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Abstract 

Therapy and mechanism of Mendelian eye diseases 

Yi-Ting Tsai 

 

Retinal degenerative diseases cause varying degrees of irreversible vision loss in 

millions of people worldwide. Common to all retinal degenerative diseases is the 

malfunction or demise of photoreceptor cells or its supportive cells, retinal pigment 

epithelium cell in the retina. A considerable part of these diseases were resulted from the 

inherited mutations of essential genes expressed in these retinal cells. The understanding 

of pathologic mechanism as well as developing of therapeutic treatment for these 

diseases were discussed in this study. 

A cutting-edge therapeutic genome editing technology is studied in the first part 

of study. This technology was invented to treat retinitis pigmentosa via engineered 

nucleases, which has great clinical potential for autosomal dominant genetic disorders 

that were previously irreparable by conventional gene therapy interventions. Though 

customizable gene editing tools can be engineered to target specific mutation sites, 

however it is too daunting for diseases like retinitis pigmentosa, a progressive retinal 

degenerative condition associated with more than 150 mutations in the rhodopsin gene 

alone. Here in this study, we present an “ablate-and-replace” combination strategy that 

1) destroys expression of the endogenous gene by CRISPR/Cas9 in a mutation-

independent manner, and 2) enables expression of wild-type protein through exogenous 

cDNA. As proof of concept, we show that our CRISPR-based therapeutic machinery 
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efficiently ablates mRho in vivo, and when combined with gene replacement therapy, 

ameliorates rod photoreceptor degeneration and improves visual function in two 

genetically distinct autosomal dominant retinitis pigmentosa animal models. This 

mutation-independent, ablate-and-replace strategy represents the first 

electrophysiological recovery by a CRISPR-mediated therapy in an autosomal dominant 

disorder and it offers a clinically relevant, universal strategy to overcome allelic 

heterogeneity in debilitating inherited conditions. 

For the second part of the study, gene editing technology was used to study the 

pathogenesis of Doyne honey comb dystrophy, another Mendelian disease with extensive 

similarities to age-related macular degeneration. This monogenic disorder is caused by a 

unique point mutation on an extracellular matrix protein EFEMP1, expressed by retinal 

pigment epithelium cell. To precisely gauge the physiological effect resulted from this 

mutation, CRISPR-mediated gene correction was used to create isogeneic cell pairs from 

patient donated tissue-derived stem cells. These stem cells were differentiated into 

retinal pigment epithelium cell before analysis. We found unfolded protein response and 

immune response were not involved in the pathogenesis, which contradicts existing 

theories. Via proteomics analysis, we found expression level of a cholesterol catabolic 

enzyme was affected by the EFEMP1 mutation while those proteins controlling the 

cholesterol transport remains constant. This result provides supportive evidence to 

explain the aberrant intracellular accumulation of cholesterol found in patient retinal 

pigment epithelium cells. This imbalance in lipid homeostasis also suggests Doyne honey 

comb dystrophy is a retinal pigment epithelium cell-autonomous disease. 
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THE EYE AND THE RETINA  

BRIEF OVERVIEW OF THE EYE AND THE RETINA 

The eye is a sophisticated organ that provides information on the shape, light 

intensity, and color reflected from objects. The eye ball can be divided into two segments: 

anterior and posterior parts. The anterior segment comprises of the cornea, lens, iris and 

ciliary body, while the posterior segment consists vitreous, retina, and choroid. The eye 

ball can also be divided into three layers: the outermost layer for protection layer (sclera 

and cornea), the middle layer, the nutritive layer (the choroid, ciliary body and iris), and 

the innermost layer, neural sensory layer (the retina). Each layer has its importance; 

however, the focus in this section will be the retina. 

 

 

Figure 1. Structure of the retina. (Figure credit: Angiogenesis Foundation) 
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The retina is like the film or CCD of the camera. Retina contains at several types of 

different neuron cells that form more than 30 distinct synapses with one another (Fig. 1). 

The primary light sensitive neurons, called the photoreceptor cells, lie in the outermost 

layer of retina. The other retina cells, in order from the photoreceptor cells inwards: 

Müller glial cells, amacrine cells, bipolar neurons, horizontal cells, and the innermost 

ganglion cells1. A layer of pigmented epithelium cells called retinal pigment 

epithelium (RPE) lies outwards to photoreceptor layer. RPE nourishes retinal visual cells, 

and is firmly attached to the underlying choroid and overlying retinal visual cells. RPE cells 

help nutrients and oxygen exchange from the choroid to photoreceptor. 

The photoreceptor cells are very essential neuronal cells that can be divided into 

four counterparts: the outer segment (OS), inner segment (IS), soma, and a synaptic 

terminal for neurotransmission to the second-order cells of the retina. There are two 

types of photoreceptor, the rod and cone cells. Rod cells comprise approximately 97% of 

the total retinal photoreceptors, whereas cone cells make up the only 3% of the retinal 

photoreceptor cells in both mouse and human retinas. The IS segment in both of the rod 

and cone cells contains ribosomes, mitochondria, and ER membranes that are used to 

assemble and transport opsin molecules to the OS discs. In the rod cells, the OS features 

invaginations of the plasma membrane at its base, which makes detached stacks of disc 

structures. As for the cones, the discs remain attached to the OS membrane. The RPE cell 

pseudopodia continually renews these OS discs by separating the distal disc from the four 

remaining stack. These shed discs are then phagocytosed by RPE and degraded. This 

process can keep the photoreceptor cell OS length constant.  

https://en.wikipedia.org/wiki/Choroid
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Each photoreceptor cell features a specific role for the type and amount of 

light that results in its unique signaling response. Rod cells are sensitive photoreceptors 

that respond to single photons of light. Therefore, they are active in dim-light 

settings and thus enable for night-time vision. Rods principally have a 

response range of three orders of magnitude, up to 10,000 photons per second (mesopic 

vision), at that point they saturate2-4. Once the rods saturate, the cones begin to 

activate (photopic vision). By shifting their operating curves, cones take the human 

eye out to more than ten billion photons per second.  

There are completely different variations of cone cells, each accountable for 

sensing different wavelengths of light, and thus granting day-time, sight. In humans, there 

are three kinds of cone cells: the S-cones, L-cones, and M-cones. The macula, a central 

region of the retina, is enriched in cone cells, causing the cones to be accountable for the 

central visual field whereas the rod cells comprise the majority of the peripheral visual 

field2, 3, 5. Using the photoreceptor cells’ sensitivity to photons, the retina takes 

responsibility for two major functions of vision. One, it transduces photons into neural 

signals; and second, these neural signals are then transmitted to the brain in a manner 

within which the brain will acknowledge and decipher the visual image. Retinal circuits 

transform patterns of light and darkness on the photoreceptor mosaic of the retina, and 

these patterns result in repetitive discharges from a two-dimensional array of ganglion 

cells to the brain. Over the past years, progress has been done in understanding the 

mechanisms of neurocircuitry and phototransduction in the retina. No feedback from the 

brain to the retinal cells occurs during the visual process, and thus the phototransduction 



4 
 

signaling cascade in the photoreceptor rods and cones is of high importance to provide 

correct visual images. 

 

PHOTOTRANSDUCTION CASCADE  

The photoreceptor cells contain opsins within the OS discs, which are 

photosensitive pigments that photoactivate once light exposure. Every OS disc contains 

several million opsin molecules. These photoexcited opsins then stimulate the plasma 

membrane of the photoreceptors to trigger signals that are transmitted through the inner 

retina, to the optic nerve, and on to the brain. In the dark, there is a current that flows 

from the IS to the OS of the photoreceptor cell. After light exposure, the OS undergoes a 

process, known as the phototransduction cascade that interrupts this cell current. This 

cascade happens on the stacks of disc membranes and results in altered cyclic guanosine 

monophosphate (cGMP) levels in the photoreceptor OS. The fluctuation in cGMP levels 

in the photoreceptor transmits the light response signal from the OS discs to the cell 

membrane of the photoreceptor cell6. This process is rigorously regulated by numerous 

molecules, each of which is responsible for the activation, deactivation, and adaptation 

of the phototransduction cascade in the photoreceptor cell. The phototransduction 

cascade is activated once light is absorbed by a molecule in the OS of the photoreceptor, 

known as rhodopsin (RHO). Rho protein is a seven-loop transmembrane G-protein 

coupled receptor that contains a protonated Schiff base with a lysine side chain. This 

lysine side chain is covalently conjugated to an 11-cis chromophore7, 8. A photochemical 

event happens after light sensation to the photoreceptor cells that causes the geometrical 
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photoisomerization of the pigment 11-cis retinylidene chromophore into an all-trans 

configuration9. After light stimulation, this pigment will no longer be photoactivated. 

Therefore, a mechanism exists within the retina to regenerate these light-sensing 

pigments. The all-trans retinylidene is isomerized back into the 11-cis configuration, to 

produce a pigment that can be photoactivated by light. This whole process is known as 

the visual cycle. 

In the vertebrate, the Schiff base link between the chromophore and opsin is 

hydrolyzed, that permits for free all-trans retinal to be discharged. This is a process called 

bleaching9. This all-trans retinal is then reduced within the photoreceptor cell by 

NAD(P)H-dependent retinol dehydrogenases (RDHs) to yield all-trans retinol, otherwise 

referred to as vitamin A. All-trans-retinol is transferred into the RPE cell layer to be 

esterified by lecithin: retinol acyltransferase (LRAT) for storage9. In the RPE cells, stored 

all-trans retinyl esters are isomerized to 11-cis retinol by retinal pigment epithelial 65 

kilodalton (RPE65) protein. This happens in a complex enzymatic reaction that involves 

the concurrent hydrolysis of the ester moiety. The 11-cis retinol is then converted to 11-

cis retinal. 11-cis retinal then passes out of the RPE and into the outer segment of the 

photoreceptor cell to bind to opsin and form the RHO molecule. 

While there are three unique opsins in cone cells, the RHO gene encodes the sole 

opsin in rod cells. RHO is firstly synthesized and modified by N-Glycosylation into the 

endoplasmic reticulum. In Golgi apparatus, proteins are further assembled into vesicles, 

to be exported from the inner segment of photoreceptor through the connecting cilium 

into the outer segment, where rhodopsin proteins (RHO) are directly integrated into the 
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disc membranes. RHO is a special G protein-coupled receptor, with seven trans-

membrane domains, which can be assembled with the 11-cis-retinal chromophore 

(derivative of vitamin A), to function. When the photon enters into the retina, photons 

are captured by the 11-cis-retinal. This molecule will undergo a conformational change 

(isomerization) to all-trans-retinal isomer. This reaction is the first step of 

phototransduction cascade (Fig. 2). 

 

 

Figure 2. The phototransduction signaling. 

 

Light causes this RHO molecule to an activated state with conformational change. 

This product is called metarhodopsin II (Rh*). Rh* next activates it downstream molecules 

transducin (Gtαβγ). Gtαβγ are heterotrimeric G-proteins which can act by exchanging 
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guanosine diphosphate (GDP) for guanosine triphosphate (GTP)10. This activation by Rh* 

causes GTP to bind to the Gtα subunit of Gtαβγ. Then, this Gtα-GTP dissociates from the 

Gtβγ portions of Gtαβγ. Once dissociation, the Gtα-GTP binds to the inhibitory γ subunits 

of cyclic guanosine monophosphate (cGMP)-phosphodiesterase 6 (PDE6).  

PDE6 is a heterotetrameric protein consisting of a catalytic α-subunit, a catalytic 

β-subunit, and two inhibitory γ-subunits within the rod photoreceptor cell. In the cone, 

PDE6 consists of a catalytic dimer that contains two identical α’ subunits, instead of the α 

and β subunits found in the rod. In addition, the γ’ inhibitory subunits of the cone PDE6 

differ slightly in size and amino acid composition from the rod γ inhibitory PDE6 subunits6. 

PDE6 is highly essential in the phototransduction cascade, because it is the primary 

regulator of cytoplasmic cGMP concentration in the photoreceptor cells. In the dark, PDE6 

is in an inactive form, with the γ inhibitory subunits attached (PDE6αβγ), and cGMP level 

inside the photoreceptor cell OS is high (several micromolars)6. This permits for cGMP-

gated Na+/Ca2+ ion (CNG) channels in the plasma membrane to stay open, allowing a 

current to circulate through the photoreceptor cell.  

After light stimulation of the phototransduction cascade, the binding of Gtα-GTP 

on the γ-subunits of PDE6 eliminates the inhibition on the catalytic α- and β-subunits of 

PDE10, 11. The activated PDE6 hydrolyzes cGMP, breaking it down and lowering its 

concentration within the photoreceptor cell. This light-activated PDE is about three 

hundred times greater active than in its basal state, swiftly breaking down the cyclic 

nucleotide levels12. The fast reduction of cGMP within the photoreceptor cell after light 

stimulation of the phototransduction cascade causes the CNG channels located in the 
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plasma membrane to shut. Consequently, the levels of Na+ and Ca2+ into the cytoplasm 

are decreased, causing the rod cell to become hyperpolarized. Hyperpolarization of the 

rod cell causes it to lower glutamate at its synaptic terminal to signal to the other neuronal 

cells of the retinal and on to the optic nerve and the brain. 

After light stimulation, the phototransduction cascade has to undergo 

deactivation to return cGMP to its basal levels. The photoexcited Rh* is inactivated via 

the phosphorylation of threonine and serine residues at its carboxyl tail by a rhodopsin-

specific kinase known as G protein-dependent receptor kinase I (GRK1)13. This 

phosphorylated rhodospin (Rh*-P) has greater efficiency binding toward a molecule 

called arrestin (Arr; also known as S-antigen), instead of Gtα. Arr inhibits the removal of 

the phosphate groups on Rh*-P14. This hastily reduces the amount of dephosphorylated, 

active Rh* available for the activation of Gtα and the rest of the phototransduction 

cascade. 

Moreover, Gtα has intrinsic GTPase activity to inactivate itself after its binding to 

the γ inhibitory subunits of PDE612. The PDE6αβ catalytic subunits re-associate with the 

two PDE6γ subunits for inactivation of the PDE6 complex while retinal guanylate cyclases 

(Ret GC-1 and Ret GC-2) become activated and reproduce cGMP within the photoreceptor 

cell13. The recovery of the basal cGMP concentration in the photoreceptor cell re-opens 

the CNG channels. The deactivation process is now complete. Activation of the 

phototransduction cascade begins again while Rh*-P-Arr binds to 11-cis retinal which 

releases the molecule from Arr. The Rh*-P is then dephosphorylated by phosphatase 2A 

and the light/dark activation/deactivation cycle can continue in the photoreceptor cell. 
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In addition to the activation and deactivation of the phototransduction cascade, 

there is also the photoreceptor adaptation to constant light stimulus. As formerly referred 

to, light stimulation of the phototransduction cascade ends in the closure of the CNG 

channels in the photoreceptor OS. This induces a decline in Ca2+ influx into the 

photoreceptor. Intracellular Ca2+ levels act to inhibit the guanylate cyclases (Ret GC-1 

and Ret GC-2). Consequently, Ret GC-1 and Ret GC-2 are activated when light stimulates 

the phototransduction cascade and Ca2+ levels reduce within the cell15-17. This occurs 

through the stimulation of Ret GC-1 and Ret GC-2 with the aid of the guanylate cyclase 

activating proteins (GCAP-1/p-20 and GCAP-2/p24). These guanylate cyclases work to 

create more cGMP to counteract the reduction in cGMP by PDE6 after the activation of 

the phototransduction cascade. 

