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ABSTRACT 

The Development of Novel N-Heterocyclic Carbenes and 

Tools for Assessing Structural Variation Effects Upon Catalyst Reactivity 

 

Alberto Muñoz 

 

N-Heterocyclic carbenes (NHCs) are an important class of compounds responsible for a wide 

variety of chemical transformations. NHCs may be used as organocatalysts that permit non-

traditional carbon carbon bond formations due to their renowned ability to invert the electrophilic 

character of aldehyde carbonyl groups, a concept otherwise known as polarity reversal or 

umpolung reactivity. Despite their ubiquity with respect to accessing the umpolung of aldehydes, 

fundamental studies of these reactive species are still rather limited and narrow in scope. As a 

result, clarifying and solving problems relevant to umpolung-themed asymmetric catalysis 

becomes quite challenging. In this regard, our work has been focused on a three-pronged approach 

towards providing a more unified understanding of these complex catalytic systems. First, we 

describe the synthesis of unprecedented carboxylate-tethered triazolium NHCs and use them in the 

intramolecular Stetter reaction to understand their function. Second, we describe the acidities of a 

broad range of both chiral and achiral NHCs that have never had their acidities assessed before 

and use them to construct the first linear free-energy relationships of their kind. Finally, we develop 

a simple and noninvasive experimental protocol in which we can quickly benchmark the 

performance of a series of chiral catalysts by way of single competition experiments. We anticipate 

that these studies will have direct implications on the development of novel NHC-catalyzed 

reactions. 



 

 i 

 
TABLE OF CONTENTS 

 

LIST OF FIGURES ............................................................................................................................................. ii 
ACKNOWLEDGEMENTS ................................................................................................................................ vi 
Chapter 1: Introduction ....................................................................................................................................... 1 

1.1 An Evolution of Carbenes From Unstable Intermediates to Isolable Catalysts ............................................... 1 
1.2 N-Heterocyclic Carbenes as Organocatalysts – Currently Available Reaction Classes ..................................10 
1.3 Outlook: Where Further Work Is Needed ....................................................................................................18 
1.4 References ..................................................................................................................................................21 

Chapter 2. The Development of Novel Carboxylate-Containing NHCs. ............................................................25 
2.1 Introduction ................................................................................................................................................25 
2.2 Aminoindanol and Aryl Carboxylated NHCs – Attempted Synthesis ...........................................................36 
2.3 Glutamic Acid Derived Carboxylated NHCs – Synthesis and Characterization.............................................42 
2.4 Examining Carboxylated NHC Reactivity with The Intramolecular Stetter Reaction ....................................50 
2.5 Troubleshooting..........................................................................................................................................54 
2.6 Conclusion .................................................................................................................................................58 
2.7 References ..................................................................................................................................................59 

Chapter 3. Electronic Effects: N-Aryl Substituent Effects Upon Reactivity ......................................................61 
3.1 Introduction ................................................................................................................................................61 
3.2 Assessing Acidities – Intrinsic & Extrinsic Properties of NHCs ...................................................................67 
3.3 Calculated Proton Affinities ........................................................................................................................71 
3.4 Experimental Proton Affinities ....................................................................................................................75 
3.5 Correlations with Achiral Species/Trends with Diastereoselectivity .............................................................77 
3.6 Correlations with Chiral Species/Trends with Enantioselectivity ..................................................................85 
3.7 Conclusion .................................................................................................................................................88 
3.8 References ..................................................................................................................................................90 

Chapter 4. Gaining Insights into Asymmetric Catalysis on the Basis of Benchmarking ...................................92 
4.1 Introduction ................................................................................................................................................92 
4.2 Validating Approach with Asymmetric Organocatalysis – N-Heterocyclic Carbenes ....................................95 
4.3 Obtaining krel values for Benchmarking Experiments ...................................................................................99 
4.4 Comparing Benchmarking Protocol to NMR-Spectroscopy ....................................................................... 102 
4.5 Validating Approach with Asymmetric TM Catalysis – Rh(I)-Catalysis ..................................................... 104 
4.6 Conclusions .............................................................................................................................................. 108 
4.7 References ................................................................................................................................................ 109 

APPENDIX ....................................................................................................................................................... 113 

 
  



 

 ii 

LIST OF FIGURES 
 
Figure 1.1.1. a) Single and triplet electron configurations of a carbene. b) Stabilizing effects from geminal heteroatom 
substitution. ........................................................................................................................................................... 1 
Figure 1.1.2. a) First reported benzoin reaction in 1832. b) First proposed mechanism for benzoin reaction in 1903. 2 
Figure 1.1.3. Breslow’s proposal for the mechanism of the benzoin reaction. ......................................................... 4 
Figure 1.1.4. Wanzlick’s equilibrium. .................................................................................................................... 5 
Figure 1.1.5. a) First enantioselective benzoin reaction in 1966. b) First insights into imidazolium based free carbene 
in 1970. ................................................................................................................................................................. 5 
Figure 1.1.6. First intermolecular Stetter reaction in 1976. ..................................................................................... 6 
Figure 1.1.7. Progress of NHCs from 1966-1995. .................................................................................................. 7 
Figure 1.1.8. First uses of triazolium-based NHCs for purposes of organocatalysis. ................................................ 8 
Figure 1.1.9. a) Highly asymmetric intramolecular Stetter in 2002. b) Steric space utilized by chiral thiazolium and 
chiral triazolium NHCs. c) Highly modular triazolium-based NHC system. ............................................................. 9 
Figure 1.2.1. Different classes of reactions as catalyzed by NHCs proceeding through the Breslow intermediate. ...11 
Figure 1.2.2. Nair’s proposal for the homoenolate addition of enals to Michael acceptors en route to cyclopentenes.
 .............................................................................................................................................................................12 
Figure 1.2.3. a) Bode’s use of mesityl-substituted chiral NHC for the formation of cyclopentene products. b) Rovis’ 
homoenolate addition of enals to nitroalkenes for the formation of b,g-functionalized esters. ..................................13 
Figure 1.2.4. Lupton’s synthesis of b-lactone fused cyclopentanes with the proposed mechanism. .........................14 
Figure 1.2.5. Chi’s dynamic kinetic resolution of a,a-disubstituted and activated esters. .......................................15 
Figure 1.2.6. a) Ye’s [4+2] cycloaddition of ketenes and a,b-unsaturated ketones. b) Rovis’ asymmetric a-hydration 
of a-reducible aldehydes. ......................................................................................................................................16 
Figure 1.2.7. First known asymmetric NHC-catalyzed SET transformations for the synthesis of b-hydroxylated esters 
and cyclopentanones. ............................................................................................................................................17 
Figure 1.3.1. Timeline of NHCs............................................................................................................................18 
Figure 2.1.1. Michael acceptors previously employed for the intermolecular Stetter reaction. ................................26 
Figure 2.1.2. a) Intermolecular Stetter reaction between heteroaryl aldehydes and aliphatic nitroalkenes. b) Catechol-
assisted intermolecular Stetter reaction between a,b-unsaturated aldehydes and aliphatic nitroalkenes. ..................27 
Figure 2.1.3. a) Proposed eight-membered transition state for assistance in the 1,2-proton transfer. b) 2H-Kinetic 
isotope effect studies suggesting the role of catechol in in the rate-limiting step. ....................................................29 
Figure 2.1.4. Effect of catechol on intramolecular Stetter system. ..........................................................................30 
Figure 2.1.5. Mechanism for the intramolecular Stetter reaction. ...........................................................................30 
Figure 2.1.6. Competition experiments implicating the involvement of the phenolic oxygen in substrate 3 in the rate-
determining step for the intramolecular Stetter reaction..........................................................................................33 
Figure 2.1.7. Potential role of the phenolic oxygen in substrate 3 in assisting the 1,2-proton transfer. .....................33 
Figure 2.1.8. a) Previously synthesized NHCs for the purposes of intramolecular rate-acceleration. b) Decomposition 
pathway of catechol-containing NHC 16. ..............................................................................................................34 
Figure 2.1.9. Calculated NHCs featuring proposed non-innocent features and Bode’s attempted NHC 22. .............35 
Figure 2.2.1. First synthetic route for the synthesis of proposed NHC 29. ..............................................................37 



 

 iii 

Figure 2.2.2. Ritter sequence toward the synthesis of NHC 29. ..............................................................................38 
Figure 2.2.3. Second synthetic route for the synthesis of proposed NHC 29. ..........................................................39 
Figure 2.2.4. Synthetic route for the synthesis of proposed NHC 42. .....................................................................40 
Figure 2.2.5. Sample from Chen’s C-H activation strategy. ...................................................................................40 
Figure 2.2.6. Attempts at activating C-H bond of C7 carbon on morpholinone 46. .................................................41 
Figure 2.2.7. Proposed synthetic route for the synthesis of racemic NHC 42. .........................................................42 
Figure 2.3.1. Proposed synthetic route for the synthesis of carboxylated NHC 61. .................................................43 
Figure 2.3.2. Decomposition pathways for the first step towards setting the triazolium core of 61. .........................44 
Figure 2.3.3. Second proposed synthetic route for the synthesis of carboxylated NHC 61. .....................................45 
Figure 2.3.4. Decomposition products for the cyclization of 65 to 66. ....................................................................45 
Figure 2.3.5. Third proposed synthetic route for the synthesis of carboxylated NHC 73. ........................................46 
Figure 2.3.6. Carboxylated NHCs made available using synthetic route outlined in Figure 2.3.5. ...........................47 
Figure 2.3.7. 1H-NMR Spectrum in MeCN-D3 for carboxylated NHC 61. ..............................................................48 
Figure 2.3.8. Crystal structure of NHC 61. ............................................................................................................48 
Figure 2.3.9. VT-NMR Spectra in MeCN-D3 for carboxylated NHC 61 showing coalescence of proton at -50 °C...50 
Figure 2.4.1. Substrate and NHCs chosen to assess reactivity of carboxylated NHC 61. .........................................51 
Figure 2.4.2. Formation of product as monitored via NMR for substrate 11, comparing NHCs 61, 75, and 76. .......52 
Figure 2.4.3. Formation of product 4 from salicylaldehyde-derived substrate 3 as monitored via NMR, comparing 
NHCs 61 and 75....................................................................................................................................................53 
Figure 2.5.1. Percent decompositions for a variety of NHCs in the intramolecular Stetter reaction with substrate 3.
 .............................................................................................................................................................................55 
Figure 2.5.2. Decomposition products for NHC 61 in the intramolecular Stetter reaction with substrate 3. .............56 
Figure 2.5.3. Proposed mechanism for the decomposition of NHC 61 to decomposition products 81 and 82. .........57 
Figure 2.5.4. Formation of product 4 from salicylaldehyde-derived substrate 3 as monitored via NMR for carboxylated 
catalyst 83.............................................................................................................................................................58 
Figure 3.1.1. Order of increasing s-donating ligands as indicated by CO stretching frequency of (L)Ni(CO)3 complex.
 .............................................................................................................................................................................62 
Figure 3.1.2. Controlling the s-donating character of NHC ligands via N-aryl substituent modulation as indicated by 
CO-stretching frequency of (L)Ni(CO)3 complex. ..................................................................................................63 
Figure 3.1.3. Quaternary-center forming asymmetric intramolecular Stetter shows higher yields with more electron-
withdrawing N-aryl substitution. ...........................................................................................................................64 
Figure 3.1.4. Deuterium exchange studies for N-aryl differentiated 3-(methoxybenzyl)azolium salts, wherein fastest 
exchange occurs for NHCs with most electron deficient aryl substitution. ..............................................................65 
Figure 3.1.5. Time at which 50% of product is observed for the intramolecular Stetter reaction, according to a variance 
in N-aryl substituent. .............................................................................................................................................65 
Figure 3.1.6. Effect of the N-aryl substituent on diastereoselectivity for the intramolecular Stetter reaction. ...........66 
Figure 3.1.7. 2,6-Dimethoxyphenyl substituted NHC VII creates a more nucleophilic Breslow intermediate as 
compared to NHC VI. ...........................................................................................................................................67 
Figure 3.2.1. a) Some pKa examples for a class of imidazolium, thiazolium, and triazolium NHCs. b) pKa’s as 
disclosed by the Smith and O’Donoghue groups for the achiral triazolium NHCs. ..................................................69 



