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ABSTRACT

Leveraging patient-provided data to improve understanding of disease risk

Fernanda Caroline da Graça Polubriaginof

Patient-provided data are crucial to achieving the goal of precision medicine. These

data, which include family medical history, race and ethnicity, and social and behavioral de-

terminants of health, are essential for disease risk assessment. Despite the well-established

importance of patient-provided data, there are many data quality challenges that affect how

this information can be used for biomedical research.

To determine how to best use patient-provided data to assess disease risk, the research

reflected in this dissertation was divided into three overarching aims. In Aim 1, I focused

on determining the quality of race and ethnicity, family history and smoking status in clin-

ical databases. In Aim 2, I assessed the impact of various interventions on the quality of

these data, including policy changes such as the implementation of the requirements im-

posed by the Meaningful Use program, and patient-facing tools for collecting and sharing

information with patients. In addition to these evaluations, I also developed and evaluated

a method “Relationship Inference from the Electronic Health Record” (RIFTEHR), that in-

fers familial relationships from clinical datasets. In Aim 3, I used patient-provided data to

assess disease risk both at a population level, by estimating disease heritability, and at an

individual level, by identifying high-risk individuals eligible for additional screening for a

common disease (diabetes mellitus) and a rare disease (celiac disease).

My research uncovered several data quality concerns for patient-provided data in clin-

ical databases. When assessing the impact of interventions on the quality of these data,



I found that policy interventions led to more data collection, but not necessarily to better

data quality. In contrast, patient-facing tools did increase the quality of the patient-provided

data. In the absence of high-quality patient-provided data for family medical history, I de-

veloped and evaluated a method for inferring this information from large clinical databases.

I demonstrated that electronic health record data can be used to infer familial relationships

accurately. Moreover, I showed how the use of clinical data in conjunction with the in-

ferred familial relationships could determine disease risk in two studies. In the first study, I

successfully computed disease heritability estimates for 500 conditions, some of which had

not been previously studied. In the second study, I identified that screening rates among

family members that are considered to be at high-risk for disease development were low

for both diabetes mellitus and celiac disease.

In summary, the work represented in this dissertation contributes to the understanding

of the quality of patient-provided data, how interventions affect the quality of these data,

and how novel methods can be applied to troves of existing clinical data to generate new

knowledge to support research and clinical care.
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Chapter 1

Introduction

Patient-provided information, such as family medical history, is crucial to achieving

the goal of precision medicine. Precision medicine focuses on disease prevention and treat-

ment while accounting for a patient’s variability (Collins and Varmus 2015). In precision

medicine, there is a need for understanding not only genetic causes of disease but also the

impact of environmental and behavioral factors on the disease (Aronson and Rehm 2015;

Cutting 2010; Maher 2008). Patient-provided information, such as family medical history,

self-reported race and ethnicity, social and behavioral determinants of health, and past med-

ical and surgical history, are important pieces of information that directly impact the risk

of disease. For example, women with a family history of breast cancer can be at higher

risk of developing the disease, and therefore, they are candidates for additional and/or early

screening (Ozanne et al. 2009). Similar approaches are well established for a variety of

conditions, including prevalent disorders, such as osteoporosis (U.S. Preventive Services

Task Force 2011) and lipid disorders in adults (Helfand and Carson 2008). With a better un-

derstanding of disease risk, clinicians can personalize the care they deliver by risk-adjusted

disease screening, prevention, and early diagnosis. While there has been increased interest

in precision medicine and the patient-provided information that drives it (Adams and Pe-

tersen 2016; Aronson and Rehm 2015; Collins and Varmus 2015), there is a lack of research
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on methods to most effectively capture patient-provided information in clinical databases.

Clinical databases, including those derived from electronic health records (EHRs), are

an important resource for biomedical research and have previously been utilized to shed

light on disease processes (Boland et al. 2015; Coopey et al. 2012; Hripcsak et al. 2016;

Li et al. 2015; Ritchie, Andrade, and Kuivaniemi 2015; Wei and Denny 2015), including

genetics (Kohane 2011; Polubriaginof et al. 2017; Wang et al. 2017), and on drug effec-

tiveness and interactions (Dudley, Deshpande, and Butte 2011; Lorberbaum et al. 2016b;

Tatonetti et al. 2012). Notwithstanding the utility of EHR data for research activities, there

are concerns regarding the quality of these data (Ahmad et al. 2017; Aronsky and Haug

2000; Arts et al. 2002; Brennan and Stead 2000; Brown, Kahn, and Toh 2013; Hasan and

Padman 2006; Hersh et al. 2013; Hogan and Wagner 1997; Hripcsak et al. 2011b; Kahn,

Eliason, and Bathurst 2010; Lei 1991; Rusanov et al. 2014; Thiru, Hassey, and Sullivan

2003). Limited research has been conducted to assess the quality of patient-provided infor-

mation in the EHR (Arsoniadis et al. 2015; Booth, Prevost, and Gulliford 2013; Chen et al.

2014; Lee, Grobe, and Tiro 2015; Melton et al. 2010), especially related to race and ethnic-

ity, family history, and smoking status. Because patient-provided information is frequently

stored in EHRs, it is critical to assess the quality of this information specifically.

Previous research has demonstrated that patients are an important and underutilized

source of information (Ball and Lillis 2001; Staroselsky et al. 2006), and that patient-

provided information can be used to overcome data quality issues (Arsoniadis et al. 2015;

Staroselsky et al. 2006, 2008; Wu et al. 2014). Some efforts have been made to enhance the

collection and use of patient-provided data. Those include broad policy initiatives such as

the Meaningful Use financial incentive program in the United States, which included, for

2



example, standardization of the collection of family history (Centers for Medicare & Med-

icaid Services 2014a), smoking status (Centers for Medicare & Medicaid Services 2010),

and race and ethnicity (Centers for Medicare & Medicaid Services 2014b). In addition,

patient-facing tools, such as online patient portals, have been implemented in diverse clini-

cal settings. These portals allow patients to review their clinical information as available in

the EHR, and in some cases to record information that is fed back to the EHR (Cimino, Pa-

tel, and Kushniruk 2001; Collins et al. 2011; Delbanco et al. 2010; Greenhalgh et al. 2008;

Grossman et al. 2017; Halamka, Mandl, and Tang 2008; Hassol et al. 2004; Kaelber et al.

2008; Leveille et al. 2012; Nazi et al. 2010; Nazi et al. 2015; Pyper et al. 2004; Ralston et al.

2007; Reti et al. 2010; Tang and Lee 2009; Walker et al. 2011). These patient-facing tools

have been employed to help maintain up-to-date records (Staroselsky et al. 2006, 2008),

to promote disease screening and prevention through preventive health services (Murabito

et al. 2001; Reid et al. 2009; Staroselsky et al. 2006), to facilitate the assessment of dis-

ease risk and healthcare disparities (Chin 2015; Douglas et al. 2015; Kressin 2015; Woods,

Evans, and Frisbee 2016), to manage disease symptoms (Basch et al. 2009, 2017; Pakho-

mov et al. 2008; Weingart et al. 2005), and to improve the medication reconciliation process

(Dullabh et al. 2014; Finkelstein 2006; Kogut et al. 2014; Weingart et al. 2008).

While a substantial body of knowledge related to patient-provided data and patient-

facing tools exists, many questions remain. Three critical knowledge gaps are 1) a lack of

awareness of the quality of patient-provided information, particularly for race and ethnicity,

family history, and smoking status, 2) a limited understanding of the impact that various

interventions have on data quality, including policy decisions such as the Meaningful Use

program, and 3) the question of whether EHR data can be used in combination with patient-

3



provided information to assess disease risk.

The purpose of this thesis is to establish methods and tools 1) for assessing the qual-

ity of patient-provided data in clinical databases, 2) for studying the impact that distinct

interventions have on influencing the quality of patient-provided data, and 3) for using

patient-provided information to better understand disease risk and better inform clinical

decisions. I explored the quality of patient-provided information, specifically race and eth-

nicity, family history, and smoking status. I evaluated the impact of various interventions

designed to improve the quality of this information. Finally, I developed a novel method

that uses patient-provided information to extract familial relationships from existing clini-

cal databases, and I demonstrated how these relationships, in combination with EHR data,

may be used to better understand disease risk and support clinical research.

4



1.1 Specific aims

Aim 1: Assess the quality of patient-provided data in clinical

databases.

Observational databases, including those containing EHR data, are a valuable resource

for biomedical research (Boland et al. 2015; Coopey et al. 2012; Dudley, Deshpande,

and Butte 2011; Hripcsak et al. 2016; Kohane 2011; Li et al. 2015; Ritchie, Andrade, and

Kuivaniemi 2015; Wang et al. 2017; Wei and Denny 2015). However, there are concerns

regarding the quality of EHR data, since these data are primarily collected as part of clinical

care, and not for research purposes (Weiner and Embi 2009; Weiskopf and Weng 2013).

Broadly, in this aim, I studied various data quality dimensions of patient-provided data such

as race and ethnicity, family history, and smoking status. The purpose of the analysis was

to assess the completeness, correctness, concordance, and plausibility of patient-provided

data stored in clinical databases and to identify opportunities for improvement.

To achieve this goal, I performed three studies. In the first, I investigated the quality

of race and ethnicity information in multiple clinical databases, both at a local level and

national level, based on completeness, correctness, and concordance using a combination of

data sources. In the second study, I focused on determining completeness of family history

information in the EHR by analyzing a sample of observations recorded using structured

and free-text note templates from a large academic medical center. And finally, in the third

study, I investigated the quality of smoking status information at the same medical center,

examining completeness, correctness, and plausibility of the data recorded. The results of

5



the three studies included in this Aim provided generalizable knowledge about the quality

of patient-provided data in EHRs.

Aim 2: Evaluate methods for improving quality of patient-provided

data.

Results from the studies in Aim 1 demonstrated generally poor data quality in race

and ethnicity, family history, and smoking status based on the dimensions of quality an-

alyzed. These results showed a need to consider whether various types of interventions

could improve the quality of patient-provided data. Previous research on patient-provided

information sought to improve data collection and/or data quality using patient-facing tools

or by extracting important concepts from narrative text using natural language processing

techniques (Arsoniadis et al. 2015; Baumgart, Postula, and Knaus 2015; Bill et al. 2014;

Chen et al. 2012, 2014; Cohn et al. 2010; Feero 2013; Giovanni and Murray 2010; Hoyt

et al. 2013; Hulse et al. 2010; Masterson Creber et al. 2016; Melton et al. 2010; Murray

et al. 2013; Orlando et al. 2013; Ozanne et al. 2009; Peace, Valdez, and Lutz 2012; Pyper

et al. 2004; Staroselsky et al. 2006, 2008; Wang et al. 2016; Wilson et al. 2012a; Wu et al.

2014, 2015; Yoon, Scheuner, and Khoury 2003; Yoon et al. 2009). Some of the endeav-

ors to improve the quality of patient-provided information occurred at the national level

through policymaking efforts, such as the Meaningful Use program, while others occurred

in local institutions with the development of new applications, such as patient-facing tools.

While these interventions have been implemented to varying degrees, there has been little

research assessing whether data quality has improved. In this Aim, I studied the impact of

6



policymaking efforts, patient-facing tools and informatics interventions on the quality of

patient-provided information.

To evaluate methods for improving quality of patient-provided data, I performed three

studies in Aim 2. In the first study, I analyzed the impact of the federal Meaningful Use

program and the Hospital Consumer Assessment of Healthcare Providers and Services (HC-

AHPS) survey in the quality of race and ethnicity information in the EHR. Additionally, I

analyzed the effect of a local informatics intervention that allowed patients to review and

update their race and ethnicity information obtained from the EHR. In the second study, I de-

veloped and evaluated a method that extracts familial relationships from clinical databases

using emergency contact information, a type of patient-provided data. Currently, clini-

cal databases do not record familial relationships, an important piece of information when

studying disease risk. In the third study, I analyzed the impact of the Meaningful Use pro-

gram on the completeness, correctness, and plausibility of smoking status in the EHR. The

results of these studies provided insight into the impact of various types of interventions on

the quality of patient-provided data.

Aim 3: Use patient-provided data to assess disease risk.

Accurately collecting patients’ family health history is important for the implementa-

tion of precision medicine in the clinical setting (Aronson and Rehm 2015; Guttmacher,

Collins, and Carmona 2004). The predictive value of family history for any given trait is

directly related to the fraction of phenotypic variance attributable to genetic factors, called

heritability (Tenesa and Haley 2013; Visscher, Hill, and Wray 2008), as well as to shared
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environmental factors. Knowledge of disease heritability combined with family history

information is clinically useful for identifying risk factors, estimating disease risk, cus-

tomizing treatment, and tailoring patient care (Chatterjee, Shi, and García-Closas 2016).

Unfortunately, heritability studies are typically time-consuming and costly. They are often

designed as prospective family-based studies and therefore have limited sample sizes, limit-

ing their power to detect associations. Further, identification of high-risk individuals in the

clinical setting can be complex. The proper identification of high-risk patients is a crucial

factor for the adherence to guidelines that target early screening and modified treatment for

patients considered at risk for disease development. However, the study of screening rates

is challenging due to the necessity of identifying patients that would have been deemed to

be high-risk but were not recognized as such during a clinical encounter.

Fortuitously, EHRs provide a valuable resource of clinical information that is currently

underutilized in genetic and clinical studies. EHRs are now widely adopted, capturing clin-

ical data for millions of individuals as part of clinical care. The use of EHR data in heritabil-

ity studies can overcome many of the challenges previously described, by increasing sample

sizes, thus enabling researchers to study diseases and relationships between diseases that

are currently poorly understood, and generate research hypothesis that can then be tested

using traditional genetic studies. EHR data, combined with health information technology,

can also support clinical research and clinical care. Identification of high-risk individuals

in existing clinical databases can facilitate better and easier measurement of adherence to

clinical guidelines.

In this Aim, I studied the use of EHR data to conduct genetic and clinical studies. Specif-

ically, I used the familial relationships identified as part of Aim 2 to perform two studies
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which estimated disease heritability and measured adherence to clinical guidelines. In the

first study, I assessed disease heritability using clinical traits, both dichotomous and quanti-

tative, recorded in the EHR. This study was conducted in three hospital systems from New

York. In the second study, I measure the adherence to guidelines rate for two distinct condi-

tions, diabetes mellitus and celiac disease. The results of these studies provided insight into

the heritability of multiple clinical traits, demonstrating that EHRs are a valuable resource

of clinical phenotypes. Further, it affirmed the ability to use EHR data to support clinical

care by identifying patients that are at high-risk for disease development.
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1.2 Significance and Contributions

This dissertation includes the following contributions: 1) an investigation of the perva-

siveness of data quality issues in patient-provided information, 2) measurement of the effec-

tiveness of different interventions to improve data quality of patient-provided information,

3) development and evaluation of a novel method to identify familial relationships from ex-

isting clinical databases using patient-provided data, and 4) generation of new knowledge

based on patient-provided information.

In the first Aim, I extensively explored the data quality of patient-provided information,

which is crucial to operationalizing precision medicine. Previous research has primarily fo-

cused on the quality of clinical data; whereas, in this Aim, I focused on studying the quality

of patient-provided data in clinical databases. The results of this Aim showed significant

data quality issues for race and ethnicity both at local institutions but also among national

databases. For family history, I identified data completeness issues among family history

information that was recorded in free-text format, which I found to be the strongly pre-

ferred method for recording and storing patient information. While assessing the quality of

smoking status, I found many implausible changes to patients’ smoking status. Together,

these data quality issues point to challenges in the way patient-information is collected and

stored. Furthermore, interventions to improve data quality certainly appear to have merit

in light of the findings of this Aim.

In the second Aim, I assessed the impact of different initiatives on the quality of patient-

provided data. I explored the effects of different types of interventions, such as policymak-

ing efforts, patient-facing tools, and informatics algorithms, on improving the quality of

10



the information collected. In relation to race and ethnicity, I found that high-level policy

changes, such as moving to a two-question format to capture race and ethnicity, increased

collection of race and ethnicity information, but did not necessarily improve the quality of

that data. However, giving patients the opportunity to review and correct the information

was, in comparison, more successful. Similarly, assessing the impact of policy change on

smoking status showed more data collection, but also more data quality issues. Results

from Aim 1 showed that family history was poorly recorded in the EHR, and therefore, I

assessed the feasibility of inferring this information from other sources as a way to over-

come the completeness issues. In this Aim, I demonstrated for the first time the feasibility

of using patients’ emergency contact information, in combination with clinical data to accu-

rately infer family history. Overall, in this aim, I demonstrated various ways interventions

can be implemented to overcome data quality issues.

In the third Aim, I used patient-provided information along with the method to infer

familial relationships developed in Aim 2 to generate new understanding of disease charac-

teristics and disease management, demonstrating that the method developed opened up new

avenues for biomedical research. This Aim focused on two aspects, the measure of disease

heritability, and assessment of screening rates among high-risk individuals. Both of these

areas of research are traditionally resource-intensive and lie in two distinct fields: genetics,

and medicine. The results of this Aim showed that EHR data can be used to support genetic

studies by providing an opportunity to study conditions previously not investigated due to

the availability of larger sample sizes in EHRs. Further, this Aim also demonstrated the

potential of EHR data to be used to assess screening rates among high-risk patients. The

results of both of these studies demonstrate that EHR data has utility far beyond supporting
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clinical care.

The contributions of this thesis include 1) an overview of the quality of patient-provided

information in clinical databases, 2) an assessment of the impact of different interventions

types on the quality of patient-provided data, 3) the development and evaluation a novel

method that uses patient-provided information to generate an unique database that can sup-

port biomedical research, and 4) the use of readily available data to understand disease risk

and assess disease screening rates among high-risk individuals. The results of the presented

studies contributed to the understanding of data quality issues concerns regarding patient-

provided information in clinical databases. Further, the studies assessed how interventions

currently affect the quality of patient-provided data, ultimately building the foundational

work of how to better collect patient-provided information as part of healthcare encounters

and how EHRs could be designed to overcome these challenges. These studies also devel-

oped and validated a novel method that relies on data readily available in EHRs to extract

familial relationships from existing clinical databases. And lastly, these studies demon-

strated that the use of inferred family history information can support the execution of large

clinical and genetic studies, having a significant impact on biomedical research.
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1.3 Limitations

This thesis has several limitations. All studies presented in this thesis heavily relied on

data available in the EHR, and therefore, are subject to limitations of EHR data to conduct

research. Fragmentation of care, for example, is an important limitation when using EHR

data for research. Patients often receive treatment at multiple healthcare systems, and there-

fore, the information available in a single institution may be incomplete. Studies from Aim

1 (studies 2 and 3), Aim 2 (studies 1 and 3), and Aim 3 (study 2) were performed at a single,

large, urban academic medical center, and as such, the findings may not be generalizable to

other institutions. Aim 2 (study 1) had a small sample size due to patient recruitment con-

straints, limiting the generalizability of the findings. Additionally, recruitment was only

conducted with English-speaking participants, limiting the patient population in the study.

Studies conducted in Aim 3 extracted phenotypes from billing codes and did not necessarily

developed a careful EHR-phenotype for each analyzed trait. Biases in billing documenta-

tion may have affected the presented results.
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Chapter 2

Review of the Literature

Some consider that disease risk prediction began in 1948 with the Framingham Heart

Study. This study successfully developed a risk prediction model for cardiovascular dis-

ease using clinical data (Dawber, Meadors, and Moore 1951). Since this study, risk assess-

ment models have been developed for a variety of diseases, creating the basis of what is

now called “precision medicine.” Precision medicine focuses on disease prevention and

treatment while considering individuals variability in genes, environment, and lifestyle

(Collins and Varmus 2015; U S National Library of Medicine, Precision medicine). Despite

the growing importance of genomics and genetic sequencing, a crucial part of precision

medicine is patient-provided information. This information is a key element for individ-

ualizing disease screening, diagnosis, and treatment (Guttmacher, Collins, and Carmona

2004). Some patient-provided information, such as a patient’s medical history, family his-

tory, allergies, and medication use, can guide clinicians to determine the best course of

action based on the risk of disease development for the patient.

Patient-provided data are data collected directly from patients or caregivers (Basch

2010; Hirsch and Abernethy 2013), and include many important elements in clinical care.

Previous work demonstrated patient-provided data to be critical in multiple tasks pertain-

ing to clinical care, including disease risk assessment (Berry et al. 1997; Claus, Risch,
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and Thompson 1994; Ozanne et al. 2013; Tyrer, Duffy, and Cuzick 2004; Wu and Orlando

2015), and medication reconciliation (Dullabh et al. 2014; Staroselsky et al. 2008; Wein-

gart et al. 2008). Further, others have demonstrated that patient-provided information can

support activities related to symptom management (Basch et al. 2009; Pakhomov et al.

2008; Weingart et al. 2005) and to disease screening and prevention (Murabito et al. 2001;

Reid et al. 2009; Staroselsky et al. 2006). Patient-provided data have also been shown to be

valuable for broader tasks, such as assessment of healthcare disparities in healthcare sys-

tems (Chin 2015; Douglas et al. 2015; Kressin 2015; Woods, Evans, and Frisbee 2016).

Family history, allergies, adherence to treatment plans and preventive services are common

examples. Less common examples may not be perceived as patient-provided information,

such as chief complaint, history of present illness, and demographic information, such as

race and ethnicity and emergency contact information. Patient-provided data are stored in

patients’ records in EHRs, often recorded by physicians or other care providers during or

after a clinical encounter (Weiner and Embi 2009; Weiskopf and Weng 2013). Many pre-

vious studies have raised issues regarding the data quality of this information in the EHR.

Incompleteness and incorrectness are two data quality issues that have frequently been re-

ported in studies focusing on the quality of patient-provided data (Ball and Lillis 2001;

Douglas et al. 2015; Kaplan 2014; Klinger et al. 2015; Kressin 2015; Lee, Grobe, and Tiro

2015; Polubriaginof, Tatonetti, and Vawdrey 2015; Qureshi et al. 2009; Staroselsky et al.

2006; Welch, Dere, and Schiffman 2015).

Figure 2.1 shows the traditional process of collecting patient-provided data. Given

that this information is now commonly stored in the EHR, reuse of this data is increasingly

common, leading to discoveries and an improved understanding of the patient (Boland et
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Figure 2.1: The traditional process of collecting patient-provided information.

al. 2015; Coopey et al. 2012; Dudley, Deshpande, and Butte 2011; Hripcsak et al. 2016;

Kohane 2011; Li et al. 2015; Lorberbaum et al. 2016b; Polubriaginof et al. 2017; Ritchie,

Andrade, and Kuivaniemi 2015; Tatonetti et al. 2012; Wang et al. 2017; Wei and Denny

2015). Informatics interventions to improve quality and therefore data reuse can target

each one of these steps. Changes can be implemented to modify how data are collected and

structured, leading to improved data reuse and the generation of new knowledge.

Data collection

The first step in the process is the collection of patient-provided information. Tradi-

tionally, practitioners have used the patient’s appointment to collect a variety of patient-

provided information. As time for patient encounters has become compressed and filled

with other tasks, opportunities to collect and record patient-provided information have

decreased. Advancements in technology allow patients to provide this data directly to

providers through patient-facing tools (Bardes 2012; Warner 2010). Such tools include
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registration forms, which can be implemented in paper or electronic format, and patient

portals, which often also provide patients with access to some of their clinical informa-

tion in addition to collecting information from them (Cimino, Patel, and Kushniruk 2001;

Collins et al. 2011; Delbanco et al. 2010; Greenhalgh et al. 2008; Grossman et al. 2017;

Halamka, Mandl, and Tang 2008; Hassol et al. 2004; Kaelber et al. 2008; Leveille et al.

2012; Nazi et al. 2010; Nazi et al. 2015; Pyper et al. 2004; Ralston et al. 2007; Reti et al.

2010; Tang and Lee 2009; Walker et al. 2011).

Patient-facing tools can be used both in inpatient and outpatient care settings, or even at

home. These tools can be an avenue for patients to review and provide health information,

reducing practitioner burden and saving time during the patient visit, while simultaneously

engaging patients in their care (Arar et al. 2011; Epstein et al. 2010; Otte-Trojel et al.

2014). Previous research studies have used patient portals to improve data quality of past

medical, surgical and social history (Arsoniadis et al. 2015), quality of EHR medication

lists (Staroselsky et al. 2008), quality of medication information (Weingart et al. 2008),

collection of smoking status (Baumgart, Postula, and Knaus 2015), and quality of family

history data (Baumgart, Postula, and Knaus 2015; Volk et al. 2007). Others have used

other patient-facing tools such as tablet applications, websites, and surveys to collect and

improve quality of patient-provided information (Facio et al. 2010; Hamilton et al. 2009;

Klinger et al. 2015; Pakhomov et al. 2008; Staroselsky et al. 2006; Sweet et al. 2014; Wu

et al. 2015; Yoon et al. 2009). The use of these tools can also be beneficial for patients.

There is also considerable evidence showing that the use of patient portals have improved

patient engagement (Greenfield et al. 1988; Hack, Degner, and Dyck 1994; Kaplan et al.

1995) and patient outcomes (Arar et al. 2011; Davis Giardina et al. 2014; Dwamena and
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Rovner 2012; Epstein et al. 2010; Otte-Trojel et al. 2014).

Regardless of how the data is collected, patients play an important role in providing their

information, and they are often an underutilized resource (Ball and Lillis 2001; Staroselsky

et al. 2006). Others have emphasized the importance of patient participation by stating

that “patient and physician must meet as equals, bringing different knowledge, needs, and

concerns” (Bardes 2012). Previous research studies have shown that patients are not only

willing to provide their information, but they find it to be a useful experience (Arar et al.

2011; Wu et al. 2013). Furthermore, multiple studies have shown that the quality of the data

collected by patients is superior to data collected in the routine clinical practice (Cohn et al.

2010; Frezzo et al. 2003; Jones, McGhee, and McGhee 1992; Porter et al. 2000; Reid et al.

2009; Selvachandran et al. 2002; Sweet, Bradley, and Westman 2002; Wuerdeman et al.

2005), demonstrating the importance of giving patients the opportunity to directly provide

their information.

Data structure

It is important to understand how patient-provided data are stored in clinical documenta-

tion. Traditionally, patients’ medical information was kept on paper charts. The purpose of

these charts was to facilitate physicians’ clinical reasoning and management of the course

of treatment while communicating important decisions and relevant information to other

members of the clinical team (Cusack et al. 2013; Engle 1991; Siegler 2010). Over time,

documentation had to incorporate not only clinically meaningful information, but also a

variety of elements pertaining to billing and reimbursement, regulations and accreditations,

19



and legal requirements (Cusack et al. 2013; Hagland 2011; Wasserman 2011). In the U.S.,

the Health Information Technology for Economic and Clinical Health (HITECH) Act, au-

thorized $27 billion in incentives for EHR adoption, resulting in the EHR adoption rates to

increase rapidly, resulting in 95% of hospitals reportedly using EHRs by 2016 (Conn 2016;

Health Information Technology 2017). The transition from manual clinical documentation

to EHR facilitated the reuse of clinical data for biomedical research, quality initiatives, and

other purposes (Hammond et al. 1980; Schriger et al. 1997, 2000).

Along with the implementation of EHR systems, there is a trend toward collecting infor-

mation using structured documentation, which facilitates reporting and data reuse but often

results in more cumbersome information entry processes, compared to narrative text. As

part of the HITECH Act, the federal government developed the Meaningful Use program,

a financial incentive program supporting the adoption of EHRs (CMS Electronic Health

Records Incentive Programs). The Meaningful Use program requires a set of data elements

to be collected in a structured format. Many of these elements are patient-provided infor-

mation, such as race and ethnicity (Centers for Medicare & Medicaid Services 2014b),

family history (Centers for Medicare & Medicaid Services 2014a), and smoking status

(Centers for Medicare & Medicaid Services 2010). The program also determined the use

of standards and terminologies to store this information in an effort to standardize the data

collected across organizations.

Rosenbloom and colleagues have described a tension between structure documenta-

tion and expressiveness (Rosenbloom et al. 2011). The use of free-text in clinical docu-

mentation versus structured data necessitates a trade-off between expressivity, flexibility,

efficiency, and ease of data reuse. Many practitioners prefer to use free-text documenta-
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tion to express subtleties and uncertainty; elements that structure documentation often does

not support. While policy change can require the documentation of patient-provided data

and storage in the EHR, concerns regarding the data quality of the information collected

remains, and the impact of implementation of new policy and tools is often poorly under-

stood.

Data reuse

With the broad availability of clinical data in electronic format, there has been a growing

interest in reusing clinical data collected during patient encounters in research. Traditional

clinical trials often rely on patient recruitment, a process that is labor-intensive and costly

(Drennan 2002; Institute of Medicine (US) Forum on Drug Discovery, Development, and

Translation 2010). EHRs store clinical data, including patient-provided data, that is col-

lected on a daily basis as part of clinical care. Use of EHR data can overcome many of

the challenges faced by traditional studies by enabling larger sample sizes with sharply

decreased costs. Data reuse can also support reproducibility of findings.

While EHR data are required to be kept in secure databases with limited access to safe-

guard protected health information, initiatives such as OHDSI (Hripcsak et al. 2015) and

i2b2 (Murphy et al. 2010) have developed strategies to support research reproducibility

while maintaining privacy (Yuan et al. 2017). These initiatives created open-source frame-

works that allow disparate teams of researchers to run the same analyses on separate private

databases, and combine the results with confidence in order to effectively achieve the bene-

fits of data aggregation on closed data. Using the OHDSI platform, Hripcsak and colleagues
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conducted the largest observational research study focusing on the characterization of treat-

ment pathways for disease, leveraging the medical records and administrative claims data

of 250 million patients (Hripcsak et al. 2016).

In addition to EHR data, other initiatives have taken place. In 2009, President Obama

created the Open Government Directive, an initiative created to make the government more

transparent. As part of this initiative, federal, state and local authorities began to release

de-identified health data. The data released was publicly accessible, available in multiple

formats, free of charge, and has unlimited use and distribution rights (Open Government

Directive). As a result of this initiative, there are currently more than 3,500 open datasets

available at HealthData.gov (HealthData.gov). In New York State, the use of open data

has already positively impacted emergency response during hurricanes, changes in policies

and medical education curriculum, patient safety, and accountability of healthcare costs

(Martin, Helbig, and Shah 2014).
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2.1 Patient-provided data

Even though clinical databases contain valuable information that is increasingly avail-

able, the use of this information in areas such as genetic research has been limited. In this

dissertation, I focus on the study of three types of patient-provided information: race and

ethnicity, family history, and smoking status.

Race and Ethnicity

Race and ethnicity are collected for many reasons, including for clinical, administra-

tive, and research purposes. Clinically, race and ethnicity are commonly used for estimat-

ing disease risk (Gail et al. 1989; Levey et al. 2009; Stevens et al. 2006) and for assessing

racial and ethnic health disparities (Dorsey et al. 2014; Douglas et al. 2015; Kressin 2015;

LaVeist, Gaskin, and Richard 2011). From an administrative standpoint, the Centers for

Medicare and Medicaid Services, through the Meaningful Use incentive program, requires

standardized collection of patients’ race and ethnicity (Centers for Medicare & Medicaid

Services 2014b). This is because race and ethnicity are a part of a patient’s socioeconomic

status, which has been discussed as a method for risk adjusting in payment reform (Buntin

and Ayanian 2017; Committee on Accounting for Socioeconomic Status in Medicare Pay-

ment Programs et al. 2016). From a research perspective, studies frequently report patients’

demographic information, including race and ethnicity.

