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ABSTRACT

Price Dynamics & Trading Strategies in the

Commodities Market

Kevin Louis Guo

This thesis makes new observations of market phenomena for various commodities and

trading strategies centered around these observations. In particular, our results imply that

many aspects of the commodities markets, from delivery markets to producers and consumer

derivative based ETFs can be modeled effectively using financial engineering techniques.

Chapter 2 examines what drives the returns of gold miner stocks and ETFs. Inspired by

our real options model, we construct a method to dynamically replicate gold miner stocks

using two factors: a spot gold ETF and a market equity portfolio. We find that our real

options approach can explain a significant portion of the drivers of firm implied gold leverage.

Chapter 3 studies commodity exchange-traded funds (ETFs). From empirical data, we

find that many commodity leveraged ETFs underperform significantly against our con-

structed dynamic benchmark, and we quantify such a discrepancy via the novel idea of

realized effective fee. Finally, we consider a number of trading strategies and examine their

performance by backtesting with historical price data.

Chapter 4 studies the phenomenon of non-convergence between futures and spot prices

in the grains market. In our proposed approach, we incorporate stochastic spot price and

storage cost, and solve an optimal double stopping problem to understand shipping certificate

prices. Our new models for stochastic storage rates explain the spot-futures premium.
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Chapter 1

Introduction

This thesis makes new observations of market phenomena for various commodities and trad-

ing strategies centered around these observations. Unlike equities, commodities cannot be

easily modeled as claims to future cash flows. However, a pure supply-demand model for

commodities as used in elementary economics courses also remains unsatisfactory because

it cannot capture the rich set of incentives which drive the behavior of financial interme-

diaries, producers, and investors. Thus, we turn to the financial engineering literature to

explain these market observations through micro-founded rational agent models. In partic-

ular, we study gold miners as agent optimized claims on future gold production; we show

that non-convergence in grain markets can be explained by the CBOT delivery mechanisms

which have hidden, embedded storage options; and finally, we demonstrate how commodity

leveraged ETFs behave like a dynamic replicating portfolio of their underlying commodities.

In all three chapters, we make heavy use of options pricing, optimal stopping, and optimal

control techniques to understand the underlying dynamics of commodity markets.

Chapter 2 examines what drives the returns of gold miner stocks and ETFs by modeling

them as real options on gold. We solve a double optimal control problem to determine the

best production strategy and the value of the firm equity, demonstrating that gold miner

equities behave like “real options on gold.” Inspired by our real options model, we construct

1



CHAPTER 1. INTRODUCTION 2

a method to dynamically replicate gold miner stocks using two factors: a spot gold ETF and

a market equity portfolio. Furthermore, through each firm’s factor loadings on replicating

portfolio, we can infer the implicit firm leverage parameters of our model using the Kalman

Filter. We find that our real options approach can explain a significant portion of the

drivers of firm implied gold leverage. We posit that gold miner companies hold additional

real options which help mitigate firm volatility, but these real options cause lower returns

relative to the replicating portfolio.

Chapter 3 studies commodity exchange-traded funds (ETFs), which can be modeled as a

dynamic replicating portfolio of an underlying index. In this chapter, we analyze the track-

ing performance of commodity leveraged ETFs and discuss the associated trading strategies.

It is known that leveraged ETF returns typically deviate from their tracking target over

longer holding horizons due to the so-called volatility decay. This motivates us to construct

a benchmark process that accounts for the volatility decay, and use it to examine the tracking

performance of commodity leveraged ETFs. From empirical data, we find that many com-

modity leveraged ETFs underperform significantly against the benchmark, and we quantify

such a discrepancy via the novel idea of realized effective fee. Finally, we consider a number of

trading strategies and examine their performance by backtesting with historical price data.

Chapter 4 explains the market phenomenon of non-convergence between futures and spot

prices in the grains market through an embedded storage option in the futures contract.

We postulate that the positive basis observed at maturity stems from the futures holder’s

timing options to exercise the shipping certificate delivery item and subsequently liquidate

the physical grain. In our proposed approach, we incorporate stochastic spot price and

storage cost, and solve an optimal double stopping problem to give the optimal strategies to

exercise and liquidate the grain. Our new models for stochastic storage rates lead to explicit

no-arbitrage prices for the shipping certificate and associated futures contract. We calibrate

our models to empirical futures data during the periods of observed non-convergence, and

illustrate the premium generated by the shipping certificate.
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Our results imply that many newly observed aspects of the commodities markets, from

delivery markets to producers and consumer derivative based ETFs can be modeled effec-

tively using financial engineering techniques based on rational optimizing agent models. All

technical proofs are delegated to the appendices.



Chapter 2

How to Mine Gold Without Digging

through Dynamic Replication

This chapter examines what drives the returns of gold miner stocks and ETFs between 2006-

2017. We solve a double optimal control problem to determine the best production strategy

and the value of the firm equity, demonstrating that gold miner equities behave like “real

options on gold.” Inspired by our real options model, we construct a method to dynamically

replicate gold miner stocks using two factors: a spot gold ETF and a market equity portfolio.

Furthermore, through each firm’s factor loadings on replicating portfolio, we can infer the

implicit firm leverage parameters of our model using the Kalman Filter. We find that our real

options approach can explain a significant portion of the drivers of firm implied gold leverage.

We posit that gold miner companies hold additional real options which help mitigate firm

volatility, but these real options cause lower returns relative to the replicating portfolio.

2.1 Introduction

As is well established in literature (Ghosh et al., 2004; Baur and McDermott, 2010), gold is

an asset class that can be viewed as a safe haven or a hedge against market turmoils, currency

4



CHAPTER 2. HOW TO MINE GOLD WITHOUT DIGGING 5

depreciation, and other economic or political events. For instance, during the credit crisis,

major market indices, including the Dow and the S&P 500, declined by about 20% while gold

prices rose from $850 to $1,100 per troy ounce. To achieve these diversification goals, there

are a number of products traded that are related to gold including gold exchange traded

funds (ETFs), leveraged ETFs (LETFs), gold futures, and gold miner equities. For example,

Leung and Ward (2015) find that gold ETFs are relatively cost-effective products for gaining

exposure to physical gold.

However, the price of gold does not exist in a vacuum. Gold must be mined and the

companies that perform this mining process are themselves traded companies. This gives

another avenue for investors to achieve exposure to gold, while allowing them to determine

investment decisions through standard equity research techniques. In addition to the spot

gold, there are a number of single-name gold miner stocks and (L)ETFs available for trading.

Even though general equity sector ETFs are by far the largest by market capitalization, gold

miner (L)ETFs are some of the most popular vehicles for short-term trading available on

the market. In fact, amongst the top 10 ETFs traded by volume (either dollar or share

weighted) there are four directly related to gold miner stocks!1 On the other hand, not a

single gold miner ETF appears in the top 20 when ranked by AUM, which suggests that the

recent primary interest in gold and gold miner stocks is heavily driven by speculative traders

seeking gold-like exposure. Therefore, understanding the underlying factor dynamics of gold

miner ETF returns are practically useful for analyzing popular trading strategies, such as

pairs trading (see e.g. Triantafyllopoulos and Montana (2009), Leung and Li (2015), and

Naylor et al. (2011)).

Standard equity market research has established several rules of thumb to understand

the differences of investing in gold miners vs. gold itself.2 While in the long run there is a

clear correlation between gold prices and miner equity prices, price divergence is not unusual.

1According to ETF Database http://www.etfdb.com/compare/volume.
2See http://www.etf.com/etf-education-center/21023-commodity-etfs-gold-miners-vs-gold.

html.

http://www.etfdb.com/compare/volume
http://www.etf.com/etf-education-center/21023-commodity-etfs-gold-miners-vs-gold.html
http://www.etf.com/etf-education-center/21023-commodity-etfs-gold-miners-vs-gold.html
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For example, the short-term performance of gold miners is very sensitive to both the market

discount rate and payments of future dividends, which are dictated by the general equity

markets. Furthermore, at the individual firm level, management could have a significant

impact on the equity returns through superior investment skills, mine openings and closures,

cost cutting, or market timing. However, in the long run, the only way for gold miners to

make money is to dig gold from the ground and sell it on the open market. Therefore, we

propose a model to describe the connection between gold and miner stocks. We extend the

structural model of Brennan and Schwartz (1985), directly relating gold prices to the value

of gold miner equity via a combined optimal control and stopping problem. This real options

model requires gold miners to set an internal production function, liquidating the company

assets when gold prices decline past a certain level. In particular, our model suggests that

a dynamic portfolio of physical gold would perform identically to an actual portfolio of gold

miners.

The contributions of our chapter is twofold. First, we develop a tractable structural model

which directly relates the price of physical gold to the performance of a gold miner’s equity

via the real options literature. Our model allows for explicit analytical expressions for the

value of firm’s assets, the value of the firm’s equity, and precisely identifies the parameters

which affect firm’s leverage. In fact, we examine the predictions of our real options model,

finding that a significant part of gold miner firm’s leverage can be explained within the

real options framework! Second, we use the insights from our structural model to develop

a method to replicate gold miner stocks, using only physical gold and the market equity

portfolio, that can explain about 70% of the variation in gold miner stock returns. Our

main empirical insight suggests that gold-miner equities have a call-option-like payoff, which

results in higher implied leverage and negative alpha relative to physical gold.

The rest of the chapter is organized as follows. Section 2.2 summarizes the relevant

literature about the interconnection of gold miner stocks and physical gold. In Section 2.3

we present a valuation model for the gold miner’s equity. Section 2.4 illustrates a model-
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free dynamic replication strategy of gold miner equity returns using two factors. Section

2.5 studies the inference of the stochastic implied leverage with respect to spot gold using

Kalman Filter. Section 2.6 analyzes the relationship between spot gold and gold miner’s

implied leverage. Section 2.7 concludes.

2.2 Related Studies

Our approach relates the value of a gold miner company’s equity to that of an infinitely

timed real option on the physical gold itself. To that end, we propose a structural model of

optimal production to link the gold miner firm price to the gold it produces. In particular,

the model must allow the producer to turn the mine on/off and permit him to vary the rate

of production.

Benninga et al. (1985) consider an optimal production rule for a commodity export firm

which faces both foreign exchange and commodity price risk. The earlier work by Florian

and Klein (1971) solves a similar optimal production problem involving optimal discrete

time multi-period commodity production with a concave cost and capacity constraints by

deriving a dynamic programming algorithm in the stationary case. In their model, the miner

optimizes consumption subject to production control, and the firm’s production decision is

proportional to the beta with respect to the unhedgeable consumption risk. In the current

chapter, while we do not consider currency risk, we derive the total mining firm value in

a similar fashion by solving an optimal production control problem for a risk-neutral firm

owner. Our model yields a similar production decision rule to Benninga et al. (1985), which

mandates a constant rate of production, and a firm consumption rate proportional to the

price of physical gold.

We build our model based on the framework of Brennan and Schwartz (1985), where

the mining company has a real option to open and close a mine, with a constant rate of

production. The non-linearity of the firm payoff with respect to the resource, in other words
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the option nature, comes from the option to close and re-open the mine. In contrast for

our model, we derive the production rate endogenously by considering a firm with quadratic

increasing fractional costs with respect to commodity price (when each marginal ounce of

gold costs more to mine as a percentage of the gold price). Furthermore, while they only

consider the total firm value, we decompose the firm into equity and debt in order to better

understand the non-linear nature of gold miner equity returns. Our model also generates

explicit comparative statics and expressions for the implied gold leverage with respect to the

various model parameters, making it more useful for empirical validation.

Having derived the optimal production schedule and total firm value, we then split the

firm value into two components: equity and debt. We view the equity as a call option on

the firm’s assets (Merton, 1974), and thus, determine the optimal investment timing for the

associated real option (McDonald and Siegel, 1986; Dixit, 1994; Dahlgren and Leung, 2015).

We extend the real options literature by not only showing that gold miner equities behave

like options on gold, but also demonstrating how the resulting stochastic implied leverage

evolves with respect to spot gold.

We develop a method to dynamically replicate gold miner’s equity returns using a trad-

able, dynamic tracking portfolio. Some existing studies have focused on analyzing the price

behaviors of the gold (L)ETFs rather than the gold miner stock and the firm’s production

model (Murphy and Wright, 2010; Guo and Leung, 2015). While common factors for equities

in the asset pricing literature are the market portfolio, size, profitability, and value, (Fama

and French, 1993), Johnson and Lamdin (2015) and Bloseand and Shieh (1995) have docu-

mented the poor performance of static multi-factor models in the gold miner equity space.

In fact, gold miners are more similar to options on physical gold than to other equities. The

non-linear payoff nature of gold miner stocks leads to implied loadings on physical gold which

can vary significantly over respect to time, making consistent estimation extremely difficult.

The problem of hedge fund replication has similar issues with replicating non-linear payoffs

with linear securities. (Takahashi and Yamamoto, 2008) point out that early hedge fund
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replication products tracked their indices very poorly over a long time. Jurek and Stafford

(2013) mitigate this issue by introducing non-linear securities as a “factor,” demonstrating

that hedge funds were engaged in closeted put-selling behavior. In our chapter, we resolve

these issues by allowing the factor loadings to vary over time. By using time-varying factor

loadings to construct factor portfolios, we can perform our regression analysis utilizing longer

holding intervals. Unlike existing factor models for gold miner equities, our model not only

has high explanatory power, but a further analysis of the implied factor loadings confirms

the intuitive economic relationship of the tracking portfolio with our real options model.

Another novel feature of our approach is the implied leverage of gold miner stocks with

respect to gold. Specifically, we explicitly characterize how implied leverage evolves with

respect to factors such as gold price, volatility, interest rates etc. The most comprehensive

analyses of implied leverage of gold miners was performed by Tufano (1996, 1998), who use

individual company level characteristics to explain implied leverage. Confirming economic

intuition, they find that the implied leverage decreases with respect to gold price and the

presence of firm hedging due to fewer fixed costs, but cash production costs, gold volatility

and leverage have no effect on the implied leverage. Later Jorion (2006) presents similar

findings on implied leverage for oil and gas companies. We add significantly to the literature

by demonstrating exactly why marginal production costs, volatility, and the debt ratio all

fail to explain much of the variation in firm implied gold leverage, while gold price remains

the main driver of changes in beta over time. Furthermore, we show that our structural real

options approach can explain much more of the variation in firm implied gold leverage while

using zero firm level variables. Finally, we not only confirm previous results that gold miner

stocks are less leveraged than their model would predict, but we also relate this result to

extra real options the firm holds that discounted cash flow models do not consider. These

real options allow firms to hedge during distressed periods of lower gold prices, resulting in

lower implied gold leverage but at a cost of lower average returns.
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2.3 Model

We consider a firm that chooses to mine an optimal quantity of gold in order to maximize

the expectation of its total discounted future profit. The firm’s cost of mining is affine and

increasing in the mining rate. We derive both the value of the firm as a function of the

current gold price and the optimal mining strategy. The value of the firm’s assets serves as

input to the valuation of the firm’s equity. Finally, we derive an implicit leverage factor of

the firm with respect to the gold price, and make predictions about the behavior of implied

leverage with respect to the parameters of our model.

2.3.1 Asset Valuation

In the background, we fix a probability space (Ω,F,Q). Under the theory of storage (Kaldor,

1939; Working, 1949; Brennan, 1958), the futures price should reflect the spot price plus

storage cost less the convenience yield via a no-arbitrage relationship. This relationship was

further empirically confirmed by Fama and French (1987) and Gorton et al. (2012) through

examining inventories data and commodity prices. Finally, Schwartz (1997) connected the

theory of storage to modern risk-neutral pricing with a stochastic convenience yield.

Therefore, given the literature on the theory of storage with stochastic convenience yields,

under no-arbitrage principles, the deflated commodity price less convenience yield with the

money market numeraire must be a martingale under the risk-neutral pricing measure.

Therefore, we suppose that the spot price of gold follows a Geometric Brownian Motion

(GBM) under the risk neutral measure Q :

dSt
St

= (r − δ)dt+ σdWt, (2.3.1)

where r > 0 is the risk-free interest rate, δ > 0 is the net convenience yield, and σ > 0 is the

volatility. We also require that δ > r.
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The gold mining company strategically controls the (positive) rate of production over

time. Let the set of admissible controls as A := {(ut)t≥0 : ut ≥ 0, ∀t ≥ 0} . Furthermore,

let K(u) be a cost function denoting the fractional costs of mining the gold. Therefore, the

retained profit is 1 −K(u) fraction of the revenue from mining gold. When the firm mines

at the rate ut at time t, the gold mining company receives the infinitesimal cash flow,

ut(1−K(ut))Stdt.

In our model, the only source of randomness is through the gold price, so that the

the market for gold derivatives is complete. Furthermore, since in a complete market, no-

arbitrage requires investors to be indifferent between buying a portfolio of gold in the market

and mining it at cost, so the firm must also be risk-neutral in our model. Therefore, the value

of the mining company’s assets is given by the discounted sum of all future cash flows from

mining the gold under the risk-neutral measure Q. The firm solves the following stochastic

control problem:

V (S) = sup
u∈A

E
[∫ ∞

t

uξ(1−K(uξ))Sξe
−r(ξ−t)dξ

∣∣∣St = S

]
. (2.3.2)

The mining cost involves a positive fixed cost κ and is linear in the production rate u. That

is,

K(u) = κ+ αu. (2.3.3)

To better understand the cost function, a few remarks are in order. First, it is typical

for resource extraction that costs, such as worker compensation and expenditures on mining

equipment, all increase as with the gold price, since these resources can become scarce during

a gold rush. Furthermore, a higher gold price also motivates miner to open or operate more

difficult mines, again resulting in higher marginal costs. For example, a mining company may

choose to open new mines in the arctic circle, or switch from surface cyanide mining to more
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difficult extraction processes such as deep shafts. As a result, the total cost at time t, which

is the product of the fraction K(ut) and revenue utSt, is proportional to the production rate

and price of gold.

In our model, we require α > 0 so that the cost of extraction increases with the mining

rate. Then, the instantaneous profit is non-negative as long as 0 ≤ ut ≤ 1−κ
α

and 0 ≤ κ ≤ 1.

If κ > 1 or α < 0, then the firm would never produce and simply exit the market. If κ = 1

then the only strategy is ut ≡ 0 so the firm is in the market but not producing. Finally, if

α = 0, then control is unbounded above, in other words ut ≡ ∞, so the firm produces an

infinite quantity of the commodity. Thus, the only possibility for non-trivial production is

when κ < 1 and α > 0, so we impose these conditions on the production costs for the rest

of this section.

By standard dynamic programming arguments, the value function solves the following

Hamilton-Jacobi-Bellman (HJB) equation:

0 = −rV + (r − δ)S∂V
∂S

+
1

2
σ2S2∂

2V

∂S2
+ sup

u≥0
{u(1−K(u))S} .

To solve the inner optimization, we introduce the Lagrangian

L(u, λ) = u(1−K(u))S + λu.

From this Lagrangian, we derive the Karush-Kuhn-Tucker (KKT) conditions for optimality:

1. (1−K(u))S − uK ′(u)S + λ = 0

2. u ≥ 0

3. λ ≥ 0

4. λu = 0.
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Multiplying the first condition by u, and using the fourth, we obtain

u(1−K(u))− u2K ′(u) = 0. (2.3.4)

Since K(u) is affine in u (see (2.3.3)), equation (2.3.4) yields two candidate solutions:

1. u∗1 = 0, with λ∗1 = −(1− κ)S,

2. u∗2 = 1−κ
2α

, with λ∗2 = 0.

The first achieves a trivial objective function value of 0, while the second achieves

(1− κ)2

4α
S > 0.

The inequality holds given that κ < 1 and α > 0. Thus, the optimal solution must be u∗2.

Since α, S > 0, the second-order condition yields that

∂2

∂u2
L(u, λ) = −2K ′(u)S = −2αS < 0.

Notice that u∗ = 1−κ
2α
≤ 1−κ

α
, so the optimal control is constant and below the maximum

production rate. Applying the optimal control, we express the original value function (2.3.2)

as

V (S) = E
[∫ ∞

t

(1− κ)2

4α
Sξe

−r(ξ−t)dξ
∣∣∣St = S

]
=

(1− κ)2

4α

∫ ∞
t

e−r(ξ−t)E
[
Sξ

∣∣∣St = s
]
dξ

=
(1− κ)2

4αδ
S,

where the step switching expectation and integration follows from Tonelli’s Theorem. We

arrive at the following theorem.

Theorem 2.3.1. Under the spot model (2.3.1) and affine cost assumption (2.3.3), the gold
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miner’s asset value defined in (2.3.2) is given by

V (St) =
(1− κ)2

4αδ
St.

Morevoer, the optimal production policy is

u∗ =
1− κ

2α
.

Finally, Vt := V (St) is a GBM under Q:

dVt =
(1− κ)2

4αδ
dSt =

(1− κ)2

4αδ
(r − δ)dt+

(1− κ)2

4αδ
σdWt.

As this result, the miner’s asset value is a constant multiple of the spot price. The value

function suggests that firm’s asset value decreases if production cost increases (as measured

by either κ or α). This is quite intuitive since higher production costs entail a less profitable

enterprise. Furthermore, since the firm value is quadratically decreasing in the fixed cost,

but only linearly in the marginal cost, we conclude that the fixed mining cost plays a bigger

role in determining the firm value. We also observe that the value function is decreasing in

the convenience yield δ. Since the firm sells the gold instantaneously with production, its

profit is reduced by the value of the convenience yield which accrues to the physical holder of

the commodity. Surprisingly, our simple production model suggests that the total firm value

can be statically replicated with only a single asset, physical gold itself, with a multiplier

analogous to the price-to-earnings ratio under the Gordon growth model. We will explore

the implications of this fact in the next section.

2.3.2 Equity Valuation

Given the value of the firm’s assets under the optimal production schedule, the firm’s equity

can be priced via the (Merton, 1974) firm model, wherein the equity value is equal to the
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price of a call option on the firm’s assets with a strike price equal to the total debt less

accumulated coupons. We assume at time t the firm has perpetual debt with face value D

and continuous coupon C. It pays back its debt at some stopping τ ∈ Tt, where Tt is the set

of stopping times with respect to the filtration F generated by S such that τ ≥ t. Therefore,

the value of the equity is essentially equal to the price of a perpetual American call option

on the firm’s asset value, Vt. The equity value is found from the optimal stopping problem:

J(V ) = sup
τ∈Tt

E
[
e−r(τ−t)(Vτ −D)+ −

∫ τ

t

Ce−r(u−t)du
∣∣∣Vt = V

]
.

Note that J(V ) ≥ 0 for all V because stopping immediately (i.e. choosing τ = t) yields the

lower bound value of zero.

Since Vt can be expressed in terms of the spot gold price, we can rewrite the equity

valuation problem in terms of S as

J(S) =
(1− κ)2

4αδ
sup
τ∈Tt

E
[
e−r(τ−t)(Sτ − D̄)+ −

∫ τ

t

C̄e−r(u−t)du
∣∣∣St = S

]
, (2.3.5)

where

D̄ =
4αδ

(1− κ)2
D, and C̄ =

4αδ

(1− κ)2
.