 

 iv 

Figure 3.2.2. a) The most acidic and basic known species, according to proton affinities b) Calculated proton affinities 
for a series of differentially para-substituted phenols. ............................................................................................70 
Figure 3.3.1. Calculated proton affinities for the achiral series of triazolium NHCs, as ordered from most acidic to 
least acidic. ...........................................................................................................................................................72 
Figure 3.3.2. Calculated proton affinities vs. pKa for the achiral series of triazolium NHCs. ..................................72 
Figure 3.3.3. Calculated dihedral angles for achiral NHCs 1c and 1g. ....................................................................73 
Figure 3.3.4. Calculated proton affinities for the chiral series of triazolium NHCs, as ordered from most to least acidic.
 .............................................................................................................................................................................74 
Figure 3.3.5. Calculated dihedral angles for NHCs 2a and 2m. ..............................................................................75 
Figure 3.4.1. Calculated proton affinities vs. experimental proton affinities for the achiral series of triazolium NHCs.
 .............................................................................................................................................................................76 
Figure 3.4.2. Calculated proton affinities vs. experimental proton affinities for the chiral series of triazolium NHCs.
 .............................................................................................................................................................................77 
Figure 3.5.1. NHC-catalyzed intermolecular homoenolate addition of cinnamaldehyde to nitroalkenes, as well as the 
currently accepted mechanism. ..............................................................................................................................78 
Figure 3.5.2. Natural log plot of the anti/syn ratios vs. calculated PAs for the achiral series of NHCs for the model 
homoenolate reaction with (E)-1-nitrobut-1-ene. ....................................................................................................79 
Figure 3.5.3. Natural log plot of the anti/syn ratios vs. calculated PAs for the achiral series of NHCs for the model 
homoenolate reaction with (E)-2-(2-nitrovinyl)furan. .............................................................................................80 
Figure 3.5.4. Natural log plot of the anti/syn ratios vs. calculated PAs for the achiral series of NHCs for the model 
homoenolate reaction with (E)-(2-nitrovinyl)benzene. ...........................................................................................80 
Figure 3.5.5. Natural log plot of the anti/syn ratios vs. calculated PAs for the diorthosubstituted achiral series of NHCs 
for the model homoenolate reaction with (E)-(2-nitrovinyl)benzene. ......................................................................81 
Figure 3.5.6. Natural log plot of the anti/syn ratios vs. calculated PAs for the non-diorthosubstituted achiral series of 
NHCs for the model homoenolate reaction with (E)-(2-nitrovinyl)benzene. ............................................................82 
Figure 3.5.7. Proposed transition states for the formation of both anti- and syn-product for Liu’s electron rich and 
Rovis’ electron poor catalysts, respectively............................................................................................................83 
Figure 3.5.8. Acetate catalyzed free energy profiles for the transition states leading towards the E- and Z-enol for an 
electron poor and an electron rich N-aryl substituent. .............................................................................................84 
Figure 3.5.9. Calculated distances from TSb from Figure 3.5.8 for both electron poor and electron rich N-aryl 
substitutents. .........................................................................................................................................................85 
Figure 3.6.1. NHC-catalyzed desymmetrizing intramolecular Stetter model reaction for chiral NHCs. ...................86 
Figure 3.6.2. Natural log plot of the major enantiomer/minor enantiomer ratios vs calculated PAs for the 
enantioselective model reaction. ............................................................................................................................87 
Figure 3.6.3. Stereochemical explanation for correlation between calculated proton affinities and enantioselectivity.
 .............................................................................................................................................................................88 
Figure 4.1.1. Proposed Experimental Protocol: Step 1: Run competition between benchmarking cat. 1 and to-be 
benchmarked cat. 2. Step 2: Plug ee from step 1 to binary equation. Step 3: Obtain krel from calculated variables in 
Step 2. ..................................................................................................................................................................94 
Figure 4.2.1. a) Optimized catalyst architectures associated with intra- and intermolecular Stetter, homoenolate, and 
oxidative reactions. b) Studies associated with effects on reactivity associated with changes to the catalyst structure – 
several studies performed on the N-Aryl substituent, none on the backbone of the catalyst. ....................................95 



 

 v 

Figure 4.2.2. Proof-of-concept model reaction, wherein Catalyst 1 is the benchmarking catalyst with respect to a 
class of structurally perturbed, yet electronically analogous, series of catalysts that are pseudoenantiomeric in product 
formation. .............................................................................................................................................................98 
Figure 4.3.1. a) Binary equation and krel expression, where the solutions for variables from equation 1 will be used to 
solve equation 2. b) Sample solution for krel expressions. c) krel values for formation of 11 as benchmarked against 
Catalyst 1 and achiral Catalyst 10. ..................................................................................................................... 100 
Figure 4.3.2. krel values for formation of 11 as benchmarked against catalyst 1 in several solvents. ...................... 102 
Figure 4.4.1. Catalyst reactivity assessment as performed 1H-NMR, as well as with proposed “benchmarking” 
approach. ............................................................................................................................................................ 103 
Figure 4.5.1. Rh(I)-cycloaddition of isocyanate 14 with aryl alkyne 15. Ligand 1 is the benchmarking 
phosphoramidite ligand as compared to a wide range of different phosphoramidite ligands. ................................. 106 
Figure 4.5.2. Mechanism for the synthesis of vinylogous amides and lactams through the studied Rh(I)-catalyzed 
[2+2+2] cycloaddition. ........................................................................................................................................ 106 
Figure 4.5.3. Ligand-Benchmarking results for phosphoramidite series summarizing a 7-year effort. ................... 107 

 
 
  



 

 vi 

 
ACKNOWLEDGEMENTS 

 
 
 

I would like to start off by first thanking my advisor, Professor Tomislav Rovis. Tom has 
mentioned in the past that he “mentors everyone differently”. As a first-hand witness of his 
leadership for the past 4 years, not only can I verify this, I can confidently say that this is the mark 
of an advisor of the highest caliber. It takes someone who cares deeply about what they do in order 
to provide case-by-case mentorship on both professional and personal levels. Thank you, Tom, for 
your guidance, for all the times that you’ve challenged me to perform at a higher level, and for all 
your support throughout these years.  

I would like to thank Professor Robert M. Williams as well. Despite not being in his 
research group, Bob never once hesitated to host me in his office to either have a chat or to offer 
advice that I still, to this day, hold close to my chest. Your strongly-worded bits of encouragement 
played a significant role in helping me self-sustain my perseverance. I am enormously grateful for 
all your help and continued support. We live and die by the pentatonic! 

I would also like to thank my undergraduate advisor, Professor Ryan P. Murelli, for taking 
a (probably huge) chance on me when I asked to join his research group. Your continued faith in 
my potential as a scientist was integral to my success, especially during the times when imposter-
syndrome would rear its ugly head. Thank you for your mentorship, friendship, and for your 
continued support.  

To my cohort, both past and present, thank you for all your scientific input and support 
throughout the years. Thank you to Benjamin Ravetz, Scott Thullen, and Isra Hassan for your 
unique roles in helping me finish this thesis. I especially want to thank Dr. Fédor Romanov-
Michailidis for being such an excellent role model, both professionally and personally. Your 
advice, incisive criticisms, support, frequent challenges, mentorship, and friendship represented a 
beacon throughout my time as a graduate student. I am incredibly grateful for everything you have 
done for me. 

Akin to how it takes a village to raise a child, it takes a lot of help from a diverse set of 
people to raise a doctoral student. To all my friends that have supported and been patient with me 
while I traversed this path, thank you. A special shout out to Samantha “BingBong/Magic Toaster” 
Kang, Igor “Dostoevsky” Dukler, Ralph “The Mouth” Ranghelli, William “Will” Liu, Jack “The 
Mack” Goméz, Muhammad “Jet Eye” Suliman, Rodrigo “Rigo” Urbina, Bryce “Brailee” Rogers, 
Francisco “Narf” Sarabia, and Caressa “Nugent” Nguyen. Thank you all for always having my 
back and wishing the best for me. 

Finally, I would like to thank my family. Without all the support I’ve received from my 
brother Aaron, my sister Cynthia, my mother Lucia, and my father Lorenzo, I would have never 
reached this level of achievement. You have all inspired me in more ways than I can possibly 
count. Para mis padres, quiero decirles que mis logros hasta ahora son tanto los suyos como son 
los míos. From the deepest wells of my heart, thank you. 
 
 
  



 

 vii 

 
 
 
 
 
 
 
 
 
 
 
 
 

Dedicado a mis héroes – mi madre y mi padre – y a las generaciones futuras. 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 

Genitori, Genitoque 
Laus et jubilatio, 

Salus, honor, virtus quoque 
Sit et benedictio: 

Procedenti ab utroque 
Compar sit laudatio. 

