

R
ad

iu
s

R
ef

er
en

ce

H
A

T-
P-

52
b

(0
.8

18
±

0.
02

9)
M

J
(1
.0

09
±

0.
07

2)
R

J
H

ar
tm

an
et

al
.(

20
15

b)

H
A

T-
P-

53
b

(1
.4

84
±

0.
05

6)
M

J
(1
.3

18
±

0.
09

1)
R

J
H

ar
tm

an
et

al
.(

20
15

b)

H
A

T-
P-

54
b

(0
.7

6
±

0.
03

2)
M

J
(0
.9

44
±

0.
02

8)
R

J
Ba

ko
s

et
al

.(
20

15
)

H
A

T-
P-

55
b

(0
.5

82
±

0.
05

6)
M

J
(1
.1

82
±

0.
05

5)
R

J
Ju

nc
he

r
et

al
.(

20
15

)

H
A

T-
P-

56
b

(2
.1

8
±

0.
25

)M
J

(1
.4

66
±

0.
04

)R
J

H
ua

ng
et

al
.(

20
15

)

H
A

TS
-0

2
b

(1
.3

45
±

0.
15

)M
J

(1
.1

68
±

0.
03

)R
J

M
oh

le
r-

Fi
sc

he
r

et
al

.(
20

13
)

H
A

TS
-0

3
b

(1
.0

71
±

0.
13

6)
M

J
(1
.3

81
±

0.
03

5)
R

J
Ba

yl
is

s
et

al
.(

20
13

)

H
A

TS
-0

4
b

(1
.3

23
±

0.
02

8)
M

J
(1
.0

2
±

0.
03

7)
R

J
Jo

rd
án

et
al

.(
20

14
)

H
A

TS
-0

5
b

(0
.2

37
±

0.
01

2)
M

J
(0
.9

12
±

0.
02

5)
R

J
Z

ho
u

et
al

.(
20

14
b)

H
A

TS
-0

6
b

(0
.3

19
±

0.
07

)M
J

(0
.9

98
±

0.
01

9)
R

J
H

ar
tm

an
et

al
.(

20
15

a)

H
A

TS
-0

9
b

(0
.8

37
±

0.
02

9)
M

J
(1
.0

65
±

0.
09

8)
R

J
Br

ah
m

et
al

.(
20

15
b)

H
A

TS
-1

3
b

(0
.5

43
±

0.
07

2)
M

J
(1
.2

12
±

0.
03

5)
R

J
M

an
ci

ni
et

al
.(

20
15

b)

H
A

TS
-1

5
b

(2
.1

7
±

0.
15

)M
J

(1
.1

05
±

0.
04

)R
J

C
ic

er
ie

ta
l.

(2
01

5a
)

H
A

TS
-1

6
b

(3
.2

7
±

0.
19

)M
J

(1
.3

0
±

0.
15

)R
J

C
ic

er
ie

ta
l.

(2
01

5a
)

C
on

ti
nu

ed
on

ne
xt

pa
ge

30



Ta
bl

e
2.

1
–

co
nt

in
ue

d
fr

om
pr

ev
io

us
pa

ge

N
am

e
M

as
s

R
ad

iu
s

R
ef

er
en

ce

H
A

TS
-1

7
b

(1
.3

38
±

0.
06

5)
M

J
(0
.7

77
±

0.
05

6)
R

J
Br

ah
m

et
al

.(
20

15
a)

H
D

-0
17

15
6

b
(3
.2

62
±

0.
11

3)
M

J
(1
.0

65
±

0.
03

5)
R

J
So

ut
hw

or
th

(2
01

1)

H
D

-0
80

60
6

b
(4
.1

14
±

0.
15

5)
M

J
(1
.0

03
±

0.
02

7)
R

J
So

ut
hw

or
th

(2
01

1)

H
D

-0
97

65
8

b
(0
.0

23
8
±

0.
00

26
)M

J
(0
.2

00
5
±

0.
00

87
)R

J
V

an
G

ro
ot

el
et

al
.(

20
14

)

H
D

-1
49

02
6

b
(0
.3

68
±

0.
01

4)
M

J
(0
.8

13
±

0.
02

7)
R

J
C

ar
te

r
et

al
.(

20
09

)

H
D

-1
89

73
3

b
(1
.1

5
±

0.
03

9)
M

J
(1
.1

51
±

0.
03

8)
R

J
So

ut
hw

or
th

(2
01

0)

H
D

-2
09

45
8

b
(0
.7

14
±

0.
01

7)
M

J
(1
.3

80
±

0.
01

7)
R

J
So

ut
hw

or
th

(2
01

0)

H
D

-2
19

13
4

b
(0
.0

13
6
±

0.
00

15
)M

J
(0
.1

43
3
±

0.
00

77
)R

J
M

ot
al

eb
ie

ta
l.

(2
01

5)

K
2-

02
b

(0
.0

37
±

0.
00

4)
M

J
(0
.2

26
±

0.
01

6)
R

J
V

an
de

rb
ur

g
et

al
.(

20
15

)

K
2-

19
b

(0
.1

38
±

0.
03

8)
M

J
(0
.6

66
±

0.
06

8)
R

J
Ba

rr
os

et
al

.(
20

15
)

K
EL

T-
03

b
(1
.4

77
±

0.
06

6)
M

J
(1
.3

45
±

0.
07

2)
R

J
Pe

pp
er

et
al

.(
20

13
)

K
EL

T-
04

b
(0
.9

02
±

0.
06

)M
J

(1
.6

99
±

0.
04

6)
R

J
Ea

st
m

an
et

al
.(

20
15

)

K
EL

T-
07

b
(1
.2

8
±

0.
18

)M
J

(1
.5

33
±

0.
04

7)
R

J
Bi

er
yl

a
et

al
.(

20
15

)

K
EL

T-
15

b
(1
.1

96
±

0.
07

2)
M

J
(1
.5

2
±

0.
12

)R
J

R
od

ri
gu

ez
et

al
.(

20
15

)

C
on

ti
nu

ed
on

ne
xt

pa
ge

31



Ta
bl

e
2.

1
–

co
nt

in
ue

d
fr

om
pr

ev
io

us
pa

ge

N
am

e
M

as
s

R
ad

iu
s

R
ef

er
en

ce

K
ep

le
r-

07
b

(0
.4

53
±

0.
06

8)
M

J
(1
.6

49
±

0.
03

8)
R

J
So

ut
hw

or
th

(2
01

2)

K
ep

le
r-

08
b

(0
.5

9
±

0.
12

)M
J

(1
.3

81
±

0.
03

7)
R

J
So

ut
hw

or
th

(2
01

1)

K
ep

le
r-

09
b

(0
.1

42
±

0.
00

5)
M

J
(0
.9

90
±

0.
00

9)
R

J
D

re
iz

le
r

&
O

fir
(2

01
4)

K
ep

le
r-

09
c

(0
.0

98
±

0.
00

3)
M

J
(0
.9

55
±

0.
00

9)
R

J
D

re
iz

le
r

&
O

fir
(2

01
4)

K
ep

le
r-

14
b

(7
.6

8
±

0.
38

)M
J

(1
.1

26
±

0.
04

9)
R

J
So

ut
hw

or
th

(2
01

2)

K
ep

le
r-

15
b

(0
.6

96
±

0.
09

9)
M

J
(1
.2

89
±

0.
05

4)
R

J
So

ut
hw

or
th

(2
01

2)

K
ep

le
r-

18
c

(0
.0

54
±

0.
00

6)
M

J
(0
.4

9
±

0.
02

3)
R

J
C

oc
hr

an
et

al
.(

20
11

)

K
ep

le
r-

18
d

(0
.0

51
6
±

0.
00

44
)M

J
(0
.6

23
±

0.
02

9)
R

J
C

oc
hr

an
et

al
.(

20
11

)

K
ep

le
r-

25
c

(0
.0

77
±

0.
01

8)
M

J
(0
.4

64
±

0.
00

8)
R

J
M

ar
cy

et
al

.(
20

14
)

K
ep

le
r-

26
b

(0
.0

16
1
±

0.
00

2)
M

J
(0
.2

48
±

0.
01

)R
J

Jo
nt

of
-H

ut
te

r
et

al
.(

20
15

)

K
ep

le
r-

26
c

(0
.0

19
5
±

0.
00

21
)M

J
(0
.2

43
±

0.
01

1)
R

J
Jo

nt
of

-H
ut

te
r

et
al

.(
20

15
)

K
ep

le
r-

29
b

(0
.0

14
2
±

0.
00

46
)M

J
(0
.2

99
±

0.
02

)R
J

Jo
nt

of
-H

ut
te

r
et

al
.(

20
15

)

K
ep

le
r-

29
c

(0
.0

12
6
±

0.
00

41
)M

J
(0
.2

8
±

0.
01

8)
R

J
Jo

nt
of

-H
ut

te
r

et
al

.(
20

15
)

K
ep

le
r-

30
b

(0
.0

35
5
±

0.
00

44
)M

J
(0
.3

5
±

0.
02

)R
J

Sa
nc

hi
s-

O
je

da
et

al
.(

20
12

)

C
on

ti
nu

ed
on

ne
xt

pa
ge

32



Ta
bl

e
2.

1
–

co
nt

in
ue

d
fr

om
pr

ev
io

us
pa

ge

N
am

e
M

as
s

R
ad

iu
s

R
ef

er
en

ce

K
ep

le
r-

30
d

(0
.0

72
7
±

0.
00

85
)M

J
(0
.7

9
±

0.
04

)R
J

Sa
nc

hi
s-

O
je

da
et

al
.(

20
12

)

K
ep

le
r-

34
b

(0
.2

2
±

0.
01

1)
M

J
(0
.7

64
±

0.
04

5)
R

J
W

el
sh

et
al

.(
20

12
)

K
ep

le
r-

35
b

(0
.1

27
±

0.
02

)M
J

(0
.7

28
±

0.
01

4)
R

J
W

el
sh

et
al

.(
20

12
)

K
ep

le
r-

39
b

(1
9.

1
±

1.
)M

J
(1
.1

1
±

0.
03

)R
J

Bo
no

m
o

et
al

.(
20

15
)

K
ep

le
r-

40
b

(2
.1

6
±

0.
43

)M
J

(1
.4

4
±

0.
12

)R
J

So
ut

hw
or

th
(2

01
2)

K
ep

le
r-

41
b

(0
.5

6
±

0.
08

)M
J

(1
.2

9
±

0.
02

)R
J

Bo
no

m
o

et
al

.(
20

15
)

K
ep

le
r-

43
b

(3
.0

9
±

0.
21

)M
J

(1
.1

15
±

0.
04

1)
R

J
Bo

no
m

o
et

al
.(

20
15

)

K
ep

le
r-

44
b

(1
.±

0.
1)

M
J

(1
.0

9
±

0.
07

)R
J

Bo
no

m
o

et
al

.(
20

15
)

K
ep

le
r-

45
b

(0
.5
±

0.
06

)M
J

(0
.9

99
±

0.
06

9)
R

J
So

ut
hw

or
th

(2
01

2)

K
ep

le
r-

48
c

(0
.0

46
±

0.
00

7)
M

J
(0
.2

42
±

0.
01

2)
R

J
M

ar
cy

et
al

.(
20

14
)

K
ep

le
r-

51
d

(0
.0

23
9
±

0.
00

35
)M

J
(0
.8

65
±

0.
04

5)
R

J
M

as
ud

a
(2

01
4)

K
ep

le
r-

56
b

(0
.0

69
±

0.
01

2)
M

J
(0
.5

81
±

0.
02

5)
R

J
H

ub
er

et
al

.(
20

13
)

K
ep

le
r-

56
c

(0
.5

69
±

0.
06

6)
M

J
(0
.8

74
±

0.
04

1)
R

J
H

ub
er

et
al

.(
20

13
)

K
ep

le
r-

60
c

(0
.0

12
1
±

0.
00

26
)M

J
(0
.1

7
±

0.
01

3)
R

J
Jo

nt
of

-H
ut

te
r

et
al

.(
20

15
)

C
on

ti
nu

ed
on

ne
xt

pa
ge

33



Ta
bl

e
2.

1
–

co
nt

in
ue

d
fr

om
pr

ev
io

us
pa

ge

N
am

e
M

as
s

R
ad

iu
s

R
ef

er
en

ce

K
ep

le
r-

74
b

(0
.6

3
±

0.
12

)M
J

(0
.9

6
±

0.
02

)R
J

Bo
no

m
o

et
al

.(
20

15
)

K
ep

le
r-

75
b

(1
0.

1
±

0.
4)

M
J

(1
.0

5
±

0.
03

)R
J

Bo
no

m
o

et
al

.(
20

15
)

K
ep

le
r-

76
b

(2
.1

8
±

0.
42

)M
J

(1
.2

5
±

0.
08

)R
J

Fa
ig

le
r

&
M

az
eh

(2
01

5)

K
ep

le
r-

77
b

(0
.4

3
±

0.
03

2)
M

J
(0
.9

6
±

0.
01

6)
R

J
G

an
do

lfi
et

al
.(

20
13

)

K
ep

le
r-

78
b

(0
.0

05
9
±

0.
00

08
)M

J
(0
.1

07
±

0.
00

8)
R

J
G

ru
nb

la
tt

et
al

.(
20

15
)

K
ep

le
r-

79
e

(0
.0

12
9
±

0.
00

38
)M

J
(0
.3

11
±

0.
01

2)
R

J
Jo

nt
of

-H
ut

te
r

et
al

.(
20

14
)

K
ep

le
r-

87
b

(1
.0

2
±

0.
02

8)
M

J
(1
.2

03
±

0.
04

9)
R

J
O

fir
et

al
.(

20
14

)

K
ep

le
r-

87
c

(0
.0

20
1
±

0.
00

25
)M

J
(0
.5

48
±

0.
02

6)
R

J
O

fir
et

al
.(

20
14

)

K
ep

le
r-

88
b

(0
.0

27
4
±

0.
00

79
)M

J
(0
.3

37
±

0.
03

5)
R

J
N

es
vo

rn
ý
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2.2.3 Probabilistic Broken Power-Law

We elect to model the MR relation with a probabilistic broken power-law, for the rea-

sons described in §2.2.1. By probabilistic, we mean that this model includes intrinsic

dispersion in the MR relation to account for additional variance beyond that of the formal

measurement uncertainties. This dispersion represents the variance observed in nature

itself around our broken power-law model. To put this in context, a deterministic MR

power-law would be described via

R
R⊕

= C
( M
M⊕

)S
, (2.1)

where R & M are the mass and radius of the object respectively and C & S are the

parameters describing the power-law. However, it is easy to conceive of two objects with

the exact same mass but different compositions, thereby leading to different radii. For

this reason, we argue that a deterministic model provides an unrealistic description of

the MR relation. In the probabilistic model, for any given mass there is a corresponding

distribution of radius. In this work, we assume a normal distribution in the logarithm of

radius. The mean of the distribution takes the result of the deterministic model, and the

standard deviation is the intrinsic dispersion, a new free parameter.

A power-law relation can be converted to a linear relation by taking logarithm on

both axes. In practice, we take the logarithm base ten of both mass and radius in Earth

units, and use a linear relation to fit them. In what follows, we will use M, R to represent

mass and radius, and M, R to represent log10(M/M⊕) and log10(R/R⊕). The power-law

relation turns into
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R = C +M× S, (2.2)

where R = log10(R/R⊕),M = log10(M/M⊕), and C = log10 C. In what follows, we will use

N(µ, σ) as the normal distribution, where µ is the mean and σ is the standard deviation.

The corresponding probabilistic relation in log scale becomes

R ∼ N(µ = C +M× S, σ = σR) (2.3)

On a logarithmic scale, the data still approximately follow normal distributions,

because the logarithm of a normal distribution is approximately a normal distribution

when the standard deviation is small relative to the mean, which is true here since we

made a 3 σ cut in both mass and radius. The original data, M ∼ N(Mt,∆M), will turn into

Mob ∼ N(Mt,∆Mob), whereMt = log10(Mt/M⊕) and ∆Mob = log10(e)(∆M/M).

We consider it more reasonable to assume that the intrinsic dispersion in radius will

be a fractional dispersion, rather than an absolute dispersion. For example, the dispersion

of Earth-radius planets might be O[0.1 R⊕] but for stars it should surely be much larger

in an absolute sense. Since a fractional dispersion on a linear scale corresponds to an

absolute dispersion on logarithmic scale, this assumption is naturally accounted for by

our model. To implement the probabilistic model, we employ a hierarchical Bayesian

model, or HBM for short.
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2.2.4 Hierarchical Bayesian Modeling

The difference between an HBM and the more familiar Bayesian method is that HBMs

have two sets of parameters; a layer of hyper parameters, Θhyper, on top of the local pa-

rameters, Θlocal (see Hogg et al. 2010 for a pedagogical explanation). The local parameters

usually describe the properties of each individual datum, whilst the hypers describe the

overall ensemble properties. For example, in this work, the local parameters are the true

log10(M/M⊕), log10(R/R⊕) (orMt, Rt) of all the objects, and the hyper parameters, Θhyper,

are those that represent the broken power-law. This hierarchical structure is illustrated in

Figure 2.1, which may be compared to the analogous graphical model shown in Figure 1

of Wolfgang et al. (2016).

Some of the first applications of this method are Loredo & Wasserman (1995), Graziani

& Lamb (1996), and Hogg et al. (2010) (in exoplanets research).

For the local parameters, we define a mass,Mt, and radius, Rt, term for each object,

giving 632 local variables. In practice, the Rt local parameters are related to theMt term

through the broken power-law and each realization of the hyper parameters. In total

then, our model includes 632 local parameters and a compact set of hyper parameters, as

described later in the MCMC subsection.

2.2.5 Continuous Broken Power-Law Model

Plotting the masses and radii on a log-log scale, (as shown later in Figure 2.3), it is clear

that single, continuous power-law is unable to provide a reasonable description of the

data. For example, one might reasonably expect that the Neptune-like planets follow a
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C(1) S(1≠4) ‡
(1≠4)
R T (1≠3)

�M(i)
ob M(i)

t R(i)
t �R(i)

ob

M(i)
ob R(i)

ob N

Figure 2.1 Graphical model of the HBM used to infer the probabilistic MR relation in this
work. Yellow ovals represent hyper-parameters, white represent the true local parameters
and gray represent data inputs. All objects on the plate have N members.

different MR relation from the terrestrial planets, since the voluminous gaseous envelopes

of the former dominate their radii (Lopez & Fortney 2014). This therefore argues in favor

of using a segmented (or broken) power-law.

At least three fundamentally distinct regimes are expected using some simple phys-

ical insights; a segment for terrestrial planets, gas giants, and stars. Indeed, the MR data

clearly shows distinct changes in the power-index, corresponding to the transition points

between each segment. However, a visual inspection also reveals a turn-over in the MR
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relation at around a Saturn-mass. Therefore, from one roughly Saturn-mass to the on-

set of stars, there is a strong case for a fourth segment which we consequently include

in our model. Later, in Section 2.3.2, we perform a model comparison of a three- ver-

sus four-segment model to validate that the four-segment broken power-law is strongly

favored.

Our favored model consists of 12 free hyper parameters; 1 offset (C(1)), 4 slopes (S(1−4)),

4 intrinsic dispersions (σ(1−4)
R

), and 3 transition points (T(1−3)). Critically then, we actually

fit for the locations of transition points and include an independent intrinsic dispersion

for each segment (making our model probabilistic). Also note that the “slopes” in log-log

space are the power-law indices in linear space. The hyper parameter vector is therefore

Θhyper = {S(1),S(2),S(3),S(4),

σ(1)
R
, σ(2)
R
, σ(3)
R
, σ(4)
R
,

T(1),T(2),T(3),C(1)
}. (2.4)

There is only one free parameter for the offset since we impose the condition that each

segment of the power-law is connected, i.e. a continuous broken power-law. By requiring

that two segments meet at the transition point between them, we can derive the offsets

for the rest of the segments. At each transition point T( j),

C
( j) + S( j)

× T( j) = C( j+1) + S( j+1)
× T( j) for j = 1, 2, 3. (2.5)
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We can now iteratively derive the other offsets as,

C
( j+1) = C( j) + (S( j)

− S( j+1)) × T( j) for j = 1, 2, 3. (2.6)

2.2.6 Hyper Priors

The hyper priors, or the priors on the hyper-parameters, are selected to be sufficiently

broad to allow an extensive exploration of parameter space and to be identical for each

segment. Uniform priors are used for the location parameters, namely the offset, C, and

transition points, T. For scale parameters, namely the intrinsic dispersion σR, we adopt

log-uniform priors.

For the slope parameters, we don’t want to constrain them in a specific range, so we

use the normal distribution with a large variance. This leads to a prior distribution which

is approximately uniform in any small region yet loosely constrains the MCMC walkers

to the relevant scale of the data. A detailed list of the priors is provided in Table 2.2.
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2.2.7 Two Different Categories of Local Parameters

The local parameters in our model are formallyMt andRt, although in practiceRt doesn’t

need to be fitted explicitly since it is derived from the realization of the broken power-law

(as described in more detail later).

Even forMt though, there are two categories that we must distinguish between. Ob-

jects within the Solar System tend to have very precise measurements of their fundamental

properties such that their formal uncertainties are negligible relative to the uncertainties

encountered for extrasolar objects, for which we must account for the measurement un-

certainties in our model.

For objects with negligible error, we simply fix Mt = Mob and Rt = Rob, since

∆Mob,∆Rob ∝
∆M
M , ∆R

R = 0. For objects in the second category,Mt are set to be independently

uniformly distributed in [−4, 6]. Throughout the paper, we will use U(a, b) to denote a

uniform distribution, where a and b are the lower and upper bounds of the distribution.

So

M
(i)
t ∼ U(−4, 6) for i = 1, 2, ..., 316. (2.7)

2.2.8 Inverse Sampling

We use the inverse sampling method to sample the parametersMt and Θhyper. By inverse

sampling, we mean that the walkers directly sample in the probability space, rather than

the parameter space itself. By directly walking in the prior probability space with Gaussian

function as our proposal distribution, inverse sampling is more efficient than walking in
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the parameter space plus likelihood penalization (see Devroye 1986 further details on the

inverse sampling method).

For each jump in the MCMC chain, we sample a probability, p, for each parameter

with U(0, 1). We then determine this parameter’s cumulative distribution from its prior

probability distribution. With p and the cumulative distribution, we can then calculate

the corresponding sample value of the parameter.

The equations of the prior distributions of Mt and Θhyper are already shown in Ta-

ble 2.2 and Equation (2.7). With inverse sampling, the effects of the priors have already

been accounted for, meaning that we do not need to add the prior probabilities of param-

eters into the total log-likelihood function.