Race and ethnicity can be collected from patients in a variety of formats and by a variety

of personnel. This information is often collected either verbally or through patient-facing

tools, such as intake forms completed during a clinical encounter. Race and ethnicity are ei-
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ther directly entered or transcribed from intake forms into the EHR (Adler and Stead 2015).

However, there are many challenges to the collection of race and ethnicity information that

may degrade the quality of this data in the EHR (Blustein 1994; Chakkalakal et al. 2015;

Gomez and Glaser 2006; Hamilton et al. 2009; Lee, Grobe, and Tiro 2015; Moscou et al.

2003). Cultural insensitivity and lack of understanding of the importance of race and eth-

nicity information are major challenges to collecting race and ethnicity information in the

hospital setting. Verbally asking patients their race and ethnicity can be an uncomfortable

situation for both healthcare workers and patients (Baker et al. 2007). A previous study

conducted in 2014 reported that registration personnel felt inadequately trained to ask pa-

tients’ race and ethnicity (Berry et al. 2014). Secondly, there is a lack of understanding

of why this information is collected and how it will be used. A study conducted in 2005

showed that information that is not known to be used by others is not accurately collected

(Nelson et al. 2005). Registration personnel are often unaware of the importance of race and

ethnicity and also do not know who uses the information. This lack of awareness presents

a barrier to registration personnel asking patients their race and ethnicity. From a patient’s

perspective, the question is often unexpected and may not come with an explanation of how

the information will be used and why it is important.

In the U.S., some effort has gone into standardizing the data structures for storing race

and ethnicity information. The Meaningful Use program specifies that race and ethnicity

data collection should follow the standard developed by the Office of Management and

Budget (OMB) (OMB 1997). According to this standard, race and ethnicity information

can be collected in either a single-question or in a two-question format. Despite this option,

there has been limited research on the impact of using a single-question or the two-question
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format on data quality. Furthermore, the OMB also established that patient-provided in-

formation be considered the gold standard for the collection of race and ethnicity data. In

this respect, there has been little effort to compare race and ethnicity information directly

provided by patients with the corresponding data stored in the EHR.

Family History

Family history has always been considered “a core element of clinical care” (Berg et al.

2009) and has been described as being a free genetic tool that almost every patient has access

to (Guttmacher, Collins, and Carmona 2004). Since the Human Genome Project, new

genomic tools have been described (Guttmacher and Collins 2003); however, family history

remains critical for identifying patients that may be at higher risk to develop disease. Family

history provides information that enables individualized disease diagnosis, treatment, and

prevention.

Several studies have shown that family history is an important element in deciding clin-

ical care. Knowing that a patient is at increased risk of developing a disease based on family

history enables disease prevention that can vary from intensive screening to prophylactic

surgery. It can also facilitate earlier diagnosis and more tailored treatment. For exam-

ple, current guidelines from the American Cancer Society define criteria for MRI eligibil-

ity in addition to mammography for breast cancer screening (Saslow et al. 2007; Smith,

Cokkinides, and Brawley 2012). The guidelines recommend that patients that have a life-

time risk of breast cancer greater than 20% by BRCAPRO (Berry et al. 1997), Tyrer-Cuzick

(Tyrer, Duffy, and Cuzick 2004), or Claus (Claus, Risch, and Thompson 1994) models
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should have screening MRI in addition to mammography. Each of these models was de-

veloped using different methods, different populations and different risk factors, and each

of them was developed to predict different outcomes, but all of them heavily rely on family

history and presence of risk factors (Ozanne et al. 2013). This is just one of many examples

of the importance of family history information for clinical care.

Given the variety of guidelines and models available, clinical decision support systems

have been developed to help clinicians deliver precision medicine. One of the earliest re-

search studies about the use of clinical decision support (CDS) systems to support precision

medicine was conducted by Emery and colleagues in 1999. The study identified that the

CDS systems available were not appropriate for use in a primary care setting (Emery 1999).

To address this problem, a system was developed to record and interpret family history data

in the primary care clinic. The system included family history relevant to breast, ovarian

and colorectal cancer (Emery et al. 1999). Over time, other clinical decision support sys-

tems were developed to manage other types of cancers, such as colorectal cancer and Lynch

syndrome, and all of these systems used family history information to provide disease risk

assessment (Welch and Kawamoto 2013).

Currently, the U.S. Preventive Services Task Force (USPSTF) recommends risk assess-

ment based on family history for some conditions such as screening for BRCA mutation

and BRCA-related cancers (Moyer and U.S. Preventive Services Task Force 2014), osteo-

porosis (U.S. Preventive Services Task Force 2011), and lipid disorders in adults (Helfand

and Carson 2008). A 2007 report commissioned by the Agency for Healthcare Research

and Quality (AHRQ) recommended that collection of family history information should in-

clude diseases in first-degree relatives and second-degree relatives from both the maternal
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and paternal side, the relatives’ age at the time of disease diagnosis, and each relatives’ race

and ethnicity (Qureshi et al. 2007).

Family history can be collected through several modalities; however, two common

methods for capturing family history information include directly from the patient using

either free-text or semi-structured patient-facing tools. Some examples of tools that have

been deployed to help collect family history include Family Healthware from the Centers

for Disease Control and Prevention (Yoon et al. 2009), Family HealthLink from The Ohio

State University Medical Center (Sweet et al. 2014), Health Heritage from University of

Virginia Health System (Baumgart, Postula, and Knaus 2015; Cohn et al. 2010), Hughes

RiskApps from the Massachusetts General Hospital (Ozanne et al. 2009), OurFamilyHealth

from Intermountain Healthcare (Hulse et al. 2011), andMeTree from Duke University (Or-

lando et al. 2011, 2013; Wu et al. 2015). Some of these tools not only capture family history

but also perform disease risk assessment based on the family history data. For example,

Family Healthware, a web-based tool developed by the Centers for Disease Control and

Prevention focused on the collection of family history to assess familial risk for six condi-

tions: heart disease, stroke, diabetes, colorectal cancer, breast cancer, and ovarian cancer

(Yoon et al. 2009). Previous studies describing tools for collecting family health history

highlighted data collection issues, such as time limitations. A study conducted in 2011 de-

scribed that the average time required for patient to input family history information using

a web-based tool was 15 minutes, in a range from 3 to 45 minutes (Owens et al. 2011).

Given the importance and utility of family history data, several initiatives have been

put implemented to increase the structured collection of family history. The goal of these

initiatives is to enable precision medicine, which requires accurate and detailed family his-
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tory data. For example, Stage 2 of the Meaningful Use program included a requirement of

clinicians to use structured data entry for family history. Under the program, eligible hos-

pitals must have recorded at least one structured family history data element for at least one

first-degree relative for 20% of their patients (Centers for Medicare & Medicaid Services

2014a).

In addition to the Meaningful Use program, other federal initiatives have focused on

collecting family history from the patient, such as the U.S. Surgeon General’s My Family

Health Portrait (My Family Health Portrait). This initiative promotes individuals to share

their information with family members and healthcare providers through a web-based ap-

plication. While most interventions have focused on collecting structured family history,

previous research has identified a tradeoff between strictly structured data, which promotes

reuse and standardization, and free-text documentation, which promotes expressiveness

(Rosenbloom et al. 2011). In fact, there has been little prior research comparing the impact

of data structures on the data quality of family history.

Smoking Status

Smoking is an important risk factor for multiple diseases, including cardiovascular

diseases and numerous types of cancer. It remains the number one cause of preventable

death in the United States, being responsible for more than 480,000 deaths annually (Na-

tional Center for Chronic Disease Prevention and Health Promotion Office on Smoking

and Health 2014). To provide patients with the resources to quit smoking, the collection of

patients’ smoking status during clinical encounters is critical (Boyle, Solberg, and Fiore
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2014). Smoking cessation can be difficult, and clinical visits are opportunities to intervene

and recommend smoking cessation programs and therapies. Obtaining a patient’s smok-

ing status is a crucial step in beginning smoking cessation interventions and monitoring

progress (Caplan, Stout, and Blumenthal 2011).

Similar to other types of patient-provided data, smoking status can be collected in a

variety of formats. Usually, this information is collected during a clinical encounter, by

clinicians verbally asking patients about their smoking status. This information is then en-

tered into the EHR, usually as part of clinical notes. It may seem that recording updates

to smoking status in a timely and accurate manner would be straightforward using modern

EHRs; however, previous research has shown that social and behavioral determinants of

health are often overlooked during clinical encounters (Adler and Stead 2015). The chal-

lenges related to the appropriate collection and documentation of smoking status include

lack of standard terminology and granularity for data collection, shifting cultural attitudes

regarding tobacco use, and potentially frequent changes in individuals’ smoking behavior

(Committee on the Recommended Social and Behavioral Domains and Measures for Elec-

tronic Health Records, Board on Population Health and Public Health Practice, and Institute

of, Medicine 2015; Winden et al. 2015).

Due to the positive impact of smoking cessation in health, tobacco control policies such

as smoke-free legislation, tobacco taxation, and smoking cessation services have been im-

plemented and have been shown to have substantial benefits in children’s health (Faber

et al. 2017).

Given the clinical importance of recording smoking status, the Meaningful Use finan-

cial incentive program for EHR adoption in the U.S. included a requirement for healthcare
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providers to capture patients’ smoking status electronically in a structured fashion (Centers

for Medicare & Medicaid Services 2010). Meaningful Use has helped to standardize data

collection of smoking status and other information. However, previous efforts to improve

patient-provided data types, such as race and ethnicity (Klinger et al. 2015; Lee, Grobe,

and Tiro 2015) and family history (Polubriaginof, Tatonetti, and Vawdrey 2015; Powell

et al. 2013) did not necessarily improve data quality through the adoption of standards for

representing information, but it often resulted in increased documentation of these data

types. There is little knowledge whether the data quality of smoking status improved after

Meaningful Use requirements were implemented.
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2.2 Knowledge gaps

This dissertation focused on several knowledge gaps related to patient-provided data.

First, there have been limited studies focusing on whether some patient-provided data types

are accurately captured in the EHR. Patient-provided data is traditionally collected by clin-

icians as part of clinical encounters and due to time constraints during clinical visits, the

appropriate collection and documentation of important information may be overlooked.

Second, due to the importance of patient-provided data, initiatives such as the Meaning-

ful Use program had the objective of ensuring that patient-provided data would be collected

and recorded in the EHR in a structured format. However, limited work has been performed

to measure the impact of the Meaningful Use program in the quality of patient-provided

data. Concerns regarding data quality of structured data in EHRs have been previously

raised. Previous studies have discussed the trade-off between the flexibility of free-text

documentation versus the easy reuse of structured data. The mandatory collection of these

data in a structured format may decrease data quality as clinicians have to rush more with

structured documentation, losing documentation flexibility which may lead to reduced ex-

pressiveness, and therefore poorer data quality.

Third, while patients are considered the reference standard for patient-provided data,

limited work has been done in assessing the impact of patients directly providing data as

compared to patient-provided data being recorded by clinical or administrative staff dur-

ing hospital encounters. Despite numerous patient-facing tools being developed, allowing

patients to contribute information to their care, there have been few attempts to assess the

quality of the information provided by patients in comparison to the data available in the
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EHR.

Fourth, there has been little work focusing on the use of informatics methods to infer

patient-provided data from clinical databases. Large amounts of clinical data are now avail-

able due to the broad adoption of EHRs, and these data could be used to infer additional

information and ultimately support research.

Fifth, there has been little work focusing on strategies to overcome the challenges of

data quality and biases in patient-provided information stored in the EHR for knowledge

generation. Clinical databases are a valuable resource of information, and the use of these

data should account for biases and data quality concerns when generating new knowledge

and supporting clinical research.
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Chapter 3

Aim 1 - Assess the quality of patient-provided data in clinical

databases

The purpose of this aim was to evaluate the quality of patient-provided data in clinical

databases. With the growing adoption of EHRs, research studies conducted on observa-

tional data can complement prospective studies. The use of EHR data not only provides

increased sample sizes and access to diverse populations but also allows for hypothesis

testing prior to the implementation of prospective studies (Benson and Hartz 2000; Berger

et al. 2009; Concato, Shah, and Horwitz 2000; Madigan et al. 2014; Ryan et al. 2012). EHR

data have been used to shed light on disease processes (Boland et al. 2015; Coopey et al.

2012; Hripcsak et al. 2016; Li et al. 2015; Ritchie, Andrade, and Kuivaniemi 2015; Wei

and Denny 2015), including genetics (Kohane 2011; Polubriaginof et al. 2017; Wang et al.

2017), and on drug effectiveness and interactions (Dudley, Deshpande, and Butte 2011;

Lorberbaum et al. 2016b; Tatonetti et al. 2012). However, there are concerns regarding the

quality of EHR data. Multiple research studies have demonstrated quality concerns with

EHR data (Ahmad et al. 2017; Aronsky and Haug 2000; Arts et al. 2002; Brennan and Stead

2000; Brown, Kahn, and Toh 2013; Hasan and Padman 2006; Hersh et al. 2013; Hogan and

Wagner 1997; Hripcsak et al. 2011b; Kahn, Eliason, and Bathurst 2010; Lei 1991; Rusanov

et al. 2014; Thiru, Hassey, and Sullivan 2003). For example, a study conducted in 2017
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Table 3.1: Description of the five dimensions of data quality.

analyzed the validity of cardiovascular data by comparing EHR data to data collected by

standardized research approaches in a cohort study. Overall, this study demonstrated that

some clinical features were better documented in the EHR than others, and therefore, data

quality concerns should be considered when using existing clinical databases for research

(Ahmad et al. 2017).

In this Aim, I analyzed dimensions of data quality for three distinct types of patient-

provided data: race and ethnicity, family history and smoking status. The purpose of the

analysis was to understand how reliable this information was in clinical databases, and

uncover opportunities for improvement. Data quality is defined along 5 dimensions: 1)

completeness, 2) correctness, 3) concordance, 4) plausibility and 5) currency (Weiskopf

and Weng 2013). Table 3.1 shows the definitions of each dimension of data quality. The

studies from this Aim describe data quality in terms of these dimensions.
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3.1 Aim 1.1 - Assessing the quality of race and ethnicity

data collected in clinical databases

Background

Race and ethnicity information has long been collected by U.S. hospitals (Adler and

Stead 2015; Hasnain-Wynia, Pierce, and Pittman 2004), and this information is frequently

reported in observational studies that use electronic health record (EHR) data. Race and

ethnicity are commonly used for estimating disease risk (Gail et al. 1989; Levey et al.

2009; Stevens et al. 2006) and for assessing racial and ethnic health disparities (Dorsey

et al. 2014; Douglas et al. 2015; Kressin 2015; LaVeist, Gaskin, and Richard 2011). The

use of race and ethnicity as a proxy for socioeconomic or as a marker for disparities in

health care is being increasingly discussed (Bach et al. 2004; Buntin and Ayanian 2017;

Committee on Accounting for Socioeconomic Status in Medicare Payment Programs et al.

2016).

The United States Centers for Medicare and Medicaid Services (CMS) “Meaningful

Use” financial incentive program for EHR adoption includes the collection of patients’ race

and ethnicity as one of its requirements (Centers for Medicare & Medicaid Services 2014b).

The Meaningful Use program adopted as a model for race and ethnicity data collection

the standard developed by the Office of Management and Budget (OMB) (OMB 1997).

According to this standard, race and ethnicity information can be collected in either a single

question or in a two-question format. It also established that patient-provided information

be considered the gold standard for the collection of race and ethnicity data.

35



Race and ethnicity are typically collected in healthcare settings at the time of regis-

tration. Although EHRs now include structured fields for collection of patient-provided

data such as race and ethnicity information, previous studies report this information is of-

ten not accurate in the EHR (Blustein 1994; Chakkalakal et al. 2015; Gomez and Glaser

2006; Hamilton et al. 2009; Lee, Grobe, and Tiro 2015; Moscou et al. 2003; Polubriaginof,

Tatonetti, and Vawdrey 2015). A possible way to improve the quality of race and ethnicity

information in clinical databases is to have patients report this information themselves via

a paper or electronic form.

Objectives

The purpose of this study was to evaluate data quality of race and ethnicity data na-

tionally as well as in a large healthcare system in New York. Specifically, I evaluated the

completeness, correctness and concordance of race and ethnicity information in clinical

databases.

Research Questions

• What proportion of race and ethnicity data is clinically informative in observational

clinical databases?

• How do updates in race and ethnicity fields over time change data quality of this

information in EHR?
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Methods

Data

United States National Databases

I analyzed data from two large observational health databases: HCUP and the Optum

Labs Data Warehouse. The HCUP (Healthcare Cost and Utilization Project) database is a

hospital transactional database created by AHRQ that includes over 90 million inpatient,

emergency visits, and ambulatory surgery encounters from multiple hospitals in the United

States (Healthcare Cost and Utilization Project (HCUP)). The Optum Labs Data Ware-

house is an administrative claims database of more than 70 million commercially insured

and Medicare Advantage enrollees, with greatest representation in the Midwest and South

US census regions (Optum Data Assets; Wallace et al. 2014).

I examined HCUP data from 2000 to 2011 and Optum data from 2000 to 2016. The two

databases stored race and ethnicity information using slightly different categories. Both

included “White,” “Black or African American,” “Hispanic or Latino” and “Unknown” as

categories, so I only included only these four options and reported the remaining groups

collectively as “Other.” A detailed description of these datasets, including the categories

used to collect race and ethnicity information, sample size and timeframes, is shown in

Table 3.2.

Academic Healthcare System in New York City

I conducted a retrospective analysis of race and ethnicity data recorded for patients that

had at least one inpatient, outpatient, or emergency department visit from January 2014

37



Table
3.2:

D
escription

ofthe
data

sources,including
tim

efram
esand

race
and

ethnicity
categories.*N

um
bersdo

notsum
to

100%
because

race
and

ethnicity
w

ere
collected

separetely.

38



through December 2015 at an academic health system that serves a racially and ethnically

diverse population in 10 hospital campuses in and around New York City, including a qua-

ternary care hospital. The Ambulatory Care Network (ACN) consists of 14 primary care

practice sites and more than 50 specialty care clinics. The academic health system provides

millions of visits annually, including 2.2 million outpatient visits, 286,000 emergency de-

partment visits, and 126,000 inpatient discharges.

Race and ethnicity data were collected by the health system in one of two ways: 1) pa-

tients completed paper forms as part of the registration process, or 2) registration clerks ver-

bally asked patients about their race and ethnicity. To collect race and ethnicity, the health

system used a two-question format, the first field capturing the patient’s race (“American In-

dian or Alaska Native,” “Asian,” “Black or African American,” “Native Hawaiian or Other

Pacific Islander,” “White,” “Unknown,” “Other,” or “Declined to Answer”), and the sec-

ond field capturing the patient’s ethnicity (“Hispanic or Latino,” “Not Hispanic or Latino,”

“Declined to Answer,” or “Unknown”). Race and ethnicity information were collected at

every encounter and stored in a centralized location in the EHR.

From the same academic health system, I examined data from the Hospital Consumer

Assessment of Healthcare Providers and Systems (HCAHPS) Survey administered to pa-

tients who had a hospital stay from January 2014 through December 2015. The HCAHPS

Survey was sent via U.S. Mail after hospital discharge. To collect race and ethnicity, the sur-

vey used a two-question format, with one field capturing race (“White,” “Black or African

American,” “Asian,” “Native Hawaiian or other Pacific Islander,” “American Indian or

Alaska Native”), and the second field capturing ethnicity (Hispanic or Latino origin or Not

Hispanic).
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Analysis

Since each data source collected race and ethnicity using different categories, I de-

scribed groups that were available in all data sources and reported the remaining groups

collectively as “Other.” I performed descriptive statistics for “White,” “Black or African

American,” “Hispanic or Latino,” and “Other racial and ethnic groups.” Patients classi-

fied as “Unknown,” “Other” or “Declined to Answer” were considered to have clinically

uninformative data; I combined these categories into a larger group designated as “Unin-

formative” for further analysis. Completeness was assessed based on the percentage of

“Uninformative” race and ethnicity in the database. Using EHR data, I also calculated de-

scriptive statistics on the frequency of race/ethnicity pairs, since these two fields are highly

correlated.

Changes in race and ethnicity information in the EHR

I analyzed changes to race and ethnicity recorded for the same patient over multiple

visits, using system logs from the EHR. Patients with two or more visits during the study

period were included in this analysis. I reported descriptive statistics on changes of race

and ethnicity pairs over time.

A race/ethnicity pair was recorded during each clinical encounter. To quantify the fre-

quency of changes recorded for a patient’s race and ethnicity, each race and ethnicity pair

was scored based on the amount of information it contained. Race and ethnicity pairs were

broken down into concept pairs, with one concept for race and another for ethnicity, and

each concept was scored individually. Each informative concept received a score of 1,
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and each uninformative concept received a score of 0. For example, “White”, “Hispanic”

would receive a score of 2 since both the race and ethnicity concepts are informative. Like-

wise, “White” with “Unknown” ethnicity would receive a score of 1, and “Unknown” race,

“Unknown” ethnicity received a score of 0. The scores were compared for each pair chrono-

logically.

The changes in the content of the race and ethnicity pairs were classified as: information

loss, neutral, or information gain. If the patient had the same score in the previous and

current visit (i.e., the difference between the previous and current race/ethnicity score was

0), it was considered to be neutral. If the score from the second visit was greater than the

previous visit, it was considered information gain. Finally, if the score from the second visit

was less than the previous visit, it was considered information loss. I reported descriptive

statistics of the aggregated scores.

Comparison to patient-provided data

I assumed patient-reported data to be the reference standard for race and ethnicity data

collection. To assess differences between patient-reported race and ethnicity information

and data from observational databases, I evaluated race and ethnicity reported in the HC-

AHPS survey. Because I had patient-level data from the New York academic healthcare

system from both the EHR and the HCAHPS survey I reported the concordance between the

patient’s race and ethnicity information in the EHR and the self-reported from HCAHPS.
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Comparison to Census data

To assess how well the data from the EHR and the HCAHPS survey represented the

population of the community in which the academic health system was located, I compared

the EHR and HCAHPS race and ethnicity distribution by ZIP Code of the patient’s home

address to the race and ethnicity distribution for that ZIP Code as reported by the U.S. Cen-

sus from the American Community Survey 5-Year Demographic and Housing Estimates.

For each ZIP Code, I calculated the percent difference between the Census data and the

EHR data for each race and ethnicity category. For this analysis, I included ZIP Codes that

had at least 50 patients in the EHR and HCAHPS data.

Results

United States National Databases

There were 165,975,722 combined patient records in the HCUP and Optum databases.

Of these, 25.3% and 26.0%, respectively, had uninformative race and ethnicity (Table 3.2).

Academic Healthcare System in New York City

In the New York academic health system, 2,338,421 patients had at least one visit during

the two-year study period. As shown in Table Table 3.2, 57.9% of patients did not have race

or ethnicity identified in the EHR. The distribution of all race-ethnicity pairs is described

in Table 3.3.
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Table 3.3: Frequency of race and ethnicity pairs in academic health system electronic health record.
*Patients designated as Hispanic in single question format surveys were assumed to be White-
Hispanic.

Changes in race and ethnicity information in the EHR

I identified 1,205,796 patients who had more than one visit to the academic health sys-

tem. There were 161,114 modifications made to race or ethnicity fields in the EHR for

147,061 distinct patients (12% of total population). There were 0.13 changes to race and

ethnicity fields made per patient, on average, over the two-year study period (max=18).

Modifications to race or ethnicity often improved completeness (i.e., a change was made

from an ‘uninformative’ concept to a specific race or ethnicity category), but this was not

always the case. Overall, I observed that 60% of the changes made in race and ethnicity

improved completeness (information gain), 31% of the changes resulted in information loss,

and 9% of the changes were information neutral.

The most frequent change resulting in information gain was an update of previously

documented race “Unknown” and ethnicity “Unknown” to race “White” and ethnicity “Not

Hispanic;” the most frequent change resulting in information loss was a modification from
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race “White” and ethnicity “Hispanic” to race “Unknown” and ethnicity “Unknown;” and

lastly the most frequent change that did not affect the amount of race and ethnicity infor-

mation collected was an update from race “Unknown” and ethnicity “Unknown” to race

“Declined to answer” and ethnicity “Declined to answer.”

Comparison to patient-provided data

During the study period, 25,664 unique patients responded to the HCAHPS survey. Of

those, 1,255 patients completed the survey more than once, and 356 had conflicting self-

reported race and ethnicity information.

After excluding cases with conflicting self-reported race and ethnicity information,

86.3% provided meaningful race or ethnicity data from a total of 25,308 patients. Among

these patients, race and ethnicity information from the EHR was available for 25,014 pa-

tients.

Among patients with both self-reported and EHR race and ethnicity information, 16,625

(66.5%) patients provided race or ethnicity information that was discordant with data

recorded in the EHR. Table 3.4 provides a list of the most common discrepancies between

EHR and self-reported race and ethnicity data. While 6,540 had both race and ethnicity as

“Uninformative,” self-reported data provided meaningful race or ethnicity information for

5,533 of these patients, 84.6% of patients that did not otherwise have meaningful informa-

tion recorded.
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Table 3.4: Ten most common discrepancies between EHR and self-reported data.

Comparison to Census data

There were 44 ZIP Codes with more than 100 patients in the EHR and HCAHPS

datasets. When comparing the distribution of race and ethnicity categories between the

EHR, HCAHPS and the Census datasets, I observed that, on average, the EHR data con-

tained a higher proportion of uninformative race than the Census (63% vs. 14%, Figure

3.1). However, when performing the same comparison using patient-reported information,

I observed that the rate of uninformative race in the HCAHPS dataset was similar to the

Census dataset (18.1% vs. 14%, Figure 3.1). Table 3.5 contains the distribution of race

and ethnicity categories for each ZIP Code included in the analysis.
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Figure 3.1: Comparison of the average Census, EHR and HCAHPS racial and ethnic distribution
among 44 ZIP Codes that contained at least 100 patients in the EHR and HCAHPS datasets.

Discussion

Accurate collection of race and ethnicity information is key to recognizing disparities

that affect racial and ethnic minority populations (Dorsey et al. 2014; Douglas et al. 2015;

Kressin 2015; LaVeist, Gaskin, and Richard 2011). Furthermore, this information can be

used to perform disease risk assessment both for individuals and populations (Gail et al.

1989; Levey et al. 2009; Stevens et al. 2006). Despite its importance, previous studies

have reported challenges in collecting race and ethnicity data (Blustein 1994; Chakkalakal

et al. 2015; Gomez and Glaser 2006; Hamilton et al. 2009; Lee, Grobe, and Tiro 2015;

Moscou et al. 2003). For example, a study conducted in 2015 reported data quality issues

by comparing patients’ race and ethnicity information from different data sources within

the same institution (Lee, Grobe, and Tiro 2015).

In this study, a large proportion of patients did not have informative documentation
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regarding their race and ethnicity, either in the national observational databases or in the

urban academic health system. These findings suggest that it is challenging to capture this

information despite the inclusion of race and ethnicity data collection as part of the U.S.

Meaningful Use program. When analyzing race and ethnicity data in the EHR from a single

institution, changes over time did not always improve the data quality of race and ethnicity.

Indeed, information loss occurred in 31% of updates.

Previous studies have illuminated some of the challenges of obtaining race and ethnicity

from patients in the healthcare delivery setting. First, verbally asking patients their race

and ethnicity may be perceived as a sensitive topic by both hospital personnel and patients

(Baker et al. 2007; Berry et al. 2014). Second, there is a general lack of understanding

of why this information is collected and how it will be used (Nelson et al. 2005). This

lack of understanding poses a barrier to registration personnel asking patients their race and

ethnicity. From the patients’ perspective, the question is often unexpected and may not be

framed with an explanation of how the information will be used and why it is important.

Some have argued that collecting race and ethnicity in the healthcare setting is increas-

ingly unnecessary in the context of inexpensive genetic testing (Ng et al. 2008). Race

and ethnicity have been used in medicine as a proxy to genetics. However, it is well estab-

lished that traits occur in gradients rather than in pre-determined race categories. Currently,

with the increased number of mixed populations, heritage can be more informative than the

racial category itself. Additionally, with the improvements in genetics and the decreased

cost of genetic testing, in the foreseeable future, we could rely on genetic testing instead

genetic proxies for determination of disease risk. However, genetic testing availability will

not facilitate the elimination of health disparities that have social determinants. Therefore,
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until health equity is achieved, collection of race and ethnicity data is necessary to measure

health disparities.

Until we transition to an era of ubiquitous genetic testing and health equity, one way to

improve the quality and completeness of patient demographics in electronic health records

is to allow patients to review and request updates to their information. In this study, the HC-

AHPS survey, a sources of patient-provided information had high rates of completeness for

race and ethnicity, with only 7.1% of the records documented as “Unknown.” This finding

suggests that patients are willing to provide their race and ethnicity information when they

have the opportunity to do so. A study conducted at one Veterans Affairs (VA) Medical

Center compared patient-reported race and ethnicity information to the data available in

the EHR. Investigators mailed 300 surveys to select patients that received care primarily at

the VA clinic. Of the completed surveys, 15.7% contained race and ethnicity information

discordant from the EHR (Hamilton et al. 2009). I compared race and ethnicity informa-

tion available in the EHR to data from HCAHPS survey. Among patients with survey data,

86.3% provided informative race and ethnicity information and 66.5% of the answers were

discordant with the EHR data. More than 84% of patients with uninformative race and

ethnicity in the EHR provided meaningful information in the survey.

Patient-facing tools give patients the opportunity to fill out or review their information

directly, removing some of the cultural sensitivity of having someone verbally asking for

this information. A previous study demonstrated improvement in race and ethnicity data

quality after using a custom patient portal application on a tablet computer to allow patients

to review their demographic information (Polubriaginof et al. 2016). Interestingly, when

self-reporting, many Hispanic patients did not seem to consider themselves to belong to

49



any of the OMB-defined race categories, as the majority identified their race as ‘Other’ and

their ethnicity as “Hispanic or Latino” when self-reporting. Such phenomena have been

previously described (Berry et al. 2014; Bhalla, Yongue, and Currie 2012; Markus 2008;

Robbin 1999) and this behavior raises questions about the efficacy of the two-question

format (i.e., collecting race and ethnicity as separate fields) that is now widely used, as

well as the meaning of the constructs of “race” and “ethnicity” for patients. These findings

suggest that patient-facing tools that allow patients to provide race and ethnicity information

before, during, or after their healthcare encounters could markedly improve data quality.

This could be accomplished in many ways, but one useful method is to use patient portals.

In summary, race and ethnicity provide valuable information for precision medicine and

critical information for efforts to eliminate socially determined health disparities. However,

the quality of these data is concerning. While the use of genetics is not feasible at a popu-

lation level, the use of patient-facing tools have the potential of dramatically improving its

quality and ultimately facilitate disease risk assessment and identification and monitoring

of health disparities.

Conclusion

This study demonstrates that collection of race and ethnicity, particularly among diverse

populations, can be problematic. Poor data quality for race and ethnicity can negatively im-

pact clinical care decisions that are based on disease risk adjustment models incorporating

race and ethnicity. Moreover, incomplete or inaccurate race and ethnicity data prevents

public health professionals and policy-makers from measuring and reducing racial and eth-
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nic healthcare disparities. To address these challenges, we recommend patient-reported

data be used to improve quality and completeness of race and ethnicity.
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3.2 Aim 1.2 - Assessing the quality of family history data

collected in clinical databases

Background

Family history has always been considered critical component in care delivery (Berg

et al. 2009) and it is described as a free genetic tool that almost every patient has access

to (Guttmacher, Collins, and Carmona 2004). Since the Human Genome Project, new

genomic tools have been described (Guttmacher and Collins 2003); however, family history

remains critical for identifying patients that may be at higher risk to develop disease. Family

history provides information that enables individualized disease diagnosis, treatment, and

prevention.