 



 

 1 

Chapter 1: Introduction 
 
 
1.1 An Evolution of Carbenes From Unstable Intermediates to Isolable Catalysts 
 

 

Figure 1.1.1. a) Single and triplet electron configurations of a carbene. b) Stabilizing effects from geminal heteroatom 
substitution. 
 

A carbene is defined as a divalent carbon atom with six electrons in its outer shell.1 Two 

of these electrons are nonbonding and exist most commonly in either anti-parallel or parallel spins 

(Figure 1.1.1a).2 In the former case, according to the spin multiplicity 2s + 1 rule, the carbene 

exists as a singlet state and may act as a nucleophilic lone pair with the nonbonding electrons 

occupying a s-orbital.3 In the latter, the carbene exists as a triplet state and reacts as a diradical, 

with each of the nonbonding electrons singly occupying a s- and p-orbital.4 Furthermore, N-

heterocyclic carbenes (NHCs), where the N may stand for either nitrogen or nucleophilic,5,6 are 

carbenes that are covalently linked to one or more heteroatoms and are contained within a 

heterocycle.7 These heteroatoms serve to stabilize the singlet state of the carbene through both 

mesomeric and inductive effects (Figure 1.1.1b). The first occurs by p-donation from the 

heteroatoms into the empty p-orbital of the carbene. This effect stabilizes the sp2-hybridized state 

of the carbene and also serves to increase its nucleophilicity by imparting a more dipolar character 
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to the overall structure. Concurrently, the heteroatoms may help to lower the energy of the 

occupied s-orbital through inductive effects, serving to increase the amount of s-character at the 

carbene. The cyclic nature of NHCs also serve to further stabilize the singlet-state of the carbene 

by geometrically constraining the carbene to an sp2-hybridized state. As singlet-state carbenes, 

NHCs have been used as ligands for transition metal complexes,9 as ligands for elements on the p-

block of the periodic table,10 as well as organocatalysts.11,12 A complete overview on the history 

of NHCs in all of these applications extend well beyond the scope of this thesis. As such, we will 

instead focus on NHCs in their role as organocatalysts. 

 

Figure 1.1.2. a) First reported benzoin reaction in 1832. b) First proposed mechanism for benzoin reaction in 1903. 
 

NHCs have a rich and detailed history. When discussing these reactive intermediates as 

organocatalysts, it is worth going back to 1832 with the discovery of the first benzoin reaction.13 
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That year, Wohler and Liebig disclosed the cyanide catalyzed self-condensation of benzaldehyde 

to make a-hydroxyketone products (Figure 1.1.2a). This process represents one of the first 

instances where an electrophilic moiety is rendered nucleophilic, a mode of reactivity that is now 

known as umpolung, or polarity reversal. The currently accepted mechanism for this 

transformation was first proposed almost 70 years later, when the process was revisited in 1903 by 

Lapworth and coworkers (Figure 1.1.2b).14 The connection of this mode of reactivity to NHCs 

was established in 1943, when Ukai and coworkers showed that the same type of reactivity can be 

achieved by thiazoliums.15 Breslow proposed a mechanism for this transformation in 1958, which 

is reminiscent of the one proposed by Lapworth (Figure 1.1.3).16 Here, thiamine 1 is deprotonated 

in situ, which can then nucleophilically add to an aldehyde carbonyl, forming tetrahedral 

intermediate 3. This intermediate undergoes a formal 1,2-proton transfer, which forms enol 4. This 

intermediate, which is called the Breslow intermediate in honor of its original proposer, is now 

nucleophilic at what used to be an electrophilic carbon atom. The Breslow intermediate adds to 

another equivalent of aldehyde to form the second tetrahedral intermediate 5, which then 

undergoes a proton transfer to 6. The alkoxide of 6 collapses to a carbonyl, which forms the 

benzoin product and subsequently restores the free carbene. 
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Figure 1.1.3. Breslow’s proposal for the mechanism of the benzoin reaction. 
 

In 1960, Wanzlick and coworkers proposed that the free carbene 8 may be generated from 

the parent compound 7 following thermal elimination of chloroform (Figure 1.1.4).17 The dimer 

of the carbene was instead isolated at this time, the supposition being that an equilibrium exists 

between the free carbene and its dimeric form. The existence of this equilibrium would be the 

subject of much debate in the following years.18 Nonetheless, the propensity of any two NHC units 

to form a dimer would later be commonly known and referred to as the Wanzlick equilibrium. In 

the meantime, Sheehan became the first to render the benzoin reaction enantioselective in 1966, 

albeit with rather low yields and enantioselectivities (Figure 1.1.5a).19 Sheehan used the 

thiazolium-based catalyst 10, wherein the use of this catalyst was most likely inspired by Ukai’s 
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aforementioned discovery. In 1970, Wanzlick demonstrated that the free carbene of 11 can be 

formed by deprotonation with tBuOK.20 Though the free carbene remained to be isolated, its 

intermediacy was evidenced via trapping with mercury salts and isothiocyanates (Figure 1.1.5b). 

 

 

Figure 1.1.4. Wanzlick’s equilibrium. 
 

 

Figure 1.1.5. a) First enantioselective benzoin reaction in 1966. b) First insights into imidazolium based free carbene 
in 1970. 
 

N
N

Ph

Ph
CCl3

H
N

N
Ph

Ph
N

N
Ph

Ph

N
N

Ph

Ph
-CHCl3

Wanzlick - 1960

7 8 9

S
N

Sheehan - 1966
MeBr

O
Ph

O
CyO

O

+

O

OH

10 mol%

10 mol% Et3N
MeOH, rt

10

a)

b)

N

NPh

Ph

Ph

Ph

ClO4

KOtBu

N

NPh

Ph

Ph

Ph
N

NPh

Ph

Ph

Ph

N
CPh

S

N

NPh

Ph

Ph

Ph

N

S

Ph

Hg(OAc)2

N

NPh

Ph

Ph

Ph

HgOAc

11 12 13

14

ClO4

Wanzlick - 1970

9% (22% ee)



 

 6 

 

Figure 1.1.6. First intermolecular Stetter reaction in 1976. 
 

In 1973, Stetter was able to take advantage of the umpolung of aldehydes by coupling them 

with a,b-unsaturated Michael acceptors. This mode of reactivity would later become known as the 

Stetter reaction.21 Though Stetter’s initial result was performed using cyanide as the catalyst, he 

demonstrated in 1976 that the same reactivity could be accomplished using thiazolium-based 

NHCs (Figure 1.1.6).22 The mechanism for this transformation was adopted from Breslow’s 

original proposal, with the exception that the acyl anion equivalent, or Breslow intermediate, adds 

into a Michael acceptor. During this time, efforts towards a more enantioselective variant of the 

benzoin reaction were also being attempted, though still with limited success (Figure 1.1.7).23 

In 1988, Bertrand achieved a major breakthrough with the first reported isolable carbene, 

18, which is stabilized by the adjacent phosphorous and silicon atoms.24 These NHCs would later 

become known as push-pull carbenes due to the difference in electronegativity of these 

neighboring heteroatoms.25 The first isolated, stable, and “bottleable” NHC 19 was isolated in 

1991 by Arduengo and coworkers.26 This represents the first time that a carbene was characterized 

by X-ray crystallography, the data of which indicates very little double-bond character at the C–N 

bonds of the carbene, as is shown in Figure 7. Enders contributed toward this effort in 1995 with 

the isolation of triazolium based carbene 20, the structure of which was also confirmed by X-ray 

crystallography.27 The isolation of these carbenes ultimately represents the transition of carbenes 

from unstable and short-lived intermediates to stable and isolable species. As such, massive efforts 
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to expand the library of NHCs followed this publication were being undertaken. As a result, the 

reactivities and fundamental properties of these NHCs were gradually brought to light. 

 

 

Figure 1.1.7. Progress of NHCs from 1966-1995. 
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the beginning of a paradigm shift in NHCs used for the purposes of organocatalysts from 

thiazolium and imidazolium-based heterocycles to triazolium-based heterocycles. 

 

 

Figure 1.1.8. First uses of triazolium-based NHCs for purposes of organocatalysis. 
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diastereomeric transition state leading to product; 2) the aryl group, which is missing in thiazolium-

based NHCs as compared to catalyst 10, also serves to block the opposing side of the carbene 

leading to further restriction in the enantiodetermining step.33 Combined, in a mnemonic that was 

devised by our group, these factors combine to block three out of four quadrants that surround the 

reactive center (Figure 1.1.9b). Furthermore, the ease of which the counterion, steric, and 

electronic properties can be modified make these NHCs highly desirable for use in future 

umpolung-themed methodologies (Figure 1.1.9c). 

 

 

Figure 1.1.9. a) Highly asymmetric intramolecular Stetter in 2002. b) Steric space utilized by chiral thiazolium and 
chiral triazolium NHCs. c) Highly modular triazolium-based NHC system. 
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1.2 N-Heterocyclic Carbenes as Organocatalysts – Currently Available Reaction Classes 
 

From this point on, though thiazolium and imidazolium-based scaffolds would both still 

find use for a number of applications,34 the triazolium series of NHCs have proliferated 

tremendously and currently dominate the literature of umpolung-themed organocatalysis. The 

advent of triazolum-based NHC catalysts have created routes to many new and powerful chemical 

transformations, a number of which extend beyond umpolung at the carbonyl, or acyl anion, 

reactivity (Figure 1.2.1). The ease of which triazolium-based NHCs can be modified have allowed 

for the construction of many new NHCs to meet the demand of novel reactivity. Thus, an 

improvement in tools available for umpolung catalysis will be naturally followed by an 

improvement in the number of chemical transformations that may be achieved with these NHCs.  
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Figure 1.2.1. Different classes of reactions as catalyzed by NHCs proceeding through the Breslow intermediate. 
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This imidazolium-based NHC led to the development of a mesityl-substituted triazolium-based 

catalyst 32 in 2006 by Bode,37 which was later used for the development of an enantioselective 

variant for the formation of the similar cyclopentene products.38 Triazolium-based NHCs featuring 

mesityl substitution would later become recognized as one of the best catalysts for performing 

homoenolate-type additions (Figure 1.2.3a).39 Though this N-aryl substituent is highly efficacious 

for activating homoenolate type additions, a catalyst can mimic this mode of reactivity by clever 

modulation of the backbone as opposed to the N-aryl substituent, as was demonstrated by our 

group in 2013 with the enantioselective homoenolate addition of enals to nitroalkenes with catalyst 