Hence, the optimal timing strategy can be derived from

J̃(S) = sup
τ∈Tt

E
[
e−r(τ−t)(Sτ − D̄)+ −

∫ τ

t

C̄e−r(u−t)du
∣∣∣St = S

]
,

and then multiplying through by the constant (1−κ)2

4αδ
to derive J(S). By standard calculations
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(see e.g. McDonald and Siegel (1986)), we obtain

J̃(S) =


ASγ − 4αδC

r(1−κ)2
, if S ≤ S∗

S − 4αδD
(1−κ)2

, otherwise,

where

γ = −
(
r − δ
σ2
− 1

2

)
+

√(
r − δ
σ2
− 1

2

)2

+
2r

σ2
. (2.3.6)

By inspection of (2.3.6), we know that the leverage parameter γ > 0, and for δ > r then

γ > 1. Intuitively, the stock value is always increasing in the price of gold. From standard

results, we can solve for the constants A and S∗ by requiring J̄(S) satisfy the continuity and

smooth pasting conditions:

J̃(S∗) = S∗ − 4αδD

(1− κ)2
,

J̃ ′(S∗) = 1.

In other words, at the debt buyback boundary S∗, the equity value should match both the

level and rate of change as it was in the continuation region. This results in the solution

A =
1

γ(S∗)γ−1
,

S∗ =
γ

γ − 1
× 4αδ

(1− κ)2
×
(
D − C

r

)
.

Multiplying by the constant gives us the following result.

Theorem 2.3.2. Under the spot model (2.3.1) and affine cost assumption (2.3.3), the gold
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miner’s equity value defined in (2.3.5) is given by

J(St) =



(1−κ)2

4αδ
ASγt − C

r
, if St ≤ S∗

(1−κ)2

4αδ
St −D, otherwise,

where

A =
1

γ(S∗)γ−1
,

S∗ =
γ

γ − 1
× 4αδ

(1− κ)2
×
(
D − C

r

)
,

γ = −
(
r − δ
σ2
− 1

2

)
+

√(
r − δ
σ2
− 1

2

)2

+
2r

σ2
.

First, the price of the gold mining company is leveraged with respect to gold through

the parameter γ. In addition, the equity value declines with respect to production costs κ

and α. The fixed cost κ affects stock price quadratically and has a stronger effect while the

marginal cost α affects it linearly. This is intuitive since fixed costs must always be paid

and represent a lower bound on profit, while marginal costs are variable and only affect the

upper bound.

The gold miner’s equity is a function of the physical gold price. As a consequence, the

equity J can be perfectly replicated using a portfolio of ∂J
∂S

shares of physical gold and the

rest composed of the money market account. Figure 1 illustrates the value of the gold miner

equity compared to the immediate value of paying back the debt under different spot prices

for gold. As we can see, the value function is convex and approaches the asset value less

debt as the price of gold surpasses S∗. Under this model the gold miner’s equity can always

be spanned by some combination of physical gold and the money market account. Although
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Figure 1: The value function J(S) (blue) and the immediate exercise value
(1−κ)2

4αδ St − D (red) vs the spot price of gold S. The parameters are α = 0.2,
κ = 0.95, r = 0.02, δ = 0.01, σ = 0.1, D = 0.33, C = 0.015. The optimal exercise
level is S∗ = 0.38.

this result seems surprising, we will demonstrate in Section 2.4 that 70% of the gold miner

equity returns can be explained by a tradable replicating portfolio consisting only of the

equity market portfolio, risk free bonds, and physical gold. Thus, although replication is far

from perfect, by buying the correct dynamic quantities of gold and risk-free bonds, we have

thus managed to “mine gold without digging!”

2.3.3 Comparative Statics

We now set up the framework for our empirical asset pricing model by considering how the

dynamic quantities of physical gold we need for replication vary with respect to time. In

particular, since we care about comparing returns of the various assets in our sample, it

is important to analyze how the implied leverage of the gold miner equity with respect to

gold varies over time. The instantaneous return of the gold mining equity is related to the

instantaneous returns of the physical gold and the money market account as follows:

dJt
Jt

= β(St)
dSt
St

+ (1− β(St))rdt.
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In the non-trivial continuation region St = S ≤ S∗, we have

β(S) =
∂J

∂S

S

J
=

AγSγ

ASγ − 4αδC
r(1−κ)2

(2.3.7)

We call β(S) the implied gold leverage of the gold miner equity, choosing to suppress

the time dependence for notational simplicity. When β is larger, the equity is more risky

with higher risk premium and hence has lower price, and when β is smaller, the equity is less

risky with lower risk premium and hence has higher price. We would like to understand how

the gold miner implied leverage varies with the various explicit parameters of our company.

Proposition 1. In the continuation region where S ≤ S∗, the sensitivities of the implied

gold leverage with respect to the gold price are given by

β′(S) =
− 4αδC

(1−κ)2r(
ASγ − 4αδC

(1−κ)2r

)2 < 0, β′′(S) = −2β

S
× β′(S) > 0.

Furthermore, the stochastic evolution of the implied gold leverage β(St) follows

dβ(St) = β′(St)dSt +
1

2
β′′(St)(dSt)

2

= β′(St)
(
dSt − βσ2Stdt

)
. (2.3.8)

Our model confirms a number of financial intuitions. As the spot gold price increases, the

implied leverage of the gold company falls. Furthermore, the implied leverage is decreasing

convex in the gold price S, so a higher price of physical gold decreases leverage by a smaller

and smaller amount as S → ∞. On the other hand, a fall in gold price would lead to

implied leverage spiraling higher and higher by the same convexity property. By a replicating

portfolio argument, we can imagine that a higher (relative) cost gold miner company borrows

more in order to fund his positions in the physical gold, and as costs increase more and more
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Figure 2: Implied leverage β(S) vs our model parameters. From left to right top
to bottom: α, κ, St, D, r, σ. The graphs vary one set of parameters while holding
the others constant. The constant parameters are α = 0.2, κ = 0.9, r = 0.02,
δ = 0.01, σ = 0.1, D = 0.12, C = 0.003, and S0 = 1.25

as a percentage of the gold price, leverage will spiral out of control via the convexity property.

In fact, the decreasing convex evolution of β with respect to gold price results in an

interesting dynamics of implied leverage. Suppose there is a positive shock to the physical

gold dSt. While the implied leverage initially falls linearly via the shock, it is mitigated

by the convex component βσ2Stdt. On the other hand, when there is a negative shock
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to the physical gold price, then implied leverage increases even more through the convex

component. Therefore, the convexity of beta acts as an anti-regulatory mechanism for high

cost gold producers: even a small decrease in gold prices can cause a massive increase in

implied leverage! Moreover, the implied leverage of a high-cost mining company should be

extremely volatile and hence more difficult to estimate vs the implied leverage of a lower

cost mining company.

On the other hand, as the cost parameters κ and α rise, the implied leverage of the gold

company will increase as well, a mirror result to Proposition 1.

Proposition 2. In the continuation region where S ≤ S∗, the sensitivities of the implied

leverage with respect to the gold miner’s constant and linear production costs, κ and α,

respectively, are

∂β

∂κ
(S) =

8αδC
(1−κ)3r

× Aγ2Sγ(
ASγ − 4αδC

(1−κ)2r

)2 > 0,
∂β

∂α
(S) =

4δC
(1−κ)2r

× Aγ2Sγ(
ASγ − 4αδC

(1−κ)2r

)2 > 0.

Intuitively, the higher the fixed costs of a gold miner company, the higher the leverage

of equity. For example, if a company has revenue of $100 with fixed cost of $99 then a $1

increase/decrease in revenue results in a 100% increase/decrease of earnings. On the other

hand, if the fixed cost is only $50 then a $1 increase/decrease in revenue increases/decreases

total earnings by only 2%. As a result, the higher the mining cost as a fraction of the

revenue, in this case the spot gold price, the higher the implied leverage of our gold mining

company. Thus, fixed mining costs and debt payments would result in similar implications

for the profits of a the gold mining company. We remark that Tufano (1996) found several

anomalies in how implied leverage was reflected in gold miner stocks (summarized in Table

V & VI of their chapter). Although as predicted gold price and fixed mining costs all had

the anticipated effect on firm’s leverage, the debt/equity ratio had a much weaker effect

on leverage. In particular, after taking fixed effects, he found that mining costs ceased to
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be significant. In other words, while fixed mining costs were important, increased marginal

costs had less effects on leverage. By appealing to our real options model of the gold mining

firm, we can explain why they found such anomalies in the determinants of firm leverage.

Figure 2 illustrates the dependence of the gold miner equity’s implied leverage on various

model parameters. As predicted by Proposition 1, the leverage increases significantly as the

gold price reaches a significant threshold, in this case around 0.5 times the original value S0.

Similarly, Proposition 2 predicts a similar “convexity” effect as both the fixed percentage cost

κ and the marginal percentage cost α increases. For example, a small increase of 0.06 in the

fixed cost results in leverage rising from 1.6 to 3.5. On the other hand, rises in the marginal

cost α result in much less dramatic increases in the leverage. We need to almost triple α in

order to generate the same rise in leverage. The intuition is that a larger fixed cost cannot

be accommodated easily, while changes in marginal costs are usually offset by an increase in

the gold price itself. After all, one would only choose to mine the high cost of production

gold if the gold price itself was high! Finally, changes in the debt/equity structure leads to

only moderate changes in implied leverage compared to changes in the mining costs. This is

because typically most of the fixed costs of a gold miner are related to mining costs for the

gold rather than payments of coupons for the bondholders, so the capital structure is less

important than the mining cost structure. For example, Jorion (2006) reveals that the net

profit margin for oil and gas drilling companies is typically 5%, suggesting that over 90% of

the cost can be attributed to fixed costs and not coupon payments.

Furthermore, we can consider the variation of the gold miner implied leverage with respect

to the implied growth parameters of our model.

Proposition 3. In the continuation region where S ≤ S∗, the sensitivities for the implied

leverage with respect to the model parameters, namely, the interest rate r, net convenience

yield δ, and volatility σ of the spot gold price, respectively, are given by



CHAPTER 2. HOW TO MINE GOLD WITHOUT DIGGING 23

∂β

∂r
(S) = −

ASγ
(
∂γ
∂r
− 4αδC

(1−κ)2r

(
γ logS + S∗ logS∗

γ−1

)
∂γ
∂r
− γ 4αδC

(1−κ)2r2

)
(
ASγ − 4αδC

(1−κ)2r

)2 × ∂γ

∂r
,

∂β

∂δ
(S) =

ASγ
(
∂γ
∂δ
− 4αδC

(1−κ)2r

(
γ logS + S∗ logS∗

γ−1

)
∂γ
∂δ

+ γ 4αC
(1−κ)2r

)
(
ASγ − 4αδC

(1−κ)2r

)2 × ∂γ

∂δ
,

∂β

∂σ
(S) =

ASγ
(

1− 4αδC
(1−κ)2r

(
γ logS + S∗ logS∗

γ−1

))
(
ASγ − 4αδC

(1−κ)2r

)2 × ∂γ

∂σ
,

where

∂γ

∂r
= − γ − 1

σ2

√(
r−δ
σ2 − 1

2

)2
+ 2r

σ2

,
∂γ

∂δ
=

γ

σ2

√(
r−δ
σ2 − 1

2

)2
+ 2r

σ2

,
∂γ

∂σ
= 2

(r − δ)γ − r
σ3

√(
r−δ
σ2 − 1

2

)2
+ 2r

σ2

.

Under the further condition that

γ logS +
S∗ logS∗

γ − 1
< 0, (2.3.9)

we have the signs for the following sensitivities:

∂β

∂r
(S) < 0,

∂β

∂δ
(S) > 0.

By imposing the condition (2.3.9), the variation of implied leverage with respect to the

growth parameters also make intuitive sense. For example, since r − δ is the growth rate of

spot gold, a higher growth rate would result in less risk to the gold miner, since the gold price

St would rise more in the long run. On the other hand, a lower growth rate would result in

greater risk to the gold miner, since the gold price would rise less in the long run. Therefore,
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our model predicts that a positive shock to the permanent growth rate of the physical gold

causes implied leverage to fall, while a negative shock causes implied leverage to rise, as our

intuition suggests.

Another look at Figure 2 illustrates the dependence of the implied leverage on volatility

parameter σ. From Proposition 3, under condition (2.3.9), higher volatility leads to higher

betas when (r − δ)γ − r > 0 and lower betas when (r − δ)γ − r < 0. For example, for our

choice of parameters, we have (r − δ)γ − r < 0 and we see that when (2.3.9) is met, Figure

2 shows that β(σ;St) is downward sloping. Thus, implies leverage falls with volatility as

intuition would predict.

We note that Tufano (1996), the main chapter that analyzed the factors behind implied

gold leverage, did not find any effect of gold price volatility on firm leverage. He originally

predicted that implied leverage would decline with high volatility under a discounted cash

flow model where the firm never hedges. In fact, not only were the coefficients statistically

insignificant, but they often had even the wrong sign, suggesting that leverage would increase

with volatility. However, our model explains this anomaly: simply changing the choice of

γ for the firm can totally invert the relationship between volatility and firm leverage. For

example, even if (2.3.9) is satisfied, we can still have ∂β
∂σ
> 0 in Proposition 3 if (r−δ)γ−r > 0.

Therefore, it’s not surprising Tufano (1996) found no significant effect of gold volatility on

implied leverage.

Thus, by appealing to a real options model we have managed to explain previous empirical

results in the gold miner literature and understand several anomalies on what affects implied

gold leverage. As expected, we find that implied leverage varies positively with fixed costs

and negatively with gold prices. On the other hand, we show why capital structure and

marginal mining costs are not very important for explaining gold miner implied leverage,

since these variables are in practice typically overwhelmed by mining costs and gold price.

Finally, we resolve an anomaly in the literature by demonstrating that gold price volatility

can have both positive and negative effects on the firm’s leverage, depending on the current



CHAPTER 2. HOW TO MINE GOLD WITHOUT DIGGING 25

Security Name (Ticker) Inception Date Fee Market Cap

SPDR Gold ETF 11/18/2014 0.4% $ 36.00 B
Barrick Gold (ABX) 01/01/1985 – $ 18.37 B
Gold Corp (GG) 04/01/1994 – $ 11.20 B
Gold Miners ETF (GDX) 05/16/2006 0.52% $ 9.62 B
Junior Gold Miners ETF (GDXJ) 11/10/2009 0.56% $ 3.97 B

Table 1: Summary of stock and ETF data. Data used for our analysis is from
max{11/18/2014, Inception Date} to 04/21/2017 unless otherwise noted. For the
two ETFs, fee is total expense ratio as stated on the prospectus as of 10/28/2017.

market regime.

2.4 Factor Replication of Gold Miner Stocks

Motivated by the real option model of Section 2.3, we construct a model-free, dynamic

portfolio that replicates the returns of gold miner equities using a combination of the physical

gold, risk-free asset, and equity market portfolio. With this replicating portfolio and its

relevant factor loadings, we have constructed a way to mine gold without digging.

2.4.1 Data

We examine the returns of several gold miner ETFs and large gold mining companies between

the years 2006-2017. We restrict our sample to only US traded gold miner stocks and ETFs.

The corresponding market portfolio index for each gold miner index is the Vanguard Total

Stock Market Index.3

Table 1 describes the equity and gold price data. We have data for all stocks and ETFs

dating back to at least 2009. The data is truncated at 2005, because that is the first date

when GLD, the physical gold ETF began to trade. We chose the individual gold miner

stocks by choosing the largest market cap gold miners who derived at least 50% of profits

from mining gold. All ETFs and stocks are highly liquid, with a bid ask spread less than

3For example, see the composition of the ETF GDX: https://screener.fidelity.com/ftgw/etf/

goto/snapshot/portfolioComposition.jhtml?symbols=GDX

https://screener.fidelity.com/ftgw/etf/goto/snapshot/portfolioComposition.jhtml?symbols=GDX
https://screener.fidelity.com/ftgw/etf/goto/snapshot/portfolioComposition.jhtml?symbols=GDX
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5 bps and a market capitalization greater than $1 billion throughout the entire sampling

period. Finally, we use the 3M LIBOR rate as the risk-free rate in our calculations. All price

data was obtained from Quandl, but at the money implied volatility estimates for gold were

taken from Bloomberg.

2.4.2 Constructing the Replicating Portfolio

Intuitively, gold miner returns should have significant correlation with both gold returns and

the market returns. However, since Section 2.3 suggests that all gold miner stocks are related

to real gold options, leverage with respect to gold price varies over time. Since firm leverage

should increase when gold prices fall closer to production cost, a pooled regression would

ignore the time series variation in firm leverage. Thus, it is not sensible to use a standard

pooled regression over the whole sample space to estimate a firm’s exposure to gold price as

preferred under the asset pricing literature. On the other hand, since the (variable) price of

gold is much more volatile than (fixed) production costs, the variation of firm leverage with

respect to gold must vary substantially, even over short time periods. Therefore, we will

must infer βGLD, the firm’s implied gold leverage, through short-window rolling regressions.

For notational simplicity, we fix a particular gold miner, or gold mining index j. We

denote by Rt,j the time series of returns of the gold miner, RMkt,t the time series of returns

of the equity market portfolio, RGLD,t the time series of returns of physical gold and rf t the

risk free rate.4 With this setup, the dynamic βGLD,t,j at time t for miner j can be inferred

from the following rolling regressions:

Rt,j − rf t = αt,j + βMkt,t,j(RMkt,t − rf t) + βGLD,t,j(RGLD,t − rf t) + εt,j, (2.4.1)

for all t ∈ {t− 25, ..., t}. The OLS assumptions hold so that the noise terms, εt,j, have mean

zero, with E[εt,j|Rmkt,t, RGLD,t] = 0 and εt,j |= εs,j for t 6= s.

4Although we tried both regular and log returns, we found almost no difference in our regression results,
so herein we report only regular returns.
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We regress the excess returns of the gold miner on the excess returns of the equity market

portfolio and the excess return of gold over a time period of length 25 business days going

backwards from the time point t. Our regression uses exponential weightings with the decay

parameter λ = 0.95 so as to weigh the closer time points more due to the time varying nature

of βGLD,t,j. The regression factor coefficients, αt,j, βMkt,t,j and βGLD,t,j depend on the time

t where the regression time series ends, and the gold miner equity j whose returns we are

trying to explain. In particular, the gold coefficients βGLD,t,j represent an estimation of the

instantaneous elasticity of the gold miner stock with respect to gold price. However, unlike

the coefficients of (2.3.8), so far we place no constraints on βGLD besides the standard OLS

assumptions. Later in Section 2.5, we will show a way to combine the real options model

of Proposition 1 with our regression estimates to produce model consistent and efficient

estimations of time varying implied gold leverage.

Recall that the real options of Section 2.3 implies that a time-varying portfolio in physical

gold would explain the returns of gold miner stocks. In addition, since gold miner stocks

generally exhibit positive covariance with the stock market, we should observe a significant

loading on the market portfolio as well. Therefore, if our model is correctly specified, then

the average α should be zero, with positive βGLD and βMkt coefficients. Note that while

this procedure assumes that the replicating portfolio is dynamic with respect to the factor

loadings, it does not assume a payoff or specific structural form for the real option we are

trying to calibrate. That is why we consider the replicating portfolio construction to be

“model-free.”

Having calculated the localized factor loadings for each gold miner on physical gold, we

are now ready to construct the replicating portfolio. From our model free formulation, under

the assumption that αt,j ≡ 0, we expect that a portfolio with weights of βGLD,t,j in the GLD

ETF, βMkt,t,j in the market portfolio, and 1− βGLD,t,j − βMkt,t,j in the risk free asset should

exactly replicate Rt,j, the return of the gold miner at time t. Of course, unless R2 ≡ 1 exactly,

we will not have perfect replication, only replication on average. Finally, we must lag our
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Security Name (Ticker) R2 α βportfolio

Barrick Gold (ABX) 0.609360 −0.003494∗ 0.895739∗∗

Goldcorp (GG) 0.626465 −0.003983∗ 0.916772∗∗

Gold Miners ETF (GDX) 0.715839 −0.005844∗∗ 0.874759∗∗

Junior Gold Miners ETF (GDXJ) 0.634395 −0.008139∗∗ 0.821515∗∗∗

Table 2: Performance of the replicating portfolio constructed with weights
βGLD,t,j and βMkt,j at each time t for equity j on a monthly frequency. These
factor loadings are obtained via the regression (2.4.1). The table shows the re-
sult of the two sided t-test for αj 6= 0 and βportfolio,j 6= 1. Hull-white standard
errors were used to calculate t-statistics. The symbols *, **, and *** indicate
significance at the 10%, 5% and 1% levels respectively for each test.

regression coefficients by one time period to ensure that the portfolio construction method

only uses information available at time t.

Thus, at time t, with ∆t = 1 week, we form a portfolio which consists of weights

ωt,j = (βGLD,t−∆t,j, βMkt,t−∆t,j, 1− βGLD,t−∆t,j − βMkt,t−∆t,j)

in the physical gold, market portfolio, and risk-free asset respectively. At time t + ∆t, the

portfolio will have a mark-to-market return of

Rt,j,portfolio = ω′t,j(Rt,GLD, Rt,Mkt, rf t).

Furthermore, since the gold miner’s dependence on the market portfolio (equity market beta)

should not be time varying, we simply set the time average of the βMkt,j coefficients at all

times t, thereby removing the dependence on t. Having constructed the replicating portfolio,

we can test its success by running the regression

Rt,j = βportfolio,jRt,j,portfolio + αj + εt,j. (2.4.2)

Table 2 shows the result of our regression analysis with respect to our replicating portfolio,

while Figure 3 demonstrates the goodness of fit of our replicating portfolio model. First, we
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Figure 3: Plot of replicating portfolio returns (portfolio) vs gold miner equity
returns (ticker). The red line represents the regression line estimated by (2.4.2)
and the green line represents scenario of perfect replication (the line f(x) = x).
The gold miners from left to right, top to bottom are ABX, GG, GDX, and GDXJ.
The replicating portfolios are constructed by lagging the short-term βGLD,t,j and
βMkt,j coefficients by one week.

observe that about 65%-70% of the variance of gold miners in our sample can be explained

by the returns of our replicating portfolio, which are spanned by two factors: gold and the

market return. If our portfolio is successful, we would expect α ≡ 0 and βportfolio,j ≡ 1. Thus,

we run the two sided t-test for αj 6= 0 and βportfolio,j 6= 1. In fact, we discover that the α

at the individual gold miner level are statistically insignificant, but at the ETF level, the α

are consistently negative and significant, at a rate of about −0.58% per week. The portfolio

level significance is most likely due to lower ETF volatility relative to that of single stocks,

allowing for more precise point estimation. Furthermore, while the replicating portfolio

should vary exactly one to one with the gold miner, we consistently find that the gold miners

are less leveraged than the model might predict. In fact, we observe an average loading on
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the portfolio of less than 0.90.

How can we explain the consistently negative α and low covariation with the replicating

portfolio? Suppose that the firm owns a real option which they choose to exercise when

they observe their stock covaries too much with gold prices. In practice, gold miners could

buy put options, sell longer term futures or cut costs by firing workers and closing down

mines. By exercising these options, the firm would in fact execute a regime change, so that

the magnitude of the previously estimated implied leverage coefficient βGLD,t,j would become

too large relative to the actual future βGLD,t+∆t,j. Because the replicating portfolio cannot

fully internalize this regime change for at least 25 business days (the length of our rolling

training samples), the portfolio construction method would lead to portfolios which are too

leveraged with respect to physical gold. However, hedging gold price risk is quite costly; if

the managers do not have superior information about future gold prices then any hedging

will result in a negative alpha penalty.