2.2.9 Total Log-Likelihood

As discussed above, since Mt and Θhyper are drawn with inverse sampling, there is no

need to add corresponding penalty terms to the log-likelihood function. The total log-

likelihood is now based on how we sample Rt from Mt and Θhyper, and the relations

betweenMt, Rt, and data. The relations are given by

M
(i)
ob ∼ N

(
M

(i)
t ,∆M

(i)
ob

)
. (2.8)

When ∆M(i)
ob = 0, the above equation can be interpreted as M(i)

ob = M(i)
t , which cor-

responds to the case where measurement errors are zero. This is also true for R(i)
ob, such

that
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R
(i)
ob ∼ N

(
R

(i)
t ,∆R

(i)
ob

)
, (2.9)

and

R
(i)
t ∼ N

(
f (M(i)

t ,Θhyper), σ′R
)
, (2.10)

where we define

(
f (M(i)

t ,Θhyper), σ′R
)

=

(
C

(1) +M(i)
t S(1), σ(1)

R

)
M

(i)
t ≤ T(1)(

C
(2) +M(i)

t S(2), σ(2)
R

)
T(1) <M(i)

t ≤ T(2)(
C

(3) +M(i)
t S(3), σ(3)

R

)
T(2) <M(i)

t ≤ T(3)(
C

(4) +M(i)
t S(4), σ(4)

R

)
T(3) <M(i)

t

. (2.11)

Combining Equation (2.9) and (2.10), we have

R
(i)
ob ∼ N

(
f (M(i)

t ,Θhyper),
√

(∆R(i)
ob)2 + (σ′

R
)2
)
. (2.12)

Equation (2.12) shows that if we have already sampled Mt and Θhyper, we don’t

need to sample Rt anymore since Rob can be directly related to Mt and Θhyper. From

Equation (2.8) and (2.12), we can see that the total log-likelihood of the model is
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−2 logL =

N∑
i=1

(
M

(i)
ob −M

(i)
t

∆M(i)
ob

)2

+

N∑
i=1

(∆M(i)
ob)2+

N∑
i=1

(
R

(i)
ob − f (M(i)

t ,Θhyper)
)2

(
∆R(i)

ob

)2
+

(
σ′
R

)2 +

N∑
i=1

log
[(

∆R(i)
ob

)2
+

(
σ′
R

)2]
. (2.13)

Note that in the above, we assume mass and radius have no covariance, which is

almost always true given the independent methods of their measurement.

2.3 Analysis

2.3.1 Parameter Inference with Markov Chain Monte Carlo

We used the Markov Chain Monte Carlo (MCMC) method with the Metropolis algorithm

(Metropolis et al. 1953) to explore the parameter space and infer the posterior distributions

for both the hyper and local parameters. The Metropolis algorithm uses jumping walkers,

proceeding by accepting or rejecting each jump by comparing its likelihood with the

likelihood of the previous step. Since we have 12 hyper parameters and 316 data points

(corresponding to 316 Mt), the walker jumps in a probability hyper cube of (12+316)

dimensions.

We begin by running 5 independent initial chains for 500,000 accepted steps each,

seeding the parameters T(1−3) from 0.5, 2, and 4 with Gaussian distributions of sigma one
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(but keeping all other terms seeded randomly from the hyper priors).

We identify the burn-in point by eye, searching for the instant where the local variance

in the log-likelihood (with respect to the chain step) stabilizes to a relatively small scatter

in comparison to the initial steps. This burn-in point tended to occur after ' 200, 000

accepted steps, largely driven by the fact that both the hyper and the local parameters

were not seeded from local minimums (with the exception of T(1−3)) and therefore required

a substantial number of steps to converge.

Combining these initial chains, we chose 10 different realizations which have the

highest log-likelihoods but also not too close to each other. We then start 10 new inde-

pendent chains, where each chain is seeded from one of the top 200 log-like solutions

found from the stacked initial chains. We run each of these 10 chains for 107 trials with

acceptance rates ∼ 5% (i.e. 500,000 accepted steps each) and find, as expected, that each

chain is burnt-in right from the beginning.

To check for adequate mixing, we calculated the effective length, defined as the length

of the chain divided by the correlation length, where the correlation length is defined as

`corr = minlag{|AutoCorrelation(chain, lag)| < 0.5} (Tegmark et al. 2004). We find that the

sum of the effective lengths exceeds 2000 (i.e. is � 1), indicating good mixing. We also

verified that the Gelman-Rubin statistic (Gelman & Rubin 1992) dropped below 1.1 (it

was 1.02), indicating that the chains had converged. Finally, we thinned the 10 chains

by a factor of 100, and stacked them together, which gives a combined chain of length of

106. The hyper-parameter posteriors, available at this URL, are shown as a triangle plot

in Figure 2.2. We list the median and corresponding 68.3% credible interval of each hyper
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parameter posterior distribution in Table 2.2. Our model, evaluated at the spatial median

of the hyper parameters, is shown in Figure 2.3 compared to the data upon which it was

conditioned. The spatial median simply finds the sample from the joint posteriors which

minimizes the Euclidean distance to all other samples.

2.3.2 Model Comparison

The model with four segments was at first selected by visual inspection of the data. Two

of the three transition points, T(1) and T(3), occur at locations which can be associated

with physically well-motivated boundaries (planets accreting volatile envelopes, Rogers

2015, and hydrogen burning, Dieterich et al. 2014), whereas the T(2) transition is not as

well studied.

In order to demonstrate that this model is statistically favored over the three-segment

model, we repeated all of the fits for a simpler three-segment model. We seed the remain-

ing two transition points from the approximate locations of T(1) and T(3) found from the

four-segment model fit. We label this model as H3 and the four-segment model used

earlier asH4.

For this simpler model,H3 uses only two transition points which break the data into

three different segments. To implement this model, the only difference is that the hyper

parameters vector Θ′hyper becomes

Θ′hyper = (C,S(1−3), σ(1−3)
R

,T(1−2)). (2.14)

We find that the maximum log-likelihood ofH3 is considerably less than that ofH4,
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Figure 2.2 Triangle plot of the hyper-parameter joint posterior distribution (generated
using corner.py). Contours denote the 0.5, 1.0, 1.5 and 2.0 σ credible intervals.
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⛢

♄
♃

♆

Figure 2.3 The mass-radius relation from dwarf planets to late-type stars. Points represent
the 316 data against which our model is conditioned, with the data key in the top-left.
Although we do not plot the error bars, both radius and mass uncertainties are accounted
for. The red line shows the mean of our probabilistic model and the surrounding light and
dark gray regions represent the associated 68% and 95% credible intervals, respectively.
The plotted model corresponds to the spatial median of our hyper parameter posterior
samples.
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less by 34.16 (corresponding to ∆χ2 = 68.3 for 316 data points) at the gain of just three

fewer free parameters. The marginal likelihood cannot be easily computed in the very high

dimensional parameter space of our problem, and the Bayesian and Akaike information

criteria (BIC, Schwarz 1978 & AIC, Akaike 1974) are also both invalid for such high

dimensionality. Instead, we used the Deviance information criterion (DIC, Spiegelhalter

et al. 2002), a hierarchical modeling generalization of the AIC, to compare the two models.

When comparing two models with the DIC, the smaller value is understood to be the

preferred model. We find that DIC(H4) = −665.5 and DIC(H3) = −333.5, indicating a

strong preference for modelH4.

2.3.3 The Effect of our Data Cuts

As discussed earlier in §2.2.2, our data cuts removed 16% of the initial data considered.

Since these points are low SNR data, they, by definition, have weak effects on the likelihood

function. As is evident in Figure 2.3, there is an abundance of precise data constraining the

slope parameters in each segment and none of the segments can be described as residing in

a poorly constrained region. Given that the transition points are defined as the intercepts

of the slopes, they too are well constrained by virtue of the construction of our model.

Critically, then, a paucity of data at the actual transition point locations (as is true for T(1))

has little influence on our inference of their locations. In order for the results of this work

to be significantly affected by the exclusion of these low SNR data, these points would

have to have modified the inference of the slope parameters.

To demonstrate this effect is negligible, we consider the Neptunian segment in iso-
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lation, since it strongly affects the critical transition T(1) and features the largest fraction

of excluded points (24%). Since the excluded data were due to lossy mass measurements,

we ignore the radius errors and perform a simple weighted linear least squares regres-

sion with and without the excluded data, where we approximate the observations to be

normally distributed. We find that the slope parameter, S(2), changes from 0.782 ± 0.058

to 0.784 ± 0.050 by re-introducing the excluded data, illustrating the negligible impact of

these data.

2.3.4 Injection/Recovery Tests

In order to verify the robustness of our algorithm, we created ten fake data sets and blindly

ran our algorithm again on each. The data sets are generated by making random, fair

draws from our joint posteriors (both the local and the hyper parameters), ensuring that

each draw is from an different effective chain. We then re-ran our original algorithm as

before, except that the number of steps in the final chain is reduced by a factor of ten for

computational expedience.

We computed the one and two-sigma credible intervals on each hyper-parameter and

compare them to the injected truth in Figure 2.4. As evident from this figure, we are able

to easily recover all of the inputs to within the expected range, validating the robustness

of the main results presented in this work.
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Note that in the above, we assume mass and radius
have no covariance, which is almost always true given

the independent methods of their measurement.

3. ANALYSIS

3.1. Parameter Inference with Markov Chain Monte

Carlo

We used the Markov Chain Monte Carlo (MCMC)
method with the Metropolis algorithm (Metropolis et al.

1953) to explore the parameter space and infer the pos-
terior distributions for both the hyper and local param-
eters. The Metropolis algorithm uses jumping walkers,
proceeding by accepting or rejecting each jump by com-

paring its likelihood with that of the previous step. Since
we have 12 hyper parameters and 316 data points (corre-
sponding to 316 Mt), the walker jumps in a probability

hyper cube of (12+316) dimensions.
We begin by running 5 independent initial chains for

500,000 accepted steps each, seeding the parameters

T (1�3) from close to the visually inferred locations of the
transitions points (but keeping all others terms drawn
seeded from a random sample from the hyper priors).

We identify the burn-in point by eye, searching for

the instant where the local variance in the log-likelihood

(with respect to chain step) stabilizes to a relatively
small scatter in comparison to the initial steps. This
burn-in point tended to occur after ' 200, 000 accepted

steps, largely driven by the fact that both the hyper and
local parameters were not seeded from a local minimum
(with the exception of T (1�3)) and therefore required a

substantial number of steps to converge.
Combining these initial chains, we chose 10 di↵erent

realizations which have the highest log-likelihood but

also not too close to each other. We then start 10 new
independent chains, where each chain is seeded from one
of the top 200 log-like solutions found from the stacked
initial chains. We run each of these 10 chains for 107

trials with acceptance rate ⇠ 5% (i.e. 500,000 ac-
cepted steps each) and find, as expected, that each
chain is burnt-in right from the beginning.

To check for adequate mixing, we calculated the e↵ec-
tive length, defined as the length of the chain divided by
the correlation length, where the correlation length is de-
fined as `corr = minlag{|AutoCorrelation(chain, lag)| <

0.5} (Tegmark et al. 2004). We find that the sum of the
e↵ective lengths exceeds 2000 (i.e. is � 1), indicating
good mixing. We also verified that the Gelman-

Rubin statistic (Gelman & Rubin 1992) dropped
below 1.1 (it was 1.02), indicating that the chains
had converged. Finally, we thinned the 10 chains by a

factor of 100, and stacked them together, which gives a
combined chain of length of 106. The hyper-parameter
posteriors, available at this URL, are shown as a tri-
angle plot in Figure 2. We list the median and corre-

sponding 68.3% confidence interval of each hyper pa-
rameter posterior in Table 2. Our model, evaluated at
the spatial median of the hyper parameters, is shown

in Figure 3 compared to the data upon which it was
conditioned. The spatial median simply finds the
sample from the joint posterior which minimizes

the Euclidean distance to all other samples.

Table 1. Description and posterior of hyper parameters. The prior distributions of the hyper parameters

are C(1) ⇠ U(�1, 1); S(1�4) ⇠ N (0, 5); log10

⇥
�

(1�4)
R

⇤
⇠ U(�3, 2); T (1�3) ⇠ U(�4, 6).

⇥hyper term Description Credible Interval

10C R� Power-law constant for the Terran (T-class) worlds MR relation 1.008+0.046
�0.045 R�

S(1) Power-law index of Terran worlds; R / MS 0.2790+0.0092
�0.0094

S(2) Power-law index of Neptunian worlds; R / MS 0.589+0.044
�0.031

S(3) Power-law index of Jovian worlds; R / MS �0.044+0.017
�0.019

S(4) Power-law index of Stellar worlds; R / MS 0.881+0.025
�0.024

�
(1)
R Fractional dispersion of radius for the Terran MR relation 4.03+0.94

�0.64 %

�
(2)
R Fractional dispersion of radius for the Neptunian MR relation 14.6+1.7

�1.3 %

�
(3)
R Fractional dispersion of radius for the Jovian MR relation 7.37+0.46

�0.45 %

Table 1 continued
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Note that in the above, we assume mass and radius
have no covariance, which is almost always true given

the independent methods of their measurement.

3. ANALYSIS

3.1. Parameter Inference with Markov Chain Monte

Carlo

We used the Markov Chain Monte Carlo (MCMC)
method with the Metropolis algorithm (Metropolis et al.

1953) to explore the parameter space and infer the pos-
terior distributions for both the hyper and local param-
eters. The Metropolis algorithm uses jumping walkers,
proceeding by accepting or rejecting each jump by com-

paring its likelihood with that of the previous step. Since
we have 12 hyper parameters and 316 data points (corre-
sponding to 316 Mt), the walker jumps in a probability

hyper cube of (12+316) dimensions.
We begin by running 5 independent initial chains for

500,000 accepted steps each, seeding the parameters

T (1�3) from close to the visually inferred locations of the
transitions points (but keeping all others terms drawn
seeded from a random sample from the hyper priors).

We identify the burn-in point by eye, searching for

the instant where the local variance in the log-likelihood

(with respect to chain step) stabilizes to a relatively
small scatter in comparison to the initial steps. This
burn-in point tended to occur after ' 200, 000 accepted

steps, largely driven by the fact that both the hyper and
local parameters were not seeded from a local minimum
(with the exception of T (1�3)) and therefore required a

substantial number of steps to converge.
Combining these initial chains, we chose 10 di↵erent

realizations which have the highest log-likelihood but

also not too close to each other. We then start 10 new
independent chains, where each chain is seeded from one
of the top 200 log-like solutions found from the stacked
initial chains. We run each of these 10 chains for 107

trials with acceptance rate ⇠ 5% (i.e. 500,000 ac-
cepted steps each) and find, as expected, that each
chain is burnt-in right from the beginning.

To check for adequate mixing, we calculated the e↵ec-
tive length, defined as the length of the chain divided by
the correlation length, where the correlation length is de-
fined as `corr = minlag{|AutoCorrelation(chain, lag)| <

0.5} (Tegmark et al. 2004). We find that the sum of the
e↵ective lengths exceeds 2000 (i.e. is � 1), indicating
good mixing. We also verified that the Gelman-

Rubin statistic (Gelman & Rubin 1992) dropped
below 1.1 (it was 1.02), indicating that the chains
had converged. Finally, we thinned the 10 chains by a

factor of 100, and stacked them together, which gives a
combined chain of length of 106. The hyper-parameter
posteriors, available at this URL, are shown as a tri-
angle plot in Figure 2. We list the median and corre-

sponding 68.3% confidence interval of each hyper pa-
rameter posterior in Table 2. Our model, evaluated at
the spatial median of the hyper parameters, is shown

in Figure 3 compared to the data upon which it was
conditioned. The spatial median simply finds the
sample from the joint posterior which minimizes

the Euclidean distance to all other samples.

Table 1. Description and posterior of hyper parameters. The prior distributions of the hyper parameters

are C(1) ⇠ U(�1, 1); S(1�4) ⇠ N (0, 5); log10

⇥
�

(1�4)
R

⇤
⇠ U(�3, 2); T (1�3) ⇠ U(�4, 6).

⇥hyper term Description Credible Interval

10C R� Power-law constant for the Terran (T-class) worlds MR relation 1.008+0.046
�0.045 R�

S(1) Power-law index of Terran worlds; R / MS 0.2790+0.0092
�0.0094

S(2) Power-law index of Neptunian worlds; R / MS 0.589+0.044
�0.031

S(3) Power-law index of Jovian worlds; R / MS �0.044+0.017
�0.019

S(4) Power-law index of Stellar worlds; R / MS 0.881+0.025
�0.024

�
(1)
R Fractional dispersion of radius for the Terran MR relation 4.03+0.94

�0.64 %

�
(2)
R Fractional dispersion of radius for the Neptunian MR relation 14.6+1.7

�1.3 %

�
(3)
R Fractional dispersion of radius for the Jovian MR relation 7.37+0.46

�0.45 %
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Figure 2. Triangle plot of the hyper-parameter joint posterior distribution (generated using corner.py). Contours denote the
0.5, 1.0, 1.5 and 2.0� confidence intervals.

Table 1 (continued)

⇥hyper term Description Credible Interval

�
(4)
R Fractional dispersion of radius for the Stellar MR relation 4.43+0.64

�0.47 %

10T (1) M� Terran-to-Neptunian transition point 2.04+0.66
�0.59 M�

Table 1 continued
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Figure 1. Graphical model of the HBM used to infer the
probabilistic MR relation in this work. Yellow ovals represent
hyper-parameters, white represent the true local parameters
and gray represent data inputs. All objects on the plate have
N members.

We consider it more reasonable to assume that the
intrinsic dispersion in radius will be a fractional dis-
persion, rather than an absolute dispersion. For ex-
ample, the dispersion of Earth-radius planets might be

O[0.1 R�] but for stars it should surely be much larger
in an absolute sense. Since a fractional dispersion on
a linear scale corresponds to an absolute dispersion on

logarithmic scale, this assumption is naturally accounted
for by our model. To implement the probabilistic model,
we employ a hierarchical Bayesian model, or HBM for

short.

2.4. Hierarchical Bayesian Modeling

The di↵erence between an HBM and the more familiar
Bayesian method is that HBMs have two sets of param-
eters; a layer of hyper parameters, ⇥hyper, on top of the

local parameters, ⇥local (see Hogg et al. 2010 for a
pedagogical explanation). The local parameters usu-
ally describe the properties of each individual datum,

whilst the hypers describe the overall ensemble proper-
ties. For example, in this work, the local parameters are
the true log10(M/M�), log10(R/R�) (or Mt, Rt) of all
the objects, and the hyper parameters, ⇥hyper, are those

that represent the broken power-law. This hierarchical
structure is illustrated in Figure 1. For the local pa-
rameters, we define a mass, Mt, and radius, Rt,

term for each object giving 632 local variables.
In practice, the Rt local parameters are related
to the Mt term through the broken power-law
and each realization of the hyper parameters. In

total then, our model includes 632 local param-
eters and a compact set of hyper parameters, as
described later in the MCMC subsection.

2.5. Continuous Broken Power-Law Model

Plotting the masses and radii on a log-log scale, (as
shown later in Figure 3), it is clear that single, continu-

ous power-law is unable to provide a reasonable descrip-
tion of the data. For example, one might reasonably
expect that the Neptune-like planets follow a di↵erent

MR relation from the terrestrial planets, since the volu-
minous gaseous envelope of the former dominates their
radius (Lopez & Fortney 2014). This therefore argues
in favor of using a segmented (or broken) power-law.

At least three fundamentally distinct regimes are ex-
pected using some simple physical insights; a segment
for terrestrial planets, gas giants and stars. Indeed, the

MR data clearly shows distinct changes in the power-
index, corresponding to the transition points between
each segment. However, a visual inspection also reveals

a turn-over in the MR relation at around a Saturn-mass.
Therefore, from one roughly Saturn-mass to the onset of
stars, there is a strong case for a fourth segment which
we consequently include in our model. Later, in Sec-

tion 3.2, we perform a model comparison of a three-
versus four-segment model to validate that the four-
segment broken power-law is strongly favored.

Our favored model consists of 12 free hyper parame-
ters; 1 o↵set (C(1)), 4 slopes (S(1�4)), 4 intrinsic disper-

sions (�
(1�4)
R ), and 3 transition points (T (1�3)). Criti-

cally then, we actually fit for the location of transition
points and include an independent intrinsic dispersion
for each segment (making our model probabilistic). Also
note that the “slopes” in log-log space are the power-law

indices in linear space. The hyper parameter vector is
therefore

⇥hyper = {S(1), S(2), S(3), S(4),

�
(1)
R ,�

(2)
R ,�

(3)
R ,�

(4)
R ,

T (1), T (2), T (3), C(1)}. (4)

There is only one free parameter for the o↵set since we
impose the condition that each segment of the power-

law is connected, i.e. a continuous broken power-law.
By requiring that two segments meet at the transition
point between them, we can derive the o↵sets for the
rest of the segments. At each transition point T (j),

C(j)+S(j)⇥T (j) = C(j+1)+S(j+1)⇥T (j) for j = 1, 2, 3.

(5)
We can now iteratively derive the other o↵sets as,

C(j+1) = C(j)+(S(j)�S(j+1))⇥T (j) for j = 1, 2, 3. (6)

2.6. Hyper Priors
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Figure 1. Graphical model of the HBM used to infer the
probabilistic MR relation in this work. Yellow ovals represent
hyper-parameters, white represent the true local parameters
and gray represent data inputs. All objects on the plate have
N members.
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to the Mt term through the broken power-law
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described later in the MCMC subsection.
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index, corresponding to the transition points between
each segment. However, a visual inspection also reveals

a turn-over in the MR relation at around a Saturn-mass.
Therefore, from one roughly Saturn-mass to the onset of
stars, there is a strong case for a fourth segment which
we consequently include in our model. Later, in Sec-

tion 3.2, we perform a model comparison of a three-
versus four-segment model to validate that the four-
segment broken power-law is strongly favored.
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hyper-parameters, white represent the true local parameters
and gray represent data inputs. All objects on the plate have
N members.
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At least three fundamentally distinct regimes are ex-
pected using some simple physical insights; a segment
for terrestrial planets, gas giants and stars. Indeed, the

MR data clearly shows distinct changes in the power-
index, corresponding to the transition points between
each segment. However, a visual inspection also reveals

a turn-over in the MR relation at around a Saturn-mass.
Therefore, from one roughly Saturn-mass to the onset of
stars, there is a strong case for a fourth segment which
we consequently include in our model. Later, in Sec-

tion 3.2, we perform a model comparison of a three-
versus four-segment model to validate that the four-
segment broken power-law is strongly favored.

Our favored model consists of 12 free hyper parame-
ters; 1 o↵set (C(1)), 4 slopes (S(1�4)), 4 intrinsic disper-
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R ), and 3 transition points (T (1�3)). Criti-

cally then, we actually fit for the location of transition
points and include an independent intrinsic dispersion
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note that the “slopes” in log-log space are the power-law
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By requiring that two segments meet at the transition
point between them, we can derive the o↵sets for the
rest of the segments. At each transition point T (j),

C(j)+S(j)⇥T (j) = C(j+1)+S(j+1)⇥T (j) for j = 1, 2, 3.
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We can now iteratively derive the other o↵sets as,
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Figure 1. Graphical model of the HBM used to infer the
probabilistic MR relation in this work. Yellow ovals represent
hyper-parameters, white represent the true local parameters
and gray represent data inputs. All objects on the plate have
N members.

We consider it more reasonable to assume that the
intrinsic dispersion in radius will be a fractional dis-
persion, rather than an absolute dispersion. For ex-
ample, the dispersion of Earth-radius planets might be

O[0.1 R�] but for stars it should surely be much larger
in an absolute sense. Since a fractional dispersion on
a linear scale corresponds to an absolute dispersion on

logarithmic scale, this assumption is naturally accounted
for by our model. To implement the probabilistic model,
we employ a hierarchical Bayesian model, or HBM for

short.