Several studies have shown that family history is an important element in determin-

ing the appropriate clinical care. Knowing that a patient is at increased risk of developing

a disease based on family history enables disease prevention that can vary from intensive

screening to prophylactic surgery, early diagnosis and/or early and tailored treatment (Berry

et al. 1997; Claus, Risch, and Thompson 1994; Saslow et al. 2007; Smith, Cokkinides, and

Brawley 2012; Tyrer, Duffy, and Cuzick 2004). Currently, the U.S. Preventive Services

Task Force (USPSTF) recommends risk assessment based on family history for some con-

ditions such as screening for BRCA mutation and BRCA-related cancers (Moyer and U.S.

Preventive Services Task Force 2014), osteoporosis (U.S. Preventive Services Task Force

2011), and lipid disorders in adults. (Helfand and Carson 2008) A 2007 report commis-

sioned by the Agency for Healthcare Research and Quality (AHRQ) recommended that
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collection of family history information should include diseases in first-degree relatives

and second-degree relatives from both the maternal and paternal side, the relatives’ age at

the time of disease diagnosis, and each relatives’ race and ethnicity (Qureshi et al. 2007).

In addition to guidelines and recommendations encouraging the family history data be-

ing incorporated into clinical practice, several initiatives have been put in place to increase

the structured collection of family history. These goals of these initiatives are focused on

collecting data to enable precision medicine, where there is a need for accurate and detailed

family history data. For example, Stage 2 of the Meaningful Use program included a re-

quirement of clinicians to use structured data entry for family history. Eligible hospitals

had to have for 20% of their patients at least one structured family history data element, for

at least one first-degree relative in the electronic health record (Centers for Medicare &

Medicaid Services 2014a). A key hallmark in this initiative is the strict data structuring in-

volved, and yet, previous studies on data quality have shown that clinicians describe a need

for free-text documentation for expressiveness of documentation (Rosenbloom et al. 2011).

The contrast between clinician desires and goals of federal initiatives present challenges to

finding optimal ways to collect and store family history.

Objectives

The purpose of this study was to assess the quality of family history data captured in

an established commercial EHR system at a large academic medical center. This study

focused on the differences between family history data collected using structured fields vs.

free-text. Data quality was measured in terms of completeness.
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Research Questions

• Does the method (free-text vs structured template) of capturing family history infor-

mation impact the quality of family health history data in the EHR?

Methods

With Institutional Review Board approval, I conducted a retrospective analysis of data

from the Allscripts EHR (Allscripts Corp., Chicago IL) used at NewYork-Presbyterian Hos-

pital/Columbia University Medical Center from 2007 to 2014.

This study focused on the differences between family history data collected using struc-

tured fields vs. free-text. Each note template in the EHR contained one or more “obser-

vation” data elements. An observation could be a text box, a Boolean (e.g., a checkbox

or radio button), or numeric value. Text boxes could be fully free-text, or they could be

constrained to enumerated data types, allowing only options from a predefined list, such

as “low,” “medium,” or “high.” The EHR system contained 1,560 active templates for

documentation. Each of these templates contained one to several hundred discrete obser-

vations. Observations had an internal code and description specified using a configuration

tool in the EHR. While the EHR vendor provided some predefined observations, the vast

majority were locally defined and do not comport with any existing standard terminology.

There were 140,038 observations defined in the EHR; of those, 653 had an internal code

containing the words “fam hx” or “family hist.”

I identified the note templates that contained these observations and queried the EHR

database to identify the number of times each note template was used, as well as the number
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Figure 3.2: Ambulatory OB/GYN Antepartum Record: the most-used template note that contained
structured family history observations.

of unique patients who had at least one of these observations recorded. The number of

times each note template was used varied from 1 to 79,505, and number of unique patients

varied from 1 to 67,276 for each note template. The note templates that contained the most

commonly used free-text and structured text observations were selected for further analysis.

The most-used note template that contained structured family history observations was

the Ambulatory OB/GYN Antepartum Record (Figure 3.2). This note template was used

in our institution for obstetric patients in the institution’s ambulatory care network. Overall,

this note template was used 79,505 times for 67,276 unique patients. The most-used free-

text family history observation was the Neurology Admission Note (Figure 3.3). This note

was used for every patient admitted to the neurology service. The Neurology Admission

Note was used 49,656 times for 22,642 unique patients.

For both the Ambulatory OB/GYN Antepartum Record and the Neurology Admission

Note templates, 10,000 family history observation entries were randomly selected from
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Figure 3.3: Neurology Admission Note: the most-used template note that contained free-text family
history observation.

notes between 2007 and 2014. Manual annotation by a clinical expert (FP) based on pre-

determined categories was performed in all 10,000 free-text observations, as well as in all

structured observations that occurred more than once (9,121 observations). The categories

were defined based on the content of information in the observations and the standards

endorsed by AHRQ. (Qureshi et al. 2007) The categories that were used are 1) presence of

disease in specified relative(s), 2) presence of disease in unspecified relative(s), 3) absence

of disease and 4) other (Table 3.6). The annotation results were compared between the

datasets. I performed descriptive statistics for each group, reporting the frequency of each

category per group. Data quality was assessed based on completeness, where the presence

of more detailed information was considered to be more complete. For example, records

that captured presence of disease in a specified relative were considered more complete

than records where the affected family member was not recorded.
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Results

The results of the manual annotation of family history observations is summarized in

Figure 3.4. Overall, the majority of observations (58.7%) captured by the Neurology Ad-

mission Note (free-text) included information regarding family history of disease along with

the family member affected. However, when analyzing data from the observations from the

Ambulatory OB/GYN Antepartum Record (structured), only 5.2% contained information

specifying the patient’s relative. In contrast, 7.3% of the observations from the Neurol-

ogy Admission Note (free-text) contained information categorized as “Presence of disease

in unspecified relative(s),” and 50.1% of the observations from the Ambulatory OB/GYN

Antepartum Record (structured) captured this type of information.

Furthermore, 27.5% of the observations from the Neurology Admission Note (free-text)

captured information about the absence of family history of a certain disease, while only

0.9% of the observations from the Ambulatory OB/GYN Antepartum Record (structured)

captured information with this level of detail.

A large proportion (39.2%) of the observations from the Ambulatory OB/GYN An-

tepartum Record (structured) were classified as “Other.” The vast majority of these cases

referred to family history described as “N/A.” Such description provides no information

of the patient’s family history. In contrast, 7.2% of the observations from the Neurology

Admission Note (free-text) were classified as “Other.” These observations often described

that patients were not verbal and therefore family health history could not be collected or

simply described as “None.”
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Figure 3.4: Comparison of categories from free-text (purple) and structured (blue) family history
observations.

Discussion

When analyzing family history data collected using structured vs. free-text data ele-

ments, the annotations revealed that there was a considerable difference between the content

of the family history information collected.

Overall, notes that used the free-text template were more comprehensive and often con-

tained more useful information compared with structured templates. The free-text note

template captured information regarding the family history of disease along with the family

member affected more frequently than the structured note template, 58.7% vs. 5.2%, re-

spectively. In the structured template shown in Figure 3.2, text could be optionally entered

in the free-text box on the right, which could be used to capture additional information such

as relatives, deny presence conditions, or even to record other types of information such as

age, type of cancer, etc. While both note templates provided the opportunity to collect addi-

tional information in free-text, the free-text note template captured affected relatives more

frequently; however, neither consistently captured other relevant details, such as the age of
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onset and vital status of the relatives.

Similarly, the free-text note template captured the absence of family history of disease

more consistently than the structured template. Even though the structured template in-

cluded the option “No” for the set of diseases of interest, information on the absence of

family history of disease was rarely reported.

Additionally, both note templates were used to record information not pertinent to fam-

ily history. Those observations classified as “Other” included indicators such as “intu-

bated,” and “no family at bedside and pt nonverbal.” These are important pieces of infor-

mation about the patient but should not be reported as part of the family history section.

The majority of the cases classified as “Other” in the structured template referred to family

history described as “N/A.” It was unclear what was meant by “N/A.” Possible interpre-

tations were that this could indicate that a patient would not or could not inform, had no

knowledge or even that such questions were not asked.

While notes that used the free-text note template captured more comprehensive family

history information, neither template captured complete family history as recommended

by AHRQ (Qureshi et al. 2007). Despite the well-known and well-described importance

of family history, several barriers exist in its collection and analysis, as well as in its use

for personalized management based on patients’ risk assessment. Barriers to collect family

history can be classified in two major categories: clinician-related and patient-related.

Clinician-related barriers include lack of time to obtain, organize and analyze family

history information; lack of resources and lack of reimbursement for such activity; under-

estimation of the value of family history data by the clinician; lack of expertise in obtaining

and analyzing family history information; lack of standards for family history collection;
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and lack of clear guidelines to assess patient risk based on family history. The first, and per-

haps the most critical barrier for family history collection is lack of time to obtain, organize

and analyze family history information (Green 2007; Guttmacher, Collins, and Carmona

2004; Rich et al. 2004; Scheuner et al. 2009; Sussner, Jandorf, and Valdimarsdottir 2011;

Wilson et al. 2012a). Obtaining complete and accurate family history information, orga-

nizing it in a pedigree and analyzing family history data is extremely time-consuming. Fur-

thermore, it is not sufficient to collect family history from patients only once. It is important

to regularly update family history information, analyze it, and reconcile conflicting infor-

mation. A 1989 study surveying four genetic clinics reported that the time patients spent

in the first consultation varied from 3–5.5 hours, with over half of this time spent before or

after the patient’s appointment (Bernhardt and Pyeritz 1989). A 2011 study demonstrated

that while the majority of clinicians (77.5%) reported collecting cancer family history on

their patients, only 26.0% included minimum adequate cancer family history. Furthermore,

57.4% of clinicians updated family history information just once a year, and 22.2% of clin-

icians never updated family history information for their patients at all. When questioned

about the barriers to collecting cancer family history, clinicians reported lack of time as

the primary issue (Sussner, Jandorf, and Valdimarsdottir 2011). The study focused on

cancer family history, but it demonstrated how challenging family history is to collect and

maintain, in general. Lack of resources and reimbursement for family history collection is

another important barrier (Green 2007; Rich et al. 2004; Scheuner et al. 2009; Wilson et al.

2012a). Clinicians are not reimbursed for the time spent on family history collection and

risk assessment. In fact, in 2009, lack of incentives from the government was being de-

scribed as one of the challenges prohibiting adequate collection of family history (Sussner,
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Jandorf, and Valdimarsdottir 2011). In addition to misaligned incentives, lack of standards

has also been reported as a challenge in this area (Ginsburg and Willard 2009; Green 2007;

Sussner, Jandorf, and Valdimarsdottir 2011). The lack of standards for data elements, ter-

minology, structure, interoperability, and clinical decision support rules for family history

data is a huge obstacle to implement it in the clinical workflow. This point is underscored

by the existence of multiple EHR templates available to assist physicians in capturing fam-

ily history data. Furthermore, limited knowledge and lack of expertise in obtaining and

analyzing family history by clinicians is another barrier that has been described in sev-

eral studies (Ginsburg and Willard 2009; Green 2007; Guttmacher, Collins, and Carmona

2004; Scheuner, Sieverding, and Shekelle 2008; Scheuner et al. 2009; Sussner, Jandorf,

and Valdimarsdottir 2011).

There are also barriers to collecting accurate family history data on the patient side.

These include uncertainty about biological family composition; uncertainty about the health

history of family members; inaccuracies in patient recall, language-related and cultural

factors. Clinicians often cite uncertainty about biological family composition as a chal-

lenge when collecting family histories, especially in cases where the patient is part of a

large biological family (Green 2007; Peace, Valdez, and Lutz 2012; Sussner, Jandorf, and

Valdimarsdottir 2011). Language-related and cultural factors can also be a factor that neg-

atively affects collection (Sussner, Jandorf, and Valdimarsdottir 2011).

There are several initiatives to facilitate and encourage the collection and use of family

history data. These initiatives are focused on the use of these data for precision medicine,

where the need for accurate and detailed family history data is great. Three such initiatives

are: Stage 2 of the federal “Meaningful Use” EHR financial incentive program, the U.S.
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Surgeon General’s “My Family Health Portrait,” and the HL7 Clinical Genomics Family

History/Pedigree Model.

Meaningful Use Stage 2

Stage 2 of the Meaningful Use program included a requirement of clinician’s to use

structured data entry for family history. Eligible hospitals had to have for 20% of their

patients at least one structured family history data element, for at least one first-degree

relative in the electronic health record (Centers for Medicare & Medicaid Services 2014a).

As discussed above, lack of incentives to collect family history is described as an important

barrier. The Meaningful Use program is a strong incentive for U.S. hospitals to collect

family history information. Although the determined measure of at least one structure data

entry for at least one first-degree relative is far from what is considered complete family

history, it is a start.

U.S. Surgeon General’s “My Family Health Portrait”

Since family history data collection is extremely time-consuming, innovative tools have

been created to facilitate this process. Some are leveraging patient-facing tools to collect

family history data (Cohn et al. 2010; Giovanni and Murray 2010; Hulse et al. 2011; Murray

et al. 2013; Orlando et al. 2013; Ozanne et al. 2009; Wu et al. 2015; Yoon et al. 2009). The

U.S. Surgeon General’s My Family Health Portrait, (My Family Health Portrait) a federal

initiative to collect family history, is a website that allows patients to collect family history

information and share their information with family members and healthcare providers.

A study conducted in 2011 described that the average time taken to input family history
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information was 15 minutes, in a range from 3 to 45 minutes (Owens et al. 2011). Instead

of having a healthcare provider questioning patients about their family history, patients

can enter their own data, saving clinician time–the major barrier for family history data

collection. This practice also engage patients in their care and gives them time to review

their family information and contact relatives and question them about information that

they may not know. Engaging patients in this fashion encourages more accurate family

history information. Of note, one advantage of using electronic questionnaires is that certain

questions can be made mandatory, and branching logic can be employed. In contrast, in a

clinical encounter, the doctor may forget to ask certain questions or may skip questions due

to lack of time.

HL7 Clinical Genomics Family History/Pedigree Model

It is important to emphasize that to fully represent family history information, data rep-

resentation must be multidimensional since it is necessary to not only capture the disease

but also the relative affected, age of onset, and cancer type if applicable. Moreover, devel-

opment of standards to support interoperability is essential for sharing data for clinical care

and clinical research purposes. In the domain of family history, HL7 has a workgroup that

specifically works on development of models for representing family history. The work-

group has developed the HL7 Clinical Genomics Family History (Pedigree) Model (HL7

Version 3 Implementation Guide: Family History/Pedigree Interoperability, Release 1 - US

Realm). It is a standard for capturing data within a system as well as to transmit family his-

tory data between systems. It includes patient’s family and familial relationships, diseases,

genetic data and risk analysis. This HL7 standard is already used by the U.S. Surgeon Gen-
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eral’s My Family Health Portrait application, and there is reason to believe that it will be

important for EHR vendors and other stakeholders to adopt this standard moving forward.

Limitations

The study analyzed only observations contained in two note templates (out of a total of

1,560 available) in our EHR. One note template was used in the ambulatory care setting and

the other template was used for hospital admissions. Although the templates were selected

based on the fact that they were the most frequently used templates at our institution, it is

unclear if analysis of other EHR templates would yield different conclusions. Additionally,

manual annotations were conducted by a single clinical expert, limiting the evaluation of

the annotations.

Conclusion

In summary, this study focused on the differences between family history data collected

using structured fields vs. free-text. While observations from the free-text note template

were more comprehensive than structured observations, neither was ideal for capturing pa-

tients’ complete family history. 58.7% of observations from the free-text note template

captured information regarding the family history of disease along with the family member

affected vs. only 5.2% from the structured note template. However, neither consistently

captured other relevant details, such as the age of onset and vital status of the relatives. Nu-

merous efforts have been made to collect family history data in the electronic format and to

facilitate its use in the clinical setting, but several barriers remain unsolved. Patient-facing
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tools for collecting family history data may improve data quality of family history in EHRs.
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3.3 Aim 1.3 - Assessing the quality of smoking status

collected in clinical databases

Background

Smoking is an important risk factor for multiple diseases, including cardiovascular dis-

eases and numerous types of cancer. It remains the number one cause of preventable death

in the United States (National Center for Chronic Disease Prevention and Health Promo-

tion Office on Smoking and Health 2014). The collection of patients’ smoking status during

clinical encounters is critical to providing patients with resources to quit smoking. Smok-

ing cessation can be difficult, and clinical visits are opportunities to intervene and recom-

mend smoking cessation programs and therapies. Obtaining a patient’s smoking status is

a crucial step in beginning smoking cessation interventions and monitoring progress (Ca-

plan, Stout, and Blumenthal 2011). It may seem that recording updates to smoking status

in a timely and accurate manner would be straightforward using modern electronic health

records. This may not be the case for several reasons, including lack of standard termi-

nology and granularity for data collection, shifting cultural attitudes regarding tobacco use,

and potentially frequent changes in individuals’ smoking behavior (Committee on the Rec-

ommended Social and Behavioral Domains and Measures for Electronic Health Records,

Board on Population Health and Public Health Practice, and Institute of, Medicine 2015;

Winden et al. 2015). As the American author, Mark Twain, famously quipped, “Giving up

smoking is the easiest thing in the world. I know because I’ve done it thousands of times.”

Given the clinical importance of smoking status, the “Meaningful Use” financial in-
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centive program for electronic health record (EHR) adoption in the U.S. included a require-

ment for healthcare providers to capture patients’ smoking status electronically in structured

fashion (Centers for Medicare & Medicaid Services 2010). Meaningful Use has helped to

standardize data collection of smoking status and other information. However, even with

improved standards for representing information, data quality issues have persisted in many

patient-provided data types, such as race and ethnicity (Klinger et al. 2015; Lee, Grobe,

and Tiro 2015) and family history (Polubriaginof, Tatonetti, and Vawdrey 2015; Powell

et al. 2013). Previous studies on data quality have shown that clinicians describe a need for

free-text documentation for expressiveness of documentation; however, these affordances

challenge data reuse (Rosenbloom et al. 2011).

Appreciating the challenges associated with data quality and the balance between the

expressiveness of free-text and the benefits of structured data, I set out to answer a very

simple question: how many of our hospital’s patients are known to be active smokers? I

undertook a study to analyze how smoking status is currently being collected in a large

academic medical center and to evaluate the quality of this data in EHRs.

Objectives

The purpose of this study was to assess how smoking status was collected in a large aca-

demic medical center, and to evaluate the quality of smoking status data in EHRs. Specifi-

cally, this study assessed the completeness, concordance and plausibility of smoking status

recorded during hospitalizations.
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Research Questions

• How is smoking status information captured in the EHR?

• What is the quality of smoking status information captured in the EHR?

Methods

I conducted a retrospective analysis of smoking status data from the Allscripts Sun-

rise EHR (Allscripts Corp., Chicago IL) used at NewYork-Presbyterian Hospital/Columbia

University Medical Center. All patients who had at least one hospital discharge during 2016

were included in the study.

The EHR system contained hundreds of active templates for documentation. Each of

these templates contained one-to-several hundred discrete observations. An observation

could be a text box, a Boolean (e.g., a checkbox or radio button), or numeric value. I iden-

tified observations in which the description contains the stemmed words “smok,” “cigar”

or “tobacco” and queried the EHR database to identify the number of times each one of

these observations was recorded during the study period. Smoking status information was

recorded either as free-text (i.e., when the parameter is “Cigarettes (packs per day)”) or

structured (i.e., selected from a picklist) observations. The picklist was often shown as a

set of radio buttons, such as with a parameter labeled “Tobacco Use / Smoking Status,” and

one possible choice in the picklist was “Never smoker.”

Prior exploratory analysis showed that 94% of patients had at least one structured smok-

ing status observation recorded in a structured field. Based on this finding, I only used

the structured data for the remainder of the analyses. Some of the structured observations
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Table 3.7: Description of the mapping from smoking status categories as recorded in the EHR to
the four clinically actionable categories. Smoking status categories documented in the EHR that
utilize the standard criteria defined by the Meaningful Use program are highlighted in bold.

captured smoking status following the standard criteria set by the Meaningful Use pro-

gram. The program specifies eight distinct categories for collecting smoking status: “Cur-

rent every day smoker,” “Current some day smoker,” “Former smoker,” “Never smoker,”

“Smoker, current status unknown,” “Unknown if ever smoked,” “Heavy tobacco smoker,”

and “Light tobacco smoker.” CentersforMedicareandMedicaidServicesCMS:2014wn I

classified smoking status from the EHR into one of four clinically actionable categories:

“Current smoker,” “Former smoker,” “Never smoker,” and “Unknown smoking status” as

described in Table 3.7.

Overall, data quality of smoking status was assessed based on the percentage of patients

with consistent and informative smoking status available (i.e., not classified as “Unknown”

in the database, or not conflicting if recorded multiple times). Patients with discrepancies

in recording smoking status, such as in the previous example, were classified as: plausible
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Table 3.8: Description of the mapping from smoking status categories as recorded in the EHR to
the four clinically actionable categories. Smoking status categories documented in the EHR that
utilize the standard criteria defined by the Meaningful Use program are highlighted in bold.

Figure 3.5: Changes of smoking status overtime. Dashed changes demonstrate implausible dis-
crepancies and continuous lines represent plausible changes in longitudinal data. The number of
changes recorded in our sample is reported in parentheses and the percentage it represents for each
category is included in the Figure.

and implausible. Plausible cases occurred when the change was feasible to happen such

as a change from “Never smoker” to “Current smoker”), and implausible occurred when

the conflict was not possible to happen or in cases where there was a loss of information.

For example, a change from “Former smoker” to “Never smoker”). More examples of this

classification are illustrated in Figure 3.5.
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Additionally, I analyzed the discrepancies in smoking status generated when inconsis-

tent information was recorded for a patient during the hospital visit in different clinical notes

in the EHR. I also investigated the discrepancies of smoking status recorded by different

provider types (e.g., nurses, medical doctors, care coordinators, social workers). To assess

whether provider type had an impact on the number of discrepancies observed, I calculated

the number of distinct providers’ roles recording smoking status for each admission. I then

compared the number of distinct provider roles for patients with and without discrepancies

in the recorded smoking status.

I also calculated the time interval (in days) between smoking status documentation

events to better understand the distribution of the data during the one-year study period.

For example, a time interval of zero means that two observations were recorded on the

same day, and a time difference of one indicates that a second observation was recorded

one day after the first observation.

Results

Overall, I reviewed 48,909 patients having 64,451 hospital encounters in the one-year

study period. I identified 203,048 observations of smoking status for 47,849 unique patients

across 62,988 distinct hospital encounters. No smoking status documentation was identified

for 1,463 visits from 1,060 distinct patients, representing 2% of the number of hospital

encounters and 2% of the overall number of patients. In other words, 98% of patients

and 98% of hospital visits had documentation regarding the patient’s smoking status. Of

those records with smoking status, 59,663 visits (93%) from 45,822 patients (94%) had this
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Figure 3.6: Smoking status of patients seen in 2016.

information recorded in structured format. After pre-processing, 45,771 patients (94%),

including 59,593 visits (92%) and 129,134 observations were classified into four distinct

smoking status categories. The number of observations and the mapping to the simplified

smoking categories are described in Table 3.7. The description of smoking status data

during the one-year study period is described in Table 3.8. Patients had an average of 1.3

visits/patient during the study period, with the maximum number of visits a single patient

being 23 visits.

How many patients are smokers?

Overall, 54.2% of the patients in our sample were classified as non-smokers, 6.5% as

former smokers, 2.9% as current smokers and 3.2% as having unknown smoking status.

The remaining 33.2% of patients had at least one discrepant assessment of smoking sta-

tus documented. I determined that only 63.6% of our study population had a consistent,

unchanging smoking status during the one-year study period (Figure 3.6).
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Longitudinal One-year Review

Overall, 15,048 patients (32.9%) had smoking status recorded in a single note, and

30,723 patients (67.1%) had more than one note with documentation regarding smoking

status. Among the patients with more than one note with smoking status documented, I

identified 83,363 changes in documented smoking status collected longitudinally during

the one-year study period.

Among the changes in smoking status documentation, 32,582 (39.1%) had a conflicting

smoking status. These discrepancies were observed in records from 15,207 distinct patients,

representing 33.2% of our study population. However, because the study used longitudinal

data and smoking status is not a static concept (i.e., it can change over time), some of these

discrepancies are feasible. For example, someone that never smoked can become a smoker.

Others, however, are implausible. For example, logically, a “never smoker” cannot become

a “former smoker”, nor can a “current smoker” become a “never smoker,” unless some of

the data were recorded incorrectly. Other changes are plausible but not good from a data

quality standpoint. Having a patient with documentation regarding smoking status and later

not having smoking status (smoking status as “unknown”) demonstrates loss of informa-

tion. Implausible changes as well as changes from a well-defined smoking status to an

uninformative category were considered discrepancies due to data quality issues. I iden-

tified 17,757 discrepancies (implausible changes and loss of information changes), which

constituted 54.5% of changes, in 10,836 distinct patients. These discrepancies are repre-

sented in Figure 3.5 as dashed lines, while the other changes are represented in continuous

lines.
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Figure 3.7: Number of smoking status changes by time interval documentation. Time interval is
measured in days. Number of status changes is represented in logarithmic scale. CDF = cumulative
distribution function.

On average, the time interval between different smoking status documentation was 11

days, with a minimum of 0 days (i.e, same-day documentation), and a maximum of 362

days. Most patients (80.6%) had a time interval between documentation events of less than

or equal to 10 days, with 61.1% of patients having a subsequent documentation event within

one day of the previous event. (Figure 3.7)

Duplicate Assessments During the Same Hospital Encounter

While it is plausible to observe changes in smoking status over the course of one year,

smoking status should not change during the same hospital encounter. Given this rationale,

I considered all changes during a hospital encounter to reflect a data quality issue, since

smoking status should be consistent throughout a single admission. During the study pe-
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Table 3.9: Description of smoking status data during the one-year study period.

riod, I identified 59,663 distinct encounters from 45,822 patients. Of those, 32.2% of the

hospital encounters (19,176 visits) had at least one conflicting smoking status recorded,

which includes 14,798 patients (32.3% of our cohort of patients).

Discrepancies Among Various Provider Roles

For patients with a smoking status recorded in a structured field, 70.8% were docu-

mented as part of nursing notes, 12.9% came from social work notes, 11.6% from physician

notes, and the remaining (4.7%) from notes entered by other health care professionals.

Among hospital encounters with more than one assessment of smoking status, encoun-

ters with documentation from a single role of provider (e.g., nurse) had fewer discrepancies

compared with encounters containing smoking status assessments from providers with dis-

parate roles (Table 3.9). For example, if multiple nurses documented smoking status dur-

ing an admission, the number of distinct provider roles would be equal to one. However, if

multiple nurses and multiple physicians documented this information, then the number of

distinct provider roles would be two.
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Discussion

The Centers for Medicare and Medicaid Services (CMS) Meaningful Use program re-

quires participating healthcare providers to record patients’ smoking status in a structured

fashion (Centers for Medicare & Medicaid Services 2010). The program specifies eight

distinct categories for collecting smoking status: “Current every day smoker,” “Current

some day smoker,” “Former smoker,” “Never smoker,” “Smoker, current status unknown,”

“Unknown if ever smoked,” “Heavy tobacco smoker,” and “Light tobacco smoker.”

I identified smoking status assessments (either represented in free-text or structured

fields) for 98% of patients and 98% of visits. When focusing on structured documentation,

I observed that 94% of patients and 92% of visits had at least one structured smoking status

observation recorded. When analyzing smoking status data in the EHR, I transformed the

Meaningful Use categories and other smoking status assessments into four clinically ac-

tionable categories: “Current smoker,” “Former smoker,” “Never smoker,” and “Unknown

smoking status.” I observed that a 33.2% of the patients had inconsistencies in the docu-

mented smoking status during the one-year study period and 32.3% of the patients had at

least one discrepancy during a single visit. These discrepancies suggest that reliable infor-

mation on smoking status may not be available for a large number of patients.

Going back to the initial question of “how many patients are current smokers?” – the

answer is, I do not know. Based on the analysis conducted in this study, more than half of

the patients during the one-year study period were recorded consistently as non-smokers

and just 2.9% were recorded consistently as current smokers. In contrast, other population-

based studies estimate that 15.1% of adult Americans smoke (Jamal et al. 2016). One-third
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of the studied population had inconsistencies in their smoking status, making the determi-

nation of tobacco use for these patients difficult. While smoking status was documented

in 98% of hospital encounters (and therefore the criteria of Meaningful Use were satis-

fied), our one-year sample of hospital encounters did not contain consistent smoking status

information for 36.4% of patients.

Despite the well-known and well-described importance of collecting smoking status,

our institution’s EHR did not have a centralized location to store smoking status informa-

tion. Smoking status was collected as part of clinical notes, in either structured or free-text

format. The fact that disparate healthcare providers recorded this information in several dif-

ferent notes resulted in many inconsistencies across notes. Further complicating the matter,

different note templates allowed for different granularities of smoking status data collec-

tion. Some templates included a free-text box that allowed clinicians to enter details such

as intensity of smoking, number of cigarettes per day, or when the patient stopped smoking.

Other templates had only the Meaningful Use-required structured fields embedded.

Since I used longitudinal data, and smoking status is not a static concept (i.e., it can

change over time), I classified smoking status changes into two distinct categories: plausi-

ble and implausible. In this study, implausible changes constituted 21.3% of all changes.

Previous research has also identified consistency issues regarding tobacco use recorded

in different notes in EHR systems. For example, in 2016 a research study used natural

language processing to parse clinical notes and extract smoking status from various clini-

cal notes. The authors identified several inconsistencies when comparing smoking status

recorded in clinical notes (Wang et al. 2016).

Inconsistencies can be attributed to challenges in the data collection process, includ-
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ing clinician-related and patient-related factors. Clinicians may not inquire at all about a

patient’s smoking status, or they might ask the question in a manner that leads to bias in

the patient’s answer. Depending on how clinicians phrase the question, patients may not

feel comfortable answering. On the other hand, patients may have their own motivations to

be less than truthful when providing smoking status information to clinicians, or they may

inexplicably provide different smoking status responses depending on the person asking.

I conducted an analysis to identify whether hospital encounters with more than one

clinical note without discrepancies were more likely to have documentation from a single

provider role than encounters with discrepancies. Interestingly, I identified that encounters

with multiple notes documented by the same type of provider had less discrepancies than

patients with documentation from multiple types of providers. The difference I observed

in discrepancies may be explained by the fact that clinicians usually do not read notes from

other clinicians’ roles. Previous studies have shown that most clinical notes are not read by

the entire clinical team (Hripcsak et al. 2011a). Instead, clinicians may be more inclined

to read clinical notes from their peers (i.e., within the same provider role). While it is

important for multiple providers to assess patients’ smoking status, barriers to accessing

previously documented information regarding tobacco use by healthcare providers may

increase vulnerabilities that allow discrepancies to propagate.