Figure 3 compares the difference between the anticipated relationship of full replication

(green line) vs the actual performance of the replicating portfolio (red line). In particu-

lar, we find that the replicating portfolio declines moderately more than the actual gold

miner during periods of negative gold returns, while the replicating portfolio significantly

outperforms during periods of high gold prices. In other words, firms sacrifice large upward

potential gains when gold prices gain in exchange for small relative gains when gold prices

fall, suggesting that the cost of reducing leverage is paid through negative alpha relative to

the replicating portfolio Finally, since gold has on average a positive return during the period

under consideration, then the effects of holding and exercising these additional real options

ends up generating a small negative alpha!
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2.5 Estimating Model Parameters with Kalman Filter

In this section we present an application of our model, focusing on estimating the firm

implied gold leverage parameters from the replicating portfolio for our model. In particular,

we demonstrate a way to smooth the estimated dynamic factor loadings from Section 2.4 by

estimating a Kalman Filter derived from the real options framework of Section 2.3.

So far, we have constructed a procedure to replicate the returns of gold miner equity

prices, using only information which was available at the time of portfolio construction.

Moreover, under the real options model, this portfolio should contain time-varying loadings

on physical gold. Previously, we estimated these dynamic loadings using short-term rolling

linear regressions. However, due to the low number of observations per rolling window,

although estimation is consistent under OLS assumptions, the estimator on βGLD has extreme

variation. In this section, we demonstrate how under the real options model, the factor

loadings follow a linear update rule, which allows us to smooth the OLS estimates with a

Kalman Filter. Thus, by constraining the evolution of βGLD to obey the real options model

of Section 2.3, we obtain a more efficient estimator of the factor loadings.

Let St denote the gold price again, and assume we only have one gold miner stock.

In order to analyze the implied gold leverage dynamics of gold miner stocks, we need to

have an accurate estimate of the time series βGLD,t ≡ β(St), over t ≥ 0. While our short

rolling regressions can generate estimates of β(St), the estimates are extremely noisy and

vary quite substantially over even a single week. Therefore, we wish to extract the true β(St)

by estimating the noisy parameters zti ≡ β(Sti) with short-window rolling regressions. We

do this by reframing our model within the context of the Extended Kalman Filter (see e.g.

Brown and Hwang (1997) for a description of the Kalman Filter.)

Suppose that the true model for β(St) follows (2.3.8). Discretizing the Ito process for
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β(St),

dβ(St) = β′(St)
(
dSt − βσ2Stdt

)
,

β(Sti) = β(Sti−1
) + β′(Sti−1

)×
(
∆Sti − β(Sti−1

)σ2Sti−1
∆t
)
. (2.5.1)

At time ti, the variables β(Sti−1
), ∆Sti , β(Sti−1

), and Sti−1
are all known. We take σ2, the

volatility of the gold price, as the implied volatility of an ATM 3M to maturity gold futures

option and ∆t ≡ 1/252. It remains to calculate β′(St−1). Applying Ito’s Formula to β(S)

reveals

dβ′(St) = β(St)β
′(St)

(
−2

dSt
St

+ σ2(2β(St) + 1)dt

)
− σ2St (β′(St))

2
dt

β′(Sti) = β′(Sti−1
) + β(Sti−1

)β′(Sti−1
)

(
−2

∆Sti
Sti−1

+ σ2(2β(Sti−1
) + 1)∆t

)
− σ2Sti−1

(
β′(Sti−1

)
)2

∆t

Thus, we can define a state vector x, with white noise N (0, Qti) where

xti =
(
βSti , β

′(Sti)
)T
,

Qti
=

 S2
ti

−2β(Sti)Sti

−2β(Sti)Sti 4β(Sti)
2

× (β′(Sti))
2
σ2∆t.

In other words, we choose the betas and partials of betas with respect to the gold price as our

state space x. Each state evolves with error equal to the instantaneous quadratic covariation

of the process Q. Finally, the predicted update function f(x) is given by (2.5.1).

Define the 2× 2 covariance transition matrix, the 2× 1 observation matrix, and the 1× 1
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observation error matrix as

Fti =


1− β′(Sti)σ2Sti∆t ∆Sti − β(Sti)σ

2Sti∆t

β′(Sti)
(
−2

∆Sti
Sti

+ σ2(4β(Sti) + 1)∆t
)

1 + β(Sti)
(
−2

∆Sti
Sti

+ σ2(2β(Sti) + 1)∆t
)

−2σ2Stiβ
′(Sti)∆t



Hti = (1, 0)T

Rti = Standard Error2
βGLD

(ti).

In other words, F is an updating matrix for the covariance matrix of errors, assuming our

model and state space specification is correct. H reflects the fact that only β(St) is observable

through our short-window rolling regressions, while β′(St) remains a latent variable. Finally,

we choose the scalar measurement error R to be the standard error attached to the estimates

of β(St) from our rolling regressions (2.4.1). Thus, the Kalman Filter procedure is

Predict

Predicted state estimate: x̂ti|ti−1
= f(x̂ti−1|ti−1

),

Predicted covariance estimate: Pti|ti−1
= Fti−1

Pti−1|ti−1
FT
ti−1

+ Qti−1
,

Update

Innovation or measurement residual: ỹti = zti −HT
ti
x̂ti|ti−1

,

Innovation (or residual) covariance: Si = HT
ti
Pti|ti−1

Hti + Rti ,

Near-optimal Kalman gain: Kti = Pti|ti−1
HtiS

−1
ti
,

Updated state estimate: x̂ti|ti = x̂ti|ti−1
+ Kiỹti ,

Updated covariance estimate: Pti|ti = Pti|ti−1
(I−HtiK

T
ti

),

where x is the (possibly hidden) state variable, f is the state update equation, Q is the
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covariance matrix of the state variables, H is the observation matrix, F is the covariance

update matrix, and R is the estimation error, all of which as previously defined.

Having defined all the parameters of the Kalman Filter, we apply the filtering procedure

at a daily frequency over the observed lifetime of our various ETFs and gold miner stocks

(see Table 1 for a list of inception dates.) Figure 4 compares the improvement of the Kalman

Filtered implied leverage time series and the simple moving average (SMA) smoothed time

series over the raw regression coefficients. For the SMA model, we experimented with dif-

ferent moving time windows, settling on a window of 200 days so that the SMA coefficients

have a similar degree of volatility as the filtered estimates. While we did experiment with

shorter windows, we found that the resulting series was too similar to the original raw time

series, necessitating longer smoothing windows for the SMA method.

First, note that the SMA coefficients are less volatile than the raw estimated parameters.

While SMA gains in less volatility relative to the raw estimates, it loses in missing information

to the filtered estimates. For example in mid-2013, gold prices fell and the implied leverage

of gold mining firms rose to an all time high. The Kalman Filter captures the regime change

in 2013 almost immediately, but the SMA model does not pick it up until the beginning of

2014. In addition, for GDX and GDXJ the SMA model misses a regime change in mid-2009

when gold prices rose while the Kalman Filter picks it up much faster. Therefore, while long

window SMA smoothers are less complex and adequate substitutes during times of stable

gold prices, the Kalman Filter outperforms when gold prices are more volatile, since it can

capture instantaneous changes in implied leverage.

However, most of the time there is not a huge difference between the Kalman Filtered

implied leverage coefficients and SMA smoothed parameters, as long as we use a long enough

window. The main advantage of the Kalman Filter over simple smoothing methods is that it

not only infers the true process for βGLD, but it also preserves some volatility of our dynamic

factor loadings. On the other hand, while the SMA procedure certainly is less complex and

less prone to model risk, it requires a very long window to generate an estimate as smooth
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Figure 4: Plot of raw βGLD vs Kalman Filtered βGLD vs Simple Moving Average
βGLD. The Kalman Filter start end dates for each security were given by Table
1. We hold out 100-days of data to train the Kalman Filter initially. In addition,
the SMA uses a moving window of 200 days. The time axis has been converted
to weekly frequencies for illustration purposes due to the extreme variations in
raw time series. The gold miners from left to right, top to bottom are ABX, GG,
GDX, and GDXJ.

as the Kalman Filter’s, leading to too much information loss and long lags in the estimates.

Overall, the main improvement of the filtering procedure is over the raw estimated pa-

rameters. Relative to the raw parameters, the filtered series has significantly less volatility

and much more plausible values. For example, the maximum value for β(St) in the un-

filtered version for ABX exceeds 5.5, which is implausible since ABX has never displayed

5.5×σGLD ≈ 60% volatility in its entire trading lifetime! However, the maximum such value

for the filtered series never exceeds 3.5, which is a much more reasonable estimate.
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2.6 Testing Predictions for Gold Miners’ Implied Lever-

age

In this section we analyze the accuracy of the predictions made by the real options model for

gold miners as applied to our gold miner stock portfolio, focusing on our model’s explanatory

power of firm implied gold leverage. We perform an empirical test of our real options model

by analyzing the effect of gold prices on firm leverage, using monthly observations of the

filtered estimates for the β(St) estimates. Overall, we find that the real options model can

explain much of the time series variation of implied gold leverage, suggesting that gold miner

stocks really do behave like real options on gold.

Having developed a method to robustly estimate the factor loadings themselves, we can

now empirically investigate our model’s predictions about how changes in gold prices affect

firm leverage. In particular, recall that at each time t, we have inferred firm j’s dependence

on gold prices βGLD,t,j by carrying out a rolling, exponentially weighted regression (2.4.1).

Now that we have an unbiased, smoothed estimate of the implied leverage parameters via

the Kalman Filter, we can test how the firm leverage depends on gold prices, as our real

options model would predict. Figure 5 illustrates this relationship for the four gold miner

ETFs/stocks in our sample. Notice that in most circumstances, the relationship between

physical gold prices and the firm implied gold leverage is quite muted, with βGLD varying

around some constant level. However, as the gold price declines past a critical level, firm

price declines and leverage increases rapidly. Similarly, around this critical level, when the

gold price increases, the firm price decreases and the leverage falls rapidly as well. Recall

that Figure 2 predicts that the firm’s implied gold leverage only becomes extremely sen-

sitive around the critical gold price which pushes the firm close to default. Thus, these

summary figures suggest that our real options model should have strong explanatory power

for understanding gold miners’ implied leverage.

While the general pattern between gold prices and firm implied leverage can be eyeballed
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Figure 5: Plot of βGLD vs Gold miner equity prices. The βGLD coefficients shown
have been smoothed by a Kalman Filter (see Section 2.5). The gold miners from
left to right, top to bottom are ABX, GG, GDX, and GDXJ.

from Figure 5, we will need a detailed model to understand the precise relationship. Thus,

in this section we test the proposition that the real options model can explain the drivers

behind firm implied gold leverage. Equation (2.3.7) predicts a relationship between the

estimated coefficients βGLD and the corresponding equity and gold prices Jt and St respec-

tively. Therefore, after some rearrangement, we have for each gold miner indexed by j the

relationship

ln βGLD,j,t = γ lnSt − ln Jt,j + γA,

ln βGLD,j,t = γ0 lnSt − γ1 ln Jt,j + αj + εt,j, (2.6.1)

where the second equation specifies a regression to estimate the first relationship. In particu-

lar, we regress the gold price St, the gold miner equity price Jt,j on the implied firm leverage
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Security Name (Ticker) R2 γ0 γ1 α

Barrick Gold (ABX) 0.281607 0.257169∗∗ −0.432529∗∗∗ 0.711987
Goldcorp (GG) 0.195562 0.327015∗∗ −0.487025∗∗∗ 0.638916
Gold Miners ETF (GDX) 0.331800 0.228697∗∗ −0.532948∗∗∗ 1.341798
Junior Gold Miners ETF (GDXJ) 0.292139 0.123082∗ −0.284187∗∗ 1.828136

Table 3: Performance of real options model using monthly observations. Results
from the regression (2.6.1). The tests for γ1 are two-sided t-tests centered at −1,
while the test for γ0 are one-sided t-tests centered at zero. White standard errors
are used to calculate t-statistics. The symbols *, **, and *** indicate significance
at the 10%, 5% and 1% levels respectively. The tests for statistical significance
with respect to α are omitted for brevity.

βGLD,j,t, which was estimated using the Kalman Filter.

If gold miners were equivalent to real options on gold then, we should have γ0 > 0 and

γ1 = −1. In other words, for every $1 increase in the log stock price, its log implied gold

leverage by 1. Furthermore, for every $1 increase in the log gold price, the log implied

leverage with respect to gold should increase by γ which is given by Theorem 2.3.2. In

particular, the regression (2.6.1) represents a test of the real gold options model.

Table 3 displays the result of our regressions. The R2 for the regressions is about 30%,

suggesting a strong fit for our real options model. Although 30% may not seem very im-

pressive at first, we note that in comparison Tufano (1996) used about a dozen firm level

variables to estimate the firm’s dependence on βGLD, finding an average R2 of only 19% per

firm. Therefore without considering the impact of firm level decisions, our much sparser

model has stronger explanatory power than the previous results in the literature. Unfortu-

nately, our model is less interpretable since the two independent variables in our model (gold

price and gold miner equity) are themselves highly correlated. Thus, while this regression

can serve as a test for the real options model, it cannot dissect the factors’ effects on the

fluctuations of the leverage coefficients.

The main tests for the real options model are the two sided test γ1 6= −1 and the

one sided test γ0 > 0. We choose the one sided form, since in the real options model, we

must have γ0 ≥ 0. In most of the regressions, we have γ0 > 0 at the 5% significance level,
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demonstrating that holding gold miner prices the same, then higher gold prices do in fact

generate higher leverage coefficients. However, the junior gold miner ETF (GDXJ) has an

insignificant coefficient on γ0. Finally, the tests for γ1 6= −1 reject the null hypothesis for

every single stock, with all the γ1 coefficients being too small. Thus, a firm’s dependence on

gold prices is much smaller than the real options model suggests, since the βGLD coefficients

increase slower than one to one with the decline of log gold miner equity prices. This result

confirms our previous analysis with the replicating portfolios, which finds that the gold miner

equities are much less levered than their replicating portfolios would predict. In other words,

since firms may have extra firm-level options such as mine closure, layoffs, or hedging with

futures and options, their equity can become less volatile than the real option model suggests

when gold prices decline.

If gold miner firms were just junior claims to gold inside a mine, then implied leverages

should act similarly to that of a gold option. Although we find that modeling gold miner

stocks as gold call options can explain over 30% of the implied leverage variation, ultimately

gold prices alone are insufficient to explain local implied leverage. In particular, firm implied

gold leverage is often much lower than the real options model would predict, likely because

firms can dampen their volatility by exercising management level real options that are outside

the market’s observation. Furthermore, the real options model has a much worse fit for junior

gold miners, likely because they are exposed to more idiosyncratic risks. However, our overall

conclusion remains the same: gold mining stocks behave like real options on gold, albeit with

significant idiosyncratic risk during periods of price declines.

2.7 Conclusion

This chapter provides both theoretical and empirical studies on the drivers of gold miner

stock returns. By studying a real options model, we confirm the widely held practitioner’s

view that gold miner stocks behave more like options on gold rather than standard equities.
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Our model can explain many anomalies in the literature about gold miners’ returns by

quantifying the main drivers behind the fluctuations in implied gold leverage.

Motivated by our theoretical results, we construct a dynamic replicating portfolio con-

sisting of two factors - spot gold and the market portfolio - in order to explain gold miner

equity returns. After decomposing the return into a market replicable component and an id-

iosyncratic component, we demonstrate first that the market replicable component has time

varying loadings with respect to gold, but static loadings with respect to the equity market

portfolio. Second, gold miner stock returns are consistently lower than our model predicts

and covary less than expected relative to spot gold returns. Overall, our results suggest that

firms hold real options allow the firm to hedge their exposure to gold prices during times of

low prices, but these options come at the expense of lower average returns when gold prices

recover.

For future research, a natural direction is to investigate if similar findings hold more

generally by applying the same pricing model and estimation methodology to other com-

modity producers, such as oil, natural gas, agricultural products, and other precious metals.

Other than working with the convenience yield model, it may be appropriate to consider

mean-reverting models for some commodities and study the optimal production/investment

strategies (Cortazar and Schwartz, 1997; Leung et al., 2014; Guo and Leung, 2017). Finally,

our model can be applied to develop trading strategies that account for the factor loadings

and alpha of gold miner equities, we can easily construct a market-neutral portfolio of gold

miners to capture the idiosyncratic component of gold miner returns.



Chapter 3

Understanding the Returns of

Commodity LETFs

Commodity exchange-traded funds (ETFs) are a significant part of the rapidly growing ETF

market. They have become popular in recent years as they provide investors access to a

great variety of commodities, ranging from precious metals to building materials, and from

oil and gas to agricultural products. In this chapter, we analyze the tracking performance

of commodity leveraged ETFs and discuss the associated trading strategies. It is known

that leveraged ETF returns typically deviate from their tracking target over longer holding

horizons due to the so-called volatility decay. This motivates us to construct a benchmark

process that accounts for the volatility decay, and use it to examine the tracking performance

of commodity leveraged ETFs. From empirical data, we find that many commodity leveraged

ETFs underperform significantly against the benchmark, and we quantify such a discrepancy

via the novel idea of realized effective fee. Finally, we consider a number of trading strategies

and examine their performance by backtesting with historical price data.

41
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3.1 Introduction

The advent of commodity exchange-traded funds (ETFs) has provided both institutional and

retail investors with new ways to gain exposure to a wide array of commodities, including

precious metals, agricultural products, and oil and gas. All commodity ETFs are traded on

exchanges like stocks, and many have very high liquidity. For example, the SPDR Gold Trust

ETF (GLD), which tracks the daily London gold spot price, is the most traded commodity

ETF with an average trading volume of 8 million shares and market capitalization of US $31

billion in 2013.1

Within the commodity ETF market, some funds are designed to track a constant multiple

of the daily returns of a reference index or asset. These are called leveraged ETFs (LETFs).

An LETF maintains a constant leverage ratio by holding a variable portfolio of assets and/or

derivatives, such as futures and swaps, based on the reference index. For example, the

Dow Jones U.S. Oil & Gas Index (DJUSEN) or the Dow Jones U.S. Basic Materials Index

(DJUSBM) and their associated ETFs track the stocks of a basket of commodities producers,

as opposed to the physical commodity prices. On the other hand, most LETFs are based on

total return swaps and commodity futures. The most common leverage ratios are ±2 and

±3, and LETFs typically charge an expense fee. Major issuers include ProShares, iShares,

VelocityShares and PowerShares (see Table 4). For example, the ProShares Ultra Long Gold

(UGL) seeks to return 2x the daily return of the London gold spot price minus a small

expense fee. One can also take a bearish position by buying shares of an LETF with a

negative leverage ratio. The ProShares Ultra Short Gold (GLL) is an inverse LETF that

tracks -2x the daily return of the London gold fixing price. LETFs are a highly accessible

and liquid instrument, thereby making them attractive instruments for traders who wish to

gain leveraged exposure to a commodity without borrowing money or using derivatives.

For a long LETF, with a leverage ratio β > 0, the fund must add to a winning position in

1According to ETF Database website (http://www.etfdb.com/compare/volume).
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a bull market to maintain a constant leverage ratio. On the other hand, during a bear market,

the fund must sell its losing positions to maintain the same leverage ratio. Similar arguments

can be made for short (or inverse) LETFs (β < 0). As a consequence, LETFs can potentially

outperform β times its reference during periods of market trending. However, should the

LETF exhibit high volatility but no significant movement in price over a period of time,

the constant daily re-balancing would cause the fund to decline in value. Therefore, LETFs

can be viewed as long momentum but short volatility, and the value erosion due to realized

variance of the reference is called volatility decay (see Avellaneda and Zhang (2010); Cheng

and Madhavan (2009); Dobi and Avellaneda (2012)). This raises the important question of

how well do LETFs perform over a long horizon.

Since their introduction to the market, LETFs a number of criticisms from both prac-

titioners and regulators.2 Some are concerned that the returns of LETFs exhibit some dis-

crepancies from the goals stated in their prospectuses. In fact, some issuers provide warnings

that LETFs are unsuitable for long-term buy-and-hold investors.

Many existing studies focus on equity-based ETFs and their leveraged counterparts. For

example, Avellaneda and Zhang Avellaneda and Zhang (2010) study the price behavior and

discuss the volatility decay of equity LETFs in different sectors. They find minimal 1-day

tracking errors among the most liquid equity ETFs. They explain that an equity LETF can

replicate the leveraged returns of its reference through a dynamic portfolio consisting of the

component equities.

In contrast, commodities are unique because the physical assets cannot be stored easily.

As such, ETF issuers are required to replicate through either warehousing3, which is very

costly, and thus uncommon except for precious metals such as silver and gold, or trading

futures with multiple counterparties (see Guedj et al. (2011)). Since the reference indices

2In 2009, the SEC and FINRA issued an alert on the risk of leveraged ETFs on http://www.sec.gov/

investor/pubs/leveragedetfs-alert.htm.
3For more details on the issue of storage cost for commodity ETFs, we refer to the Morningstar Report:

“An Ugly Side to Some Commodity ETFs” by Bradley Kay, August 19, 2009.

http://www.sec.gov/investor/pubs/leveragedetfs-alert.htm
http://www.sec.gov/investor/pubs/leveragedetfs-alert.htm
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may represent the spot prices of physical commodities, futures-based commodity ETFs may

fail to track their reference indices perfectly and their tracking performance is subject to the

fluctuation and term structure of futures prices. On top of that, most commodity LETFs

use over-the-counter (OTC) total return swaps with multiple counterparties to generate the

required leverage ratios. The lower liquidity of OTC contracts and counterparty risk can

contribute to additional tracking errors. As we show in this chapter, tracking errors can

seriously affect the long-term fund performance of LETFs.

In a related work, Murphy and Wright Murphy and Wright (2010) perform a t-test based

on 1-day returns to determine if any commodity LETF has a non-zero tracking error. They

conclude that all LETFs have a very good daily tracking performance. However, they do

not conduct the analysis over a longer horizon, or account for the volatility decay. There is

also no discussion of trading strategies there. On the other hand, Guedj et al. Guedj et al.

(2011) discuss the difficulties faced by an ETF provider in replicating a commodity index

using futures. In particular, they point out that the term structure of futures may lead to

large deviations between the ETF price and the spot price of a commodity.

In this chapter, we analyze the tracking performance of commodity leveraged ETFs.

Through a series of regression analyses, we illustrate how the returns of commodity LETFs

deviate from the reference returns multiplied by the leverage ratio over different holding

periods. In particular, the average tracking error tends to turn more negative over a longer

horizon and for higher leveraged ETFs. With in mind that realized variance of the reference

can erode the LETF value, we examine the over/under-performance of LETFs with respect

to a benchmark that incorporates the effect of volatility decay. From empirical data, we

find that many commodity leveraged ETFs in our study underperform significantly against

the benchmark, and we quantify such a discrepancy by introducing the realized effective fee.