2.4. Hierarchical Bayesian Modeling

The di↵erence between an HBM and the more familiar
Bayesian method is that HBMs have two sets of param-
eters; a layer of hyper parameters, ⇥hyper, on top of the

local parameters, ⇥local (see Hogg et al. 2010 for a
pedagogical explanation). The local parameters usu-
ally describe the properties of each individual datum,

whilst the hypers describe the overall ensemble proper-
ties. For example, in this work, the local parameters are
the true log10(M/M�), log10(R/R�) (or Mt, Rt) of all
the objects, and the hyper parameters, ⇥hyper, are those

that represent the broken power-law. This hierarchical
structure is illustrated in Figure 1. For the local pa-
rameters, we define a mass, Mt, and radius, Rt,

term for each object giving 632 local variables.
In practice, the Rt local parameters are related
to the Mt term through the broken power-law
and each realization of the hyper parameters. In

total then, our model includes 632 local param-
eters and a compact set of hyper parameters, as
described later in the MCMC subsection.
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Figure 2.4 Each sub-panel shows the residuals of a hyper-parameter in our model, as
computed between ten injected truths and the corresponding recovered values. The black
square denotes the recovered posterior median and the dark & light gray bars denote the
1 & 2 σ credible intervals. The green horizontal bar marks the zero-point expected for a
perfect recovery.
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2.4 Classification

2.4.1 Classification with an MR relation

A unique aspect of this work was to use freely fitted transitional points in our MR relation.

As discussed earlier, these transitional points essentially classify the data between distinct

categories, where the class boundaries occur in mass and are defined using the feature

of dR/dM. Such classes are evident even from visual inspection of the MR data (see

Figure 2.3), but our Bayesian inference of a self-consistent probabilistic broken power-law

provides statistically rigorous estimates of these class boundaries. In what follows, we

discuss the implications of the inferred locations of the class boundaries (T(1), T(2) and T(3)).

2.4.2 Naming the Classes

Rather than refer to each class as segments 1, 2, 3 and 4, we here define a name for each

class to facilitate a more physically intuitive discussion of the observed properties. A

naming scheme based on the physical processes is appealing but ultimately disingenuous

since our model is deliberately chosen to be a data-driven inference, free of physical

assumptions about the mechanics and evolution sculpting these worlds. We consider it

more appropriate, then, to name each class based upon a typical and well-known member.

For segment 2, Neptune and Uranus are typical members and are of course very

similar to one another in basic properties. We therefore consider this class a sub-sample

of Neptune-like worlds, or “Neptunian” worlds more succinctly. Similarly, we identify

Jupiter as a typical member of segment 3, unlike Saturn which lies close to a transitional
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point. Accordingly, we define this sub-sample to be representative of Jupiter-like worlds,

or “Jovian” worlds.

For the hydrogen-burning late-type stars of segment 4, these objects can be already

classified by their spectral types spanning M, K, and late-type G dwarfs. Rather than refer

to them as M/K/late-G class stars, we simply label them as stars for the sake of this work

and for consistency with the “worlds” taxonomy dub them “Stellar” worlds.

Finally, we turn to segment 1 which is comprised largely of Solar System members

and thus all of which are relatively well-known. The objects span from dwarf planets

to terrestrial planets, from silicate worlds to icy worlds, making naming this broad class

quite challenging. Additionally, calling this class Earth-like worlds would be confusing

given the usual association of this phrase with habitable Earth-analogs. For consistency

with the naming scheme used thus far, we decided that dubbing these objects as “Terran”

worlds to be the most appropriate.

2.4.3 T(1): The Terran-Neptunian Worlds Divide

From masses of ∼ 10−4 M⊕ to a couple of Earth masses, we find that a continuous power-

law of R ∼ M0.279±0.009 provides an excellent description of these Terran worlds. No break

is observed between “dwarf planets” and “planets”. If the Terrans display a constant

mean density, we would expect R ∼ M1/3, and so the slightly depressed measured index

indicates modest compression with increasing mass (ρ ∼ M0.16±0.03). Our result is in

close agreement with theoretical models, which typically predict R ∼ M0.27 for Earth-like

compositions (e.g. see Valencia et al. 2006).
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We find the first transition to be located at (2.0± 0.7) M⊕, defining the transition from

Terrans to Neptunians. After this point, the density trend reverses with ρ̄ ∼ M−0.77±0.13,

indicating the accretion of substantial volatile gas envelopes. This transition is not only

evident in the power-law index, but also in the intrinsic dispersion, which increases by a

factor of (3.6 ± 0.9) from Terrans to Neptunians. This transition point is of major interest

to the community, since it caps the possibilities of rocky, habitable Super-Earth planets,

with implications for future mission designs (e.g. see Dalcanton et al. 2015).

Our result is compatible with independent empirical and theoretical estimates of

this transition. Starting with the former, we compare our result to Rogers (2015), who

sought the transition in radius rather than mass. This was achieved by identifying radii

which exceed that of a solid planet, utilizing a principle first proposed by Kipping et al.

(2013). Assuming an Earth-like compositional model, the radius threshold was inferred

to be 1.48+0.08
−0.04 R⊕ (Rogers 2015). Our result may be converted to a radius by using our

derived relation. However, since our model imposes intrinsic radius dispersion (i.e. the

probabilistic nature of our model), the uncertainty in radius is somewhat inflated by this

process. Nevertheless, we may convert our mass posterior samples to fair radii realizations

using our Forecaster public code (described later in Section 2.5). Accordingly, we find

that the transition occurs at 1.23+0.44
−0.22 R⊕, which is fully compatible with Rogers (2015).

A comparison to theory comes from Lopez & Fortney (2014), who scale down com-

positional models of gaseous planets to investigate the minimum size of a H/He rich

sub-Neptune. From this theoretical exercise, the authors estimate that 1.5 R⊕ is the mini-

mum radius of a H/He rich sub-Neptune, which is also compatible with our measurement.
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Therefore, despite the fact that we do not impose any physical model (unlike Lopez &

Fortney 2014 & Rogers 2015), our broken power-law model recovers the transition from

Terrans to Neptunians.

2.4.4 T(3): The Jovian-Stellar Worlds Divide

Another well-understood transition is recovered by our model at (0.080 ± 0.008) M�,

which we interpret as the onset of hydrogen burning. Like the Terran-Neptunian worlds

transition, we may compare this transition to other estimates of the critical boundary. In

the recent work of Dieterich et al. (2014), the authors performed a detailed observational

campaign around this boundary. Inspecting the Teff-R plane, the authors identified a

minimum at ' 0.086 R�, which corresponds to ' 0.072 M�, with the 5 Gyr isochrones2 of

Baraffe et al. (1998). Based on this, we conclude that the result is fully compatible with

our own prediction.

From stellar modeling, estimates of the minimum mass for hydrogen-burning range

from 0.07 M� to 0.09 M� (Burrows et al. 1993, 1997; Baraffe et al. 1998; Chabrier et al. 2000;

Baraffe et al. 2003; Saumon & Marley 2008). Therefore, both independent observational

studies and theoretical estimates are consistent with our broken power-law estimate.

2.4.5 T(2): The Neptunian-Jovian Worlds Divide

We find strong evidence for a transition in our broken power-law at (0.41 ± 0.07) MJ,

corresponding to the transition between Neptunians and Jovians. Whilst this transition

2Although the point slightly precedes the first point in the Baraffe et al. 1998 grid, requiring a small linear
extrapolation to compute.
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has been treated as an assumed, fixed point in previous works (e.g. Weiss et al. 2013

adopt a fixed transition at 150 M⊕, or 0.47 MJ), our work appears to be the first instance of

a data-driven inference of this transition.

A plausible physical interpretation of this boundary is that a Neptunian world rapidly

grows in radius as more mass is added, depositing more gaseous envelope to its outer

layer. Eventually, the object’s mass is sufficient for gravitational self-compression to start

reversing the growth, leading into a Jovian world. The existence of such a transition is

not unexpected, but our model allows for an actual measurement of its location.

We infer the significance of this transition to be high at nearly 10 σ (see §2.3.2),

motivating us to propose that this transition is physically real and that a class of Jovians

is taxonomically rigorous in the mass-radius plane. A defining feature of the Jovian

worlds is that the MR power-index is close to zero (−0.04± 0.02), with radius being nearly

degenerate with respect to mass.

We find that brown dwarfs are absorbed into this class, displaying no obvious transi-

tion (also see Figure 2.3) at ∼ 13 MJ, as was also argued by Hatzes & Rauer (2015). When

viewed in terms of mass and radius then, brown dwarfs are merely high-mass members

of a continuum of Jovians and more closely resemble “planets” than “stars”.

The fact that the Neptunian-to-Jovian transition occurs at around one Saturn mass is

generally incompatible with theoretical predictions of a H/He rich planet, such as Saturn.

Calculations by Zapolsky & Salpeter (1969) predict that a cold sphere of H/He is expected

to reach a maximum size somewhere between 1.2 MJ to 3.3 MJ. The suite of models

produced by Fortney et al. (2007) for H/He rich giant planets, for various insolations and
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metallicities, peak at masses between ∼ 2.5 MJ to ∼ 5.2 MJ. Nevertheless, Jupiter and

Saturn have similar radii (within 20%) of one another despite a factor of three difference

in mass, crudely indicating that Jovians commence at a mass less than or equal to that of

Saturn.

2.5 Forecasting

2.5.1 Forecaster: An Open-Source Package

Using our probabilistic model for MR relation inferred in this work, it is possible to now

achieve our primary objective: to forecast the mass (or radius) of an object given the

radius (or mass). Crucially, our forecasting model can not only propagate measurement

uncertainty on the inputs (easily achieved using Monte Carlo draws), but also the un-

certainty in the model itself thanks to the probabilistic nature of our model. Thus, even

for an input with perfect measurement error (i.e. none), our forecasting model will still

return a probability distribution for the forecasted quantity, due to (i) our measurement

uncertainty in the hyper-parameters describing the model; and (ii) the intrinsic variability

seen in nature itself around the imposed model.

To enable the community to make use of this model, we have written a Python

package, Forecaster 3 (MIT license), which allows a user to input a mass (or radius)

posterior distribution and return a radius (or mass) forecasted distribution. Alternatively,

one can simply input a mean and standard deviation of mass (or radius), and the package

3https://github.com/chenjj2/forecaster
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will return a forecasted mean and standard deviation of the radius (or mass). This code

works for any object with mass in the range of [3 × 10−4 M⊕, 3 × 105 M⊕(0.87 M� )], or

radius in the range of [0.1 R⊕, 100 R⊕(9 RJ)].

We present the details of how we use the MR relation we obtained to forecast one

quantity from the other below.

2.5.2 Forecasting Radius

Predicting radius given mass is straightforward from our model. If the input is the

mean and standard deviation of mass, Forecaster will first generate a vector of masses,

{M(i), i = 1, 2, ...,n}, following a normal distribution truncated within the mass range.

Otherwise, the code will accept the input mass posterior distribution as {M(i), i = 1, 2, ...,n}.

Forecaster will then randomly choose n realizations of the hyper parameters from the

hyper posteriors derived in this work. A radius will be drawn for each M(i) with each set

of hyper parameters Θ(i)
hyper, as

R(i)
∼ N( f (M(i),Θ(i)

hyper), σ
(i)
R

). (2.15)

The output in this case is a vector of radii {R(i), i = 1, 2, ...,n}. It is worth pointing out

that since our model uses a Gaussian distribution, it is possible that the predicted radius

for a given mass turns out to be so small that no current physical composition model can

explain. However we choose not to truncate the prediction with any theoretical model

and let our code users to choose what’s suitable for them.

69

https://github.com/chenjj2/forecaster
https://github.com/chenjj2/forecaster


2.5.3 Forecasting Mass

Mass cannot be directly sampled given {R(i), i = 1, 2, ...,n}with our model. To sample mass,

Forecaster first creates a grid of masses as {M( j)
grid, j = 1, 2, ...,m} in the whole mass range

of our model. Similarly, then we randomly chose n sets of hyper parameters from the

hyper posteriors of our model. For each radius R(i), Forecaster calculates the probability

{p( j)
grid, j = 1, 2, ...,m} of R(i) given M( j) with Θ(i)

hyper. Finally, Forecaster samples M(i) from

{M( j)
grid, j = 1, 2, ...,m} with {p( j)

grid, j = 1, 2, ...,m}. The output in this case is a vector of masses

{M(i), i = 1, 2, ...,n}.

2.5.4 Examples: Kepler-186f and Kepler-452b

To give illustrative examples of Forecaster, we here forecast the masses of arguably the

two most Earth-like planets discovered by Kepler, Kepler-186f and Kepler-452b.

Kepler-186f was discovered by Quintana et al. (2014), reported to be (1.11 ± 0.14) R⊕

and receiving 32+6
−4% the insolation received by the Earth. A re-analysis by Torres et al.

(2015) refined the radius to (1.17 ± 0.08) R⊕ and we use the radius posterior samples

from that work as our input to Forecaster. As shown in Figure 2.5, we predict a mass

of 1.74+1.31
−0.60 M⊕, with 59% of the samples lying within the Terrans category. Therefore,

in agreement with the discovery paper of Quintana et al. (2014), we also predict that

Kepler-186f is most likely a rocky planet.
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ity campaign first (if even detectable at all). Therefore,
there will likely be a critical need to accurately fore-

cast the scale height of new planet discoveries from just
either the mass or (more likely) the radius.

Forecasting the mass/radius of an object, based upon
the other quantity is most obviously performed using a

mass-radius (MR) relation. Such relations are known to
display sharp changes at specific locations, such as the
transition from brown dwarfs to hydrogen burning stars

(e.g. see Hatzes & Rauer 2015). These transition points
can be thought of as bounding a set of classes of astro-
nomical objects, where the classes are categorized using
the features of the inferred MR relation. In this case

then, it is apparent that inference of the MR relation
enables both classification and forecasting.

Classification is more than a taxonomical enterprise, it

can have dramatic implications in astronomy. Perhaps
the most famous example of classification in astronomy
is the Hertzsprung-Russell (HR) diagram (Hertzsprung

1909; Russell 1914) for luminosity versus e↵ective tem-
perature, which revealed the distinct regimes of stellar
evolution. A common concern in classification is that
the very large number of possible features against which

to frame the problem can be overwhelming. Mass and
radius, though, are not random and arbitrary choices
for framing such a problem. Rather, they are two of

the most fundamental quantities describing any object
in the cosmos and indeed represent two of the seven base
quantities in the International System of Units (SI).

The value of classification extends beyond guiding
physical understanding, it even a↵ects the design of fu-
ture instrumentation. As an example, the boundary
between terrestrial-like rocky worlds and Neptune-like

gaseous worlds represents a truncation of the largest al-
lowed habitable Earth-like body. The location of this
boundary strongly a↵ects estimates of the occurrence

rate of Earth-like planets (⌘�) and thus in-turn the de-
sign requirements of future missions needed to charac-
terize such planets (Dalcanton et al. 2015). To illustrate
this, using the occurrence rate posteriors of Foreman-

Mackey et al. (2014), ⌘� increases by 72% when alter-
ing the definition of Earth-analogs from R < 1.5 R� to
R < 2.0 R�. In order to maintain the same exoEarth

yield for the proposed HDST mission, this change corre-
sponds to a 27% increase in the required mirror diameter
(using yield equation in §3.5.4 of Dalcanton et al. 2015).

We therefore argue that both forecasting and clas-
sification using the masses and radii of astronomical
bodies will, at the very least, be of great utility for
present/future missions and may also provide meaning-

ful insights to guide our interpretation of these objects.
Accordingly, the primary objective of this work is to
build a statistically rigorous and empirically calibrated

model

I to forecast the mass/radius of an astronomical ob-
ject based upon a measurement of the other, and

I for the classification of astronomical bodies based

upon their observed masses and/or radii.

The layout of this paper is as follows. In §2, we outline
our model for the MR relation, which is used enable

forecasting and classification.
Pr(solid) = 13%
Pr(solid) = 59%

Kepler-186f
Kepler-452b

2. MODEL

2.1. Choosing a Model

We begin by describing the rationale behind the model
used in this work. As discussed in §1 (and demonstarted

later in §3), the two primary goals of this paper are both
achievable through the use of a MR relation and this
defines the approach in this work. Broadly speaking,

such a relation can be cast as either a parametric (e.g.
a polynomial) or non-parametric model (e.g. a nearest
neighbour algorithm).

Parameteric models, in particular power-laws, have a
long been popular for modeling the MR relation with
many examples even in the recent literature (e.g. Va-
lencia et al. 2006; Weiss et al. 2013; Hatzes & Rauer

2015; Wolfgang et al. 2015; Zeng et al. 2016). In our
case, we note that such models are more straightforward
for hierarchical Bayesian modeling (which we argue to

be necessary later), since they allow for a simple pre-
scription of the Bayesian network. Moreover, based on
those earlier cited works, power-laws ostensbily do an
excellent job of describing the data and the ability of a

non-parametric method to explain complex patterns ap-
pears superfluous (a conclusion reenforced by the later
results of this work, see §3). Accordingly, we adopt the

power-law prescription in this work.
As noted earlier, the use of power-laws to describe

the MR relation is common in the literature. However,

many of the assumptions and model details in these pre-
vious implementations would make forecasts based upon
these relations problematic. We identify three key as-
pects of the model proposed in this work with di↵eren-

tiate our work from previous studies.
[1] Largest data range: Inferences of the MR rela-

tion often censor the available data to a specific subset of

parameter space (for example Wolfgang et al. 2015 con-
sider the R < 4 R� exoplanets). Whilst it is inevitable
that certain subjective choices will be made by those
analyzing the MR relation, a more physically-motivated

choice for the parameter limits can be established. Ide-
ally, this range should be as large as possible such that
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5. FORECASTING

5.1. Forecaster: An Open-Source Package

Using our probabilistic model for MR relation inferred

in this work, it is possible to now achieve our primary

objective: to forecast the mass (or radius) of an object

given the radius (or mass). Crucially, our forecasting

model can not only propagate measurement uncertainty
on the inputs (easily achieved using Monte Carlo draws),

but also the uncertainty in the model itself thanks to

the probabilistic nature of our model. Thus, even for an

input with perfect measurement error (i.e. none), our

forecasting model will still return a probability distri-

bution for the forecasted quantity, due to (i) our mea-

surement uncertainty in the hyper-parameters describ-

ing the model; and (ii) the intrinsic variability seen in

nature herself around the imposed model.

To enable the community to make use of this, we have

written a piece of Python code, Forecaster, which al-

lows a user to input a mass (or radius) posterior and

return a radius (or mass) forecasted distribution. Al-

ternatively, one can simply input a mean and standard

deviation of mass (or radius), and the package will re-

turn an forecasted mean and standard deviation of the

radius (or mass), This code works for any object with

mass in the range of [3 ⇥ 10�4 M�, 3 ⇥ 105 M�(0.87

M�)], or [0.1 R�, 100 R�(9 RJ)].

We present the details of how we use the MR rela-

tion we obtained to foreast one quantity from the other

below.

5.2. Forecasting Radius

Predicting radius given mass is straightforward from

our model. If the input is the mean and standard de-

viation of mass, Forecaster will first generate a vec-

tor of masses, {M (i), i = 1, 2, ..., n}, following a normal

distribution truncated within the mass range. Other-

wise, the code will accept the input mass posterior as

{M (i), i = 1, 2, ..., n}. Forecaster will then randomly

chose n realizations of the hyper parameters from the

hyper posteriors derived in this work. A radius will be

drawn for each M (i) with each set of hyper parameters

⇥
(i)
hyper.

R(i) ⇠ N (f(M (i),⇥
(i)
hyper),�

(i)
R ) (15)

The output in this case is a vector of radius {R(i), i =

1, 2, ..., n}.

5.3. Forecasting Mass

Mass cannot be directly sampled given {R(i), i =

1, 2, ..., n} with our model. To sample mass, Forecaster

first creates a grid of mass as {M
(j)
grid, j = 1, 2, ..., m}

in the whole mass range of our model. Similarly, then

we randomly chose n sets of hyper parameters from
the hyper posteriors of our model. For each radius

R(i), Forecaster calculates the probability {p
(j)
grid, j =

1, 2, ..., m} of R(i) given M (j) with ⇥
(i)
hyper. Finally,

Forecaster samples M (i) from {M
(j)
grid, j = 1, 2, ..., m}

with {p
(j)
grid, j = 1, 2, ..., m}. The output in this case is a

vector of mass {M (i), i = 1, 2, ..., n}.

5.4. Examples: Kepler-186f and Kepler-452b

An illustrative example of Forecaster in action, we

here forecast the masses of arguably the two most

Earth-like planets discovered by Kepler, Kepler-186f and

Kepler-452b.

Kepler-186f was discovered by Quintana et al. (2014),

reported to be a (1.11 ± 0.14) R� and receiving 32+6
�4%

the insolation received by the Earth. A re-analysis by

Torres et al. (2015) refined the radius to (1.17±0.08) R�
and we use the radius posterior samples from that work

as our input to Forecaster. As shown in Figure 4, we

predict a mass of 1.74+1.31
�0.60 M�, with 59% of the samples

lying within the rocky worlds classification. Therefore,

in agreement with the discover paper of Quintana et al.

(2014), we also predict that Kepler-186f is most likely a

rocky world.

Kepler-452b was discovered by Jenkins et al. (2015)

and was found to have a very similar insolation to that

of the Earth, di↵ering by a factor if just 1.10+0.29
�0.22. The

reported radius of 1.63+0.23
�0.20 R� means that Kepler-452b

would be unlikely to be a rocky world using the result

of (Rogers 2015). Using this radius with Forecaster

predicts that M = 3.9+2.9
�1.5 M�, with only 13% of samples

lying within the rocky world classification (see Figure 4).

Therefore, in contrast to the discover paper of Jenkins

et al. (2015), we predict that Kepler-452b is unlikely to

be a rocky world.

6. DISCUSSION

In this work, we have developed a new package, called

Forecaster, to predict the mass (or radius) of an object

based upon the radius (or mass). Our code uses a new

probabilistic mass-radius relation which has been condi-

tioned upon the masses of radii of 316 objects spanning

dwarf planets to late-type stars. Aside from enabling

forecasting, this excercise naturally performs classifica-

tion of the observed population, since we fit for the tran-

sitional points. Since the observed population has been

classified in this way, future objects can also be prob-

abilistically classified too, which is another feature of

Forecaster.

As discussed in §1, expected applications may include

a newly discovered transiting planet candidate could

have its mass forecasted in order to estimate the de-

tectability with radial velocities. Vice versa, a newly
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tion of the observed population, since we fit for the tran-
sitional points. Since the observed population has been
classified in this way, future objects can also be prob-

abilistically classified too, which is another feature of
Forecaster.

As discussed in §1, expected applications may include
a newly discovered transiting planet candidate could

have its mass forecasted in order to estimate the de-
tectability with radial velocities. Vice versa, a newly
discovered planet found via radial velocities may be

considered for transit follow-up and our code can pre-
dict the detectability given the present constraints. An-
other example might be to forecast the scale height of

a small planet found by TESS for atmospheric followup
with JWST, where Forecaster would also calculate the
probability of the object being a Terran world.

The classification aspect of our work, which is essen-

tially a free by-product of our approach, provides some
interesting insights:

I There is no discernible change in the MR rela-
tion from Jupiter to brown dwarfs. Brown dwarfs
are merely high-mass planets, when classified us-
ing their size and mass.

I There is no discernible change in the MR relation

from dwarf planets to the Earth. Dwarf planets
are merely low-mass planets, when classified using
their size and mass.

I The transition from Neptunians to Jovians occurs
at 0.414�0.057

�0.065 MJ , meaning that Saturn is close to
being the largest occuring Neptunian world. This

is the first empirical measurement of this divide.

I The transition from Terrans to Jovians occurs at
2.04+0.66

�0.59 M�, meaning that the Earth is close
to being the largest occuring solid world. Rocky

“Super-Earths”, then, can be argued to be a fic-
tional category.