Additionally, a molecule known as recoverin then mediates the Ca2+ sensitivity of 

GRK1 phosphorylation of Rh*. For that reason, extended light leads to a decrease in Ca2+ 

levels and induces GRK1 activity by decreasing recoverin’s inhibition of GRK115-17. 

Furthermore, the CNG channel, accountable for the ionic current of the photo-response, 

binds a molecule called calmodulin at high levels of Ca2+, and extended light reduces 

calmodulin binding and leads to a decline in the channel affinity for cGMP. This causes 

the channel to re-open at lower levels of cGMP than it would in dark environment. 

Lastly, light adaptation results in a greater inhibition of the PDE6 enzyme to permit 

for a speedy reduction in the hydrolysis of cGMP. Ca2+-sensitive members of the protein 

kinase C family phosphorylate the two PDE6γ subunits. This phosphorylation site is 

blocked while the γ subunits are bound to PDE6αβ, but light activation of the 
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phototransduction cascade allows for Gtα-GTP to discharge the γ inhibitory subunits from 

the PDE6αβ complex. After GTP hydrolysis, free PDE6γ are then phosphorylated by 

members of the protein kinase C family at threonine 35, which permits them to re-bind 

to PDE6αβ and cause a stronger inhibition of the catalytic activity of PDE6. 

Any alterations of the phototransduction cascade, such as changes affecting the 

renewal and shedding of the photoreceptor OS or visual transduction, or even retinol 

metabolism can have a remarkable impact on the retinal integrity. Mutations within any 

of the related molecules accountable for those visual processes may cause numerous 

types of retinal and RPE degenerative conditions. The majority of retinal degenerations 

are caused by gene defects, leading to a lower protein levels or incorrect protein functions. 

For instance, the inability of the RPE to phagocytose the photoreceptor OS causes a type 

of autosomal recessive retinitis pigmentosa (arRP). This disease and other retinal 

degenerative diseases, are a common healthcare issue in the world18. 
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EYE DISEASES 

RETINAL DEGENERATION 

Unfortunately, retinal degeneration is a common occurrence in the world. The loss 

of sight affects about 3.4 million people in the United States. Alone and is predicted to 

increase over the years19. Visual impairment ranks merely behind arthritis and 

cardiovascular disease with respect to disease impact on function in the elderly. In fact, 

visual loss is frequently considered by patients to be their dominant health issue, even in 

the presence of other chronic disabling disorders20. Patients experience a loss of quality 

of life, as they require assistance in daily tasks such as walking, reading, or driving.  

There is great genetic and allelic heterogeneity of the several retinal dystrophies. 

These conditions have been categorized using age of onset, electrophysiological and 

psychophysical studies. However, those classifications can be ambiguous as there are 

comparable clinical presentations in retinal degenerations arising from different genetic 

mechanisms. For example, RP can be caused by both mutations within proteins of the 

phototransduction cascade, such as RHO or PDE6, and also by mutations within rod OS 

membrane proteins, such as peripherin21, 22. Moreover, different mutant alleles at the 

identical locus can cause diverse clinical manifestations of disease. For instance, 

mutations in the β subunit of PDE6 can cause different kinds of retinal degenerative 

diseases: such as congenital stationary night blindness or RP21, 22. Currently, the most 

accurate method of classification is based on the specific molecular genetic defect, and 

genetic testing is becoming a common practice utilized by clinicians to improve their 

clinical diagnosis. 



12 
 

RETINITIS PIGMENTOSA 

As mentioned, photoreceptor neurodegenerative diseases have great impacts on 

both patients and society. Unfortunately, they there is no cure18, 23-26. One of the most 

devastating photoreceptor degenerative diseases is retinitis pigmentosa (RP), which is the 

focus of this study. RP is the most common cause of hereditary blindness in the world, 

affecting about 1:3000 people18, 26. There are various forms of RP, including autosomal 

dominant (15-20% of cases), autosomal recessive (20-25% of cases), and X-linked (10-

15%). The remaining 40-55% of cases is currently of unclassified inheritance23, 26-30. Those 

unclassified RP patients are typically due to the absence of familial histories, and are 

denoted as simplex RP. Most simplex RP cases are believed to be autosomal recessive30. 

Autosomal dominant forms of RP are generally the mildest, with onset that can occur as 

late as 50 years of age. Autosomal recessive, however, are more severe and disease onset 

normally occurs during the first decade of life26, 30. Moreover, RP can be secondary in 

etiology and is involved in more than 30 disease syndromes. 

Genetically, most forms of RP are monogenic, even though there have been cases 

of digenic-diallelic and digenic-triallelic inheritances. Due to RP being both locus 

heterogenous and phenotypically heterogenous, mutations in no single gene are known 

to cause greater than 10% of 14 cases of RP30. In 2013, there are 45 genes mapped that 

cause non-syndromic forms of RP, although there is likely to be many more genes 

responsible for this disease as about 200 more genes have already been identified that 

are involved in retinal disease26.  
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Table 1. Genes associated with autosomal dominant retinitis pigmentosa (adRP). 

Adapted from sph.uth.edu/retnet/ and Fahim et al., GeneReviews, 199323. 

 

 In RP, the progressive atrophy of the rod photoreceptor cells results in the 

secondary death of the cones. Affected individuals will present with night blindness, 
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tunnel vision, and eventual loss of central vision when cone cells degenerate. This 

photoreceptor cell death has been thought to result from a caspase-dependent apoptotic 

mechanism, as was observed in animal models of retinal dystrophies31, 32. However, there 

have been recent research suggesting that other disease pathways, such as calpain-

mediated cell death or proteasome activity, may be responsible for the degeneration of 

the photoreceptor cells13, 33, 34. Although it stays to be elucidated which death mechanism 

leads to the loss of the photoreceptors, RP can be categorized into three stages of clinical 

disease. 

In stage I of RP, patients usually present with night blindness. While some patients 

ignore this symptom, and typically will not recognize the disease phenotype until the 

teenage years, when they attend evening events. There are not any visual defects 

presented in the daylight, and patients have normal life activities. Only the 

electroretinogram (ERG), a clinical test that measures the electrophysiological response 

of the retinal cells to flashes of varying light intensities, will display a loss of visual 

response at this time27, 29. Hence, at the early disease stage most patients will not be 

clinically diagnosed with RP.  

In the mid-stage of RP, patients will have difficulty performing   nighttime activities, 

such as driving, and will become aware of a loss of their peripheral visual field even in the 

daylight. Moreover, patients may become photophobic, especially in regards to diffuse 

light, such as cloudy weather days27, 29. This imposes difficulty reading and performing 

daily activities. At this stage, patients notice the disease phenotype, visit a clinician, and 

are generally diagnosed with RP.  
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At the clinic, fundus examination will show the presence of bone-spicule shaped 

pigment deposits in the mid-periphery of the retina, along with retinal pigment epithelial 

atrophy. Narrowing of the retinal vessels is also obvious at this time. ERG examination will 

display an attenuated visual response in the cone cells, and a complete loss of visual 

response under scotopic, dark-adapted conditions27, 29. This phenomenon reflects the loss 

of the majority of the rod photoreceptor cells. 

In the final stage of RP, the clinical manifestations that occur in the mid-stage of 

the disease will worsen until the patients have lost their ability to perform daily tasks on 

their own, without assistance from others. They will then continue to deteriorate until 

the loss of their central visual field, rendering them blind. This disease not only affects the 

patient and their cherished ones, but society as a whole. RP patients have progressively 

declining vision that inevitably leads to blindness, and society is confronted with the high 

costs of caring for each of these visually handicapped persons for the remainder of their 

lives. 

RP is arguably one of the best model for studying neurodegenerative diseases, for 

three main reasons. First of all, the basic pathogenic process in RP, that of rod cell atrophy 

leading to a secondary, non-autonomous death of the cone cells, is generalizable to other 

types of retinal degenerative diseases, such as age-related macular degeneration (AMD) 

or even normal aging13.  

Secondly, many mouse models now exist for mutations in Rho leading to RP, which 

is the most common cause of autosomal dominant RP13. Third, in contrast to mouse 
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models of EYS35 or ABCA436, common photoreceptor degenerative diseases in which the 

mouse model does not mimic human disease, these mouse models with loss of function 

of Rho mimic the human phenotype37, 38.  

More than 120 single nucleotide mutations have been reported in RHO gene, each 

of them can lead to retinal degeneration. Within those RHO mutation-induced retinal 

degeneration, most of them can cause autosomal dominant retinitis pigmentosa (adRP), 

but also sometimes autosomal recessive RP (arRP) or congenital stationary night 

blindness. These mutations are homogeneously distributed on RHO gene. Every mutation 

can cause disease through different mechanisms. These pathogenesis based on diverse 

RHO mutations can be classified into several groups.  

 

 

Table 2. Classification of rhodopsin mutations. Adapted from Mendes et al., TRENDS in 

Molecular Medicine, 200539. 
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For instance, P23H mutation, which belongs to class II RHO mutations, has been 

described to be retained in the ER in cellular models40, 41. This has been suggested to 

induce the unfolded protein response, which can lead to apoptosis42. This mechanism 

could be an explanation for photoreceptor degeneration, however this theory is still 

under debate in the in vivo context43, 44. 

Scientists and clinicians have started searching for therapeutic agents that will be 

effective in slowing the photoreceptor cell death, and/or curing the causative genetic 

defect. 

 

DOYNE HONEY COMB DYSTROPHY 

Doyne Honey Comb Dystrophy (DHRD) is an inherited condition that affects the 

eyes and causes vision loss. This disease was described initially in inhabitants or 

descendants of the Leventine valley of Tessin Canton in Southern Switzerland45. A R345W 

mutation can be found in EGF Containing Fibulin Extracellular Matrix Protein 1 (EFEMP1) 

from all the DHRD patients46, 47. 

DHRD is characterized by small, round, yellow-white deposits known as drusen 

that accumulate between the retinal pigment epithelium (RPE, the nutritive layer 

of cells deep in the retina that helps maintain the function of the photoreceptor cells) and 

Bruch’s membrane (BrM)46-48. The thin BrM is a pentalaminar matrix located between RPE 

and choroid. BrM is a semipermeable filtration barrier through which major metabolic 

exchange takes place49. BrM has five layers (from the innermost to the outermost): the 

https://faculty.washington.edu/chudler/retina.html
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RPE basement membrane, the inner collagenous zone, the elastic zone, the outer 

collagenous zone, and the choriocapillaris basement membrane. The inter fiber matrix of 

BrM is principally composed of heparin sulfate, chondroitin or dermatan sulfate. The 

chondroitin sulfate in BrM is believed to provide an electrolytic barrier to diffusion.   

When DHRD progress over time, drusen may enlarge and come together, creating 

a honeycomb pattern. At this point, patients may start to notice changes in their visual 

acuity (the clarity or sharpness of vision)50-52.  Typically, people with DHRD do not have 

symptoms until 30-40 years of age. Early visual symptoms may include: decreased visual 

acuity; problems seeing color; relative scotomas (a defect in the visual field resulting in 

problems seeing objects of low brightness); photophobia (eye discomfort in bright 

light); and metamorphopsia (distorted vision). In the later stages of the condition, usually 

by the age of 40 to 50 years, one's central vision deteriorates. Additionally, absolute 

scotomas can develop. These visual defects (which are surrounded by normal visual 

field) are associated with total loss of vision within that specific area.  

DHRD is usually characterized by slowly progressive loss of central visual acuity. To 

some extent, the degree of severity is associated with age. Mild cases are usually 

detected between 20 to 40 years of age52. They are characterized by normal vision and 

the presence of small, discrete drusen in the macula. More severe cases generally occur 

at or after 50 years of age and are associated with profound loss of visual acuity.  

However, the severity of symptoms in DHRD can be variable. There are always ex

ceptions to the "typical" age of onset and course of DHRD. For example, there have been 

http://www.stlukeseye.com/anatomy/macula.html
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reports of people with DHRD in their sixties who still have good vision.  In other affected 

people, their disease course may change to one of faster progression and severe visual 

loss if choroidal neovascularization (CNV) occurs48, 53-55. CNV involves the growth of new 

blood vessels from the choroid into the subretinal space, and is a major cause of visual 

loss56.  

The importance of these diseases is due in large part to their close phenotypic 

similarity to age-related macular degeneration (AMD), a disorder with a strong genetic 

component that accounts for approximately 50% of registered blindness in the Western 

world57-60. Just as in ML and DHRD, the early hallmark of AMD is the presence of 

drusen61. Though in AMD, no genetic or other causative factor has been found. 

The origin of drusen is still a mystery. Drusen is discrete extracellular deposits that 

commonly precede the development of AMD, and that are comprised of numerous 

cellular and inflammatory factors. Other than mutant EFEMP1 protein itself62, RPE 

basement membrane molecules such as collagen IV, VI, laminin, and heparan sulfate 

proteoglycans were found in drusen63-66. Other proteins such as vitronectin, MMP-7, 

TIMP-3, C3, and C5b-9 have also been reported67, 68. 

Lipid particles accumulate within Bruch’s membrane in the exact location and 

prior to the development of basal deposits or drusen. This observation has led to the 

hypothesis that these lipid particles contribute to drusen formation during the 

development of AMD. Recent work suggests that the lipoprotein particles found within 

Bruch’s membrane are distinct from plasma lipoproteins and have been found to contain 

http://www.nlm.nih.gov/medlineplus/ency/article/002318.htm
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free and esterified cholesterol, phosphatidylcholine (PC), and apolipoprotein B10069, 70. 

Curcio et al. found that esterified cholesterol comprised 60% of total cholesterol within 

these lipoproteins, and esterified cholesterol was 7-fold higher in the macula than 

periphery71. It has been speculated that membranous debris is membrane-bound packets 

of RPE cytoplasm released by the RPE72 or RPE basal in foldings disintegrating with age73. 

This secretion of basement membrane-like material and lipid particles, may polymerize 

or condense to produce long spacing collagen and dense amorphous material, and finally, 

release of membranous debris forms large drusen74. 
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THERAPY FOR GENETIC DISEASES 

BRIEF OVERVIEW OF CURRENT EXPERIMENTAL THERAPIES  

Patients with RP are not curable, and at this time there are not any standard 

treatments in clinical practice to halt the progression of photoreceptor degeneration and 

loss of vision. However, there are numerous methods being studied to try to slow down 

the rate of degeneration and allow for patients to extend the time in which they are able 

to maintain their central visual field. One approach used for patients with RP is to provide 

dark sunglasses for use outdoors, in order to block the amount of light to the 

photoreceptor cells26, 30. Since a majority of RP cases are caused by mutations within the 

phototransduction cascade, which is activated by light, this decreases the effects of those 

mutations by limiting the light stimuli. Moreover, yellow-orange glasses block 

photophobic effects for patients and are suggested by some clinicians26, 30. However, 

those methods for protecting the photoreceptor cells cannot offer a cure for the disease, 

and various other therapeutic options are being tested for RP patients.  