Finally, we consider a static trading strategy that involves shorting two LETFs with leverage

ratios of different signs, and study its performance and dependence on the realized variance

of the reference. We find that the resulting portfolio is always long realized variance both
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LETF Reference Underlying Issuer β Fee Inception

SLV SLVRLN Silver Bullion iShares 1 0.50% 04/21/2006
AGQ SLVRLN Silver Bullion ProShares 2 0.95% 12/01/2008
ZSL SLVRLN Silver Bullion ProShares -2 0.95% 12/01/2008
USLV SPGSSIG Silver Bullion VelocityShares 3 1.65% 10/13/2011
DSLV SPGSSIG Silver Bullion VelocityShares -3 1.65% 10/14/2011
GLD GOLDLNPM Gold Bullion iShares 1 0.40% 11/18/2004
UGL GOLDLNPM Gold Bullion ProShares 2 0.95% 12/01/2008
GLL GOLDLNPM Gold Bullion ProShares -2 0.95% 12/01/2008
UGLD SPGSGCP Gold Bullion VelocityShares 3 1.35% 10/13/2011
DGLD SPGSGCP Gold Bullion VelocityShares -3 1.35% 10/14/2011
IYE DJUSEN Oil & Gas iShares 1 0.48% 06/12/2000
DDG DJUSEN Oil & Gas ProShares -1 0.95% 06/10/2008
DIG DJUSEN Oil & Gas ProShares 2 0.95% 01/30/2007
DUG DJUSEN Oil & Gas ProShares -2 0.95% 01/30/2007
DBO DBOLIX WTI Crude Oil PowerShares 1 0.75% 01/05/2007
UCO DJUBSCL WTI Crude Oil ProShares 2 0.95% 11/24/2008
SCO DJUBSCL WTI Crude Oil ProShares -2 0.95% 11/24/2008
UWTI SPGSCLP WTI Crude Oil VelocityShares 3 1.35% 02/06/2012
DWTI SPGSCLP WTI Crude Oil VelocityShares -3 1.35% 02/06/2012
IYM DJUSBM Building Materials iShares 1 0.48% 06/12/2000
SBM DJUSBM Building Materials ProShares -1 0.95% 03/16/2010
UYM DJUSBM Building Materials ProShares 2 0.95% 01/30/2007
SMN DJUSBM Building Materials ProShares -2 0.95% 01/30/2007

Table 4: A summary of the 23 LETFs studied in this chapter, arranged by
commodity type and then leverage. Notice that the non-leveraged (1x) ETFs
have the smallest expense fees, and LETFs with higher absolute leverage ratios,
|β| ∈ {2, 3}, tend to have higher expense fees. Finally, notice that higher β LETFs
are much more recent additions to the market.

theoretically and empirically, but is also exposed to the tracking errors associated with the

two LETFs. We also backtest the strategy through examining its empirical returns over

rolling periods.

The rest of the chapter is organized as follows. In Section 3.2, we analyze the returns

of commodity LETFs over different holding periods and illustrate horizon dependence of

tracking errors. In Section 3.3, we use a benchmark process that incorporates the realized

variance of the reference to study the over/under-performance of each LETF. In Section 3.4,

we discuss a static trading strategy and backtest using historical data. Section 3.5 concludes

the chapter and points out a number of directions for future research.
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3.2 Analysis of Tracking Error

We first compare the returns of LETFs and their reference indices. For every ETF, we

obtain its closing prices and reference index values from Bloomberg for the period December

2008-May 2013. We then calculate the n-day returns from n = {1, 2, . . . , 30} using disjoint

successive periods (e.g. the return over days 1-30 then returns over days 31-60 for 30-day

returns). Let Lt be the price of an LETF and St be the reference index value at time t. For

a given leverage ratio β, we compare the log-returns of the LETF to β times the log-returns

of the corresponding reference index. This leads us to define the n-day tracking error at time

t by

Y
(n)
t = ln

Lt+n∆t

Lt
− β ln

St+n∆t

St
, (3.2.1)

where ∆t represents one trading day. We explore the empirical distribution of the n-day

tracking error, and then analyze the effect of holding horizon on the magnitude of tracking

errors. We remark there are alternative ways to define tracking errors for ETFs. For example,

one can consider the difference in relative returns as opposed to log-returns, or the root mean

square of the daily differences (see Mackintosh and Lin (2010b)).

3.2.1 Regression of Empirical Returns

We conduct a regression between log-returns of the LETF and its reference index based on

the linear model:

ln
Lt
L0

= β̂ ln
St
S0

+ ĉ+ ε,

where ε ∼ N(0, σ2) is independent of the reference index value St, ∀t ≥ 0. In other words,

we run an ordinary least square 1-variable regression between the log-returns for every fixed

horizon of n days. Then, we increase the holding period from 1 to 30 days, and observe how

the regression coefficients vary.

We display the regression results in Figures 6 through 9 for log-returns over periods of
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1, 5, 10, and 20 days. To avoid dependence among returns, we use disjoint time intervals to

calculate returns. For example, we use S20

S0
, S40

S20
. . . and L20

L0
, L40

L20
. . . for 20-day log-returns as

the inputs for the regression.

In Figure 6, the regression coefficient β̂ for DIG (β = 2, oil & gas) increases from 2 to 2.1

as the holding period lengthens from 1 to 20 days. Although the coefficient of determination

R2 is close to 99% for up to 20 days, it is highest for 1-day returns. In Figure 7 for DUG

(β = −2, oil & gas), one again observes β̂ increasing, and R2 decreasing. For DUG (β = −2,

oil & gas), as n varies from 1 to 20, β̂ increases from −2 to −1.66. As a result, this implies

that DIG (β = 2, oil & gas) effectively gains leverage as the holding time increases, while

DUG (β = −2, oil & gas) loses leverage compared to the advertised fund β.

On the other hand, UGL (β = 2, gold) and GLL (β = −2, gold) exhibit very different

return behaviors. In Figure 8 the R2 for UGL (β = 2, gold) is surprisingly worst for the

shortest holding period of 1 day, whereas it increases to 95% over a holding period of 20

days. In Figure 9 for GLL (β = −2, gold), the R2 increases from 35% to 96% when holding

the fund from 1 to 20 days. Furthermore, the estimators β̂ for UGL (β = 2, gold) and GLL

(β = −2, gold) both slowly approach their advertised β = ±2. The variation of β̂ for DIG

(β = 2, oil & gas) and UGL (β = 2, gold) over different holding periods is summarized in

Figure 10.

We observe that LETFs that track an illiquid reference, such as the gold bullion index

GOLDLNPM, tend to have more tracking errors than those tracking a liquid index, such

as the oil & gas index DJUSEN. The oil & gas commodity LETFs involve exchange-traded

futures which are liquid proxy to the spot price. The gold and silver bullion LETFs consist

of OTC total return swaps. The difficulty and higher costs replication using swaps, as well

as infrequent (typically daily) update of the swaps’ mark-to-market values can weaken the

fund’s tracking ability. For example, the 1-day regressions of UGL and GLL (β = ±2, gold)

yield R2 values less than 40%, while DIG and DUG (β = ±2, oil & gas ) have 1-day R2

values of over 90%. On the other hand, full physical replication yields the greatest R2, with
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examples of the non-leveraged gold and silver ETFs, GLD and SLV, respectively. Hence,

the replication strategy can significantly affect a fund’s tracking errors. A more precise

understanding of the effectiveness of swaps, futures, and other replication strategies requires

the full holdings history from the ETF provider, which is not publicly available at all times.4

In addition, the LETFs we studied have an increasingly negative constant coefficient ĉ as

the holding time increases. For example, over a holding period of 20-days, DUG (β = −2, oil

& gas) has a 3% decay on returns compared to β times its reference index. We would expect

this phenomenon, however, since the LETF would need to buy high and sell low, while the

reference investor would simply hold his securities. Therefore, the longer the LETF is held,

the more likely the fund will underperform against β times the reference index. As we will

see in Section 3.3, the constant coefficient ĉ depends on two factors, the expense fee charged

by the issuer as well as the realized variance of the reference index.

Hence, with this simple linear model for LETF prices, we have observed that although

LETFs safely replicate β times the reference over short holding periods, they begin to ex-

hibit negative tracking error and deviations in their leverage ratios β as the holding time

increases. Furthermore, we see that LETFs which attempt to track illiquid spot prices per-

form much more poorly than expected. We conclude that more factors must be considered

when modeling LETF returns.

3.2.2 Distribution of Tracking Errors

As defined in (3.2.1), the tracking error is the difference between the LETF’s log-return and

the corresponding multiple of its reference index’s log-return. In this section, we examine

the distribution of the tracking error. This provides a picture of the LETF’s efficiency in its

stated goal of replicating the leveraged return of a reference index.

For the 23 LETFs in Table 5, we compute the mean µ and standard deviation σ for the

4For a detailed snapshot of the holdings for a proshares ETF, please see http://www.proshares.com/

funds/{XYZ}_daily_holdings.html where {XY Z} is the ETF ticker.

http://www.proshares.com/funds/{XYZ}_daily_holdings.html
http://www.proshares.com/funds/{XYZ}_daily_holdings.html
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Figure 6: From top left to bottom right: regression of DJUSEN-DIG (β = 2, oil
& gas) 1, 5, 10, 20-day log-returns. We consider disjoint periods from December
2008 to May 2013.
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Figure 7: From top left to bottom right: regression of DJUSEN-DUG (β = −2, oil
& gas) 1, 5, 10, 20-day log-returns. We consider disjoint periods from December
2008 to May 2013.
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Figure 8: From top left to bottom right: regression of GOLDLNPM-UGL (β = 2,
gold) 1, 5, 10, 20-day log-returns. We consider disjoint periods from December
2008 to May 2013.
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Figure 9: From top left to bottom right: regression of GOLDLNPM-GLL
(β = −2, gold) 1, 5, 10, 20-day log-returns. We consider disjoint periods from
December 2008 to May 2013.
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Figure 10: The estimated β̂ from the regressions for DJUSEN-DIG (β = 2, oil &
gas), and GOLDLNPM-UGL (β = 2, gold).

LETF Underlying β µ σ

SLV Silver Bullion 1 0.0000 0.0302
AGQ Silver Bullion 2 -0.0009 0.0539
ZSL Silver Bullion -2 -0.0022 0.0543
USLV Silver Bullion 3 -0.0014 0.0231
DSLV Silver Bullion -3 -0.0027 0.0237
GLD Gold Bullion 1 0.0000 0.0128
UGL Gold Bullion 2 -0.0003 0.0221
GLL Gold Bullion -2 -0.0005 0.0221
UGLD Gold Bullion 3 -0.0006 0.0134
DGLD Gold Bullion -3 -0.0010 0.0139
IYE Oil & Gas 1 0.0000 0.0049
DDG Oil & Gas -1 -0.0008 0.0118
DIG Oil & Gas 2 -0.0005 0.0044
DUG Oil & Gas -2 -0.0018 0.0087
DBO WTI Crude Oil 1 0.0000 0.0070
UCO WTI Crude Oil 2 -0.0006 0.0135
SCO WTI Crude Oil -2 -0.0016 0.0132
UWTI WTI Crude Oil 3 -0.0008 0.0147
DWTI WTI Crude Oil -3 -0.0017 0.0178
IYM Building Materials 1 0.0000 0.0020
SBM Building Materials -1 -0.0004 0.0065
UYM Building Materials 2 -0.0005 0.0062
SMN Building Materials -2 -0.0022 0.0149

Table 5: Mean µ and standard deviation σ of the 1-day tracking error by com-
modity.
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Figure 11: Histograms and QQ plots of 1-day tracking errors for DIG, DUG
(β = ±2, oil & gas); UGL, GLL (β = ±2, gold) from top to bottom.
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tracking errors using available price data during the period Dec 2008 to May 2013. For all

these funds, the mean 1-day tracking error has µ ≈ 0, ranging from 0% to -0.27%. Therefore,

all these LETFs on average successfully replicate the stated multiple β of the daily reference

return, with a slight negative bias. In fact, many LETFs even continued to replicate returns

over periods as long as 10 days. However, as the holding time increases, the average tracking

error grows more negative, so that the LETF in fact underperforms its intended goal over

longer holding periods (see Figure 11).

Interestingly, the tracking errors for the silver and gold LETFs (AGQ, ZSL (β = ±2,

silver); UGL, GLL (β = ±2, gold)) in Table 5 have σ several magnitudes higher than µ.

For example, AGQ (β = 2, silver) has a tracking error σ of 5% compared to a µ of 0.01%.

In other words, these four LETFs, while they might track their references well on average,

may also exhibit positive and negative deviations over 1-day holding periods as well. These

observations are consistent with the regressions in Figures 8 and 9, where UGL and GLL

(β = ±2, gold) show significant 1-day tracking errors. On the other hand, the non-leveraged

gold and silver bullion ETFs, GLD and SLV, have almost no tracking error σ ≈ 0, because

they hold the underlying bullion according to their prospectuses. Since many investors use

these ETFs to gain leveraged exposure to commodities, they should be aware of the large

variance of the associated tracking errors.

In Figure 11, we show the histogram for the tracking error for each ETF along with a

quantile-quantile plot to illustrate the distribution. For DIG and DUG (β = ±2, oil & gas),

the quantile-quantile plot shows that the tracking error distribution is not quite normal, and

has a large negative tail, so that the commodity LETF tracking error is negatively biased

even for the shortest possible holding period of one day. On the other hand, for UGL, GLL

(β = ±2, gold) the distribution appears to be normal with R2 close to 98%. However, as

noted in Table 5, the tracking errors for UGL and GLL (β = ±2, gold) also have a very large

variance.

Next, we examine the horizon effect of tracking errors. Figure 12 indicates that higher
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Figure 12: A plot of no. of days vs the mean tracking error arranged by commodi-
ties tracked. From top left to bottom right: US Oil & Gas, Gold, Crude Oil,and
Silver. As the holding period increases, the average tracking error becomes more
negative as well.

leveraged ETFs tend to have more negative average tracking errors, which appear to be

decreasing linearly over longer holding periods. In addition, negative leveraged LETFs have

a more negative average tracking error than their positive counterparts. For example, in

Figure 12, GLL (β = −2, gold) has a lower slope than UGL (β = 2, gold) even though they

have the same absolute value of leverage ratio |β|. Furthermore, with few exceptions,the

average tracking error is most negative when β = −3 followed by β = 3,−2, 2,−1, 1. Thus,

there is a higher holding horizon punishment for buying short than long LETFs.

Our analysis of the tracking error distribution reveals several characteristics of the track-

ing error defined in (3.2.1). Over a very short holding period, most LETFs perform close to

their objectives stated in their prospectuses. Nevertheless, the realized tracking error varies

over time, and can be positive or negative. For gold and silver LETFs, the tracking error is

more volatile. Moreover, the magnitude of the mean tracking error depends heavily on the
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β of the LETF, with bear LETFs suffering a higher penalty than bull LETFs.

3.3 Incorporating Realized Variance into Tracking Er-

ror Measurement

As is well known in the industry (see Avellaneda and Zhang (2010); Cheng and Madhavan

(2009)), the price dynamics of an LETF depends on the realized variance of the reference

index. This leads us to incorporate the realized variance in measuring the performance of

an LETF. We run a regression analysis based on empirical LETF and reference prices that

incorporates the realized variance as an independent variable. We then derive a realized

effective fee associated with each LETF and analyze the realized price behavior relative to a

theoretical benchmark to better quantify the over/under-performance.

3.3.1 Model for the LETF Price

Let St be the price of the reference index, and Lt be the price of the LETF at time t. Also

denote f as the expense rate, r as the interest rate and β as the leverage ratio. Assume the

reference asset follows the SDE

dSt
St

= µtdt+ σtdWt, t ≥ 0, (3.3.1)

with stochastic drift (µt)t≥0 and volatility (σt)t≥0. For our analysis herein, we assume a

general diffusion framework, but do not need to specify a parametric model. Many well-

known models, including the CEV, Heston, and exponential Ornstein-Uhlenbeck models, fit

within the above framework.

A long β-LETF L can be constructed through a dynamic portfolio. Specifically, the

portfolio at time t consists of the cash amount $βLt invested in the reference index St, while

$(β − 1)Lt is borrowed at the positive risk free rate r. As a result, the LETF satisfies the
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SDE

dLt = Ltβ
dSt
St
− Lt((β − 1)r + f)dt.

Solving the SDE, the log-return of the LETF is given by

ln
Lt
L0

= β ln
St
S0

+
β − β2

2
Vt + ((1− β)r − f)t, (3.3.2)

where

Vt =

∫ t

0

σ2
sds

is the realized variance of S accumulated up to time t. Therefore, under this general diffusion

model, the log-return of the LETF is proportional to the log-return of the reference index by

a factor of β, but also proportional to the variance by a factor of β−β2

2
. The latter factor is

negative if β /∈ (0, 1), which is true for every LETF traded on the market. Also, the expense

fee f reduces the return of the LETF.

Our regression analysis will focus on testing the functional form (3.3.2). We observe from

(3.3.2) that the functional form of Lt in terms of St and Vt holds for any parametric model

within the diffusion framework in (3.3.1). Considering the daily LETF returns, we set

∆t = 1
252

as one trading day. Let RS
t be the daily return of the reference index at time t. At

any time t, the n-day log-returns of an LETF follows

ln
Lt+n∆t

Lt
= β ln

St+n∆t

St
+
β − β2

2
V

(n)
t + ((1− β)r − f)n∆t, (3.3.3)

V
(n)
t =

n−1∑
i=0

(RS
t+i∆t − R̄t

S
)2, R̄t

S
=

1

n

n−1∑
i=0

RS
t+i∆t.

This serves as a benchmark process for our subsequent analysis.
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3.3.2 Regression of Empirical Returns

The log-return equation (3.3.3) suggests a regression with two predictors: the log-returns

and the realized variance of the reference over n-days. This results in the linear model

ln
Lt
L0

= β̂ ln
St
S0

+ θ̂Vt + ĉ+ ε,

where ĉ is a constant intercept to be determined, and ε ∼ N(0, σ2) is independent of (St)t≥0.

In Table 6, we summarize the estimated θ̂ from our regression with holding periods of

30 days. Again, we use price data from disjoint periods to calculate returns. The realized

variance is calculated using the inter-period returns (30 days). The choice of 30-day periods

gives us sufficient points to compute the realized variance while providing enough disjoint

periods during the period Dec 2008-May 2013 to perform a regression. A longer price history

would certainly have helped in balancing this tradeoff, but all these commodity LETFs were

introduced only in the past five years.

Our empirical analysis confirms several aspects of our theoretical model in (3.3.2) and

provides explanations in cases where there is discrepancy. The theoretical value of θ according

to (3.3.2) is given by β−β2

2
. Table 6 shows that the estimator θ̂ is typically in the neighborhood

of θ, its theoretical value. For example, SCO (β = −2, crude oil) has θ̂ = 2.93 versus a

theoretical θ of 3. In addition, the non-leveraged ETFs all have θ̂ close to 0, suggesting that

realized variance does not play an important role in its price process, as predicted. However,

some LETFs have θ̂ diverging significantly from θ. For example, the θ̂ for UGL (β = 2, gold)

differs from its theoretical value by a factor of 114% even with a regression R2 of 99%.

We attribute the deviation of θ̂ from θ in our regression to the collinearity effect of the

two predictors (ln St
S0

and Vt). Of course ln St
S0

and Vt cannot be independent observations,

since Vt depends on the price path process of St, the reference index. In general, the reference

returns and the realized variance are negatively correlated. When the realized variance is

high, it is likely the reference has suddenly dropped in value. When the realized variance is
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LETF Underlying β θ̂ θ r2 r2
x|y r2

y|x

SLV Silver Bullion 1 0.11 0 0.9799 0.9503 0.0078
AGQ Silver Bullion 2 -1.31 -1 0.9885 0.9751 0.3892
ZSL Silver Bullion -2 -3.27 -3 0.9995 0.9988 0.7514
USLV Silver Bullion 3 -2.24 -3 0.9995 0.9988 0.7514
DSLV Silver Bullion -3 -6.94 -6 0.9994 0.9989 0.9654
GLD Gold Bullion 1 -0.14 0 0.9898 0.9791 0.0064
UGL Gold Bullion 2 -2.44 -1 0.9934 0.9867 0.2900
GLL Gold Bullion -2 -0.96 -3 0.9914 0.9828 0.0417
UGLD Gold Bullion 3 -2.38 -3 0.9982 0.9955 0.6355
DGLD Gold Bullion -3 -6.26 -6 0.9846 0.9685 0.0809
IYE Oil & Gas 1 -0.06 0 0.9988 0.9965 0.1905
DDG Oil & Gas -1 -0.99 -1 0.8866 0.7662 0.2342
DIG Oil & Gas 2 -1.11 -1 0.9996 0.9989 0.9498
DUG Oil & Gas -2 -3.31 -3 0.9884 0.9769 0.8873
DBO WTI Crude Oil 1 -0.02 0 0.9992 0.9981 0.0035
UCO WTI Crude Oil 2 -1.15 -1 0.9987 0.9972 0.7747
SCO WTI Crude Oil -2 -2.93 -3 0.9987 0.9975 0.9619
UWTI WTI Crude Oil 3 -2.14 -3 0.9974 0.9939 0.6218
DWTI WTI Crude Oil -3 -7.25 -6 0.9974 0.9939 0.6218
IYM Building Materials 1 0.03 0 0.9996 0.9987 0.0495
SBM Building Materials -1 -0.98 -1 0.9970 0.9920 0.5446
UYM Building Materials 2 -1.10 -1 0.9997 0.9993 0.9380
SMN Building Materials -2 -3.59 -3 0.9613 0.9221 0.5301

Table 6: θ̂ vs. θ, estimated from 30-day multi-variable regression of returns, with
a partial correlation table. r2

y|x stands for the marginal predictive power of adding

the realized variance (y) into the model, holding constant the predictive power
of the reference index returns (x). Similar definition for r2

x|y. Data from Dec
2008-May 2013.
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low, it usually implies a period of steady positive growth for the reference. Thus, the multi-

collinearity effect is responsible for shifting predictive power among the different predictor

variables. In order to measure the magnitude of the collinearity effect and the contribution

of each correlated predictor variable, we compute the coefficients of partial determination

for our regression model.

The factor r2
y|x which measures the marginal predictive power of adding the realized vari-

ance into the model. As r2
y|x increases, θ̂ becomes closer to θ, suggesting a larger dependence

of LETF returns on realized variance during holding periods of high volatility. For example,

for the 3 LETFs DIG (β = 2, oil & gas), SCO (β = −2, crude oil), and UYM (β = 2,

building materials) all have r2
y|x over 90%. Their estimated θ̂ is similarly very close to the

theoretical θ, never differing by more than 10%. However, for non-leveraged ETFs, the real-

ized variance has minimal added predictive power in the model. For those ETFs, we observe

θ̂ ≈ 0. For example, SLV (β = 1, silver), GLD (β = 1, gold), and DBO (β = 1, crude oil)

all have r2
y|x ≈ 0, and they subsequently have θ̂ ≈ 0. In addition, r2

x|y, which is the marginal

predictive power of adding the log-returns of the reference into our regression model, is al-

ways very high, indicating that the log-returns of the reference affect the LETF prices the

most, but that the realized variance is still important for predictive power, especially when

leverage and the holding period is high.