One limitation of our analysis was the use of data from only a single year and from

only a single healthcare system. During a one-year period within our EHR system, I found

that 33.2% of patients had discrepancies in documentation of smoking status. Furthermore,

54.5% of those inconsistencies were deemed implausible (Figure 3.5). Most patients had

changes recorded within 10 days of the previous smoking status assessment. Given the
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short time difference between documentation events, even plausible changes (e.g., convert-

ing from “current smoker” to “former smoker”) seem unlikely. These data quality issues

demonstrate just some of the considerable challenges healthcare providers and secondary

users of EHR data. If I have difficulty in identifying a single meaningful and consistent

smoking status using only one-year worth of data, the use and sharing of multiple years of

data present even bigger challenges. For example, for encounters with conflicting smoking

statuses, which one should be used in a clinical decision support system related to smoking

cessation? Or which one should be reported to external organizations? Efforts using smok-

ing status information from EHRs, including future smoking cessation initiatives, should

further investigate patients identified as “Unknown smoking status” as well as patients with

discrepancies in smoking status.

Recommendations

In this study, I observed that smoking status is currently being collected as part of clinical

notes by multiple healthcare providers, and for almost all patients. The categories used are

not consistent across clinical notes, recording smoking status in different granularities. I

propose the use of four distinct clinically actionable categories: “Never smoker,” “Current

smoker,” “Former smoker,” and “Unknown smoking status.” More detailed information

for each one of these could also be collected in a standardized fashion, such as “packs/day”

and start and quit date. Currently, this additional information is being captured in free-

text format and inconsistent across notes (e.g. some use packs/day while other record this

information as cigarettes/day).

In our institution, smoking status is not stored in a centralized location, but is rather
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being collected as part of disparate clinical notes. The current system of data collection

of smoking status presents challenges consistently collecting this information. While it is

important for multiple providers to collect patients’ tobacco use information, the fact that

this information is collected and stored in various notes without standardization makes it

challenging for clinicians to know if the patient already provided their smoking status to

other clinicians, and whether this information is longitudinally consistent. In an attempt to

solve these challenges, I propose to store patients’ smoking status in a centralized fashion

and having clinicians verifying this information in every encounter by asking patients about

tobacco use.

One way to improve the consistency and correctness of patient-reported information,

such as smoking status, is to allow patients to review and update their own information.

Previous studies have shown that self-reported smoking status is accurate (Patrick et al.

1994; Wagenknecht et al. 2011). This task can be facilitated by health information tech-

nology in many ways, including the use of patient portals and tablet computers for this

task. Patient-facing tools have been used for collection of multiple patient-provided data

types such as race and ethnicity, family history, symptoms, medication reconciliation and

adherence. These studies have shown that patients are willing to provide and review their

information (Dullabh et al. 2014; Pyper et al. 2004; Weingart et al. 2008), that EHR data

is often incomplete or inaccurate (Ball and Lillis 2001; Douglas et al. 2015; Kaplan 2014;

Klinger et al. 2015; Kressin 2015; Lee, Grobe, and Tiro 2015; Polubriaginof, Tatonetti, and

Vawdrey 2015; Qureshi et al. 2009; Staroselsky et al. 2006; Welch, Dere, and Schiffman

2015), and that patients can identify discrepancies, provide useful information and help

keeping records up-to-date (Arsoniadis et al. 2015; Staroselsky et al. 2006, 2008; Wu et
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al. 2014). Studies have also shown that there are many benefits of involving patients in

their care, including improving patient engagement, patient satisfaction, health behaviors

and health status as well as helping to attract and retain patients (Arar et al. 2011; Davis

Giardina et al. 2014; Dwamena and Rovner 2012; Epstein et al. 2010; Otte-Trojel et al.

2014). With patient-facing tools, patients could provide their smoking status based of the

four clinically actionable categories, as described above. Patients providing this informa-

tion to a computer could also mitigate the potential biases introduced by clinicians asking

the question.

Conclusion

In summary, while 98% of hospital encounters at our institution during 2016 contained

information regarding the patients’ smoking status, 32% of the encounters had discrepan-

cies in smoking status information. For encounters with more than one clinical note doc-

umenting smoking status information, 54% of the subsequent documentation events had

implausible changes. While other sources suggest that approximately 15% of adult Amer-

icans smoke, only 2.9% of our patients were consistently documented as current smokers.

This finding demonstrates that while Meaningful Use has improved data collection of smok-

ing status in terms of completeness, we may not be appropriately identifying patients that

smoke. Centralized documentation with clinically actionable smoking status categories

available for data collection, and implementation of patient-facing tools that allow patients

to directly record their information, may help improve data quality of smoking status in

EHRs.
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Chapter 4

Aim 2 - Evaluate methods for improving quality of

patient-provided data

Health information technology (HIT) is often touted as a means to improve the quality

and efficiency of healthcare (Chaudhry et al. 2006). A number of HIT-related interven-

tions have focused on collecting patient-provided information, which can be categorized

in three different groups: 1) broad policy initiatives, 2) patient-facing tools, and 3) algo-

rithms and informatics methods for collecting and using patient-provided data. While these

interventions have generally been successful in improving the quantity of patient-provided

information, there is a limited understanding of the impact these interventions have on data

quality.

Policy initiatives

HIT-related policy changes can significantly impact healthcare. A major component

of the 2009 Health Information Technology for Economic and Clinical Health (HITECH)

Act focused on increasing adoption of EHRs (Blumenthal and Tavenner 2010; Blumen-

thal 2009). In order to achieve this goal, financial incentives through the Meaningful Use

program were made available to institutions in the United States, resulting in over 95%

of hospitals reportedly using EHRs by 2016 (Conn 2016; Health Information Technology
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2017). The Meaningful Use program required providers to collect patient-provided data

such as race and ethnicity (Centers for Medicare & Medicaid Services 2014b), family his-

tory (Centers for Medicare & Medicaid Services 2014a), and smoking status (Centers for

Medicare & Medicaid Services 2010) in a structured fashion in the EHR. To date, there

has been little research on the impact of Meaningful Use for improving the data quality of

race and ethnicity, family history, and smoking status in EHRs (Chakkalakal et al. 2015;

Douglas et al. 2015; Klinger et al. 2015).

Another example of a federal policy initiative that has impacted healthcare delivery in

the United States is the Hospital Consumer Assessment of Healthcare Providers and Sys-

tems (HCAHPS) survey. Currently, the Centers for Medicare & Medicaid Services (CMS)

require hospitals to administer HCAHPS surveys after patient discharge to measure patient

satisfaction and experience. These measures are tied to reimbursement, which can lead to

gain or loss of a percentage of the Medicare payments, transforming patient experience into

a financial priority for hospitals. (Hospital Consumer Assessment of Healthcare Providers

and System) As part of the HCAHPS survey, patients are requested to provide demographic

information, along with feedback regarding their medical care and hospital stay.

While broad policy initiatives may have increased the prevalence of certain patient-

provided information in EHRs, such policies have not been evaluated for their impact on

the data quality of the information collected.
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Patient-facing tools

HIT interventions have also been developed to supply patients with access to some

of their clinical information through patient portals, and also to collect information using

similar types of interventions. Online patient portals are now available in many healthcare

systems, allowing patients to view laboratory test results, medications, problem lists, and

health summaries, refill prescriptions, and schedule appointments (Caligtan et al. 2012;

Cimino, Patel, and Kushniruk 2001; Collins et al. 2011; Greenhalgh et al. 2008; Halamka,

Mandl, and Tang 2008; Hassol et al. 2004; Kaelber et al. 2008; Maher et al. 2015, 2016;

Masterson Creber et al. 2016; Nazi et al. 2010; O’Leary et al. 2015; Prey, Restaino, and

Vawdrey 2014; Pyper et al. 2004; Ralston et al. 2007; Reti et al. 2010; Tang and Lee 2009;

Wilcox et al. 2016). More recently, with the OpenNotes initiative, some healthcare provider

organizations are also enabling patients to review their own medical notes via online portals

(Delbanco et al. 2010; Grossman et al. 2017; Leveille et al. 2012; Nazi et al. 2015; Walker

et al. 2011). Computer applications have also been deployed by some hospitals to collect

patient-provided information. Patient-facing tools exist for collecting information such as

medical history, family history, preventive services information such as screening tests and

vaccines, and medication reconciliation (Arsoniadis et al. 2015; Feero 2013; Giovanni and

Murray 2010; Hoyt et al. 2013; Hulse et al. 2010; Murray et al. 2013; Peace, Bisanar, and

Licht 2012; Pyper et al. 2004; Staroselsky et al. 2006, 2008; Wilson et al. 2012a; Wu et al.

2014; Yoon, Scheuner, and Khoury 2003).

While numerous patient-facing tools exist, questions regarding the quality of the data

collected remain. Efforts have focused on providing information to patients and collecting

85



information from them. However, there have been limited attempts to demonstrate whether

patient-provided information collected through patient-facing tools have equal or higher

quality than data collected by providers.

Algorithms and informatics methods focusing on using

patient-provided data

Algorithms and informatics methods have been developed to use the data already avail-

able in clinical databases to support biomedical research. Natural language processing

(Friedman, Hripcsak, and Shagina 1999) and EHR phenotyping (Hripcsak and Albers

2013) are important methods that support EHR data reuse for research studies. More re-

cently, initiatives such as Informatics for Integrating Biology & the Bedside (i2b2) (Mur-

phy et al. 2010) and Observational Health Data Science and Informatics (OHDSI) (Hripc-

sak et al. 2015) sought to produce open-source frameworks that allow different teams of

researchers to run the same analyses on separate clinical databases, and combine the re-

sults with confidence, an important step towards reproducibility in biomedical research.

Through the OHDSI platform, Hripcsak and colleagues conducted a 250-million patient

observational research study focusing on the characterization of treatment pathways for

disease, leveraging the medical records and administrative claims data from multiple coun-

tries (Hripcsak et al. 2016).

While many methods and frameworks have been developed to make discoveries from

EHR data, efforts assessing the quality of data available and improving these data sets using

informatics methods have been scarce. The use of patient-provided information in general
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has been limited, likely due to the missingness and incompleteness of these data in these

datasets. There has been little research on the potential impact of informatics methods to

improve availability and quality of patient-provided data in clinical databases. For instance,

on one hand, family history is difficult and time-consuming to collect directly (Green 2007;

Guttmacher, Collins, and Carmona 2004; Rich et al. 2004; Scheuner et al. 2009; Sussner,

Jandorf, and Valdimarsdottir 2011; Wilson et al. 2012b). On the other hand, emergency

contact information, a patient-provided data element that often contains family relationship

information, is requested from patients at nearly all hospitals. There have been few efforts

to deduce family relationship from emergency contact information to discover family his-

tory, even in research. Methods that glean useful information from data that are already

commonly collected can enhance the utility of large databases, further supporting discov-

eries and clinical research.
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4.1 Aim 2.1 - Analyze the impact of various interventions

on the quality of race and ethnicity information

Background

Race and ethnicity are commonly used for estimating disease risk (Gail et al. 1989;

Levey et al. 2009; Stevens et al. 2006) and for assessing health disparities (Dorsey et al.

2014; Douglas et al. 2015; Kressin 2015; LaVeist, Gaskin, and Richard 2011), and these

characteristics are frequently reported in observational studies that rely on EHR data. The

goal of health information technology (HIT) is to improve the quality and efficiency of

healthcare. In the United States, the Meaningful Use financial incentive program required

that EHRs collect patients’ race and ethnicity in a structured fashion (Centers for Medicare

& Medicaid Services 2014b; Rao et al. 2011). The Meaningful Use program adopted the

model for race and ethnicity data collection developed by the Office of Management and

Budget (OMB) (OMB 1997). According to this standard, race and ethnicity information

can be collected either in a single question or in a two-question format. It also established

that patient-provided information should be considered the gold standard for the collection

of race and ethnicity data.

Previous research on the quality of race and ethnicity data recorded in EHRs was con-

ducted with small groups of selected patients, and did not include analysis on the impact

of the Meaningful Use program on the quality of these data (Hamilton et al. 2009; Klinger

et al. 2015). Because of the critical importance of race and ethnicity information for ad-

dressing health disparities and for assessing disease risk, I undertook a study to assess how
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different interventions impacted the data quality of race and ethnicity. Specifically in this

study, I focused on whether data quality improved over time as a result of implementing

Meaningful Use requirements, and the impact of allowing patients to directly provide or

curate their race and ethnicity information.

Objectives

The purpose of this study was to analyze the impact, separately, of a policy and an

informatics intervention on the quality of race and ethnicity information. Specifically, this

study analyzed the impact of the Meaningful Use program and patient-facing tools, such as

patient surveys and a pacing-facing tablet application, on the quality of race and ethnicity

data.

Research Questions

• What is the impact of Meaningful Use on the data quality of race and ethnicity infor-

mation?

• Does allowing patients to provide their race and ethnicity information change the

data quality of this data?

Methods

To analyze the impact of policy change, I conducted a pre-/post- comparison of the

percentage of race and ethnicity data that was informative as recorded in the EHR to analyze

the impact of the Meaningful Use program. Additionally, for the patients that had both
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EHR data and a completed HCAHPS survey, I compared the usefulness of the information

provided by patients to what was stored in the EHR. Lastly, I analyzed the impact of a local

informatics intervention in the quality of race and ethnicity information using data from a

block-randomized controlled trial.

Policy change - Meaningful Use program

I conducted a retrospective analysis of race and ethnicity data recorded for unique pa-

tients who visited NewYork-Presbyterian Hospital/Columbia University Medical Center

(NYPH/CUMC) from 2004 to 2014. Before Meaningful Use Stage 1, race and ethnic-

ity data were collected using a single field. The following categories could be entered in

that field: “American Indian or Alaska Native,” “Asian,” “Black or African American,”

“Hispanic or Latino,” “Native Hawaiian or Other Pacific Islander,” “White,” “Unknown,”

“Other,” or “Declined to Answer.” In response to Meaningful Use requirements, our in-

stitution implemented a two-question format for race and ethnicity data collection, where

one field captured a patient’s race (“American Indian or Alaska Native,” “Asian,” “Black

or African American,” “Native Hawaiian or Other Pacific Islander,” “White,” “Unknown,”

“Other,” or “Declined to Answer”), and a second field captured the patient’s ethnicity (“His-

panic or Latino,” “Not Hispanic or Latino,” “Declined to Answer,” “Unknown”). I obtained

race and ethnicity data collected during the study years and from before and after Meaning-

ful Use changes were implemented. I performed descriptive statistics on the frequency and

quality of data captured using the EHR. Our institution attested compliance to Meaningful

Use Stage 1 requirements at the end of 2012; therefore my analysis segmented records from

2004–2012 as pre-Meaningful Use and from 2013–2014 as post-Meaningful Use. When pa-
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tients had multiple visits to the institution, I only used data from the most recent visit. Pa-

tients classified as “Unknown,” “Other” or “Declined to Answer” were considered to have

clinically uninformative data. I combined these categories into a larger category designated

as “Uninformative.” Quality was assessed based on the percentage of “Uninformative” race

and/or ethnicity in the database.

Patient-facing tools – United States National Databases

As previously described in Aim 1.1, I conducted a retrospective study to assess the

quality of race and ethnicity information using data from HCUP and Optum Labs Data

Warehouse, two large observational databases. To assess the difference in race and ethnic-

ity data quality between national databases and patient-provided datasets, in addition to the

HCUP and Optum databases, I examined the dataset generated from the National Health

and Nutrition Examination Survey (NHANES). NHANES collects data from 5,000 U.S.

adults and children per year (Disease Control and Prevention 2007). Among other infor-

mation, it collects race and ethnicity in a single-question format, with the response coded

as “White,” “Black or African American,” “Hispanic or Latino,” “Not Hispanic or Latino,”

or “Unknown.” I used NHANES data from 1999 to 2011 as a source of patient-provided

race and ethnicity data, and reported the percentage of patients with uninformative race and

ethnicity data.

Patient-facing tools - Academic Healthcare System in New York City

As reported in Aim 1.1, I previously assessed the quality of race and ethnicity data from

the EHR at an academic health system that serves a racially and ethnically diverse popula-
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tion in 10 hospital campuses in and around New York City. To assess differences between

patient-reported race and ethnicity information and data from the EHR, I conducted a ret-

rospective analysis using data from the EHR of the academic medical center and from the

Hospital Consumer Assessment of Healthcare Providers and Systems (HCAHPS) Survey.

I identified patients who had at least one hospital encounter from January 2014 through De-

cember 2015. Among these patients, I identified patients who had answered the HCAHPS

survey. The HCAHPS survey collected demographic information from hospital patients in

the form of a document sent via U.S. Mail after discharge. To collect race and ethnicity

data, the survey used a two-question format to collect race (“White,” “Black or African

American,” “Asian,” “Native Hawaiian or other Pacific Islander,” “American Indian or

Alaska Native”), and ethnicity (“Not Spanish/Hispanic/Latino,” “Puerto Rican,” “Mexican,

Mexican American, Chicano,” “Cuban,” and “Other Spanish/Hispanic/Latino”). I assumed

patient-reported data to be the reference standard for race and ethnicity data collection. I

reported the concordance rate between the patient’s race and ethnicity information in the

EHR and the self-reported information from the HCAHPS survey.

To assess the impact of allowing patients to review their race and ethnicity information

directly, I utilized a custom patient portal application on a tablet computer where patients

reviewed and corrected their race and ethnicity information obtained from the institution’s

EHR. As part of a randomized controlled trial, I recruited 65 patients who were admitted

through the emergency department and provided them with the tablet computer to review

their demographics information. I analyzed and reported descriptive statistics on the num-

ber of patients that make modifications to their records as well as the most common changes

made.
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Figure 4.1: Frequency of race and ethnicity categories before and after Meaningful Use attesta-
tion. *Patients designated as Hispanic in single question format surveys were assumed to be White-
Hispanic.

Results

Policy change - Meaningful Use program

As shown in Figure 4.1, before Meaningful Use was implemented (from 2004–2012),

37.3% of patients did not have race or ethnicity identified in the EHR. After Meaningful

Use was implemented, 49.4% of patients did not have an identified race, and 36.5% did not

have an identified ethnicity. However, we observed a significant increase in the percentage

of patients classified as Hispanic or Latino after Meaningful Use implementation (19.1%

to 31.9%, p=2.62e-97).

Patient-facing tools – United States National Databases

There were 165,975,722 combined patient records in the HCUP and Optum databases.

Of these, 25.3% and 26.0%, respectively, had uninformative race and ethnicity. There were

71,916 records in the NHANES survey, and only 6.4% contained uninformative race and
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ethnicity. Table 4.1 includes a description of the data sources along with the race and

ethnicity categories.

Patient-facing tools - Academic Healthcare System in New York City

As reported in Aim 1.1, 2,338,421 patients had at least one visit during the two-year

study period and 57.9% of patients did not have race or ethnicity identified in the EHR.

During the study period, 25,664 unique patients responded to the HCAHPS survey. Of

those, 1,255 patients completed the survey more than once, and 356 (28.4%) had conflicting

self-reported race and ethnicity information. After excluding cases with conflicting self-

reported race and ethnicity information, 86.3% provided meaningful race or ethnicity data

from a total of 25,308 patients. Among these patients, race and ethnicity information from

the EHR was available for 25,014 patients.

Among patients with both self-reported and EHR race and ethnicity information, 16,625

(66.5%) patients provided race or ethnicity information that was discordant with data

recorded in the EHR. While 6,540 had both race and ethnicity as “Uninformative” in the

EHR, the self-reported data provided meaningful race or ethnicity information for 5,533

(84.6%) of these patients, that did not otherwise have meaningful information recorded.

In the randomized trial that assessed patient-reported demographic data entered at the

time of hospital admission, 65 patients were recruited. Of those, 35 (53.85%) made changes

to their race and/or ethnicity (30 patients edited both, four patients edited ethnicity only, and

one patient edited race only). Analysis of all of the “Uninformative” categories for race and

ethnicity demonstrated that the majority of patients were willing to provide their informa-

tion. Among the randomized trial study patients, 32 had “Uninformative” race information
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and 42 had “Uninformative” ethnicity documented in the EHR. After patients reviewed and

optionally edited their information, the race of only six (18.75%) patients, and the ethnic-

ity of 13 (30.95%) patients remained “Uninformative.” Of the 20 patients who verified

or modified their ethnicity to be “Hispanic,” the majority did not consider their race to be

available in the list of options; 10 patients recorded or retained their race as “Other,” and

two as “Unknown.”

Discussion

Categories defined by the Meaningful Use program for collecting race and ethnicity

are based on current standards published by the Office of Management and Budget (OMB)

in 1997 (Rao et al. 2011). Based on these standards, self-reporting using two separate

questions is the preferred method for collecting data on race and ethnicity (OMB 1997).

When comparing ethnicity data before and after Meaningful Use implementation, we

observed a significant increase in the percentage of patients identified as Hispanic. Im-

plementing the two-question format allowed us to better identify our Hispanic population;

however, the ethnicity of 36.5% of our patients was still unidentified after Meaningful Use

compared to 37.3% before Meaningful Use. In terms of race, 37.3% of patients were labeled

“Unidentified” before Meaningful Use versus 49.4% after Meaningful Use. This increase

in unidentified patients may be due to the difference in how data was collected in the two

time periods. Based on the previous single-question format, collecting only ethnicity data

would have identified a patient’s race/ethnicity, whereas in the two-question format, both

race and ethnicity had to be collected separately.
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The appropriate collection of race and ethnicity information is key to recognizing dis-

parities that affect minority populations (Kressin 2015). Furthermore, this information can

be used to perform risk assessment both for individuals and populations. Our findings sug-

gest that EHR changes implemented because of Meaningful Use improved the collection

of race/ethnicity data for our Hispanic population; however, we still have a considerable

number of patients without meaningful information for both race and ethnicity.

The comparison between survey data and data from large observational databases

demonstrated that patients are willing to provide their racial information leading to higher

data quality of race and ethnicity data in these databases. However, 28.4% of patients that

completed the HCAHPS survey more than once reported conflicting data. Most of these

cases were patients recording more than one race in one survey and reporting a single race

in another survey response or patients that chose to report their ethnicity in one survey but

not in another.

When comparing ethnicity data before and after patient review through an inpatient

portal, we observed that patients were willing to review their information and make changes

when needed. The majority of the patients with uninformative race and ethnicity in the EHR

changed these values to more meaningful concepts. Interestingly, our Hispanic patients did

not seem to consider themselves to belong to any of the OMB-defined race categories as

the majority identified their race as “Other” and often entered “Hispanic,” “Latino” or their

country of origin in a free-text field.

Taking the findings from HCAHPS survey responses to demographic questions as well

as the patient review of race and ethnicity data in their health record, these findings raise

questions about the efficacy of the two-question format (i.e., collecting race and ethnicity
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data collection as separate fields) that is now widely used, as well as the clarity of the

difference between “race” and “ethnicity” for patients. While patient-facing tools do appear

to capture race and ethnicity data more effectively than other methods, the current categories

might be confusing or insufficient for patients to self-report.

Conclusion

This study found many challenges in the collection of race and ethnicity. Policy change

efforts such as the Meaningful Use program resulted in better collection of ethnicity. How-

ever, a large proportion of patients remain without race and ethnicity information in the

EHR. The use of patient-facing tools can dramatically improve the data quality of this in-

formation, potentially improving identification of health care disparities and supporting

disease risk assessment. Future work could explore how to determine better race and eth-

nicity categories that would allow patients to consistently report their racial and ethnic back-

ground.
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4.2 Aim 2.2 - Development and evaluation of a novel

method to extract familial relationships from existing

clinical databases using patient-provided emergency

contact information

Background

Family history is one of the most important disease risk factors necessary for the

implementation of precision medicine in the clinical setting (Aronson and Rehm 2015;

Guttmacher, Collins, and Carmona 2004). It is critical for disease risk assessment (Berry

et al. 1997; Claus, Risch, and Thompson 1994; Ozanne et al. 2013; Tyrer, Duffy, and Cuzick

2004; Wu and Orlando 2015), and appropriate disease screening and prevention (Murabito

et al. 2001; Reid et al. 2009; Staroselsky et al. 2006). While several studies have shown that

family history is an important element in deciding clinical care (Berry et al. 1997; Claus,

Risch, and Thompson 1994; Ozanne et al. 2013; Saslow et al. 2007; Smith, Cokkinides, and

Brawley 2012; Tyrer, Duffy, and Cuzick 2004), several barriers exist in its collection and

analysis, as well as in its use for personalized management based on patients’ risk assess-

ment. Lack of time to obtain, organize and analyze family history information is perhaps

the most critical barrier for the use of family history in clinical encounters (Green 2007;

Guttmacher, Collins, and Carmona 2004; Rich et al. 2004; Scheuner et al. 2009; Sussner,

Jandorf, and Valdimarsdottir 2011; Wilson et al. 2012a). These challenges ultimately re-

sult in data quality issues, particularly incompleteness and incorrectness of family history

99



data in the EHR. In an attempt to recover this valuable information from existing clinical

databases, in this study I used emergency contact information—a type of patient-provided

data collected at nearly every hospital as part of the routine admission process—to infer

familial relationships. I present a novel algorithm for extracting relationships called Re-

lationship Inference From The Electronic Health Record (RIFTEHR) and use it to infer

familial relationships among patients.

Objectives

This study developed and evaluated a method that uses patient-provided data to infer

familial relationships. The method used emergency contact information, a type of patient-

provided data collected at nearly every hospital as part of hospital registration, to infer

familial relationships. The familial relationships were evaluated using both clinical and

genetic data.

Research Questions

• Can routinely collected patient-provided administrative data from the EHR be used

to identify familial relationships?

Methods

The data for this study were obtained from the inpatient EHR used at the hospitals

affiliated with three large academic medical centers in New York City: Columbia University

Medical Center, Weill Cornell Medical Center, and Mount Sinai Health System. Columbia
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University Medical Center and Weill Cornell Medical Center operate together as NewYork-

Presbyterian Hospital and herein, I will refer to the hospitals and the data associated with

them as Columbia and Weill Cornell, respectively. Similarly, I will refer to Mount Sinai

Health System and its data as Mount Sinai. The study was approved by Institutional Review

Boards independently at each site.

The standard operating procedures require patients who receive care at one of the three

academic medical centers to provide information about an emergency contact. This infor-

mation included the person’s name, address, phone number, and their relationship to the

patient (e.g., parent, sibling, friend). Using a method I call “Relationship Inference From

The Electronic Health Record” (RIFTEHR), I used the emergency contact information to

identify familial relationships in the EHR in cases where the emergency contact person had

his or her record generated by an encounter with the healthcare system. Algorithmically,

I then inferred additional relationships from the connectedness of the identified individu-

als. This information was validated against genetic data and a separate module of the EHR

which documented the linkage between mothers’ and their newborns’ medical records.

Deriving familial relationships from emergency contact data

To match the emergency contact to the medical records, the algorithm created for each

patient a list of all reported emergency contacts. Then, for each emergency contact, it

attempted to identify a medical record by matching first name, last name, primary phone

number, and ZIP code. First, I considered all cases with first name and filtered the table that

contains all patients’ information to identify records that contain the same first name. I then

returned the identified records and performed the same comparison with last name, primary
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phone number, and ZIP code. Subsequently, I compared the combination of two variables

at a time (i.e., first name and last name, first name and primary phone number, first name

and ZIP code, etc.). I then performed combinations of three variables and then of all four

variables. I only considered it successful when I identified a single patient that matches to

the emergency contact information given. I also captured which variables were used in the

matching process for each one of the emergency contacts (i.e., first name and last name;

first name, last name and phone number, etc.). The output of this algorithm contained a

patient’s identifier, the relationship between the patient and the matched emergency contact,

the emergency contact’s identifier, and a list of the variables used to perform the matching

process. I used as patient identifiers the Enterprise Master Patient Index (EMPI), when

available or the medical record number (MRN). EMPIs are a unique identifier created to

refer to multiple MRNs across the healthcare organization. Using EMPIs allowed us to

perform better in the matching process since duplicates from patients having more than one

MRN were excluded.

Once the matches were identified, as a quality control step, I excluded patients with

non-biological relationships (i.e., spouse, friend). Specific relationships were mapped to re-

lationship groups (e.g., the relationship “mother” is mapped to “parent”). I then calculated

the age difference between two related patients and excluded parents that were less than 10

years older than their children, children that were less than 10 years younger than their par-

ents, grandparents that were less than 20 years older than their grandchildren, grandchildren

that were less than 20 years younger than their grandparent. Since parents and grandpar-

ents must be older than their children and grandchildren, I also flipped relationships when

the age difference between parent or grandparent and its child or grandchild was negative.
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Specifically, the relationship “parent” became “child,” and the relationship “grandparent”

became “grandchild.” The same process was done when the age difference between chil-

dren and grandchildren was positive. I also excluded every patient that matches to 20 or

more distinct emergency contacts since it is unlikely that patients have such a high number

of family members as a direct emergency contact. Finally, I generated the opposite rela-

tionship for every relationship pair. For example, if I determined that A is a parent of B,

the opposite relationship is that B is a child of A.

Using the matches identified, I also inferred additional relationships. The inference

process was made based on familial relationship rules. For example, if patient A is the

mother of patient B and patient B is the mother of patient C, then by inference I know that

A is the grandmother of C and C is the grandchild of A. The rules used to perform these

inferences are described in Table 4.2.

Once additional relationships are inferred, I removed ambiguous relationships

such as “Parent/Aunt/Uncle” if the same pair contained a unique specific rela-

tionship, in this case, either “Parent” or “Aunt/Uncle.” The same was done for

“Child/Nephew/Niece,” “Sibling/Cousin,” “Parent/Parent-in-law,” “Child/Child-in-law,”

“Grandaunt/Granduncle/Grandaunt-in-law/Granduncle-in-law,” “Grandchild/Grandchild-

in-law,” “Grandnephew/Grandniece/Grandnephew-in-law/Grandniece-in-law,”

“Grandparent/Grandparent-in-law,” “Great-grandchild/Great-grandchild-in-law,” “Great-

grandparent/Great-grandparent-in-law,” “Nephew/Niece/Nephew-in-law/Niece-in-law,”

and “Sibling/Sibling-in-law.”

To identify families in the datasets, I excluded all non-biological relationships such as

spouses and in-laws, as well as ambiguous relationships such as “Parent/Parent-in-law.”
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Person 1-2 Person 2-3 Person 1-3
Parent Aunt/Uncle Grandaunt/Granduncle
Parent Child Sibling
Parent Grandchild Child/Nephew/Niece
Parent Grandparent Great-grandparent
Parent Nephew/Niece Cousin
Parent Parent Grandparent
Parent Sibling Aunt/Uncle
Child Aunt/Uncle Sibling/Sibling-in-law
Child Child Grandchild
Child Grandchild Great-grandchild
Child Grandparent Parent/Parent-in-law
Child Nephew/Niece Grandchild/Grandchild-in-law
Child Parent Spouse
Child Sibling Child
Sibling Aunt/Uncle Aunt/Uncle
Sibling Child Nephew/Niece
Sibling Grandchild Grandnephew/Grandniece
Sibling Grandparent Grandparent
Sibling Nephew/Niece Child/Nephew/Niece
Sibling Parent Parent
Sibling Sibling Sibling
Aunt/Uncle Aunt/Uncle Grandaunt/Granduncle/Grandaunt-in-law/Granduncle-in-law
Aunt/Uncle Child Cousin
Aunt/Uncle Grandchild First cousin once removed
Aunt/Uncle Grandparent Great-grandparent
Aunt/Uncle Nephew/Niece Sibling/Cousin
Aunt/Uncle Parent Great-grandparent/Great-grandparent-in-law
Aunt/Uncle Sibling Parent/Aunt/Uncle
Grandchild Aunt/Uncle Child/Child-in-law
Grandchild Child Great-grandchild
Grandchild Grandchild Great-great-grandchild
Grandchild Grandparent Spouse
Grandchild Nephew/Niece Great-grandchild/Great-grandchild-in-law
Grandchild Parent Child/Child-in-law
Grandchild Sibling Grandchild
Grandparent Aunt/Uncle Great-grandaunt/Great-granduncle
Grandparent Child Parent/Aunt/Uncle
Grandparent Grandchild Sibling/Cousin
Grandparent Grandparent Great-great-grandparent
Grandparent Nephew/Niece First cousin once removed
Grandparent Parent Great-grandparent
Grandparent Sibling Grandaunt/Granduncle
Nephew/Niece Aunt/Uncle Sibling/Sibling-in-law
Nephew/Niece Child Grandnephew/Grandniece
Nephew/Niece Grandchild Great-grandnephew/Great-grandniece
Nephew/Niece Grandparent Parent/Parent-in-law
Nephew/Niece Nephew/Niece Grandnephew/Grandniece/Grandnephew-in-law/Grandniece-in-law
Nephew/Niece Parent Sibling/Sibling-in-law
Nephew/Niece Sibling Nephew/Niece/Nephew-in-law/Niece-in-law

�1Table 4.2: Relationship inference rules.
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Using both provided and inferred relationships, I created a network where each node corre-

sponds to a patient and edges represent familial relationships. To identify different families,

I decomposed the network into individual connected components.