A main research that was conducted examining the effects of vitaminotherapy for 

RP. Vitamin A was hypothesized to protect the photoreceptor cells through a trophic 

effect, and vitamin E via anti-oxidant protective effects26, 30. Studies have shown that long-

term supplementation of daily vitamin A was capable to slightly ameliorate the loss of 

visual function as observed by the cone ERG b-wave amplitude in RP patients. However, 

400 units of vitamin E per day had unfavorable effects in RP patients23, 27, 30. Since vitamin 

A is stored within the body, patients taking vitamin A supplementation at high doses have 
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to be monitored as well for potential toxicity, and clinicians debate the usefulness of this 

treatment. 

Another method is to provide RP patients 1200mg/day of docosahexanoic acid 

(DHA) supplements in addition to the vitamin A supplementation, which showed an initial 

slowing of the disease progression in trials, but one which did not last in patients beyond 

two years of follow-up75-77. Moreover, patients with the ABCA4 gene mutation that leads 

to Stargardt’s disease, another retinal degenerative disease, have negative effects after 

vitamin A supplementation75-77. Those are the most promising treatment options at this 

time for RP, and whether or not they will have any significant slowing of retinal 

degeneration is controversial.  

Some other choice is to apply pharmacological treatments if the mechanism of 

degeneration is known for the patient. Animal studies have tested the use of calcium 

channel blockers to slow down RP progression. This is thought to be effective since 

increases in cGMP leads to a constant opening of the CNG channels and alters the ion 

current to cause photoreceptor cell death. However, those animal studies have shown 

limited success75-77. One of the promising pharmacological treatments analyzed the 

effects of 9-cis retinal in mouse models of Leber congenital amaurosis (LCA), an early-

onset blinding disorder. LCA patients have mutations in RPE65, the isomerase that acts in 

the visual cycle for the conversion of all-trans retinyl esters to 11-cis retinal for binding to 

opsin. 9-cis retinal is assumed to be able to bind opsin and create a modified form of 

rhodopsin that can be activated by light and function in the phototransduction cascade. 

Delivery of 9-cis retinal to the Rpe65-/- mouse model of LCA has restored rod cell function, 
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however further studies are necessary to determine the efficacy of rescue for this 

pharmacological treatment75-77. 

Other pharmacological therapies include treating mouse models of Stargardt 

disease, a blinding disorder which is believed to involve the accumulation of bisretinoid 

lipofuscin in the RPE, with visual cycle inhibitors. Those studies have also found some 

slowing in the accumulation of lipofuscin, thought to lead to the RPE-related disease 

phenotype 75-77. As more genetic mutations and mechanisms of retinal degenerative 

diseases are recognized, pharmacological treatments can become more targeted and 

better developed. These agents are promising, and may have the potential to be 

beneficial therapeutic options to decelerate the progression retinal degenerative diseases, 

such as RP.  

Another treatment method is to use growth factors to form neuroprotection to 

the photoreceptor cells and thus limit photoreceptor degeneration. Animal models have 

shown therapeutic efficacy using an array of growth factors, including ciliary neurotrophic 

factor, brain-derived neurotrophic factor, and glial-derived neurotrophic growth factor75-

77. However, these growth factors have to be introduced in situ to the animal, due to the 

short half-life of the growth factors. Many strategies are being developed for this drug 

delivery, such as gene transfer and the use of encapsulated cells placed into the vitreous 

cavity75-77. However, these growth can have side effects that include cataract, which could 

lead to a loss of vision. The application of ciliary neurotrophic factors is currently in phase 

I of human clinical trials for patients with RP; however it has been shown to lower the ERG 
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response in some animal models of retinal degeneration, suggesting a potential 

unwanted effect of the growth factor or delivery system75-77. 

Besides treatments that may only decelerate the progression of retinal 

degeneration, scientists are also working on strategies to replace the already 

degenerated photoreceptor cells. One method in which to achieve this goal is to use 

retinal prosthetic devices. Those devices incorporate microphotodiode arrays that are 

able to capture light and stimulate the retina. They can be incorporated into the eye to 

act in the phototransduction cascade, or they can be included in sites accountable for 

later stages of the visual signaling cascade. Those sites include directly stimulating the 

optic nerve or the visual cortex of the brain. One of these early retinal prothestic devices 

has been approved by the Federal Drug administration and is proven to be tolerated by 

the human patients after implantation75-77. However, these devices are not yet a standard 

therapy for RP, but further studies and improvements in the prosthetics can make them 

a feasible option.  

Another method to replace the degenerated photoreceptor cells is to transplant 

cells from fetal or adult retina into patients. In current published cases, researches 

transplantation studies using photoreceptors allowed survival of the transplanted cells 

within the host diseased retinas, however they were not able to arrange and organize 

themselves to provide proper structure and synaptic connections75-77. An alternative 

therapy will be the use of stem cells, by using either embryonic or patient-derived induced 

pluripotent stem cells, to create sheets of cells or tissues for transplantation into patients 

with RP. Promising results from cell transplantation experiments have been found in 
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animal models of retinal degenerative diseases. RPE grafts have been proven to rescue 

both the Royal College of Surgeons (RCS) rat and the Rpe65-/- mouse models78, 79. 

Nevertheless, these therapies are still undergoing development and more studies have to 

be done before one can create a purified cell or tissue of interest in vitro that will be able 

to make all the essential synaptic connections in vivo after transplantation. 

 

GENE THERAPY  

Gene therapy has become a promising therapeutic tool for treating blindness due 

to inherited retinal degenerative diseases. Current technology has allowed for the 

elucidation of disease-causing alleles and specific genetic defects, which grants scientists 

the capability to create a gene therapy vector which can target those specific genes of 

interest. There are numerous vectors that can be applied for gene therapy, including both 

viral and non-viral vectors. Though usually, to maximize the transduction efficiency, viral 

vectors are used; although small molecules are now being created that have the potential 

to efficiently transfect the cells of the retina.  

The first viral vector to be developed for use in gene therapy was the lentivirus. 

Lentiviruses were of interest because of the fact that they could hold approximately 9 

kilobases (kb) of deoxyribonucleic acid (DNA), and more importantly, infect non-dividing 

cells, such as the photoreceptor cells13, 23, 75. Lentiviral vectors take advantages of   the 

human immunodeficiency virus (HIV) genome. Second and third generation lentiviruses 

are being developed, in which several regulatory proteins are deleted from the packaging 
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construct80. At present, only the in vivo potential pathogenicity of the HIV-1 based viruses, 

such as lentiviruses, can be determined by in vitro tests, and more technical 

improvements and experimental studies of both efficiency and safety need be examined 

comprehensively before their clinical use. 

 

GENE EDITING 

For the treatment of dominant disease, a new approach has emerged that enables 

investigators to directly manipulate genes both in vitro and in vivo. This principal 

technology – usually referred to as “gene editing” or “genome editing” – is based on the 

application of engineered nucleases consist of sequence-specific, DNA-binding 

compartment fused to a DNA cleavage module128, 129. These chimeric nucleases enable 

reliable and precise genetic modifications by introducing double-strand breaks (DSBs) on 

DNA at a designated site in the genome that can potentially stimulate the cellular DNA 

repair mechanisms, including non-homologous end joining (NHEJ) and homology-directed 

repair (HDR)128, 129(Fig. 3). The versatility of this technology is enabled by the 

programmability of the DNA-binding ability that are obtained from zinc-finger (ZFN) and 

transcription activator-like effector (TALENs) proteins. In addition to those two 

technologies, investigators have also successfully developed a more efficient system using 

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), which is 

a prokaryotic immune system that confers adaptive resistance to foreign genetic matters 

such as those double or single strand RNA and RNA present within plasmids 

and phages130-132. 
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ZFNs were the first of the “genome editing” nucleases used in research. Zinc 

fingers are the most well-known DNA binding domain existed in eukaryotes. They typically 

are modules consist of around thirty amino acids that interact with nucleotide triplets. 

ZNFs have been engineered to recognize all of the 64 possible trinucleotide 

combinations128, 129, 133. By stringing different zinc finger moieties, it is feasible to use ZNFs 

specifically target any specific sequence of DNA triplets. Each ZNF can recognize 3-6 

nucleotide triplets. Because these nucleases can only function as dimers, pairs of ZNFs are 

necessary to carry out specifically targeting (one ZFN to recognize the sequence upstream 

and the other to recognize the downstream sequence of the site to be modified). 

 

 

Figure 3. Repair of DNA double strand break 

 



28 
 

TALENs, on the other hand, is similar to ZNFs in that they use DNA binding motifs 

to guide the same non-specific endonuclease to cleave the DNA at a specific site in the 

genome133. However, instead of recognizing DNA triplets, each TALENs domain recognizes 

a single nucleotide. The interactions between the DNA binding domains and their target 

nucleotides are less sophisticated than those between ZNFs and their target 

trinucleotides. This simplicity grants easier designing of TALENs in comparison to ZNFs134-

136.  

 

 

Figure 4. Components of CRISPR technology: Cas9 protein and gRNA. 
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CRISPR is the latest but most exciting development in genome editing technology. 

CRISPR are RNA-based prokaryotic defense mechanisms evolved to recognize and exclude 

foreign DNA from invading bacteriophages137. CRISPR consists of an endonuclease called 

“Cas” that is directed to cleave a target sequence by a guide RNA (gRNA)133(Fig. 4). Both 

the Cas endonuclease and the gRNA are naturally encoded in the bacterial genome, and 

this system can act synergistically to cleave any desired target site by engineering the 

sequence of the gRNA. 

Just like the ZNF and TALEN systems, the CRISPR system can also be used to create 

double-strand break at a specific site. This break can then induce the occurrence of non-

homologous end joining or homology-directed repair for the creation of desired mutation 

or gene correction130, 133.  

The CRISPR system provides several advantages over the ZNF and TALEN systems. 

First, as mentioned, it is restively easier to make the target design. Because the target 

specificity totally depends on RNA/DNA complex formation instead of protein/DNA 

recognition, gRNAs can be designed readily in a cost-efficient way to target almost any 

sequence in the genome130, 133. Second, CRISPR has a higher efficiency among all three 

gene editing tools. DNA manipulation can be created by direct injection of Cas9 protein 

and gRNAs into developing mouse embryos. This method eliminates the laborious 

processes of transfecting and screening mouse ES cells that are required to generate 

targeted mutant mice using traditional homologous recombination techniques130, 133.  
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And the last, CRISPR is possible to be multiplexed. Several mutations can be 

introduced in one or multiple genes at the same time by a single injection with multiple 

gRNAs. 

All three gene editing technologies offer researchers with handy methods to 

develop mutant mouse or cell model for the studying of human disease, which were 

previously difficult to create by traditional gene targeting methods138. However, all these 

three methods has some potential drawbacks. The most critical issue is off-target 

effect138-140. Unwanted mutation can be introduced at non-specific loci with similar, but 

not identical sequence to the target sites. These odd-targeting effects can be difficult to 

identify and usually require scanning of the whole genome for searching these mutations 

(usually by whole genome sequencing). Another disadvantage is the difficulty of delivery, 

especially for the purpose of gene therapy. For instance, the most widely-used Cas9, the 

SpCas9 is around 4 kb. For the packaging of the transgenes comprising Cas9 and 

associated gRNA can barely fit into an AAV vector. Efficient expression of those large 

nucleases for gene editing requires further development and improvement. 

Despite these drawbacks, ZNFs, TALENs and especially the CRISPR/Cas systems are 

still so far the most powerful tools for manipulating the genomes. It can be expected 

refinements of these systems will continue to perfect genetic therapies for treating 

human diseases. 
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ADENO-ASSOCIATED VIRAL VECTORS  

Most experiments utilize an adeno-associated virus (AAV) as the new standard for 

retinal gene therapy24, 81-84. AAV is a non-enveloped, icosahedral-shaped member of the 

parvoviridae family; thus, it is a small virus with a virion about 25nm in diameter 

composed entirely of protein and DNA85, 86. This fact means that AAV vectors are merely 

capable of packaging approximately 4.7 kb of DNA85, 87. Hence, both the gene of interest 

and the promoter must fit this space requirement, making it a limiting factor of using AAV.  

The AAV2 genome is the most widely studied, and is constituted of linear, single-

stranded DNA containing 4679 nucleotides24, 81-88. The AAV genome is composed of three 

open reading frames (ORFs) flanked by inverted terminal repeat (ITR) sequences that act 

as the viral origin of replication (ori) and packaging signal81, 82, 85. AAV2 carries one ORF 

with two genes that encode four non-structural replication proteins (Rep40, Rep52, 

Rep68, and Rep78) and another ORF with three 60-mer capsid proteins (VP1, VP2, and 

VP3), together with the third ORF containing an assembly-activating protein which is 

flanked on each side by 145 base-pair ITRs85, 89, 90. The two larger replication proteins, 

Rep68 and Rep78, play a role in many aspects of the AAV2 life cycle, including 

transcription, replication of the viral DNA, and site-specific integration into human 

chromosome 19. The other two smaller replication proteins are used for packaging of the 

DNA into the viral capsid85, 91. The three capsid proteins have different translational start 

sites, even though they come from the same gene. 

There are eleven known naturally occurring serotypes for AAV, and over 100 

artificial variants86. The capsid proteins can be found in distinctive configurations for the 
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various AAV serotypes, AAV1-9, however it is believed that they are found in a ratio of 

1:1:10 VP1:VP2:VP385, 92, 93. These AAV capsid proteins determine its tropism (the ability 

to transduce specific cell types), permitting both cell surface receptor binding and the 

entry into the host cell nucleus86. The mechanism by which AAV enters a host cell is 

through phagocytosis by receptor-mediated endocytosis85, 94. There has been in vivo 

evidence supporting the use of both clathrin-coated pits and clathrin-independent 

carriers/glycosylphosphatidylinositol-anchored protein-enriched endosomal 

compartments for this process86. The mechanism of cell entry for each AAV serotype 

remains to be studied. 

After entry into the host cell, the capsid then leaves the endosome and gets into 

the nucleus. There has been evidence supporting both uncoating before nuclear entry, 

and uncoating after nuclear entry, and the exact timing of the uncoating of the capsid is 

yet to be clarified86. Nevertheless, the localization to the host cell nucleus occurs via 

capsid protein VP1, which contains a phospholipase domain that allows for the escape 

from the endosome85, 95. The N-termini of capsid proteins VP1 and VP2, which comprise 

nuclear localization signals, then direct the capsid to the host cell nucleus85, 96. The 

genome is released in the nucleus by the capsids and converted to double-stranded DNA 

by means of the replication proteins and host cellular DNA synthesis machinery85, 86, 97. 