33 (Figure 1.2.3b).40 

 

 

Figure 1.2.2. Nair’s proposal for the homoenolate addition of enals to Michael acceptors en route to cyclopentenes. 
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Figure 1.2.3. a) Bode’s use of mesityl-substituted chiral NHC for the formation of cyclopentene products. b) Rovis’ 
homoenolate addition of enals to nitroalkenes for the formation of b,g-functionalized esters. 
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formed alkoxide displaces the NHC and forms the b-lactone fused product. These acyl azolium 

intermediates have also been utilized for dynamic kinetic resolutions (DKRs), as Chi and 

coworkers has shown in 2016 with the DKR of a,a-disubstituted and activated esters, achieving 

up to 99% yield and >98% ee with NHC 41 (Figure 1.2.5).43 

 

Figure 1.2.4. Lupton’s synthesis of b-lactone fused cyclopentanes with the proposed mechanism. 
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Figure 1.2.5. Chi’s dynamic kinetic resolution of a,a-disubstituted and activated esters. 
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Figure 1.2.6. a) Ye’s [4+2] cycloaddition of ketenes and a,b-unsaturated ketones. b) Rovis’ asymmetric a-hydration 
of a-reducible aldehydes. 
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a,b-unsaturated aldehydes undergo b-hydroxylation through an oxygen atom transfer from 

nitrobenzenes. Chi produces the same products, but with slightly different reaction conditions 

(Figure 1.2.7). Here, nitrobenzene first oxidizes the Breslow intermediate of the enal to the radical 

cation, which can then do a radical recombination at the b-position with an oxygen atom of the 

reduced nitrobenzene. We later found that the radical cation of the Breslow intermediate may 

recombine with another extended Breslow intermediate, both at the b-positions, to form 

cyclopentanone products.51 Despite these successes, the challenge of controlling the single-

electron oxidation of Breslow intermediates is still largely unmet and is sure to be the focus of a 

number of research groups in the near future. 

 

 

Figure 1.2.7. First known asymmetric NHC-catalyzed SET transformations for the synthesis of b-hydroxylated esters 
and cyclopentanones. 
 

 

 

Ar

O

N
N

N

10 mol%

50 mol% NaOAc
MeOH

33

BF4

F F

F
FF

OTMS
nBu

nBu

N
N

N

20 mol%

0.66 mol% NaOAc
PhCF3

44

BF4

F F

F
FF

Me
Me

F

N

NO2

O

+

Rovis:

N N

N

Ar

R

RAr

OH

N

N O

O

O

N N

N

Ar

R

RAr

OH

NN

N

Ar

R

R Ar

OH

Ar OMe

OOH

Ar
Ar

O

Up to 74%
Up to 92% ee

Up to 79%
Up to 91% ee



 

 18 

1.3 Outlook: Where Further Work Is Needed 
 

 

Figure 1.3.1. Timeline of NHCs. 
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different sources of chirality.53 In this regard, we were unable to find any literature that explicitly 

addresses this point and provides a way to compare and contrast catalysts with different backbones 

for a given reaction. Also, out of all these known triazolium-based structures, there does not seem 

to be any one backbone structure that is either universally reactive or significantly outcompetes 

the rest of the series. We thus began to wonder what this hypothetical universal catalyst would 

look like, and what structural features would be needed to give this NHC a significant advantage 

over all others. 

Herein we describe our three-pronged approach towards addressing these issues. The first 

describes our efforts toward the synthesis of a carboxylated triazolium-based NHCs, the synthesis 

of which was unknown at the start of our studies. In light of some recently attained experimental 

evidence, we believe that incorporation of a carboxylate onto the backbone of the catalyst would 

serve to decrease the energetic barrier for the turn-over limiting steps of acyl anion reactivity.54 

We hypothesized that this catalyst could represent the next evolutionary sequence in NHC 

catalysis. The second describes our efforts to parametrize the electronic effects that are imparted 

by the N-aryl substituent. We hypothesized that a data set that accurately describes and measures 

these perturbation effects could in turn be used to parameterize facets of reactivity, such as 

stereoselectivity or reactivity, regardless of reaction class. Such a data set could then be used to 

decrease the degree of serendipity that occurs when choosing an NHC for a given situation and 

would increase our fundamental understanding of these NHCs. The third is focused on 

parameterizing the steric and electronic effects that are imparted by the backbone of the NHC. 

Despite the numerous triazolium-based NHCs found in literature, such an approach, as far as we 

know, has never been attempted. Thus, disclosing a method that can quickly assess these effects 

may not only serve to increase our understanding of the interplay between the backbone of an NHC 
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and its reactivity, it may also shed insights into previously hidden or otherwise unaccounted-for 

effects that may be capitalized upon for future purposes. We will describe our results in this regard 

throughout the following chapters. 
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Chapter 2. The Development of Novel Carboxylate-Containing NHCs. 
 

2.1 Introduction 
 

As was seen in the previous chapter, a structural evolution of the carbenes used as 

organocatalysts was necessary to achieve more robust and stereoselective transformations. As a 

consequence of this evolution, new classes of reactivity that extend beyond the umpolung of 

aldehydes were made accessible.1 This trend continues to exist today, as access to newer and more 

improved NHCs results in both improvements in reactivity as well as granting access to nascent 

and promising classes of reactivity. Thus, an improvement in the tools available for catalysis will 

naturally lead to an improvement in the transformations catalyzed by these species. As for NHCs 

and their role as organocatalysts, there are still many areas across different reaction classes that 

leave much to be desired. In the Stetter reaction there is a rather strict electronic requirement for 

the participating Michael acceptor. Here, the Michael acceptor must be sufficiently electron 

deficient to accept a Breslow nucleophile. Participating Michael acceptors for the intermolecular 

Stetter reaction are shown in Figure 2.1.1, where the least electronically activated substrate was 

published by Glorius and coworkers in 2012.2 In comparing the catalyst used for this 

transformation to the previous ones in this figure, the N-aryl substituent features a strongly 

electron-donating 2,6-dimethoxyphenyl group. Although this substrate indeed represents the least 

activated coupling partner for the intermolecular Stetter reaction, it employs one of the most 

nucleophilic triazolium-based NHCs. Furthermore, with respect to general NHC limitations, 

typical catalyst loadings for these reactions tend to range anywhere from 5 – 25 mol%, which is 

much higher relative to commonplace transition-metal complexes used for catalysis. 

 



 

 26 

 

Figure 2.1.1. Michael acceptors previously employed for the intermolecular Stetter reaction. 
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Figure 2.1.2. a) Intermolecular Stetter reaction between heteroaryl aldehydes and aliphatic nitroalkenes. b) Catechol-
assisted intermolecular Stetter reaction between a,b-unsaturated aldehydes and aliphatic nitroalkenes. 
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the aldehyde. There are two reasons proposed for this requirement: 1) the heteroatom reduces A1,3-

strain in the formation of the Breslow intermediate, and 2) a lone-pair on the heteroatom plays a 

role in assisting with the proton-transfer step, thought to be the rate-limiting step for Stetter-type 

transformations. In consideration of these points, it was reasoned that a,b-unsaturated aldehydes 

may be good coupling partners for the same reaction. This notion led to the discovery of the 

intermolecular Stetter reaction between enals and nitroalkenes (Figure 2.1.2b).5 The initial yield 

was below 10%, but the enantiomeric excess (ee) was promising. Comparing this reaction to the 

previous one, the steric component was satisfied because this Breslow intermediate does not 

possess much in the way of A1,3-strain, but assistance in the 1,2-proton transfer event was non-

existent. Exogenous protic additives were thus introduced to attempt to satisfy this criterion. It was 

found that the introduction of 1.0 equivalent of catechol resulted in both dramatically increased 

yields and decreased reaction times. Without catechol, the reaction proceeded to 5% yield and 93% 

ee in 8 hours – in the presence of catechol, the reaction proceeded to 80% yield and 93% ee in only 

2 hours. Here, the active species of this protic additive was proposed to be a catecholate 

monoanion. It is believed that in this monodeprotonated state, catechol is able to act as a proton 

shuttle through an eight-membered transition state. By shuttling a proton back and forth from the 

catecholate to the tetrahedral intermediate, the energetic requirement for this step is thought to be 

greatly reduced, allowing for a much more reactive system (Figure 2.1.3a). For further evidence 

in this regard, a 2H kinetic isotope effect study was performed using cinnamaldehyde and its 

deuterated isotopologue. The reactions were performed in either methanol or methanol-d4. The 

kH/kD value was found to be 4.2 when run in methanol-d4 and 2.7 when run in non-deuterated 

methanol (Figure 2.1.3b). These data suggest that the initial proton transfer to form the acyl anion 

intermediate is turnover-limiting in this mechanism. 
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Figure 2.1.3. a) Proposed eight-membered transition state for assistance in the 1,2-proton transfer. b) 2H-Kinetic 
isotope effect studies suggesting the role of catechol in in the rate-limiting step. 
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Figure 2.1.4. Effect of catechol on intramolecular Stetter system. 
 

 

Figure 2.1.5. Mechanism for the intramolecular Stetter reaction. 
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In the same year, our group performed a series of mechanistic investigations on the 

intramolecular Stetter system.6 As a brief recap of the corresponding mechanism, first the 

triazolium precatalyst is deprotonated in-situ to liberate the carbene, which then adds to substrate 

3 to form the tetrahedral intermediate 5 (Figure 2.1.5). Intermediate 5 then undergoes a formal 

1,2-proton transfer to form the Breslow intermediate 6, which is now nucleophilic at the aldehydic 

carbonyl. This can conjugately add to the tethered Michael acceptor to form the secondary 

tetrahedral intermediate 8. The electron density on the newly formed alkoxide then collapses to 

form both product 4 and regenerate the active form of the catalyst. In this manuscript, a series of 

competition experiments were described that implicate the 1,2-proton transfer to be the first 

energetically significant step in the reaction. In the competition experiment between substrate 3 

and 9, where 9 has a s-withdrawing chlorine at the meta-position relative to the carbonyl, substrate 

3 reacts 0.099 times as fast as substrate 9 (Figure 2.1.6a). This result is to be expected because the 

chlorine renders the aldehyde more electrophilic and thus more susceptible to nucleophilic attack 

from the carbene. In the competition experiment between substrate 3 and substrate 10, where 10 

has a strongly p-donating methoxy group at the para-position relative to the carbonyl, 3 is shown 

to react 7.7 times faster than 10 (Figure 2.1.6b). This result also makes sense because the methoxy 

group serves to render the carbonyl less electrophilic and thus less reactive. By the logic of the two 

former cases, we note that the phenolic oxygen in substrate 3 is in an ortho position relative to the 

aldehyde. In this position, this oxygen may serve to decrease the electrophilicity of the carbonyl 

in substrate 3. Thus, we can conclude that in the competition between substrate 3 and 11, that of 

which has no p-donor at the ortho-position, substrate 11 should in theory be faster. This hypothesis 

turns out to not be the case, where substrate 3 is faster than 11 by about 10.4 times (Figure 2.1.6c). 