To identify twins, I matched siblings that shared the same last name and the same date of

birth. I did not have enough information to distinguish between monozygotic and dizygotic

twins.

Evaluation of automatically inferred relationships

I used the EHR’s mother-baby linkage as the reference standard to evaluate identified

maternal relationships. Cases were considered true-positives when maternal relationships

identified by RIFTEHR were also present in the EHR’s mother-baby linkage table. Cases

were considered false-positives cases when maternal relationships identified by our algo-

rithm were discordant with the EHR’s mother-baby linkage table. And lastly, false-negative

cases occurred when a maternal relationship was captured by the EHR’s mother-baby link-

age but not by our method. Overall performance was evaluated by calculating sensitivity

and positive predictive value (PPV). To assess if matches identified by different variables

performed differently, I also computed sensitivity and PPV. I stratified the identified rela-

tionships by the number of variables used to match the emergency contact to a patient in a

healthcare system (Table 4.3), as well as by the combination of variables (e.g., last name

only, first name and last name, etc.) used to perform the match (Table 4.4). Additionally, I

used the EHR mother-baby linkage information to infer siblings. I then used these relation-

ships to evaluate siblings identified by RIFTEHR. Similarly to the maternal relationships

evaluation, overall sibling performance was evaluated by calculating sensitivity and PPV.
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Columbia Weill Cornell

N of Paths True Positive False Positive PPV True Positive False Positive PPV

1 4340 1021 0.8096 2979 391 0.884

2 3911 355 0.9168 4114 95 0.9774

3 2438 55 0.9779 4753 53 0.989

4 2696 89 0.968 2089 63 0.9707

5 3075 16 0.9948 4219 29 0.9932

6 5840 30 0.9949 10170 19 0.9981

7 3892 10 0.9974 4100 12 0.9971

8 3105 13 0.9958 1739 19 0.9892

9 2575 6 0.9977 1451 3 0.9979

10 2460 8 0.9968 1217 5 0.9959

11 857 1 0.9988 532 3 0.9944

12 308 0 1 156 0 1

13 34 0 1 29 0 1

14 12 0 1 6 0 1

�1

Table 4.3: Performance by number of paths.

To further evaluate the familial relationships, I used genetic data to perform analy-

sis for kinship. Genotype data were collected from existing sources for 1,524 individu-

als. At Columbia, genetic data were available for 302 individuals. Data were collected

from three separate sources: the Institute for Genomic Medicine, The Columbia Univer-

sity Medical Center Pathology Department, and the Washington Heights/Inwood Informat-

ics Infrastructure for Comparative Effectiveness Research (WICER) project, using whole

exome sequencing, Affymetrix CytoScan HD array, and the Illumina Multi-Ethnic Geno-

typing Array, respectively. To select single-nucleotide polymorphisms (SNPs) for kinship,

minor allele frequency was filtered to greater than 5%, and genotyping rate to 99% using

PLINK Purcell:2007dg. Independent SNPs were selected using the sliding window (100

SNPs) linkage disequilibrium approach. This resulted in a total of 24,752 variants from the
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Institute for Genomic Medicine data, 8,544 SNPS from the WICER data, and 32,938 SNPs

from the Pathology Department data. PLINK was then used to calculate identity by descent

(IBD) by determining π̂ results (P (IBD = 2)+0.5∗P (IBD = 1)(proportionIBD)) for

each pair of individuals. I considered that the predicted relationship was correct if the blood

relationship fraction between the two people was the same as the one expected for the pre-

dicted relationship with a margin of error of 20% of the expected blood relationships. For

example, for inferred mother-child pairs, two individuals in a pair share 50% (±10%) of

their genetic information, then that provides evidence that the predicted relationship is cor-

rect. Likewise, for inferred aunt-niece pairs, the two individuals are expected to share 25%

(±5%). The performance was evaluated by calculating PPV.

Using the Mount Sinai data, I leveraged genome array data for 24,441 participants re-

cruited to the BioMe Biobank Program of The Charles Bronfman Institute for Personalized

Medicine. Genotyped participants had a mean age 55.8 years, and approximately 61% are

female. Participants self-identified as: Hispanic/Latino (45%), African American (31%),

White/Caucasian (8%), Asian (6%), Mixed ancestry (6%), or Other (11%). To calculate

genetic relatedness, I first merged BioMe participants (N) genotyped either on the Illumina

OmniExpress HumanCore (N=11,212) or Multi-Ethnic Genotype Array v1.0 (N=10,467)

platforms, retaining only the intersection of sites (n) between the two arrays (n=385,531). I

subsequently removed palindromic sites (n=7,215 SNPs) and sites with a missingness rate

> 1% (n=517) and a MAF < 5% (n=112,537) leaving a total of 112,537 SNPs. Of 21,679

BioMe participants with genotype data, emergency contact information was available for

16,341, and in 1,222 cases both family members with relationship inferred by RIFTEHR

were in BioMe. Pairwise genetic relationships were estimated by Identity-by-State anal-
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ysis with PLINK1.9 using the –genome flag. Inferred relationships from RIFTEHR were

compared to pairwise genetic relationships to assess performance metrics using the “caret”

package with R version 3.0.3. Pairs of patients with conflicting familial relationships were

analyzed based on the closest relationship available. For example, if the same pair has two

distinct relationships inferred based on their emergency contact information (e.g., parent

and aunt/uncle), I consider the first-degree relationship to be correct (in this case, parent)

for evaluation of the relationship against genetic data. Parent-offspring and sibling rela-

tionships groups were both expected to share 50% genetic relatedness IBS (π̂ mean 0.5,

s.d. ± 0.1). I could distinguish between these two groups by examining the IBS measures

at heterozygous (IBS1) and homozygous (IBS2) sites. Parent-offspring were defined as

IBS1 > 0.75 and IBS2 < 0.25 (n=1087 pairs), full-siblings were defined as pairs that shared

between 0.35 and 0.65 IBS1, and IBS2 > 0.15 and < 0.5 (n=502), monozygotic twins were

defined as individuals sharing > 0.8 IBS2 (n=2). In each RIFTEHR group, I calculated pos-

itive predictive values (PPV) based on how many predicted parent-offspring and siblings

met these genetic criteria. Grandparental, avuncular and half-siblings are all expected to

share 25% genetic relatedness IBS (π̂ mean 0.25, s.d. ± 0.05). Avuncular relationships 

involved one sibling and the offspring of the other sibling regardless of sex; therefore, the

term avuncular refers to both aunts and uncles.

I could not distinguish these groups any further, so I calculated positive predictive

values for each group based on how many total pairwise relationships met these criteria

(n=976). I did not calculate PPV for cousins, grand-avuncular, great-grandparental, great-

grand-avuncular, first cousin-once-removed relationships as the numbers of predicted re-

lationships per group were low (n≤10). Finally, as negative control, I compared predicted
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spousal relationships with low or no evidence of IBS sharing (π̂ < 0.05, < 0.1 IBS1 and <

0.1 IBS2). The BioMe Biobank Program (Institutional Review Board 07–0529) operates

under a Mount Sinai Institutional Review Board-approved research protocol. All study

participants provided written informed consent.

As a subjective validation of all relationship types, including distant relationships such

as great-grandparent, I calculated age difference between all pairs of family relatives and

stratified it by relationship type. I compared the identified age differences to what would be

expected in a real family structure. For example, great-grandparents should be much older

than their great-grandchildren.

Results

In total, 3,550,598 patients provided 6,587,594 emergency contacts at the three medical

centers. Of these, I identified the emergency contact as a patient in 2,191,695 cases (825,880

at Columbia, 573,804 at Weill Cornell and 792,011 at Mount Sinai). Of those, 1,902,827

provided 1,588,134 family members as emergency contact (488,932 at Columbia, 297,011

at Weill Cornell, and 802,191, at Mount Sinai; Table 4.5). Using these next-of-kin data,

I inferred an additional 2,755,448 relationships at Columbia, 1,237,749 at Weill Cornell

and 1,819,581 at Mount Sinai (Figure 4.2). Including inferences, I identified a total of

3,244,380 unique relationships at Columbia, 1,534,760 at Weill Cornell, and 2,621,772

at Mount Sinai. Inferred relationships included first to fourth-degree relatives as well as

spouses and in-laws (Tables 4.5 and 4.6). I grouped individuals into families by identifying

disconnected subgraphs. I found 223,307 families at Columbia containing 2 to 134 mem-
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Variable Columbia Weill Cornell Mount Sinai
N 682,267 437,375 783,185
Relationships 3,244,380 1,534,760 2,621,772
     N provided relationships 488,932 297,011 802,191
     N inferred relationships 2,755,448 1,237,749 1,819,581
Families 223,307 155,811 187,473
Gender, Female 418,657 (61.36%) 261,482 (59.78%) 449,878 (57.45%)
Age 40.15 (24.81) 39.85 (25.02) 51.44 (23.20)
Race/Ethnicity
     Black or African American   69,506 (10.19%)   30,975 ( 7.08%)  79,854 (10.20%)
     White 123,800 (18.15%) 110,485 (25.26%) 285,559 (36.46%)
     Hispanic or Latino 373,552 (54.75%)   52,087 (11.91%) 151,785 (19.38%)
     Other   11,438 ( 1.68%)   26,687 ( 6.10%)  25,864 ( 3.30%)
     Unknown/Declined to answer 103,971 (15.24%) 217,141 (49.65%) 240,123 (30.66%)
Degree of relationship
     First (i.e. child, parent) 1,388,858 814,650 798,440
     Second (e.g. grandchild) 605,922 225,796 243,434
     Third (e.g. great-grandparent) 432,262 137,712 136,936
     Fourth (e.g. great-great-grandchild) 215,300 61,986 58,500
     Other
          None (e.g. spouse, in-laws) 172,158 127,748 571,250
          Unknown (e.g. parent/parent-in-law) 429,880 166,868 813,212

�1

Table 4.5: Demographic data of the electronic health records at Columbia University Medical
Center, Weill Cornell Medical Center, and Mount Sinai Health System.

bers per family. Similarly, I found 155,883 families at Weill Cornell, with up to 129 mem-

bers per family and 187,473 families at Mount Sinai, with up to 57 family members. These

include 4,271 families with fourth-degree relatives (i.e., families that contain first cousin

once removed, great-grandaunt/great-granduncle or great-grandnephew/great-grandniece)

at Columbia, 1,045 families at Weill Cornell, and 992 families at Mount Sinai.
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Degree of relationship Relationship N Columbia N Weill Cornell N Mount Sinai

First
Child 482,308 298,136 252,584
Parent 482,308 298,136 252,584
Sibling 424,242 218,378 293,272

Second

Aunt/Uncle 185,822 65,410 75,404
Nephew/Niece 185,822 65,410 75,404
Grandparent 117,139 47,488 46,313
Grandchild 117,139 47,488 46,313

Third

Cousin 148,806 37,370 27,994
Grandaunt/Granduncle 96,675 31,764 36,069
Grandnephew/Grandniece 96,675 31,764 36,069
Great-grandchild 45,053 18,407 18,402
Great-grandparent 45,053 18,407 18,402

Fourth

First cousin once removed 94,404 19,596 19,914
Great-grandaunt/Great-granduncle 42,594 13,664 12,945
Great-grandnephew/Great-grandniece 42,594 13,664 12,945
Great-great-grandchild 17,854 7,531 6,348
Great-great-grandparent 17,854 7,531 6,348

Other
Child-in-law 0 278 0

     None
Parent-in-law 0 278 0
Spouse 172,158 127,192 571,250
Aunt/Uncle/Aunt-in-law/Uncle-in-law 13,220 5,234 45,950

     Unknown

Child/Child-in-law 52,186 24,733 62,804
Child/Nephew/Niece 31,818 8,078 96,925
Grandaunt/Granduncle/Grandaunt-in-law/Granduncle-in-law 12,035 4,278 36,242
Grandchild/Grandchild-in-law 12,876 4,578 32,781
Grandnephew/Grandniece/Grandnephew-in-law/Grandniece-in-law 12,035 4,278 36,242
Grandparent/Grandparent-in-law 12,876 4,578 32,781
Great-grandchild/Great-grandchild-in-law 5,799 2,346 18,343
Great-grandparent/Great-grandparent-in-law 5,799 2,346 18,343
Nephew/Niece/Nephew-in-law/Niece-in-law 13,220 5,234 45,950
Parent/Aunt/Uncle 31,818 8,078 96,925
Parent/Parent-in-law 52,186 24,733 62,804
Sibling/Cousin 41,270 9,142 88,956
Sibling/Sibling-in-law 132,742 59,232 138,166

�1

Table 4.6: Relationships by degree.
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Figure 4.2: 680,000 at Columbia, 430,000 at Weill Cornell, and 780,000 at Mount Sinai reported
next-of-kin data that could be identified in the institutional EHR. From these initial relationships, I
was able to infer additional relationships resulting in 3.2 million patient relationships at Columbia,
1.5 million relationships at Weill Cornell, and 2.6 million relationships at Mount Sinai. A family
was identified as a group of patients with no relationships outside of the group. In total, we identified
223,000 families at Columbia, 155,000 families at Weill Cornell, and 187,000 at Mount Sinai. The
largest 400 families from Columbia were visualized as a graph using a force layout (Methods). Each
disconnected subgraph is a family. Each node is an individual. Solid nodes represent patients in our
respective EHRs. Colored nodes indicate the presence of a disease diagnosis in one of four classes:
cardiovascular disease (red), musculoskeletal disease (purple), metabolic disease (blue), and skin
disease (green). The top left shows 93 of the top families at Columbia. The largest family shown
contains 23 individuals and the smallest, 12. I constructed detailed pedigrees for one family from
Columbia (bottom left). The pedigree shown was modified for de-identification purposes. Each
node is an individual. Individuals indicated by dashed lines are inferred to exist but did not exist
in the EHR. The top right shows a map of the number of individuals from Columbia for whom
relationships were identified. The colors represent the number of individuals that live in each ZIP
code. The bottom right bar graph shows the number of individuals by relationship type for each
institution. We used all disease diagnosis data and clinical pathology report data (laboratory tests)
available for patients in our cohort to study genetic heritability. At Columbia, 6.6 million disease
diagnoses were used to estimate heritability of dichotomous traits and 42 million laboratory tests
were used to estimate heritability of quantitative traits. At Weill Cornell, 3 million disease diagnoses
were used and 16 million laboratory tests and at Mount Sinai, 4 million disease diagnosis.
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The relationship between mother and child was explicitly documented in the EHR for

newborns delivered at Columbia and Cornell. This ‘EHR mother-baby linkage’ provided a

reference standard for maternal relationships, allowing us to compute sensitivity and pos-

itive predictive value (PPV) of the relationship inference method. For maternal relation-

ships, I obtained 92.9% sensitivity with 95.7% PPV at Columbia and 96.8% sensitivity

with 98.3% PPV at Weill Cornell. Similarly, for siblings, I obtained 92.2% sensitivity with

98.3% PPV at Columbia and 96.5% sensitivity with 99.6% PPV at Weill Cornell (Figure

4.3A). Tables 4.3 and 4.4 present the stratified performance of the identified relationships

by the number of variables used to match the emergency contact to a patient in a healthcare

system, and by the combination of variables (e.g., last name only, first name and last name,

etc.) used to perform the match, respectively.

I validated the identified relationships by comparison to genetically-derived related-

ness (Figure 4.3). I collected data for 1,222 patients from Mount Sinai and 302 patients

from Columbia for whom EHR-inferred relationships and available genetic data were con-

sented for reuse. I included spousal relationships as a negative control using a heuristic

definition of being genetically unrelated (IBS < 0.1). I estimated relatedness using PLINK

(Purcell et al. 2007). At Columbia, almost all 134-predicted parent-offspring relationships

had the expected genetic relatedness of 50%, and the three grandparental relationships had

the expected relatedness of 25%. All 26 sibling relationships were genetically related, but

four were identical twins, and three were half-siblings (Figure 4.3B). At Mount Sinai, the

positive predictive value (PPV) to predict spousal relationships was 91%, 80% for parent-

offspring, 66% for sibling, and 47% for grandparental and 32% for avuncular relationships

(Figure 4.3D). Overall, relationships extracted from the EHR significantly correlate with
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Figure 4.3: Validation of familial relationships inferred from the EHR. (A) The medical centers at
both Columbia and Weill Cornell have implemented a link between the electronic health records of
mother and baby at the time of birth. I used these links as a gold standard to evaluate RIFTEHR,
my algorithm for automatically inferring relationships from the EHR. I also inferred siblings using
the mother-baby link data. (B) Through biobanks at Columbia, 302 of the patients with identified
relationships from RIFTEHR also had genetic data available and appropriately consented for use
in our study. For these, RIFTEHR predicted a total of 172 relationships. Genetic relatedness was
determined for each pair of individuals. Almost all 134 parent/child relationships had the expected
genetic relatedness of 50% (51%±3%). Of the siblings predicted by RIFTEHR 19 were full siblings,
3 were half siblings (genetic relatedness of 25%), and 4 were identical twins. The high rate of
twins in our small sample is a result of the secondary use of existing data – which was originally
collected for genetic studies. Excluding these twins yields a more accurate estimate of RIFTEHR’s
performance (PPV=86.4%). Overall the RIFTEHR relationship and the genetic relationship were
significantly correlated (r=0.60, p=1.81e-18). (C) Average age differences for each relationship
type. I computed the age differences for each pair of individuals at Columbia (blue), Weill Cornell
(red) and Mount Sinai (purple). The age differences are consistent across sites. (D) At Mount
Sinai, I identified 1,222 patients that had familial relationships from RIFTEHR and also had genetic
data available with appropriate consent for use in our study. Among these, RIFTEHR inferred 937
relationships. Genetic relatedness was determined for each individual pair and compared to the
relationships inferred by RIFTEHR. RIFTEHR’s performance varied from 32% to 91% PPV, being
more accurate in identifying members of the nuclear family. Overall the RIFTEHR relationship and
the genetic relationship were significantly correlated (r=0.67, p<1.2e-162).
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the expected genetic relatedness (r=0.60, p=1.81e-18 at Columbia and r=0.67, p<1.2e-162at

Mount Sinai).

Discussion

Analysis of EHR data has yielded insight into drug effectiveness and allowed precise

definition of phenotypes to investigate disease processes (Birkhead, Klompas, and Shah

2015; Boland et al. 2015; Lorberbaum et al. 2016a; Ritchie, Andrade, and Kuivaniemi

2015; Tatonetti et al. 2012; Wei and Denny 2015). For the first time on a large scale, I used

EHR data to infer pedigrees from patient-provided emergency contact information. I pre-

sented a novel algorithm for performing this relationship extraction, RIFTEHR, validated

its performance, and applied it to the medical records of three independent institutions.

Previous research studies have used existing databases to identify twins. In 1987, a

Vietnam Era (1964-1975) Twin Registry of American male-male veterans born between

1939 and 1955 was developed to provide a study sample for research evaluating the impact

of Vietnam service on the medical and psychosocial aspects of health. Twins were identified

using an algorithm which involved matching entries on the database for same last name,

different first name, same date of birth, and similar social security number (Eisen, True, and

Goldberg 1987). In 2014, researchers used a similar method to identify twins from an EHR

database (Mayer et al. 2014). Unlike the methods employed in these studies, RIFTEHR

identified familial relationships including distant relatives up to four generations apart, in

addition to twins.

The availability of family structures in addition to clinical data has significant implica-
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tions for the use of EHR data in clinical and genetic studies. EHRs are in broad use and

offer an alternative to traditional phenotyping. Every day, the EHR records information for

thousands of patients from drug prescriptions and disease diagnosis to clinical pathology

results and physician notes. Use of EHR data presents a novel opportunity to conduct rapid

and expansive genetic studies such as of disease and phenotype heritability. In particular,

EHR data enables access to traits that otherwise might not be explored. Similarly, the use

of EHR data with familial structures allows for large-scale clinical studies, including dis-

ease risk assessment and screening. In addition, data captured by these systems represent

the diversity of the patient populations they serve, and, in ethnically diverse regions like

New York City, make previously unattainable cohorts available for study (Hripcsak et al.

2016). The caveat is that EHR data are known to contain issues regarding missingness and

accuracy which limits their use (Hripcsak and Albers 2013; Weiskopf and Weng 2013).

Future studies should use robust methods that account for these data quality concerns.

Conclusion

We have described and validated a novel method for identifying familial relationships

in medical records and used 7.4 million relationships inferred from the EHRs at three aca-

demic medical centers. The availability of family structures in addition to clinical data has

significant implications for the use of EHR data in clinical and genetic studies, enables ac-

cess to clinical information that otherwise might not be explored, and ultimately advancing

clinical and genetics research.
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4.3 Aim 2.3 - Impact of a federal initiative (Meaningful

Use) on collecting patients’ smoking status

Background

Smoking remains the number one cause of preventable death in the United States, re-

sponsible for more than 480,000 deaths annually (National Center for Chronic Disease

Prevention and Health Promotion Office on Smoking and Health 2014). Policy change,

such as tobacco control policies, smoke-free legislation, tobacco taxation, and smoking

cessation services have been shown to have substantial benefits in children’s health (Faber

et al. 2017). In addition to these policies, obtaining a patient’s smoking status during clini-

cal encounters is a crucial step in beginning smoking cessation interventions and monitor-

ing progress (Caplan, Stout, and Blumenthal 2011). Accurately recording smoking status

during a clinical encounter may appear to be a straightforward task; however, this impor-

tant behavioral determinant of health is often overlooked (Adler and Stead 2015). Given

the clinical importance of recording smoking status, the Meaningful Use (MU) financial

incentive program for electronic health record (EHR) adoption in the U.S. included a re-

quirement for healthcare providers to capture patients’ smoking status electronically in a

structured format (Centers for Medicare & Medicaid Services 2010).

Objectives

The purpose of this study was to assess the impact of the Meaning Use program in

the data quality of smoking status in a pre-/post- design with data collected over a 10-year
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period in an established commercial EHR system at a large academic medical center.

Research Questions

• How did Meaningful Use impact the quality of smoking status collected in the EHR?

Methods

I conducted a retrospective study to analyze smoking status data before and after Mean-

ingful Use criteria were implemented at NewYork-Presbyterian Hospital/Columbia Univer-

sity Medical Center. In our institution, smoking status was collected in clinical notes by

several types of providers (e.g., physicians, nurses, social workers). The EHR contained

thousands of note templates containing a variable number of observations. An observa-

tion could be a free-text box, a Boolean, or a numeric value. As described previously in

Aim 1.3, I extracted data from observations, including structured and free-text, whose de-

scription contained the stemmed words “smok,” “cigar” or “tobacco,” and identified the

number of times each observation was used. This analysis showed that approximately 94%

of patients had at least one smoking status recorded in a structured observation. Given this

finding, in this study, I limited this analysis to structured observations.

While our institution was accredited as being compliant with Meaningful Use Stage

One criteria in the end of 2012, changes to the note templates were implemented through-

out the preceding years. Therefore, patients that had at least one hospital admission be-

tween November 2007 and August 2017 were included in the study. I analyzed changes

in the documentation pattern of smoking status during the 10-year study period. Prior to
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the Meaningful Use program, smoking status was collected as part of clinical notes using

locally defined templates, without standardized categories. Categories for smoking status

were defined by each group responsible for developing note templates. With the imple-

mentation of the Meaningful Use program, eight distinct categories for collecting smoking

status were specified: “Current every day smoker,” “Current some day smoker,” “Former

smoker,” “Never smoker,” “Smoker, current status unknown,” “Unknown if ever smoked,”

“Heavy tobacco smoker,” and “Light tobacco smoker” (Centers for Medicare & Medicaid

Services 2010). All observations were stored independently from each other, and not trans-

ferred to other sections of the EHR.

All smoking status observations, pre- and post-Meaningful Use, were mapped to one

of four clinically meaningful categories: 1) “Current smoker,” 2) “Former smoker,” 3)

“Never smoker,” and 4) “Unknown smoking status,” as described in Table 4.7. Once the

categories were mapped, I examined smoking status collected over time for each patient

and analyzed whether subsequent updates to smoking status were plausible or implausible.

Plausible cases occurred when the change was feasible to happen such as a change from

“Never smoker” to “Current smoker”), and implausible occurred when the conflict was not

logically possible or in cases where there was a loss of information; for example, a change

from “Former smoker” to “Never smoker.” Figure 4.4 demonstrates all possible changes

in smoking status along with the plausibility of each change.

Additionally, I analyzed the number of discrepancies in smoking status between clini-

cal notes recorded during the same hospital admission for each patient. It is unlikely that

patients will have changes to their smoking status during a single hospitalization; therefore,

discrepancies in patients’ smoking status recorded during a single hospitalization were con-
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Clinically Actionable Smoking 
Status Categories EHR Documented Categories

Never Smoker
Never Smoker
Smoker (No)
Patient Denies 

Current Smoker

Current every day smoker
Current some day smoker
Light smoker
Heavy Smoker
Smoker, current status 
unknown
Smoker (Yes)

Former Smoker
Former smoker
Ex-smoker
Quit / Stopped

Unknown Smoking Status

Unknown if ever smoked
Unknown
Unable to assess
N/A / None

�1

Table 4.7: Description of the mapping from smoking status categories as recorded in the EHR to
the four clinically actionable categories. Smoking status categories documented in the EHR that
utilize the standard criteria defined by the Meaningful Use program are highlighted in bold.

Figure 4.4: Changes of smoking status overtime. Dashed changes demonstrate implausible dis-
crepancies and continuous lines represent plausible changes in longitudinal data..
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sidered plausibility issues. I assessed quality of smoking status based on the percentage of

patients with consistent and informative smoking status recorded in the EHR (i.e., not classi-

fied as “Unknown” in the database, or not conflicting if recorded multiple times). I reported

the number of patients with and without smoking status, the number of times smoking status

was recorded per visit, the number of different provider types (e.g., nurses, medical doctors,

care coordinators, social workers) recording smoking status, the percentage of visits with

discrepancies, and the number of plausible and implausible changes per year. To assess the

impact of Meaningful Use on the data quality of smoking status, I compared the descriptive

statistics described above during the years before and after Meaningful Use criteria were

adopted.

Results

I reviewed data from 304,926 patients, who together had 529,236 hospital admissions

during the 10-year study period, wherein 858,512 observations of smoking status were

recorded. The accompanying Table 4.8 presents the number of patients and visits with

more than a single smoking status collected, as well as the average number of times smok-

ing status was collected, the number of provider types that collected smoking status, and the

rate of discrepancies and implausible changes. As shown in Figure 4.5, over the 10-year

study period, smoking status was documented increasingly frequently and by more provider

types (e.g., nurses, medical doctors, care coordinators, social workers). However, the rate

of discrepancies increased both at the patient and visit levels from 5% to 40% and 5% to

41%, respectively. Similarly, the rate of implausible changes increased from nearly 2% to

122



Figure 4.5: Number of times of provider types that collecting smoking status per patient.

Figure 4.6: Percentage of patients with discrepancies and implausible changes in smoking status
documentation.

31% (Figure 4.6).

Discussion

The Meaningful Use program specifies eight distinct categories for collecting smoking

status: “Current every day smoker,” “Current some day smoker,” “Former smoker,” “Never

smoker,” “Smoker, current status unknown,” “Unknown if ever smoked,” “Heavy tobacco
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smoker,” and “Light tobacco smoker” (Centers for Medicare & Medicaid Services 2010).

While the Meaningful Use program helped to standardize data collection of smoking status,

it did not necessarily improve data quality. We observed that the number of times smoking

status was collected increased over the years both at the patient level and the visit level.

Because the EHR did not provide a central location to store smoking status information,

different healthcare providers recorded this information in several different notes, resulting

in many inconsistencies across notes.

To improve the data quality of smoking status in EHRs, I recommend that patients’

smoking status be stored in a centralized fashion using clinically actionable categories. At

our institution, data regarding smoking status was only available as part of clinical notes and

therefore, not available in other sections of the EHR, making it challenging to identify this

information in the patients’ records. If smoking status were available in a centralized loca-

tion, clinicians could then more easily verify this information in every encounter by asking

patients about tobacco use. Future work should focus on identifying ways to overcome

discrepant smoking status. To maintain and improve data quality, implausible changes and

updates resulting in information loss should require explanation by the user.

Another method to improve data quality of smoking status is to involve patients directly

to provide this information. Previous studies on improving patient-reported data demon-

strated efficacy in improving data quality by utilizing patients to directly review and update

their information using kiosks, portals, or printed forms (Caligtan et al. 2012; Cimino, Pa-

tel, and Kushniruk 2001; Collins et al. 2011; Greenhalgh et al. 2008; Halamka, Mandl, and

Tang 2008; Hassol et al. 2004; Kaelber et al. 2008; Maher et al. 2015, 2016; Masterson Cre-

ber et al. 2016; Nazi et al. 2010; O’Leary et al. 2015; Prey, Restaino, and Vawdrey 2014;
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Pyper et al. 2004; Ralston et al. 2007; Reti et al. 2010; Tang and Lee 2009; Wilcox et al.

2016). Eliciting this information via a computer may also mitigate the potential biases in-

troduced by clinicians asking questions regarding smoking behavior. Given that smoking

status may have negative connotations for certain patients (Gorber et al. 2009), electroni-

cally collected smoking status without direct elicitation from care providers may alleviate

some hesitation from patients to provide the truth.

Conclusion

The Meaningful Use program increased data collection of smoking status; however, the

quality of the information collected did not improve over time. The rate of inconsistencies

and implausible changes in smoking status has risen over the years, challenging the ap-

propriate identification of smokers. Centralized documentation with clinically actionable

categories and patient-facing tools might improve the quality of smoking status in EHRs.
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Chapter 5

Aim 3 - Use patient-provided data to assess disease risk

Family history is one of the most important disease risk factors necessary to implement

precision medicine in the clinical setting (Aronson and Rehm 2015; Guttmacher, Collins,

and Carmona 2004). It is frequently collected as part of clinical encounters, and provides

information regarding the heritability of disease, along with environmental factors (Tenesa

and Haley 2013; Visscher, Hill, and Wray 2008). Yet despite its importance and ubiquity in

free-text form, structured family history has rarely been utilized to better understand disease

risk or improve care delivery (Chatterjee, Shi, and García-Closas 2016).