This latter point may seem remarkable given that
“Super-Earths” have become part of the astronomical
lexicon. The large number of 2-10 M� planets discov-

ered is often cited as evidence that Super-Earths are
very common and thus Solar System’s makeup is un-
usual (Haghighipour 2013). However, if the boundary

between Terran and Neptunian worlds is shifted down
to 2 M�, the Solar System is no longer unusual. Indeed,
by our definition three of the eight Solar System planets
are Neptunian worlds, which are the most common type

of planet around other Sun-like stars (Foreman-Mackey
et al. 2014).

As shown earlier, whilst our measurement is lower

than previous estimates, it is fully compatible with pre-
vious estimates from both theory (e.g. see Lopez & Fort-
ney 2014) and independent population studies (e.g. see
Rogers 2015). The uncertainty on our measurement of

this key transition is large (⇠ 33%) due to the paucity
of objects with > 3� precision masses and radii in the
Earth-mass regime. Future work could hopefully im-

prove the precision to ⇠ 10% by using a larger sample,
which will inevitably be found in the coming years, or by
extending our method to include lossier measurements

and upper limits by directly re-fitting the original obser-
vations (which was beyond the scope of this work). In
any case, these divides are unlikely sharp, with counter-
examples such as the M�-mass Neptunian world KOI-

314c (Kipping et al. 2015).
A wholly independent line of thinking can also be

shown to support the provocative hypothesis that the

divide between Terran and Neptunian worlds is much
lower than the canonical 10 M� limit. Recently, Simp-
son (2016) made a Bayesian argument using popula-
tion bias to infer that inhabited, Terran worlds should

have radii of R < 1.2 R� to 95% confidence. Assuming
an Earth-like core-mass fraction, this limit corresponds
to 2.0 M� (Zeng et al. 2016). This is also compatible

with our measurement and again argues for e↵ectively
a paucity of Super-Earths. It may be, then, that the
Earth is the Super-Earth we have been looking for all

along.
Pr(Terran) = 59%
Pr(Terran) = 13%

12

as our input to Forecaster. As shown in Figure 4, we
predict a mass of 1.74+1.31

�0.60 M�, with 59% of the sam-

ples lying within the Terrans classification. Therefore,
in agreement with the discover paper of Quintana et al.
(2014), we also predict that Kepler-186f is most likely a
rocky planet.

Kepler-452b was discovered by Jenkins et al. (2015)
and was found to have a very similar insolation to that
of the Earth, di↵ering by a factor if just 1.10+0.29

�0.22. The

reported radius of 1.63+0.23
�0.20 R� means that Kepler-452b

would be unlikely to be rocky using the result of (Rogers
2015). Using this radius with Forecaster predicts that

M = 3.9+2.9
�1.5 M�, with only 13% of samples lying within

the Terran worlds classification (see Figure 4). There-
fore, in contrast to the discovery paper of Jenkins et al.
(2015), we predict that Kepler-452b is unlikely to be a

rocky planet.

6. DISCUSSION

In this work, we have developed a new package, called
Forecaster, to predict the mass (or radius) of an object
based upon the radius (or mass). Our code uses a new
probabilistic mass-radius relation which has been condi-

tioned upon the masses of radii of 316 objects spanning
dwarf planets to late-type stars. Aside from enabling
forecasting, this excercise naturally performs classifica-

tion of the observed population, since we fit for the tran-
sitional points. Since the observed population has been
classified in this way, future objects can also be prob-

abilistically classified too, which is another feature of
Forecaster.

As discussed in §1, expected applications may include
a newly discovered transiting planet candidate could

have its mass forecasted in order to estimate the de-
tectability with radial velocities. Vice versa, a newly
discovered planet found via radial velocities may be

considered for transit follow-up and our code can pre-
dict the detectability given the present constraints. An-
other example might be to forecast the scale height of

a small planet found by TESS for atmospheric followup
with JWST, where Forecaster would also calculate the
probability of the object being a Terran world.

The classification aspect of our work, which is essen-

tially a free by-product of our approach, provides some
interesting insights:

I There is no discernible change in the MR rela-
tion from Jupiter to brown dwarfs. Brown dwarfs
are merely high-mass planets, when classified us-
ing their size and mass.

I There is no discernible change in the MR relation

from dwarf planets to the Earth. Dwarf planets
are merely low-mass planets, when classified using
their size and mass.

I The transition from Neptunians to Jovians occurs
at 0.414�0.057

�0.065 MJ , meaning that Saturn is close to
being the largest occuring Neptunian world. This

is the first empirical measurement of this divide.

I The transition from Terrans to Jovians occurs at
2.04+0.66

�0.59 M�, meaning that the Earth is close
to being the largest occuring solid world. Rocky

“Super-Earths”, then, can be argued to be a fic-
tional category.

This latter point may seem remarkable given that
“Super-Earths” have become part of the astronomical
lexicon. The large number of 2-10 M� planets discov-

ered is often cited as evidence that Super-Earths are
very common and thus Solar System’s makeup is un-
usual (Haghighipour 2013). However, if the boundary

between Terran and Neptunian worlds is shifted down
to 2 M�, the Solar System is no longer unusual. Indeed,
by our definition three of the eight Solar System planets
are Neptunian worlds, which are the most common type

of planet around other Sun-like stars (Foreman-Mackey
et al. 2014).

As shown earlier, whilst our measurement is lower

than previous estimates, it is fully compatible with pre-
vious estimates from both theory (e.g. see Lopez & Fort-
ney 2014) and independent population studies (e.g. see
Rogers 2015). The uncertainty on our measurement of

this key transition is large (⇠ 33%) due to the paucity
of objects with > 3� precision masses and radii in the
Earth-mass regime. Future work could hopefully im-

prove the precision to ⇠ 10% by using a larger sample,
which will inevitably be found in the coming years, or by
extending our method to include lossier measurements

and upper limits by directly re-fitting the original obser-
vations (which was beyond the scope of this work). In
any case, these divides are unlikely sharp, with counter-
examples such as the M�-mass Neptunian world KOI-

314c (Kipping et al. 2015).
A wholly independent line of thinking can also be

shown to support the provocative hypothesis that the

divide between Terran and Neptunian worlds is much
lower than the canonical 10 M� limit. Recently, Simp-
son (2016) made a Bayesian argument using popula-
tion bias to infer that inhabited, Terran worlds should

have radii of R < 1.2 R� to 95% confidence. Assuming
an Earth-like core-mass fraction, this limit corresponds
to 2.0 M� (Zeng et al. 2016). This is also compatible

with our measurement and again argues for e↵ectively
a paucity of Super-Earths. It may be, then, that the
Earth is the Super-Earth we have been looking for all

along.
Pr(Terran) = 59%
Pr(Terran) = 13%

Figure 2.5 Posterior distributions of the radius (measured) and mass (forecasted) of two
habitable-zone small planets, with predictions produced by Forecaster (triangle plots
generated using corner.py).

definition resulting from the analysis of Rogers (2015). Using the reported radius with

Forecaster predicts that M = 3.9+2.9
−1.5 M⊕, with only 13% of samples lying within the

Terran worlds (see Figure 2.5). Therefore, in contrast to the discovery paper of Jenkins

et al. (2015), we predict that Kepler-452b is unlikely to be a rocky planet.
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2.6 Discussion

In this work, we have developed a new package, called Forecaster, to predict the mass

(or radius) of an object based upon the radius (or mass). Our code uses a new probabilistic

mass-radius relation which has been conditioned upon the masses and radii of 316 objects

spanning from dwarf planets to late-type stars. Aside from enabling forecasting, this

exercise naturally performs classification of the observed population, since we fit for the

transitional points. Since the observed population has been classified in this way, future

objects can also be probabilistically classified too, which is another feature of Forecaster.

As discussed in Section 2.1, expected applications may include a newly discovered

transiting planet candidate could have its mass forecasted in order to estimate the de-

tectability with radial velocities. Vice versa, a newly discovered planet found via radial

velocities may be considered for transit follow-up and our code can predict the detectabil-

ity given the present constraints. Another example might be to forecast the scale height of

a small planet found by TESS for atmospheric follow-up with JWST, where Forecaster

would also calculate the probability of the object being a Terran world.

The classification aspect of our work, which is essentially a free by-product of our

approach, provides some interesting insights:

I There is no discernible change in the MR relation from Jupiter to brown dwarfs.

Brown dwarfs are merely high-mass planets, when classified using their size and

mass.

I There is no discernible change in the MR relation from dwarf planets to the Earth.
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Dwarf planets are merely low-mass planets, when classified using their size and

mass.

I The transition from Neptunians to Jovians occurs at 0.414−0.057
−0.065 MJ, meaning that

Saturn is close to being the largest occurring Neptunian world. This is the first

empirical inference of this divide.

I The transition from Terrans to Jovians occurs at 2.04+0.66
−0.59 M⊕, meaning that the Earth

is close to being the largest occurring solid world. Rocky “Super-Earths”, then, can

be argued to be a fictional category.

This latter point may seem remarkable given that “Super-Earths” have become part

of the astronomical lexicon. The large number of 2-10 M⊕ planets discovered is often

cited as evidence that Super-Earths are very common and thus Solar System’s makeup is

unusual (Haghighipour 2013). However, if the boundary between Terran and Neptunian

worlds is shifted down to 2 M⊕, the Solar System is no longer unusual. Indeed, by our

definition, three of the eight Solar System planets are Neptunian worlds, which are the

most common type of planet around other Sun-like stars (Foreman-Mackey et al. 2014).

As shown earlier, whilst our value is lower than previous estimates, it is fully com-

patible with previous estimates from both theory (e.g. see Lopez & Fortney 2014) and

independent population studies (e.g. see Rogers 2015). The uncertainty on our inference

of this key transition is large (∼ 33%) due to the paucity of objects with > 3 σ precision

masses and radii in the Earth-mass regime. Future works could hopefully improve the

precision to ∼ 10% by using a larger sample size, which will inevitably be found in the

coming years, or by extending our method to include lossier measurements and upper
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limits by directly re-fitting the original observations (which was beyond the scope of this

work). In any case, these divides are unlikely sharp, with counter-examples such as the

M⊕-mass Neptunian world KOI-314c (Kipping et al. 2015).

A wholly independent line of thinking can also be shown to support the provocative

hypothesis that the divide between Terran and Neptunian worlds is much lower than

the canonical 10 M⊕ limit. Recently, Simpson (2016) made a Bayesian argument using the

population bias to infer that inhabited, Terran worlds should have radii of R < 1.2 R⊕

to 95% confidence. Assuming an Earth-like core-mass fraction, this limit corresponds to

2.0 M⊕ (Zeng et al. 2016). This is also compatible with our determination and again argues

for effectively a paucity of Super-Earths. It may be, then, that the Earth is the Super-Earth

we have been looking for all along.

74



Chapter 3

Application of Forecaster

In the previous chapter, I used the hierarchical Bayesian method to fit the masses and

radii of exoplanets and built a predictive model called Forecaster. In this chapter, I will

show two cases of the application of Forecaster. From Section 3.1 to Section 3.4, I use

Forecaster to predict the masses of 7000 exoplanet candidates which have their radii

measured with the transit survey Kepler. From Section 3.5 to Section 3.7, I briefly discuss

the vice versa application, predicting radii from measured masses.

3.1 Forecasted masses for 7000 Kepler Objects of Interest

Recent transit surveys have discovered thousands of planetary candidates with directly

measured radii, but only a small fraction have measured masses. Planetary mass is

0This chapter is a reproduction of two papers published by The Monthly Notices of the Road Astronom-
ical Society, which can be found at https://academic.oup.com/mnras/article/473/2/2753/4209246 and
https://academic.oup.com/mnras/article/475/3/3090/4803965. The articles have been reformatted for
this section.
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crucial in assessing the feasibility of numerous observational signatures, such as radial

velocities (RVs), atmospheres, moons and rings. In the absence of a direct measurement,

a data-driven, probabilistic forecast enables observational planning. So here we compute

posterior distributions for the forecasted masses of approximately seven thousand Kepler

Objects of Interest (KOIs).

We find that mass forecasts are unlikely to improve through more precise planetary

radii, with the error budget presently dominated by the intrinsic model uncertainty.

Our forecasts identify a couple of dozens KOIs near the Terran-Neptunian divide with

particularly large RV semi-amplitudes which could be promising targets to follow up,

especially in the near-IR. With several more transit surveys planned in the near-future,

the need to quickly forecast observational signatures is likely to grow and the work here

provides a template example of such calculations.

3.2 Forecasting KOI Masses

3.2.1 Data Requirements

The principal objective of this work is to compute self-consistent and homogeneous a-

posteriori distributions for the predicted mass of each KOI. The predicted mass of each

KOI will be solely determined by its radius and the empirical, probabilistic forecasting

model of Chen & Kipping (2017). Because of this conditional relationship, masses and radii

will certainly be covariant, along with any other derived terms based on these quantities.

We therefore aim to derive the joint posteriors for all the parameters of interest, which
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will encode any resulting covariances.

To accomplish this goal, we first require posterior distributions for the KOI radii.

The transit light curve of each KOI enables a measurement of the planet-to-star radius

ratio, p, with the precision depending upon photometric quality, number and duration of

observed transit events and modest degeneracies with other covariant terms describing

the transit shape (Carter et al. 2008). With the quantity p in-hand, it may be combined

with the stellar radius, R?, to infer the true planetary size, RP. Therefore, to make progress

we need homogenous posterior probability distributions for 1) basic transit parameters of

each KOI 2) fundamental stellar properties of each KOI.

3.2.2 Transit Posteriors

Basic transit parameters of each KOI are provided in the NASA Exoplanet Archive (NEA,

Akeson et al. 2013), but these are summary statistics rather than full posterior distributions,

as required for this work. Fortunately, Rowe & Thompson (2015) provide posterior

distributions for almost every KOI, with 100,000 samples for each obtained via a Markov

Chain Monte Carlo (MCMC) regression of a Mandel & Agol (2002) light curve model to

the Kepler photometric time series (we direct the reader to Rowe & Thompson 2015 for

details). We downloaded all available posteriors and found 7106 object files.

Except for two KOIs, all of these objects appear in the currently listed NEA database

(comprising of 9564 KOIs), with the exceptions being KOI-1168.02 and KOI-1611.02. We

deleted these two objects from our sample in what follows, giving us 7104 KOIs. The other

2460 KOIs were not modeled by Rowe & Thompson (2015) and thus are not considered
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further in what follows.

3.2.3 Stellar Posteriors

For stellar properties, we again note that summary statistics are available on NEA but

posteriors are not directly available. As one of our criteria is a homogenous set of pos-

teriors, and we wish to calculate masses for as many KOIs as possible, inferences for

particular subsets of the KOI database are not as useful for this work. Instead, we used

the publicly available posteriors from Mathur et al. (2017) who used information such

as colors, spectroscopy, and asteroseismology to fit Dartmouth isochrone models (Dotter

et al. 2008) for each Kepler star, giving 40,000 posterior samples per star.

We attempted to download stellar posteriors for all 7104 KOIs in the Rowe & Thomp-

son (2015) database, but found that posteriors were missing for 93 KOIs spanning 87

stars. These KOIs are flagged with a “1” in Table 3.1 and were not considered further for

analysis.

3.2.4 KOI Radii Posteriors

We next combined these distributions together to generate fair realizations of the KOI radii.

We do this by consecutively stepping through each row of the Mathur et al. (2017) samples

and drawing a random row from the corresponding Rowe & Thompson (2015) posterior

samples for p. This is possible because the two posteriors are completely independent

and share no covariance.

This process results in 40,000 fair realizations for the radius of each KOI, where we
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Table 3.1 Data flags assigned to 7104 KOIs considered in this analysis. “0” denotes
no problems, “1” denotes that stellar posteriors were missing and “2” denotes transit
posteriors were missing. Only a portion of the table is shown here, the full version is
available on GitHub repository chenjj2/forecasts.

KOI data flag
0001.01 0
0002.01 0
0003.01 0
0004.01 0
0005.01 0
0005.02 2
0006.01 0
0007.01 0
0008.01 0
0009.01 0
0010.01 0

...
...

report the radii in units of Earth radii (R⊕ = 6378.1 km), which are made available in the

public repository at this URL (https://github.com/chenjj2/forecasts).

During this process, we found 38 KOIs that could not locate the corresponding

MCMC file for the Rowe & Thompson (2015) transit parameters. It is unclear why these

were missing but given their relativity small number, we simply flagged them with a “2”

in Table 3.1 and did not consider them further for analysis. At this point, we are left

with 6973 KOIs for which we have been able to derive radius posteriors, of which 2283 are

dispositioned as “CONFIRMED” on NEA, 1665 are “CANDIDATE”, and 3025 are “FALSE

POSITIVE” (these dispositions are also provided in Table 3.2).
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3.2.5 Predicting Masses with Forecaster

The next step is to take the radius posterior of each KOI and, row-by-row, predict a

corresponding mass with Forecaster. We direct the reader to Chen & Kipping (2017) for

a full description of Forecaster. We also direct the reader to Wolfgang et al. (2016) for

their prior and alternative discussion of probabilistic mass-radius relations.

Forecaster is fundamentally probabilistic, by which we mean that the model in-

cludes intrinsic dispersion in the mass-radius relation to account for additional variance

beyond measurement uncertainties. This dispersion represents the variance observed in

nature itself.

Another characteristic ofForecaster is that it was only trained within a specific (albeit

broad) mass range, from 3 × 10−4 M⊕ to 3 × 105 M⊕, corresponding to dwarf planets to

late-type stars. However, some extreme KOIs have radii which fall outside of the expected

corresponding radius range. To enable a homogeneous analysis, we simply extend the

first and last part of the broken power-law relation, so that it could cover a semi-infinite

interval. In practice, this is only necessary for very large KOIs exceeding a Solar radius,

for which the KOI cannot be a planet in any case, and thus these extrapolations simply

highlight the unphysical nature of these rare cases.

As discussed earlier, the model was applied to each radius posterior sample for each

KOI (278.92 million individual forecasts). It is important to stress that the probabilistic

nature of Forecastermeans that re-running the same script again on the same KOI would

lead to a slightly different set of posterior samples for the planetary mass, although they

would still of course be fair and representative samples.
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The 68.3% credible intervals of the forecasted masses are depicted in upper panel of

Figure 3.1 and listed along with the 95.5% credible intervals in Table 3.2.

To perform the analysis, we used the function ”Rpost2M” in Forecaster. To be

clearer, a summary of the steps taken in the function is listed as below. 1. generates a grid

of mass in the allowed mass range; 2. calculates the probabilities of the measured radius

given each mass in the grid; 3. uses the above probabilities as weights to redraw mass.

For more details, we direct the reader to the original Forecaster paper (Chen & Kipping

2017).
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Figure 3.1 Forecasted masses (top) and radial velocity semi-amplitudes (bottom) for a
circular orbit, as a function of the observed KOI radius. We here only show objects with
a NEA disposition of being either a candidate or validated planet. Error bars depict the
68.3% credible intervals.
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3.3 Implication & Limitations

3.3.1 Densities, Gravities and RV Amplitudes

With a joint posterior for both the stellar and the planetary fundamental parameters in

hand, we can compute other derived quantities of interest, such as surface gravity, bulk

density, and radial velocity (RV) amplitude (these are given in Table 3.2). Once again, we

stress that these values should be treated as forecasts and not measurements.

We have computed forecasted masses for all KOIs where available, irrespective of

whether the KOI is a known false-positive or confirmed planet. False-positives frequently

have extreme radii associated with them, giving rise to anomalous derived parameters.

For example, in the case of KOI-5385.01, a known false-positive, we obtain a radius of

RP = 1010+450
−500 R� (for comparison NEA report RP = 62+20

−5 R�), implying that the Rowe &

Thompson (2015) MCMC chains ultimately diverged to a very high p. We caution that

this effect also appears for some KOIs which are not dispositioned as false-positives. For

example in the case of KOI-3891.01, which is listed as a candidate on NEA, we obtain

RP = 126+132
−89 R� (NEA also report an anomalously large radius of RP = 0.81+0.28

−0.52 R�).

Despite this, these cases are straight-forward to identify and essentially represent cases

where the MCMC diverged, indicating poor quality light curves or false-positives.

The density forecasts are computed assuming spherical shapes for the planets and

are listed in Table 3.2. Density forecasts are particularly useful in cases where one wishes

to predict the Roche radii around KOIs for estimating potential ring radii (Zuluaga et al.

2015).
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The surface gravity forecasts are also made assuming spherical planets. These es-

timates are particularly important for climate and atmospheric modeling (Heng & Vogt

2011), as well as predicting the scale height of exoplanetary atmospheres (Seager & Sas-

selov 2000) when planning observational campaigns.

Finally, the radial velocity amplitudes are computed assuming i ' π/2, which is

appropriate for transiting planets, and additionally under the explicit assumption of a

circular orbit, such that

lim
e→0

K =

(
2πG

P

)1/3
MP

(M? + MP)2/3 . (3.1)

We do not assume MP � M? and ensure that the uncertainties in the stellar mass

are propagated correctly into the calculation of K, although we assume negligible uncer-

tainty in orbital period, P. Circularity is assumed to provide a tight fiducial value rather

than marginalizing over poorly constrained eccentricity distributions for these worlds.

These predictions should help observers decide which KOIs have potentially detectable

signatures from the ground.

We highlight that our predicted masses are calculated homogeneously for all KOIs,

regardless to whether the system is known to exhibit strong transit timing variations (TTV)

or not. This is relevant since planetary masses detected through the TTV method, rather

than the RV method, are subject to distinct selection effects leading to the possibility of

ostensibly distinct mass distributions Steffen (2016). Further, the original Chen & Kipping

(2017) calibration of Forecaster is dominated by planets with masses measured through
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RVs. As this issue continues to be investigated, it will be interesting to test if subsequent

TTV detected masses are offset from the predictions in this work.

3.3.2 Observed Patterns

From studying the results, we highlight three noticeable patterns, which are shown in

Figure 3.1. Observation A: the masses (and indeed RV predictions) follow a relatively

tight relation up to ' 10 R⊕ after which point the uncertainties greatly increase. Naively,

one might assume that the uncertainties should be smaller here, since larger planets give

rise to deeper transits and thus we acquire a higher relative signal-to-noise. However, at

around a Jupiter-radius, degeneracy pressure leads to an almost flat mass-radius relation

all the way until deuterium burning starts in the stars, which occurs at M = 0.008+0.0081
−0.0072 M�

(Chen & Kipping 2017). As a result of this degeneracy, mass predictions end up spanning

almost the entire Jovian range, leading to much larger credible intervals.

Observation B: we note that the radius-mass diagram in Figure 3.1 shows that the

credible interval of the Neptunians and even many of the Terrans have approximately

the same width (in logarithmic space), i.e. the logarithmic variance is homoscedastic.

Ultimately, these uncertainties are a combination of the measurement error in the observed

radii and the intrinsic dispersion in the mass-radius relation. Accordingly, the fact that

the uncertainties appear approximately homoscedastic indicates that they are dominated

by the intrinsic dispersion term, rather than the measurement errors on R. This, in turn,

implies that it will not be possible to forecast noticeably reduced credible intervals in

the future by using more precise planetary radii (for example by using more precise
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stellar radii e.g. Johnson et al. 2017). Therefore, the only way to forecast improved

credible intervals would be to train a revised Forecastermodel, perhaps using additional

variables treated as latent in the current version (e.g. insolation). Until that happens

though, the forecasted masses for R . 10 R⊕ presented here can be treated as the most

precise possible regardless to observational errors.