What is thought here is that the phenolic oxygen is non-innocent in the rate limiting 1,2-proton 
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transfer, where this oxygen may be Lewis basic enough to assist in the deprotonation of the 

tetrahedral intermediate en route to the Breslow intermediate (Figure 2.1.7). In light of these 

results, and of the apparent benefits of adding catechol in the aforementioned intermolecular 

Stetter system, we postulated that the incorporation of a reactive moiety onto the backbone of the 

catalyst that mimicked the action of catechol could similarly benefit these Stetter-type systems. As 

opposed to having an exogeneous equivalent of catechol in the reaction system, a catalyst that 

could perform a similar proton-shuttling intramolecularly may increase the catalyst reactivity even 

more by way of reducing a bimolecular event to a unimolecular one. Such a catalyst could 

potentially represent the next evolutionary sequence in NHCs used for organocatalysis. 
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Figure 2.1.6. Competition experiments implicating the involvement of the phenolic oxygen in substrate 3 in the rate-
determining step for the intramolecular Stetter reaction. 
 

 

Figure 2.1.7. Potential role of the phenolic oxygen in substrate 3 in assisting the 1,2-proton transfer. 
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framework should deliver a more reactive catalyst. Thus, several triazolium pre-catalysts that 

feature either catechol or pyridyl groups were synthesized by a number of former group members 

(Figure 2.1.8a). These NHCs were not restricted to cyclic triazoliums, as thiazolium based and 

acyclic triazolium catalysts, both of which are quicker to synthesize, were also synthesized. 

Pyridyl-tethered NHCs 14 and 15 were also synthesized in the hopes of mimicking the heteroatom 

effect described earlier. Unfortunately, the carbenes with pyridyl motifs offered little to no 

advantage relative to typical triazolium-based NHCs in the reaction. The installation of a catechol 

moiety, as in catalyst 16, resulted in decomposition of the precatalyst to a hydroxyl-tethered NHC 

and an ortho-quinone methide (Figure 2.1.8b). This hydroxylated catalyst unfortunately delivers 

no apparent additional benefit to Stetter-type systems. 

 

 

Figure 2.1.8. a) Previously synthesized NHCs for the purposes of intramolecular rate-acceleration. b) Decomposition 
pathway of catechol-containing NHC 16. 
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Figure 2.1.9. Calculated NHCs featuring proposed non-innocent features and Bode’s attempted NHC 22. 
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transfer much to the point that the energetic barrier for the formation of the Breslow intermediate 

becomes negligible. If we could synthesize a carboxylated catalyst that significantly lowers the 

energetic requirement for the rate-limiting step of the Stetter reaction, we could potentially provide 

access a catalyst with superior reactivity, and perhaps selectivity, as compared to other more 

commonly used NHCs. It is worth noting at this point that, despite the existence of many unique 

triazolium-based NHCs, no structures are known that possess a tethered carboxylic acid moiety. 

Bode and coworkers have previously made attempts to synthesize the proline-derived carboxylated 

NHC 22, but failed due to unavoidable epimerization at the stereogenic center of the NHC.7 Herein 

we propose the first successful synthesis of these structurally novel NHCs and describe their 

reactivities with respect to the Stetter reaction.  

 

2.2 Aminoindanol and Aryl Carboxylated NHCs – Attempted Synthesis 
 
 We have proposed and attempted several synthetic routes to catalysts with strategically 

placed carboxylates, as suggested by our calculations. The earliest implemented strategy toward 

the synthesis of catalyst 29 is listed in Figure 2.2.1. The goal here was to use a directed ortho-

lithiation strategy using racemic 1-indanol 23 as the starting material. Dehydration was achieved 

during the work-up step, producing the desired indene product 24 in 14% yield. Esterification in 

methanol and thionyl chloride produced the methyl ester 25, which can then be easily epoxidized 

by m-chloroperoxybenzoic acid (mCPBA). Esterification was deemed necessary for ease of future 

handling. Treatment of epoxide 26 with triflic acid in acetonitrile initiated a Ritter reaction 

pathway to afford the esterified aminoindanol 27.8 The next step involved treatment with ethyl 

chloroacetate and sodium hydride in THF, resulting in the formation of morpholinone 28.9 From 

here, following known steps in the synthesis of triazolium salt pre-catalysts should result in the 
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methyl ester version of the catalyst. Subsequent treatment with lithium hydroxide will have then 

result in the deprotected anionic carboxylate. Quenching this saponification step with fluoroboric 

acid may then yield racemic carboxylated catalyst 29. 

 

 

Figure 2.2.1. First synthetic route for the synthesis of proposed NHC 29. 
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heating and acidic aqueous conditions. These conditions led primarily to the free acid first, upon 

which hydrolysis of 26-int to the aminoindanol would ensue. All attempts at a second esterification 

protocol led to significant product decomposition. Any variation of the methyl ester to different 

esters were also met with little to no improvement at this step. Oddly enough, several attempts at 

isolating the product failed. The deprotected ester was later isolated as the triflate salt, but the yield 

of this reaction was quite abysmal at 14%. At this point, in consideration of the relative cost of 1-

indanol, this route was abandoned. 

 

 

Figure 2.2.2. Ritter sequence toward the synthesis of NHC 29. 
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bond isomerization of indenes. Unfortunately, upon executing this synthetic route, this supposition 

turned out to be incorrect. Indeed, a model study with indanol 23 displayed no improvement to the 

degree of double bond isomerization relative to all previous attempts. Due to the problems 

associated with the synthesis of carboxylated morpholinone 29, the target catalyst was changed to 

42. 

 

 

Figure 2.2.3. Second synthetic route for the synthesis of proposed NHC 29. 
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by way of tridentate ligand coordination of substrate 37 to Pd. This problem was fixed by acyl 

protecting the alcohol moiety, but a new problem presented itself. Regioselectivity at the ortho-

position was easy to achieve, but unfortunately bromination at both ortho-positions to product 45 

was something that, despite several modifications to the substrate, could not be fixed. A closer 

look at Chen’s reaction protocol clarified this result. The majority of his substrates were ortho-

substituted (Figure 2.2.5), leaving only one ortho site to be brominated. Furthermore, another 

issue with this route was the inability to cyclize either mono or dibrominated 38 to morpholinone 

39, a problem that will be revisited later (vide infra). In light of these issues, a new route to 

synthesize catalyst 42 was devised. 

 

 

Figure 2.2.4. Synthetic route for the synthesis of proposed NHC 42. 
 

 

Figure 2.2.5. Sample from Chen’s C-H activation strategy. 
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 Inspired by Chen’s strategy, we wondered if we could activate the C7 position of 

morpholinone 46 without needing to install an exogenous directing group. Thus, we hypothesized 

that perhaps the activated amide 47, which is synthesized via O-methylation with 

trimethyloxonium tetrafluoroborate, could act as a directing group for the functionalization of this 

position via a directed ortho-lithiation strategy (Figure 2.2.6). A brief MM2 analysis on the 

structure of the activated amide 47 implied that there is a close enough proximity, planarity 

requirement notwithstanding, to the desired C7 position for the molecule to engage in a directed 

deprotonation. In implementing this strategy with several organolithium bases and electrophiles, 

the most encouraging result was obtained when CO2 was used as the electrophile with tBuLi as 

the base. LCMS and NMR analysis suggested < 10% formation of the desired product. 

Unfortunately, in consideration of the unreliable nature of this transformation coupled with the 

instability of the imino ether moiety of substrate 47, this plan was abandoned. 

 

 

Figure 2.2.6. Attempts at activating C-H bond of C7 carbon on morpholinone 46. 
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with sodium azide and a subsequent Staudinger reduction produces aminoalcohol 51. The 

synthesis of morpholinone 52 was achieved by isolating the SN2 product first, followed by isolation 

and purification, and then intramolecularly cyclizing the amine to the ester with the pure material, 

solving our previous problems with this step. Following this step, synthesis of the brominated 

catalyst 53 was relatively straight-forward. The reduction of the triazolium core to a triazoline is 

quite reliable and proceeds in good yields.12 Unfortunately, all attempts to trap CO2 using a 

lithium-halogen exchange strategy to synthesize triazoline 54 was met with failure. This ultimately 

led to the abandonment to any and all routes that started with 2-bromobenzaldehyde. 

 

 

Figure 2.2.7. Proposed synthetic route for the synthesis of racemic NHC 42. 
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56, which would then be reduced to alcohol 57 after making the mixed anhydride with isobutyl 

chloroformate. Fmoc deprotection to the aminoalcohol 58 would follow. From here, cyclization to 

morpholinone 59 would follow using a new set of conditions. From here, cyclization to set the 

triazolium core using known conditions would follow. The t-butyl group was proposed to be 

cleaved at the last cyclization step, where an excess of fluoroboric acid could be used to deprotect 

the ester and catalyze the trimethyl orthoformate cyclization in a single pot. 

 

 

Figure 2.3.1. Proposed synthetic route for the synthesis of carboxylated NHC 61. 
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imino ether, or it can methylate at the recently liberated ester to form a methyl ester. Assuming 

there is enough unreacted trimethyloxonium tetrafluoroborate in the reaction, the methyl ester can 

then undergo amide activation to the imino ether. Signature 1H-NMR peaks for all of these side 

products were detected and their existence was further confirmed via UPLC-MS. All attempts to 

convert the starting material to the desired methyl ester imino ether in one pot were met with 

varying degrees of failure. 

 

 

Figure 2.3.2. Decomposition pathways for the first step towards setting the triazolium core of 61. 
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surprising, but nonetheless was ultimately responsible for substrate decomposition and 

unproductive product formation. All optimization attempts to render this path viable were largely 

met with failure. 