Disease heritability has traditionally been determined through in-depth family studies

for many reasons. For one, EHR data generally only capture positive disease cases, whereas

traditional in-depth studies capture both verified disease positive cases and verified disease

negative instances. Furthermore, EHR data may not be considered sufficiently accurate for

research studies, and previous studies in this dissertation demonstrated data quality issues

in EHR data related to family history. At the same time, EHR data holds many promises

that can greatly improve upon in-depth family studies to estimate heritability. By their

nature, these studies require substantial resources to carry out, and they are often limited in

sample size and, subsequently, their power. A notable exception, and perhaps the largest

single study of it’s type, used 80,309 monozygotic and 123,382 same-sex dizygotic twins
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to conclude that there is significant familial risk for prostate, melanoma, breast, ovary, and

uterine cancers (Mucci et al. 2016). Another study conducted a meta-analysis of 2,748

twin studies conducted since 1955 covering 14.5 million subjects (Polderman et al. 2015).

Outside of these two studies, family-based studies on disease heritability have involved

much smaller sample sizes, often in the tens or hundreds.

Thus the use of EHR data for disease heritability studies presents great potential given

the frequently large quantities of data available in the EHR for each patient. EHRs already

in broad use offer an alternative to traditional disease phenotyping. Every day, EHRs doc-

ument information for thousands of patients, from drug prescriptions and disease diagnosis

to clinical pathology results and physician notes. Use of EHR data presents a novel op-

portunity to conduct rapid and expansive studies of disease and phenotype heritability. In

particular, it enables access to traits that otherwise might not be explored. In addition, data

captured by these systems represent the diversity of the patient populations they serve, and,

in ethnically diverse geographies like New York City, make previously unattainable cohorts

available for study (Hripcsak et al. 2016). The caveat is that these data are known to con-

tain issues regarding missingness and accuracy which limits their use (Hripcsak and Albers

2013; Weiskopf and Weng 2013). The most critical limitation for genetic studies may be the

uncontrolled ascertainment bias (Kaplan, Chambers, and Glasgow 2014). The probability

that a particular trait is recorded in the EHR is not uniform across disease conditions or

patients. For example, a patient that lives far from a hospital and only visits that hospital to

see a specialist will most likely have incomplete records. However, a patient that lives near

to a hospital may receive much of her care at that hospital, and thus, the EHR will contain

relatively more complete records. Another factor that determines the presence of a trait in
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patients’ records is the presentation of symptoms. For example, a patient seen for a routine

checkup with no symptoms is unlikely to undergo an MRI, regardless of whether he has an

unruptured brain aneurysm (Bederson et al. 2000). A recent study used the first release of

the UK Biobank data to estimate hundreds of heritabilities from 130,000 patients’ genotype

and EHR data; however, they did not account for the issues of ascertainment biases (Ge

et al. 2017).

In the era of precision medicine, there has been increased focus not just genomics and

gene-disease relationships but also on disease prevention and early diagnosis at cohort lev-

els. Early diagnosis and disease prevention are often accomplished by assessing the in-

dividual risk for development of certain diseases. Family history is one of the key risk

factors that enables disease risk assessment. Current clinical guidelines suggest additional

or early disease screening for patients considered at high risk for the development of a vari-

ety of conditions, including cancer, cardiovascular, and gastrointestinal conditions. Given

the importance of such efforts, the U.S. Preventive Services Task Force (USPSTF) recom-

mends early or additional screening for numerous diseases. However, given the rarity of

high-quality structured family history information, there has been limited effort in assessing

adherence to clinical guidelines and demonstrating the potential of using EHR data to im-

prove adherence to guidelines. To date, there has been little research on clinician adherence

to the recommendation of early screening among high-risk patients (An et al. 2018; Jemal

and Fedewa 2017; Solbak et al. 2018). Given that EHRs hold troves of information about

diagnostic tests ordered, there is an opportunity to measure clinical guideline adherence in

an automated and large-scale way.

In this Aim, I demonstrated the utility of the EHR as a resource for genetics research,
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even in the absence of genetic patient data, by using extracted familial data as described in

Aim 2 to estimate the heritability of clinical phenotypes, both quantitative and dichotomous.

Additionally, I used these familial relationships to assess screening rates among patients

considered at high risk due to family history of disease.
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5.1 Aim 3.1 - Estimating disease heritability of 500 traits

using electronic health records data

Background

While heritability studies have been conducted for numerous diseases (Almgren et

al. 2011; Hemani et al. 2013; Lichtenstein et al. 2009; Locatelli et al. 2007; Mucci et al.

2016; Ronald and Hoekstra 2011; Sandin et al. 2014; Sullivan, Daly, and O’Donovan 2012;

Sullivan, Kendler, and Neale 2003; Visscher et al. 2007), traditional genetic studies have a

number of limitations, including focusing on a single racial and ethnic group. Further, these

are prospective studies that take decades to recruit and observe large cohorts, at the cost of

hundreds of millions of dollars. I hypothesized that EHR data could be used to overcome

some of these limitations. EHRs provide a unique opportunity to increase sample sizes and

conduct heritability studies for a much larger array of clinical traits. In the EHR, clinical

traits such as diagnosis, procedures, and laboratory tests are collected on a daily basis as

part of clinical care. Genetic research based on EHR data can be used to study multiple

conditions in a short period, generate new research hypothesis that can later be tested by

traditional genetic studies.

Objectives

The purpose of this study was to estimate disease heritability using data available from

EHRs. To do so, I used EHR data and familial relationships extracted from EHRs, as de-

scribed in Aim 2.2, to estimate disease heritability. This study was conducted at three
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academic medical centers. Heritability estimates were compared across study sites. I eval-

uated the findings of this study by comparing heritability estimates computed using EHR

data to those published by traditional genetic studies.

Research Questions

• Can EHR data be used to identify highly heritable diseases in a highly diverse pop-

ulation?

• How can we overcome the biases and challenges of EHR data to estimate highly

heritable diseases for a diverse population?

Methods

Based on the familial relationships I identified in Aim 2.2, I computed disease heri-

tability for all traits available in the EHR. The data for this study were obtained from the

inpatient EHR used at the hospitals affiliated with three large academic medical centers in

New York City: Columbia University Medical Center, Weill Cornell Medical Center, and

Mount Sinai Health System. Columbia University Medical Center and Weill Cornell Medi-

cal Center operate together as NewYork-Presbyterian Hospital and herein, I will refer to the

hospitals and the data associated with them as Columbia and Weill Cornell, respectively.

Similarly, I will refer to Mount Sinai Health System and its data as Mount Sinai.

Phenotyping in the EHR

I used diagnostic test results, such as hemoglobin A1c (which is primarily used to mea-

sure the three-month average glucose concentration in plasma), as quantitative traits and
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diagnosis billing codes (ICD codes) as dichotomous traits. I extracted the most commonly

performed laboratory tests and mapped them to LOINC codes so that they could be easily

matched between institutions. Each patient may have multiple laboratory reports over time.

To extract a single value for each test, I collapsed all reports for each patient into a single

value using the mean. This mean reflected the average value for the laboratory result for

the patient. For example, I used a patient’s mean blood glucose value over their lifetime

instead of individual values of blood glucose.

For dichotomous traits, I used any diagnosis billing code that was used for at least 1,000

distinct patients. Any patient with evidence of that billing code in their medical record

history was considered a “case.” For ICD-9 codes, controls were chosen as any patient

that did not have that diagnosis nor any diagnosis that shared an ancestor according to the

Clinical Classifications Software (CCS).

CCS was developed by the Agency for Healthcare Research and Quality (AHRQ) and

is composed of diagnoses and procedures organized in two related classification systems.

In this study, I used the diagnoses classifications. The single-level system consists of 285

mutually-exclusive diagnosis categories. It enables researchers to map any of the 3,824

ICD-9-CM diagnosis codes into one of the 285 CCS categories.

CCS also has a multi-level system composed of 4 levels representing a hierarchy of the

285 categories. The first level is broken into 18 categories. To define a control group, I

linked the ICD-9 codes associated with a phenotype of interest to their corresponding CCS

categories using the top-level hierarchical categories. I also generated a table associating

each patient to CCS categories from their diagnosis. Once this mapping was done, each

phenotype was associated with one or more distinct CCS categories. I matched the CCS
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categories in the multi-level system to identify the first-level parent category. I considered

these top-level categories as our exclusion criteria since the control cohort for this phe-

notype should have no mention of any CCS under these categories in its medical records.

For example, the controls for atrial fibrillation would exclude patients with cardiovascular

diseases.

For conditions recorded using ICD-10 codes, I used the hierarchy from ICD-10 to iden-

tify patients for the control group. Patients that did not have the same ICD-10 code as

diagnosis nor any diagnosis that shared an ancestor code were considered controls.

I curated a set of 85 phenotypes to use for training and testing the heritability algorithm.

For these 85 phenotypes, I grouped closely related diagnoses codes together to increase the

total number of patients (Table 5.1).
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Table 5.1: Eighty-five curated phenotypes.

Phenotype ICD9	Codes Modifier
Acne 706.0,	706.1
Alcoholism 303
Alzheimer's	disease 331
Androgenic	alopecia	(females) 704.00,	704.01,	704.02,	704.09
Anorexia	nervosa 307.1
Asthma 493
ACenDon	deficit	hyperacDvity	disorder 314
AuDsm 299
Bipolar	disorder 296.0,	296.4,	296.5,	296.6,	296.7,	296.80,	296.89
Bladder	cancer 188
Breast	cancer 174
Bulimia	nervosa 307.51
Cancer	endocrine	glands 194
Cancer	Nervous	system 192,	200.50
Cancer	Nervous	system	age	>15 192,	200.50 Age=>15
Celiac	disease 579
Cervical	cancer 180
Cervix	in	situ	cancer 180
Chronic	obstrucDve	pulmonary	disease 496
Colon	cancer 153
Colorectum	cancer 153,	154
Coronary	artery	disease 414.0,	414.2
Coronary	calcificaDon 414.4
Corpus	uteri	cancer 182
Crohn's	disease 555.0,	555.1,	555.2,	555.9
Depression 311,	296.2,	296.3
Discoid	lupus	erythematosus 695.4
EctaDc	coronary	lesions 447.8
Eczema	(adults) 691,	692
Endometrial	cancer	 182
Epilepsy 345
Gallstone	disease 574
Glaucoma 365
Graves'	disease 242
Hangover	(men) 305 Sex=M
Hangover	(women) 305 Sex=F
Head	and	neck	cancer 195
Heart	disease 410-414,	420-429
Hypertension 401-405
Insomnia	(current) 307.41
Insomnia	(lifeDme) 307.42
Irritable	bowel	syndrome	(females) 555.0,	555.1,	555.2,	555.9,	556 Gender=F
Leukemia	 208
Leukemia	age	>15 208 Age=>15
Lung	cancer 162
Melanoma 172
Migraine 346
NicoDne	dependence 305.1
Non-Hodgkin	lymphoma 202
Obesity 278
OsteoarthriDs	(Distal	interphalangeal	joint	-	DIP) 715.9
OsteoarthriDs	(hip) 715.15

�1
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(con%nued)
Phenotype ICD9	Codes Modifier
Osteoarthri*s	(knee	and	hip) 715.15,	715.16
Osteoarthri*s	(knee) 715.16
Ovarian	cancer 183
Pain 338
Pancreas	cancer 157
Parkinson's	disease 332
Periodon**s 523
Polycys*c	ovary	syndrome 256.4
Prostate	cancer 185
Psoriasis 696
Rectal	and	anal	cancer 154
Rectum	Cancer 154
Renal	cancer 189
Rheumatoid	arthri*s 714
Rhini*s	(children) 477
Rosacea 695.3
Schizophrenia 295
Scia*ca 724.3
Skin	cancer	nonmelanoma 173
Stomach	cancer 151
Stroke 430,	431,	434,	436
Systemic	lupus	erythematosus 710
Systemic	lupus	erythematosus	(first-degree	
rela*ve)

710 Degree=1

Systemic	lupus	erythematosus	(second-degree	
rela*ve)

710 Degree=2

Systemic	lupus	erythematosus	(third-degree	
rela*ve)

710 Degree=3

Tes*cular	cancer 186
Thyroid	cancer 193
Tooth	loss 525.1
Type-1	diabetes 250.X1,	250.X3
Type-2	diabetes 250.X0,	250.X2
Ulcera*ve	coli*s 556
Uterine	cancer 182
Varicose	veins 454,	456

�1
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Estimation of heritability from the Electronic Health Records

The most significant challenge when using traits defined from an observational

resource, like the EHR, is the lack of ascertainment. In a heritability study, the phenotype

of each study participant is, ideally, carefully evaluated and quantified. This is infeasible,

however, when the cohort contains millions of patients with thousands of phenotypes.

The differential probability that a given individual will be phenotyped for a study trait is

the ascertainment bias. The bias may depend on many latent factors, including the trait

being studied, the trait status of relatives, the degree to which an individual’s healthcare

data is contained in the EHR (which is influenced, among other factors, by geographic

proximity to the hospital), and an individual’s ethnicity and cultural identification. The

consequence of this uncontrolled ascertainment bias is that heritability estimates will

be highly dependent on the particular individuals in the study cohort. I hypothesized

that repeated subsampling would be robust to biases introduced by extremely different

ascertainment between families. I define the observational heritability, or h2
o, as the

average of the statistically significant sample estimates (using median). For a given

trait, the procedure, which I call SOLARStrap, involves sampling families, running

SOLAR (Almasy and Blangero 1998) to estimate sample heritability, and rejecting or

accepting the estimate based on a set of quality control criteria. Each step is detailed below.

SOLARStrap Protocol

To compute disease heritability using EHR data, I built pedigree files using the data

from each one of the study sites. When building pedigree files, of the 223,307 families at
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Columbia, there were 6,894 that contained conflicting relationships – where two individuals

were inferred to have two different relationships. At Weill Cornell, 3,258 families out of

155,811 contained conflicts, and at Mount Sinai 25,438 families out of 187,473. These

families were excluded from the heritability studies. In some cases, more than one mother

or father is annotated for an individual. This could be because of duplicate patient records

or errors in the EHR relationship extraction. I resolved these issues by choosing the mother

or father that has more relationships in the family. The other relationship is discarded. I then

constructed a master pedigree file for each site. To construct this pedigree file, I iterated

through each member of each family. For each individual, I either know the mother and

father from the EHR-derived relationships or not. If not known, then a new identifier was

created to represent the parent. At this point, I iterated through all other family members and

recorded the relationships between the new individual and each family member. I repeated

this process until the entire pedigree file was filled, thus creating a master file. The master

pedigree files contained 1,404,671 individuals at Columbia, 949,440 at Weill Cornell, and

863,340 at Mount Sinai.

To computer heritability estimates for each trait, I sampled an empirically-defined pro-

portion of the available families. The number of families that are sampled combined with

the prevalence of the trait defines the power of the heritability analysis. A smaller heritabil-

ity can be detected with larger sample sizes. As the sample size increases towards the total

number of available families, the variance in heritability will decrease, but the estimate

will be less robust to bias (Figure 5.1). This is because I sampled without replacement.

Based on my simulation studies, I used sample sizes of 15% and 20% of the total number

of families with at least one case. I then assessed the quality of the computed estimates.
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SOLAR does not converge on a solution for heritability for all samples. Errors in the

pedigree or in the ascertainment of phenotypes are the most likely causes for these failures.

As part of the quality control measures, I rejected any runs of SOLAR that result in no

solution for the heritability. I then considered two additional criteria that must be met for

a solution to be considered legitimate: edge epsilon and noise epsilon. Edge epsilon (ϵe)

is a threshold that determines if the estimate is sufficiently close to 1 or 0. Any estimate

within ϵe of 1 or 0 was rejected. Noise epsilon (ϵn) is a threshold that determines if an

estimate has implausibly low error. Any estimate with implausibly low error was rejected

(h2 error is less than ϵn of the h2 estimate). These hyperparameters were set using simu-

lated heritability data. After filtering the SOLAR solutions for these criteria, I defined an

additional quality control metric called the Proportion Of Significant Attempts, or POSA.

POSA is defined as the number of solutions with a p value less than (αPOSA) divided by

the total number of converged solutions (or attempts). The POSA is important because it is

closely related to the power of the analysis. A fully powered analysis will have a POSA of

1, meaning that all converged estimates are statistically significant. A POSA of 0.5 means

that only half of the converged estimates are statistically significant. When the families

were sampled, the observed heritability was large enough to be detected with p < αPOSA

half of the time. Or, in other words, the study was powered to detect a heritability in 50%

of samplings. I demonstrated that the higher the POSA, the more accurate the heritability

estimates are (Figure 5.1I). I chose a minimum POSA score, POSAlower and the αPOSA

using simulations.

For those estimates that did not pass the defined quality control criteria when sampling

15% and 20% of the total number of families, I increased the number of families sampled
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to 45%. The maximum sample size was defined by the limitations of SOLAR, which could

only handle a maximum of 32,000 individuals per pedigree file. For each sample size, I

performed 200 samplings. For each of these, I built a custom pedigree and phenotype files

and ran SOLAR to estimate the heritability. I then aggregated the results and reported the

median heritability with the 95% confidence interval.

For each sampling, a set of N families was selected. To construct the sample pedigree

file, I identified all rows from the master pedigree files that corresponded to these families

and created a new file from this subset.

Once the pedigree file was created, I iterated over every individual in the pedigree and

used the reference trait data and demographic data to enter the phenotype status and age of

the patient. If no phenotype data were available for the individual, I enter it as missing. For

dichotomous traits, the trait values were either 0 (absence), 1 (presence), or missing and a

“proband” was randomly assigned by selecting a single individual from each family that

has the trait. For quantitative traits, I entered the quantitative value or missing.

I used SOLAR to estimate both quantitative and dichotomous trait heritability using a

pre-defined mixed linear model. In both cases, sex and age were modeled as covariates.

After the pedigree and phenotype files were loaded, the heritability of each trait was esti-

mated with the ‘polygenic –screen’ command. I used the ‘tdist’ command in SOLAR to

adjust quantitative traits that were not normally distributed. For dichotomous traits, one

“proband” was chosen at random for each family. SOLAR automatically detected the pres-

ence of a dichotomous trait and converted the estimate from the observed scale to the liabil-

ity scale. The heritability estimate, error on the heritability estimate, and the p-value were

saved from each run for later analysis and aggregation. To investigate the relative contri-
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bution of the environment to the studied phenotype, I used SOLAR to compute household

effects. For this analysis, I assigned the mother ID as the household ID.

For each sampling that passed the quality control criteria previously described and met

the minimum POSA score, I computed the h2
o as the median. The median h2

o corresponds to

a single run of SOLAR that has passed all quality control filters. I used the 95% confidence

interval as the error of the h2
o. I found that this error is closely related to the standard error

reported by SOLAR (Figure 5.1).

Preparation of data for analysis on external computing clusters

Due to the high number of heritability estimates that need to be computed, external com-

puting resources from The Open Science Grid (OSG) and Amazon Web Services (AWS)

were used. The Open Science Grid (OSG) is a massive computing resource funded by

the Department of Energy and the National Science Foundation. The OSG is comprised

of over 100 individual sites throughout the United States, primarily located at universities

and national laboratories. The sites contain anywhere from hundreds to tens of thousands

of CPU cores available for scientific research Pordes:2007ho, Sfiligoi:2009gp. AWS is

used to supplement this resource, which makes available on-demand compute instances

with high-performance capacity. Per institutional requirements, no protected health infor-

mation or personally identifying information can be transferred to systems outside of our

institutional networks. To leverage these resources for our computing task, I prepared a

data subset according to the Safe Harbor guidance provided by the U.S. Department of

Health and Human Services (https://www.hhs.gov/hipaa/for-professionals/privacy/special-

topics/de-identification/index.html).
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The following is a description of how I processed the data for Safe Harbor for each

of the 18 identifiers here enumerated from (A) through (R): (A) I removed first, middle,

and last names for all patients, (B) all patient address information was removed, (C) all

dates were removed and all ages over 89 were coded as “90”, (D) telephone numbers

and (E) fax numbers were removed, (F) there were no email addresses in the subset of

the clinical data, (G) there were no social security numbers in the subset of the clinical

data, (H) medical record numbers were mapped to a 10 digit random number and the

mapping was stored on a limited access PHI-certified server within the institutional

firewall and will never be made available, (I) there were no health plan beneficiary

numbers in the data subset, (J) there were no account numbers in the data subset, (K)

there were no certificate or license numbers, (L) there were no vehicle numbers or serial

numbers in the data subset, (M) there were no device identifiers or serial numbers,

(N) there were no URLs in the data subset, (O) there were no IP addresses in the data

subset, (P) there were no biometric identifiers in the data subset, (Q) there were no

full-face or comparable images in our data subset, (R) there were no other uniquely

identifying characteristics or numbers. All data were transferred using secure file trans-

fer protocols using encryption and were destroyed immediately after retrieval of the results.

Validation of accuracy and robustness of SOLARStrap using Simulated Traits

To validate the accuracy and robustness of SOLARStrap, I constructed a set of 4,195

families containing 14,690 individuals chosen from the families extracted from the EHR

using RIFTEHR. Relationships and pedigree structures are heterogeneous across these fam-

ilies. I used the ‘simqtl’ command from SOLAR to simulate quantitative traits with heri-
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tability values of 5% to 95% at 5% intervals for this pedigree. Traits were simulated for 19

different heritability values in total. To generate binary traits, a threshold for the quantitative

value was chosen for each of the 19 simulations so that the prevalence of the dichotomous,

or binary trait, was 15%. I used the prevalence of 15% for dichotomous traits because over-

all, the average prevalence of disease among patients with familial relationships was 15.9%

(min-max: 8% – 37%). The result of each simulation was a phenotype file containing the

family id, the individual id, and the quantitative or binary trait value.

I evaluated the quantitative and dichotomous simulated traits by running SOLAR using

the simulated phenotype files for each of the 19 different values for heritability. I summa-

rized performance using the r2 and ran a test of significance.

I then created trait files for SOLARStrap. SOLARStrap is designed to use trait files

that are similar to the phenotype files used by SOLAR but can contain more than one type

of trait per file and more than 32,000 individuals (SOLAR’s limit). I used a python script

to combine the 19 heritability estimates into a single trait file.

To evaluate the accuracy of SOLARStrap on quantitative traits, I ran SOLARStrap on

each of the 19 simulated datasets. I repeated these runs using a different sampling size

(argument nfam in SOLARStrap) between 100 and 700 increasing by 100. I selected the

largest sample size (nfam=700) and evaluated the accuracy of SOLARStrap using r-squared

and tested significance using regression analysis.

When working with dichotomous traits, there are two scenarios that had to be consid-

ered to evaluate the accuracy of SOLARStrap. Either 1) the cases and controls are equally

known, meaning that each individual in the pedigree can be assigned to either being a case

or control, or 2) the cases are higher confidence than the controls. This latter case more
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closely resembles the scenario present in the electronic health records. Documentation of a

disease in the EHR can be very indicative of the patient having the disease, but the absence

of this documentation does not mean the patient does not have the disease. I evaluated the

accuracy of SOLARStrap in both cases. For the former, I included all individuals in the

pedigree, and for the latter, I excluded any families where there were no cases. In the pedi-

grees where the cases are higher confidence than controls, I assigned a proband so that the

estimate of heritability is not biased. This was accomplished by randomly selected a single

individual in each family as the “proband.”

To evaluate the robustness of SOLAR and SOLARStrap to missing data, I chose a single

simulated trait (h2 = 50%) and randomly changed individual phenotypes to unknown. I

evaluated removing 5% to 60% of the phenotype data at 5% intervals.

To evaluate the robustness of SOLAR and SOLARStrap to biases, specifically non-

random missingness, pedigrees were removed from the heritability estimation with a prob-

ability determined by a beta distribution. The beta distribution is a continuous probability

distribution bounded by 0 and 1 and parameterized alpha and beta. Each family can be as-

signed a probability by sampling this distribution. Most families will have the same prob-

ability of missing data with a small number of families have a much lower probability. By

varying the beta and alpha parameters I can change the proportion of families with a much

lower probability of missing data. I varied the value of the beta parameter from 0.001, 0.01,

0.1, 1.0, 10.0, to 100.0 and I set the alpha parameter such that the average probability of

missingness across all families was constant at 50%.

Using the simulation results, I evaluated the effect of increasing the sample size (or

the number of families being sampled in each iteration when running SOLARStrap). I
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hypothesized that as the number of families approaches the number of available families

the heritability estimate of SOLARStrap would converge to the heritability estimate of

SOLAR. I expected that the number of families sampled would not have an effect on the

heritability estimate produced by SOLAR or SOLARStrap. I evaluated this relationship

using linear regression of the simulation results. One of the primary quality control metrics

for SOLARStrap is the Proportion of Significant Attempts (or POSA). I evaluated the

relationship between the POSA score (which ranges from 0 to 1) and the accuracy of the

heritability estimates produced.

Computational and statistical software

Statistical analysis, data preparation, and figure creation were performed using Python

2.7. Relationship inferences were implemented in Julia 0.4.3. All correlations were

reported as Pearson correlation coefficients unless otherwise noted.

Literature review

For validation purposes, I compared the heritability estimates from this to the ones re-

ported in the most recent meta-analysis of twin correlations and heritability (MaTCH) (Pol-

derman et al. 2015). Using the ICD-10 hierarchy, I grouped our ICD codes to match the

main chapters and subchapters reported in the MaTCH database. Since the meta-analysis

grouped all traits into higher-level traits, losing a lot of granularity, I also performed a liter-

ature review on heritability estimates on 128 traits. I started by analyzing studies that were

included in the table available at http://www.snpedia.com/index.php/Heritability (accessed

on March 2016). In total, I reviewed heritability estimates with confidence intervals from
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UK Biobank MaTCH dataset Observational heritability

Code Trait h2 SE h2 SE site model ho2 ho2 SE

VI Diseases of the nervous system 0.0246 0.0216 0.5221 0.0302 Weill 
Cornell AE 0.1505 0.0431

X Diseases of the respiratory system 0.0506 0.0191 0.6215 0.0385 Mount 
Sinai

AE 0.1556 0.0422

X Diseases of the respiratory system 0.0506 0.0191 0.6215 0.0385 Weill 
Cornell

AE 0.3111 0.0592

XI Diseases of the digestive system 0.0354 0.0092 0.4390 0.0193 Weill 
Cornell

AE 0.3098 0.0345

XII Diseases of the skin and 
subcutaneous tissue

0.0204 0.0180 0.7877 0.0204 Weill 
Cornell

AE 0.2276 0.1193

�1

Table 5.2: Comparison of heritability estimates from the UK Biobank, the MaTCH database and
observational heritability.

61 published reports.

Additionally, I compared our heritability estimates to those reported using the UK

Biobank dataset (Ge et al. 2017). I used the estimates reported with ICD 10 codes to

match the heritability estimates reported by Ge et al. to our estimates. Overall, I observed

that the estimates from the UK Biobank were significantly lower than those computed using

EHR data (Figure 5.2). I also compared the heritability estimates from this set of traits to

the MaTCH database. Table 5.2 contained the traits along with heritability estimates from

the UK Biobank, the MaTCH database, and our estimates using EHR data.

Results

To validate the accuracy and robustness of SOLARStrap, I used simulations of quanti-

tative and dichotomous traits with heritability ranging from 5-95%. SOLAR was precise in

estimating the heritability of both quantitative (r2 = 0.999) and dichotomous (r2 = 0.994)

traits (Figure 5.1A). I ran SOLARStrap in the simulated quantitative traits, and it accu-

rately estimated the heritabilities regardless of the sampling size (Figure 5.1B, r2 = 0.986,

p = 3.22e-15). For dichotomous traits, I ran SOLARStrap in two scenarios: 1) including all
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families regardless of the number of cases in the family and 2) including only families with

at least one case. In the latter scenario, I randomly chose one of the cases in each family to

be the proband. SOLARStrap accurately recapitulated the heritability estimates regardless

of the number of families sampled in both cases, with lower accuracy when a proband was

assigned than the complete ascertainment (r2 = 0.988, p = 7.57e-15 without proband and r2

= 0.930, p = 2.85e-11 with proband; Figure 5.1C and 5.1D). I found that both SOLAR and

SOLARStrap produced accurate estimates given complete data and in the presence of ran-

dom missingness (Figure 5.1E). However, SOLARStrap produced more accurate estimates

in the presence of ascertainment biases that vary from family to family (Figure 5.1F).

As expected, SOLARStrap produced estimates with larger confidence intervals than

SOLAR. SOLARStrap becomes more sensitive to bias as the number of families sampled

increased towards the total number of families available (Figure 5.1G); however, the es-

timate of heritability is not dependent on the number of families sampled (Figure 5.1H,

r=0.02, p=4.1e-8). I used the Proportion of Significant Attempts (POSA) as a quality score

for the heritability estimates generated by SOLARStrap. A higher POSA score represents

a more accurate heritability estimate from SOLARStrap (Figure 5.1I). I injected noise into

the data by randomly shuffling a subset of the patient diagnoses, simulating misclassifi-

cation (misdiagnosis or missed diagnosis) in the medical records. Injection of 5% noise

reduced the estimate 13% (from h2
o =0.77 to h2

o =0.67) and 10% noise reduced the estimate

30% (from h2
o =0.77 to h2

o =0.53, Figure 5.1J). Misclassification was one explanation of

lower than expected estimates compared to a carefully ascertained study.
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Figure 5.1: Validation of SOLARStrap accuracy and robustness using simulated data. (A) Traits
with heritability ranging from 5% to 95% were generated using the SOLAR. We used actual family
structures extracted from the EHR by RIFTEHR to generate the simulated traits. We then created
dichotomous (binary) versions of the trait by choosing a threshold that would yield a trait with 15%
prevalence. SOLAR was very accurate at recapitulating the correct heritability for both quantita-
tive (r2 = 0.999) and binary (r2 = 0.994) traits. In (B), (C) and (D), the number of families varied
from 100 to 1000, being represented by different colors. (B) SOLARStrap was run on each of the
simulated quantitative traits and was accurate at estimating the true heritability (r2 = 0.986). SO-
LARStrapwas accurate regardless of the number of families that was used in the sampling procedure
(left). (C) SOLARStrap was run on each of the binary traits in the setting of complete ascertainment.
SOLARStrap achieved equal accuracy as in the quantitative case (r2 = 0.988). (D) SOLARStrap
was run on each of the binary traits in the setting of incomplete ascertainment. In this case, families
without any cases were dropped and a proband was randomly assigned in each family. The accuracy
is lower than the case of complete ascertainment (r2 = 0.930). (E) In the presence of randomly miss-
ing information, both SOLAR and SOLARStrap produce accurate estimates of the true heritability
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even when up to 60% of the data are removed. However, in four cases where the proportion removed
was 35%, 45%, and above 50% SOLARStrap estimates did not pass our internal quality control cri-
teria. (F) SOLAR is sensitive to this bias and produces inaccurate results as the strength of the bias
increases. SOLARStrap is robust to these biases and produces accurate estimates of heritability
even in the most extreme case of bias. (G) As the number of families sampled increases toward
the total number of available families SOLARStrap becomes more sensitive to bias – in the most
extreme case where the number of sampled families is equal to the total number of available families
SOLARStrap reduces to simply running SOLAR. (H) The estimate of heritability is not dependent
on the number of families sampled (r=0.02, p=4.1e-8). (I) The Proportion of Significant Attempts
(POSA) is a primary estimate of quality for heritability estimates produced by SOLARStrap. The
accuracy of SOLARStrap increases as the POSA increases (shown as error here). (J) The effect
of noise injection on the estimate of observational heritability of rhinitis. We injected noise into
the data by randomly shuffling a subset of the patient diagnoses. This simulates misclassification
(misdiagnosis or missed diagnosis) in the medical records. When no noise is injected the estimate is
0.77 (0.60-0.92). As noise is introduced the estimate of the heritability decreases to 0.36 (0.23-0.49)
once one quarter of the data are randomized.
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Figure 5.2: Estimating heritability of disease using electronic health records. We designed a
method, called SOLARStrap, for estimating the heritability of traits where the phenotype is de-
rived under unknown ascertainment biases, the h2o. (A) We found that performance was consistent
across sites and (B) that h2o is significantly correlated with literature estimates of h2. (C) Heritability
estimates stratified by race and ethnicity using the AE model are correlated with estimates of h2o.
(D) These models are also correlated when computing heritability estimates for ICD10 codes alone.
(E) Heritability of traits that have been studied before, such as height, have been recapitulated by
our study. We also stratified heritability of height by self-reported race and ethnicity as available
in EHR. (F) Observational heritability of HDL cholesterol (blue) is significantly higher than heri-
tability of LDL cholesterol (red). This difference is still observed after stratifying patients by the
presence or absence of HMG-CoA reductase inhibitors as treatment for hypercholesterolemia.