Observation C: we observe a flattening in the gradient of the predicted RV amplitude

as a function of planetary radius for the Neptunian planets (see Figure 3.1). This is

somewhat surprising because the RV amplitude is proportional to planetary mass, yet

the radius-mass diagram shows a steeper dependency in the Neptunian range. The

implication from this is that large Neptunians detected by Kepler are predicted to have

almost the same RV amplitudes as small, detected Neptunians. Given that MP � M? in

this regime, and that we’ve assumed circular orbits, there are only two ways to explain

this: i) the larger Neptunians tend to have longer orbital periods, ii) the larger Neptunians

tend to have higher mass host stars (or a combination of the two effects). Both effects

are also detection biases for Kepler (Kipping & Sandford 2016), since long-period planets

transit less frequently and high-mass stars tend to be larger, giving rise to smaller transit

depths. To investigate which effect dominates, we plot the orbital periods and host star

masses as a function of planetary radii for the Neptunian planets in Figure 3.2.

Figure 3.2 reveals that there is indeed an apparent trend between the planetary radius

and the orbital period for the Kepler Neptunians, which is most easily explained as being

due to detection biases. We find no such trend for stellar mass objects, although Kepler had

a strong selection bias towards Sun-like stars and thus the sample is limited for low-mass
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Figure 3.2 Orbital periods (top) and host star masses (bottom) as a function of planetary
radius for the 2936 KOIs with modal class probability of being Neptunian and not dispo-
sitioned as a false-positive on NEA. The trend between period and radius is most easily
explained as being due to detection bias, which in turn gives rise to the RV plateau seen
for the Neptunians in Figure 3.1. Median (black line) and 68.3% credible interval (purple)
shown using a top-hat smoothing kernel of 0.14 dex.
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stars.

3.3.3 Promising Small Planets for RV follow-up

We here demonstrate perhaps the most useful application of this work, identifying promis-

ing small planets for RV follow-up. In this work, we have applied Forecaster to Kepler

planets but this should be treated as a demonstration of what could be done with the

upcoming TESS survey too (Ricker et al. 2015). In particular, the narrow-but-deep nature

of Kepler combined with the fact that RV amplitudes are enhanced for low-mass stars

means that the most favorable targets (in terms of absolute RV amplitude) will be around

faint stars. The all-sky nature of TESS will lead to brighter targets and here Forecaster

can clearly play a direct role in identifying promising follow-up targets.

We list 28 promising targets in Table 3.3, where we have down-selected on KOIs not

dispositioned as false-positives on NEA, with radii between one half to four times that

of the Earth and with unusually high RV amplitude predictions. For the latter criterium,

we specifically used K̂ − Kmed > 1.64(K̂ − Klower), where K̂ is the median forecast for K,

Klower is the 15.9% lower quantile of the forecasted K distribution and Kmed is the running

median of the median forecasts of K with the same window size as used before (note that

1.64 σ = 90%). These KOIs are visualized versus the ensemble of small KOIs in Figure 3.3.

As can be seen from Table 3.3, this sample of 28 KOIs all have Kepler bandpass

magnitudes KP > 14. The 1.35 R⊕ planetary candidate KOI-2119.01 is brightest at KP = 14.1,

for which we predict a ∼ 2 m/s amplitude. This sample of targets also highlights the great

potential of near-infrared spectrographs (e.g. Cersullo et al. 2017), where the apparent
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Table 3.3 List of planetary candidates with maximum likelihood radii between 0.5 to 4.0
Earth radii and unusually high forecasted RV semi-amplitudes.

KOI RP [R⊕] K [m/s] M? [M�] PP [days] KP

0596.01 1.29+0.12
−0.14 1.82+1.42

−0.62 0.485+0.039
−0.045 1.6827 14.818

0739.01 1.45+0.10
−0.10 2.57+1.90

−0.87 0.533+0.033
−0.037 1.2871 15.488

0936.02 1.29+0.12
−0.14 2.29+1.78

−0.78 0.479+0.039
−0.049 0.8930 15.073

0952.05 1.38+0.13
−0.12 2.88+2.13

−1.02 0.506+0.037
−0.041 0.7430 15.801

0961.01 0.81+0.16
−0.12 0.98+0.93

−0.45 0.144+0.030
−0.022 1.2138 15.920

0961.02 0.87+0.15
−0.13 1.78+1.77

−0.80 0.144+0.030
−0.022 0.4533 15.920

1202.01 1.23+0.09
−0.08 1.74+1.28

−0.56 0.614+0.030
−0.029 0.9283 15.854

1300.01 1.12+0.08
−0.10 1.58+1.17

−0.54 0.540+0.034
−0.034 0.6313 14.285

1367.01 1.55+0.11
−0.07 2.95+2.06

−1.05 0.840+0.037
−0.039 0.5679 15.055

1880.01 1.35+0.20
−0.12 2.29+1.78

−0.81 0.553+0.030
−0.031 1.1512 14.440

2119.01 1.35+0.10
−0.06 2.14+1.66

−0.73 0.849+0.039
−0.038 0.5710 14.098

2250.02 1.66+0.12
−0.15 3.24+2.39

−1.15 0.812+0.055
−0.059 0.6263 15.622

2347.01 1.00+0.07
−0.07 1.05+0.81

−0.36 0.580+0.029
−0.030 0.5880 14.934

2393.02 1.23+0.09
−0.08 1.58+1.17

−0.51 0.790+0.031
−0.036 0.7667 14.903

2409.01 1.55+0.19
−0.14 3.09+2.28

−1.10 0.764+0.080
−0.065 0.5774 14.859

2480.01 1.35+0.16
−0.12 2.63+2.16

−0.89 0.558+0.050
−0.048 0.6668 15.745

2493.01 1.55+0.19
−0.14 2.75+2.14

−0.98 0.844+0.066
−0.068 0.6631 15.304

2699.01 1.62+0.20
−0.14 3.16+2.33

−1.17 0.853+0.065
−0.077 0.5689 15.230

2704.01 2.40+0.62
−0.58 7.41+6.08

−3.15 0.189+0.068
−0.050 4.8712 17.475

2704.02 1.55+0.45
−0.37 4.07+3.69

−1.67 0.189+0.068
−0.050 2.9842 17.475

2735.01 1.48+0.18
−0.13 2.69+2.09

−0.95 0.864+0.054
−0.063 0.5588 15.600

2783.01 0.65+0.05
−0.06 0.23+0.14

−0.08 0.518+0.030
−0.032 0.5269 14.694

2793.02 1.48+0.14
−0.16 2.63+2.05

−0.93 0.456+0.043
−0.046 1.7668 16.283

2817.01 1.55+0.19
−0.17 2.82+2.19

−1.04 0.805+0.076
−0.074 0.6340 15.760

2842.01 1.95+0.24
−0.21 5.50+4.05

−2.18 0.343+0.044
−0.047 1.5654 16.257

2842.03 1.58+0.19
−0.17 3.09+2.28

−1.10 0.343+0.044
−0.047 3.0362 16.257

3119.01 1.20+0.18
−0.16 2.14+1.75

−0.82 0.249+0.045
−0.036 2.1844 16.946

4002.01 1.38+0.13
−0.09 2.24+1.74

−0.76 0.883+0.044
−0.042 0.5242 15.040
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Figure 3.3 Forecasted radial velocity amplitudes for small planets. The colored region
contains the 68.3% credible interval of maximum likelihood forecasted K values from a
moving window. Points plotted use 68.3% uncertainties and the black points are those
more than 1.64 σ (90%) above the moving median (black).

91



magnitude is significantly brighter.

Despite their faintness, the very short-period nature of these objects (as evident from

Table 3.3) enables repeated monitoring and potentially easier disentanglement of spurious

signals originating from the stars (Pepe et al. 2013; Howard et al. 2013). Thus, despite the

challenges, these targets may be worth pursuing for Kepler and indeed one can expect this

approach to yield far more suitable targets in the TESS-era.

3.4 Discussion

In this work, we have used a data-driven and probabilistic mass-radius relation to

forecast the masses of approximately seven thousands KOIs with careful attention to

correctly propagate parameter covariances and uncertainties (see Wolfgang et al. 2016

and Chen & Kipping 2017). We report 1 and 2 σ credible intervals for each KOI in

Table 2, including derived parameters such as density, surface gravity and radial ve-

locity semi-amplitude. Full joint posterior samples are made publicly available at this

URL(https://github.com/chenjj2/forecasts). We stress that these results should be treated

as informed, probabilistic, and model-conditioned predictions, but not measurements.

Forecaster has already seen numerous applications (e.g. see Foreman-Mackey et al.

2016; Obermeier et al. 2016; Dressing et al. 2017; Rodriguez et al. 2017) to individual

systems or small subsets, but we believe this work to be the first application to a large

(several hundred) ensemble of planets ensuring homogeneous methodology. This work

serves as a demonstration of ensemble predictions for planetary masses based on transit-

derived radii. In the near future, one can expect the number of planetary candidates
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discovered through transits to continue to rapidly grow, exacerbating the demands on

follow-up resources, for which planetary mass is frequently a key driver for various

observational signatures (e.g. radial velocities, atmospheric scale heights, ring/moon

stabilities). For example, TESS is expected to discover ∼ 5, 000 transiting planets (Bouma

et al. 2017), LSST a further ∼ O[103]-O[104] (Lund et al. 2015) and ∼ O[104] from PLATO

(Rauer et al. 2014). In choosing the subset of targets for follow-up, forecasted masses will

be beneficial, and thus the analysis provided in this work can be considered as a template

for these future surveys too.

As an example, we have shown how this approach can quickly identify small KOIs

for which the radial velocity amplitudes are unusually high, increasing the chances for

detections (see Section 3.3.3). The combination of the forecasted mass, the low parent star

mass, and the short orbital period maximizes K. However, the deep-sky nature of Kepler

and the bias towards low-mass stars mean that these targets are faint - a problem likely

to be resolved with the all-sky surveys of TESS and PLATO. Of course, realistic target

selections will depend upon more than just signal amplitude, likely factoring in expected

noise, planet properties, and other program-specific questions of interest (e.g. see Kipping

& Lam 2017 for an example of target selections based on forecasted multiplicity).

Future improvements to the forecasts made in this work are unlikely to result from

simply obtaining more precise planetary radii, since the predicted mass uncertainties are

observed to be dominated by the intrinsic dispersion inherent to the model itself (see

Section 3.3.2). Future work could attempt to build an updated probabilistic model using

more data and likely a second dependent variable, such as insolation. Until that time, the
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forecasts made here are likely to be the most credible estimates available without direct

observations.

3.5 The detectability of known radial velocity planets with

the upcoming CHEOPS mission

The Characterizing Exoplanets Satellite (CHEOPS) mission is planned for launch next year

with a major objective being to search for transits of known RV planets, particularly those

orbiting bright stars. Using an empirically calibrated probabilistic mass-radius relation,

Forecaster, we predict a catalog of 468 planets discovered via radial velocities. Our work

aims to assist the CHEOPS team in scheduling efforts and highlights the great value of

quantifiable, statistically robust estimates for upcoming exoplanetary missions.

The purpose of this and the following sections are to exemplify the application of

Forecaster in predicting the radii of planets. As the code execution was performed by

Joo Sung Yi, a high school student who I co-advised during the summer of 2017, I won’t

go into too many details of the methodology and results.

3.6 Forecasting Radii from Masses

3.6.1 Probabilistic predictions with Forecaster

A basic requirement of this work is to predict the transit depth, and thus the radius, of each

of the few hundred exoplanets discovered through the radial velocity method. A major
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challenge facing any attempt to convert masses to radii, or vice versa, is that the mass-

radius relation of exoplanets displays intrinsic spread. This spread, likely due to intrinsic

variations in composition, chemistry, environment, age, and formation mechanism, means

that simple deterministic models are unable to reliably predict the range of plausible radii

expected for any given mass.

One solution to this problem is to model the exoplanetary masses and radii with a

probabilistic relation. This treats each mass as corresponding to a probability distribution

of radius, rather than a single, deterministic estimate. Chen & Kipping (2017) inferred such

a relation for masses spanning nine orders-of-magnitude, both providing a comprehensive

scale for inversion, as well as calibrating the relation as precisely as possible by utilizing

the full dynamic range of data available. An additional key quality of the Forecaster

model is that the relationship is trained on the actual measurement posteriors of each

training sample via a hierarchical Bayesian model, meaning that the measurement errors

of these data are propagated into the Forecaster predictions.

For these reasons, Forecaster is a natural tool for predicting the radii of radial

velocity planets.

3.6.2 Accounting for measurement uncertainties

Whilst Forecaster accounts for the intrinsic dispersion displayed by nature in the mass-

radius relation, as well as the measurement uncertainties of its training set, a third source

of error exists that requires accounting for on our end in this work. Specifically, for each

RV planet, there exists often sizable uncertainty in the mass of each body.
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To account for this, we technically require the a-posteriori probability distribution of

each planet’s mass, m. For n samples randomly drawn from such a mass posterior, Pr(m),

a robust forecast of the planetary radius can be made by proceeding through the samples,

row-by-row, and executing Forecaster at each line. The compiled list of predicted radii

represents the covariant posterior distribution for the forecasted radius. A similar process

is utilized in the reverse-direction application described in Chen & Kipping (2018).

A practical challenge to implement the scheme above is that posterior distributions

are rarely made available in papers announcing or studying RV planets1. Fortunately, of

all the parameters describing the RV model, the RV semi-amplitude (K) posterior rarely

exhibits multi-modality or extreme covariance (Ford 2006) and can often, in practice,

be reasonably approximated as Gaussian (e.g. see Tuomi 2012 and Hou et al. 2014).

By extension, since K ∝ m for m � M?, we will assume that the planetary mass can be

described as Gaussian, such that m ∼ N[µm, σm] in what follows in order to make progress.

3.6.3 Approximate form for the posterior distributions

Naively using Gaussians for m can be problematic though for two reasons. First, Gaus-

sians have non-zero probability density at negative values and thus negative masses will

occasionally be sampled from a Gaussian distribution. This can be solved by performing

a truncation at zero for the Gaussian distribution, preventing the distribution from draw-

ing negative samples. Second, Gaussians are perfectly symmetric yet literature quoted

credible intervals for m may include asymmetric uncertainties, e.g. m = (µm)+σm+
−σm−

. But

1This is in contrast to our earlier work predicting masses from radii in Chen & Kipping (2018), where
transit-derived posteriors are often available.
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in practice, we note that none of the reported planetary masses used for this work is

asymmetric.

3.6.4 Treating the minimum mass as being equal to the true mass

We assume that the minimum mass derived from radial velocity measurements equals the

true mass of the exoplanet, in other words sin i ' 1. Whilst one might naively assume sin i

to be, a-priori, isotropically distributed, our work primarily concerns itself with transiting

planets. Within the range of inclination angles which lead to transits, we can safely assume

sin i ' 1 to be a reasonable approximation.

3.7 An Overview of Results

We predicted the posterior distribution for radius as described earlier. To illustrate a

specific result, we show a corner plot of the posteriors produced in this work for the

planet HD 20794c in Figure 3.4. We mark the median, as well as the 68.3% and 95.5%

credible intervals.

Predictions in this work are validated by extracting the RV planets in our sample

for which the planetary radius has been directly measured via a transit detection. We

compare the predictions versus the observations, which reveals that our predictions are

fully compatible with the observed values. Only one of our predicted radii falls outside

of the 1 σ credible interval (HD 149026b), yet this object falls within the 2 σ prediction.

This is not statistically surprising, since amongst a sample of nine objects, it should not be
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generally expected that all nine fall within the 68.3% probability interval.
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Chapter 4

Constraining an Exoplanet’s

Composition

The interior structure of an exoplanet cannot be directly measured with today’s observa-

tional techniques. However the interior structure plays an important role in determining

the evolution and the environment of an exoplanet, such as predicting the habitability

of Earth analogs. With measurements of only two bulk parameters: mass and radius,

inference of the interior structure with any multi-layer model suffers from a fundamental

degeneracy. In this work, we show that although the problem is indeed degenerate, there

exist two boundary conditions that enable one to infer the minimum and maximum core

radius fraction, CRFmin & CRFmax. These hold true even for planets with light volatile

envelopes, but require the planet to be fully differentiated and that layers denser than

0This chapter is a reproduction of a paper that has been published by The Monthly Notices of the
Royal Astronomical Society. It can be found at https://academic.oup.com/mnras/article/476/2/2613/
4858395. I mentored undergraduate student Ms Suissa in completing this work and guided the project
design and interpretation. The article has been reformatted for this section, and some additional commentary
has been appended.
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iron are forbidden. In the end, we also propose using the hierarchical Bayesian model to

derive the typical fraction of each layer given a sample of similar exoplanets.

4.1 Introduction

Despite recent strides in our ability to characterize exoplanets (Kaltenegger 2017), knowl-

edge regarding the internal structure of distant worlds remains almost entirely lacking

(Spiegel et al. 2014; Baraffe et al. 2014). Unlike the search for exoplanetary atmospheres

(Burrows 2014), moons (Kipping 2014), or tomography (McTier & Kipping 2018), our re-

mote observations do not have direct access to what we seek to infer - the planet’s interior.

The habitability of an Earth-like planet, in particular via the likelihood of plate tectonics,

is likely to be strongly influenced by the internal structure (Noack et al. 2014) and thus the

community is strongly motivated to infer what lies beneath, as part of the broader goal of

understanding our own planet’s uniqueness.

In general, the only information we have about an exoplanet, which is directly af-

fected by internal structure, is the bulk mass and radius of the planet1. Aside from this,

we highlight that there are some special cases where additional information about the

planetary interior can become available. For example, Kaltenegger et al. (2010) argue that

volcanism and planetary outgassing could be detectable using atmospheric characteri-

zation techniques. Certain dynamical configurations of planetary systems, such as tidal

fixed points (Batygin et al. 2009), can also enable inference of the planetary tidal properties,

which in turn constrain internal compositions (see also Kramm et al. 2012). Finally, direct

1Quantities such as bulk density and surface gravity are of course derivative of mass and radius
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measurements of oblateness may also provide constraints on internal structures (Seager

& Hui 2002; Carter & Winn 2010; Zhu et al. 2014).

Whilst there is some hope of identifying outgassing of exoplanets, providing clues

to the mantle composition (Kaltenegger et al. 2010), and measuring tidal dissipation

constants in special cases (Batygin et al. 2009), full structure inference will likely be

limited to indirect methods based on theoretical models. In this approach, one takes the

basic observables we do have access to, in particular planetary mass and radius, and

compares them to theoretical models in an effort to find families of compatible solutions.

Since theoretical models depend on not only masses and radii, but also factors such as

chemical compositions (Seager et al. 2007), ultraviolet environments (Lopez & Fortney

2013; Batygin & Stevenson 2013), and ages (Fortney & Nettelmann 2010), the problem is

degenerate, in a general sense.

Since we do not have direct access to the interior of exoplanets, the interior structure

is generally modeled by assuming several key chemical constituents. In the case of solid

exoplanets, extrapolation from the Solar System implies that they should be comprised

of three primary chemical ingredients, namely water, H2O, enstatite, MgSiO3, and iron,

Fe. If we assume that the planet is not young and has thus become fully differentiated,

the equations of state of these three layers can be solved to provide theoretical estimates

of the mass and radius of solid bodies (Zeng & Sasselov 2013). A fourth layer describing

a light volatile envelope can be placed on top to capture the behavior of mini-Neptunes,

where the light envelope is assumed to have negligible relative mass and thus only affects

the bulk radius but not the mass (Kipping et al. 2013; Wolfgang et al. 2016).
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These four constituents can be combined in multiple ways to re-create the same

combination of mass and radius. Even in the absence of a volatile envelope this degeneracy

persists, leading to the common use of ternary diagrams to illustrate their symplectic yet

degenerate loci of solutions (e.g. see Seager et al. 2007). This degeneracy is a major barrier

to inferring the unique solution for the planetary interior, leading authors to either switch

out to simpler and non-degenerate two-layer models (e.g. Zeng et al. 2016) or add a

chemical proxy from the parent star (e.g. Dorn et al. 2017) to break the degeneracy. Whilst

these are both certainly promising avenues for tackling interior inference, in this work we

focus on a third approach based on boundary conditions.

The possibility of exploiting boundary conditions was first highlighted in Kipping

et al. (2013), where the authors focused on the concept of “minimum atmospheric height”.

The method works by first predicting the maximum allowed radius of a planet without

any extended envelope given its measured mass. This atmosphere-less planet is typically

assumed to be a pure water/icy body, for which detailed models are widely available. If

the observed radius exceeds this maximum limit, some finite volume of atmosphere must

sit on top of the planetary interior, and the difference in radii represents the ”minimum

atmospheric height” (MAH). The approach therefore formally describes a key boundary

condition of a general four-layer exoplanet.

In this chapter, we explore the other extreme, asking the question under what condi-

tions would the observed mass and radius definitively prove some finite iron-core to exist,

and what is the minimum radius fraction that the core must comprise? Going further,

we argue that the maximum core radius fraction is another boundary condition in the
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problem and thus can be derived to provide a complete bounding box of a planet’s core

size in a general four-layer model framework.

We introduce the concept of the minimum core size in Section 4.2, as well as our

fast parametric model to interpolate the Zeng & Sasselov (2013) grid models. Section 4.3

discusses our approach to inverting the relation to solve for core radius fraction directly, as

well as the much more straightforward method for inferring the maximum core size. Fi-

nally, we discuss applying hierarchical models on the composition fractions of exoplanets

in Section 4.4.

4.2 Boundary Conditions on the Core

4.2.1 Outline and Assumptions

Exoplanets are generally expected to display a diverse range of physical characteristics,

owing to their presumably distinct formation mechanisms, chemical environments, and

histories, as three examples. Even if the mass and radius of an exoplanet were known to

infinite precision, and the body was known to be definitively solid, these two observed

parameters are insufficient to provide a unique solution for the relative fractions of water,

silicate, and iron typically assumed to represent the major constituents of solid planets

(Kipping et al. 2013). In other words, mass and radius alone cannot confidently reveal an

exoplanet’s CRF or CMF (core radius fraction or core mass fraction, respectively).

As a concrete example, a planet composed of water and iron can have the same mass

and radius as an iron-silicon planet, and thus have very different CRFs (as illustrated in
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Figure 4.1).

As touched on in Section 4.1, four-layer theoretical models of solid planets are degen-

erate for a single mass-radius observation. However, there exists a boundary condition

when the composition is pure silicate and iron. At this point, the CRF takes the smallest

value out of all possible models, since the second-layer (the mantle) is now as heavy

as it can be, being pure silicate (the second densest material). Therefore, for any given

mass-radius pair, we can solve for the corresponding CRF of a pure silicate-iron model

(which is not a degenerate problem) and define that this CRF must equal the minimum
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CRF, CRFmin, allowed across all models.

Similarly, another boundary condition we can exploit is to consider the maximum

allowed core size. As depicted in Figure 4.1, this occurs when all of the mass is located

within a pure iron core, padded by a second layer of a light volatile envelope. The core

can’t possibly exceed this fractional size else the mass would be incompatible with the

observed value.

Note that although we refer to CRF rather than CMF here in what follows, once

armed with a CRF, the mass and radius, it is easy to convert back to CMF. Note too that

here and throughout what follows, we refer to the CRF strictly in terms of an iron core.

Although technically we acknowledge that a water-silicate body could be described as

having a finite sized silicate core, that core would not qualify as being a “core” in this

work.