Without the presence of a helper virus, AAV enters a latent life-cycle and the DNA 

is retained in a circular episomal form in the nucleus, otherwise integrated into the human 

chromosome 19, at a specific locus termed AAVS185, 98-101. Due to the fact that AAV 

serotypes contain modifications in the capsid proteins, each serotype has diverse tropism 
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for different target cells and tissues. Hence, recombinant AAV vectors utilized in gene 

therapy have to be selected for their tropism to efficiently and effectively transduce the 

cell-type of interest. For instance, AAV1 was found to more effectively transduce muscle 

cells when compared to AAV2, and AAV5 to more effectively transduce the central 

nervous system in comparison to AAV2. These tissues are highly targeted by different 

serotype to treat disease, making these AAV serotypes thrilling for the potential of 

introducing gene therapy vectors to those tissues that were previously difficult for 

clinicians and researchers to treat with therapeutic agents. 

The recombinant   AAV used as a packaging vector for gene therapy has its viral 

compartments, the replication and capsid proteins, removed from the   gene therapy virus. 

This makes the AAV non-pathogenic and theoretically safe for human clinical trials. The 

ITRs that flank the AAV genome are the only cis-acting elements in the AAV that are 

required for the genome replication, integration, and packaging of the capsid85. Hence, 

the replication and capsid proteins flanked by the ITR sites are replaced with the promoter 

and gene of interest for gene therapy. The replication and capsid proteins are then 

expressed in trans in a separate plasmid that lacks the ITRs, preventing the formation of 

a viral AAV particle after delivery. The recombinant AAV vector is feasible transduce both 

dividing and non-dividing cells with stable transgene expression without the presence of 

a helper virus in post-mitotic tissue86. These features make recombinant AAV a 

remarkable tool for gene therapy studies85 and trials for human diseases. 

However, science did not stop developing the AAV gene therapy vector system at 

this point. These recombinant AAV particles have been made more efficient using 
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numerous technological advances. One of these is the creation of self-complementary (sc) 

AAV vectors. In scAAV vectors, the terminal resolution site of one ITR has been removed, 

preventing the initiation of replication at this end85, 102. This creates a single-stranded, 

inverted repeat viral genome with one wild-type ITR at one end and a mutated ITR in the 

center. This allows for the vector genome to fold after uncoating and creates a double-

stranded, or self-complementary, genome.  

These scAAVs, hence, do not require the host cell DNA synthesis machinery 

synthesize single-stranded DNA to double-stranded DNA before transcription and 

translation; they are incorporated with their DNA in the double-stranded form. There is a 

faster gene expression using scAAV vectors in comparison to recombinant AAV vectors, 

due to this skipped step in DNA synthesis, and these scAAV vectors have been found 

capable to transduce different cell types that previously did not express transgenes using 

the recombinant, single-stranded AAV vectors85. However, these vectors are almost half 

the size (around 2.5 kb) of the recombinant AAVs, making them more restricting than 

recombinant AAV vectors due to DNA packaging constraints. 

Scientists found another method in which to strengthen the recombinant AAV 

vectors. They created hybrid AAVs, in a procedure called “pseudotyping,” to create 

vectors that target specific cell types with greater efficiency. At the time, research had 

observed AAV gene therapy viruses to be restricted in regards to certain cells of interest. 

For instance, AAV2 vectors were the most carefully studied, and AAV2 vectors were used 

to efficiently transduce RPE cells in many animal models for several years. This made them 

an appealing therapeutic agent due to the fact they could potentially have a long-term 
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effect after a single administration of the vector into human patients103. Even though 

AAV2 has been proven more effective for transduction of the RPE cells, it was not clearly 

shown to have a long-lasting effect on the photoreceptor cells104, 105.  

Hence, pseudotyping became a method to create AAV vectors that would more 

efficiently transduce the photoreceptor cells and other specific types which were not 

specifically targeted by AAV2. Pseudotyping relies on the recombinant AAV2 plasmid 

(with the ITRs from AAV2) and packages it into a capsid derived from another AAV 

serotype. This design puts the AAV2 replication genes downstream of the p19 promoter 

with the respective replication genes of another serotype followed after the promoter 

sequence85, 106. These AAV vectors are named after the serotype 2 replication proteins 

(genome) and the serotype from the AAV serotype capsid proteins. For instance, a wild-

type AAV2 capsid vector is typically written as “AAV2/2,” while the pseudotyped AAV with 

serotype 8 capsid for the gene therapy vector used in this study is written as “AAV2/8.” 

This pseudotyping procedure grants advantages in the usage of AAVs in regards to 

improving gene therapy. For instance, the same vector genome, from AAV2, when 

packaged into the different AAV serotype capsids, the only difference between the 

pseudotyped AAV vectors is their viral capsid. This enables research to analyze each AAV 

serotypes in vivo and precisely determine its transgene expression efficiency and tissue 

tropism85, 106, 107. The commonly used AAV serotype, AAV2/2, features a gradual increase 

in transgene expression over time, reaching plateau at approximately 2-4 months post-

injection. In contrast, AAV2/1 or AAV2/5 vectors were able to initiate transgene 

expression much sooner, usually 3-4 days post-injection103.  
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Besides the early gene expression feature, the different AAV serotypes and 

pseudotyped vectors were found to have diverse tropism, especially to different retinal 

cells. For instance, AAV2/4 is more efficiently to target the RPE cells than AAV2/2 or 

AAV2/5 when targeting both RPE and photoreceptors, while AAV2/8 has been found to 

have best efficiency targeting all the retinal cells (including photoreceptors, the RPE cells 

and the rest of the cells of the neural retina24, 81, 103, 104, 106, 107. Thus, researchers can 

choose the AAV gene therapy vector based on the desired cell type that they are 

interested in targeting, and appropriate time frame they would like the transgene 

expression to initiate in the cell.  

 

 

Figure 5. Subretinal and intravitreal injection. 
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For the drug delivery in retina, there are typically two main routes for viral 

administration by injection (Fig. 5): intravitreal and subretinal81, 92, 103. Intravitreal 

injection introduces the AAV vector within the vitreous space of the eye, which permits 

viral deliver to the retinal ganglion cells or Müller glial cells. It is an ideal route for anti-

angiogenic therapies for conditions such as diabetic retinopathy. Intravitreal injections is 

now standard practice by most ophthalmic clinicians81, 92, 103. Currently, researchers are 

looking into develop AAV vectors that could pass through the complex retinal cell layers 

after intravitreal delivery108. Unfortunately, currently there is no AAV serotype that can 

efficiently transduce the RPE or photoreceptor cells through intravitreal injection.  

Subretinal injections is more optimal for the targeting of the RPE or photoreceptor 

cells. This method introduces the virus into the interspace between the RPE and 

photoreceptors, creating a temporary cavity with retinal detachment termed the 

“subretinal bleb.” This retinal detachment will naturally disappear after the diffusion of 

the viral agent92, 103.  

Subretinal injections are clinically used for human patients, but unlike intravitreal 

injections, this technique requires an invasive surgical procedure. In humans, the surgical 

procedure involves a partial vitrectomy to increase in the volume of the AAV being 

injected, and also to balance intraocular pressure. However, it is not possible to carry out 

the vitrectomy procedure in mouse model. It is still possible to perform the subretinal 

injection on mice, but it requires careful skill and practice. Due to the small size of mouse 

eye ball, subretinal injection on mice usually has a successful rate at only 20%. In addition, 

the mouse eye has a much larger lens when comparing to humans. The lens must be 
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avoided during the surgical procedure otherwise can lead to cataract formation and a loss 

of vision. Therefore, for both mice and humans, the subretinal injection surgical 

procedure is typically more challenging than ordinary intravitreal injection and has a 

higher rate for surgical morbidities92, 103. However, it is the best method for achieving 

efficient transduction on RPE and photoreceptor cells. Injections of the current 

established AAV serotypes into the subretinal space are capable to transduce the RPE 

cells with 100% efficiency in the location surrounding the subretinal bleb, and 

approximately 20-40% transduction efficiency of the photoreceptor cells in the area 

within the subretinal bleb, depending on the used AAV serotype for transgene delivery92, 

103. 

Lastly, once the correct gene therapy vector has been selected, the method of 

administration determined, the clinician must then be concerned about safety issue. 

Immune response to the viral injections has become a concern following initial gene 

therapy trials on human patients. The gene therapy treatment itself may be successful, 

but when it comes to the adverse side effects, especially in young children, could 

potentially resulted in unwanted effects87, 109, 110. 

For gene therapy utilizing AAV viruses, since AAVs are generally non-pathogenic, 

safety concerns mainly only arise from whether or not the host will produce neutralizing 

antibodies to block virus transduction. Though neutralizing antibodies against AAV2 have 

been observed after the first injection of a gene therapy virus, but repeated ocular 

administration of the viral vectors in animal models does not arise obvious safe concern92, 
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111. This could possibly accredited to retinal-blood barrier of the RPE and choroid, which 

makes the eye immune-privileged comparing other organs.  

 

GENE THERAPY CLINICAL TRIALS  

At present, there is no clinical trial for ADRP. There are currently several human 

clinical trials using AAV gene therapy in the eye for LCA disease, which is a recessive 

blinding disorder caused by a mutation in RPE65 (NCT00999609; NCT00821340; 

NCT01496040; NCT00481546). RPE65 is an isomerase in the visual cycle which converts 

all-trans retinyl esters to 11-cis retinal within the RPE to make 11-cis retinal available for 

photoreceptor OS to make a molecule of rhodopsin 13, 24, 81, 112. RPE65 mutations account 

for around 5-10% of all LCA cases, and disease symptoms are present at birth or no later 

than the first months of life24, 81, 113-116. Diagnosis of LCA is confirmed by ERG and pupillary 

responses to light85, 113-115.  

The LCA clinical trial was initially using a canine model with a mutation in RPE65. 

This model lacks functional RPE65 protein which is then supplemented by the delivery of 

the RPE65 cDNA packaged within the AAV2/2 virus. This gene replacement was 

alsoadministrated by injection of this viral vector into the subretinal space of the canine 

eye. Visual function was found restored in this canine model and has been sustained for 

more 9 years at this time13, 24, 85, 103, 117-120.  

The LCA human clinical trial began in 2007. The LCA Phase I clinical trial consisted 

of three patients between 19-26 years of age85. They all received a low dose injection of 
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the gene therapy virus in the eye for the estimation whether or not the viral gene therapy 

vector was safe in human. All three patients displayed improved vision in dim light 

settings in around two weeks after administration. Pupillary responses to light were also 

ameliorated in each of the three patient eyes injected with the gene therapy virus, 

becoming at least three times more sensitive to light than pre-treatment response. The 

efficacy of this gene therapy treatment was able to persist through the 1.5 year follow-up 

time-point 85, 121.  

The 1.5 year data presented two essential benefits to AAV-mediated gene therapy 

research field. First, this trial confirmed that the transgene expression following AAV 

delivery is consistent in human patients over time and sustainable in the host cells. 

Second, the AAV2-mediated gene therapy to the retina does not cause a harmful immune 

response such as cytotoxic T-cell response in the patients85. However, there were still 

unexpected findings from the clinical trials. None of the patients had improved ERGs 

response, in contrast to the canine models after gene therapy. This result suggests a 

possibility of unstoppable degeneration in the patients after treatment.  

In addition to the eye, AAV-mediated gene therapy treatments have also been 

used for other human genetic diseases. Hemophilia B, which features an X-linked bleeding 

disorder caused by the deficiency of clotting Factor IX, has three independent phase I 

clinical trials using AAV285. This disease is a good target for gene therapy for monogenic 

cause, and as little as 1% increase in the physiological levels is able to improve the severe 

bleeding phenotype in human patients. The therapeutic effect has already been observed 



41 
 

after a single administration of AAV2/2 through muscle or liver injection on murine and 

canine models of hemophilia B85, 122-127.  

It is critical for scientists to determine which patients may benefit from gene 

therapy. For example, P23H mutation in RHO are the most common RP in North America30. 

Therefore, there are many potential recipients who would be able to benefit from gene 

therapy specifically targeting this mutation. However, the disease phenotype resulted 

from this mutation is relative mild, and patient’s vision remains acceptable until old age. 

In contrast, other more severe mutations such as RHOC110R mutation or mutations within 

the PDE6α or β subunit could serve as a better model30. Patients with these mutations 

typically has early onset of disease in childhood. One limitation for the treatment of these 

patients would be the ability to diagnose these patients early enough to provide the 

treatment before everything is too late.  
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CHAPTER 2: ESTABLISHMENT OF CRISPR-MEDIATED GENE ABLATION  

I. INTRODUCTION 

Retinitis pigmentosa is an inherited disease characterized by 

bilateral degeneration of rod-cone photoreceptors, which ultimately leads to night 

blindness and progressive visual impairment141. The rod-specific light-sensitive pigment, 

rhodopsin (RHO), is a specialized G-protein coupled receptor that initiates 

phototransduction. Thus far, approximately 150 different mutations have been found in 

RHO, which account for 30% of dominant RP cases and 15% of all inherited retinal 

dystrophies. Two strategies are most commonly applied to treat autosomal dominant (ad) 

retinitis pigmentosa: expression of the wild-type RHO protein and elimination of the 

mutant protein142-144. The former strategy can be achieved by gene replacement, a well-

established technology that uses viral vectors to introduce wild-type protein into cells of 

interest. While gene replacement itself may partially offset the adverse effects of 

dominant-negative proteins, it is powerless when used to counteract gain-of-function 

mutants142, 143. The latter strategy, elimination of the mutant protein, could eradicate the 

bent causing the disease phenotype. However, this method also presents with its own set 

of challenging issues. For example, mRNA knockdown of pathologically mutant genes 

using either short interfering RNAs (siRNAs) or ribozymes only partially and transiently 

decreases mutant protein levels145-147. Moreover, these tools often exhibit poor 

specificity when distinguishing between mutant versus wild-type alleles due to the fact 

that most of the mutations in RHO are single-nucleotide mutations.  
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The new emerging gene ablation tool, clustered regularly interspaced short 

palindromic repeats (CRISPR), which involves the collaboration between Cas9 and a single 

guide RNA (abbreviated henceforth as “CRISPRs”), has been proposed to specifically 

destroy the mutant gene by targeting the unique mutation148, 149. Traditionally, this gene 

ablation is performed by introducing a frameshifting nucleotide insertion or deletion 

(InDel) concomitantly with non-homologous end joining (NHEJ) at the CRISPRs-targeted 

site150, 151. However, the drawbacks of CRISPRs are significant. For one, not every mutation 

is unique enough for CRISPRs, which involves highly allele-specific designs. Moreover, 

efficiency is compromised by the fact that most NHEJ results in precise ligation rather 

than the desired frameshifting InDels152, 153. Last but not least, the costs of CRISPRs drug 

development are prohibitive given that the specificity of the guide RNA (gRNA) mandates 

separate clinical trials for each mutation, regardless of whether or not the mutations 

reside in the same gene142. 