I found that heritability estimates are significantly correlated across sites (Figure 5.2A).

I identified traits with heritability estimates and then computed the correlation between the

estimates found in each one of the study sites to the other two sites. Columbia had 147 traits
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that overlapped with traits from the other two sites, with correlation r=0.35, p=1.32e-05.

Similarly, Weill Cornell had 147 traits, with correlation r=0.48, p=8.20e-10, and Mount

Sinai had 58 traits, r=0.36, p=5.48e-03. I mined the literature for heritability estimates and

found 91 phenotypes that mapped to phenotypes I curated from the EHR. I also included

all traits reported in the latest meta-analysis (Polderman et al. 2015). I used simulations to

set the quality control parameters of the SOLARStrap procedure. Thirty-three traits passed

these quality control criteria. I found that they were significantly correlated with literature

estimates for these traits (r=0.45, p=9.11e-03, Figure 5.2B), and 16 (48%) had overlapping

confidence intervals (Table 5.3). On average, observational heritability estimates were

27% lower than those reported in the literature. I also stratified the heritability estimates by

race and ethnicity. The estimates stratified by race and ethnicity are significantly correlated

with the overall heritability estimates (Figures 5.2C and 5.3).
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Name Site ho2	(95%	CI) h2	(95%	CI)

Acne Columbia 0.35	(0.22-0.55) 0.81	(0.73-0.89)
Allergy,	Unspecified Columbia 0.30	(0.18-0.42) 0.67	(0.61-0.72)
Asthma* Weill	Cornell 0.37	(0.21-0.58) 0.30	(0.22-0.37)
Asthma* Columbia 0.51	(0.30-0.63) 0.30	(0.22-0.37)
Asthma	with	status	asthmaJcus Columbia 0.45	(0.27-0.56) 0.67	(0.61-0.72)
Atopic	dermaJJs Columbia 0.42	(0.25-0.62) 0.78	(0.73-0.83)
Atopic	dermaJJs	and	related	condiJons* Columbia 0.50	(0.34-0.78) 0.78	(0.73-0.83)
AKenJon	deficit	hyperacJvity	disorder Columbia 0.36	(0.22-0.50) 0.72	(0.56-0.85)
Celiac	disease* Columbia 0.77	(0.41-0.98) 0.75	(0.55-0.96)
Depression Columbia 0.25	(0.17-0.30) 0.37	(0.31-0.42)
Depressive	disorder* Weill	Cornell 0.25	(0.15-0.41) 0.39	(0.36-0.42)
Depressive	disorder Columbia 0.27	(0.13-0.35) 0.39	(0.36-0.42)
Disease	of	skin	and	subcutaneous	Jssue Columbia 0.30	(0.17-0.46) 0.79	(0.75-0.83)
Diseases	of	the	digesJve	system* Weill	Cornell 0.31	(0.22-0.40) 0.44	(0.40-0.48)
Diseases	of	the	nervous	system Weill	Cornell 0.15	(0.08-0.23) 0.52	(0.46-0.58)
Diseases	of	the	respiratory	system Weill	Cornell 0.31	(0.22-0.40) 0.62	(0.55-0.70)
Diseases	of	the	respiratory	system Mount	Sinai 0.16	(0.10-0.25) 0.62	(0.55-0.70)
Diseases	of	the	skin	and	subcutaneous	Jssue Weill	Cornell 0.23	(0.13-0.32) 0.79	(0.75-0.83)
Eczema	(adults)* Columbia 0.44	(0.30-0.57) 0.34	(0.02-0.66)
ExacerbaJon	of	asthma* Columbia 0.46	(0.26-0.63) 0.67	(0.61-0.72)
Glaucoma* Columbia 0.39	(0.24-0.65) 0.36	(0.18-0.54)
Height* Columbia 0.79	(0.67-0.94) 0.77	(0.74-0.80)
Major	depressive	disorder,	recurrent* Columbia 0.36	(0.21-0.51) 0.39	(0.36-0.42)
Major	depressive	disorder,	single	episode Columbia 0.25	(0.17-0.31) 0.39	(0.36-0.42)
Migraine* Columbia 0.31	(0.17-0.48) 0.45	(0.41-0.49)
Obesity* Weill	Cornell 0.57	(0.40-0.82) 0.76	(0.67-0.85)
Obesity Columbia 0.41	(0.31-0.49) 0.76	(0.67-0.85)
OsteoarthriJs Columbia 0.26	(0.15-0.38) 0.53	(0.44-0.62)
RhiniJs	(children)* Weill	Cornell 0.63	(0.39-0.95) 0.95	(0.78-0.97)
RhiniJs	(children) Columbia 0.64	(0.47-0.77) 0.95	(0.78-0.97)
Type	1	diabetes	mellitus* Weill	Cornell 0.35	(0.23-0.53) 0.66	(0.49-0.84)
Type	1	diabetes	mellitus Columbia 0.37	(0.20-0.70) 0.88	(0.78-0.94)
Type-2	diabetes* Columbia 0.25	(0.15-0.32) 0.25	(0.15-0.35)

�1

Table 5.3: Comparison between observational heritability (h2o) and heritability estimates (h2) pre-
viously reported in the literature. Among the 33 traits, 16 (48%) have overlapping confidence inter-
vals, highlighted with a star (*).
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Figure 5.3: Correlation between the estimates stratified by race and ethnicity and the overall heri-
tability estimates using the ACE model.

In addition to the additive genetic model (AE), I also modeled heritability with a term

for common environment (ACE) using the mother ID as the household ID. ACE and AE

models are overall significantly correlated (r=0.66, p=1.25e-34, Figure S2) and are also

correlated when computing heritability estimates for ICD10 codes alone (r=0.49, p=4.21e-

13, Figure 5.2D).

I found that phenotypes from the EHR could increase sample size and recapitulate heri-

tability estimates that are well known. For example, the most heritable trait I found was for

sickle cell disease, h2
o=0.97 (0.75-1.00), N=857 (Table 5.1). I also computed heritability

of height and stratified the estimates based on self-reported race and ethnicity as captured
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in the EHR. The latest meta-analysis reported heritability of height to be 0.77 (CI=0.74-

0.80) (Polderman et al. 2015). Using EHR data, I obtained observational heritability of

0.80 (CI=0.74-0.86). The heritability of height among whites had a lower quality control

score and is higher than the other groups. (Figure 5.2E).

Using phenotypes from the EHR for heritability can provide clarity for poorly studied

traits, revealing subtle differences between closely related conditions, and open up new

avenues of heritability research. For example, two previous studies had shown conflicting

evidence for the relative heritability of HDL cholesterol and LDL cholesterol (Pietiläinen

et al. 2009; Souren et al. 2007). The larger of these two studies (N=378) found no difference

in the heritability of these two traits when adjusting for age and sex, while the other found

a slightly higher heritability for HDL, but was underpowered to detect significance. In this

study, I presented evidence that HDL is more heritable than LDL (h2
o =0.48 95% CI: 0.42 -

0.56 vs 0.36 95% CI: 0.27 - 0.45 at Columbia; h2
o =0.51 95% CI: 0.35 - 0.67 vs 0.26 95%

CI: 0.15 - 0.38 at Weill Cornell). This finding held when accounting for the use of HMG-

CoA reductase inhibitors as treatment for hypercholesterolemia (Figure 5.2F). At 96,241

patients in the Columbia cohort and 33,239 patients in the Weill Cornell cohort, this study

was the largest heritability study of cholesterol ever conducted, to my knowledge.
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Dichotomous*Disease*Category Median*h2o

Trait*with*Highest*Heritability Trait*with*Lowest*Heritability
ICD9*
Code Name Median*h2o*

(95%*CI)
ICD9*
Code Name Median*h2o*

(95%*CI)

Hematologic+Diseases 0.50 287.31
Immune+thrombocytopenic+
purpura

0.71
(0.33?0.96) 285.9 Anemia

0.20
(0.15?0.36)

Mental+Health+Diseases 0.41 309.28
Adjustment+disorder+with+mixed+
anxiety+and+depressed+mood

0.95
(0.36?1.00) 315.39

Other+developmental+speech+or+
language+disorder

0.11
(0.09?0.15)

Sense+Organs+Diseases 0.41 365.11 Primary+open+angle+glaucoma
0.93

(0.52?1.00) 382.9 Unspecified+oPPs+media
0.10

(0.06?0.16)
Endocrine+and+Metabolic+

Diseases
0.40 278.02 Overweight

0.71
(0.54?0.88) 272.4

Other+and+unspecified+
hyperlipidemia

0.23
(0.15?0.37)

GastrointesPnal+Diseases 0.39 579 Celiac+disease
0.78

(0.55?0.97) 521 Dental+caries
0.12

(0.07?0.18)

InfecPous+Diseases 0.34 111 Pityriasis+versicolor
0.85

(0.50?0.94) 780.6 Fever
0.11

(0.05?0.23)

Respiratory+Diseases 0.34 477.9
Allergic+rhiniPs,+cause+
unspecified

0.72
(0.25?0.93) 464.4 Croup

0.09
(0.05?0.12)

Cardiovascular+Diseases 0.33 785.2 Undiagnosed+cardiac+murmurs
0.59

(0.42?0.84) 786.59 Other+chest+pain
0.18

(0.11?0.25)

Dichotomous*Disease*Category Median*h2o

Trait*with*Highest*Heritability Trait*with*Lowest*Heritability
ICD10*
Code Name Median*h2o*

(95%*CI)
ICD10*
Code Name Median*h2o*

(95%*CI)

Pregnancy,+Childbirth+and+
Puerperium

0.54 O30 MulPple+gestaPon
0.76

(0.36?1.00)
O30?
O48

Maternal+care+related+to+the+
fetus+and+amnioPc+cavity+and+
possible+delivery+problems

0.41
(0.19?0.61)

Hematologic+Diseases 0.45 D57 Sickle?cell+disorders
0.97

(0.75?1.00) D64 Other+anemias
0.18

(0.11?0.30)

Injury+and+Poisoning 0.40 T59
Toxic+effect+of+other+gases,+
fumes+and+vapors

0.81
(0.49?0.98) S01 Open+wound+of+head

0.18
(0.10?0.36)

InfecPous+Diseases 0.40 B35 Dermatophytosis
0.81

(0.41?0.98) B80 Enterobiasis
0.11

(0.04?0.13)

Genitourinary+Diseases 0.37 N92
Excessive,+frequent+and+irregular+
menstruaPon

0.85
(0.62?0.99)

N80?
N98

Noninflammatory+disorders+of+
female+genital+tract

0.15
(0.09?0.20)

Respiratory+Diseases 0.35 J01 Acute+sinusiPs
0.85

(0.61?0.98) J02 Acute+pharyngiPs
0.02

(0.01?0.03)

Eye+Diseases 0.34 H35 Other+rePnal+disorders
0.55

(0.33?0.77) H10 ConjuncPviPs
0.18

(0.10?0.22)

GastrointesPnal+Diseases 0.34 K90 IntesPnal+malabsorpPon
0.84

(0.69?0.98) K02 Dental+caries
0.14

(0.09?0.20)
Endocrine+and+Metabolic+

Diseases
0.34 E20?E35

Disorders+of+other+endocrine+
glands

0.60
(0.28?0.89) E84 CysPc+fibrosis

0.01
(0.01?0.02)

Cardiovascular+Diseases 0.33 I15 Secondary+hypertension
0.50

(0.31?0.89) IX
Diseases+of+the+Circulatory+
System

0.18
(0.10?0.28)

Skin+Diseases 0.32 L70 Acne
0.72

(0.20?0.91) L80?L99
Other+disorders+of+the+skin+and+
subcutaneous+Pssue

0.17
(0.11?0.29)

Ear+and+Mastoid+Diseases 0.31 H61 Other+disorders+of+external+ear
0.82

(0.68?0.93) H66
SuppuraPve+and+unspecified+
oPPs+media

0.11
(0.06?0.22)

Mental+Health+Diseases 0.31 F93
EmoPonal+disorders+with+onset+
specific+to+childhood

0.78
(0.27?1.00) F40?F48 Anxiety

0.02
(0.01?0.03)

External+Causes+of+Morbidity+
and+Mortality

0.31 V49
Car+occupant+injured+in+other+
and+unspecified+transport+
accidents

0.94
(0.87?0.99) V04

Pedestrian+injured+in+collision+
with+heavy+transport+vehicle+or+
bus

0.01
(0.00?0.01)

Signs+and+Symptoms 0.30 R92
Abnormal+findings+on+diagnosPc+
imaging+of+breast

0.48
(0.26?0.65) R62

Lack+of+expected+normal+
physiological+development

0.07
(0.05?0.10)

Musculoskeletal+Diseases 0.27 M71 Other+bursopathies
0.61

(0.25?0.99)
M00?
M25

Arthropathies
0.18

(0.11?0.25)

Congenital+malformaPons 0.27 XVII Congenital+MalformaPons
0.73

(0.50?0.96) Q85 Phakomatoses
0.05

(0.00?0.09)

Neoplasms 0.25 D23 Other+benign+neoplasms+of+skin
0.35

(0.20?0.53) II Neoplasms
0.17

(0.08?0.27)

Perinatal+Diseases 0.22 XVI
Certain+CondiPons+OriginaPng+In+
the+Perinatal+Period

0.62
(0.45?0.84)

P00?
P04

Newborn+affected+by+maternal+
factors+and+by+complicaPons+of+
pregnancy

0.05
(0.01?0.08)

Neurological+Diseases 0.17 G47 Sleep+disorders
0.31

(0.19?0.48) G44 Other+headache+syndromes
0.02

(0.01?0.03)

�1
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QuanEtaEve*Disease*Category Median*h2o

Trait*with*Highest*Heritability Trait*with*Lowest*Heritability
LOINC*
Code Name Median*h2o*

(95%*CI)
LOINC*
Code Name Median*h2o*

(95%*CI)

Endocrine+Disorders 0.30 3016?3
Thyrotropin+[Units/volume]+in+
Serum+or+Plasma

0.37
(0.23?0.49)

3026?2
Thyroxine+(T4)+[Mass/volume]+in+
Serum+or+Plasma

0.26
(0.16?0.36)

GastrointesPnal+Disorders 0.30 2324?2
Gamma+glutamyl+transferase+
[EnzymaPc+acPvity/volume]+in+
Serum+or+Plasma

0.45
(0.35?0.56)

1975?2 Total+Bilirubin+serum/plasma
0.11

(0.08?0.16)

Hemorrhage 0.18 5902?2 Prothrombin+Pme+?+paPent
0.25

(0.16?0.35)
718?7 Hemoglobin

0.14
(0.08?0.19)

Metabolic+and+NutriPonal+
Disorders

0.41 2573?4
Lipoprotein.alpha+[Mass/
volume]+in+Serum+or+Plasma

0.49
(0.41?0.58)

2498?4
Iron+[Mass/volume]+in+Serum+or+
Plasma

0.25
(0.14?0.35)

Metabolic+Disorders 0.38 2085?9
Cholesterol+in+HDL+[Mass/
volume]+in+Serum+or+Plasma

0.51
(0.35?0.67)

2089?1
Cholesterol+in+LDL+[Mass/
volume]+in+Serum+or+Plasma

0.26
(0.15?0.38)

RePculoendothelial+Disorders 0.29 4679?7 RePculocytes+%
0.93

(0.77?1.00)
26450?7 Eosinophils+%

0.12
(0.07?0.18)

�2

Table 5.4: Heritability Ranges for Dichotomous and Quantitative Trait Categories. The median
observational heritability and ranges are shown for dichotomous trait categories, both ICD9 and
ICD10 codes, and for quantitative trait categories, LOINC codes. Within each category, the trait with
the highest heritability and the trait with the lowest heritability are shown. Mendelian conditions
are annotated with (*) and traits with literature heritability estimates are marked with.

Heritability is used to estimate genetic contribution to complex, polygenic, or quanti-

tative traits rather than classic Mendelian disorders in which the presence or absence of a

single genetic mutation determines the development of the disease. Interestingly, our al-

gorithm was able to provide estimates of heritability for Mendelian traits without genetic

information based only on EHR data. For example, I observed high heritability estimates

for common highly penetrant Mendelian diseases with autosomal transmission, such as

sickle cell disease (h2
o = 0.97, 95% CI 0.75-1.00, N=857 families), but low heritability es-

timates for other rare recessive Mendelian traits, such as cystic fibrosis (h2
o = 0.01 95%

CI: 0.01-0.02 N=7,682 families). Recovering a heritability estimate of almost 1 for sickle

cell is reassuring since that is exactly what would be expected in the presence of a highly

penetrant mutation and when carriers are also frequently correctly identified in the EHR.

However, the heritability of cystic fibrosis was very low. This is likely because the additive

model used for heritability estimation is clearly misspecified for a rare disease with a known

recessive pattern of inheritance and asymptomatic carrier status. Moreover, because of the
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Relationships
Relationships 

count
Relationships 

ratio
Relationships 

count
Relationships 

ratio p-value
Difference 
(SCD - CF)

Ratio 
(SCD/CF)

Aunt/Uncle 189 0.0608 2526 0.0699 3.08e-01 0.0092 1.1506
Child 316 0.1016 6312 0.1748 2.18e-14*** 0.0731 1.7196
Cousin 166 0.0534 1997 0.0553 8.35e-01 0.0019 1.0357
First cousin once removed 78 0.0251 1330 0.0368 1.57e-03** 0.0117 1.4679
Grandaunt/Granduncle 65 0.0209 1239 0.0343 1.10e-04*** 0.0134 1.6410
Grandchild 60 0.0193 2024 0.0560 1.63e-20*** 0.0367 2.9041
Grandnephew/Grandniece 141 0.0454 1673 0.0463 8.21e-01 0.0010 1.0215
Grandparent 123 0.0396 1486 0.0411 1.00e+00 0.0016 1.0401
Great-grandaunt/Great-granduncle 30 0.0096 570 0.0158 8.9e-03** 0.0061 1.6357
Great-grandchild 34 0.0109 860 0.0238 1.35e-06*** 0.0129 2.1775
Great-grandnephew/Great-grandniece 89 0.0286 786 0.0218 1.06e-02* -0.0069 0.7603
Great-grandparent 22 0.0071 598 0.0166 1.52e-05*** 0.0095 2.3400
Great-great-grandchild 24 0.0077 388 0.0107 1.40e-01 0.0030 1.3918
Great-great-grandparent 13 0.0042 272 0.0075 3.55e-02* 0.0034 1.8012
Nephew/Niece 213 0.0685 2866 0.0794 2.84e-01 0.0108 1.1584
Parent 920 0.2959 4324 0.1197 2.00e-159*** -0.1762 0.4046
Sibling 532 0.1711 4925 0.1364 1.34e-14*** -0.0347 0.7970
Spouse 94 0.0302 1938 0.0537 5.37e-08*** 0.0234 1.7749

Cystic Fibrosis (CF) Sickle Cell Disorder (SCD)

Table 5.5: Distribution of relationship types among families with cystic fibrosis and sickle cell
disease.

availability of carrier screening and prenatal diagnosis, cystic fibrosis families are nowa-

days typically small (Castellani et al. 2009; Dupuis et al. 2005; Scotet et al. 2012; Slieker

et al. 2005); affected cases also frequently suffer from infertility limiting the number of

observed disease transmissions per family. Indeed, in our dataset families with cystic fi-

brosis were smaller (average family size 3.0 for cystic fibrosis vs 4.6 for sickle cell disease,

p=8.8e-14), had more advanced average age (average 40 years old vs 36 years old for sickle

cell disease, p=4.1e-17), had fewer “child” and “grandchild” relationships (p=2.18e-14 and

p=1.63e-20, respectively), and included more parental relationships (p=2.00e-159) when

compared to the sickle cell disease cohort (Table 5.5).

In addition, subtle phenotypical variations that are routinely collected clinically can be

studied. For example, analysis of the highest and lowest heritability estimates by category

provides us with interesting findings. Among neurological diseases, I observed that sleep

disorders are highly heritable (h2
o=0.31 95% CI: 0.19-0.48); whereas headache syndromes

are not (h2
o=0.02 95% CI: 0.01-0.03). A comprehensive list of heritability estimates for
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multiple diseases’ categories is available in Table 5.1. Finally, this study demonstrated that

the EHR can identify novel traits for future genetic studies. Of the 500 traits I computed

heritability estimates for, only 33 of which had been previously studied as part of the latest

meta-analysis or identified by our literature review.

Discussion

Heritability is a key component in precision medicine and is typically estimated based

on family history. Collection of comprehensive and accurate family history is time-

consuming and does not occur during the vast majority of clinical encounters (Polubriagi-

nof, Tatonetti, and Vawdrey 2015). The construction of pedigrees by inference of relat-

edness from administrative records, as described in Aim 2.2, allows for rapidly assessing

family history and heritability at scales that were previously impossible to achieve. I used

EHR-inferred relationships to calculate heritability estimates among individuals with de-

fined relationships.

Previous research in this area has focused on family studies of known relatives, primar-

ily twins. Mayer and colleagues used EHR data to create a cohort of 2,000 twins/multiple

births and measured concordance among identified twins for two highly heritable diseases,

muscular dystrophy and fragile-X syndrome (Mayer et al. 2014). This study looked not

only at twins, but entire families across several generations.

Importantly, most previous studies have predominantly involved White Europeans and

may not be representative of other populations. However, the results presented reflect the

diverse, multiethnic population of New York City – the majority of our patient population
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is not self-reported as “white.” For example, I stratified patients that had height available in

the EHR by self-reported race and ethnicity and used these cohorts of patients to compute

heritability of height. I observed that the heritability estimate was higher among whites in

comparison to other race and ethnicity groups. Bias might explain this difference since this

group had a lower quality control score than the others. I also investigated income as a

possible confounder using patient ZIP codes and Census data. Overall, the population self-

identified as white has twice the average income than other populations – one possible ex-

planation for this difference given that heritability estimates increase in more homogenous

environments. This could create a difference in heritability of height both across ethnicities

and across income levels. In other cases, traits have been shown to be more heritable in

high socioeconomic strata than in lower strata (Bronfenbrenner and Ceci 1994; Harden,

Turkheimer, and Loehlin 2007; Turkheimer et al. 2003).

However, the stratification by race and ethnicity was not feasible for all traits. Over 68%

of the families have a single race and ethnicity reported and over 29% of the families have

two distinct race and ethnicity groups reported. Estimates of traits that had a large enough

sample size to stratify by race and ethnicity are available at http://riftehr.tatonettilab.org.

For traits that were stratified by race and ethnicity, heritability estimates were significantly

correlated with the overall heritability estimate.

The primary challenge when using traits defined from an observational resource, like

the EHR, is incomplete phenotype information resulting in ascertainment bias. In a heri-

tability study, the phenotype of each study participant is, ideally, carefully evaluated and

quantified. This is not feasible, however, when the cohort contains millions of patients with

thousands of phenotypes. The bias may depend on many latent factors, including the trait
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being studied, the trait status of relatives, the proximity to the hospital, and an individual’s

ethnicity and cultural identification, among others. The consequence of this uncontrolled

ascertainment bias is that heritability estimates will be highly dependent on the particular

individuals in the study cohort. I observed that a small number of highly biased families

could significantly sway the heritability estimate. Repeated sub-sampling will be robust

to these types of biases. EHR-based heritability estimates are particularly well-suited for

complex traits that require large numbers of patients (e.g., Type 2 Diabetes Mellitus and

Obesity).

The unique nature of the relationships and phenotypes derived from the EHR may ne-

cessitate novel methods for estimating heritability. I used a mixed linear model imple-

mented in SOLAR (Almasy and Blangero 1998) to estimate heritability and used repeated

sampling, which I call SOLARStrap, for efficiency and to correct for ascertainment hetero-

geneities. I evaluated the impact of bias and missingness on SOLARStrapp by comparing

the heritability estimates with simulated data and demonstrated that SOLARStrap is robust

to bias. Overall, quantitative traits perform better than dichotomous traits, and traits com-

monly documented in EHRs perform better than rare and poorly documented conditions

(e.g. mental health disorders). There may be more accurate ways to estimate heritability

from this unique data source. Future work should focus on using only certain types or re-

lationships or use alternative modeling strategies. Fragmentation of care is an additional

limitation when using EHR data for genetic research. Patients often go to multiple health-

care systems, and therefore, the information available in a single institution is incomplete.

Future implementations may address this limitation by accounting for the number of vis-

its and documentation of primary care physician in the healthcare system or by integrating
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records across a regional healthcare network.

There are significant bioethical considerations regarding the use of the RIFTEHR

method, including how best to balance the competing demands of protecting patients’ pri-

vacy with clinicians’ duty to warn relatives of potential genetic risks. The method could

readily be applied in EHR systems, such that clinicians could easily access the health infor-

mation of a patient’s family members. In the United States, accessing a family member’s

health information in this manner may be considered a violation of the 1996 Health Insur-

ance Portability and Accountability Act (HIPAA) Privacy Rule (United States, 1996). On

the other hand, case law in the United States has established that healthcare providers have

a responsibility to inform a patient’s relatives about heritable conditions that may reason-

ably put the relatives “at risk of harm” (Suarez 2011). These conflicts may need to be

resolved before automatic relationship inference can be used clinically. It is worth noting

there is a risk of reidentification of family structures, even when de-identified according

to the HIPAA Safe Harbor. For example, unique family structures could be identified by

cross-referencing obituaries and other online tools. Extra safeguards are necessary to miti-

gate these risks when releasing these data.

Conclusion

I have described and validated a novel method for identifying familial relationships

in patient medical records in Aim 2.2, and used 7.4 million relationships inferred from the

EHRs at three academic medical centers to estimate heritability of 500 traits without genetic

testing. I found that heritability estimates were concordant across the three centers, and are
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broadly consistent with published studies, suggesting that the method may have broad ap-

plicability. Genetic information is valuable but expensive and not always available. In this

case, familial relationships extracted from emergency contact information can personalize

disease risk prediction and facilitate heritability determination for phenotypes that were not

previously investigated in family-based or twin studies. The correspondence the heritabil-

ity estimates presented in this study with family-based estimates provides a direct and novel

validation of the value of electronic health records for generating inferences about disease,

making RIFTEHR a valuable tool for the advancement of precision medicine.
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5.2 Aim 3.2 - Estimating disease screening rates using

electronic health records data

Background

that are at a high risk for disease development, and therefore promote disease preven-

tion, screening, and early diagnosis and treatment. Current clinical guidelines, such as those

from the U.S. Preventative Services Task Force (USPSTF) recommend additional or early

disease screening for patients at higher risk for developing certain diseases, such as cancer,

cardiovascular, and gastrointestinal conditions. Despite these lofty goals, there remains a

gap in effectively screening patients. For instance, previous research has shown that breast

cancer screening takes up valuable time during patient care visits to conduct accurately

(Owens et al. 2011). Furthermore, there has been little research on clinician adherence to

the recommendation of early screening among high-risk patients (Jemal and Fedewa 2017;

Solbak et al. 2018).

The lack of clarity in understanding adherence to guidelines has a large potential impact

on how care is delivered. Adherence to clinical guidelines is important, particularly for

chronic diseases such as diabetes mellitus. Previous studies have shown that adherence

to treatment guidelines that include assessing various physiological and social determinant

information is generally low (Oude Wesselink et al. 2015). Prior work to evaluate clinical

guideline adherence in diabetes mellitus has focused on disease management, either by

determining the frequency of testing for disease outcomes, such as retinopathy, or process

measures, such as measuring for hemoglobin A1c (An et al. 2018; Khunti et al. 2018).
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There has been less focus in the literature on early or preventative screening for diabetes

mellitus, particularly in relation to family history. Fortuitously, the widespread use of EHRs

in combination with the method previously described in Aim 2.2, which identifies family

medical history from existing clinical databases, allowed us to study whether patients have

been properly screened for conditions in a comprehensive way.

Objectives

The purpose of this study was to use EHR data to determine the rates of screening among

patients known to be at high risk for a prevelant condition, diabetes mellitus, and for a rare

condiation, celiac disease.

Research Questions

• Can EHR data be used to measure disease screening and adherence to clinical guide-

lines?

Methods

As a proof-of-concept to determine the usefulness of EHR data in assessing disease

screening rates, I applied similar methodology focusing on two distinct conditions: dia-

betes and celiac disease. These conditions were determined because both conditions have

additional screening recommendations for patients with a known family history of disease

and both conditions have additional screening recommendations for patients with a known

family history of disease, with diabetes being highly prevalent affecting nearly 1 in 10
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Americans while celiac disease is considered a rare condition.

With approval of the Institutional Review Board of Columbia University Medical Cen-

ter, I conducted a retrospective analysis of family members of patients diagnosed with dia-

betes mellitus visiting NewYork-Presbyterian Hospital/Columbia University Medical Cen-

ter from 2007 to 2017. Patients with a diagnosis of diabetes mellitus were identified using

a validated and previously implemented EHR phenotype, available at PheKB (Phenotype

KnowledgeBase). This EHR phenotype used a combination of diagnosis codes, medica-

tions and laboratory test results to identify patients with diabetes mellitus in our institution.

Because an EHR phenotype for celiac disease had not been developed and validated, I ex-

amined relatives of patients (N=2,081) with biopsy-diagnosed celiac disease in a prospec-

tively maintained database at NewYork-Presbyterian Hospital/Columbia University Medi-

cal Center.

To identify family history in electronic health records (EHRs), patients’ relatives were

identified using RIFTEHR (Relationship Inference from the Electronic Health Record), as

described in Aim 2.2, a novel validated method that used the first name, last name, phone

number and ZIP code of patients’ emergency contacts to identify familial relationships.

Once the relationships were identified, RIFTEHR inferred additional relationships accord-

ing to family structure. The identified relationships were previously validated using both

clinical and genetic data, as previously described in Aim 2.2 (Polubriaginof et al. 2017).

Once the cohort of family members was identified, I extracted demographic informa-

tion, such as sex, age, race, and ethnicity from the EHR. While race and ethnicity were

stored as distinct fields in our database, I found that transforming the two fields into a sin-

gle field addressed many cases of missing data. Therefore, regardless of race, patients with

165



a reported ethnicity of “Hispanic” are reported in this study as “Hispanic.” Patients with

ethnicity recorded as “non-Hispanic” or “Unknown” were reported using the race informa-

tion available (e.g., “White,” “Black or African American,” “Asian”). Patients without race

and ethnicity information were reported as “Uninformative.”