 

 

Figure 2.3.3. Second proposed synthetic route for the synthesis of carboxylated NHC 61. 
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Figure 2.3.5. Third proposed synthetic route for the synthesis of carboxylated NHC 73. 
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This step produced the crude carboxylic acid 72, which was then oxidized using 

triphenylcarbenium tetrafluoroborate to produce, for the first time, our desired carboxylated NHC 

73. Shortly afterward, we were able to synthesize two other carboxylated NHC variants, 

pentafluorophenyl-substituted NHC 61 in 30% overall yield at the final step, and mesityl-

substituted NHC 74 in 16% yield at the final step (Figure 2.3.6). 

 

 

Figure 2.3.6. Carboxylated NHCs made available using synthetic route outlined in Figure 2.3.5. 
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Figure 2.3.7. 1H-NMR Spectrum in MeCN-D3 for carboxylated NHC 61. 
 

 

Figure 2.3.8. Crystal structure of NHC 61. 
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 At this point, we wished to analyze the deprotonated forms of NHC 61. What separates this 

NHC from others is the existence of two acidic sites, namely the proton of the carboxylic acid and 

the proton of the triazolium core. First principles dictate that the proton of the carboxylic acid 

should be more acidic, but the identity upon first deprotonation may vary even if this is the case. 

For instance, deprotonating the carboxylic acid leads to a carboxylate. Sodium acetate has been 

shown to be sufficiently basic enough to deprotonate electronically analogous NHCs.13 Thus, it 

would stand to reason that this carboxylate may serve to interact with the acidic proton of the 

azolium core. Furthermore, we wondered how full deprotonation would affect the proton signals 

on the NHC. The first experiment we performed in this regard was to treat the carboxylated NHC 

61 with 1.0 equivalent of Proton Sponge. Here, we thought that the proton sponge base would be 

sufficiently basic enough to deprotonate the carboxylic acid selectively. Model studies with other 

pentafluorophenyl-substituted NHCs in the presence of proton sponge agree with this assessment, 

where the proton signal for the triazolium proton is left largely intact. In our case, we see a 

complete disappearance of both the triazolium peak and the carboxylic acid peak in the 1H-NMR 

spectrum (Figure 2.3.9). VT-NMR studies were performed at this point, and what is found is that 

the proton signal for the azolium peak coalesces to d 11.3 ppm at about -40 °C. This result suggests 

that the proximal carboxylate interacts significantly with the proton of the azolium core and that 

in the monodeprotonated form, the NHC exists as a zwitterion with the carboxylate tightly H-

bonded to the proton of the azolium core. Unfortunately, all attempts at monitoring the fully 

deprotonated form of the NHC led to significant catalyst decomposition. We have yet to detect the 

fully deprotonated NHC species. 
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Figure 2.3.9. VT-NMR Spectra in MeCN-D3 for carboxylated NHC 61 showing coalescence of proton at -50 °C. 
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more general substrate for this transformation is salicylaldehyde-derived substrate 3, but the 

phenolic oxygen of this substrate has been implicated to be involved in assisting the 1,2-proton 

transfer to the Breslow intermediate. Substrate 11 would allow us to unambiguously assess the 

reactivity of NHC 61 as compared to NHC 75 and the more standard NHC 76. 

 

 

Figure 2.4.1. Substrate and NHCs chosen to assess reactivity of carboxylated NHC 61. 
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Figure 2.4.2. Formation of product as monitored via NMR for substrate 11, comparing NHCs 61, 75, and 76. 
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Figure 2.4.3. Formation of product 4 from salicylaldehyde-derived substrate 3 as monitored via NMR, comparing 
NHCs 61 and 75. 
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solubilize potassium-chelated NHC species, but rather to increase the basicity of KHMDS. This 

tells us that there is a relatively large energetic barrier for the first deprotonation relative to the 

triazolium protons of more common NHCs. In addressing this problem, we simply removed the 

18-crown-6 and allowed the carboxylated NHC to react with the KHMDS base for a longer period 

of time. When pre-stirred for one hour in both a 1:1 and a 1:2 ratio of NHC to KHMDS, we still 

see that the 1:1 case is more reactive than the 1:2 case, where for the former we obtain 99% yield 

and 94% ee and in the latter we see 88% yield and 90% ee. Though the reactivity of these NHCs 

seemed to be promising, we still needed to compare it to a more standard catalyst. In this regard, 

we re-ran the reaction with NHC 75 and see that product formation goes to completion in less than 

3 minutes, with 92% ee. 

 

2.5 Troubleshooting 
 

We have two working theories as to why these carboxylated NHCs display such attenuated 

reactivities. The first theory was hypothesized in light of the fully deprotonated NHC always 

performing poorly. The implication here is that there is a significant amount of decomposition with 

the fully deprotonated state. We also observed this NHC instability in our attempts to monitor the 

fully deprotonated state via 1H-NMR, where all attempts to do so were met with failure. To better 

quantify this, we measured the amount of decomposition after 40 minutes in the above reaction 

with substrate 3 for the carboxylated NHC 61, as well as for a series of NHCs (Figure 2.5.1). The 

percent decompositions were all measured in reference to an internal standard by UPLC-MS. For 

NHC 75, we see a decomposition of 8% in 40 minutes and for NHC 76 we see a decomposition of 

30%. For these purposes, a standard amount of catalyst decomposition will lie anywhere from 8% 

to 30%, as is suggested by the percent decompositions of NHCs 78, 79, and 80. For the 
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carboxylated NHC 61, in the 1:1 NHC to base experiment, we see an acceptable 20% 

decomposition. For the 1:2 case, we see that 51% of the NHC decomposes over the reaction period.  

 

 

Figure 2.5.1. Percent decompositions for a variety of NHCs in the intramolecular Stetter reaction with substrate 3. 
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Figure 2.5.2. Decomposition products for NHC 61 in the intramolecular Stetter reaction with substrate 3. 
 

There are two main decomposition products in the UPLC-MS mass spectrum. One has a 

mass of 354.0 and the other 382.1 (Figure 2.5.2). These peaks account for decomposition products 

81 and 82, respectively. The proposed mechanism of decomposition is shown in Figure 2.5.3, 

where a formal addition of water may occur during the doubly deprotonated state, or from the 

mono-deprotonated state. Proton transfer to one of the free amine groups forms decomposition 

product 82, which can further react with water to liberate one equivalent of formic acid as well as 

decomposition product 81. We hypothesize that the net-anionic fully-deprotonated form is more 

hydrophilic than a standard net-neutral free carbene NHC, thus rendering it significantly more 

prone to decomposition. 
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Figure 2.5.3. Proposed mechanism for the decomposition of NHC 61 to decomposition products 81 and 82. 
 

The second theory is that the presence of a negative charge in close proximity to the 

reactive center serves to increase the energetic requirement for the formation of intermediates that 
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the tetrahedral intermediate, which develops a negative charge at the oxygen atom. In a standard 

NHC, this species is net-neutral. In our carboxylated NHC, the carboxylate may discourage the 

formation of this intermediate through Coulombic repulsion. To probe this further, we developed 

another NHC that would have the tethered carboxylate in a closer proximity relative to NHC 61. 

We thus synthesized NHC 83 using a similar strategy to the one listed above, but starting from 

methyl ester protected L-pyroglutamic acid (Figure 2.5.4). We examined this catalyst with 

salicaldehyde-derived substrate 3. As per the inverse square law,15 we should see a precipitous 

drop-off in reactivity for this NHC relative to NHC 61. Our results agree with our hypothesis, 

suggesting that the presence of a negative charge in the proximity of the reactive center may serve 

to inhibit one or more steps along the catalytic cycle of the Stetter reaction. 
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Figure 2.5.4. Formation of product 4 from salicylaldehyde-derived substrate 3 as monitored via NMR for carboxylated 
catalyst 83. 
 

2.6 Conclusion 
 
 Herein, we report the first successful synthetic route for access to carboxylated triazolium-

based NHCs. We unambiguously assigned the product via x-ray crystallography, which indicates 

an unusually strong electron density at the proton of the carboxylic acid handle. We found that 

these catalysts work best when in the monodeprotonated form. In the fully deprotonated form, the 

catalyst decomposition pathway is faster than in any NHC tested in the experiments listed above. 

In the monodeprotonated form, we report that the presence of a carboxylate in close proximity to 

the triazolium proton can perform an intramolecular deprotonation. This represents the first class 

of NHCs that have a tethered internal base. More on this is currently being pursued.  
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Chapter 3. Electronic Effects: N-Aryl Substituent Effects Upon Reactivity 
 

3.1 Introduction 
 

After having revealed the zwitterionic character of thiazolium salts through a series of 

deuterium exchange experiments,1 Breslow became the first to propose the mechanism of thiamine 

diphosphate as a coenzyme for a series of biochemically relevant reactions. This proposal initiated 

a revolution in terms of our fundamental understanding of carbenes and their subsequent 

reactivity.2 Prior to this point, carbenes were generally considered to be too reactive and transient 

of a species to serve for any useful and general purpose. This notion has since changed, due largely 

to the enormous efforts and discoveries based around Breslow’s pioneering work.3 From a more 

modern perspective, a greater understanding of the fundamental properties that underlie these 

reactive intermediates has created new opportunities for their application in a broad range of novel 

settings.4 As such, NHCs have been used as ligands for both transition metal complexes and for 

elements on the p-block of the periodic table, as well as for the purposes of organocatalysis. 

Regardless of the setting, it has become common knowledge that a variance in the steric and 

electronic properties surrounding the reactive center of the carbene will in turn modulate the 

reactivity of the NHC or NHC-bearing complex. Thus, a deeper understanding of how the 

fundamental properties of a carbene changes in tandem with alterations to the structure of the NHC 

becomes critical when choosing an NHC for a specific application. 
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Figure 3.1.1. Order of increasing s-donating ligands as indicated by CO stretching frequency of (L)Ni(CO)3 complex. 
 

The concept of choosing an NHC that is specifically tailored to achieve a certain degree of 

desired reactivity can perhaps be best illustrated with NHCs that are used as ligands for transition 

metal complexes. When used in this fashion, NHCs are often considered to be mimics of their 

phosphorous-based ligand counterparts, much in the way that they are both strong s-donors and 

weak p-acceptors.5 Despite this similarity, there are some important differences between these two 

ligand classes. One such difference is highlighted in the more electron-donating ability of NHC-

ligands over their phosphorous counterparts, leading to TM-complexes that have higher bond 

dissociation energies and thus shorter ligand to metal bonds.6 Furthermore, in terms of s-donating 

ability, the benzimidazole ligand BImNMe2 is more electron donating than triphenylphosphine, 

and for NHCs the general order of the least to most electron donating is as follows: benzimidazole, 

imidazoline, imidazole (Figure 3.1.1).7,8,9 Another important difference between these two 

compound classes is the ease of which the electronic character of the NHC can  be modulated. 