To address these issues, we present a two-pronged “ablate-and-replace” strategy 

that (1) destroys the expression of all endogenous chromosomal Rho genes in a mutation-

independent manner using an improved, mutation-independent CRISPR/Cas9-based 

gene ablation technique and (2) enables expression of wild-type protein through 

exogenous cDNA (Fig. 6).  For gene ablation, we utilize Cas9 and double gRNAs 

(abbreviated henceforth as “CRISPRd”) to create two double-strand breaks and, therefore, 

a large deletion that permanently destroys the targeted gene on both of the alleles. We 

combine this gene-ablation tool with gene replacement to deliver wild-type cDNA that 
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compensates for the lost endogenous RHO protein. We hypothesize that this toolset can 

be used to treat adRP caused by different types of Rho mutations. 

 

 

Figure 6. Illustration of Ablate-and-Replace gene therapy strategy. 
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II. RESULTS 

To develop our CRISPRd gene excision tools, we first designed two gRNAs to target 

sequences in exon 1 of mouse Rho, leading to double-strand breaks 27 base pairs (bp) 

upstream (gRNA1) and 336 bp downstream (gRNA2) of the start codon (Fig. 7).  

 

 

 

Figure 7. Illustration of double (CRISPRd) or single (CRISPRs) gRNA strategies to 
specifically ablate mouse Rho exon 1. 
 

Of note, both sites are relatively void of pathogenic mutations and single 

nucleotide polymorphisms. To compare the gene-ablating efficiency of CRISPRd vs 

CRISPRs in vitro, we cloned gRNA1+2 or gRNA2 into respective modified pX459 vectors 

(Fig. 8) and transfected each respective plasmid into 3T3 fibroblasts.  
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Figure 8. Modified pX459 vectors for CRISPRd and CRISPRs. 
 

After two weeks of puromycin selection, the total genomic DNA was extracted for 

PCR. We expected that the CRISPRd and CRISPRs plasmids would respectively yield 5 and 

2 gene editing scenarios (Fig. 9, type 1~5 and type 1~2), which would generate three gene 

expression outcomes: (1) normal/unaffected mouse Rho (mRho) expression resulting 

from either no editing or non-destructive NHEJ; (2) no mRho expression resulting from 

gene truncation or destructive NHEJ (frameshift); and (3) compromised expression 

resulting from non-destructive NHEJ at the 5’-untranslated site targeted by gRNA1.  
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Figure 9. Genetic and expression outcomes following CRISPRd- vs CRISPRs-mediated 
gene editing. 
 

 

We first examined genomic PCR products to grossly confirm genetic outcomes (Fig. 

10).  

CRISPRd (gRNA1+2) yielded a prominent 400-bp band that represents truncated 

mRho exon 1 (Fig. 9, row 5) and a minor 750-bp band that represents parental, full-length 

exon 1 (Fig. 9, row 1). In contrast, CRISPRs (using only gRNA2) generated just the 750-bp 

band. To more precisely gauge genetic outcomes and quantify their respective 

frequencies, PCR amplicons were subcloned using TA cloning for Sanger sequencing.  
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Figure 10. Validation of mRho exon 1 truncation. 3T3 cells were transfected with CRISPRd 
or CRISPRs plasmid (Fig. 8), and then submitted to 2 weeks of puromycin selection 
followed by genomic PCR (primers indicated in Fig. 7). 
 

With CRISPRs, only 60.0 ± 9.9 % of the mRho gene was ablated due to destructive 

NHEJ resulting in frameshift mutations; in the remaining 40.0 ± 9.9 % of the gene that was 

not ablated, exon 1 was either intact (24.4%) or had in-frame mutations (15.6%) (Fig. 9 

and 11 lower part). With CRISPRd, more than 90 ± 7.8 % of the mRho gene was ablated 

due to truncation (62.3%) or NHEJ-induced frameshift at the gRNA2 targeting site (28.3%) 

(Fig. 9 and 11 upper part). Similarly, with CRISPRd, only 5.7% of amplicons contained 

intact mRho sequence compared to 24% with CRISPRs, even after two weeks of 

puromycin selection (Fig. 9).  
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Figure 11. Schematic summary of the basic outcomes produced by CRISPRd- and 
CRISPRs-mediated gene editing. 
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III.  DISCUSSION 

Our experiments provide evidence for the superiority of CRISPRd over CRISPRs in 

many regards. Consistent with previous findings154-157, our Dideoxy-Sanger sequencing 

results showed that the induction rate of CRISPRd is higher than that of CRISPRs. These 

differences in outcome are most likely due to the fact that less than 0.1% of the NHEJ 

generates InDel158. The production of destructive NHEJ may largely rely on repeated 

cutting. CRISPRd-induced truncation, on the other hand, is more independent of the error 

rate and only depends on the occurrence rate of NHEJ. Also, unlike homology-dependent 

repair, NHEJ is active in both dividing cells and non-dividing cells; thus, there is no 

limitation on cell cycle for our strategy159. In addition, our results also demonstrate that 

CRISPRd can minimize the creation of secondary, in-frame mutations induced by NHEJ 

(CRISPRd 1.9% vs. CRISPRs 15.6%), which is essential for preventing the creation of more 

toxic Rho mutants via therapeutic genome editing. 
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CHAPTER 3: ESTABLISHMENT OF AAV VECTORS AND SUBRETINAL INJECTION OF GENE 

THERAPY VECTORS  

I. INTRODUCTION  

AAV vector has a packing capacity at around 4.5 kb, including ITR sequences. The 

SpCas9 cDNA is about 4.2kb98, 102, 103, 106. To deliver the components for CRISPRd and the 

gene replacement hRHO cDNA, dual AAV vector system are necessary to encapsulate all 

the elements. The first AAV which express SpCas9 is driven by sCMV promoter, which is 

173 bp long. The poly-A tail is a 49 bp long SV40 SPA sequence. The second virus is 

designed to express two gRNAs and the hRHO gene replacement. The gRNA is driven by 

U6 promoter and the whole gRNA expressing cassette (including the gRNA scaffold) is 346 

bp long. And hRHO gene replacement sequence is placed next to the gRNA cassettes. The 

length of hRHO cDNA itself is 1047 bp. The promoter used to drive hRHO cDNA expression 

is a 2.2kb mouse Rho promoter. 
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II. RESULTS  

To maximize the expression of hRHO gene replacement in the transduced 

photoreceptor, we truncated mRho promoter region to different lengths. From the 

longest 4.2 kb to 0.5 kb (Fig. 12).  

 

 

 

Figure 12. Schematic design of primers to generate truncated Rho promoter with 
different length. 
 

Promoter with different length was cloned into pCDNA3.1 vector with EGFP cDNA 

as a reporter for gene expression. These plasmids were transduced into HEK293 cells for 

the evaluation of promoter strength. Since HEK293 cell line does not normally express 

transcription factors of RHO gene, a tripartite plasmid expressing human transcription 

factors NRL, CRX and NR2E3 (Fig. 13) was made and co-transfected into HEK293 along 

with the EGFP reporter plasmid. 
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Figure 13. Plasmid expressing transcription factors CRX, NRL and NR2E3.  
 

 

The HEK293 culture was incubated for 48 hours for protein expression before the 

fluorescence microscopy analysis. No any fluorescence was detected in transcription 

factors alone group (Fig 14, left column). Very little fluorescence was observed when 

using 4.2 kb Rho promoter to drive EGFP on HEK293 cells without the co-transfection of 

transcription factors (Fig 14, central column). As expected, when co-transfect both 

plasmids together into the cells, the fluorescence increased in intensity and quantity (Fig 

14, right column).  
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Figure 14. Testing of Rho promoter reporter. HEK293 cells were transfected with plasmid 
CMV-NRL-CRX-NR2E3, pRho-EGFP or both. The bright filed and fluorescence were 
captured after 24 hours of transfection. 
 

 

Flow cytometry was used to precisely compare the expression of fluorescence of 

EGFP driven by different length of the mRho promoters. Surprisingly, all the groups 

expressed similar florescence intensity (Fi. 15), no significant difference was detected in 

median and geometric mean values. Enhance, for the establishment of the gRNAs + gene 

replacement (GR) plasmid, the maximized length of mRho promoter is used. 
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Figure 15. Different Rho promoters exhibit similar driving efficiency. FACS was used to 
measure the fluorescence emitted by HEK293 cells transfected with GFP-expressing 
plasmid driven by different lengths of Rho promoter. 
 

 

To test our combination CRISPRd gene ablate-and-replace strategy in vivo, all 

components were cloned into two AAV 2/8 vectors (Fig. 16). Codon-optimized Cas9 cDNA 

driven by the sCMV promoter was packaged into one vector (AAV-Cas9), while the dual 

gRNA expression cassettes and human RHO (hRHO) cDNA (for xenogeneic gene 
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replacement) driven by a 2.2 kb mRho promoter were cloned into another (AAV-GR, 

stands for gRNA and hRHO).  

 

 

 

Figure 16. Schematic of experimental (AAVs-Cas9+GR) and control (AAVs-Cas9+SR) 
AAV2/8 vector pairs. 
 

 

Thus, gene ablation could only occur in cells that took up both vectors (AAV-Cas9 

+ AAV-GR) while gene replacement could occur in any rod photoreceptors that took up 

just the hRHO cDNA-containing vector (AAV-GR). Since overexpression of wild-type RHO 

can, by itself, might slightly improve vision in hRHOP23H transgenic mice144, we designed a 

control AAV vector (AAV-SR, stands for scrambled gRNA and hRHO), in which both gRNAs 
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are replaced with scrambled sequences (Fig. 16); thus, in rods transfected with the AAVs-

Cas9+SR vector pair, CRISPRd does not function, but xenogeneic gene replacement does 

(Fig. 17). Both gRNA1 and 2 were designed to specifically target mRho, not hRHO (Fig. 18).  

 

 

Figure 17. Conventional gene replacement therapy vs CRISPRd plus gene replacement, 
compound therapy for a heterozygous loci. 
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Figure 18. The gRNAs sequences, their targeting sites on mRho and the corresponding 
sites on hRHO. The two gRNA have 12 and 4 mismatches on hRHO, respectively. 
 

 

The hRHO gene replacement was codon-modified by silent mutations to maximize 

the difference against gRNA targeting. Indeed, in an in vitro, cell-free assay, gRNA1 or 

gRNA2 each facilitated Cas9-mediated cleavage of mRho, but not hRHO (Fig. 19).  

 

 

 

Figure 19. Representative data of in vitro SpCas9/gRNA cutting. In a cell-free assay, 
mRho vs hRHO DNA template was mixed with recombinant SpCas9 protein and a single 
gRNA: gRNA1, gRNA2, or control (scrambled gRNA). (n=3) 
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To validate that AAVs-Cas9+GR can mediate CRISPRd gene ablation in vivo, right 

eyes of wild-type C57BL/6J adult mice received a single, 1.5-microliter subretinal injection 

of AAVs-Cas9+GR (Fig. 20); as required by animal protocol, left eyes were uninjected, 

negative controls. Two weeks after the injection, retinae were collected for analysis.  

 

Figure 20. Experimental scheme and timeline for subretinal injection of dual AAV 
vectors in right eyes of wild-type C57BL/6J mice. (using a unique, posterior approach) 
 

 

Cas9 immunostaining of whole, flat-mount retinae revealed AAV-Cas9 

transduction and expression in ~30% retinal cells (Fig. 21).  

 

 

 



60 
 

 

Figure 21. Representative data of Cas9-immunostaining in retinal flat mount. 14 days 
after Cas9+GR subretinal injection (left figure), the retinas were collected and stained for 
anti-Cas9 antibogy (central figure, n=3). Image was assembled from multiple pictures. The 
transduced percentage was estimated by the fluorescent area/total retina area (right 
figure). 
 

Genomic PCR analysis revealed the 400-bp truncated and 750-bp parental mRho 

fragments; uninjected, fellow retinae exhibited only the 750-bp fragment (Fig. 22).  

 

 

 

Figure 22. Representative data of PCR analysis of retinal genomic DNA from AAVs-
Cas9+GR-injected right eyes and uninjected, fellow (left) eyes. (n=4, two mice data are 
shown). 
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Dideoxy-Sanger sequencing analysis of the 400-bp PCR amplicon confirmed that it 

was, in fact, truncated mRho exon 1, and that the large deletion had removed the start 

codon (Fig. 23). These data suggest that our CRISPRd dual-vector tool truncates mRho 

exon1 in vivo.  

 

 

 

 

Figure 23. Representative data of mRho gene ablation validated by Sanger sequencing 
of PCR amplicon from Fig. 22. 
 

 

 

We further determined if this in vivo AAVs-Cas9+GR-mediated gene ablation leads 

to decreased endogenous mRho levels in photoreceptors. Since there does not exist an 

antibody that can distinguish mRHO from hRHO protein, we extracted total retinal mRNA 

and used qPCR to evaluate the change in mRNA as a reflection of the change in protein.  
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Figure 24. Gene ablation and replacement are co-localized in rod photoreceptors in vivo. 
A, Total retinal mRNA from injected eyes was analyzed by qPCR for mRho expression; 
values were normalized to Pde6g, a rod photoreceptor housekeeping gene, and control, 
AAVs-Cas9+SR were defined as 100%. Values are presented as mean ± s.d. Unpaired two-
sided t-test was used for the statistics (*, p<0.05). B, RT-PCR of total mRNA isolated from 
whole retinas from two right eyes injected with AAVs-Cas9+GR and two uninjected fellow 
(left) eyes. C, Scatter plot of qPCR-derived dCt values of mRho and hRHO mRNA isolated 
from 11 whole retinas from 11 left eyes injected with AAVs-Cas9+GR. The trend line is 
presented with 95% confidence interval. 
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Retinae treated with AAVs-Cas9+GR exhibited a 25% decrease in mRho mRNA 

compared to AAVs-Cas9+SR (Fig. 24A), thus demonstrating that gene ablation is occurring 

in rod cells transduced with AAVs-Cas9+GR. In addition, xenogeneic hRHO mRNA 

expression was clearly detectable in the injected eyes, indicating the transduction of AAV-

GR into rod cells (Fig. 24B). We also found that mRho mRNA levels decreased as the hRHO 

mRNA increased based on a scatter plot of qPCR dCt values (Fig. 24C). This negative 

correlation (coefficient r = -0.69) between mRho and hRHO levels indicates that gene 

ablation consistently occurs in proportion to gene replacement, as our dual vector system 

was designed to achieve. 
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III. DISCUSSION  

In this study, we compared the transgene driving efficiency of mRho promoters 

with different lengths. From the 4.2 kb to the shortest 0.5 kb prmoter (with 0.5 kb 

descending), we found there is no significant difference based the florescence of EGFP 

reporter. This result implies the critical cis-element of promoter resides with in the region 

close to the transcription start site. This result may also indicate that it is unnecessary to 

include excessive upper stream sequence of mRho promoter to reach maximum driving 

efficiency.  

To encapsulate all the gene ablation and gene replacement components, dual AAV 

system is required to provide necessary capacity. However, to achieve gene ablation and 

gene replacement altogether, the two viruses have to be transduced into the same cell. 