Before continuing, we highlight some key assumptions of our model, for the sake of

transparency:

� The planet is fully differentiated and is not recently formed.

� The outer volatile envelope has insufficient mass and thus insufficient gravitational

pressure to significantly affect the equation-of-state of the inner layers.

� The densest core permitted is that of iron i.e. heavy-element (e.g. uranium) cores

are forbidden.

� We have accurate models for a planet’s mass and radius given a particular compo-

sitional mix.
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We stress that what has been described thus far includes the possibility of a light

volatile envelope, and is not limited to some special case of two- or three-layer conditions,

as discussed earlier.

Under these assumptions, the limiting core radii fractions should be determinable,

although violating any of the assumptions listed above would invalidate our argument.

An obvious one is that the theoretical models used are invalid or inaccurate, for example

because their assumed equations of state are wrong. In this work, we primarily use the

Zeng & Sasselov (2013) model but we point out that should a user believe an alternative

model to be superior, it is straight-forward to reproduce the methods described in this

paper using the model of their preference. The actual existence of a boundary condition

remains true.

Another more serious flaw would be if the planetary body in question has a significant

mineral fraction based on some heavier element than iron, for example a uranium core.

Such a body could feasibly have a significantly smaller core than that derived using our

approach. If evidence for such cores emerges in the coming years, we advice against users

employing the model described in this work.

The remaining two assumptions, a differentiated, non-young planet and a light

volatile envelope, mean that young systems are not suitable and gas giants would not

be either. In general then, the model described is expected to be valid for most planets

smaller than mini-Neptunes.
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4.2.2 A parametric interpolative model for CRFmin

For any combination of mass and radius, we need to be able to predict what the corre-

sponding CRF would be for a silicate-iron two-layer model, in order to determine CRFmin.

We use the models of Zeng & Sasselov (2013), which are made available as a regular

grid of theoretical points. Whilst we could simply perform a nearest neighbor look-up,

this is unsatisfactory since our precision will be limited to the grid spacing and resulting

posteriors would be rasterized to the same grid resolution. Instead, we seek a means to

perform an interpolation of the grid.

The first successful literature interpolation of the Zeng & Sasselov (2013) models

comes from Kipping et al. (2013), who found that for a specific fixed CRF, each of the

various two-layer models of Zeng & Sasselov (2013) is very well-approximated by a

seventh-order polynomial of radius with respect to the logarithm of mass.

In this work we used a similar approach by training a suite of seventh-order polyno-

mials with varying CRFs assuming the two-layer iron-silicate models of Zeng & Sas-

selov (2013), and validated the model with all of the original training data Zeng &

Sasselov (2013) but omitting a random single datum each time, serving as a hold-

out validation point. The model, hardCORE, was made publicly available at this URL

(https://github.com/gsuissa/hardCORE).

4.2.3 A parametric model for CRFmax

Determining CRFmax is far more straight-forward than CRFmin. One may simply take the

100% iron mass-radius models, in our case from Zeng & Sasselov (2013), and directly
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compute the expected radius of a pure iron planet given an observed mass, Riron(Mobs).

4.3 Solving for the CRF Limits

4.3.1 From forward- to inverse-modeling

Thus far we have described a method to solve for CRFmax but not for CRFmin. The silicate-

iron interpolative model is a forward model in which we begin with knowledge of both

the planet’s mass and the minimum core radius fraction to compute the corresponding

radius. In practice, however, we are interested in the inverse model, where we wish to

determine CRFmin from the mass and radius.

The nested coefficient structure makes the problem non-linear with respect to CRFmin,

yet it is one dimensional and found to be unimodal in practice. For these reasons, it is

amenable to a large number of possible optimization algorithms, but in what follows we

adopted Newton’s method, since we are able to directly differentiate our functions thanks

to their parametric nature.

Specifically, in our implementation we minimize the following cost function, J, with

respect to one degree of freedom, the CRF:

J = (RFe−Si(CRF; Mobs) − Robs)2, (4.1)

where Mobs and Robs are the observed mass and radius of the planet, and RFe−Si(CRF; M)
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is the radius of a two-layer iron + silicate model with core radius fraction CRF and mass

M. The latter function is determined using the smooth parametric interpolation model de-

scribed in Section 4.2.2. Our inversion algorithm, starts at an initial guess of CRFmin = 0.5

and then iterates by computing

CRFi+1 = CRFi −
J(CRFi)

[dJ/dCRF](CRFi)
. (4.2)

To improve speed and stability, we impose a check as to whether Robs is below that of

a pure iron planet of mass Mobs, in which case we fix CRFmin = 1, or if the radius exceeds

that of an pure silicate planet of mass Mobs (where again we use the interpolative model

of Kipping et al. 2013), in which case we fix CRFmin = 0.

4.3.2 The Earth as an example

Let us use the Earth itself as an example of our method. We took a 1 M⊕ and 1 R⊕ planet and

used the methods described earlier to solve for CRFmin and CRFmax, giving CRFmin = 0.43

and CRFmax = 0.77.

In reality, the Earth is not perfectly described by the Zeng & Sasselov (2013) model

and the core in particular is only ∼ 80% iron, with nickel and other heavy elements

comprising the rest. The mantle-core boundary occurs at a radius of 3480 km relative to

the Earth’s mean radius of 6371 km, meaning that its actual CRF = 0.55. Accordingly, our

CRF bounds correctly bracket the true solution, as expected.
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We go further by treating these limits as being bounds on a prior distribution for

CRF. Adopting the least informative continuous distribution for a parameter constrained

by only two limits corresponds to a uniform distribution. Sampling from this distribution

yields a marginalized CRF of CRFmarg = 0.600 ± 0.098, which is again fully compatible

with the true value.

To test our inversions in a probabilistic sense, we decided to create a mock posterior

distribution of an Earth-like planet where M ∼ N[1.0M⊕, 0.01M⊕] and R ∼ N[1.0R⊕, 0.01R⊕]

(we also apply a truncation to the distributions at zero to prevent negative masses/radii).

This is clearly an optimistic assumption but a more detailed investigation of sensitivity

for different relative errors is tackled later in Section 4.3.3. Generating 105 samples, we

inverted each sample as described earlier to produce a posterior for CRFmin and CRFmax.

Our experiment returns near-Gaussian distributions for both terms with the mean and

standard deviation given by CRFmin = (0.43 ± 0.04) and CRFmax = (0.7716 ± 0.0080). This

establishes that the inversions are stable against perturbations around physical solutions.

As a brief aside, we argued earlier in Section 4.2.1 that the principle of exploiting

the boundary condition of theoretical models to infer CRFmin does not explicitly require

solid planets and works for mini-Neptunes too. To demonstrate this point with a specific

example, let us return to the earlier thought experiment of the Earth as a gaseous planet

consisting of a solid iron core surrounded by a light H/He envelope. We consider that the

mass and radius of the planet remain the same as the real Earth, and that the envelope

significantly influences the radius but has negligible mass. Using the 100% iron-model

of Zeng & Sasselov (2013) and the corresponding 7th order polynomial interpolation of
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Kipping et al. (2013), we estimate that a 1 M⊕ iron core would have a radius of 0.77 R⊕ and

therefore the remaining 0.23 R⊕ is given by the light, H/He envelope as depicted earlier

in Figure 4.1. Accordingly, such a body would have a core radius fraction exceeding our

inferred minimum value of (which was CRF > 0.43), which is expected and self-consistent

with our definition of CRFmin.

We highlight that the counter-example described above is highly unphysical though;

1 R⊕ planets are not expected to retain significant volatile envelopes in mature systems,

both from a theoretical perspective (Lopez & Fortney 2014) and an observational one

(Rogers 2015; Chen & Kipping 2017; Fulton et al. 2017). Planets exceeding ∼ 1.5 R⊕, on the

other hand, are certainly at risk of retaining large envelopes (e.g. see Kipping et al. 2015)

and we generally advise against using our model for such large planets which cannot be

reasonably assumed to be solid.

4.3.3 Sensitivity analysis for an Earth

A basic and important question to ask is what kind of precisions on a planet’s mass and

radius lead to meaningful constraints on CRFmin. In other words, what is the correspon-

dence we might expect between {(∆M/M), (∆R/R)} and (∆CRFmin/CRFmin). This is key

for designing future observational surveys, where primary science objectives may center

around inferring internal compositions. To investigate this, we repeated the retrieval

experiment described in Section 4.3.2, but varied the fractional error on mass and radius

away from the fixed 1% value previously assumed.

In total, we generated 812 = 6561 experiments, where for each one we generated a new
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mock posterior of 105 mass-radius samples, which was then converted into a posterior

of CRFmin and CRFmax. For each experiment, we record the standard deviation of the

resulting posteriors as ∆CRFmin and ∆CRFmax. The errors on the mass and radius were

independently varied with a fractional error given by 10x, where x was varied across a

regular grid from -4 to 0 in steps of size 0.05, giving 81 grid points in each dimension, and

thus 6561 across both. In all experiments, the underlying mass and radius posteriors are

generated assuming a mean of µM = 1 M⊕ and µR = 1 R⊕.
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Figure 4.2 displays the results of this effort for each combination of mass and radius

error. Given the shape of darker areas of the color plot, one can see that radius is the

dominant constraint, and that for the same fractional error on mass and radius, it is the

radius term which mostly strongly constrains CRFmin. For example, we find that in order

to obtain a precision of 10% on CRFmin, we require a measurement on the mass better than

11% and a measurement on the radius better than 3%.

The ratio of these two numbers, close to three-to-one, led us to hypothesize that

density is the underlying driving term. This can be seen by calculating error on density

for independent mass and radius via

∆ρ

ρ
=

∆M
M

+ 3
∆R
R
. (4.3)

This is verified in the lower panels of Figure 4.2, where we find that although density

doesn’t perfectly capture the dependency, it describes the vast majority of the variance. For

precise densities (. 1%), the dependency is strictly linear where we give the coefficients

in the panels. This linear dependency breaks down as the errors grow, likely as a result

of the truncated normals used to generate the masses and radii, becoming increasingly

skewed and the finite support interval (zero to unity) of the CRF itself causing a saturation

effect.

The marginalized CRF behaves quite different to the other two. The upper-central

panel of Figure 4.2 alone looks fairly consistent with the previous inflated errors. This is to

be expected by the very act of marginalization. However, the bottom-central panel does
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not exhibit a simple linear dependency, even at precise densities. In contrast, at precise

densities the marginalized CRF appears to saturate to ∼10%. This implies that no better

than 10% precision can ever be obtained on the CRF using just mass and radius alone.

4.3.4 Generalized sensitivity analysis

Thus far, we have assumed a M = 1 M⊕, R = 1 R⊕ planet. In order to generalize the scalings

found, we decided to vary these inputs and repeat the entire process described above. We

varied the mass from 1 to 10 Earth masses logarithmically and the CRF from 0.2 to 0.8

uniformly, exploring over 1000 different realizations. For the CRFmax term, we find that

∆CRFmax ' αmax

(
∆ρ

ρ

)
(4.4)

provides an excellent fit across all simulations, where the best-fitting value of the coefficient

term ranged in 0.187 < αmax < 0.237. The relationship is sufficiently tight that it is

reasonable to simply adopt αmax ' 0.2 as a general rule of thumb. Repeating for the

minimum limit on the CRF we find that the function

∆CRFmin ' αmin

(
∆ρ

ρ

)
(4.5)

again provides excellent fits, but now the coefficient term varies dramatically in the

range of 0.6 < αmin < 4 across all simulations, or logarithmically in the range of −0.3 <
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log10 αmin < 0.66. The behavior of αmax appears to display a peculiar and periodic de-

pendency with respect to the dependent variables, CRF and mass. We were unable to

identify a simple physically motivated relation after substituting for terms such as density

and surface gravity, but were able to capture the most of the variance using an empirical

approximate formula given by

log10 αmin ' −0.340985 + 0.0766358expβmin, (4.6)

where

βmin 'b4.934(CRF − 8
3 log10 M − 2

3R[1.34 − 4 log10 M]c

− 3.28933R[4(log10 M − 0.335)] − 4.934CRF

+ 13.1573 log10 M. (4.7)

where R is a rounding function. We find that the above function has a robust (via the

median absolute deviation) estimate of the RMS in the residuals of ∆(log10 αmin) = 0.058.

The marginal CRF plateau, which was 10% in the case of the Earth, also varies in a non-

trivial manner, ranging from 2.8% to 15.7% across our suite of simulations. Fortunately,

the location of the plateau appears to be directly related to αmin, and thus we can use our

earlier empirical function to predict this term too with
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∆CRFmarg ' αmarg (4.8)

where

log10 αmarg ' − 0.9819 − 0.00583exp(−13.6 log10 αmin)

+ 0.321 log10 αmarg. (4.9)

We briefly comment that this saturation-behavior can be understood as follows. With

imprecise data, the posteriors on the minimum and maximum limits will be broad, and

so sampling a point between them will yield an even broader distribution. As the data

become more precise, the posterior distributions for CRFmin and CRFmax converge towards

sharp delta functions, but these two limits have no reason or expectation to be on top of

one another. Accordingly, when we draw samples between them uniformly, we will still

get a broad distribution, albeit not as broad as that obtained when CRFmin and CRFmax

were also broad.

4.4 Discussion

As we have mentioned above, any interior model with more than two layers will suffer

from fundamental degeneracies and so cannot be solved using only mass and radius data
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because the number of constraints is smaller than the number of degrees of freedom.

However, with an ensemble of similar exoplanets, which we assume to have similar

interior structures, the degeneracy problem can be partially overcome with a hierarchical

Bayesian model as we can use multiple masses and radii measurements to constrain

the ’typical’ composition fractions for a certain type of exoplanets. In what follows, we

propose a simple hierarchical model to derive the composition fractions.

For simplicity, we can assume a three-layer model comprising of an iron core, a

silicate mantle, and a water envelope. A more sophisticated interior model can be easily

generalized with the same framework. Let’s say the radius fraction of the three layers are

xi, xs, and xw. As they always sum up to one, we can assume them to follow the Dirichlet

distribution Dir(a1, a2, a3). This is the hyper layer of the model. Given the three fractions

and the true radius of an exoplanet, we can derive the true mass with a interior structure

model, such as that of Zeng & Sasselov (2013). Then we can assume that the mass and

radius measurements follow some distribution, which in my cases is well-represented by

a normal distribution, related to the planet’s true mass and radius. This is the local layer

of the model. The full model is shown in Figure 4.3.

We didn’t have time to actually run the model as explained above. But we expect that

this method should lead to some improvements over deriving boundary conditions only.

As is pointed out in Dorn et al. (2017), additional constraints such as relative abundance

derived from the host star must be applied to overcome the inherent degeneracy of

deriving compositions from bulk mass and radius of exoplanets. Here the additional

constraints comes from stacking the masses and radii of multiple planets, instead of from
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Figure 4.3 Proposed graphical model of the HBM used to infer the composition fractions.
Yellow ovals represent hyper-parameters, white represent the true local parameters, and
gray represent data inputs. All objects on the plate have N members.

a different dimension of the same individual planet. This model, on the other hand,

also has its problems. First, there will be individual difference between the composition

fractions of any two planets even if they belong to the same category. But this model mainly

considers a typical interior structure. Even though the local parameters will represent each

individual exoplanet’s composition fractions, they are derived based on the assumption

that all the samples share similar interior structures. If an exoplanet of extreme interior

structure exist, this model might not be able to catch it. In this case, adding information
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from another perspective, such as the relative abundance, and making inference on an

individual exoplanet should be more helpful. Second, this model requires a spectrum of

either the mass and or the radius measurements. Consider the extreme case of multiple

planets having the exact same masses and radii, which means there is only one unique

mass and radius data point. We still don’t know if a possible composition combination is

more probable than another one even though there is more information in hand. For these

reasons, the above would be another substantial research project that we did not have

time to execute but believe it would be a valuable investigation to add to the literature for

future work.
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Chapter 5

On the Rate of Abiogenesis from a

Bayesian Informatics Perspective

The abiogenesis rate (λ) defines how often life spontaneously originates from the envi-

ronment. This number plays a crucial role in estimating if extraterrestrial life exists and

how many inhabited exoplanets there are. However, since the Earth is the only place

we know life to exist, previous Bayesian formalisms for the posterior distribution of λ

have demonstrated that the posterior distribution is dominated by the prior distribution.

Instead of inferring the true λ posterior, we here compute the relative change in λ when

new information is provided. By calculating the information gains, we compare three

experimental pressures on λ: 1) evidence for an earlier start to life, tobs; 2) constraints on

spontaneous abiogenesis from the lab; and 3) an exoplanet survey for bio-signatures.

0This chapter is a reproduction of a paper that has been accepted by Astrobiology and posted on arXiv.
It can be found at https://arxiv.org/abs/1806.08033. The article has been reformatted for this section.
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5.1 Introduction

The number of communicative civilizations in our galaxy is often framed in terms of the

famous Drake Equation, described by seven parameters which can be considered to guide

the observational inputs needed to make an inference. When first proposed by Frank

Drake over half a century ago, all of the terms were essentially unknown (Drake 1977).

But today observational constraints exist for the first three terms: the rate of star formation

(Robitaille & Whitney 2010), the fraction of stars with planets (Cassan et al. 2012), and

the average number of habitable planets per star (Foreman-Mackey et al. 2014; Dressing

& Charbonneau 2015). It is therefore timely to consider what type of observations might

enable us to best constrain the next term, fl, the fraction of habitable planets which develop

life.

At the time of writing, interstellar panspermia is considered to be an unlikely path-

way for planets to develop life (Wesson 2010), which leaves the most likely pathway as

abiogenesis: the spontaneous process by which inert matter becomes living things.

The rate of abiogenesis, λ, is surely functionally dependent upon the very specific

geophysical, chemical, and environmental conditions of a given world (Scharf & Cronin

2016). For example, it would seem manifestly wrong to assume that frigid Pluto should

have the same rate of abiogenesis events as the early Earth. Consequently, one might

reasonably ask whether knowledge of the Earth’s rate of abiogenesis has any useful merit

for predicting the prevalence of life elsewhere? Whilst this is certainly a reasonable and

valid concern, we are frankly left with no choice but to operate under the assumption

that the Earth is not an outlier but a sample drawn from a distribution if we wish to
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make any meaningful progress from a statistical perspective. This concern can at least be

somewhat mitigated by assuming that the Earth’s rate of abiogenesis is a representative

sample drawn for a particular subset of planet types - namely “Earth-like” planets. The

precise definition of what constitutes a member of this subset is an in-depth discussion in

itself (Tasker et al. 2017), but let us continue under the assumption that such a definition

can be expressed, whatever it may be.

There are no other known examples of life beyond the Earth. Further, all known

extant and extinct forms of life are generally thought to share a universal common ancestry

(UCA), an idea which was first suggested by Darwin (1968) and today forms a central pillar

of modern evolutionary theory (Sober 2008). We are therefore faced with the challenge of

trying to infer the rate of abiogenesis from a single datum. Further, we cannot exclude

the possibility that multiple abiogenesis events occurred or are indeed in the process of

occurring, merely that at least one event transpired which led to a planet-dominating tree

of life. A statistic of one is difficult to work with at the best of times, but the situation is

exacerbated by the anthropic bias that we would not be here had at least one event not

been successful.

A critical piece of observational evidence guiding these discussions is that life appears

to have emerged on the Earth over 3.5 billion years ago (Schopf et al. 2007), and thus

relatively early.

A significant advancement in the statistical treatment was presented in Spiegel &

Turner (2012), who cast the problem in a Bayesian framework. As we show later in a

re-derivation of their formalism, this naturally accounts for the selection bias imposed by
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the fact that our existence is conditioned upon a success. A key conclusion of Spiegel &

Turner (2012) was that the probability distribution of λ conditioned upon the observation

of life’s early emergence, known as the posterior distribution, is highly sensitive to what

prior assumptions (including tacit assumptions) one imposes about how λ is distributed,

known as the prior distribution.

In general, the functional form and the corresponding shape parameters describing

the prior probability distribution for λ are completely unknown. Even changing between

different but ostensibly reasonable uninformative priors (e.g. see Lacki 2016) leads to

dramatic changes in the posterior (Spiegel & Turner 2012), given the current data in hand.

Rather than trying to estimate the absolute posterior of λ, which may be simply in-

feasible with present information, a more achievable goal is to compare how the posterior

would be expected to change if additional information were obtained - a distinct approach.

By quantifying how much we learn from various hypothetical experiments, the goal here

is to guide future experimenters to the strategies that are most likely to constrain λ, and

critically in what way does each experiment constrain it. Accordingly, in this work, we

consider three types of experiments that might be expected to constrain λ:

� An earlier estimate for the time at which life first appeared on the Earth, tobs.

� An upper limit on the rate of abiogenesis, λmax (e.g. from a series of Miller & Urey

(1959) type laboratory experiments).

� The unambigious detection or null-detection of life amongst a subset of N Earth-like

exoplanets/exomoons.
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Observational evidence for an earlier tobs may come from numerous different sources

but the details are unimportant for this work - we only assume that the evidence is

unambiguous. This means that we do not invoke a probabilistic model where the data

itself are uncertain, since the probability distribution describing that uncertainty would

be itself unknown.

In a similar vein, an upper limit on λ from laboratory experiments is not a soft

probabilistic threshold but assumed to be a hard cut off, since again the softness shape

would add additional unknowns into our model. Further, we do not consider the more

informative case of an actual instance of spontaneous lab-based abiogenesis in this work.

If reproducible, such a detection would be so constraining that it would make the results

of our paper moot, and is therefore not worth including here.

Finally, extraterrestrial examples of life are formally (but not necessarily strictly)

limited to extrasolar worlds (i.e. not worlds such as Mars), in order to greatly reduce the

false-alarm probability that the observed life is in fact related to us via a prior panspermia

event. We also assume that it is possible to collect observations that can categorically

determine whether an extrasolar body has or does not have recognizable life. In this

way, one might limit our definition of λ to be only applicable to events which ultimately

lead to recognizable life. For example, it is possible that a body is inhabited by a life

form which produces almost no bio-signatures, making remote detections effectively

impossible and our λ would not include these more elusive organisms. A final caveat is

that the planets/moons in this sample should be not only Earth-like now but Earth-like

for geological timescales (we formally adopt 4 Gyr as a representative habitable age).
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In each of these three experiments, we can compare how the posterior distribution

of λ is expected to change, both qualitatively and quantitatively. Before doing so, it is

necessary to first formally introduce our Bayesian framework in Section 5.2. Following

this, we describe the results of the three experiments in Section 5.3. Finally, Section 5.4

summarizes our findings and describes the main conclusions of this work, as well as

listing the limitations of this exercise.