This may be achieved simply by changing the N-aryl substituent, generally done with a simple 

change in the NHC precursor. This character change is best reflected in the reduced carbonyl IR-

stretching frequencies of (NHC)Ni(CO)3 complexes of Ipr, Imes, and Icy, an indication that the 
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metal has become more electron rich as a result of a more strongly s-donating NHC ligand (Figure 

3.1.2).10 With all of this in mind, it becomes apparent that careful choice of an NHC can produce 

tremendously robust TM-complexes for a given application, as is made evident with the Grubbs-

II catalyst for olefin-metathesis reactions. 

 

 

Figure 3.1.2. Controlling the s-donating character of NHC ligands via N-aryl substituent modulation as indicated by 
CO-stretching frequency of (L)Ni(CO)3 complex. 
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This dependence was later explored by Bode and coworkers, wherein they reported a higher 

preference for Stetter-type pathways with more electron-deficient NHCs.13 The existence of this 

preference was further supported by a series of kinetic experiments as performed by O’Donoghue, 

Smith and coworkers, where it is made evident that a more electron-deficient NHC creates a more 

acidic proton in the tetrahedral intermediate prior to the formation of the famed Breslow 

intermediate, which is believed to be the rate limiting step for the intramolecular Stetter reaction 

(Figure 3.1.4).14 This dependence is beautifully illustrated further with a series of achiral NHCs 

that bear different N-aryl substituents. These NHCs are tested for a similar intramolecular Stetter 

reaction as in Figure 3.1.3, where it is shown that the more reactive NHCs will be those that feature 

more electron-deficient substitution patterns (Figure 3.1.5). 

 

 

Figure 3.1.3. Quaternary-center forming asymmetric intramolecular Stetter shows higher yields with more electron-
withdrawing N-aryl substitution. 
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Figure 3.1.4. Deuterium exchange studies for N-aryl differentiated 3-(methoxybenzyl)azolium salts, wherein fastest 
exchange occurs for NHCs with most electron deficient aryl substitution. 
 

 

Figure 3.1.5. Time at which 50% of product is observed for the intramolecular Stetter reaction, according to a variance 
in N-aryl substituent.  
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Figure 3.1.6. Effect of the N-aryl substituent on diastereoselectivity for the intramolecular Stetter reaction.  
 

The N-aryl substituent has also been shown to affect diastereoselectivity, where for the 

dual-stereocenter setting intramolecular Stetter there is an increase in diastereoselectivity when 

using an electron poor N-aryl group.15 The origin of this effect was found to be related to 

epimerization of the C-a stereocenter. An NHC with an electron-deficient N-aryl substituent will 

correspond to a relatively less Lewis-basic free carbene, thus mitigating the degree of 

epimerization that occurs at this carbon center during the course of the reaction (Figure 3.1.6). A 

more electron-rich N-aryl substituent may also serve to dramatically increase reactivity, as was 

shown by Glorius and coworkers’ elegant efforts towards the discovery of an intermolecular 

asymmetric hydroacylation between aldehydes and cyclopropenes (Figure 3.1.7).16 Here, the 

electron-rich 2,6-dimethoxy-substituent serves to increase the overall nucleophilicity of the 

Breslow intermediate, thus creating a more reactive NHC relative to the previously most electron 

rich NHC.17 
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Figure 3.1.7. 2,6-Dimethoxyphenyl substituted NHC VII creates a more nucleophilic Breslow intermediate as 
compared to NHC VI.  
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these research efforts, have never been achieved before. Herein are described our efforts towards 

achieving these goals. 
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disclosing the pKa’s of various NHCs,18,19 some generalizations can now be made: 1) imidazolium 

and saturated imidazolium-based NHCs are the least acidic of the organocatalyst series, ranging 

from 20.7 to 25.4 pKa units; 2) thiazolium-based NHCs follow the imidazolium species with an 

increasing acidity, ranging from 16.9 to 18.9 pKa units; 3) triazoliums are the most acidic of the 

two aforementioned classes of NHCs, slightly topping the thiazoliums with a range of 16.5 to 18.5 

pKa units (Figure 3.2.1a). Smith, O’Donoghue and coworkers put forth the most recent of these 

efforts, disclosing a number of aqueous-phase pKa’s for triazolium-based NHC organocatalysts as 

recently as 2012.20 In this manuscript, the authors illustrated the significant dependence that the 

nature of the N-aryl substituent has upon acidity. The most acidic of the measured NHCs has 

pentafluorophenyl substitution, with a pKa of 16.5. From here, first principles will dictate that an 

appropriate attenuation of the electron-withdrawing nature of this substituent will in turn increase 

the pKa, and it accordingly does (Figure 3.2.1b). Overall, the contributions listed above have 

collectively allowed for a greater understanding of the fundamental properties of NHCs and how 

they can impact reactivity. These studies play a significant role in predicting how structural 

perturbation’s may affect their function, and are thus powerful in their own right. 
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Figure 3.2.1. a) Some pKa examples for a class of imidazolium, thiazolium, and triazolium NHCs. b) pKa’s as 
disclosed by the Smith and O’Donoghue groups for the achiral triazolium NHCs.  
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Unfortunately, these combined factors preclude a researcher’s ability to study a given function of 

reactivity as compared to acidity. 

 

 

Figure 3.2.2. a) The most acidic and basic known species, according to proton affinities b) Calculated proton affinities 
for a series of differentially para-substituted phenols. 
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and in consideration of the potentially wider energetic range of proton affinities for triazolium-

based NHCs as exemplified by our comparison with phenols, we sought to first assess these values 

for a series of triazolium-based NHCs.  

 

3.3 Calculated Proton Affinities 
  

Through our collaboration, one in which all acidity assessments were done by Lee and 

coworkers and all synthetic work and subsequent attempts at correlations were performed by us, 

we obtained a number of calculated proton affinities initially for a series of achiral triazolium 

salts.25 The reason for starting with the achiral series was to first assess the electronic impact that 

comes with varying the N-aryl substituent. Also, as mentioned before, several pKa values for these 

achiral azoliums already exist and would serve well as a point of comparison. These proton 

affinities were calculated using DFT methodology with a B3LYP functionality. The basis set of 

choice is 6-31+G(d), which adds diffuse functions and is available for all atoms from hydrogen to 

krypton. As per the results of our calculations, the most acidic NHC is 1c with a PA of 242.7 

kcal/mol and the least acidic is 1k with a PA of 267.5 kcal/mol (Figure 3.3.1). Overall, the 

calculations make sense and were subsequently compared to the pKa values of those NHCs which 

are known. As anticipated, the PA values show an excellent correlation with the pKa values 

(Figure 3.3.2). 
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Figure 3.3.1. Calculated proton affinities for the achiral series of triazolium NHCs, as ordered from most acidic to 
least acidic. 
 

 

Figure 3.3.2. Calculated proton affinities vs. pKa for the achiral series of triazolium NHCs. 
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discrepancies, such as the one between NHCs 1c and 1g. Here, 1c features only two -CF3 groups 

while 1g has three. Despite this additional trifluoromethyl group, 1c is calculated to be more acidic 

than 1g. The proposed reason for this is that the dihedral angle between the plane of the triazolium 

core to the plane of the aryl ring is dramatically increased for 1g relative to 1c (Figure 3.3.3). In 

order to calculate these angles for both NHCs, the same DFT method and basis set as described 

above was used. These calculations yielded a dihedral angle of 34.7° for 1c and an angle of 90.4° 

for 1g. This result implies that the effective molecular orbital overlap of 1g is much lower than 

that of 1c, thus reducing the overall p-withdrawing ability of the 1g and making it more of a s-

withdrawing group, thus measurably mitigating the contribution of the third CF3 group. The issue 

of planarity is non-existent with the phenol series as described above, thus the range of PAs for 

these species should be expected to be somewhat larger than those of the NHCs. All of these factors 

indicate that the calculated PAs for our achiral series is accurate thus far. 

 

 

Figure 3.3.3. Calculated dihedral angles for achiral NHCs 1c and 1g. 
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Figure 3.3.4. Calculated proton affinities for the chiral series of triazolium NHCs, as ordered from most to least acidic.  
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Figure 3.3.5. Calculated dihedral angles for NHCs 2a and 2m. 
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Figure 3.4.1. Calculated proton affinities vs. experimental proton affinities for the achiral series of triazolium NHCs. 
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Figure 3.4.2. Calculated proton affinities vs. experimental proton affinities for the chiral series of triazolium NHCs. 
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Figure 3.5.1. NHC-catalyzed intermolecular homoenolate addition of cinnamaldehyde to nitroalkenes, as well as the 
currently accepted mechanism. 
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NHC corresponds to more syn-product. As the acidity of the NHC is attenuated, or the PA 

increases, the amount of anti-product start to increase as well. For achiral NHC 1c, the preference 

is 3.5:1 for the syn-product, and for achiral NHC 1j the preference is 3.5:1 for the anti-product. 

These results reflect the preferences as seen by both Liu’s group, as well as that of our own. 

 

 

Figure 3.5.2. Natural log plot of the anti/syn ratios vs. calculated PAs for the achiral series of NHCs for the model 
homoenolate reaction with (E)-1-nitrobut-1-ene. 
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Figure 3.5.3. Natural log plot of the anti/syn ratios vs. calculated PAs for the achiral series of NHCs for the model 
homoenolate reaction with (E)-2-(2-nitrovinyl)furan. 
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difference in diastereoselectivity, where pentafluorophenyl substituted 1b gives a higher 

preference for the formation of syn-product as compared to the 4-cyanophenyl substituted NHC. 

As was previously mentioned, the calculated PA of a given NHC is affected by the amount of 

significant molecular orbital-overlap that occurs between the planes of the triazolium core and the 

N-aryl substituent. The amount of effective overlap is reduced by substitution at the ortho positions 

of the N-aryl substituent. In light of this effect, we felt that a more accurate description of this trend 

would be one that separates those NHCs that feature diortho substitution from those that do not 

(Figures 3.5.5 and 3.5.6). Both of these plots show the same trend, where a more acidic NHC 

gives a higher preference for the syn-product, with the exception that the correlations are more 

accurate.  