It has already been reported that injecting reporter AAVs expressing GFP and RFP to the 

mouse retina can efficiently achieve high level of co-transduction143. In our study, we 

further confirmed if this co-transduction allows gene ablation and gene replacement 

taken place together. By the negative correlation between mRho and hRHO, we 

concluded the transduced retina cells receive both viruses. (Fig. 25, upper set). Because 

if AAV-Cas9 and AAV-GR were not received by the same cell, we expect that the when 

hRHO level changes there would be no fluctuation of mRho observed (Fig. 25, lower set). 
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Figure 25. Schematic of two different AAVs distribution scenarios. Upper, if the two 
viruses were transduced into the same cell while the other cell receive no virus, the mRho 
level of the former cell should reduce and hRHO level should increase while nothing 
changes in the later cell. Lower, if the two viruses were received by two separate cells, 
the mRho level in both cells should not change. Only the hRHO level should increase in 
the cell which received GR virus. 
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CHAPTER 4: TEST OF ABLATE-AND-REPLACE VECTORS IN PRE-CLINICAL MODELS OF 

RETINITIS PIGMENTOSA  

I. INTRODUCTION 

The aim for this experiment is to test if our dual AAV, ablate-and-replace 

combination system has therapeutic efficacy in dominant retinal degenerative disorders, 

and also whether our dual vectors act in a mutation-independent fashion. To do this, we 

chose two knock-in mouse models of human RP caused Rho mutations: P23H on exon 1 

and D190N on exon 3, which both localize to extracellular loops (Fig. 26).  
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Figure 26. The amino acids of P23 and D190 on Rho structure. 

 

 

 

  



68 
 

II. RESULTS 

The P23H mutation, which causes dominant-negative and gain-of-function 

phenotypes such as protein retention in the Golgi apparatus and the unfolded protein 

response39, 142, is the most prevalent hRHO mutation in North America. The D190N 

mutation compromises RHO thermal stability and, therefore, leads to a gain-of-function 

increase in dark noise and slow yet progressive retinal degeneration160-163. For these two 

mutations, we tested one homozygote (RhoP23H/P23H) and two heterozygote (RhoP23H/+ and 

RhoD190N/+) models, since nearly all RHO mutant patients are heterozygous. Single 

subretinal injections of AAVs-Cas9+GR, AAVs-Cas9+SR or PBS were performed between 

postnatal days 1 and 3 (Fig. 27); left eyes were not injected. At P21 or later, retinal 

function was assessed by electroretinography (ERG), and then eyes were dissected and 

processed for histological analysis (Fig. 27).  

ERG responses are characterized by a photoreceptor-mediated a-wave (negative 

deflection) followed by an inner retina-mediated b-wave (positive deflection). 

Importantly, we controlled for mouse-to-mouse variation by dividing a- and b-wave 

amplitudes for the injected (right) eyes by their respective amplitude for the uninjected 

fellow (left) eyes.  

 

 



69 
 

 

Figure 27. Experimental and disease progression timelines. Right eyes received a single 
1.5-microliter subretinal injection of AAVs-Cas9+GR, AAVs-Cas9+SR or PBS between P1 
and P3; left, fellow eyes were uninjected. On the indicated days, ERGs were performed 
and tissue prepared for histology. Approximate time windows for rod-driven 
photoreceptor degeneration in untreated mice are indicated for three genotypes. 
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Figure 28. Therapeutic effect of RhoP23H/P23H mice. (A) H&E stained retinal sections of 
right (injected) eyes from P21 RhoP23H/P23H mice, which were injected with either AAVs-
Cas9+GR, AAVs-Cas9+SR or PBS; images were taken about 200 micrometer from the 
optic nerve. GCL, ganglion cell layer; INL, inner nuclear layer; ONL, optic nuclear layer; 
RPE, retinal pigment epithelium. (B) Representative ERG traces of injected right eyes 
(green traces) and uninjected left, fellow eyes (red traces). Arrows, peaks of oscillatory 
potentials. (C) Percent change in ERG amplitudes. Each dot represents a b-wave 
amplitude for an injected, right eye that was normalized to the respective amplitude 
value of the uninjected fellow (left) eye. N values indicated on x axis; horizontal black 
lines, group means. Unpaired two-sided t-test was used for the statistics (*, p<0.05; **, 
p<0.01; *** p<0.001). In RhoP23H/P23H mice, only b-wave data are shown, because a-
waves are no longer detectable at P21. 
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To compare the number of surviving photoreceptors, thickness of the 

photoreceptor nuclei-containing outer nuclear layer (ONL) was approximated in 

histological images by counting the layers of photoreceptor nuclei (in wild-type mature 

retinae, ONL is 10-12 layers thick)160. RhoP23H/P23H homozygous mutant mice exhibit rapid 

and severe rod-driven retinal degeneration wherein rod cell death begins shortly after 

birth and results in complete loss of rods by P3043. In fact, in control retinae injected with 

PBS, the ONL was only 0 to 1 layer thick at P21 (Fig. 28A). In contrast, retinae transduced 

with AAVs-Cas9+GR or AAVs-Cas9+SR typically had ONLs that were 2-3 and 1-2 layers thick, 

respectively (Fig. 28A). Such improvement is also reflected in the outer segment (OS) 

thickness (Fig. 28D). Compared to the PBS control group, the OS length is 142% and 85% 

longer in the AAVs-Cas9+GR and AAVs-Cas9+SR group, respectively. These data are 

consistent with the notion that rescue is more efficacious with our AAVs-Cas9+GR ablate-

and-replace combination therapy compared to AAVs-Cas9+SR gene replacement. These 

qualitative structural data were validated by our quantitative ERG functional analysis (Fig. 

28B). Specifically, the mean b-wave amplitude for the AAVs-Cas9+GR group was 130% 

(relative to uninjected fellow eyes) versus 80% and 30% for the AAVs-Cas9+SR and PBS 

groups, respectively; these differences were highly significant (Fig. 28C). In addition, the 

peaks of oscillatory potentials of the AAVs-Cas9+GR group were more pronounced 

compared to either of the controls (Fig. 28B, arrows). These functional data suggest that 

neural signaling is significantly more robust in AAVs-Cas9+GR-treated retinae. The fact 

that all of the individual b-wave amplitudes in the PBS group and most of those in the 

AAVs-Cas9+SR group were less than 100% (i.e., less than uninjected left eyes) (Fig. 28C) is 

likely due to surgical trauma, which is inevitable in early postnatal mouse eyes. That the 
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AAVs-Cas9+GR group showed greater b-wave amplitudes than the uninjected eye despite 

surgical trauma is a reflection of the robustness of the intervention. Since subretinal 

injections induce only insignificant damage in human retinae, efficacy could be even more 

robust in patients.  
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Figure 29. Therapeutic effect of RhoP23H/+ mice. (A) H&E stained retinal sections of right 
(injected) eyes from P90 RhoP23H/+ mice, which were injected with either AAVs-Cas9+GR, 
AAVs-Cas9+SR or PBS; images were taken about 200 micrometer from the optic nerve. 
GCL, ganglion cell layer; INL, inner nuclear layer; ONL, optic nuclear layer; RPE, retinal 
pigment epithelium. (B) Representative ERG traces of injected right eyes (green traces) 
and uninjected left, fellow eyes (red traces). Arrows, peaks of oscillatory potentials. (C) 
Percent change in ERG amplitudes. Each dot represents an a- or b-wave amplitude for 
an injected, right eye that was normalized to the respective amplitude value of the 
uninjected fellow (left) eye. N values indicated on x axis; horizontal black lines, group 
means. Unpaired two-sided t-test was used for the statistics (*, p<0.05; **, p<0.01; *** 
p<0.001).  
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In RhoP23H/+ and RhoD190N/+ mice, retinae were analyzed later than the RhoP23H/P23H 

mutant since rod-driven retinal degeneration is dramatically slower in these 

heterozygotes: rod death is complete by about 6 and 10 months, respectively (Fig. 27). In 

P90 RhoP23H/+ retinae, AAVs-Cas9+GR treatment yielded 6-8 layer thick ONLs compared to 

4-5 layers for AAVs-Cas9+SR treatment and 3-4 layers for PBS (Fig. 29A). The increase in 

OS thickness is more significant after AAVs-Cas9+GR treatment but is less efficacious in 

the AAVs-Cas9+SR group (Fig. 29D). In addition, AAVs-Cas9+GR-treatment significantly 

increased a- and b-wave amplitudes in RhoP23H/+ retinae compared to the AAVs-Cas9+SR 

and PBS controls (Fig. 29). Similarly, in P90 RhoD190N/+ mice, rescue by AAVs-Cas9+GR 

treatment was again statistically superior for both a- and b-waves (Fig. 30). These 

structural and functional efficacy data suggest that our ablate-and-replace combination, 

AAVs-Cas9+GR-treatment leads to significantly greater survival of functioning 

photoreceptors compared to AAVs-Cas9+SR-transduced retinae. The data also suggest 

that the treatment is mutation-independent. These results are consistent with our dual 

AAV vector design (Fig. 16) and analysis (Fig. 24). 
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Figure 30. Therapeutic effect of RhoD190N/+ mice. (A) H&E stained retinal sections of 
right (injected) eyes from P90 RhoD190N/+ mice, which were injected with either AAVs-
Cas9+GR, AAVs-Cas9+SR or PBS; images were taken about 200 micrometer from the 
optic nerve. GCL, ganglion cell layer; INL, inner nuclear layer; ONL, optic nuclear layer; 
RPE, retinal pigment epithelium. (B) Representative ERG traces of injected right eyes 
(green traces) and uninjected left, fellow eyes (red traces). Arrows, peaks of oscillatory 
potentials. (C) Percent change in ERG amplitudes. Each dot represents an a- or b-wave 
amplitude for an injected, right eye that was normalized to the respective amplitude 
value of the uninjected fellow (left) eye. N values indicated on x axis; horizontal black 
lines, group means. Unpaired two-sided t-test was used for the statistics (*, p<0.05; **, 
p<0.01; *** p<0.001).  
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III. DISCUSSION  

Finding that gene replacement alone can only rescue the vision in homozygous 

mRhoP23H/P23H model but not the models of heterozygous P23H and D190N was 

unanticipated. This result is inconsistent with the previous findings on P23H and P347S 

mutation models143, 164. However, it is worth noting that all of the previous animal models 

were established by transgenic expression of mutant hRHO in mRHO-/-, mRHO+/+ or 

mRHO+/- backgrounds instead of the mutation knock-in method. Our findings suggest that 

selecting genetic models to simulate gene therapy of adRP in mice is pivotal for 

therapeutic development.  

Though AAV-delivered gene replacement is not integrating to the host genome, 

based on recent findings and clinical trials, the AAV-delivered gene replacement therapy 

of RPE65 has allowed the stable expression of retinal pigment epithelium (RPE) cells for 

3+ years in humans and 9+ years in canine models165-167. We expect that this gene 

replacement effect can last even longer in photoreceptor cells, because—unlike RPE 

cells—photoreceptor cells do not divide. However, further experimentation is required to 

understand the persistence of the AAV transgene and the need for additional 

supplementation of gene replacement in the long run. 

Our ablate-and-replace system has potential for other autosomal dominant 

diseases beyond retinitis pigmentosa. For example, Vitelliform Macular Dystrophy is a 

blinding macular disorder that may be caused by any one from more than 200 autosomal-

dominant point mutations in the gene BESTROPHIN 1 (BEST 1), which encodes a calcium-

dependent chloride channel168-170; Transthyretin amyloidoses is associated with 83 ad 
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mutations in the TTR gene171; and amyotrophic lateral sclerosis has more than 80 

mutations on the SOD1 gene172. Instead of mutation-specific targeting, our system 

circumvents such heterogeneity. 
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IV. FUTURE DIRECTIONS  

The current study provides evidence for the efficiency and feasibility of “ablate-

and-replace” therapeutic strategy on rodent adRP models. However, for the clinical 

application, more tests are necessary to evaluate this strategy with human sequence. A 

hRHO-humanized mouse will be an ideal platform to test new, hRHO-targeting gRNAs for 

CRISPRd and to test new hRHO gene replacement underwent a new round of codon-

modification to evade gRNA targeting. 
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CHAPTER 5: MATERIAL AND METHODS (FIRST PART) 

Plasmids and AAV production 

All gRNAs used in this study were designed by Benchling (https://benchling.com/). 

When selecting gRNAs, only those with excellent off-targeting scores (i.e. >80) were 

considered. The two gRNAs, labeled as gRNA1 and gRNA2, with the highest on-targeting 

scores were chosen and tested for use in this study (gRNA1 sequence: 

ctgtctacgaagagcccgtg; gRNA2 sequence: cccacaggctgtaatctcga). For in vitro gRNA 

specificity test, gRNA1+gRNA2 or gRNA2 alone expressing cassettes were cloned into 

pX459 (Addgene), which encodes SpCas9. For the production of the AAV-GR, 

gRNA1+gRNA2-expressing cassettes and a 2.2 kb mRho promoter-driven hRHO cDNA-

expressing cassette were cloned into pZac2.1 vector (PL-C-PV0100, The Penn Vector Core, 

University of Pennsylvania). For the AAV-SR, gRNA sequences were replaced with scrambled 

sequences that do not exist in the mouse genome. For the AAV-Cas9, codon-optimized SpCas9 

was cloned into pZac2.1 between the sCMV promoter and SPA sequence. The AAV2/8 (Y733F) 

was generated by The Penn Vector Core, University of Pennsylvania. 

 

In vitro CRISPR digestion assay 

To validate the targeting efficiency of our system, gRNA (25 ng/μl) was added to 

the reaction mixture alongside Cas9 protein (30 ng/μl, NEB) and template mRho DNA (20 

ng/μl, 750 bp) covering both targeting sites of gRNA1 and gRNA2, and they were 

https://benchling.com/


80 
 

subsequently incubated at 37° C for 2 hr. After Cas9/gRNA digestion, the mixture was 

analyzed by agarose gel electrophoresis.  

 

Animals 

Human mutation P23H knock-in and C57BL/6J mice were purchased from Jackson 

Labs to generate RhoP23H/+ and RhoP23H/P23H mice. Another human mutation knock-in 

model, D190N, was established as described before160. Animals were maintained on a 12-

h light-dark cycle. Before ERG, animals were anesthetized with a mixture of ketamine 

hydrochloride (10 mg/100 g; Ketaset®, Fort Dodge Animal Health, Fort Dodge, IA, USA) 

and xylazine (1 mg/100 g, Anased®; Lloyd Laboratory, Shenandoah, IA, USA). As per 

regulations of the Institutional Animal Care and Use Committee (IACUC), animals 

sacrificed for histology were euthanized by placement in a CO2 chamber for 3 min 

followed by cervical dislocation. All efforts were made to minimize the number of animals 

used and their suffering. All mouse experiments were approved by the IACUC and 

conform to regulatory standards. All mice were used in accordance with the Statement 

for the Use of Animals in Ophthalmic and Vision Research of the Association for Research 

in Vision and Ophthalmology, as well as the Policy for the Use of Animals in Neuroscience 

Research established by the Society for Neuroscience. 
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Electroretinography  

ERGs were performed at indicated time points as previously described160. Briefly, 

animals were dark-adapted overnight, and their pupils were dilated with 0.5% 

tropicamide and 2.5% phenylephrine. Animals were then anesthetized with ketamine, 

and ERG responses were obtained using pulses of 3 cd × s/m2 (white 6,500 K) light. ERG 

a- and b-wave magnitudes and maximal scotopic and photopic recordings were collected 

at P21 for RhoP23H/P23H, P40 for RhoP23H/+, and P90 for RhoD190N/+ mice. 