Diabetes mellitus

I measured diabetes screening by identifying individuals that had at least one of the

following laboratory tests after the index case diagnosis date: fasting glucose (LOINC code

1558-6), random glucose (LOINC codes 2339-0, 2345-7), or hemoglobin A1C (LOINC

codes 4548-4, 17856-6, 4549-2, 17855-8). I included all family members over 18 years

of age. I calculated descriptive statistics of the identified cohort, along with the rate of

screening among family members. Additionally, I performed a multivariate analysis to

determine factors that increase the likelihood of receiving a screening test. To determine the

influence of each parameter in the logistic regression model, I computed the standardized

coefficients (β) by multiplying the beta coefficient (B) to the standard deviation of the

corresponding parameter in the data. Python 2.7 was used to perform these analyses.

Celiac disease

The EHR was queried and each patients’ records were manually reviewed to extract

celiac disease testing information. The manual review included extraction of the following

elements: 1) serology results, 2) duodenal biopsy results, 3) occurrence of a visit with a gas-

troenterologist, 4) presence of signs or symptoms of celiac disease in clinical notes and/or

ICD codes, and 5) documentation of family history of celiac disease. Demographic infor-
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mation such as gender, age, and race and ethnicity were queried from the EHR’s database.

Celiac disease screening was defined as either antibody testing or endoscopic evaluation

with duodenal biopsy. SAS (Cary, NC) version 9.4 was used to perform both univariate

and multivariate analyses to identify predictors of celiac disease screening. I tested the

following variables a priori and included all variables in the multivariable analysis. All

reported p values are 2-sided.

Results

Diabetes mellitus

Overall, I identified 13,086 patients with diabetes mellitus that also had familial re-

lationships extracted by RIFTEHR. These patients had 56,794 family members in our

database, distributed across 12,613 families. Familial relationships spanned up to four gen-

erations, including relationships such as great-great-grandparents. Of those, 45,778 family

members (12,181 families) were over 18 years of age, and 27,757 (8,188 families) had a

clinical visit after the index case had been diagnosed with diabetes mellitus; this was the

population deemed eligible for diabetes screening (Figure 5.4).

The cohort of patients eligible for diabetes screening was represented by 18,406 (66.3%)

females, with an average age of 46 years old, with the majority being self-reported as His-

panic (72.7%). Table 5.6 summarizes the demographic information of the study cohort.

Among the eligible-for-screening cohort, 19,264 (69.4%) received diabetes screening, and

8,493 (30.6%) patients did not. Among first-degree relatives of the index cases, 71.6% re-

ceived at least one diabetes screening test. The cohort of individuals that received screening
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Figure 5.4: Cohort of individuals eligible for early diabetes screening. Eligibility criteria included
being 18 years of age and having a clinical visit after the family member was diagnosed with diabetes
mellitus.

was significantly older than the group that did not receive screening (average age 50 vs. 38,

p < 0.0001).

The multivariate analysis found that age (β = 0.67, p < 0.0001), having more than one

family member affected (β = 0.11, p < 0.0001), and being a female (β = 0.08, p < 0.0001)

were the most important contributors to being screened for diabetes mellitus. Results for all

features are shown in Table 5.7, and screening rates for these features are shown in Table

5.8.
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Table 5.6: The traditional process of collecting patient-provided information.

Table 5.7: Results of a multivariate analysis. To determine the influence of each parameter in
the logistic regression model, I computed the standardized coefficients (β) by multiplying the beta
coefficient (B) to the standard deviation of the corresponding parameter in the data.

Table 5.8: Screening rates stratified by features.
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Celiac disease

I applied the RIFTEHR algorithm to identify family members of the 2,081 index cases

of celiac disease, yielding 379 distinct families and 852 relatives. The inclusion criteria

included only relatives seen at our institution after the index case was diagnosed, which

resulted in a total of 272 distinct families and 539 relatives (Table 5.9).

There was a relatively even distribution of men (47.1%) and women (52.9%), and of

those 18 years and older (52.5%) as compared to those under 18 years (47.5%). The ma-

jority of individuals identified were first-degree relatives (71.1%) of patients with celiac

disease and had been seen more than once (88.3%) at our institution after their relative was

diagnosed. Non-Hispanic White (58.6%) and Hispanic (28.9%) were the two most com-

monly documented ethnicities in our study population. From manual review of the EHR,

316 of the 529 total relatives (58.6%) did not have any associated symptoms or conditions

related to celiac disease.

I found that 193 of the 383 (50.4%) first-degree relatives had been screened for celiac

disease (Table 5.10). When restricting this analysis to first-degree relatives with associated

symptoms or conditions related to celiac disease, I found that 71.5% (118/165) were tested.

Since screening practices are largely influenced by the available data at the time of the visit,

each patient’s record was reviewed to determine if a family history of celiac disease had

been documented anywhere within the record. Of all 539 relatives, only 120 (22.3%) had

a family history of celiac disease documented. When subcategorized by degree of relative,

I found that 30.3% of first-degree relatives had documentation of family history of celiac

disease, as compared to only 2.6% for all other degrees of relatives.

170



N	(%)
Age	Group	
					<	18	
					18-39	
					40-69	
					70+

256	(47.5%)	
114	(21.2%)	
133	(24.7%)	

36	(6.7%)
Gender	
					Male	
					Female

254	(47.1%)	
285	(52.9%)

Race	
					Non-Hispanic	White	
					African	American	
					Hispanic	
					Other/Unknown

316	(58.6%)	
14	(2.6%)	

156	(28.9%)	
53	(9.8%)

Rela4ve	
					First	
					All	other

383	(71.1%)	
156	(28.9%)

Number	of	4mes	seen	at	CUMC	
					Once	
					2-5	
					>5

63	(11.7%)	
206	(38.2%)	
270	(50.1%)

CD	Signs/Symptoms	during	any	visit	
					Diarrhea	
					BloaOng	
					Abdominal	Pain	
					FaOgue	
					Fe.	Def.	anemia	
					Osteoporosis/OA	
					GERD	
					DM1/Autoimmune	thyroid/IgA	Def./PBC		
					None	of	above

54	(10.0%)	
18	(3.3%)	

136	(25.2%)	
2	(0.4%)	
14	(2.6%)	
29	(5.4%)	
62	(11.6%)	
11	(2.0%)	

316	(58.6%)

�1

Table 5.9: Demographics of relatives (N=539).

Variable Total First	Degree	
Rela1ve

All	Other	
Rela1ves p	value

Screened	for	CD 212/539	
(39.3%)

193/383	
(50.4%)

19/156	
(12.2%) p	<0.0001

Documented	family	history	of	CD 120/539	
(22.3%)

116/383	
(30.3%) 4/156	(2.6%) p	<0.0001

�1

Table 5.10: Screening and charting practices based upon degree of relative. Percent of symptomatic
first degree relatives tested for CD 118/165 = 71.52%.
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On univariate analysis, there were several factors that were associated with a higher

likelihood of being screened (Table 5.11). Only 5.6% of relatives over the age of 69 were

screened, a far lower rate compared to all other age categories, which ranged from 35.3% -

44.1%. Screening practices also varied by race, with 58.6% of Non-Hispanic Whites, 25%

of Hispanics, and 0% of African Americans tested. Additionally, the presence of symp-

toms (59.2% vs. 25.3%, p < 0.0001), whether the relative was seen by a gastroenterologist

(87.1% vs. 20.1%, p < 0.0001), whether there was documentation of a family history of

celiac disease in the EHR (89.2% vs. 25.1%, p < 0.0001), and the degree of relative (first-

degree 50.4% vs. all other degrees 12.2%, p < 0.0001), were associated with testing for

celiac disease. Notably, neither sex (Male 39% vs. Female 39.7%, p=0.87) nor the number

of times a relative had been seen at our institution after the initial family member had been

diagnosed (once 36.5% vs. 2-5 times 45.2% vs. > 5 times 35.6%, p=0.09) affected the

likelihood of celiac disease testing.

On multivariate analysis (Table 5.12), I found that age, number of visits to our institu-

tion, being seen by a gastroenterologist, the presence of symptoms or conditions associated

with celiac disease, a documented family history of celiac disease, and the degree of rel-

ative, to be significant predictors of screening. Specifically, I found that relatives aged

18-39 were more than two times more likely to be screened than relatives under the age of

18 years old (OR 2.27, 95% CI: 1.12-4.58, p=0.02). When the number of visits was consid-

ered as a binary variable, those seen more than five times were less likely to be screened as

compared to those seen one to five times, though this was of borderline significance (OR

0.57, 95% CI: 0.32-1.00, p=0.05). Other significant predictors included the presence of any

condition or symptom related to celiac disease (OR 3.69, 95% CI 2.11-6.47, p < 0.0001)
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Variable Screened	(%) p-value
Age	
					<	18	
					18-39	
					40-69	
					70+

113/256	(44.1%)	
50/114	(43.9%)	
47/133	(35.3%)	

2/36	(5.6%)

p	<	0.0001

Gender	
					Male	
					Female

99/254	(39.0%)	
113/285	(39.7%)

p	=	0.873

Race	
					Non-Hispanic	White	
					African	American	
					Hispanic	
					Other/Unknown

149/316	(58.6%)	
0/14	(0%)	

39/156	(25%)	
24/53	(45.3%)

p	<	0.0001

CD	Signs/Symptoms		
					SymptomaOc	
					AsymptomaOc

132/223	(59.2%)	
80/316	(25.3%)

p	<	0.0001

Number	of	visits	
					Once	
					2-5	
					>5

23/63	(36.5%)	
93/206	(45.2%)	
96/270	(35.6%)

p	=	0.093

Seen	by	GI	
					Yes	
					No

35/155	(87.1%)	
77/384	(20.1%)

p	<	0.0001

Documented	family	history	of	CD	
					Yes	
					No

107/120	(89.2%)	
105/419	(25.1%)

p	<	0.0001

Degree	of	RelaDve	
					First	
					Other

193/383	(50.4%)	
19/156	(12.2%)

p	<	0.0001

�1

Table 5.11: Factors associated with screening: univariate analysis.
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and being a first-degree relative (OR 4.90, 95% CI: 2.34-10.25, p < 0.0001). The two fac-

tors most strongly associated with screening were whether the relative had been seen by a

gastroenterologist (OR 15.16, 95% CI: 7.72-29.80, p < 0.0001) and whether there was doc-

umentation in the EHR of a family history of celiac disease (OR: 11.9, 95% CI: 5.56-25.48,

p < 0.0001). Race and sex were not associated with celiac disease testing on multivariate

analysis.

A total of 79 of the 539 relatives (14.7%) had biopsies consistent with celiac disease.

Fourteen individuals had biopsy-proven celiac disease but no record of antibody testing

recorded within the EHR. Of the 82 patients who tested positive for celiac antibodies (en-

domysial, transglutaminase, and/or gliadin peptide), 80 (97.6%) were first-degree relatives,

and a total of 65 (79.3%) had a biopsy confirming the diagnosis (Table 5.13).
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Variable
Adjusted*	
Odds	
Ra2o

95%	
Confidence	
Interval

p-value

Age	in	years	
							<18	
						18-39	
						40-69							
						70+

1.0	
2.27	
1.03	
0.27

[ref]	
1.12	-	4.58	
0.53	–	2.02	
0.05	–	1.43

[ref]	
0.02	
0.93	
0.12

Sex		
						Female	
						Male

1.0	
0.882

[ref]	
0.52	–	1.51

[ref]	
0.65

Race/Ethnicity	
					Non-Hispanic	White	
					Hispanic	
					Other/Unknown

1.0	
0.75	
1.16

[ref]	
0.39	–	1.46	
0.52	–	2.57

[ref]	
0.40	
0.72

Number	of	visits	to	CUMC	
						1	-	5	visits	
						>	5	visits

1.0	
0.57

[ref]	
0.32	–	0.999

[ref]	
0.0495

Seen	by	a	gastroenterologist	
					No	
					Yes

1.0	
15.16

[ref]	
7.72	–	29.80

[ref]	
<.0001

Any	symptom/sign	of	celiac	
disease	
					No	
					Yes

1.0	
3.69

[ref]	
2.11	–	6.47

[ref]	
<.0001

Documented	family	history	of	CD	
					No	
					Yes

1.0	
11.9

[ref]	
5.56	–	25.48

[ref]	
<.0001

Degree	of	rela2ve	
					Other	
					First

1.0	
4.90

[ref]	
2.34	–	10.25

[ref]	
<.0001

�1

Table 5.12: Multivariable analysis examining patient factors associated with screening in all rel-
atives. *Adjusted for all variables listed in the table. Symptoms/signs of celiac disease include
diarrhea, bloating, abdominal pain, fatigue, osteoporosis, osteoarthritis, GERD, Type 1 diabetes,
autoimmune thyroid disease, IgA deficiency, and primary biliary cholangitis. [ref] refers to the
group of reference.
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Screened	Rela+ves
Biopsy	

consistent	
with	CD

First	Degree	Rela+ve:		
Posi%ve	An%body	
N	=	80

63/80	
(78.8%)

All	Other	Rela+ves:		
Posi%ve	An%body	
N	=	2

2/2	(100%)	

�1

Table 5.13: Pathology results of screened relatives.

Discussion

In this study, I measured clinician adherence to diabetes mellitus and celiac disease

screening among high-risk patients. Because current screening guidelines include family

history of diabetes or celiac disease as a risk factor, respectively, I used a novel method

for identifying families and gathering corresponding medical histories through patient-

provided emergency contact information stored in the EHR. This method, along with an

EHR phenotyping algorithm, was used to identify patients at risk for disease development

that were eligible for additional testing. I found that 30.6% of patients at high risk for dia-

betes and 49.6% of patients at high risk for celiac disease were not appropriately screened

for their respective diseases, even though early diagnosis is known to decrease morbidity.

Previous research suggests similar findings for a myriad of different diseases, most notably

in relation to cancer screening (Jemal and Fedewa 2017; Solbak et al. 2018).

Given that fewer resources are required to carry out proper screening for diabetes mel-

litus as compared to cancer screening, further studies should be conducted to understand

the challenges preventing recommended diabetes mellitus screening. While cancer screen-
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ing is often costly and requires more complex tests (e.g., MRI, genetic testing), diabetes

screening is relatively simple and inexpensive. In celiac disease, screening can be initiated

with serology, which is less invasive and less complex than a biopsy. Interestingly, I ob-

served that 28.5% of patients presenting symptoms who had a first-degree relative affected

by celiac disease were not screened.

This study found that there were several factors associated with increased screening for

diabetes mellitus. These factors included being female, age, and having more than one fam-

ily member diagnosed with diabetes. One of the major differences between the subpopula-

tions who received screening vs. no screening was age, where the screened subpopulation

was far more elderly on average (50 years old vs. 38 years old, p < 0.0001). One possible

interpretation of this finding is that individual clinicians are not adhering to clinician guide-

lines in favor of considering patient’s individual factors—in this case age—in determining

the necessity of screening.

For celiac disease, there were multiple contributing factors to the overall low adherence

to screening rates. As previously described in other conditions, being seen by a specialist

in that discipline is associated with a higher likelihood of being screened (Patwardhan et

al. 2011). In our study, only 39% of relatives were seen by a gastroenterologist, but those

who did were significantly more likely to be screened. Additionally, the American College

of Gastroenterology (ACG) guidelines recommend screening for first-degree symptomatic

relatives (Rubio-Tapia et al. 2013), but I found that both being a first-degree relative and

being symptomatic were independently associated with an increased likelihood of being

screened. Those patients seen more than five times without being screened were overall

less likely to be screened. This may be due to a significant number of acute conditions
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that dictated numerous visits and took precedence over celiac disease screening, or reflect

that after several visits, provider and patient may no longer be as cognizant of the family

member who was previously diagnosed with celiac disease, and as a result, were less likely

to be tested.

While clinicians may consciously consider but choose to not screen certain patients, I

believe this to be an improbable explanation of the low rate of screening adherence. Be-

cause our institution is a tertiary facility, patients are often seeking for specialized care,

where disease screening may not be a primary focus. Further, prior research provides a few

additional potential explanations for the low adherence to screening guidelines, including

lack of family history documentation and lack of patient and physician awareness (Sequist

et al. 2009; Wee, McCarthy, and Phillips 2005). Even though family history has always

been considered “a core element of clinical care” (Berg et al. 2009), it has been found to

be poorly captured in the EHR. Lack of time to obtain, organize, and analyze family his-

tory data is perhaps one of the most important challenges in the quality of family history

documentation (Green 2007; Guttmacher, Collins, and Carmona 2004; Rich et al. 2004;

Scheuner et al. 2009; Sussner, Jandorf, and Valdimarsdottir 2011; Wilson et al. 2012a).

Additionally, uncertainty about the medical history of family members, as well as inaccu-

racies in patient recall, compound the challenge of obtaining accurate family history data

(Green 2007; Peace, Valdez, and Lutz 2012; Sussner, Jandorf, and Valdimarsdottir 2011).

When it is captured in the EHR, family medical history information is frequently stored in

clinical notes, which cannot be easily abstracted during a patient visit (Chen et al. 2014;

Polubriaginof, Tatonetti, and Vawdrey 2015), and may ultimately result in poor screening

rates. The results of the logistic regression demonstrated that patients who had multiple
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family members diagnosed with diabetes was one of the most likely factors leading to a

patient being screened for diabetes. This result points to the importance of family history

data availability during the clinical encounter.

While the use of RIFTEHR for identifying family history in research has tremendous

benefits, there are privacy issues regarding the use of this method for clinical practice, and

tradeoffs must be made between providing optimal care and safeguarding the privacy and

confidentiality of family members’ health information (United States 1996). Notwithstand-

ing the ethical considerations, the use of RIFTEHR for identifying familial relationships

using EHR data unlocks new opportunities for secondary use of data to facilitate identifi-

cation patients at high risk for disease development and support appropriate monitoring of

prevention strategies such as disease screening.

Conclusion

In summary, 30.6% and 49.6% of patients that were eligible for early diabetes and celiac

disease screening, respectively, did not receive the appropriate testing that could lead to

early diagnosis, and therefore, decrease patient morbidity. In this study, I demonstrated

that electronic health record data along with novel and innovative informatics methods can

increase availability of data, and therefore utility of large electronic clinical databases, ul-

timately resulting in improvements in clinical care.
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Chapter 6

Conclusions and Future Work

6.1 Summary of Work

The body of research represented in this dissertation investigated the quality of patient-

provided databases, the impact of interventions targeting these data, and the usefulness of

these data in assessing disease risk.

In the first Aim, I focused on determining the quality of patient-provided data stored

in clinical databases. To accomplish this goal, I assessed the data quality of three patient-

provided data types: race and ethnicity, family history, and smoking status. When assessing

the quality of race and ethnicity, I identified that data completeness, correctness, and con-

cordance were all issues for this type of information. When assessing the quality of family

history, my results showed that patients’ family history records were rarely complete in the

EHR. Smoking status data suffered similar problems with concordance and completeness.

Furthermore, I found that changes to a patient’s smoking status had plausibility issues, in

that not all changes to smoking status could have been logically possible (e.g., a “current

smoker” becoming a “never smoker”). Overall, the results of these studies demonstrated

that such patient-provided information is currently poorly captured in the EHR.

The results from the three studies conducted in Aim 1 demonstrated that while the im-
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portance of patient-provided data is well-known, these data are not being optimally captured

during clinical encounters. The unavailability of patient-provided data at the point of care

can negatively impact clinical decisions, such as limiting the assessment of disease risk.

Disease risk assessment is a key factor in determining whether patients may benefit from

additional disease screening and modified treatment. The fact that these data are not readily

available to clinicians can result in disease comorbidity that might have been prevented or

mitigated.

Based on the results of Aim 1, I investigated the impact of various intervention types

on the quality of patient-provided data in Aim 2. Several types of interventions exist, in-

cluding 1) high-level policy changes, such as the Meaningful Use program, 2) local health

information technology initiatives, such as deploying patient-facing tools that collect and

share information with patients, and 3) the use of informatics methods that leverage existing

datasets to facilitate the identification of high-risk patients.

I found that each of the three types of interventions had a different effect on the qual-

ity of patient-provided data. While policy changes seemed to encourage the collection of

patient-provided data using pre-determined categories, they did not necessarily translate

into better data quality. I found that with patient-facing tools, patients were willing to pro-

vide even sensitive information, such as race and ethnicity, and that by doing so, they were

able to enhance the data quality of the information contained in their medical records. In

my studies, two forms of patient-facing tools, HCAHPS surveys and patient portals, en-

abled these changes. Using informatics methods, I demonstrated how issues of incomplete

family history information can be overcome, in some cases, by accurately and automati-

cally deducing certain family history information based on inferred relationships between
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patients using other patient-provided information.

In Aim 3, I applied the informatics method developed in Aim 2 to assess patients’ dis-

ease risk. This work analyzed disease risk at two levels: first at a population level, by

measuring disease heritability, and second, at the individual level, by assessing disease

screening rates among high-risk patients. In the first study on heritability, I successfully

estimated disease heritability for 500 distinct traits, some of which had not previously been

reported in the literature. Further, I showed how this method could be readily applied to

diverse racial and ethnic groups, which overcomes a significant limitation of most genetic

studies, which are based on a population of European descent.

In the second study from Aim 3, which focused on patient screening, I leveraged inferred

familial relationships to determine screening rates for two conditions: diabetes mellitus, a

prevalent condition that affects 1 in 10 Americans, and celiac disease, an autoimmune con-

dition that affects approximately 1% of the population. For both conditions, screening rates

among family members that are considered to be at high-risk for disease development were

very low. In sum, the studies I carried out in Aim 3 highlight the difficulty associated with

identification of high-risk individuals in the clinical setting. The results of these two stud-

ies demonstrate the impact of informatics methods utilizing patient-provided information

in both genetics and clinical practice.
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6.2 Contributions

My research is a novel contribution to understanding how to use EHR data to assess

disease risk. The contributions of this thesis include: 1) an overview of the quality of

patient-provided information in clinical databases, 2) an assessment of the impact of dif-

ferent intervention types on the quality of patient-provided data, 3) the development and

evaluation of a novel method that uses patient-provided information to generate a unique

data set that can support biomedical research, and 4) the use of clinical data to understand

disease risk and assess disease screening rates among high-risk individuals. Each study

I conducted provided insight into new areas of exploration that had not been previously

reported in the biomedical literature. A summary of the publications and presentations

generated during the course of my research are shown in the following Table 6.1.

Aim 1 explored the data quality of patient-provided data, including race and ethnicity,

family history, and smoking status. The studies included in this chapter demonstrated that

patient-provided data suffers from the same data quality issues as clinical data when stored

in the EHR system.

Aim 2 assessed the impact of different intervention types on the quality of patient-

provided information. The results showed that patient-facing tools were a superior method

for capturing high-quality patient-provided data, compared with policy changes, which

were most effective for driving the collection of the data in a structured format. Further,

Aim 2 also introduced a novel and validated method to extract familial relationships from

clinical databases, enabling the inference of family history.

And lastly, studies from Aim 3 used the familial relationships inferred in Aim 2 to
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Title
Journal/

Conference
Aim Co-authors Status

Quality	of	Race	and	Ethnicity	Data	in	Electronic	
Health	Records.

CRI	2016 1.1 Polubriaginof	F,	Boland	MR,	PeroHe	A,	Vawdrey	DK Published

Challenges	with	quality	of	race	and	ethnicity	data	
in	observaPonal	databases.

JAMIA 1.1	and	2.1
Polubriaginof	F,	Patrick	Ryan,	Salmasian	H,	PeroHe	

A,	Safford	MM,	Hripcsak	G,	TatoneU	NP,	Vawdrey	DK
SubmiHed

An	Assessment	of	Family	History	InformaPon	
Captured	in	an	Electronic	Health	Record.

AMIA	2015 1.2 Polubriaginof	F,	TatoneU	NP,	Vawdrey	DK Published

Challenges	with	CollecPng	Smoking	Status	in	
Electronic	Health	Records.

AMIA	2017 1.3 Polubriaginof	F,	Salmasian	H,	Albert	DA,	Vawdrey	DK Published

PaPent-provided	Data	Improves	Race	and	
Ethnicity	Data	Quality	in	Electronic	Health	
Records.

AMIA	2016 2.1
Polubriaginof	F,	Salmasian	H,	Shapiro	AW,	Prey	J,	
Hripcsak	G,	PeroHe	A,	TatoneU	NP,	Vawdrey	DK

Published

Engaging	Hospital	PaPents	in	the	MedicaPon	
ReconciliaPon	Process	Using	Tablet	Computers.

JAMIA 2.1
Prey	JE,	Polubriaginof	F,	Grossman	LV,	Creber	RM,	

PeroHe	R,	Qian	M,	Restaino	S,	Bakken	S,	Hripcsak	G,	
Underwood	J,	Vawdrey	DK	

SubmiHed

An	automated	method	to	idenPfy	familial	
relaPonships	in	electronic	health	records.

ASHG	2016 2.2
Polubriaginof	F,	(Quinnies	K,	Vanguri	R),	Yahi	A,	

Simmerling	M,		Ionita-Laza	I,	Salmasian	H,	Bakken	S,	
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support both genetic and clinical research. These studies demonstrated that the availability

of familial data along with clinical data can have a significant impact in multiple research

areas.
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6.3 Implications for Biomedical Informatics

The work in this dissertation contributed to the field of biomedical informatics in mul-

tiple areas, summarized in three main implications for the field.

First, I have shown that while patient-provided data is critical to accomplish multiple

clinical tasks, there are data quality concerns that should be addressed when utilizing these

data. Data available in the EHR are often incomplete or inaccurate, posing challenges for

reuse.

Second, I have shown that the implementation of different intervention types had differ-

ent impact in the collection and quality of patient-provided data. In general, policy changes

resulted in increased data collection of these data types, and patient-facing tools resulted

in higher data quality. These results suggest that there should be greater focus on using

patient-facing tools when the objective is to increase the quality of this information.

Third, the availability of family history through the use of familial relationships in ad-

dition to clinical data can open up new avenues of research, support knowledge discovery,

and facilitate the identification of clinical phenotypes.

187



6.4 Implications for Genetics Research

In this dissertation, I demonstrated the usefulness of utilizing EHR data to conduct large

genetic studies in a diverse patient population. The use of EHR data can be used to empower

genetic studies by significantly increasing the sample sizes available, with minor costs.

Genetic data is a valuable but expensive and not always available resource. The use of

EHR data in genetics can expedite research while decreasing cost. The RIFTEHR method

can be used to personalize disease risk prediction and facilitate heritability estimation for

phenotypes not previously studied in family-based or twin studies.

Further, the use of these data allowed for genetic research in multiple racial and ethnic

groups, demonstrating the utility of using EHR data in conjunction with traditional genetic

research data. Traditional genetic studies often focus on a single racial group, limiting the

generalizability of its findings to other populations. The use of EHR data allows for studies

to include other racial and ethnic groups, without impacting the research cost. The ability to

conduct genetic research on multiple racial and ethnic groups at once will help us achieve

the goals of precision medicine.
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6.5 Implications for Clinical Care

In addition to the contributions and implications described above, my dissertation also

impacts clinical care. First, my results indicate that patients are willing to participate in

their care by reviewing or providing information, suggesting that providers need to encour-

age and engage their patients in sharing relevant information. Second, using RIFTEHR, I

identified that disease screening rates among high-risk individuals were low. Future efforts

should focus on ways to improve the identification of high-risk individuals by incorporating

family history and other patient-provided information at the point of care.
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6.6 Limitations

The work presented has many limitations. Many of the studies were conducted in a

single institution, a large urban academic medical center. As such, the research findings

may not be generalizable to other institutions. Additionally, one of the studies involved

patient recruitment, and only included English-speaking participants, in addition to small

sample size due to recruitment constraints. Overall, my studies focused on just three types

of patient-provided data. However, there are many other types of patient-provided informa-

tion. Other types of information may pose different data quality challenges compared with

the data types included in this dissertation. Some of the studies focusing on data quality

were not able to assess correctness of the data due to unavailability of data from the refer-

ence standard. Further, all reported studies heavily relied on EHR data, and therefore faced

challenges related to fragmentation of care. Patients often seek care in multiple healthcare

systems, resulting in data missingness which may impact the results of the studies reported.
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6.7 Future Work

This dissertation can be expanded into several areas of future work. First, this disserta-

tion built the foundational work to better inform how to capture patient-provided data. Ad-

ditional work should be conducted to improve the quality of these data in clinical databases.

These data currently face considerable data quality issues, as shown in Aim 1. Future in-

terventions could use the work presented here to identify approaches that can potentially

improve the quality of these data. Based on this work, patient-facing tools could greatly

improve the quality of patient-provided data in EHRs, while decreasing clinician burden

during clinical encounters. Future work could build on this finding by developing and de-

ploying patient-facing tools to capture a collection of patient-provided information relevant

to clinical care. Additionally, the work presented in Aim 2 exhibited multiple methods to

assess the impact of different types of interventions. Future work could use similar meth-

ods to measure outcomes after the implementation of an intervention, allowing for rigorous

evaluation of the intervention at hand, and directly assessing the impact of the data quality.

Second, future work should leverage the RIFTEHR method to power numerous research

studies. Availability of family data in conjunction with rich clinical data is a powerful com-

bination to support not only clinical studies but also clinical care. As demonstrated in Aim

3, the use of this data can generate new knowledge, such as estimation of disease heritability

for diseases that have not previously explored and in populations that had not been stud-

ied. This work could be used to generate new hypotheses that could subsequently be tested

using a traditional study design. While this dissertation has demonstrated one use case of

these data in genetic research, there are many more opportunities in other fields as well. For
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example, in this dissertation screening rates among high-risk individuals was explored for

two conditions, and it demonstrated that there are challenges to identifying these patients

during a clinical visit. Future work should investigate methods to use informatics solutions

to facilitate the identification of high-risk individuals at the point of care to mitigate bar-

riers to identifying high-risk patients. Such efforts could potentially increase adherence to

clinical guidelines, provide a more individualized disease management plan, and ultimately

decrease patient morbidity.

Third, in this dissertation, the identification of familial relationships was performed in

three institutions, independent from each other. Patients often receive medical care at more

than one institution. Future work should take advantage of health information exchange

efforts, to identify familial relationships broadly. This approach will potentially reduce the

challenges we currently face with the fragmentation of care, enabling robust and complete

population studies. One of the major biases that was accounted for in Aim 3 was ascertain-

ment bias, which affected the estimated heritability of disease. Linking the medical histo-

ries of patients from several different institutions (for example, through health information

exchange processes) may provide a more holistic assessment of the patient’s diseases and

disease states.
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6.8 Conclusion

Patient-provided information is needed to advance precision medicine, by enabling clin-

icians to provide more individualized disease screening and diagnosis as well as care man-

agement. The goal of this dissertation was to develop a better understanding of how patient-

provided information in the EHR could facilitate the identification of patients at increased

risk for developing disease. The studies included in this dissertation found data quality

concerns for patient-provided information, and that different interventions could lead to

increased collection and/or increased quality of patient-provided information. In general,

allowing patients to review or directly supply patient-provided information resulted in the

most complete and highest quality information. In the absence of patients providing infor-

mation themselves, informatics methods, such as RIFTEHR, can be utilized to infer certain

patient-provided information, such as family medical history. The use of inference meth-

ods unlocks new knowledge, such as disease heritability for multiple races and ethnicities,

and enables assessment of adherence to guidelines for high-risk patients, such as those for

diabetes mellitus or celiac disease. In conclusion, this dissertation outlines the data qual-

ity issues that exists for patient-provided information, how to overcome these data quality

issues, and how to apply patient-provided information to generate new knowledge.
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