5.2 Bayesian Model

5.2.1 A uniform rate model for abiogenesis

We follow the prescription of Spiegel & Turner (2012) in adopting the simple yet reasonable

assumption that abiogenesis events occur at a uniform rate over time, thus following a

Poisson process. Let us denote the Poisson shape parameter as λ, which describes the

mean number of abiogenesis events, N, occurring in a fixed time interval, which we set

as one Gyr. For example, a rate of λ = 4 means that, on average, four abiogenesis events

occur every Gyr. The probability distribution for the number of events that actually occur

is described by a Poisson distribution, with a shape parameter λ; i.e. N ∼ Pr(λ). Over

a time interval of t then, the expected value for the number of abiogenesis events would

be λt. Consequently, the probability of N abiogenesis events having transpired during a

time interval t is
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Pr(N|λ, t) = e−λt (λt)N

N!
. (5.1)

5.2.2 Time for life to emerge as an exponential distribution

As discussed in Section 5.1, we do not know how many abiogenesis events have occurred

on Earth to date, only that at least one must have occurred over a time interval t, where t

represents the interval from now back to when the Earth first became capable of supporting

life. The probability of at least one abiogenesis event occurring in this time is unity minus

the probability of zero event occurring; or equivalently the probability of life emerging on

a planet within a time t is

Pr(N ≥ 1|λ, t) = 1 − Pr(N = 0|λ, t),

= 1 − e−λt, (5.2)

which is the cumulative density function (CDF) of an exponential distribution. When we

consider that this CDF describes the probability that life arose by a time t, it therefore

follows that the probability distribution for the time at which life first arose, which we can

denote as tlife, must be an exponential distribution i.e. tlife ∼ E(λ).
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5.2.3 Accounting for selection bias

For the moment, let us treat tlife as a completely random variable drawn from E(λ) with no

other constraints whatsoever on its value (i.e. we will not yet include the paleotological

information regarding the earliest evidence for life). Let us consider setting λ to be some

low rate, such as 0.01 Gyr−1. In such a case, the vast majority of random draws from

the the probability distribution describing tlife will exceed ∼ 4.5 Gyr. Even if the Earth

can be considered to be habitable immediately after the hypothesized Moon-forming

impact 4.47 Gyr ago (Bottke et al. 2015), clearly draws exceeding this age are incompatible

with humanity’s existence, else life should not have arisen yet. Accordingly, one might

justifiably include this constraint into our statistical treatment by setting the maximum

limit on tlife to be less than ∼ 4.5 Gyr.

More generally, one might reasonably argue that 4.5 Gyr is too optimistic, and that

following the Moon-forming impact, it would have taken some time for conditions to

be suitable for life - for example the crust probably did not condense until 4.4 Gyr ago

(Valley et al. 2014). On the other hand, one might argue that even if conditions were

immediately suitable for life, 4.5 Gyr is still too generous a maximum limit, since had life

begun just 0.5 Gyr ago, there would have been insufficient time for intelligent observers,

such as ourselves, to have evolved. We may absorb these arguments into a single term, τ,

which describes the latest time for which life could have arisen on the Earth and yet still

be compatible with both the habitable history of our planet, and the time it would take

intelligent observers such as ourselves to evolve. The selection bias introduced by τ can

be formally encoded into our model by applying a truncation to the PDF for tlife, such that
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Pr(tlife; τ) =
λe−λtlife

1 − e−λτ
1(tlife ≥ τ). (5.3)

5.2.4 Accounting for observation time

Consider that we have some measurement for the existence of the earliest life on Earth

which occurs at a time t = tobs. We set t = 0 to be the time at which the planet became

habitable and thus tobs is perhaps better thought of as the difference between these two

times. We set the reference time this way in order to remove a degree of freedom from our

model, in contrast to Spiegel & Turner (2012) who leaves this as an extra unknown. With

our reference time, τ is directly interpreted as the minimum time it takes for life to evolve

from whatever biological entity emerged from the abiogenesis event to an intelligent

observer.

The measurement of tobs is our most constraining datum but the emergence of life

must in fact predate this time, such that tlife ≤ tobs. This constraint can be encoded in our

probability framework by evaluating the probability of life emerging before a time tobs:

Pr(tlife ≤ tobs; τ) =

∫ tlife=tobs

tlife=0

λe−λtlife

1 − e−λτ
dtlife, (5.4)

which, after simplification, gives
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Pr(tlife ≤ tobs; τ) =
1 − e−λtobs

1 − e−λτ
. (5.5)

5.2.5 Likelihood function for λ

Consider that we want to infer λ, conditioned upon a measurement of tobs, in other words

we wish to infer

Pr(λ|tobs)︸    ︷︷    ︸
posterior

=

likelihood︷    ︸︸    ︷
Pr(tobs|λ)

prior︷︸︸︷
Pr(λ)

Pr(tobs)︸  ︷︷  ︸
evidence

. (5.6)

The likelihood function is given by Equation 5.5, or re-writing in a conditional form:

Pr(tobs|λ) =
1 − e−λtobs

1 − e−λτ
1(tobs ≥ τ), (5.7)

which is the same result obtained by Spiegel & Turner (2012). This is not surprising given

that we begin from the same basic assumption of a uniform rate model for abiogenesis,

but we hope our independent take on the derivation more clearly explains it’s origins.

It is worth noting that the likelihood function has a maximum at λ → ∞ and displays

asymptotic behavior towards that limit.
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5.2.6 Multiplanet likelihood function for λ

Thus far, we have presented a Bayesian model for inferring the λ conditioned upon

evidence for life on the Earth by a time tobs. An extension to the above, which was not

derived in Spiegel & Turner (2012), is to consider surveying N Earth-like worlds for life

and detecting M samples.

If we surveyed planets and moons in the Solar System, there is a plausible causal

connection between the bodies via panspermia (Wesson 2010), which would significantly

complicate the analysis. Instead, we focus on exoplanets where it can be reasonably

assumed that each exoplanetary system is an independent sample. Generally, in what

follows, we refer to each exoplanet system as simply a planet for brevity, but this can

include systems of planets and moons. The other condition is that the surveyed worlds

belong to a subset of worlds which share similar properties to the Earth i.e. Earth-like.

One difference from our earlier framework is that each exoplanet will typically have

a fairly weak age constraint and an even worse constraint on tobs. This simplifies our

analysis though, since we can approximately assume that all planets in the sample share

the same age, and life simply arose before that age at any time. We set this fiducial age to

be 4 Gyr, comparable to when the Earth became habitable (Valley et al. 2014). We make

the further assumption that λ is a common value to all planets surveyed. As discussed

in Section 5.1, an assumption of this type is fundamentally necessary to make further

progress, but can be considered to be justifiable when the survey sample belong to a class

of Earth-like worlds.

The probability that any one of these planets is observed to be a positive detection is
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given by Pr(tobs|λ) i.e. the likelihood function defined for the single planet case. Indeed,

we can consider the probability of a detection for each planet to be treated as a Bernoulli

experiment with p = Pr(tobs|λ). The probability of obtaining M successes from a total of N

Bernoulli experiments describes a Binomial distribution and thus we may write that

Pr(N,M|p[tobs, τ, λ]) = (1 − p)N−MpM

(
N
M

)
. (5.8)

In the limit of N = 1 and M = 1, we get back to the same result for the single-planet

case, as expected:

lim
N→1

Pr(N,M|p[tobs, τ, λ]) =


p if M = 1,

1 − p if M = 0.

(5.9)

5.2.7 Choosing priors for λ and τ

A key result of Spiegel & Turner (2012) is that changing the prior distribution on λ has

a major effect on its posterior distribution. As discussed in Section 5.1, this makes the

goal of an absolute determination of the posterior somewhat unachievable, unless we

are confident about our choice of the prior distribution. However, this work is chiefly

concerned with how the posterior changes when new information is acquired, seeking the

relative differences between hypothetical posteriors rather than the absolute truth. For

this reason, the choice of prior is less crucial than before and we elect to adopt a simple

objective prior in the form of a log uniform distribution:
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Pr(λ) =
1
λ

1
logλmax − logλmin

. (5.10)

We highlight that this was one of the candidate priors considered by Spiegel &

Turner (2012) too. For λmin, we fix it at 10−3 Gyr−1 in the majority of simulations that

follow. In contrast, Spiegel & Turner (2012) considered three different values of 10−3 Gyr−1,

10−11 Gyr−1, and 10−22 Gyr−1, which roughly correspond to life occurring once per 200 stars,

once in our galaxy, and once in the observable Universe (assuming one Earth-like planet

per star). We will return to these other choices later in Section 5.3. The effect of λmax will be

investigated in detail in one of our three hypothetical experiments and so we also discuss

it later.

The final term we require a prior distribution for is τ. The largest allowed value for

this term is well-defined as being the age of the Earth, 4.5 Gyr. The most conservative

estimate for the first life on Earth is ∼3.5 Gyr ago (Schopf et al. 2007) and thus we might

reasonably posit (3.5−
√

3.5) Gyr as lower estimate for how rapidly life could have evolved

to an intelligent observer, giving 1.6 Gyr. We round this down to 1.5 Gyr in what follows

giving us a full 3 Gyr plausible range for τ. The least informative prior is a uniform

distribution given by

Pr(τ) = U[1.5, 4.5], (5.11)

and this is the distribution adopted in what follows.
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5.2.8 Sampling method

From a sampling perspective, our model has relatively compact dimensionality and has

only a single data point. In such a case, we are able to employ a highly efficient sampling

algorithm known as the “bootstrap filter”, which is a class of “particle filter” (Künsch

et al. 2013).

To briefly describe the algorithm, first N sets of hyper-parameters (Θ1
H,Θ

2
H, ...,Θ

N
H) are

drawn according to the hyper prior distribution. N sets of local parameters are then also

drawn given the hyper-parameters (Θi
L, i = 1, ..,N). Next, we calculate the likelihood of

our data given the parameters (Li, i = 1, ..,N). Finally, we resample parameters (ΘH,ΘL)

with their corresponding likelihoods L as weights.

In order for the final sampled parameters to be well spread over the parameter space,

the parameter space needs to be well explored in the first step. This indicates that the

method would not work for high dimensional problems, since the required number of

samples would be intractable in such a parameter space. In such cases, other sampling

methods, like Markov Chain Monte Carlo (Metropolis et al. 1953), would be more suitable.

But clearly for a simple model like the one we have, the bootstrap filter sampling method

is well-suited and highly efficient.

5.2.9 Using information gain to compare different posteriors

The goal of the paper is to compare how theλ posterior distribution changes with different

experimental setups. To evaluate the difference in a quantitative way, we choose to use the

Kullback-Leibler divergence (KLD), which is also known as relative entropy (Kullback &
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Leibler 1951). It quantifies the entropy change from probability distribution Q to P, where

a result of zero implies no difference and non-zero (but always positive) values imply a

finite difference, and is given by

KLD(P||Q) =

∫
P(x) log

P(x)
Q(x)

dx, (5.12)

where the integrand limits cover the complete supported domain of the functions P and

Q. We highlight that the popular Kolmogorov Smirnov (Kolmogorov 1933; Smirnov 1948)

or Anderson-Darling (Anderson & Darling 1952) tests are primarily designed for cases

when two distributions show significant departures from each other and thus would not

be directly applicable here. A test statistic, such as the Kolmogorov-Smirnov distance,

could be utilized to quantify differences although we note that this metric only codifies the

maximum difference in the CDF between two distributions, and does not fully account

for the ensemble of differences occurring across the parameter space. For these reasons,

we ultimately concluded that the KLD would be a well-suited tool for quantifying the

differences observed in our hypothetical experiments.

Computationally we need to use the discretized version of the equation to calculate

the information gain. For this work, we use an R package entropy for all the KLD

calculations. However, as the results of the paper show, when we update the posterior

with different experiments, thus changing the posterior in different ways, a number is not

enough to describe the results.

136



5.3 Results

5.3.1 Experiment 1: Reducing tobs

5.3.1.1 Overview

With our model and objective established, we now describe the results from our hypo-

thetical experiments, starting with reducing tobs. We therefore consider here, what effect

would an earlier estimate for the first life on Earth have on our knowledge concerning the

rate of abiogenesis events, λ?

The earliest undisputed evidence for life on Earth comes from ∼3465 Myr Archean

deposits in the Apex Basalt of Western Australia, containing morphotype units which

are concluded to be microfossils in Schopf et al. (2007). Given that the Earth formed

(4.54±0.05) Gyr ago (Dalrymple 2001), the maximum plausible value we can assign to tobs

would be '1 Gyr.

In contrast, the very earliest claim for the first evidence of life extends as far back as

4280 Myr ago (Dodd et al. 2017), from putative fossilized microorganisms in ferruginous

sedimentary rocks from the Nuvvuagittuq belt in Quebec, Canada. The study of ancient

zircons in Jack Hills, Western Australia, indicates the presence of oceans on the Earth as

far back as (4408 ± 8) Myr (Wilde et al. 2001), and so one might argue from these studies

that tobs could be as short as ∼ 100 Myr.

As evident from the cited literature, this is an active and rapidly developing field

and thus it is quite likely that further revisions to tobs may occur in the near future. If the

age is revised down by another factor of ten, though, how much does this really teach us
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about λ? The intuitive temptation is to assign earlier start dates with evidence that life is

not fussy and can start quite easily i.e. a high λ (Allwood 2016). As discussed earlier, this

question can be more readily addressed in a Bayesian informatics framework such as the

one presented here.

To investigate this, we computed the posterior distributions for several different

hypothetical values of tobs log-uniformly spaced between 100 Gyr (corresponding to the

modern conservative limit) down to 10−3 Gyr (a deliberately highly optimistic choice). In

each simulation, we fix λmin = 10−3 Gyr−1, as discussed in Section 5.2.7, but explore four

different candidate values for λmax of 100 Gyr−1, 10+1 Gyr−1, 10+2 Gyr−1, and 10+3 Gyr−1.

5.3.1.2 Qualitative impacts on the λ posterior

In the right panel of Figure 5.1, we present the posterior distributions of λ for all four par-

ticular tobs choices whenλmax = 10+2 Gyr−1, to illustrate the qualitative differences. Broadly

speaking, it can be seen that as tobs becomes smaller, a higher value of the abiogenesis rate

is favored. In all cases, the posterior is a monotonic function consistent with a lower limit

constraint on λ rather than a peaked, quasi-Gaussian measurement. This immediately

reveals that measurements of tobs alone can only hope to ever place probabilistic lower

limits on λ, but never produce what might be considered as a direct measurement.

When tobs = 100 Gyr (line A), which corresponds to the conservative limit, the pos-

terior stays almost flat after a rise at around λ = 100 Gyr−1 (i.e. one event per Gyr). This

can be understood by the observation that we can’t distinguish between, for example, 10

or 100 events per Gyr, as they are both sufficient to have tobs = 100 Gyr. Accordingly, the
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Figure 5.1 The left panel shows information gain calculated by KLD as tobs gets smaller.
The right panel gives the detailed posterior distribution of λ for fixed λmax of 102 Gyr−1.
Line A, B, C, D represents tobs of 100 Gyr, 10−1 Gyr, 10−2 Gyr and 10−3 Gyr respectively.

posterior largely follows the prior. More generally, one expects an inflection point in the

posterior to occur at λ = λinflection ' t−1
obs Gyr−1.

As tobs gets larger, a higher rate becomes clearly more favorable. The observed

posterior morphologies are also responsive to the fact that we set λmax at 102 Gyr−1. If say,

it is set as high as 105 Gyr−1, we should expect all four lines to reach a plateau (which we

indeed verified). Accordingly, one can conclude that the actual posterior distribution is

highly sensitive to whatever value one adopts for the prior’s upper limit, λmax, reinforcing

the conclusions of Spiegel & Turner 2012.
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5.3.1.3 Quantitative impacts on the λ posterior

The left panel of Figure 5.1 shows the information gain obtained from revising tobs down.

Specifically, we set Q in Equation 5.12 to be the posterior distribution of λ when tobs =

100 Gyr, corresponding to our current observational constraint. We do not use the prior

on λ, since our “starting point” in terms of current knowledge includes a measurement of

tobs, and that should be incorporated in our comparison. Accordingly, P in Equation 5.12

is now set to be equal to the derived posteriors at other choices of tobs. As a result of this

setup, the information gain between P and Q when tobs = 1 Gyr is, by definition, zero.

The four lines shown broadly reproduce expectation. The information gain increases,

resembling a non-linear logistic function, as tobs is revised down. Clearly the choice of

λmax again has a significant impact and specifically seems to control a saturation limit in

the information gain. This is most clearly seen for the curve describing λmax = 101 Gyr−1,

where there is negligible information gain once tobs drops below 10−1.5 Gyr. Indeed, if

λmax = 100 Gyr−1, even our current conservative limit on tobs lives on this saturated plateau.

In such a circumstance, there is essentially no value in paleontologists continuing to try

to revise tobs further back (if their goal is to constrain λ).

The reason behind the saturation can be explained by careful examination of the right

panel plot. In the case of line A, the first abiogenesis event happened at tobs = 1 Gyr. Since

there is an inflection point in the posterior at λinflection = t−1
obs Gyr−1 (as established earlier),

the posterior experiences a steep rise at around once per Gyr. Likewise, line B/C/D should

rise at around 101 Gyr−1, 102 Gyr−1, and 103 Gyr−1 respectively. However, for the case of

line D, since the upper limit is set at λmax = 102 Gyr−1, many of its morphological changes
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are truncated. This upper limit constraint forces line D to perform similarly like line C. If

we translate that to information gain, we can see that point D doesn’t increase very much

from point C, and the whole line will gradually saturate.

5.3.2 Experiment 2: Reducing λmax

5.3.2.1 Overview

The second type of experimental pressure we consider on λ is one driven by lab-based

experiments. In particular, we consider the thought experiment where a large suite of

containers are constructed, within each exists a representative environment of an Earth-

like planet, and simply count how often life spontaneously emerges from these containers.

This is not meant to be a practical experimental setup but rather a toy example of how

one might construct a series of experiments to constrain λ in the lab.

In principle, one or more of these experiments might successfully spawn a new form

of life. If this result were reproducible and verifiable, it would provide such dramatic

insights into abiogenesis that comparing it to the other hypothetical experiments in this

work is somewhat of a moot point. Instead, we take the pessimistic angle that the

experiments do not successfully produce a single abiogenesis event (which is of course

consistent with current experiments). In such a case, one could reasonably infer an upper

limit on λ from the null results and thus we envisage that these experiments return a

single new datum for our setup - λmax.

It is therefore instructive to compare how obtaining even tighter limits on λmax affects

the posterior on λ without changing tobs. To do so, we varied λmax log-uniformly across
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the same range as used in Section 5.3.1, from 103 Gyr−1 to 100 Gyr−1, but now at a much

finer resolution. In each simulation we derive the resulting λ posterior and repeat the

entire excercise for four different choices of tobs, namely 100 Gyr, 10−1 Gyr, 10−2 Gyr, and

10−3 Gyr. Thus, our parameter range directly mirrors the range considered in Section 5.3.1.

As before, λmin is fixed at 10−3 Gyr−1.

5.3.2.2 Qualitative impacts on the λ posterior

In the right panel of Figure 5.2, we show four examples of how the λ posterior changes

for different λmax values, keeping a fixed tobs = 10−2 Gyr. It is clear that the main difference

between the updated posteriors (line b, c, d) and the original posterior (histogram/line a)

is that the posterior becomes truncated at smaller λ values, corresponding directly to λmax.

As a result, each line shows a plateau, which is eroded by the truncation of the sharper

λmax constraints, for similar reasons discussed in Section 5.3.1.

5.3.2.3 Quantitative impacts on the λ posterior

The left-panel of Figure 5.2 shows the information gain by varying λmax from 103 Gyr−1 to

100 Gyr−1, with each of the four lines showing a different assumed tobs value. In comparison

to Figure 5.1, the information gains are, in general, higher in this second experiment. This

can be understood to be resulting from the truncation effect, which significantly elevates

the density of lower λ values in order to maintain normalization. Both experiment 1

and 2 can be seen to provide merely lower limits on λ, rather than strong measurements,

since they are both ultimately conditioned upon the same datum. Nevertheless, in a

142



3.0 2.5 2.0 1.5 1.0 0.5 0.0

0
2

4
6

8

log 10  λ max ×Gyr

in
fo

 g
ai

n 
(b

it)

log 10  t obs Gyr

−3
−2
−1
 0

d

c

b

a

log 10  λ ×Gyr
pr

ob
ab

ilit
y 

de
ns

ity
−3 −2 −1 0 1 2 3

0.
0

0.
5

1.
0

1.
5

2.
0

a

d

c b

Figure 5.2 The left panel shows information gain calculated by KLD as λmax gets smaller.
The right panel gives the detailed posterior distribution of λ for fixed tobs of 10−1 Gyr. Line
a, b, c, d represents λmax of 103 Gyr−1, 102 Gyr−1, 101 Gyr−1 and 100 Gyr−1 respectively.

quantitative sense, our analysis indicates that there is a greater potential for information

gain in experiment 2 within the parameter range considered.

This conclusion is reinforced by the fact that none of our simulations in experiment

2 led to a negligible information gain, which was observed in certain cases of experiment

1. Specifically, once λmax can be constrained to less than or equal to ∼ 100-101 Gyr−1, there

is very little information gain from revising tobs. In contrast, even the most conservative

limit on tobs = 100 Gyr allows for sizable information gains by revising λmax. Furthermore,

the remote possibility of an outright successful abiogenesis event in the lab makes a

compelling case that this enterprise is more likely to teach us about abiogenesis than

experiment 1.
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Although we only show lines spanning up to λmax = 103 Gyr−1, it is worthwhile to

consider the behavior at more extreme choices. As can be seen in Figure 5.2, line “a”

saturates but it is only the line to do so. This is because in this case λmax (which equals

103 Gyr) substantially exceeds λinflection (which equals 101 Gyr), allowing for the saturation

behavior to take place. We might therefore hypothesize that if we had chosen a far higher

choice of λmax, say 1010 Gyr−1, the posterior would broadly look similar to line “a” except

that the truncation would occur much later. Accordingly, we might hypothesize that if we

compared the information gain from λmax = 1010 Gyr−1 to λmax = 109 Gyr−1, there would

be very little information gain (compared to, say, going from 102 Gyr−1 to 101 Gyr−1) since

in both cases λmax � λinflection. If true, this would mean that if we extended the left panel

plot in Figure 5.2 far to the left (i.e. much higher λmax), the curves would be very flat until

we start to encroach upon values in the domain of λinflection. To verify this hypothesis, we

repeated the experiments up to λmax = 1010 Gyr−1 and indeed verified that the information

gain curves are approximately flat when λmax � λinflection.

5.3.3 Future Evidence from Exoplanets

5.3.3.1 Overview

The third experiment we consider is a future astronomical telescope capable of discovering

unambiguously whether an observed exoplanet hosts life or not. As with the previous

experiments, the specific details of how this is achieved is not important for the following

discussion, although a plausible strategy would be to seek atmospheric bio-signatures

(Léger et al. 1996). We note that surveying a large number of Earth-like worlds is beyond
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the abilities of existing facilities (Seager 2014), but it is not unreasonable to suppose that it

should be plausible in the future (Rauscher et al. 2015). If the goal of such an enterprise is to

quantify our uniqueness and thus the rate at which life springs forth on Earth-like worlds,

the thought experiment described here provides a direct evaluation of how informative

such an effort should be expected to be.

Naturally, prior to having conducted this experiment in reality, the number of abio-

genesis detections, M, amongst a sample of N exoplanets is unknown, yet the ratio M/N

will clearly strongly affect the resulting λ posterior. To account for this, we therefore have

two control variables in this experiment, rather than one: the success rate, M/N, and the

survey size, N.