 

Subretinal injection 

AAV-Cas9 (1 x 1013 particles/ml) was premixed with AAV-GR or AAV-SR (1 x 1013 

particles/ml). Mice at age P1-P3 were anesthetized according to established IACUC 

guidelines, and subretinal injections were performed with a single injection of 1.5 μl. The 

injection was done from the posterior part of the eye. All mice included for analysis had 

ideal bleb detachments at the retinal site of the injection as judged by postsurgical fundus 

examination. Mice with complete retinal detachment confirmed by both postsurgical 

fundus examination and ERG were then euthanized. The left eyes served as controls and 

remained uninjected. 
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Genomic DNA extraction and genomic PCR 

Genomic DNA from retinae was extracted using the Blood & Tissue kit (QIAGEN). 

Genomic PCRs were performed using Phusion DNA ploymerase (Fisher Scientific). Primers 

for the detection of gene truncation and NHEJ were as follows: Forward: 

tacctaagggcctccacccg; Reverse: tttgccaatgaataagctggg. PCR amplicons generated from 

3T3 cell culture or gross retinal DNA samples were further subcloned by the TOPO-TA 

cloning kit (Invitrogen) and analyzed by Sanger sequencing. 

 

Cell culture and plasmid transfection 

Mouse fibroblast 3T3 cell line was purchased from ATCC. The mycoplasma 

contamination test was performed every month. The cells were seeded in a 6-well plate 

at 1 x 106 cells/well. When the cells reached 75% confluency, the pX459 plasmids (2.5μg) 

of CRISPRd or CRISPRs were transfected into 3T3 cells by Lipofectamine 2000 (Invitrogen). 

The cell culture was further purified by puromycin selection at 2μg/ml starting at 48 hours 

after transfection. DNA extraction was carried out after two weeks of selection. 

 

Immunostaining 

Mice were euthanized, and eyes were enucleated and placed in 4% 

paraformaldehyde for 1 h at room temperature. The optic nerve, cornea, and lens were 

removed. The whole eyecup was then flattened by means of four radial cuts extending 
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out from the optic nerve and mounted with mounting medium (Vectashield, Vector 

Laboratories). Anti-Cas9 primary antibody (1:200 Abcam ab191468) and secondary 

antibody-conjugated Alexa 488 (Invitrogen, A11017) staining were performed according 

to the manufacturer’s instruction. Visualization was achieved by fluorescence microscopy, 

and bright-field imaging was used to visualize the whole retina (Leica DM 5000B 

microscope). Pictures were taken using the Leica Application Suite Software (Leica 

Microsystems). 

 

Histology 

Mice were euthanized, and eyes were enucleated and fixed. H&E histology was 

carried out as previously described160. 

 

Real-time PCR and relative mRNA quantification 

Retinas were harvested at the indicated time and lysed with TRIZOL reagent 

(Invitrogen). Total RNA was isolated according to the manufacturer's instructions. DNase 

I (Invitrogen) treatment was then performed to prevent genomic DNA contamination. The 

reverse transcription reaction was conducted by Superscript III Reverse Transcription kit, 

and a random hexamer (Invitrogen) was used to generate cDNA. Real-time PCR method 

was performed using Maxima SYBR Green/ROX qPCR Master Mix (Fisher Scientific) with 

StepOne Real-time PCR System (Invitrogen) to quantify gene expression levels. The mRho 

and hRHO mRNA expression level was determined and normalized with the rod 
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photoreceptor cell housekeeping gene, Pde6g. The PCR products were validated by 

melting curve and agarose gel electrophoresis. The following primers were used: mRho 

forward: 5′- TGGGCCCACAGGCTGTAATCTC-3′; mRho reverse: 5′- 

GAAGACCACACCCATGATAGCGTGA-3′; hRHO forward: 5′- CTTTGCCAAGAGCGCCG-3′; 

hRHO reverse: 5′- AGCAGAGGCCTCATCGTCA-3′. Pde6g forward: 5′- 

ACCACCTAAGTTTAAGCAGCGGCA-3′; Pde6g reverse: 5′- CGTGCAGCTCTAGGTGATTGAAG-

3′. 

 

Statistics 

An unpaired, two-sided t-test was used for the comparisons of mRNA levels and 

ERG response. 
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CHAPTER 6: ESTABLISHMENT OF GENE CORRECTION TOOLSET FOR DOYNE HONEY 

COMB DYSTROPHY 

I. INTRODUCTION  

Though many hypotheses have been proposed, it is still unclear how the 

EFEMP1R345W mutant protein can cause drusen formation and lead to the disease. With 

the fact that EFEMP1 is expressed exclusively by RPE cells in the retina, we hypothesize 

that the expression of EFEMP1R345W may change RPE physiology. Because of the onset of 

this disease is usually around 30’s to 40’s and drusen formation is a slow, progressive 

process, that cellular, physiological phenotype may be subtle. In order to precisely reflect 

the EFEMP1R345W -induced phenotype, we tended to create an isogenic cell line pair in 

which, the only difference is the single nucleotide mutation of EFEMP1R345W.  Since DHRD 

is a monogenic disease, we expect that this rigorous phenotyping clarify the consequence 

of mutant EFEMP1 expression in RPE cells. 

The R345W mutation is a C>T mutation on exon 10 of EFEMP1 gene. To create an 

isogenic cell line, we obtained DHRD patient fibroblast-derived iPSC cells. We expected to 

perform gene correction by CRISPR-induced homology directed repair. The yield iPSC 

which carries wildtype EFEMP1 sequence can thus serve as isogenic, wildtype control of 

this experiment. 
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II. RESULTS  

To create a double strand break at the EFEMP1 mutation site, we designed three 

different gRNAs to target the EFEMP1 mutation locus on exon 10 (Fig. 31). The design was 

done by Benchling website. 

 

 

 

Figure 31. gRNA targeting sites. Three gRNAs sg006, sg007 and sg008 (from top to 
bottom) targeting the EFEMP1R345W mutation were designed by Benchling. 
 

These three gRNAs, sg006, sg007 and sg008 were tested in vitro for targeting 

efficiency (Fig. 32). By mixing SpCas9 protein and each of these gRNA individually with 

wildtype or mutant templates, more digested fragments instead of parental band in the 

sg008 group was observed, indicating highest targeting efficiency among all gRNAs. 

However, we noticed that no one of the gRNA can specifically target the mutant sequence, 
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since appreciable cutting has also been detected in the groups treated with wildtype 

sequence. 

 

 

 

Figure 32. In vitro gRNA targeting. Three gRNAs sg006, sg007 and sg008 were used to 
challenge dsDNA fragment bearing wildtype or R345W mutation sequence. The 650bp 
band is the parental sequence of the uncut template. If cut, the parental band should be 
digested into two bands with size around 400bp and 250bp. 
 

To facilitate homology dependent repair (HDR) to happen, addition of donor 

template is necessary when inducing double strand break at the mutation site by 

Cas9/gRNA. We designed a 128bp single-stranded oligodeoxynucleotide (ssODN) (Fig. 33). 

Compared to the mutant sequence, this ssODN contains three mismatches: one to correct 

C>T mutation and the other two contributes to two silent mutations, which were set to 

allow colony screening by restriction fragment length polymorphism (RFLP). The mini 

homology arm on each side of this ssODN are 60bp long. The expected sequence after 

gene correction can be recognized by restriction enzyme ScrFI. 
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Figure 33. Donor template design. The donor template (ssODN) used to facilitate 
homology directed repair contains three different mismatches comparing to the 
EFEMP1R345W sequence. Despite one mismatches to correct the R345W mutation, the 
other two mismatches were created to enable restriction fragment length 
polymorphism for colony screening. 
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We chose Lonza nulceofector 4D to perform the transfection of Cas9/gRNA and 

donor template. To optimize the transfection efficiency of the patient iPSC, we tested 

different nucleofection protocols with different nucleofection reagents and conditions 

(Fig. 34).  
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Figure 34. Optimization of nucleofection program. The iPSC cells were mixed with 
plasmid pMAX-GFP in Amaxa solution P3 (first array) or P4 (second array). The 
nucleofection was carried out using programs CA-137, CM-138, CM-137, CM-150, DS-
150, DS-120, EH-100, EO-100, DN-100, DS-138, DS-137, DS-130, EN-138, EN150, EW-113 
and CB150 (from top to bottom, left to right). The fluorescence was detected on the 
next day. 
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The iPS cells were treated with ROCK inhibitor to prevent apoptosis. Right before 

nucleofection, the iPSC was detached by accutase from the dish and dispersed into single 

cell suspension. The cells were then mixed with P3 or P4 buffer for nucleofection and put 

pmax-GFP at a ratio 0.5ul in each well of the strip. Each of the wells contains 2*10^5 cells. 

The cells were then nucleofected by CA-137, CM-138, CM-137, CM-150, DS-150, DS-120, 

EH-100, EO-100, DN-100, DS-138, DS-137, DS-130, EN-138, EN150, EW-113 and 

CB150 programs. The fluorescence and cell survivability were recorded on the next day. 

All the conditions gave low survival rate (Fig. 34). The intensity of green 

fluorescence of CM-138, DS-150 and DS-130 were higher than average. Based on the 

fluorescence intensity and the survival rate of the cells, we concluded DS-150 with P3 

reagent is the best condition for efficient nucleofection for our patient iPSC. 

For the gene correction of R345W mutation, the patient iPSC was mixed with 

SpCas9 protein 1ug, gRNA 300ng and ssODN 500pmol in Solution P3 reagent and then 

nucleofected by DS-150 program. The resulted cells were split into single colony and 

expanded for one week. The colonies were screened by RFLP assay. Positive colony were 

further confirmed by Sanger sequencing (Fig. 35). Gene-corrected colony without artifact 

mutations were chose for the future experiment. 
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Figure 35. Sequencing result of iPSC colonies after gene correction. The iPSC colonies 
after nucleofection were manually picked and expanded. Sanger sequencing was used 
to verify the corrected sequence. 
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III. DISCUSSION 

Though it has been reported that mismatches with in the 3’ end region of gRNA 

can disable the targeting173, 174. However, in our study, even though the wildtype 

nucleotide cytosine is differ from that in the sg006, sg007 or sg008, all of these three still 

mediates the digestion of the wildtype template. This result may imply an unreliability of 

mutation-specific targeting by CRISPR based on single nucleotide difference. For many 

genetic diseases which only have single nucleotide mutation, using CRISPR to perform in 

vivo, gene ablation therapy may arise safety concerns, since the wildtype allele may be 

targeted as well. A CRISPR-based in vitro therapy combined with cell transplantation 

therapy may be a more practical route to treat non-neuronal diseases. 
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CHAPTER 7: IPSC REPROGRAMING AND RPE DIFFERENTIATION  

I. INTRODUCTION  

For the precise phenotyping of EFEMP1R345W mutation, RPE cells will be the best 

cell model to study the physiological change. However, due to the limited availability of 

autopsy RPE cells and the difficulty of genetic manipulation on primary RPE cells, we chose 

to obtained RPE cells from DHRD patient iPSC. The possibility of in vitro differentiation of 

RPE from iPSC was first described in 2009175. In this study, the RPE cells were 

differentiated by this protocol with slight modification. 
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II. RESULTS 

DHRD patient skin biopsy was collected by a surgeon. This 5 mm skin biopsy was 

placed in culture dishes for two week to allow fibroblast to migrate to the cover slide. 

These fibroblast were propagated and transduced by Sendai viruses expressing OCT3/4, 

SOX2, cMYC and KLF4. The iPSC colonies formed in the cell culture were picked up for 

colonial expansion. The quality of these iPSC colonies were confirmed by immunostaining 

of iPSC markers TRA-1-60, SOX2, SSEA4 and OCT4 (Fig. 36 and 37).  

The nuclear expression of SOX2 and OCT4 was clearly detected, as well as the 

cytoplasmic expression of TRA-1-60 and SSEA4. The colony edge remained clear and clear 

indicating no sign of differentiation. 

 

 

Figure 36. Immunostaining of TRA-1-60 and SOX2. TRA-1-60 (green) and SOX2 (red) 
were detected in iPSC culture.  
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Figure 37. Immunostaining of SSEA4 and OCT4. SSEA4 (green) and OCT4 (red) were 
detected in iPSC culture.  
 

To differentiate iPSC colony into RPE cells, the iPSC were grown to 90% confluency 

before the treatment of nicotinamide. After differentiating in nicotinamide-containing 

medium for two weeks, the differentiating medium were further enriched by activin A for 

the next two weeks of culture. Sporadic, tiny black spots in the cell culture started to 

appear in the last week of incubation. 

These black, pigmented cell colonies were manually picked up and transferred to 

another culture plate for expansion and maturation (Fig. 38). 
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Figure 38. iPSC culture of RPE differentiation before and after colonial enrichment. 
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Figure 39. Morphology of iPSC-derived RPE after 200 days of differentiation. 
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After 100-200 days of culture, the cells became pigmented (Fig. 39). Hexagon 

shape morphology was observed under microscope. This morphology resembles what 

observed in primary RPE cell culture from autopsy78. 

These RPE cell were further characterized by immunostaining of RPE specific 

marker BEST1 (Fig. 40). 

 

 

Figure 40. Immunostaining of RPE marker. Anti-BEST1 (red) and DAPI (blue) were used 
to stain iPSC-derived RPE.  
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III. Discussion  

There have been different differentiation protocol published. The most recent 

version comprises many growth factors, including IGF, Noggin and bFGF in addition to 

nicotinamide and activin A176. The RPE derived from iPSC treated with this protocol is 

reported to appear in as little as 14 days of treatment. However, this protocol is not 

reproducible in our lab and the result is variable among different iPSC clones based on 

our lab’s experience. The current study followed a simplified but more reliable version 

published by Buchholz et al. in 2009177, which primarily depends on the incubation with 

merely nicotinamide and activin A. However, a fly in the ointment, this protocol requires 

4-6 weeks of incubation to see pigmented RPE cells in the cell culture. Nevertheless, both 

of the protocols requires a differentiation time over than three months to obtain mature 

RPE cells and each round of subculture/passaging requires another three months for re-

maturation. A faster differentiation protocol would be very beneficial to boost RPE 

research. 
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CHAPTER 8: PHENOTYPING OF PATIENT IPSC-DERIVED RPE 

I. INTRODUCTION  

There has been some proposed hypotheses toward RPE pathogenesis. 