3.3.3 Realized Effective Fee

In Figure 13, we show three empirical price paths: the LETF log-returns, the benchmark

process defined in (3.3.2), and β times the reference index log-returns. As we can see, the

value erosion due to realized variance (volatility decay) starts to play a significant role in

determining LETF prices as the holding time increases. The path associated with β times

the reference log-returns dominates the LETF log-returns after about 1 month of holding.

After about 1 year, the benchmark which incorporates volatility decay more closely models

the empirical LETF log-returns. For example, after 6 months of holding, SCO (β = −2,
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crude oil) diverges from β times the reference, illustrating the effects of volatility decay.
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Figure 13: Cumulative empirical log-returns of the LETF (solid dark) vs bench-
mark (solid light) and β times reference (dashed light), from Dec 2008-May 2013.
From top left to bottom right: UCO, SCO (crude oil); UGL, GLL (gold); DIG,
DUG (building materials). UCO, UGL, and DIG have β = 2 while SCO, GLL,
and DUG have β = −2.

However, there are also some strong deviations from the predictions given by the bench-

mark, which compound as the holding time increases. This causes the LETF to underperform

even after the volatility decay is accounted for. For example, DUG’s (β = −2, oil & gas)

empirical returns begin to trail its benchmark significantly around 2009. Therefore, the

volatility decay cannot explain all the LETF underperformance.

We are therefore motivated to quantify the over/under-performance of the LETFs after
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observing deviations from the benchmark in Figure 13. We introduce the concept of realized

effective fee (REF) as the effective deduction rate charged by the LETF provider over the

frictionless dynamic portfolio from which the LETF is constructed in Section 3.3.1. For a

holding interval [0, t], the corresponding REF is defined by

f̂t = (1− β)r −
ln Lt

L0
− β ln St

S0
− β−β2

2
Vt

t
. (3.3.4)

Since for each LETF, Lt, St, Vt, β, and r are all known, we can calculate the REF f̂t for any

LETF over a given holding period [0, t] using historical prices. We remark that the REF,

which is indexed by time t, depends on the selected holding horizon.

LETF Underlying β Prospectus Fee (bps) Realized Effective Fee (bps)

SLV Silver Bullion 1 50 96
AGQ Silver Bullion 2 95 524
ZSL Silver Bullion -2 95 567
USLV Silver Bullion 3 165 93
DSLV Silver Bullion -3 165 504
GLD Gold Bullion 1 40 48
UGL Gold Bullion 2 95 343
GLL Gold Bullion -2 95 406
UGLD Gold Bullion 3 135 139
DGLD Gold Bullion -3 135 521
IYE Oil & Gas 1 48 50
DDG Oil & Gas -1 95 953
DIG Oil & Gas 2 95 -142
DUG Oil & Gas 2 95 1134
DBO WTI Crude Oil 1 75 56
UCO WTI Crude Oil 2 95 84
SCO WTI Crude Oil -2 95 321
UWTI WTI Crude Oil 3 135 3
DWTI WTI Crude Oil -3 135 549
IYM Building Materials 1 48 11
SBM Building Materials -1 95 456
UYM Building Materials 2 95 -204
SMN Building Materials -2 95 1625

Table 7: Comparison of the official fee for the LETF charged on the fund prospec-
tus and the REF calculated using 5 years of price data (December 2008-May 2013)
for the LETF and reference (see (3.3.4)). We set r = 69.1 bps, the annualized
LIBOR rate.
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In many cases, the REF is seen to be much larger than the fund’s advertised fee, indicating

significant underperformance. Out of the 23 commodity LETFs, 2 have negative implied

costs, so that the fund overperforms by the end of the five year period Dec 2008 to May

2013. If the REF exceeds the advertised fee, then the investor effectively pays an extra price

for the opportunity to invest in the LETF. As a general trend, the bear LETFs tend to charge

higher REFs than bull LETFs with the same magnitude of leverage |β|. For example, USLV

(β = 2, silver) has a REF of 93 bps, while DSLV (β = −2, silver) has an REF of 504 bps

over the period Dec 2008-May 2013. The two highest REFs correspond to DUG (β = −2,

oil & gas) and SMN (β = −2, building materials), whose REFs are 1134 bps and 1625 bps

respectively. Figure 13 illustrates that DUG (β = −2, oil & gas) drastically underperforms

the benchmark, thereby realizing a high REF. Notice that in both cases, however, DUG

and SMN’s bull counterparts DIG (β = 2, oil & gas) and UYM (β = 2, building materials)

respectively)display a negative REF, indicating overperformance during the same period. It

is possible that as the reference trends upwards for a long period of time, the bear LETF

will underperform, while the bull LETF will overperform.

3.4 A Static LETF Portfolio

Taking advantage of the volatility decay, a well-known trading strategy used by practitioners

involves shorting a ±β pair of LETFs with the same reference, as discussed in Avellaneda and

Zhang (2010); Leung and Santoli (2013); Mackintosh and Lin (2010a); Mason et al. (2010).

Since the LETFs have opposite daily returns on the same reference index, the portfolio has

very little exposure to the reference as long as the holding period is sufficiently short. With

this strategy, the volatility decay can help generate profit, which is the intuition of many

practitioners. However, the portfolio is exposed to risk during periods of low volatility and

high trending, as well as tracking errors. In this section, we describe an extension of this

trading strategy by allowing the positive and negative leverage ratios to differ. We determine
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the portfolio weights to approximately eliminate the dependence on the reference. We show

that the resulting portfolio is long volatility. For a number of LETF pairs, we find from

empirical data that on average the strategy is profitable with enormous tail risk.

We now construct a weighted portfolio which is short the LETF with leverage ratio

β+ > 0 and short another LETF with leverage ratio β− < 0. We emphasize that both LETFs

having the same reference, but that β+ and |β−| may differ. We hold fraction ω ∈ (0, 1) of

the portfolio in the β+-LETF and (1 − ω) of the portfolio in the β−-LETF. At time T , the

normalized return from this strategy is

RT = 1− ωL
+
T

L+
0

− (1− ω)
L−T
L−0

. (3.4.1)

Applying (3.3.2), RT admits the expression

RT = 1− ω
(
ST
S0

)β+
exp (Γ+

T )− (1− ω)

(
ST
S0

)β−
exp (Γ−T ), (3.4.2)

where

Γ±T =
β± − β2

±

2
VT + ((1− β±)r − f±)T,

Here, β± and f± are the respective leverage ratios and fees of the two LETFs in the portfolio

defined in (3.4.1). Over a short holding period such that LT
L0
≈ 1 , one can pick an appropriate

weight ω∗ to approximately remove the dependence of RT on ST .

Proposition 4. Select the portfolio weight ω∗ = −β−
β+−β− . For LT

L0
≈ 1, the return from this

strategy is given by

RT =
−β−β+

2
VT −

β−
β+ − β−

(f+ − f−)T + (f− − r)T. (3.4.3)

Proof. For LT
L0
≈ 1, we can substitute for LT

L0
with ln LT

L0
+ 1 in (3.4.1). Then, we set ω = ω∗

and apply (3.3.2) to conclude (3.4.3).
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(β+, β−) ω∗ −β−β+
2

(1,−1) 1/2 1/2
(1,−2) 2/3 1
(1,−3) 3/4 3/2
(2,−1) 1/3 1
(2,−2) 1/2 2
(2,−3) 3/5 3
(3,−1) 1/4 3/2
(3,−2) 2/5 3
(3,−3) 1/2 9/2

Table 8: Table of (β+, β−) pairs vs ω∗ the weight of the β+ portfolio, and −β−β+2
the dependence of the strategy on Vt (see Prop. 4).

The return (3.4.3) corresponding to portfolio weight ω∗ reflects a linear dependence on

the realized variance. In particular, the coefficient −β−β+
2

is strictly positive, so the strategy

is effectively long volatility (VT ). Also, as it does not depend on ST , the ω∗ portfolio is

∆-neutral as long as the reference does not move significantly. In Table 8, we summarize the

coefficient of VT and the weighted portfolio (ω∗, 1−ω∗) for different combinations of leverage

ratios. Note that as long as β+ = −β−, we end up with the portfolio weight ω∗ = 1
2
. Also,

the coefficient −β−β+
2

exceeds or equals to 1 except for the pair (β+, β−) = (1,−1), and it is

largest for the pair (β+, β−) = (3,−3).

We now backtest the ω∗ strategy from Prop. 4 as follows. For each LETF pair, we short

$0.5 of the β+-LETF and $0.5 of the β−-LETF with β+ = −β− = 2 and hold the position for

some time T . The normalized return RT depends on the relative weights on the long/short-

LETFs but not the absolute cash amounts. More generally, one can also test the strategy

with different β± and ω∗.

Dividing the price data from Dec 2008-May 2013 into n-day rolling (overlapping) periods,

we calculate the returns from the strategy over each period. For every n-day return, we

compare against the realized variance over the same period. This is illustrated in Figure

14. As a theoretical benchmark, we also plot RT in (3.4.3) as a linear function. Each

point (dot) on the plots represents a 5-day return, but over rolling periods the returns are
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not independent. In other words, the lines in Figure 14 are not generated by regression but

taken from (3.4.3). We choose (3.4.3) as a benchmark because it is expected to hold pathwise

as long as LT
L0
≈ 1 with negligible tracking error.

We can observe from Figure 14 that the returns exhibit positive dependence on the re-

alized variance (VT ). In particular, for the energy pairs (DIG-DUG (β = ±2, oil & gas)

and UCO-SCO (β = ±2, crude oil)), the returns tend to be very positive when the real-

ized variance is high. This is because the strategy captures the volatility decay as profit.

Nevertheless, there is also a visible amount of noise in the returns deviating from the linear

dependence on VT , especially for the gold and silver pairs (UGL-GLL (β = ±2, gold) and

AGQ-ZSL (β = ±2, silver), respectively). This can be partly attributed to tracking errors

from both LETFs in the portfolio. Also, the ω∗-strategy loses its ∆-neutrality if the reference

moves significantly.

While this portfolio is expected to be ∆-neutral (with respect to the reference index)

for small reference movements, in reality the strategy is also short-Γ. One way to see this

is through Figure 15 that plots the returns against the reference index returns. Common

to all four LETF pairs, when the reference return is either very positive or negative, the

return of the ω∗-strategy tends to be negative. As a theoretical benchmark, we also plot the

normalized return equation (3.4.2) which applies even for large reference movements.

In contrast to the energy pairs, the gold and silver pairs yield very noisy returns. This is

consistent with our earlier observations from our regressions in Figures 8 and 9. For instance,

both UGL and GLL (β = ±2, gold) show substantial tracking errors over short periods such

as 5 days, and their regressed leverage ratios differ from the stated ones. On the other hand,

the DIG and DUG (β = ±2, oil & gas) regressions in Figures 6 and 7 reflect much less

tracking errors.

Furthermore, Figure 16 shows that as the holding time increases, the returns from the ω∗

strategy increases as well. The performance is best for the energy pairs UCO-SCO (β = ±2,

crude oil) and DIG-DUG (β = ±2, oil & gas), but more subdued for the bullion pairs
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Figure 14: Plot of trading returns vs realized variance for a double short strategy
over 5-day rolling holding periods, with β± = ±2 for each LETF pair. We com-
pare with the empirical returns (circle) from the ω∗ strategy with the predicted
return (solid line) in Prop. 4. Trading pairs are DIG-DUG (oil & gas), UGL-GLL
(gold), UCO-SCO (crude oil), AGQ-ZSL (silver).

UGL-GLL (β = ±2, gold) and AGQ-ZSL (β = ±2, silver). However, over longer holding

periods, the ω∗ portfolio may lose its ∆-neutral status, thereby generating more risk as well.

Although average returns from the ω∗ strategy are positive, one is subject to enormous tail

risk, which increases with the holding time of the static portfolio. In order to ensure that

we do not subject ourselves to excessive tail risk, we should not only be sure of a high

volatility environment, but we must also adjust the holding time to account for the extra

risk associated with time horizon of returns.

Figure 17 gives another perspective of the ω∗ strategy’s dependence on realized variance.

It shows the time series of the 30-day rolling returns along with the realized variance of

the reference index from Dec 2008 to May 2013. We see that when the realized variance
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Figure 15: Plot of returns of reference index vs trading returns for a double short
strategy over 5-day rolling, holding periods. β± = ±2 for each LETF pair. We
compare the empirical returns from our trading strategy (dark solid circle) with
the predicted dependence on reference returns according to (3.4.2), using Γ±T = 0
(light solid line). Trading pairs are DIG-DUG (oil & gas), UGL-GLL (gold),
UCO-SCO (crude oil), AGQ-ZSL (silver).

increases sharply, the strategy returns also spike sharply. For example, when DJUSEN index

realized variance spikes, the DIG-DUG (β = ±2, oil & gas) trading pair accumulates a 30%

return over a single 30-day holding period. However, when realized variance is subdued over

a period of time, the ω∗ returns may turn quite negative as well.

In summary, the double-short trading strategy studied herein is profitable on average,

but it is commodity specific and subject to enormous tail risk, as seen from empirical prices.

The strategy’s profitability depends strongly on a high volatility from the reference index.

Although longer holding times tend to enhance the average return, they also enormously

increase the horizon risk. According to these findings, this strategy appears to be appealing
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Figure 16: Average returns from a double short trading strategy by commodity
pair over no. of days holding period. β± = ±2 for each LETF pair. Trading pairs
are DIG-DUG (oil & gas), UGL-GLL (gold), UCO-SCO (crude oil), AGQ-ZSL
(silver).

only during times of high volatility in the reference index.

3.5 Concluding Remarks

The ETF market has continued to grow in quantity and diversity, especially in the past five

years. For both investors and regulators, it is very important to understand and quantify the

risks involved with various ETFs. In this chapter, we have focused on commodity ETFs and

their leveraged counterparts. We find that the LETF returns tend to deviate significantly

from the corresponding multiple of the reference returns as the holding horizon lengthens. To

study the performance of an LETF, we have applied a new benchmark process that accounts

for the realized variance of the underlying. We find that many commodity LETFs still

diverge, typically negatively, from this benchmark over time. These empirical observations

motivate us to illustrate the over/under-performance of an LETF via the concept of realized

expense fee. Based on the funds and the time periods we have studied, most commodity

LETFs effectively charge significantly higher expense fees than stated on their prospectuses.

In view of LETFs’ common pattern of value erosion over time, one well-known trading

strategy in the industry involves statically shorting both long and short LETFs in order to
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Figure 17: Time series of returns for a double short strategy over 30-day rolling,
holding periods, with β± = ±2 for each LETF pair. Notice how during the
periods of greatest volatility the double short strategy has the greatest return.
Trading pairs are DIG-DUG (oil & gas), UGL-GLL (gold), UCO-SCO (crude oil),
AGQ-ZSL (silver).
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capture the volatility decay as profit. We systematically study an extension of this strategy

that is applicable to LETF pairs with different asymmetric leverage ratios. We analytically

derive the specific weights in the LETFs so that the resulting portfolio is approximately ∆-

neutral, but short-Γ as well. This strategy can potentially be quite profitable but its return

can be negatively impacted by tracking errors generated by the LETFs and large movements

of the reference index. These two factors both depend on the holding horizon. This should

motivate future research on the horizon risk for LETF strategies. To this end, Leung and

Santoli Leung and Santoli (2013) study the admissible holding horizon and leverage ratio

given a risk constraint. The recent chapters Leung and Li (2015); Naylor et al. (2011);

Triantafyllopoulos and Montana (2009) examine the dynamics of price spreads between ETF

pairs, for example, gold vs. silver.

Our analysis herein does not assume a parametric stochastic volatility model for the

underlying. It is of practical interest to investigate the price behavior of LETF under a

number of well-known stochastic volatility models, such as the Heston and SABR models.

On top of LETFs, there are also options written on these funds. This gives rise to the

question of consistent pricing of LETF options across leverage ratios (see Ahn et al. (2012);

Leung and Sircar (2012)). Finally, models that capture the connection between LETFs and

the broader financial market would be very useful for not only traders and investors, but

also regulators.



Chapter 4

Non-convergence of Agricultural

Futures

This chapter studies the market phenomenon of non-convergence between futures and spot

prices in the grains market. We postulate that the positive basis observed at maturity stems

from the futures holder’s timing options to exercise the shipping certificate delivery item

and subsequently liquidate the physical grain. In our proposed approach, we incorporate

stochastic spot price and storage cost, and solve an optimal double stopping problem to give

the optimal strategies to exercise and liquidate the grain. Our new models for stochastic

storage rates lead to explicit no-arbitrage prices for the shipping certificate and associated

futures contract. We calibrate our models to empirical futures data during the periods of

observed non-convergence, and illustrate the premium generated by the shipping certificate.

4.1 Introduction

Standard no-arbitrage pricing theory asserts that spot and futures prices must converge at

expiration. Nevertheless, during 2004-2009 traders observed significantly higher expiring

futures prices for corn, wheat, and soybeans on the CBOT compared to the spot price of

71
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the physical grains. As shown in Figure 18, the unprecedented differential between cash

and futures prices reached its apex in 2006, where at the height of the phenomenon, CBOT

corn futures had surpassed spot corn prices by almost 30%! In the literature, Adjemian

et al. (2013) and Aulerich et al. (2011) reported that on July 1, 2008, the price for a July

2008 CBOT wheat futures contract closed at $8.50 per bushel. On the other hand, the

corresponding cash price in the Toledo, Ohio delivery market was only $7.18 per bushel,

a price differential of $1.32/bu (+15%). Irwin et al. (2009) first coined the term “non-

convergence” for this phenomenon of observed positive premium, which recurred persistently

from 2004 onwards. According to their study, “performance has been consistently weakest

in wheat, with futures prices at times exceeding delivery location cash prices by $1.00/bu, a

level of disconnect between cash and futures not previously experienced in grain markets.”

However, a small difference between expiring futures and cash prices does not neces-

sarily imply a market failure. Before expiration, futures and cash prices may differ due to

the convenience yield, storage costs, or financing costs. Upon expiration, if cash prices are

lower/higher than futures prices, then arbitrageurs may profit from trading simultaneously

in the spot and futures markets. If sufficient numbers of arbitrageurs engage in these trades,

they will drive cash and futures prices to convergence at expiration. In fact, the futures

expiration date and delivery date may also differ. After the last trade date, the exchange

contacts the longest outstanding long who is notified of his obligation to undertake delivery.

Before the month’s end, the delivery instrument is then exchanged at the settlement price

between long and short parties. Therefore, since the delivery process does not occur imme-

diately after the last trade date, cash and futures prices might still differ by a spread called

the basis. In this chapter, we use the following definition for the basis:

basis = futures price - spot price.

Figure 18 displays the basis time series associated with the expiring futures on soybeans and
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Figure 18: Time series of basis for soybeans (left) and corn (right) futures. During
2004-2009, the expiring futures price tends to be significantly higher than the spot
price.

corn.

Since the short party may choose the location and time to deliver, Biagini and Bjork

(2007) posit that futures price should be biased below the spot price on the last trade date.

However, their theoretical model would yield the opposite of the empirical observations in

the grain markets. In fact, the positive basis in the CBOT grain markets between 2004-2009

were too large to have been caused by the small inefficiencies of the delivery process. This

motivates us to investigate the factors that drive the non-convergence phenomenon.

In order to explain the positive premium, one must turn to embedded long-side options in

the futures. Long-side options in futures markets depend totally on the idiosyncrasies of each

commodity’s exchange traded structure. The survey chapter by Carmona and Coulon (2013)

demonstrates the appropriate model for a commodity varies highly depending on storability,

instantaneous utility, and alternatives. At expiration, a CBOT agricultural futures contract

does not deliver the physical grains but an artificial instrument called the shipping certificate

that entitles its holder to demand loading of the grains from a warehouse at any time.

Before exercising the option to load, the holder must pay a fixed storage fee to the storage

company,1 as stipulated in the certificate. Since the storage capacity of grain elevators is

1Only a small number of storage companies that have contracts with the futures exchange are allowed
to issue shipping certificates. They are also called the regular firms in the industry.
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limited and expensive, the number of grain elevators is fixed to a minimum necessary to

efficiently carry out transfers of grain from one transport system to another.2 Thus, like

a fractional-reserve banking system, shipping certificates alleviate the congestion of grain

elevators by only keeping enough grain on hand to satisfy instant withdrawal demand. A

detailed explanation on the structure of the shipping certificate market can be found in

Aulerich et al. (2011) and Garcia et al. (2014).

In this chapter, our storage differential hypothesis posits that when the certificate storage

rate is sufficiently low, investors will pay a premium for the certificate over the spot grain

in order to save on storage cost over time, resulting in non-convergence of futures and spot

prices. When the storage cost of the certificate is set lower than the true storage cost paid

by the regular firm, the regular firm will cease to issue the unprofitable shipping certificates.

Since shipping certificates can only be issued by a set number of regular firms with limited

inventories, the market cannot issue certificates with lower fixed storage rates to keep the

market flowing. Instead, since the supply of certificates remains fixed, the value of existing

shipping certificates will be bid up in the secondary market, resulting in a premium over

the spot price. On the other hand, during periods where the certificate storage rate is set

much higher than the market storage rate, the certificate should not command any premium

over the spot because agents would exercise and store at the lower market rate. Therefore,

as shown by Aulerich et al. (2011), large quantities of certificates remaining unredeemed

under the storage differential hypothesis becomes a strong predictor of non-convergence.

In fact, in 2009 under mounting evidence that storage differentials were responsible for

non-convergence, the CBOT raised the certificate storage rate for wheat, after which non-

convergence decreased significantly.3 This observation is consistent with our findings in this

chapter.

Let us point out an alternative explanation for non-convergence even though it is not

2See http://www.cmegroup.com/rulebook/CBOT/II/11/11.pdf
3http://www.cftc.gov/idc/groups/public/@aboutcftc/documents/file/

reportofthesubcommitteeonconve.pdf

http://www.cmegroup.com/rulebook/CBOT/II/11/11.pdf
http://www.cftc.gov/idc/groups/public/@aboutcftc/documents/file/reportofthesubcommitteeonconve.pdf
http://www.cftc.gov/idc/groups/public/@aboutcftc/documents/file/reportofthesubcommitteeonconve.pdf
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the approach in this chapter. The speculator hypothesis for non-convergence postulates

that large long positions held by commodity index traders (CITs) have made it impossible

for arbitrageurs to carry sufficient grain forward to drive terminal prices to convergence (see

Tang and Xiong (2012) an example of the effects of excess speculation). While the speculator

hypothesis is plausible, empirical studies by Garcia et al. (2014) and Irwin et al. (2011) found

no evidence that rolling or initiation of large positions by index funds had contributed to an

expansion of the basis. In this chapter, we illustrate mathematically how the non-convergence

phenomenon can arise under rational no-arbitrage models with stochastic storage rates.

We propose two new models that incorporate the stochasticity of the market storage

rate and capture the storage option of the shipping certificate by solving two optimal timing

problems, namely, to exercise the shipping certificate and subsequently liquidate the physical

grain. First, we propose the Martingale Model whereby the spot price minus storage cost is

a martingale while the stochastic storage rate follows an Ornstein-Uhlenbeck (OU) process.

In addition, we present a second model in which the stochastic storage rate is a deterministic

function of the spot price that follows an exponential OU (XOU) process. Among our

results, we provide explicit prices for the shipping certificate, futures prices, and the basis

size under a two continuous-time no-arbitrage pricing models with stochastic storage rates.