5.3.3.2 Yield expectations

It is instructive to first pose the question, what kind of ratio values do we actually expect,

based on current information? A ratio which agrees with our naive expectation (whatever

that may be) would lead to only a small change in the λ posterior and thus a small degree

of information gain. In contrast, a ratio M/N resulting from this hypothetical survey that

is in tension with our prior expectation would dramatically change the λ posterior, and

thus lead to a large information gain. These considerations provide some initial insights

as to why particular values of M/N may not necessarily lead to significant gains in our

knowledge of λ. It is therefore interesting and somewhat counter-intuitive to note that a

survey of N exoplanets for life may not necessarily lead to any substantial gains in our

knowledge about the rate of abiogenesis, depending on what ratio of success is observed.
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From the above arguments, it is clear that an observed M/N close to our prior expec-

tation on M/N should represent the minimum in the possible information gain. But what

exactly is our prior expectation on M/N? Optimists would say that life starts everywhere

and thus we expect M/N ∼ 1 (Lineweaver & Davis 2002). If so, then detecting a high suc-

cess rate in an exoplanet survey would actually teach us very little. Like dropping a coin

and seeing it fall to the ground under gravity, results which match expectation generally

don’t teach us as much as if the coin had travelled upwards. In contrast, a pessimistic

might say they are convinced that life is rare and thus any detection elsewhere would be

highly surprising, much like the coin traveling upwards, thereby teaching us a great deal.

We now turn to estimating what our a-priori expected M/N should be. This is

of course closely related to our current posterior for λ. However, as we have argued

earlier and indeed as concluded by Spiegel & Turner (2012), an absolute inference of λ

is not possible unless we know what the correct prior should be. Although we have

investigated the effect of varying λmax and this may be constrainable via experiments (see

Section 5.3.2), it is unclear how one should assign λmin at this time (of course another

problem is the shape of the prior itself, but we leave that aside at this time).

Using the fiducial choice of λmin = 10−3 Gyr−1, which has been used in both Sec-

tions 5.3.1 & 5.3.2, our expectation is that M/N is generally quite high. We demonstrate

this in the left panel of Figure 5.3, where we compute the average number of detections

expected using our earlier λ posteriors on 5 Gyr old Earth-like planets (by Monte Carlo

experiments drawing Bernoulli trials using the probability defined in Equation 5.2). For

almost any choice of tobs or λmax (within the ranges used throughout this paper), one
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can see that M/N is expected to be high. Accordingly, if we set λmin = 10−3 Gyr−1 as be-

fore, experiments where we set M/N ∼ 1 will tend to yield minimal gains in information

content on λ. We highlight this point carefully due to its somewhat counter-intuitive

consequences.
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As Figure 5.3 makes clear, changingλmin leads to a significant decrease in the expected

success yield. For these reasons, the experiment 3 information gains presented here are

highly sensitive to the assumed values of λmin. We note that this was not the case in

experiments 1 and 2, where we verified that varying λmin to 10−11 Gyr−1 or 10−22 Gyr−1 did

not significantly impact the shape of the posteriors and only slightly affected the scaling

of the information gain plots. For this reason, in what follows, we limit our discussion to

being largely a qualitative one.

5.3.3.3 Qualitative impacts on the λ posterior and information gain

In the right panel of Figure 5.4, the dark green lines show four example posteriors for λ

at N = 10, 50, 200, and 1000. The dark green lines all assume M/N = 30%. If 30% of the

planets harbor life, this implies a λ of 0.3/5 Gyr−1, and this is indeed where the posteriors

all peak. The peakiness of the posterior naturally increases as it becomes conditioned

upon larger samples of data.

The yellow lines show the case of no detections, i.e. M = 0, which strongly opposes

our prior expectation of a high rate. However, because these are essentially null detections,

the posterior peaks at λmin and does not converge to a single quasi-Gaussian shape. For

this reason, the posterior does certainly lead to a large information gain but not maximal.

On the other hand, if M = N, shown by the dark blue lines, the information gain is

minimal. As explained in detail earlier, this results from our high prior expectation of λ

anyway, conditioned upon the Earth’s early start of life. Adding more data only reinforces

this belief, leading to minor gains in information content. Further, as with the M = 0 case,

149



1.0 1.5 2.0 2.5 3.0

0
1

2
3

4
5

6
7

log 10 N exo

in
fo

 g
ai

n 
(b

it)

found ratio
  0%
 10%
 30%
100%

log 10 λ ×Gyr
pr

ob
ab

ilit
y 

de
ns

ity
−3 −2 −1 0 1 2 3

0
5

10
15

N=10

50

200

1000

Figure 5.4 The left panel shows information gain calculated as we increase the number
of observed exoplanets. The right panel gives the detailed posterior distribution of λ for
different ratios.

the posterior peaks at a prior bound, and thus does not represent a converged, constrained

datum.

The argument made above does not include effects regarding the sample inclusion

though. For example, if all Earth-like planets surveyed show evidence for life, there would

be an opportunity to learn about abiogenesis in a different way by gently expanding the

sample to sub-optimal worlds and observing when the success rate decreases. This is not

formally encoded within our model and represents just one of the ways that a large sample

of exo-life detections would lead to large gains in the understanding of abiogenesis, even

though not significantly improving our inference of the abiogenesis rate of Earth-like

worlds.
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5.4 Discussion

In this work we have sought to understand how three different experimental approaches

would be expected to inform our knowledge of the rate of abiogenesis, λ, on Earth-like

worlds. Our approach adopts the Bayesian formalism of Spiegel & Turner (2012) as a

means for deriving the probability distribution of λ conditioned upon some observation

of the earliest evidence for life (tobs) and some choice for the prior. As discussed in Spiegel

& Turner (2012), the resulting posteriors are highly influenced by the choice of prior,

and thus an absolute inference of the posterior is somewhat unachievable. Instead, our

paper focuses on the relative gain in information acquired as new experiment evidence is

introduced into the problem across a range of plausible input parameters.

Our Bayesian informatics approach seeks to understand exactly how the λ posterior

changes in response to new experimental constraints, and whether there are certain ex-

periments or parameter regimes which can be concluded as either negligibly informative,

or vice versa, greatly informative.

Our work focuses on three thought experiments, which could be plausibly conducted

at present or in the near future: i) paleontological evidence for an earlier start of life;

ii) Miller-Urey experiments seeking to create a laboratory abiogenesis event; and iii) a

survey of exoplanets for bio-signatures. To quantify the information gained from each

experiment, we employ the Kullback-Leibler divergence, or relative entropy, to calculate

the difference between the original and the new λ posterior. Additionally, we have

performed detailed analyses of the resulting posteriors in an attempt to understand how

their morphologies are sculpted by new constraints.
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Without knowledge of the correct limits on the prior (or indeed the shape of the

prior), it is not possible to unambiguously claim that any of these experiments will always

be superior/inferior to the others. Despite this, there are general trends which emerge

from our thought experiments. These are briefly summarized in Figure 5.5, and we urge

the reader to explore the more detailed results of each found within this paper.
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We highlight a couple of important general trends. First, it is non-intuitive that an

exoplanet survey detecting many instances of life can be highly uninformative in certain

regimes. This is because for certain choices of the prior, the early start of life on the Earth

leads to an expectation that all Earth-like planets are inhabited, thus new detections don’t

significantly affect the posterior. As highlighted earlier though, clearly such a result could

be greatly informative if the sample is extended beyond Earth-like worlds to include

more exotic locations, echoing the conclusion of Lenardic & Seales (2018) but for different

reasons.

Second, we have ignored the possibility of a successful laboratory abiogenesis in this

work and instead assumed they only yield null-results and thus an upper limit on λ. This

is motivated by the assumption that the ability to create life in the lab, in a reproducible

experiment, would provide an enormous amount of information that would make direct

comparisons to the other experiments somewhat meaningless. This is related to the

possibility of paleontology/paleongenetics finding unambiguous evidence for a second

abiogenesis at early times, which we also did not explicitly consider.

A general trend we highlight is that unless abiogenesis occurs in the lab, the biological

and paleontological experiments are conditioned upon the same datum - the earliest

evidence for life on Earth - and thus both yield only lower limits on λ. In contrast,

exoplanet surveys will, in general, yield peaked posteriors constrained from both sides

i.e. a measurement rather than a limit. It is important to emphasize this difference as this

is not fully captured by simply comparing the relative entropies between posteriors.

A final point we emphasize is that paleontology in particular has regimes in which
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essentially no information is gained. For reasons discussed in detail earlier, this occurs

when tobs � λ−1
max. Since there is no agreed value for λmax, we are unable to infer what the

corresponding time really is, but it is important to note that even a very early start of life

can, for some choices of λmax, make us no more wiser about abiogenesis.

Being the first effort at a Bayesian informatics analysis of abiogenesis, we acknowl-

edge that there are outstanding issues that we haven’t been able to address in detail here.

First, we did not conduct a full exploration of the effect of changing λmin, largely since we

couldn’t conceive of a direct empirical way of constraining it. Another issue is that we

have assumed λ to follow a universal distribution for all exoplanets and at all times, while

of course we should expect that it will change with different environments. This was

largely done as a simplifying assumption, following Spiegel & Turner (2012) and is partly

mitigated by our assumption that only “Earth-like” worlds are included in an exoplanet

survey. This problem might be better solved in the future with hierarchical models, which

were not explored here. Finally, we have assumed that experiment 3 is actually feasible -

which remains somewhat unclear. Specifically, we assume that life can be unambiguously

detected or ruled out on a planet from remote observations. A suggestion for future

work would be to change this hard binary flag to a softer probability, again implying a

hierarchical model.

Together, we generally find that all of the experiments can certainly yield constraints

on λ and in non-overlapping ways. A lab abiogenesis event would be such an informative

experiment that even if it could be argued that the information gains from null results are

negligible, there is a strong case to conduct the experiment regardless. Similarly, early
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starts of life, whilst they may not formally improve λ, do clearly provide information

about the conditions upon which life began, and this is not formally encoded in our

model. If an actual measurement of λ is desired, rather than a limit, we would argue that

the exoplanet survey is the most direct way to infer this. Moreover, the ability to expand

to non-Earth-like worlds can probe different conditions and thus offer an orthogonal type

of information. Together then, all three experiments deserve our attention and resources

in our quest to answer one of the modern science’s greatest questions.
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Chapter 6

Conclusion

I will give a summary of each piece of work in this thesis, as well as provide some

directions for future improvements. I will also discuss the difference between Bayesian

approaches and frequentist approaches, and explain why the Bayesian method is adopted

in this work.

6.1 Overview of Exoplanets’ Probabilistic Mass and Radius

Relation

I used the hierarchical Bayesian framework to build a probabilistic power-law relation

between the masses and radii of a wide range of objects from dwarf planets to dwarf

stars. The power-law, broken into four segments to capture the different relationships

of different types of astronomical objects, performs classification naturally by fitting the

transition points between different segments.
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After the publication of this work, we have also seen results coming from other

groups showing agreement with our work. Precise radius measurements based on the

California-Kepler Survey (Fulton et al. 2017), Gaia parallaxes (Fulton & Petigura 2018),

and more precise stellar parameters derived from asteroseismology (Van Eylen et al. 2018)

showed a gap in the radius distribution and suggested that planets with radius smaller

than 1.5 R⊕ have rocky cores and belong to a different category from planets with radius

larger than 2.0 R⊕, which is consistent with the Terran Neptunian divide at 2.0 ± 0.7 M⊕,

corresponding to 1.23+0.44
−0.22 R⊕ in our work.

The fitted mass-radius relation can also be used as a forecasting tool to predict mass

with radius measurement or vice versa, for objects within the sample range. With the

pre-trained relationship, I predict masses for 7000 KOIs with their radii measurements.

Such prediction is particularly important because Kepler has delivered so many planetary

candidates that it is often impractical to schedule follow-up for each object. Finite resources

demand prioritization, and one obvious criterium for ranking the objects is whether an

observation signature is even expected to be detectable. Moreover, the detectability of

an exoplanet, such as radial velocity semi-amplitude, is strongly constrained by its mass.

Accordingly, we performed a similar analysis for CHEOPS.

But there are still possible improvements for this mass-radius relation. First, more

data and finer errors that can be provided by future observations may reveal additional

categories of planets. Also it would be better to take the posteriors of masses and radii

measurements as data instead of using point estimates and assuming Gaussian distri-

butions for measurement errors, since distributions are only approximations. Thirdly,
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adding another dimension of data, such as metallicity, may result in smaller intrinsic

dispersion estimates, and lead to more precise predictions.

6.2 Overview of Exoplanets’ Composition

The interior structure of an exoplanet is hidden from direct view yet likely plays a crucial

role in influencing the habitability of Earth analogs. Inferences of the interior structure

are impeded by a fundamental degeneracy that exists in any model comprising of more

than two layers and observations constraining just two bulk parameters: mass and radius.

However there exist two boundary conditions that enable one to infer the minimum and

maximum core radius fraction, CRFmin & CRFmax.

Besides inferring the boundary conditions, I also proposed using the hierarchical

Bayesian framework to derive the typical composition fractions for an ensemble of planets.

I gave an example of such model in the discussion part of that chapter. This framework can

be applied with even more sophisticated interior structure models such as a four-layer

model. In this framework, we can simultaneously derive the local parameters, which

represent the composition fractions of each single planet.

6.3 Overview of Abiogenesis Rate

Life appears to have emerged relatively quickly on the Earth, a fact sometimes used to

justify a high rate of spontaneous abiogenesis (λ) among Earth-like worlds. Conditioned

upon a single datum - the time of earliest evidence for life (tobs) - previous Bayesian
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formalisms for the posterior distribution ofλhave demonstrated how inferences are highly

sensitive to the priors. Rather than attempting to infer the true λ posterior distribution,

we compute the relative change in λ when new experimental/observational evidence is

introduced. By simulating posterior distributions and the resulting information gains, we

compare three experimental pressures on λ: 1) evidence for an earlier start of life, tobs;

2) constraints on spontaneous abiogenesis from the lab; and 3) an exoplanet survey for

bio-signatures.

First, we find that experiments 1 and 2 can only yield lower limits on λ, unlike

3. Second, evidence for an earlier start of life can yield negligible information on λ

if tobs � λ−1
max. Vice versa, experiment 2 is uninformative when λmax � t−1

obs. Whilst

experiment 3 appears to be the most direct means of measuring λ, we highlight that early

starts inform us of the conditions of abiogenesis, and that lab experiments could succeed

in building new life. Together then, the three experiments are complimentary and we

encourage activity in all to solve this grand challenge.

6.4 On Bayesian V.S. Frequentist Methods

The Bayesian approach has been widely adopted in exoplanet studies and proven to

be useful. Another approach that is often compared with the Bayesian approach is the

frequentist approach. In practice, both can be used for parameter estimations and model

comparisons. But these two approaches do stem from different philosophies. While

frequentist takes probabilities as frequencies of an event, Bayesian takes probabilities as

a degree of certainty about an event. This fundamental difference means that the model
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used in this thesis may be confusing from a frequentist perspective.

For example, in building the relationship between masses and radii, we specify the

local parameters to be the true mass and radius of each sample. But from a frequentist

perspective, the true value should be a fixed number and it wouldn’t appear to be anything

else. In our hierarchical Bayesian model, the true values are indispensable parts of the

model which connect between the hyper parameters and the measurement data, and make

it possible for us to address the intrinsic dispersion of the relation and the measurement

error separately in calculations.

The difference may seem even clearer in the context of inferring abiogenesis rate. As

in here, we only have one data point, which is the time life first appeared on the Earth.

In a frequentist perspective, making statistical inference with one data point might be

ridiculous. Actually a frequentist approach requires that the number of parameters be

less than the number of data points. However, in a Bayesian perspective, as we can always

use some previous information or simply guess a prior distribution for the parameter, we

can always derive a posterior distribution, although in this extreme case the posterior

is simply dominated by the prior. While the prior distribution is a powerful tool of the

Bayesian approach, it is also the reason many people doubt about Bayesian inferences, as

almost always there will be some arbitrary choices involved.
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Brahm, R., Jordán, A., Bakos, G. Á., Penev, K., Espinoza, N., Rabus, M., Hartman, J. D.,
Bayliss, D., Ciceri, S., Zhou, G., Mancini, L., Tan, T. G., de Val-Borro, M., Bhatti, W.,
Csubry, Z. an d Bento, J., Henning, T., Schmidt, B., Suc, V., Lázár, J., Papp, I., & Sári, P.
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2014, A&A, 572, A109

Dieterich, S. B., Henry, T. J., Jao, W.-C., Winters, J. G., Hosey, A. D., Riedel, A. R., &
Subasavage, J. P. 2014, AJ, 147, 94

Dodd, M. S., Papineau, D., Grenne, T., Slack, J. F., Rittner, M., Pirajno, F., ONeil, J., & Little,
C. T. 2017, Nature, 543, 60

Dorn, C., Venturini, J., Khan, A., Heng, K., Alibert, Y., Helled, R., Rivoldini, A., & Benz,
W. 2017, Astronomy & Astrophysics, 597, A37
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Eigmüller, P., Erikson, A., Fynbo, J. P. U., Guenther, E. W., Hatzes, A. P., Kiilerich, A.,
Korth, J., Kuutma, T., Montanés-Rodrı́guez, P., Nespral, D., Nowak, G. an d Rauer, H.,
Saario, J., Sebastian, D., & Slumstrup, D. 2015, ArXiv e-prints

Haghighipour, N. 2013, Annual Review of Earth and Planetary Sciences, 41, 469

Han, E., Wang, S. X., Wright, J. T., Feng, Y. K., Zhao, M., Fakhouri, O., Brown, J. I., &
Hancock, C. 2014, PASP, 126, 827

Harpsøe, K. B. W., Hardis, S., Hinse, T. C., Jørgensen, U. G., Mancini, L., Southworth,
J., Alsubai, K. A., Bozza, V., Browne, P., Burgdorf, M. J., Calchi Novati, S., Dodds, P.,
Dominik, M., Fang, X.-S., Finet, F., Gerner, T., Gu, S.-H., Hundertmark, M., Jessen-
Hansen, J., Kains, N., Kerins, E., Kjeldsen, H., Liebig, C., Lund, M. N., Lundkvist, M.,
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Papp, I., & Sári, P. 2012, ApJ, 749, 134

Howard, A. W., Sanchis-Ojeda, R., Marcy, G. W., Johnson, J. A., Winn, J. N., Isaacson, H.,
Fischer, D. A., Fulton, B. J., Sinukoff, E., & Fortney, J. J. 2013, Nature, 503, 381
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Csubry, Z., Bayliss, D., Zhou, G., Rabus, M., de Val-Borro, M., Espinoza, N., Jordán, A.,
Suc, V., Bhatti, W., Schmidt, B., Sato, B., Tan, T. G., Wright, D. J., Tinney, C. G., Addison,
B. C., Noyes, R. W., Lázár, J., Papp, I., & Sári, P. 2015b, A&A, 580, A63
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Hébrard, G., Santerne, A., Moutou, C., Sobeck, C., Hudgins, D., Haas, M. R., Robertson,
P., Lillo-Box, J., & Barrado, D. 2014, ApJS, 210, 20

Masuda, K. 2014, ApJ, 783, 53

Mathur, S., Huber, D., Batalha, N. M., Ciardi, D. R., Bastien, F. A., Bieryla, A., Buchhave,
L. A., Cochran, W. D., Endl, M., Esquerdo, G. A., Furlan, E., Howard, A., Howell, S. B.,
Isaacson, H., Latham, D. W., MacQueen, P. J., & Silva, D. R. 2017, ApJS, 229, 30

Maxted, P. F. L., Anderson, D. R., Collier Cameron, A., Doyle, A. P., Fumel, A., Gillon,
M., Hellier, C., Jehin, E., Lendl, M., Pepe, F., Pollacco, D. L., Queloz, D., Ségransan, D.,
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D. L., Ségransan, D., Skillen, I., & Udry, S. 2010, PASP, 122, 1465

Maxted, P. F. L., Anderson, D. R., Doyle, A. P., Gillon, M., Harrington, J., Iro, N., Jehin, E.,
Lafrenière, D., Smalley, B., & Southworth, J. 2013b, MNRAS, 428, 2645

Maxted, P. F. L., O’Donoghue, D., Morales-Rueda, L., Napiwotzki, R., & Smalley, B. 2007,
MNRAS, 376, 919

McTier, M. A. & Kipping, D. M. 2018, Monthly Notices of the Royal Astronomical Society

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. 1953,
J. Chem. Phys., 21, 1087

181



Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. 1953, The
journal of chemical physics, 21, 1087

Miller, S. L. & Urey, H. C. 1959, Science, 130, 245

Mohler-Fischer, M., Mancini, L., Hartman, J. D., Bakos, G. Á., Penev, K., Bayliss, D.,
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B. O., Malavolta, L., Dressing, C. D., Sasselov, D., Rice, K., Charbonneau, D., Collier
Cameron, A., Latham, D., Molinari, E., Pepe, F., Affer, L., Bonomo, A. S., Cosentino,
R., Dumusque, X., Figueira, P. ., Fiorenzano, A. F. M., Gettel, S., Harutyunyan, A.,
Haywood, R. D., Johnson, J., Lopez, E., Lopez-Morales, M., Mayor, M., Micela, G.,
Mortier, A., Nascimbeni, V., Philips, D., Piotto, G., Pollacco, D., Queloz, D., Sozzetti, A.,
Vanderburg, A., & Watson, C. A. 2015, A&A, 584, A72
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E., Copperwheat, C. M., Nebot Gómez-Morán, A., Rebassa-Mansergas, A., Schreiber,
M. R., & Zorotovic, M. 2012, MNRAS, 419, 817

Pyrzas, S., Gänsicke, B. T., Marsh, T. R., Aungwerojwit, A., Rebassa-Mansergas, A.,
Rodrı́guez-Gil, P., Southworth, J., Schreiber, M. R., Nebot Gomez-Moran, A., & Koester,
D. 2009, MNRAS, 394, 978

Quintana, E. V., Barclay, T., Raymond, S. N., Rowe, J. F., Bolmont, E., Caldwell, D. A.,
Howell, S. B. ., Kane, S. R., Huber, D., Crepp, J. R., Lissauer, J. J. a nd Ciardi, D. R.,
Coughlin, J. L., Everett, M. E., Henze, C. E., Horch, E., Isaacson, H., Ford, E. B., Adams,
F. C., Still, M., Hunter, R. C., Quarles, B., & Selsis, F. 2014, Science, 344, 277

Quintana, E. V., Barclay, T., Raymond, S. N., Rowe, J. F., Bolmont, E., Caldwell, D. A.,
Howell, S. B., Kane, S. R., Huber, D., Crepp, J. R., et al. 2014, Science, 344, 277

184



Rauer, H., Catala, C., Aerts, C., Appourchaux, T., Benz, W., Brandeker, A., Christensen-
Dalsgaard, J., Deleuil, M., Gizon, L., Goupil, M.-J., Güdel, M., Janot-Pacheco, E., Mas-
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Schönebeck, F., Snodgrass, C., Street, R. A., Surdej, J., & Tsapras, Y. a nd Vilela, C. 2014,
MNRAS, 444, 776

Southworth, J., Hinse, T. C., Dominik, M., Fang, X. .-S., Harpsøe, K., Jørgensen, U. G.,
Kerins, E., Liebig, C., Mancini, L., Skottfelt, J., Anderson, D. R., Smalley, B., Tregloan-
Reed, J., Wertz, O., Alsubai, K. A., Bozza, V., Calchi Novati, S., Dreizler, S., Gu, S.-H. a
nd Hundertmark, M., Jessen-Hansen, J., Kains, N., Kjeldsen, H., Lund, M. N., Lundkvist,
M., Mathiasen, M., Penny, M. T., Rahvar, S., Ricci, D., Scarpetta, G., Snodgrass, C., &
Surdej, J. 2012b, MNRAS, 426, 1338

Southworth, J., Mancini, L., Browne, P., Burgdorf, M., Calchi Novati, S., Dominik, M.,
Gerner, T., Hinse, T. C. ., Jørgensen, U. G., Kains, N., Ricci, D., Schäfer, S., Schönebeck,
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