Accumulation of misfolded EFEMP1 proteins within the endoplasmic reticulum (ER) may 

activate a signaling pathway termed the unfolded protein response (UPR). This response, 

which is conserved from yeast to mammals, leads to the stress-responsive gene 

expression to increase ER protein processing capacity and boost ability to degrade 

misfolded proteins aggregating within the ER178. UPR may induce the expression of VEGF, 

which is also discovered in DHRD and RPE179, 180.  

In addition to UPR, aberrant immune response has also been suggested to involve 

in the pathogenesis of AMD disease181, 182. NLRP3 inflammasome has been found to be 

upregulated in AMD patient RPE cells. This upregulation induced the release of 

proinflammatory cytokines IL-1b and IL-18.  
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II. RESULTS 

ER stress/unfolded protein response (UPR) markers GRP78 (Bip) and XBP-1a as 

well as VEGF were reported to increase when overexpressing mutant EFEMP1 in ARPE19 

cell line53. To validate the involvement of UPR, we screened the UPR biomarkers, sXBP1, 

usXBP1, total XBP1, ATF4, CHOP, GRP778/Bip, GRP94, EDEM and VEGF expression using 

real-time PCR in the patient iPSC-derived RPE cells (Fig. 41). The cell clones were divided 

into three groups: Untreated mutant, gene corrected and wildtype control.  

 

 

Figure 41. Real-time analysis of unfolded protein response biomarkers. The patient 
iPSC-derived RPE cells from the three groups, wildtype, EFEMP1+/R345W mutant and gene 
corrected EFEMP1+/+ were analyzed for unfolded protein response biomarkers and VEGF 
expression. The dCT values were normalized by beta-actin. 
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Every group consists 5-8 clones of RPE derived from patient or healthy donors. We 

expected the expression of these markers to be low in the wildtype control group and 

high in the mutant group. Likewise, after gene correction the cell should behave similar 

to wildtype control, with low expression of UPR markers. However, we detected low 

expression of all markers in all the clones. The trends of each markers didn’t match the 

pattern we expected, either. We concluded that UPR is not as activated by mutant 

EFEMP1 expression. 

Next, we validated if mutant EFEMP1 can induce aberrant immune response in 

RPE cells or not. Since cytokine release is a common outcome of nearly all kinds of 

immune-related pathways (NLRP3 and NF-kB), we screened cytokine release of IL-1 and 

IL-18 in the culture supernatant of the iPSC-derived RPE clones (Fig. 42). 
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Figure 42. ELISA analysis of pro-inflammatory cytokines. The supernatant form patient 
iPSC-derived RPE culture were analyzed for cytokine IL-1 and IL-18 release. (n=2) 
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Surprisingly, no IL-1 or IL-18 was detected in all the screened clones (Fig. 42). All 

the cytokines level were very low in the supernatant, close to background. Only clone 1 

in the wildtype group has appreciable but little IL-18 expression. This wildtype donor was 

obtained from patient with URSHER syndrom, which does not share clinical similarity with 

AMD or DHRD. 

We abandoned existing hypotheses since those cannot explain what was observed 

in our disease model. We in turn, used untargeted mass-spectrophotometer to analyze 

the proteomics outcome of gene correction (Fig. 43).  
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Figure 43. Proteomics analysis on patient-iPSC-derived RPEs by LC-MS/MS. (Heatmap 
and dendrogram) 
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Figure 44. Volcano plot comparing proteomic profiles between patient and wildtype 
iPSC-derived PREs. A base-2 log scale is used for the abscissa (X axis), ranging from 
0.03125 to 64. A base-10 log scale is used for the ordinate (Y axis), ranging from 1 to 1E-
17. 
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Figure 45. Volcano plot comparing proteomic profiles between gene-corrected and 
mutant iPSC-derived RPEs. A base-2 log scale is used for the abscissa (X axis), ranging 
from 0.03125 to 64. A base-10 log scale is used for the ordinate (Y axis), ranging from 1 
to 1E-17. 
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By comparing the protein expression profiles, we found CES1 protein expression 

level is significantly decreased in patient RPE cells when compared to wildtype RPE cells 

(p< 1 x 10E-9) (Fig. 44). This findings is consistent between two DHRD patients. After using 

CRISPR to correct the R345W (C>T) mutation, the CES1 expression level is then restored 

(Fig. 45). We concluded CES1 expression level is affected by the mutant EFEMP1. 

Since CES1 has been reported to be a rate-limiting step of cholesterol efflux 

process, we further analyze the protein expression level related to cholesterol transport 

and catabolism. However, no significant change has been found in any transporter or 

catalytic enzyme, but only CES1 is affected (Fig. 46). 

 

 

Figure 46. Protein level changes after gene correction. Protein involved in lipid 
transport and catabolism were analyzed by LC-MS/MS for differential expression. 
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III. Discussion 

Though it has been reported over-expression of EFEMP1R345W in ARPE19 can lead 

to UPR53, in our experiment, we did not see any sign of UPR response in the patient RPE 

cells. Given that the patient iPSC-derived RPE is more authentic than the immortalized 

APRE-19 cell line, this result implies that the UPR detected in ARPE19 can be artifact 

resulted from excessive gene expression. Besides UPR, VEGF is elevated in RPE cell culture, 

according to Roybal et al.53, which is not detected in our disease model, either. Because 

VEGF is also a common target of UPR pathway shared with hypoxia factor, HIF-1 

signaling183, lacking of VEGF response also indirectly indicates the dormancy of UPR. 

Photo-oxidative stress184-186, lipid peroxidation187-189, Toll-like receptor190-192 and 

alternative complement pathways have been proposed to compose a sophisticated 

immunopathogenesis toward AMD. Induction of inflammation and release of pro-

inflammatory cytokines IL-1 and IL-18 is discovered to be a common consequence of these 

pathways. However, the absence of these cytokines in our RPE culture indicates that the 

way EFEMP1R345W causes disease is independent to these pathways. 

Excessive lipid droplet deposition in RPE cells has also been reported in both AMD 

patient RPE cells193 and iPSC-derived RPE cells from both AMD and DHRD patients193, 194, 

these findings strongly suggest dysregulation of lipid transport or catabolism in these 

disease. CES1 belongs to the carboxylesterase family of enzymes that was first identified 

in liver195, 196. CES1, with an alternative name as cholesterol ester hydrolase (CEH), is 

responsible for the mobilization of cholesteryl ester in macrophage197 (Fig. 47). 

Cholesteryl ester is the form of cholesterol for long-term storage in the cell. When input 
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from outside source, free cholesterol is converted to cholesteryl ester and stored in lipid 

droplets. This conversion is usually mediated by ACAT1 and ACAT2 enzymes (Fig. 47). In 

contrast, the efflux of cholesterol which requires the mobilization of cholesteryl ester. 

This conversion is mediated by a multiple enzyme process, in which CES1 is indispensable 

(Fig. 47).  

Though the role of CES1 has never been studied in RPE cells, it has been suggested 

to participate in the efflux of cholesterol in foam cells during the regression phase 

(reverse cholesterol transport) of atherosclerosis197, 198.  
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Figure 47. Hypothesis illustration of potential mechanism resulting intracellular lipid 
accumulation.  

The accumulation of lipid in RPE can be possibly due to increased influx and 

decreased efflux of cholesterol. However, in our study no transporter protein or influx 

protein was affected by gene correction of EFEMP1R345W mutation, indicating the efflux 

of cholesterol, which is controlled by CES1, may play a significant role in the disease 

development. 
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IV. FUTURE DIRECTIONS 

Though the data from current study reveal the involvement of CES1 in the disease 

development, it is not clear how EFEMP1R345W mutant protein can affect the expression 

level of CES1. EFEMP1 is an extracellular matrix protein and does not participate in gene 

transcription. Given that the two genes reside in different chromosomes (Chr 2 and 16), 

intergenic interaction between two genes is not likely to be the correct explanation.  

However, further investigation is needed to determine whether the reduction of 

CES1 is resulted from increased degradation or decreased production that may be 

indirectly affected by EFEMP1R345W mutant protein. 
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CHAPTER 9: MATERIAL AND METHODS (SECOND PART) 

Design of the gRNA and donor template  

All gRNAs used in this study were designed by Benchling (https://benchling.com/). 

When selecting gRNAs, only those covering the C>T mutation were considered. Three 

gRNAs, labeled as sg006, sg007 and sg008 with sequence 5’- gctgggaggatgaaatgtgt -3’, 5’- 

gaccacaaatgaatgctggg -3’ and 5’- tgagaccacaaatgaatgct -3’ were selected for in vitro 

testing. For gene correction of EFEMP1R345W mutation, donor template with sequence 5’- 

tagttagtaaactctttgaccctacatctctacagatataaatgagtgtgagaccacaaaCgaGtgcCgggaggatgaaatg

tgttggaattatcatggcggcttccgttgttatccacgaaatcctt was added when performing CRISPR. In 

total three nucleotides are different from the mutant sequence. Despite the cytosine at 

the mutated nucleotide, another cytosine and guanine (upper case) were created by 

silent mutations were included to enable colony screening by restriction fragment length 

polymorphism after nucleofection. The homology arms on each side is 60-mer long. 

 

In vitro CRISPR digestion assay 

To validate the targeting efficiency of our system, gRNA (25 ng/μl) was added to 

the reaction mixture alongside Cas9 protein (30 ng/μl, NEB) and template EFEMP1R345W 

DNA (20 ng/μl, 750 bp) covering all three targeting sites of sg006, sg007 and sg008. The 

mixture was subsequently incubated at 37° C for 2 hr. After Cas9/gRNA digestion, the 

mixture was analyzed by agarose gel electrophoresis.  

https://benchling.com/
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Genomic DNA extraction and genomic PCR 

Genomic DNA from retinae was extracted using the Blood & Tissue kit (QIAGEN). 

Genomic PCRs were performed using Phusion DNA ploymerase (Fisher Scientific). Primers 

for the detection of gene truncation and NHEJ were as follows: Forward: 5’- 

ttttgctggccttttgctcac -3’; Reverse: 5’- acatttccccgaaaagtgcca -3’. PCR amplicons generated 

from iPSC cell culture or gross retinal DNA samples were further subcloned by the TOPO-

TA cloning kit (Invitrogen) and analyzed by Sanger sequencing. 

 

Cell culture and nucleofection 

Patient fibroblasts were transduced by sendai vectors to create iPS cell lines 

according to previously established protocols199-201. The methods used to induce 

undifferentiated iPS cells to differentiate into RPE-like cells have been described in 

detail177. In brief, iPS cells cultured on matrigel were transduced with viral vectors carrying 

transcription factors OCT4, SOX2, KLF4 and MYC. The cells were further incubated in 

mTeSR medium under 5% CO2 at 37°C. To perform CRISPR-mediated gene correction, 1 x 

106 cells, SpCas9 protein 5μg (2.5μl), gRNA 1500ng (1μl) and ssODN 1000pmol (2μl) were 

mixed with Amaxa solution P3 to a final volume at 20 μl. After incubation at room 

temperature for 10 mins, the cells were nucleofected using Lonza 4D nucleofector by 

DS150 program. After the nucleofection, the cells were immediately transferred to 6 cm 

dishes. After 48 hours of incubation, the cells were transferred to 10 cm dish for colony 
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picking. Restriction fragment length polymorphism with ScrFI was used to screen the 

positively gene-corrected clones. For the differentiation of iPSC cells into RPE, iPSC cells 

were grown to 90% confluency. For the first phase of differentiation, the cells were put in 

medium with 100 mM Nicotinamide in DMEM for 14 days. In the second phase, cells were 

treated with medium contains additional 100 ng/ml activin A for another 14 days before 

turning back to phase I medium. The pigmented spots in cell culture, which contains RPE 

cells, were transferred in to another culture plate. The cells were then propagated and 

enriched in RPE medium which contains N1 supplement and THT202. 

 

Figure 48. Medium and components used for RPE differentiation. 

 

Immunostaining 

Four antibodies against pluripotency markers (TRA-1-60, SSEA4, NANOG and SOX2 

[ASK-306, Applied StemCell, Menlo Park, CA, USA]) were used to characterize the iPSC 

reprogrammed from the patient fibroblasts. Secondary antibodies conjugated Alexa Fluor 

488 goat anti-rabbit or Alexa Fluor 555 goat anti-mouse IgG (1:1,000; Invitrogen; Life 
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Technologies). For the characterization of RPE cells, anti-BEST1 primary antibody was 

used. DAPI (4′,6-diamidino-2-phenylindole) was used to stain nuclei. Images for all 

antibody labels were taken under the same settings with a fluorescence microscope (Leica 

DM 5000 B).  

 

Mass spectrophotometry  

For the sample preparation, each cell pellet was homogenized with 1% NP-40 lysis 

buffer with protease and phosphatase cocktails. Enhanced BCA Protein Quantification 

assay was used to determine the total protein amount of each sample. Proteins from 50 

μg of serum filtrate were purified by mini S-trap columns (http://www.protifi.com/s-trap/) 

and digested on column by trypsin. The Thermo Quantitative Fluorometric Peptide Assay 

was used to quantify peptide concentrations prior to TMT labeling. 40μg peptides were 

labeled with TMT 6plex isobaric reagent and mixed for high pH reverse phase peptide 

fractionation. Thermo Orbitrap Fusion Tribrid Mass Spectrometer was used for MS/MS 

analysis  (MS3 data acquisition method). Technical replications were run according to the 

table on the right. Each set was run in triplicates. Proteome Discoverer software (version 

PD 2.1) was used to search the acquired MS/MS data against human protein database 

downloaded from the UniProt website and generate TMT ratios. Positive identification 

was set at 5% peptide FDR. Also, at least 1 unique peptide has to be identified per protein. 

Duplicated protein identifications from database were removed. Total of 4605 human 

proteins were quantified and included in the final data. TMT ratios (each tag/common 

reference) were calculated by PD 2.1 and normalized by total peptide amount. Qlucore 

http://www.protifi.com/s-trap/
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Omics Explorer & Prism 6 Software were used to perform correlation and statistical 

analysis. KNN imputation was used for missing values.     

 

Real-time PCR and relative mRNA quantification 

RPE cells were harvested at the indicated time and lysed with TRIZOL reagent 

(Invitrogen). Total RNA was isolated according to the manufacturer's instructions. DNase 

I (Invitrogen) treatment was then performed to prevent genomic DNA contamination. The 

reverse transcription reaction was conducted by Superscript III Reverse Transcription kit, 

and a random hexamer (Invitrogen) was used to generate cDNA. Real-time PCR method 

was performed using Maxima SYBR Green/ROX qPCR Master Mix (Fisher Scientific) with 

StepOne Real-time PCR System (Invitrogen) to quantify gene expression levels. The 

expression level of unfolded protein response biomarkers were determined and 

normalized with actin. The PCR products were validated by melting curve and agarose gel 

electrophoresis. The following primers were used:  
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Figure 49. Primers list for real-time PCR. 

Statistics 

An unpaired, two-sided t-test was used for the comparisons of mRNA levels 

response. 
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