By examining the divergence between expiring futures prices and corresponding spot prices,

we derive the timing option generated by the differential between the market storage rate

and the constant storage rate stipulated in the shipping certificate, which explains the non-

convergence phenomenon in agricultural commodity markets. We also fit our model prices

to market data and extract the numerical value of the embedded timing option.

The rest of the chapter is organized as follows. Section 4.2 reviews the literature on the

subject of non-convergence for agricultural futures. In Section 4.3, we discuss a martingale

spot price model with an OU stochastic storage rate, and derive the certificate price as well as

the optimal exercise and liquidation timing strategies. In Section 4.4, we analyze a shipping

certificate valuation model with a local stochastic storage rate and an exponential OU spot
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price. Section 4.5 concludes. Proofs are provided in the Appendix.

4.2 Related Studies

The long history of the theory of storage dates back to Kaldor (1939) who argued that the

future price should reflect the spot price plus storage cost via a no-arbitrage relationship.

Johnson (1960) proposed an extension of Kaldor’s model which related inventories and hedg-

ing motivations to the intersection of futures and spot markets. However, in order to account

for possibly backwardated futures curves, Brennan (1958) and Working (1949) developed the

notion of a stochastic convenience yield, a fictitious dividend that accrues to the commodity

holder, but not the futures holder. Furthermore, Fama and French (1987) and Gorton et al.

(2012) found plenty of empirical evidence for the theory of storage by examining inventories

data. These authors not only created a theoretical basis for understanding commodity spot

and futures prices, but also empirically demonstrated the validity of the theory of storage

over a century.

Much of the literature on embedded options in futures contracts studies the short-side

options which lower the futures price below the spot price. For example, Hranaiova et al.

(2005) estimate the values of the delivery option, which allows the short to choose the location

of cheapest delivery. In addition, Biagini and Bjork (2007) compute model-free futures prices

for the short-side timing option. In contrast, our models explain how the futures price can be

higher than the spot price at maturity. Our proposed approach contributes to the theory of

storage as it provides a new link between the futures and spot markets through the storage

cost differential and the associated timing option. In a related study, Hinz and Fehr (2010)

consider the impact of storage cost constraints on commodity options, but their model cannot

account for backwardated futures curves or non-convergence.

Aulerich et al. (2011) consider an alternative model in which non-convergence reflects

the value of an exchange option due to the scarcity of shipping certificate. They incorporate
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a long-side option but not stochastic or differential storage rates. The exchange option

explanation is unsatisfactory because the exchange option is universal to all commodity

futures, while the non-convergence phenomenon is observed only in the grain markets. Our

approach identifies different storage rates between the certificate and real world as the driver

for non-convergence at maturity. Finally, instead of using a closed-form approximation for

the certificate price, we derive the explicit value of the shipping certificate under different

stochastic storage rate models.

The storage differential hypothesis is supported by several recent studies. Garcia et al.

(2014) and Adjemian et al. (2013) set up a discrete-time model and give conditions for

the number of shipping certificates in the market at equilibrium. While they identified the

difference between the market and certificate storage rates as the crucial factor for non-

convergence, they did not compute the value of the shipping certificate. In this chapter, we

derive and compute explicitly the prices of the futures and shipping certificate, and provide

the necessary and sufficient conditions for non-convergence. Furthermore, our approach

requires only the existence of the shipping certificate and no-arbitrage condition, and does

not have specific assumptions on the characteristics of market agents and their interaction.

The core mathematical problem within our stochastic storage models is an optimal double

stopping problem driven by a mean-reverting process. To this end, we adapt to our problem

the results developed by Leung et al. (2015) that study the optimal entry and exit timing

strategies when the underlying is an OU process. Other mean-reverting processes can also be

used to model the market storage rate so long as the corresponding optimal double stopping

problem can be solved analytically; see, e.g. Leung and Li (2015) and Leung et al. (2014)

for the cases with an exponential OU and Cox-Ingersoll-Ross (CIR) underlying, respectively,

and related applications to futures trading in Leung and Li (2016) and Leung et al. (2016).
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4.3 Martingale Model with Stochastic Storage

We now discuss a futures pricing model for a single grain type, with the spot price process

(St)t≥0. The cost of physical storage is stochastic, represented by the rate process (δt)t≥0.

The spot price satisfies

dSt = (rSt + δt)dt+ σStdWt, (4.3.1)

where r is the positive risk-free rate, σ is the volatility parameter of spot grain, and W is

a standard Brownian motion under the risk-neutral measure Q. In this model, we assume

that the commodity is continuously traded, with units of the commodity constantly being

sold to pay the flat storage rate. Hence, the discounted spot price St net storage cost, i.e.

Mt := e−rtSt −
∫ t

0
δe−rudu, t ≥ 0, is a Q-martingale.

Note that δt is the net storage cost, which is the true storage cost minus the convenience

yield associated with owning the physical grain. Furthermore, the storage rate δt is quoted

in $/bushel, and not as a proportion of the commodity price. In the standard treatment of

storage rates, agents pay a proportion of the commodity price St per bushel i.e. δt = cSt.

However, since empirical storage rates are quoted in $/bushel and not as a percentage of the

crop, our specification of a flat storage rate δt is realistic and amenable for empirical analysis.

One can view the storage rate δt as a negative dividend rate on the commodity which the

commodity holder pays but the futures holder does not. In our model, the storage cost δt

follows an Ornstein-Uhlenbeck (OU) process

dδt = κ(ν − δt)dt+ ζdW̃t, (4.3.2)

where W̃ is a standard Brownian motion under Q, and is independent of W . The parameter

κ dictates the speed of mean-reversion for δt, ν is the average value of δt, and ζ is the

volatility of the storage rate δt. The parameters are required to satisfy the condition 2κ ≥ ζ.

The filtration F ≡ (Ft)t≥0 is generated by (St)t≥0 and (δt)t≥0. We let T be the set of all
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F-stopping times, and Ts,u be the set of F-stopping times bounded by [s, u].

At time T , the T -futures contract expires, and the long party receives the shipping

certificate. This certificate is perpetually lived and gives the holder an option to load out the

grain anytime, but the holder pays a constant storage rate δ̂ before exercising this option.

Note that δ̂ is a flat rate quoted in the futures contract, and thus must be positive. Since the

certificate holder does not possess the physical grain, and thus, cannot derive any convenience

yield from it. After exercising, the certificate holder then stores at the market rate δt until

he chooses to liquidate the grain. We allow δt to be possibly negative to account for the

convenience yield. The fixed costs, c1 and c2 respectively, are incurred upon exercising and

liquidation of the grain.

The value of the shipping certificate can be obtained by solving two optimal timing

problems. First, suppose the agent has exercised at time t ≥ τ . The agent selects the

optimal time to liquidate the grains by solving4

J(St, δt) = sup
η∈Tt,∞

E
[
e−r(η−t) (Sη − c2)−

∫ η

t

δue
−r(u−t)du|Ft

]
.

Working backward in time, the value function J now serves an input for the optimal exercise

problem. The agent receives the shipping certificate at time T , and selects the optimal time

τ ≥ T to exercise the grains. Therefore, the agent’s value function at time T is

V (ST , δT ) = sup
τ∈TT,∞

E
[
e−r(τ−T ) (J(Sτ , δτ )− c1)−

∫ τ

T

δ̂e−r(u−T )du|FT
]
. (4.3.3)

Economically, we interpret J as the liquidation value of the commodity for an individual

who optimally times storage, and V as the price of the certificate (for an individual who can

choose between storage rates). Furthermore, since T = τ = η is always a valid stopping time

4Throughout this chapter, the shorthand notation “sup” stands for “ess sup”. All computations in this
chapter are assumed to be under Q, the risk-neutral measure.
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for (4.3.3), we must have

V (ST , δT ) ≥ ST − c1 − c2.

In the absence of transaction costs, the shipping certificate is valued higher than the grain

itself, and thus the certificate can be considered a long-side option. The value of the long-side

option is quantified with the basis: if T is the maturity of a futures contract, then the basis

w(ST , δT ) is the difference between futures and cash prices at maturity

w(ST , δT ) = V (ST , δT )− ST . (4.3.4)

As the shipping certificate, not the spot grain, is the true delivery instrument, the price

F (t, St, δt;T ) of a futures contract expiring at T satisfies the model-free price

F (t, St, δt;T ) = E[V (ST , δT )|Ft], t ≤ T. (4.3.5)

From this representation, it follows that the expiring futures price equals the certificate price

F (T, ST , δT ;T ) = V (ST , δT ).

Intuitively, the agent decides to liquidate when the spot price is sufficiently high. On

the other hand, the agent may decide to exercise for two reasons: first if the spot price is

sufficiently high, and second if the storage rate δt is sufficiently low relative to the certificate

rate δ̂. In the first case, the agent exercises and liquidates (i.e. τ ∗ = η∗), and in the second

case, he exercises the shipping certificate but holds the commodity for longer, thus taking

advantage of the lower storage rate δt until the eventual liquidation.

The stochastic storage rate δt is a crucial factor for non-convergence. Indeed, if we instead

consider the simple constant storage rate (δt ≡ δ), then the certificate pricing problem (4.3.3)
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simplifies to

V (ST , δT ) = sup
τ∈TT,∞ η∈Tτ,∞

E
[
e−r(η−T )Sη −

∫ τ

T

(δ̂ − (c1 + c2)r)e−r(u−T )du

−
∫ η

τ

(δ − c2r)e
−r(u−T )du|FT

]
− c1 − c2.

(4.3.6)

By inspecting the value function in (4.3.6), we see that at every time t, the agent effectively

has a choice between paying the storage rate δ̂−(c1+c2)r and the storage rate δ−c2r. In other

words, the agent will immediately lock in the lesser of the two rates. If δ − δ̂ ≤ −c1r, then

the agent exercises immediately at expiration (τ ∗ = T ). On the other hand, if δ− δ̂ > −c1r,

then the agent liquidates immediately after uploading (η∗ = τ ∗). We recognize instantly that

under the assumption of constant storage rates at least one stopping time (τ ∗ or η∗) is trivial.

Either the agent exercises immediately, or he liquidates after exercising. In particular, this

fact does not depend at all on the realized path of S. Therefore, a constant storage rate

model is insufficient since the shipping certificate is never used for storing the grain for a non-

trivial period of time. Since certificate holders empirically store and exercise in a multitude

of competitive markets, we must consider a stochastic storage rate δt in all our models.

In order to solve for J and V under the dynamics (4.3.1) and (4.3.2), we need to study

an ODE. Define the differential operator L ≡ La,b,c by

L = a(b− x)
d

dx
+

1

2
c2 d

2

dx2
, (4.3.7)

with the generic parameters (a, b, c) with a, c > 0 and b ∈ R. This is the infinitesimal

generator associated with an OU process. In turn, the ODE

Lf(x)− rf(x) = 0
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has the two general classical solutions (see e.g. Borodin and Salminen (2002))

H(x; a, b, c) =

∫ ∞
0

v
r
a
−1e

√
2a
c2

(x−b)v− v
2

2 dv, (4.3.8)

G(x; a, b, c) =

∫ ∞
0

v
r
a
−1e

√
2a
c2

(b−x)v− v
2

2 dv. (4.3.9)

Direct differentiation yields that H ′(x) > 0, H ′′(x) > 0, G′(x) < 0 and G′′(x) > 0. Hence,

both H(x) and G(x) are strictly positive and convex, and they are, respectively, strictly

increasing and decreasing. Without ambiguity in this section, we denote H(δ) ≡ H(δ;κ, ν, ζ)

andG(δ) ≡ G(δ;κ, ν, ζ) in this section. Alternatively, the functions F andG can be expressed

as

H(x; a, b, c) = exp
( a

2c2
(x− b)2

)
D−r/a

(√
2a

c2
(b− x)

)
,

G(x; a, b, c) = exp
( a

2c2
(x− b)2

)
D−r/a

(√
2a

c2
(x− b)

)
.

Here, the function D· is also known as parabolic cylinder function or Weber function, whose

properties are elaborated in detail by Erdelyi and Tricom (1953). The functions F and G

will play a crucial role in the solutions for V and J.

Proposition 5. Under the Martingale Model in (4.3.1) and (4.3.2), we have:

1. After the shipping certificate is exercised, it is optimal to never liquidate the grain, and

the value function J(St, δt) = St, for t ≥ T .

2. The value of the shipping certificate is given by

V (St, δt) = St +
1

κ+ r

(
δt −

H(δt)

H ′(δ∗)
− δ̂ +

κ(ν − δ̂)
r

)
1{δt ≥ δ∗} − c11{δt < δ∗},

(4.3.10)
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Figure 19: The shipping certificate price V (St, δt) as a function of spot price St
and market storage rate δt. Parameters are r = 0.03, c1 = 0, c2 = 0, κ = 0.3,
ζ = 0.2, ν = 0.07, δ̂ = 0.06. The optimal exercise level is δ∗ = 0.21.

for t ≥ T , where the unique optimal exercise threshold δ∗ solves the equation

δ∗ =
H(δ∗)

H ′(δ∗)
− c1(κ+ r) + δ̂ − κ(ν − δ̂)

r
. (4.3.11)

The optimal exercise and liquidation strategies are respectively given by

τ ∗ = inf{ t ≥ T : δt ≤ δ∗ }, and η∗ =∞.

We observe from (4.3.10) that the shipping certificate value is separable in terms of the

terminal spot price ST and market storage rate δT at time T . As we can see in Figure 19, the

shipping certificate price V (ST , δT ) is increasing in both ST and δT , and always dominates

ST . When the market storage rate δT is below the critical level δ∗ at time T , the shipping

certificate price is equal to the spot price ST , implying an immediate exercise by the holder.

In this model, the non-convergence or basis is determined by the market storage rate δT since
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the exercise and liquidation strategies do not depend on ST at all.

In fact, the basis is roughly proportional to both the present value of the storage differ-

ential δT − δ̂ and the present value of the the average storage differential ν − δ̂. If δt < δ̂,

then the value of the certificate decreases because it is currently cheaper to store at the real

rate vs the certificate rate. Furthermore, if ν < δ̂, then the average storage rate is lower than

the certificate rate, so the value of the shipping certificate decreases. This model explicitly

states that agent must consider both the long-run storage differential ν − δ̂ and the imme-

diate storage differential δT − δ̂ in choosing his exercise strategy δ∗. In particular, when we

set the parameters ζ = 0, κ = 0 and ν = δ, the problem reduces to the case with a constant

market storage rate. In this case, the optimal exercise level becomes δ∗ = δ̂ − c1r, and the

basis is completely linearly proportional to the storage differential δ− δ̂. After exercising the

shipping certificate and thus receiving the grain, there is no benefit to sell the grain early

(η∗ =∞). This is due to the martingale property of the spot price.

According to Proposition 5, the critical level δ∗ determines the time τ ∗ to exercise the

shipping certificate, and thus, plays a role in the non-convergence of the futures at maturity.

Indeed, the higher the critical level δ∗, the more likely the agent will exercise the shipping

certificate at maturity, resulting in zero non-convergence. In contrast, a low δ∗ implies a high

likelihood of non-convergence at maturity. In fact, when c1 = 0, the basis w(ST , δT ) > 0 if

and only if δT > δ∗.

Furthermore, the conditional probability that a T -futures contract expires with a strictly

positive basis is given by

Q(w(ST , δT ) > 0|Ft) = 1− Φ
(
z∗t,T
)
, (4.3.12)
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where

z∗t,T =
δ∗ − ν̄t,T
ζ̄t,T

,

ν̄t,T = δte
−κ(T−t) + ν(1− e−κ(T−t)) ,

ζ̄2
t,T =

ζ2

2κ

(
1− e−2κ(T−t)) ,

(4.3.13)

and Φ is the standard normal cdf. In particular, the probability of a strictly positive basis

depends solely on the current storage rate δt and the long run parameters of (δt)t≥0. This

probability is completely independent of the realization St at any time t, or its driving

parameters r and σ! Furthermore, since non-convergence at maturity is undesirable behavior,

we would like to know precisely how the parameters of our model affect δ∗. Differentiating

(4.3.11) with respect to δ̂, c1, and ν, respectively, we obtain the sensitivity in each of these

parameters.

dδ∗

dδ̂
= h(δ∗)

(
1 +

κ

r

)
≥ 0,

dδ∗

dν
= −h(δ∗)

κ

r
≤ 0,

dδ∗

dc1

= −h(δ∗) (κ+ r) ≤ 0,(4.3.14)

where we have defined

h(δ∗) :=
H ′(δ∗)2

H(δ∗)H ′′(δ∗)
≥ 0.

The function h is positive because H is positive, increasing, and convex. Therefore, we de-

duce the properties of the optimal exercise threshold δ∗.

Corollary 1. Under the Martingale Model defined in (4.3.1) and (4.3.2), the optimal stop-

ping threshold δ∗ is increasing with respect to δ̂, but decreasing with respect to ν and c1.

Having solved the certificate pricing problem, we proceed to examine how the storage

optionality propagates to futures prices. At time T , the agent will exercise if storage rate δT

is lower than the critical level δ∗. Therefore, a higher δ∗ increases the chance an agent will
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exercise the shipping certificate immediately upon the futures expiration. A higher certificate

storage rate δ̂ increases δ∗ and hence lowers the probability of non-convergence. On the other

hand, a higher average storage rate ν increases the probability of non-convergence. This

occurs due to the incentive to store in the cheaper market: if the certificate storage rate is

higher (resp. lower) than the market rate, then the agent will exercise sooner (resp. lower).

When calculating the derivatives in (4.3.14), the magnitude of each derivative is roughly

proportional to κ, the rate of mean reversion of the storage rate δt. Indeed, as κ increases,

the long run effect of ν dominates, acting as an amplifier on δ∗. Therefore, under higher κ, if

the storage differential ν− δ̂ is positive, the basis increases more, whereas if ν− δ̂ is negative,

the basis increases less. Intuitively, since the value c1 increases the agent’s cost to exercise,

it is expected, as seen in (4.3.14), that δ∗ is decreasing in c1. Lastly, after exercising, the

agent’s liquidation timing η∗ is trivial, so the liquidation cost c2 does not affect the exercise

level δ∗.

Next, we compute the futures price using the shipping certificate price given in Propo-

sition 5. It follows from the property of the OU process that δT |δt is normally distributed

with parameters ν̄t,T and ζ̄t,T which are given in (4.3.13). Following the definition in (4.3.5),

the futures price is given by

F (t, St, δt;T ) = E [ST |Ft] +
1

κ+ r
E

[(
δT −

H(δT )

H(δ∗)
− δ̂ +

κ(ν − δ̂)
r

)
1{δT ≥ δ∗}|Ft

]

− c1Q(δT < δ∗|Ft) .

By computing the conditional truncated expectations of ST and δT , we obtain an explicit

formula for the futures price.
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Corollary 2. Under the Martingale Model defined in (4.3.1) and (4.3.2), the grain futures

price is given by

F (t, St, δt;T ) = er(T−t)
[
St +

ν

r

(
1− e−r(T−t)

)
+
δt − ν
κ+ r

(
1− e−(κ+r)(T−t))]

+
1

κ+ r

[
ν̄t,T +

φ
(
z∗t,T
)

1− Φ
(
z∗t,T
) ζ̄t,T − ∫ ∞

z∗t,T

H(ν̄t,T + ζ̄t,Tu)

H ′(δ∗)
φ(u)du

+

(
κ(ν − δ̂)

r
− δ̂
)(

1− Φ
(
z∗t,T
))]
− c1Φ

(
z∗t,T
)
, t ≤ T, (4.3.15)

where z∗t,T , ν̄t,T and ζ̄t,T are given in (4.3.13), and φ and Φ are the standard normal pdf and

cdf respectively.

We note that like the shipping certificate prices, futures prices can be separated into an

expectation that depends on St and another involving δt. Despite the separation, since δt

appears in the diffusion for St, the two stochastic factors are not independent. The futures

price encapsulates a number of components: (i) the risk-neutral expectation of the future spot

price; (ii) expected future basis w(ST , δT ) (see (4.3.4)); and (iii) expected future exercise cost

c2. Thus, by accounting for the expected future basis resulting from the storage differential

δt− δ̂, the futures price for all t ≤ T in a market with shipping certificates carries a premium

over the price of a futures contract that delivers just the grain at time T . We therefore

demonstrate that anticipated future storage differentials can impact current futures prices,

including the contracts that are far from expiry.

With an understanding on the theoretical behavior of grain futures prices under the

Martingale Model, we now calibrate to empirical data, and discuss the results and economic

implications. We obtain futures prices from 2004-2011 for CBOT corn, wheat and soybeans

contracts using Bloomberg terminal. We obtain spot prices from 2004-2011 for CBOT corn,
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wheat, and soybeans from an average of daily sale prices of several Illinois grain depots.5

We also obtain the empirical certificate storage rate δ̂, quoted in $/bushel, from the CBOT

website.6,7 For the interest rate in our model, we use the 3-month LIBOR rate observed on

the same date. There are several quoted prices for spot grain, differing only in the quality

of the grain. This quality option allows the short to choose the grade he wishes to deliver,

subject to some prior fixed conversion multiplier of the settlement price. In order to obtain

a single series of spot prices, for every time t we use the then cheapest-to-deliver price as the

spot price for grain.

Recall that the basis w(ST , δT ) is the premium of the certificate price V (T, ST ) over the

spot price ST . at time T . On the day t = 0, we have the empirical futures prices (Fk)
N
k=0

with maturities (Tk)
N
k=0, and a known spot price F0 = S0; we seek a model-consistent futures

curve Fk(ν, κ, ζ, δ0) for k = 0, 1, . . . , N which best fits the empirical futures prices, given

model parameters (ν, κ, ζ) and δ0, with the model futures prices given in (4.3.15). Under

this setup, the best fit calibrated futures curve F∗k for k = 0, 1, . . . , N minimizes the sum

of squared errors (SSE) between the empirical futures curve and the model futures curve.

Furthermore, the best-fit parameters are defined to be (ν∗, κ∗, ζ∗, δ∗0) the model parameters

which achieve the best fit futures curve. The other exogenous parameters (r, St, δ̂, c1, c2) are

directly determined via contract specifications. Precisely, the calibrated parameters and the

resulting futures curve are found from

(ν∗, κ∗, ζ∗, δ∗0) = arg min
ν,κ,ζ,δ0

N∑
k=0

(Fk − Fk(ν, κ, ζ, δ0))2

F∗k = ~F(ν∗, κ∗, ζ∗, δ∗0) k = 0, 1, . . . N.

5http://www.farmdoc.illinois.edu/MARKETING/INDEX.ASP
6http://www.cmegroup.com/rulebook/CBOT/II/$n$/$m$.pdfwhere$(n,m)\in\protect\T1\

textbraceleft(10,10),(11,11),(14,14)\protect\T1\textbraceright.$
7As a result of the certificate rate δ̂ increase in 2009, the size of the empirical basis became smaller

afterward. However, a large strictly positive basis can still manifest in the future if the market storage rate
δt is significantly higher than the new certificate rate δ̂.

http://www.farmdoc.illinois.edu/MARKETING/INDEX.ASP
http://www.cmegroup.com/rulebook/CBOT/II/$n$/$m$.pdf where $(n,m) \in \protect \T1\textbraceleft (10,10),(11,11),(14,14)\protect \T1\textbraceright .$
http://www.cmegroup.com/rulebook/CBOT/II/$n$/$m$.pdf where $(n,m) \in \protect \T1\textbraceleft (10,10),(11,11),(14,14)\protect \T1\textbraceright .$
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In Figure 20, we calibrate the Martingale Model to the corn futures prices on two dates

selected to show two characteristically different futures curves. On the left panel, the futures

curve is downward sloping. With the expiring futures price and spot price being $3.17

and $2.81, respectively, a positive basis is observed. Intuitively, given that the current

market storage rate is higher than the certificate rate (δ∗0 > δ̂), the agent thus prefers the

certificate storage rate over the market rate and will wait to exercise the certificate, resulting

in a positive basis. The current storage rate δ∗0 is also higher than the estimated long-run

storage rate ν∗. Therefore, the model suggests that in the long run, a convenience yield will

dominate, leading to a downward sloping futures curve. In contrast, the right panel also

reflects a positive basis, but the futures curve is upward sloping.

Figure 21 displays the calibrated futures curves under the Martingale Model for wheat on

two dates when the futures market is in backwardation and contango, respectively. Again,

non-convergence is observed on each of these two dates as the expiring futures price dominates

the spot price. On the left panel, the futures curve is upward sloping while the right panel

shows that the futures curve is downward sloping. In this case, the current market storage

rate satisfies δ∗0 > δ̂, so it is optimal for the agent to continue to store at the lower certificate

storage rate. Hence, the value of the associated timing option to exercise the shipping

certificate yields a positive basis.

In addition, we consider the differences between the model futures curve and the futures

curve generated without considering the timing options. To be precise, let the ‘no certificate’

futures price ψ(t, St, δt;T ) be

ψ(t, St, δt;T ) = E[ST |Ft],

= er(T−t)
[
St +

ν

r

(
1− e−r(T−t)

)
+
δt − ν
κ+ r

(
1− e−(κ+r)(T−t))] . (4.3.16)

This follows from direct calculations and resembles the first line of (4.3.15). In Figure 20, we

plot the values of ψ(0, S0, δ
∗
0;Ti) for i = 0 . . . N, using the same fitted parameters from our
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Figure 20: Calibrating the Martingale Model to empirical corn futures prices.
The x-axis is time to maturity in months and the y-axis is the price of a bushel of
corn in cents. The ‘no certificate’ curve is taken from equation (4.3.16). We use
the fitted parameters from the ‘model’ curve as inputs for the ‘no certificate’ curve
to illustrate the premium. Fitted parameters: (left) ν∗ = −0.48, κ∗ = 0.0015,
ζ∗ = 0.0161, and δ∗0 = 1.2532; (right) ν∗ = 0.832, κ∗ = 0.021, ζ∗ = 0.428, and

δ∗0 = 0.782. Other parameters are r = 0.017, S0 = {282, 167} (cents), δ̂ = 0.55,
and c1, c2 = 0.

model (ν∗, κ∗, ζ∗, δ∗0) and the constraint that St = F0, the empirical terminal futures price.

In other words, we ignore the data on spot grain prices, so there is initially zero basis, as

would be the case under physical delivery, as opposed to receiving the shipping certificate

upon expiration. As expected, the model futures prices with shipping certificate dominate

the those without one, for all maturities. As seen in Figure 20, the premium of the shipping

certificate over the spot as the delivery item tends to be higher for longer maturities. Finally,

the Martingale Model fits both backwardated and upward-sloping futures curves well.
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Figure 21: Calibrating the Martingale Model to empirical wheat futures prices.
The x-axis is time to maturity in months and the y-axis is the price of a bushel of
wheat in cents. The ‘no certificate’ curve is taken from equation (4.3.16). Fitted
parameters: (left) ν∗ = 0.91, κ∗ = 0.035, ζ∗ = 0.14, and δ∗0 = 0.871; (right)
ν∗ = −0.22, κ∗ = 0.0032, ζ∗ = 0.61, and δ∗0 = 1.44. We use the fitted parameters
from the ‘model’ curve as inputs for the ‘no certificate’ curve to illustrate the
premium. Other parameters are r = 0.017, S0 = {273, 772} (cents), δ̂ = 0.55,
and c1, c2 = 0.
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Commodity Average Basis (pre) Max Basis (pre) Average Basis (post) Max Basis (post)

Corn 9.11% 27.52% 2.54% 13.50%
Soybeans 4.31% 12.96% 0.89% 5.61%
Wheat 1.32% 14.10% -0.97% 7.05%

Table 9: Basis summary during 2004-2014 before (pre) and after (post) CBOT
introduced new certificate policies to facilitate convergence in the corn, soybeans,
and wheat futures markets. For corn and soybeans futures, the policy changed
in in January 2011. For wheat contracts, a variable storage rate policy was
introduced in July 2010. For comparison across commodities, the basis here is
computed in percentage at expiration according to [(futures price/spot price)-
1]×100%.

Our model postulates that the non-convergence occurs when the market storage rate is

significantly higher than the certificate storage rate. Therefore, if the two rates are brought

into alignment, we expect that the basis to diminish. Indeed, after years of high basis, the two

exchanges, CBOT and KCBOT, enacted a series of reforms on the wheat futures to address

the non-convergence phenomenon. During February 2009 to May 2011, both exchanges

instituted a one-time hike in the formerly constant storage rates, and subsequently adopted

a variable certificate storage rate for all wheat contracts, thus better aligning the certificate

and market storage rates. For corn and soybeans, the exchanges merely raised the constant

certificate storage rates once in Jan 2011. According to (4.3.12), these policy changes would

decrease the likelihood of non-convergence. In Table 9, we compare the average basis before

and after the policy implementation for each commodity. The average basis decreased by

6.57% for corn, 3.42% for soybeans, and 2.29% for wheat, suggesting that the effectiveness of

changing the certificate storage rate. In fact, the study by Aulerich and Hoffman (2013) finds

that introducing a variable certificate storage rate can significantly reduce non-convergence.8

8See also the CME Group report, “The Impact of Variable Storage Rates on Liquidity of the Deferred
Month CBOT Wheat Futures” in 2010.
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4.4 Local Stochastic Storage Model

We now consider an alternative to the Martingale Model. Since the commodity cannot

necessarily be continuously traded, the market is incomplete, and one can specify a non-

martingale evolution for the commodity price under the no-arbitrage risk-neutral measure.

Commodities have the unique property that production can be increased or decreased in

response to high or low prices, respectively. In addition, commodities can be consumed

through production of end-goods (for example, turning corn into ethanol). In times of

scarcity, production will increase to lower prices; in times of surplus, production will decrease

while consumption continues to increase prices. Thus, the production and consumption

process unique to commodities imply a mean-reverting price structure as suggested by Deaton

and Laroque (1996).

Hence, we propose an exponential OU (XOU) model for the spot price. Under the risk-

neutral measure Q, the log-spot price of the grain, denoted by Ut = logSt, follows the OU

process

dUt = α(µ− Ut)dt+ σdWt, (4.4.1)

where W is standard Brownian motion under Q, µ is the long-run mean, α is the rate of

mean reversion, and σ is the volatility of the log-spot price. We impose the further regularity

condition that σ <
√

2α.

The market rate of storage δt is locally determined by the spot price through

δt = βUt + γ. (4.4.2)

We typically set the coefficient β ≥ 0 so that the storage cost increases linearly with the

log-price of the commodity, with a possibly flat storage rate γ > 0. In summary, we have

described a local stochastic storage approach, whereby the market storage rate in (4.4.2)

is a function of the stochastic spot price that follows the exponential OU model in (4.4.1).
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Henceforth, we shall refer it as the XOU Model.

Denote by G ≡ (Gt)t≥0 the filtration generated by the log-spot price (Ut)t≥0. Also, let S

be the set of all G-stopping times, and Ss,u the set of G-stopping times bounded by [s, u].

Note that δt is a function of Ut, the optimal liquidation problem is given by

J(Ut) = sup
η∈St,∞

E
[
e−r(η−t) (exp(Uη)− c2)−

∫ η

t

δue
−r(u−t)du|Gt

]
,

which applies after the shipping certificate is exercised at time τ . The optimal timing problem

to exercise the shipping certificate is given by

V (UT ) = sup
τ∈ST,∞

E
[
e−r(τ−T ) (J(Uτ )− c1)−

∫ τ

T

δ̂e−r(u−T )du|GT
]
.

Since the shipping certificate serves as the delivery item instead of the actual grain, the

futures price F (t, Ut;T ) at t for the contract expiring at T is given by

F (t, Ut;T ) = E[V (UT )|Gt].

We now denote the operator from (4.3.7) by L ≡ Lα,µ,σ, which is the infinitesimal gener-

ator for the OU process U . To solve for the certificate price and the agent’s optimal policy,

we solve the ODE

Lf(u)− rf(u) = 0,

which has the general solutions, H(u;α, µ, σ) and G(u;α, µ, σ), where L, H, and G are

defined in (4.3.7), (4.3.8) and (4.3.9). In this section, without ambiguity, we denote H(u) ≡

H(u;α, µ, σ) and G(u) ≡ G(u;α, µ, σ), both of which will play a role in the solution for J

and V.

Proposition 6. Under the XOU Model defined in (4.4.1) and (4.4.2):
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1. The liquidation value is given by

J(u) =


AH(u)− 1

α+r

[
βu+ γ + α(βµ+γ)

r

]
if u < u∗,

eu − c2 if u ≥ u∗.

(4.4.3)

2. The certificate price is given by

V (u) =


eu − c1 − c2 if u > u∗∗,

BH(u) + CG(u)− δ̂
r

if u∗∗ ≤ u ≤ u∗∗,

AH(u)− 1
α+r

[
βu+ γ + α(βµ+γ)

r

]
− c1 if u < u∗∗,

(4.4.4)

where

A =
eu
∗

+ β
α+r

H ′(u∗)
,

B =
eu
∗∗
G′(u∗∗)−

(
AH ′(u∗∗)− β

α+r

)
G′(u∗∗)

H ′(u∗∗)G′(u∗∗)−H ′(u∗∗)G′(u∗∗) ,

C =
eu
∗∗
H ′(u∗∗)−

(
AH ′(u∗∗)− β

α+r

)
H ′(u∗∗)

H ′(u∗∗)G′(u∗∗)−H ′(u∗∗)G′(u∗∗) ,

and the optimal thresholds u∗, u∗∗ and u∗∗ satisfy the equations:

AH(u∗)− 1

α + r

[
βu∗ + γ +

α(βµ+ γ)

r

]
= eu

∗ − c2 ,

BH(u∗∗) + CG(u∗∗)− δ̂

r
= eu

∗∗ − c1 − c2 ,

BH(u∗∗) + CG(u∗∗)− δ̂

r
= AH(u∗∗)− 1

α + r

[
βu∗∗ + γ +

α(βµ+ γ)

r

]
− c1.
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The optimal exercise and liquidation times, respectively, are given by

τ ∗ = inf{ t ≥ T : Ut ≤ u∗∗ or Ut ≥ u∗∗ } ,

η∗ = inf{ t ≥ τ ∗ : Ut ≥ u∗ } .

The liquidation value J(u) is entirely determined by the critical level u∗ at which the

agent will sell the physical grain. When the log-spot price Ut surpasses u∗, both the storage

cost δt and spot price St will be high. Since the asset price is mean-reverting, intuitively

there is a potential advantage to early liquidation before the asset reverts back to a lower

value. In the holding region {u < u∗} corresponding to low spot prices, the agent pays the

present value of the storage rate βu + γ, and the present value of the average storage rate

βµ+ γ. The conflict between increasing spot prices and higher storage rates, both of which

are driven by Ut, determines when the agent liquidates. Thus, both instantaneous storage

rates and the long-run storage rates affect the certificate price.

On the other hand, the certificate value V (u) is determined by two stopping levels: the

optimal exercise threshold u∗∗ and the optimal liquidation threshold u∗∗. When the spot price

surpasses u∗∗, the agent exercises and liquidates to take advantage of temporarily higher spot

prices, while avoiding higher storage rates. On the other hand, when the spot price decreases

below u∗∗, the agent exercises but does not liquidate, because he wants to take advantage

of a temporarily lower storage rate, storing in the real market at rate δt instead of at the

certificate rate δ̂. Recall that due to our specification of the optimal stopping times η∗ and

τ ∗, the stopping levels satisfy u∗∗ ≥ u∗ ≥ u∗∗.
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Figure 22: Optimal stopping levels for [u∗∗, u∗, u∗∗], with default parameters r =
0.03, Ut = log 5, γ = 0, δ̂ = 0.2, β = 0.08, c1 = 0, c2 = 0, µ = log 30, α = 0.1,
σ = 0.2. We vary the parameters β and δ̂ respectively in these plots.
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Figure 23: Immediate value exp(u)−c1−c2, liquidation value J(u), and certificate
price V (u). The optimal stopping levels are given by u∗∗ = 0.337, u∗ = 3.485,
u∗∗ = 3.534. Parameters are r = 0.03, γ = 0, δ̂ = 0.17, β = 0.10, c1 = 0, c2 = 0,
µ = log 30, α = 0.1, σ = 0.2.
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Figure 22 further illustrates the dependence of the three stopping levels [u∗∗, u∗, u∗∗] on the

parameters β and δ̂. As β increases, the gap between u∗∗ and u∗∗ increases, so does the basis.

However, as β → 0, the market storage rate goes to 0 in this example, inducing the agent to

exercise as soon as the futures expires and store in the real market. Consequently, the region

{u∗∗, u∗∗} for holding the certificate vanishes, which also means that all three thresholds,

u∗∗, u∗, and u∗∗ converge to the same value representing the optimal level to liquidate the

grain. A similar pattern is observed when the certificate storage rate δ̂ increases since the

agent will again be incentivized to exercise the shipping certificate immediately to store in

the real market.

Figure 23 also reflects the relationship among the certificate price, liquidation value, and

payoff from immediate exercise and liquidation. Note that

V (u) ≥ J(u) ≥ exp(u)− c1 − c2,

i.e. the shipping certificate price dominates the liquidation value, which convexly dominates

the immediate exercise value. The liquidation value is significantly higher than the immediate

exercise value, especially as u → −∞. The value of J(u) does not decrease as much as

the immediate exercise value. Because the asset is mean reverting and the optionality is

perpetual, the asset value is almost guaranteed to be eventually profitable. In this model, the

ability to choose between two rates of storage adds merely a modest basis to the liquidation

value. With the parameters in Figure 22, the maximum percent difference between V (u)

and J(u) is 12.57%.

Recall that the basis w(Ut) is defined as the difference between certificate and spot prices

at maturity. As we established from a model-free argument, the basis w(Ut) ≥ 0. Therefore,

a positive basis occurs when the agent chooses a strategy which is different than exercising

and liquidating (η∗ > τ > T ). In this scenario, the agent either waits to exercise because

storage rates are too high to exercise and spot prices are too low to liquidate, or he has
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exercised to take advantage of lower storage prices but the spot price is too low to liquidate.

In our model the probability of non-convergence depends completely on u∗∗. In particular, if

c1 = 0 and c2 = 0, then the basis w(UT ) > 0 iff UT < u∗∗. Thus, the probability that there

is a strictly positive basis at time t for a contract maturing at T ≥ t is

Q (w(UT ) > 0 | Gt) = Φ

(
u∗∗ − µ̄t,T

σ̄t,T

)
,

where

µ̄t,T = Ute
−α(T−t) + µ(1− e−α(T−t)),

σ̄2
t,T =

σ2

2α
(1− e−2α(T−t)).

(4.4.5)

Finally, in order to calibrate our model for empirical analysis, we derive futures prices by

taking an expectation of the certificate prices.

Under the OU model, the conditional log spot price UT |Ut is normally distributed with

parameters µ̄t,T and σ̄t,T given in (4.4.5). The result then follows from computing the asso-

ciated conditional truncated expectations:

F (t, Ut;T ) = E
[(
eUT − c1 − c2

)
1{UT > u∗∗}|Ut

]
+ E

[(
BH(UT ) + CG(UT )− δ̂

r

)
1{u∗∗ ≤ UT ≤ u∗∗}|Ut

]

+ E
[(
AH(u)− 1

α + r

[
βUT + γ +

α(βµ+ γ)

r

]
− c1

)
1{UT < u∗∗}|Ut

]

Corollary 3. The futures price F (t, Ut;T ) under the XOU Model defined in (4.4.1) and

(4.4.2) is given by
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F (t, Ut;T ) = exp

(
µ̄t,T +

σ̄2
t,T

2

)
Φ
(
σ̄t,T − z∗∗t,T

)
1− Φ

(
z∗∗t,T
) − (c1 + c2)

(
1− Φ

(
z∗∗t,T
))

+

∫ z∗∗t,T

z∗∗t,T

(BH(µ̄t,T + σ̄t,Tv) + CG(µ̄t,T + σ̄t,Tv))φ(v)dv

− δ̂

r

(
Φ
(
z∗∗t,T
)
− Φ

(
z∗∗t,T
))

+

∫ z∗∗t,T

−∞
AH(µ̄t,T + σ̄t,Tv)dv

− β

α + r

(
µ̄t,T −

φ
(
z∗∗t,T
)

Φ
(
z∗∗t,T
) σ̄t,T)− ( γ

α + r
+
α(βµ+ γ)

r(α + r)
+ c1

)
Φ
(
z∗∗t,T
)
,

where

z∗∗t,T =
u∗∗ − µ̄t,T

σ̄t,T
, z∗∗t,T =

u∗∗ − µ̄t,T
σ̄t,T

,

and µ̄t,T , and σ̄t,T are defined in (4.4.5).

We calibrate our model futures curve to empirical corn, wheat and soybeans data and

consider the accuracy and economic implications. Refer to Table 9 for details of each con-

tract’s specification. Consider the futures curve at time t = 0. Recall that the best-fit futures

curve can be defined in the following manner. Let the futures prices at time Tk be Fk, for

maturity times (Tk)
N
k=0, with F0 = exp(U0) = S0, so the futures price at T0 = 0 is just the

market quoted settlement price. Denote the model futures curve generated at time Tk by

the parameters (β, γ, µ, α, σ) be denoted Fk(β, γ, µ, α, σ).

The best fit futures curve F∗k for k = 0, 1, . . . , N minimizes the weighted sum of squared

errors (SSE) between the empirical futures curve and the model futures curve at time t.

Furthermore, the best-fit parameter is defined to be (β∗, γ∗, µ∗, α∗, σ∗) the model parameters

which achieve the best fit futures curve. The other exogenous parameters (r, Ut, δ̂, c1, c2) are
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directly determined via contract specifications (see Table 9).

(β∗, γ∗, µ∗, α∗, σ∗) = arg min
β,γ,µ,α,σ

N∑
k=0

(Fk − Fk(β, γ, µ, α, σ))2

F∗k = Fk(β
∗, γ∗, µ∗, α∗, σ∗) k = 0, 1, . . . , N.

The corn futures curves calibrated from the XOU Model are illustrated in Figure 24. We

have selected the two dates to illustrate two characteristically different futures curves. On

the left panel, the futures curve that is upward sloping. With the expiring futures price and

spot price being 317 and 281 (cents), respectively, a positive basis is observed. The current

storage rate δ∗0 = 106.00, and the long run storage rate β∗µ∗ + γ∗ = 89.55 are both higher

than the certificate rate δ̂. This storage rate spread leads to the positive basis, while the long

run storage rate anticipates a future basis. Furthermore, the current spot price U0 > µ∗,

which indicates that the spot price will likely fall in the future, and results in a downward-

sloping futures curve. On the right panel, the futures curve is upward sloping and the basis

is more modest. The spot price current satisfies U0 < µ∗, so the spot price is expected to

rise in the future, generating a more contango futures curve.

In Figure 25, we see the results of our empirical calibration under the XOU model for

wheat on two dates. The left panel shows a basis of around 12%, and the futures curve

is upward sloping. The current storage rate δ∗0 = 67.21, and the long run storage rate

β∗µ∗ + γ∗ = 69.84 are both higher than the certificate rate δ̂. Therefore, the current storage

rate leads to a positive basis, while the long run storage rate anticipates a future basis.

Furthermore, the current spot price U0 < µ∗, which indicates that the spot price will likely

rise in the future, and results in an upward-sloping futures curve. In Figure 25 (right),

the basis is more modest at 5%, while the futures curve is downward sloping. The current

storage rate δ∗0 = 60.71, is higher than the certificate storage rate, but the long run storage

rate β∗µ∗ + γ∗ = 53.87 is lower than the certificate rate δ̂. Therefore, the current storage

rate generates a smaller positive basis, while the long run storage rate anticipates little to no
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basis on the futures curve. Furthermore, the current spot price is higher than the estimated

long-run mean (U0 > µ∗), and the backwardated futures curve reflects the anticipation that

the spot price will decrease in the future. This is consistent with the model’s mean-reverting

dynamics for the spot price.

In addition, we consider the differences between the model futures curve and the futures

curve generated without considering the timing options. To be precise, let the ‘no certificate’

futures curve ψ(t, Ut, δt;T ) be

ψ(t, Ut;T ) = E[ST |Gt]

= exp

(
e−α(T−t)Ut + µ(1− e−α(T−t)) +

σ2

4µ
(1− e−2α(T−t))

)
, (4.4.6)

which can be found in (Leung et al., 2016, Sect. 2.2). In Figure 25, we plot the futures curve,

described by ψ(0, U0;Ti) for i = 0 . . . N, using the same fitted parameters from our model

(µ∗, α∗, σ∗) and the initial assumption that exp(U0) = F0, the empirical terminal futures

price. In other words, for the no-certificate case, we take the expiring futures price to be the

spot price, and ignore the entire spot grain market prices. The last assumption means there

is initially zero basis, as would be the case when physical grain is the delivery item.
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Figure 24: Calibrating the XOU Model to the empirical corn futures prices. The
x-axis is time to maturity in months and the y-axis is the price of a bushel of
corn in cents. The ‘no certificate’ curve is taken from equation (4.4.6). We use
the fitted parameters from the ‘model’ curve as inputs for the ‘no certificate’
curve to illustrate the premium. Fitted parameters: (left) β∗ = 16.12, γ∗ = 15.08
µ∗ = 4.62, α∗ = 0.058, and σ∗ = 0.40. Fitted parameters for the rightmost
panel are β∗ = 10.75, γ∗ = 15.10, µ∗ = 5.52, α∗ = 0.10, and σ∗ = 0.12. Other
parameters are r = 0.017, and (in cents) S0 = exp(U0) = {281, 167}, δ∗0 = 106,

δ̂ = 55 and c1, c2 = 0.
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Figure 25: Calibrating XOU model with local storage to the empirical wheat
futures curve. The x-axis is time to maturity in months and the y-axis is the price
of a bushel of wheat in cents. The ‘no certificate’ curve is taken from equation
(4.4.6). We use the fitted parameters from the ‘model’ curve as inputs for the ‘no
certificate’ curve to illustrate the premium. Fitted parameters: (left) β∗ = 9.98,
γ∗ = 11.22 µ∗ = 5.83, α∗ = 0.08, and σ∗ = 0.14. Fitted parameters for the
rightmost panel are β∗ = 7.13, γ = 14.16, µ∗ = 5.90, α∗ = 0.38, and σ∗ = 0.91.
Other parameters are r = 0.017, Ut = {5.61, 6.65}, δ̂ = 55 and c1, c2 = 0.
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Figure 26: Calibrating the Martingale Model (left) and the XOU Model (right)
to the empirical soybeans futures curve. The x-axis is time to maturity in months
and the y-axis is the price of a bushel of wheat in cents. The ‘no certificate’ curve
is taken from equations (4.3.16) and (4.4.6) respectively. The fitted parameters
from the ‘model’ curve are used as inputs for the ‘no certificate’ curve to illustrate
the premium. Fitted parameters: (left) ν∗ = −0.44, κ∗ = 0.023, ζ∗ = 0.92, and
δ∗0 = 1.42; (right) β∗ = 11.88, γ∗ = 9.97, µ∗ = 5.91, α∗ = 0.035, and σ∗ = 0.95.

Other parameters are r = 0.017, St = 1004.25, δ̂ = 55 and c1 = c2 = 0.

As shown earlier, the model prices of futures of all maturities with a shipping certificate

dominate the respective contracts without one due to the timing options embedded in the

shipping certificate. Furthermore, the difference increases as the futures maturity lengthens,

indicating that the storage option exerts a more significant price impact over a longer period

of time. In summary, we have shown that the timing options in a shipping certificate are

a crucial component to explain the positive basis. As we have seen, the exponential OU

model is able to capture forward anticipative behaviors of the basis and account for both

backwardated and upwards-sloping futures curves.

We close this section by comparing the empirical calibrations of the Martingale Model

and the XOU Model in Figure 26. While both models are equally capable of estimating

the immediate basis and fitting the empirical futures prices, the value of the timing option

embedded in the shipping certificate is significantly higher under the XOU Model than the

Martingale Model. This can be seen from the spread between the ‘model’ curve (shipping

certificate delivery) and the ‘no certificate’ curve (physical spot delivery) plotted on both
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Figure 27: Seasonality of the average basis for corn, soybeans, and wheat during
2004–2010. The basis is highest during the harvest months (August-October) as
storage rates are high due to grain silo capacity constraint. For instance, the
average basis for soybeans exceeds 12% in September. From February to June,
the basis tends to be smaller since the storage costs are lower due to empty grain
silos before the next harvest begins.

panels. The ‘no certificate’ curve generated from the Martingale Model is much closer to the

fitted ‘model’ curve, whereas a visibly larger gap is observed in the XOU Model. Intuitively,

the XOU Model tends to propagate the basis forward as the market storage rate is assumed

to be positively correlated with the spot price, but the Martingale Model assumes an in-

dependent stochastic (per bushel) storage rate. Therefore, the two models possess distinct

features that address different market conditions, and have different implications to futures

prices with longer maturities.

4.5 Concluding Remarks

We have demonstrated that the timing option embedded in the shipping certificate for grains

leads to terminal non-convergence of futures and cash prices. The shipping certificate, by

allowing its owner to choose the cheaper of two possible storage rates, therefore commands a

premium over the physical grain itself. Our modeling approach captures the storage option
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of the shipping certificate by solving two optimal timing problems: one to determine the

optimal liquidation strategy for physical grain and another for the optimal exercise strategy

for the shipping certificate.

We have proposed two stochastic diffusion models for the spot grain and storage rate

dynamics, one in which the storage rate process is OU and the spot price less storage costs

is a martingale, and the other where the spot price admits exponential OU dynamics along

with a locally stochastic market storage rate. Under both models, explicit prices are provided

for the shipping certificate and associated futures curve. Furthermore, we fit our models to

empirical data during the periods of observed non-convergence. Our models not only capture

the non-convergence phenomenon, but they also demonstrate adequate fit against the futures

curve data when the market in backwardation or contango.

In order to develop tractable models with analytical solutions that are amenable to inter-

pretation and calibration, we did not consider the seasonality of grain prices, among other

features. To compare the basis over different months of the year, we illustrate in Figure 27

the average basis for all three commodities. As shown, the basis is typically higher during the

fall harvest months (August to October) when available storage capacity is low and market

storage rates are high. This suggests that the value of storage optionality, captured in our

models here, is particularly high in these months. In contrast, the basis is typically smaller

from the winter through the summer while the grain silos are being emptied before the next

harvest, and thus, storage rates are reduced during the low season.

Overall, both of our proposed models are capable of generating model prices corre-

sponding to a variety of market situations, such as high/low storage costs, and backwar-

dated/contango futures curves, and fit well for different commodities. Therefore, the pro-

posed models seem to have sufficient components and strong economic rationale to reflect and

quantify non-convergence in the grains markets. There is certainly room for incorporating

additional characteristics, such as seasonality and other contractual features, such as quality

and delivery options. However, the relatively small number of traded futures contracts for
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each commodity may limit the number of model parameters, and thus, model sophistication.

A better understanding of the price behaviors of commodity futures is also relevant to

broader financial market, especially in the current era of so-called financialization of the

commodity market (see Tang and Xiong (2012)), whereby commodity prices have become

more correlated with the equity market. Moreover, commodity futures also play a role in the

exchange-traded fund (ETF) market since most commodity ETFs are essentially dynamic

portfolios of commodity futures; see Guo and Leung (2015); Leung and Ward (2015), among

others. Therefore, for investors seeking spot exposure through commodity ETFs, any model

which sheds light on the non-convergence phenomenon will affect investment decisions.

While our models have both empirical explanatory power and theoretical foundation,

our results do not rule out the possible scenario called the ‘failure of arbitrage’ in the grain

markets, as suggested by the speculator hypothesis. Nevertheless, alternative theories of

non-convergence can potentially be incorporated into our models. The unique feature of

our models is the embedded double timing option. This should motivate future research

to investigate the valuation of such a timing option under different stochastic storage rate

dynamics. Other directions include adding to futures multiple options, such as the delivery

option, quality option, and location option. Furthermore, we choose our models in this

chapter for analytical tractability which give closed-form certificate prices. One can also

examine certificate prices under more complex stochastic models, for example, with stochastic

interest rate, as well as stochastic volatility and jumps in the spot price or storage rate.

4.6 Appendix

4.6.1 Proofs: Proposition 5

We derive the certificate price by first determining the liquidation value function J(Sτ , δτ )

and then substituting the value to solve the certificate problem V (ST , δT ). After applying
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the martingale property of (Mt)t≥0 =
(
e−rtSt −

∫ t
0
δue
−rudu

)
t≥0

, and applying the optional

sampling theorem, the liquidation value function simplifies to

J(Sτ , δτ ) = erτ

(
sup

η∈Tτ,∞
E
[
e−rη(Sη − c2)−

∫ η

τ

δue
−rudu|Fτ

])

= erτ

(
sup

η∈Tτ,∞
E
[
Mη +

∫ η

0

δue
−rudu−

∫ η

τ

δue
−rudu− c2e

−rη|Fτ
])

= erτ

(
Mτ +

∫ τ

0

δue
−rudu+ sup

η∈Tτ,∞
E
[
−c2e

−rη|Fτ
])

= Sτ .

From the last step, we see that η =∞ is optimal. Furthermore, after substituting J(St, δt) =

St into the certificate pricing problem, and again using the fact that Mt is a martingale, we

obtain a solution for V (ST , δT ) which is separable in ST and δT :

V (ST , δT ) = erT

(
sup

τ∈TT,∞
E
[
e−rτ (Sτ − c1)−

∫ τ

T

δ̂e−rudu|FT
])

= erT

(
MT +

∫ T

0

δue
−rudu+ sup

τ∈TT,∞
E
[∫ τ

T

(δu − δ̂)e−rudu− c1e
−ru|FT

])

= ST + sup
τ∈TT,∞

E
[∫ τ

T

(δu − δ̂)e−r(u−T )du− c1e
−r(τ−T )|FT

]
. (4.6.1)

We denote the second term in (4.6.1) by P (δT ), where the function P (δ) satisfies the varia-

tional inequality

max
{
LP (δ)− rP (δ) + δ − δ̂,−P − c1

}
= 0,

where L ≡ Lκ,ν,ζ is the infinitesimal generator defined in (4.3.7). In order to determine P (δ)
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and the optimal stopping strategy τ ∗, we first conjecture that τ ∗ takes the form

τ ∗ = inf{t ≥ T : δt ≤ δ∗}

for critical stopping level δ∗ to be determined. In other words, when the market storage rate

δt is sufficiently small, the agent exercises to take advantage of the cheaper market storage

rate, instead of paying the higher certificate rate δ̂. Thus, for δt > δ∗, we look for the solution

of the ODE LP (δ) − rP (δ) + δ − δ̂ = 0, and for δ ≤ δ∗ we require that P (δ) = −c1. This

leads to the solution to the variational inequality

P (δ) =

[
AH(δ) +

1

κ+ r

(
δ − δ̂ +

κ(ν − δ̂)
r

)]
1{δ ≥ δ∗} − c11{δ < δ∗},

along with the boundary conditions: P (δ∗) = −c1 and P ′(δ∗) = 0. The latter is the smooth

pasting condition, which implies that

A = − 1

H ′(δ∗)(κ+ r)
.

Enforcing these boundary conditions together also yields the optimal exercise level δ∗ in

(4.3.11).

Consider the function defined from (4.3.11)

f(δ∗) := δ∗ − H(δ∗)

H ′(δ∗)
.

First, the properties of H imply that H/H ′ ≥ 0, so that f(δ∗) ≤ δ∗. Taking the limit

as δ∗ → −∞, we have f(−∞) = −∞. Furthermore, under the restriction ζ2 ≤ 2κ, and
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examining the terms inside the integrals of H and H ′, namely,

H(δ∗) =

∫ ∞
0

v
r
κ
−1e

√
2κ
ζ2

(x−ν)v− v
2

2 dv,

H ′(δ∗) =

∫ ∞
0

v
r
κ

√
2κ

ζ2
e

√
2κ
ζ2

(x−ν)v− v
2

2 dv,

we conclude that H/H ′ ≤ 1. Therefore, f(δ∗) ≥ δ∗ − 1, and f(∞) = ∞. Finally, for

δ∗ ∈ (−∞,∞), f ′ = HH ′/H ′′ > 0. Therefore, we have

lim
δ∗→−∞

f(δ∗) = −∞, lim
δ∗→∞

f(δ∗) =∞, f ′(δ∗) > 0.

The solution δ∗ to (4.3.11) is unique.

4.6.2 Proofs: Proposition 6

We consider a candidate interval type strategy for both τ and η. First, since the certificate

price is monotonically increasing in the spot price, we consider the optimal liquidation time

η∗ to be of the form: η∗ = inf{t ≥ τ ∗ : Ut ≥ u∗}. In the liquidation problem represented by J ,

we hold the commodity until the storage cost δt, which is increasing in the commodity price

Ut, is sufficiently large relative to the commodity price. We solve a variational inequality

for the value function J(u) and match the boundary condition at u∗ to get the solution.

Assuming the conjectured form for η∗, J(u) satisfies


LJ(u)− rJ(u) = βu+ δ if u < u∗,

J(u) = eu − c2 if u ≥ u∗,

where L ≡ Lα,µ,σ is the infinitesimal generator defined in (4.3.7). We apply the continuity

and smooth pasting conditions to J(u), and get
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J(u∗) = eu
∗ − c2, J ′(u∗) = eu

∗
,

This gives the solution (4.4.3) with u∗ satisfying

f(u∗) =
eu
∗

+ β/(α + r)

H ′(u∗)
H(u∗)− 1

α + r

[
βu∗ + γ +

α(βµ+ γ)

r

]
− eu∗ + c2 = 0.

When σ <
√

2α, the level u∗ admits a unique solution. First we can write

f(u∗) = eu
∗
(
H(u∗)

H ′(u∗)
− 1

)
+

β

α + r

(
H(u∗)

H ′(u∗)
− u∗

)
+ C,

for some constant C not depending on u∗. Since H
H′
≤ 1 then f(u∗) ≤ β

α+r
(1 − u∗) +

C so limu∗→∞ f(u∗) = −∞. Also, since H
H′
≥ 0, then f(u∗) ≥ −eu∗ − β

α+r
u∗ + C so

limu∗→−∞ f(u∗) =∞. Finally, we can look at

f ′(u∗) = −H(u∗)

H ′(u∗)

[
eu
∗
(
H ′′(u∗)

H ′(u∗)
− 1

)
+

β

α + r

H ′′(u∗)

H ′(u∗)

]
.

Using similar arguments as from the previous appendix, we canshow H′′

H′
≥ 1, so f ′(u∗) ≤

− H(u∗)
H′(u∗)

α
α+r

< 0 ∀u∗ ∈ R. To recap, we have shown that

lim
u∗→−∞

f(u∗) =∞, lim
u∗→∞

f(u∗) = −∞, f ′(u∗) < 0,

so our solution u∗ is unique.

On the other hand, in the exercise problem V , the optimal strategy τ ∗ takes the form

τ ∗ = inf{t ≥ T : Ut ≤ u∗∗ or Ut ≥ u∗∗},
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In other words, hold the commodity until either (i) the storage cost is at or lower than u∗∗

where the agent exercises, or (ii) the commodity price is reaches the upper level u∗∗ at which

the agent exercises and liquidates. As such, the value function satisfies


V (u) = eu − c1 − c2 if u > u∗∗,

LV (u)− rV (u) = δ̂ if u∗∗ ≤ u ≤ u∗∗,

V (u) = AH(u)− 1
α+r

[
βu+ δ + α(βµ+δ)

r

]
− c1 if u < u∗∗.

The boundary conditions for u∗∗ and u∗∗ are

V (u∗∗) = eu
∗∗ − c1 − c2, V (u∗∗) = J(u∗∗) = AH(u∗∗)− 1

α + r

[
βu∗∗ + δ +

α(βµ+ δ)

r

]
− c1,

V ′(u∗∗) = eu
∗∗
, V ′(u∗∗) = J ′(u∗∗) = AH ′(u∗∗)− β

α + r
.

We match the boundary conditions at u∗∗ and u∗∗ to get the solution (4.4.4).
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Benninga, S., Eldor, R., and Zilcha, I. (1985). Optimal international hedging in commodity
and currency forward markets. Journal of International Money and Finance, 4(4):537 –
552.

Biagini, F. and Bjork, T. (2007). On the timing option in a futures contract. Mathematical
Finance, 17(2):267–283.

Bloseand, L. E. and Shieh, J. C. (1995). The impact of gold price on the value of gold mining
stock. Review of Financial Economics, 4(2):125–139.

Borodin, A. N. and Salminen, P. (2002). Handbook of Brownian Motion- Facts and Formulae.
Birkhauser Verlag.

Brennan, M. (1958). The supply of storage. American Economic Review, 48:50–72.

Brennan, M. and Schwartz, E. S. (1985). Evaluating natural resource investments. The
Journal of Business, 58(2):135–57.

113



BIBLIOGRAPHY 114

Brown, R. G. and Hwang, P. Y. (1997). The Extended Kalman Filter. John Wiley and Sons,
3 edition.

Carmona, R. and Coulon, M. (2013). A Survey of Commodity Markets and Structural Models
for Electricity Prices. Springer New York.

Cheng, M. and Madhavan, A. (2009). The dynamics of leveraged and inverse exchange-traded
funds. Journal of Investment Management, 4.

Cortazar, G. and Schwartz, E. (1997). Implementing a real option model for valuing an
undeveloped oil field. International Transactions in Operational Research, 4(2):125–137.

Dahlgren, E. and Leung, T. (2015). An optimal multiple stopping approach to infrastructure
investment decisions. Journal of Economic Dynamics & Control, 53:251–267.

Deaton, A. and Laroque, G. (1996). Competitive storage and commodity price dynamics.
Journal of Political Economy, 104(5):896–293.

Dixit, A. K. (1994). Investment Under Uncertainty. Princeton University Press.

Dobi, D. and Avellaneda, M. (2012). Structural slippage of leveraged ETFs. Working Paper.

Erdelyi, Magnus, O. and Tricom (1953). Higher Transcendental Functions, volume 2.
McGraw-Hill.

Fama, E. F. and French, K. R. (1987). Commodity futures prices: Some evidence on forecast
power, premiums, and the theory of storage. The Journal of Business, 60(1):55–73.

Fama, E. F. and French, K. R. (1993). Common risk factors in the returns on stocks and
bonds. Journal of Financial Economics, 33(1):3 – 56.

Florian, M. and Klein, M. (1971). Deterministic production planning with concave costs and
capacity constraints. Management Science, 18(1):12–20.

Garcia, P., Irwin, S. H., and Smith, A. D. (2014). Futures market failure. American Journal
of Agricultural Economics, 97(1):40–64.

Ghosh, D., Levin, E. J., MacMillan, P., and Wright, R. E. (2004). Gold as an inflation
hedge? Studies in Economics and Finance, 22(1):1–25.

Gorton, G. B., Hayashi, F., and Rouwenhorst, K. G. (2012). The fundamentals of commodity
futures returns. Review of Finance, pages 31–105.

Guedj, I., Li, G., and McCann, C. (2011). Futures-based commodities ETFs. The Journal
of Index Investing, 2(1):14–24.

Guo, K. and Leung, T. (2015). Understanding the tracking errors of commodity leveraged
ETFs. In Aid, R., Ludkovski, M., and Sircar, R., editors, Commodities, Energy and
Environmental Finance, Fields Institute Communications, pages 39–63. Springer.



BIBLIOGRAPHY 115

Guo, K. and Leung, T. (2017). Understanding the non-converge of agricultural futures via
stochastic storage costs and timing options. Journal of Commodity Markets, 6:32–49.

Hinz, J. and Fehr, M. (2010). Storage costs in commodity option pricing. SIAM Journal of
Financial Math, 1(1):729–751.

Hranaiova, J., Jarrow, R. A., and Tomek, W. G. (2005). Estimating the value of delivery
options in futures contracts. Journal of Financial Research, 28(3):363–383.

Irwin, S. H., Garcia, P., Good, D., and Kunda, E. (2009). Poor convergence performance
of cbot corn, soybean and wheat futures contracts: Causes and solutions. Marketing and
Outlook Research Report.

Irwin, S. H., Garcia, P., Good, D. L., and Kunda, E. L. (2011). Spreads and non-convergence
in Chicago Board of Trade corn, soybean, and wheat futures: Are index funds to blame?
Applied Economic Perspectives and Policy, 33(1):116–142.

Johnson, L. L. (1960). The theory of hedging and speculation in commodity futures. The
Review of Economic Studies, 27(3):139–151.

Johnson, M. A. J. and Lamdin, D. J. (2015). New evidence on whether gold mining stocks
are more like gold or like stocks. Alternative Investment Analyst Review. forthcoming.

Jorion, Y. J. P. (2006). Firm value and hedging: Evidence from us oil and gas producers.
The Journal of Finance, 61(2):893–919.

Jurek, J. W. and Stafford, E. (2013). The cost of capital for alternative investments. NBER
working paper.

Kaldor, N. (1939). Speculation and economic stability. Review of Economic Studies, 7(1):1–
27.

Leung, T., Li, J., Li, X., and Wang, Z. (2016). Speculative futures trading under mean
reversion. Asia-Pacific Financial Markets, 23(4):281–304.

Leung, T. and Li, X. (2015). Optimal mean reversion trading with transaction costs and
stop-loss exit. International Journal of Theoretical & Applied Finance, 18(3):15500.

Leung, T. and Li, X. (2016). Optimal Mean Reversion Trading: Mathematical Analysis
and Practical Applications. Modern Trends in Financial Engineering. World Scientific,
Singapore.

Leung, T., Li, X., and Wang, Z. (2014). Optimal starting–stopping and switching of a CIR
process with fixed costs. Risk and Decision Analysis, 5(2):149–161.

Leung, T., Li, X., and Wang, Z. (2015). Optimal multiple trading times under the exponential
OU model with transaction costs. Stochastic Models, 31(4):554–587.

Leung, T. and Santoli, M. (2013). Leveraged exchange-traded funds: admissible leverage
and risk horizon. Journal of Investment Strategies, 2:39–61.



BIBLIOGRAPHY 116

Leung, T. and Sircar, R. (2012). Implied volatility of leveraged ETF options. Working paper,
Columbia University.

Leung, T. and Ward, B. (2015). The golden target: Analyzing the tracking performance of
leveraged gold ETFs. Studies in Economics and Finance, 32(3):278–297.

Mackintosh, P. and Lin, V. (2010a). Longer term plays on leveraged ETFs. Credit Suisse:
Portfolio Strategy, pages 1–6.

Mackintosh, P. and Lin, V. (2010b). Tracking down the truth. Credit Suisse: Portfolio
Strategy, pages 1–10.

Mason, C., Omprakash, A., and Arouna, B. (2010). Few strategies around leveraged ETFs.
BNP Paribas Equities Derivatives Strategy, pages 1–6.

McDonald, R. and Siegel, D. (1986). The value of waiting to invest. The Quarterly Journal
of Economics, 101(4):707.

Merton, R. C. (1974). On the pricing of corporate debt: The risk structure of interest rates.
The Journal of Finance, 29(2):449–470.

Murphy, R. and Wright, C. (2010). An empirical investigation of the performance of
commodity-based leveraged ETFs. The Journal of Index Investing, 1(3):14–23.

Naylor, M., Wongchoti, U., and Gianotti, C. (2011). Abnormal returns in gold and silver
exchange traded funds. The Journal of Index Investing, 2(2):1–34.

Rand, A. (1957). Atlas Shrugged. Random House.

Schwartz, E. (1997). The stochastic behavior of commodity prices, implications for valuation
and hedging. Journal of Finance, 52(3):923–973.

Takahashi, A. and Yamamoto, K. (2008). Hedge fund replication. CARF Working Paper.

Tang, K. and Xiong, W. (2012). Index investment and the financialization of commodities.
Financial Analysts Journal, 68(6):54–72.

Triantafyllopoulos, K. and Montana, G. (2009). Dynamic modeling of mean-reverting spreads
for statistical arbitrage. Computational Management Science, 8:23–49.

Tufano, P. (1996). Who manages risk? An empirical examination of risk management
practices in the gold mining industry. The Journal of Finance, 51(4):1097–1137.

Tufano, P. (1998). The determinants of stock price exposure: Financial engineering and the
gold mining industry. The Journal of Finance, 53(3):1015–1052.

Working, H. (1949). The theory of the price of storage. American Economic Review, 39:1254–
1262.


	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	How to Mine Gold Without Digging
	Introduction
	Related Studies
	Model
	Asset Valuation
	Equity Valuation
	Comparative Statics

	Factor Replication of Gold Miner Stocks
	Data
	Constructing the Replicating Portfolio

	Estimating Model Parameters with Kalman Filter
	Testing Predictions for Gold Miners' Implied Leverage
	Conclusion

	Understanding the Returns of Commodity LETFs
	Introduction
	Analysis of Tracking Error
	Regression of Empirical Returns
	Distribution of Tracking Errors

	Incorporating Realized Variance into Tracking Error Measurement
	Model for the LETF Price
	Regression of Empirical Returns
	Realized Effective Fee

	A Static LETF Portfolio
	Concluding Remarks

	Non-convergence of Agricultural Futures
	Introduction
	Related Studies
	Martingale Model with Stochastic Storage
	Local Stochastic Storage Model
	Concluding Remarks
	Appendix
	Proofs: Proposition 5
	Proofs: Proposition 6


	References