 

 

Figure 3.5.5. Natural log plot of the anti/syn ratios vs. calculated PAs for the diorthosubstituted achiral series of NHCs 
for the model homoenolate reaction with (E)-(2-nitrovinyl)benzene.  
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Figure 3.5.6. Natural log plot of the anti/syn ratios vs. calculated PAs for the non-diorthosubstituted achiral series of 
NHCs for the model homoenolate reaction with (E)-(2-nitrovinyl)benzene. 
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Figure 3.5.7. Proposed transition states for the formation of both anti- and syn-product for Liu’s electron rich and 
Rovis’ electron poor catalysts, respectively. 
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Figure 3.5.8. Acetate catalyzed free energy profiles for the transition states leading towards the E- and Z-enol for an 
electron poor and an electron rich N-aryl substituent.  
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Figure 3.5.9. Calculated distances from TSb from Figure 3.5.8 for both electron poor and electron rich N-aryl 
substitutents. 
 

3.6 Correlations with Chiral Species/Trends with Enantioselectivity 
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Figure 3.6.1. NHC-catalyzed desymmetrizing intramolecular Stetter model reaction for chiral NHCs. 
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Figure 3.6.2. Natural log plot of the major enantiomer/minor enantiomer ratios vs calculated PAs for the 
enantioselective model reaction. 
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Figure 3.6.3. Stereochemical explanation for correlation between calculated proton affinities and enantioselectivity. 
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aminoindanol-based chiral NHCs, where only one scaffold with one N-aryl substitution has ever 

had its acidity assessed (2a has a pKa of 17.4 and a PA of 252.9 kcal/mol) prior to this point. The 

wider energetic range for the proton affinities, as compared to the energetic range of the pKa 

values, allows for a much easier construction of linear free-energy relationships. As such, we were 

able to establish the first correlations of their kind for both achiral and chiral NHCs. For the achiral 

family of NHCs used in this study, we disclosed a correlation between acidity and 

diastereoselectivity. For the chiral family of NHCs used herein, we were able to correlate 

enantioselectivity to acidity. Both of these trends prove the original hypothesis to be true – a data 

set with a sufficiently large enough energetic range can indeed be used as a synthetically enabling 

tool. Moving forward, we anticipate that researchers will be inspired to use these gas phase 

acidities as a predictive tool for a less randomized approach towards tackling problems in 

umpolung-themed reactions. 
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Chapter 4. Gaining Insights into Asymmetric Catalysis on the Basis of 
Benchmarking 

 
4.1 Introduction 

 

Modern kinetic analyses of chemical reactions provide both the infrastructure and practical 

means for the elucidation of reaction mechanisms.1 Understanding a mechanism is generally 

considered to be critical towards achieving an overall successful transformation – this is made 

evident whether in an academic setting when attempting to optimize a novel catalytic 

methodology,2 or in an industrial setting wherever efforts are made toward either catalyst 

discovery or process development.3 This is especially true for asymmetric catalytic 

transformations, where the extra considerations that pertain to rendering a reaction both 

enantioselective and robust present additional hurdles with respect to obtaining an economically 

viable chemical transformation. In consideration of this importance and given the complexity often 

associated with chemical kinetics in tandem with asymmetric catalysis, a significant effort has 

been made to render available methods more accessible, precise, and powerful.4 

As a result of these efforts, experimental methodologies offering increasingly accurate 

insights into chemical reactivity on the basis of kinetic analysis continue to be established. One 

such modern technique, pioneered by Blackmond and coworkers, utilizes reaction calorimetry, 

wherein it is possible to monitor the progress of a reaction by monitoring its instantaneous heat 

flow, directly relating to its enthalpy change and reaction rate.5 In-situ IR spectroscopy can also 

be utilized for these purposes, relying on the presence of distinctive absorbance peaks in the IR 

region of a monitored substrate or product.6 NMR spectroscopy is often the most ideal method of 

choice for the purposes of obtaining information from a given reaction over a period of time. To 

improve the accuracy and precision of these results, there have been significant advances in the 
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development of rapid-injection NMR apparatuses (RI-NMR).7 All of these methods have proven 

to be robust and quite powerful in their mechanism-elucidating capabilities. Unfortunately, with 

respect to interrogating catalytic asymmetric transformations, there are a lack of non-invasive 

methods that effectively utilize enantiomeric excess (ee) to extract important information of a 

given reaction on the basis of the chiral catalyst.  

In this regard, Blackmond and coworkers have very recently published a powerful method 

to monitor the ee of kinetic resolutions using vibrational circular dichroism in combination with 

FT-IR spectroscopy.8 Prior to this, studies dedicated to this have been limited largely to either 

calculation-dense or invasive methodologies.9 Furthermore, a common drawback with more 

traditional methods is the indeterminate error that may occur when analyzing physically and 

temporally separated reaction runs. For example, early data-points may be lost in between the 

variable amount of time it takes to administer a reaction-activating reagent and then obtain the first 

spectroscopic datum. As a result of this fluxional inaccuracy, reliable data often requires multiple 

and averaged runs to increase accuracy as well as precision.  RI-NMR has made impressive 

headway to resolve these issues, but much like the aforementioned modern methodologies, this 

technique suffers somewhat from both instrumental and method unavailability. 
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Figure 4.1.1. Proposed Experimental Protocol: Step 1: Run competition between benchmarking cat. 1 and to-be 
benchmarked cat. 2. Step 2: Plug ee from step 1 to binary equation. Step 3: Obtain krel from calculated variables in 
Step 2. 

 

We thus considered a way to overcome these limitations. Devising an analytical tool with 

interrogating capabilities would require both simplicity for the sake of user-friendliness and the 

overall accuracy of the aforementioned techniques, while allowing for greater accessibility. 

Keeping in mind the challenges associated with asymmetric catalysis, we postulated that we can 

obtain a significant amount of information from a given enantioselective reaction by comparing 

the relative rate (krel) of one chiral catalyst to one that is structurally dissimilar. As was previously 

disclosed by our group, one way to determine the krel between two chiral catalysts is to measure it 

first with an achiral catalyst – the two krel’s can then be used to calculate the krel between the two 

aforementioned chiral catalysts.10 We wished to take further advantage of this experimental set-

up, simplifying the protocol to obviate the need for an achiral component to instead derive our 

desired krel directly from a simple competition experiment between the two chiral components 

(Figure 4.1.1). Streamlining this protocol offers a facile and overall noninvasive method of 

assessing and comparing the reactivity of a series of chiral catalysts on the basis of a single 

competition experiment. When comparing these catalysts against a standardized chiral catalyst, 

we can benchmark their reactivities for the pathway towards a single enantioenriched product 
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against the standard, revealing the effects upon reactivity associated with structural perturbations. 

We anticipate that the benefits offered by this approach will be complementary to those offered by 

the more well-established aforementioned methodologies. Described herein are our efforts towards 

achieving this goal. 

 
 

 
 

Figure 4.2.1. a) Optimized catalyst architectures associated with intra- and intermolecular Stetter, homoenolate, and 
oxidative reactions. b) Studies associated with effects on reactivity associated with changes to the catalyst structure – 
several studies performed on the N-Aryl substituent, none on the backbone of the catalyst. 
 
4.2 Validating Approach with Asymmetric Organocatalysis – N-Heterocyclic Carbenes 
 

We first wished to demonstrate the validity of this experimental protocol with its 

application towards the use of N-heterocyclic carbenes (NHCs) as chiral organocatalysts. Our 

research group has a rich history in this field and has thus made a number of contributions.11 If we 

quickly analyze the NHCs used in this field, starting with a highly asymmetric intramolecular 
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variant of the Stetter reaction,12 continuing with asymmetric intermolecular variants of the 

Stetter,13 and further opening NHC reactivity towards homoenolate14 and oxidative pathways,15 

we can quite clearly see that is an optimization sequence and evolution of the architectures best 

suited for these transformations (Figure 4.2.1a). In this vein, a tremendous effort has been made 

by the synthetic community towards synthesizing novel NHC architectures. These structures often 

possess enormous variances in their backbones relative to the more well-known aminoindanol and 

pyrrolidine based triazolium salts.11,16 Of these triazolium-based NHCs, the most well studied, but 

still limited, impacts upon reactivity associated with structural modifications are those related to 

changes to the N-aryl substituent (Figure 4.2.1b).17 One such of these studies was performed by 

Bode and coworkers, wherein they found that NHCs possessing aryl-groups that feature 

substitution at the ortho and ortho’ positions tend to favor annulation, oxidation, and redox-type 

pathways. This is due to fast and irreversible formation of Breslow intermediates from a,b-

unsaturated aldehydes, the origin of which arises largely from steric effects.18 Conversely, Bode 

concluded that the less hindered and more electron deficient pentafluorophenyl-substituted NHC 

tends to favor Stetter and benzoin-type reactions. Smith, O’Donoghue and coworkers further 

studied this, providing experimental and kinetic evidence supporting Bode’s hypothesis, showing 

that increased acidity of the aldehydic proton in the tetrahedral intermediate prior to formation of 

the Breslow intermediate plays a large role in dictating this selectivity.19 The same groups also 

provided a number of solution-phase pKa’s for a series of synthetically relevant azolium salts, 

showcasing their dependence on the N-aryl substituent.20 A complementary study assessing the 

proton affinities of a series of synthetically relevant triazolium precatalysts was done by our group 

in collaboration with Lee and coworkers,21 where in the same publication correlations were found 

linking acidity with several functions of reactivity with both chiral and achiral NHCs. Given these 
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studies, there should be no doubt that the N-aryl substituent plays a critical role in determining 

catalyst reactivity and selectivity. 

Despite the large and diverse set of unique architectures that exist dedicated for the 

purposes of asymmetric umpolung reactivity, papers commenting on the origin of effects as 

dictated by the other half of the catalyst are non-existent at the onset of our studies. Perhaps one 

of the reasons for this is that this half of the catalyst is generally considered to be at its most useful 

when utilized for the purposes of inducing asymmetry in enantioselective transformations. 

Regardless, stereoelectronic effects that are critical to both reactivity and stereoselectivity can arise 

from the backbone of the catalyst structure and indeed have been already been demonstrated.22 

Thus, an application of the proposed benchmarking tool towards NHC catalysis offers a unique 

way to search for and assess these often “hidden”, “difficult-to-account for”, or otherwise 

“unpredictable” catalyst backbone-effects in what amounts to a very simple experimental protocol. 
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Figure 4.2.2. Proof-of-concept model reaction, wherein Catalyst 1 is the benchmarking catalyst with respect to a 
class of structurally perturbed, yet electronically analogous, series of catalysts that are pseudoenantiomeric in product 
formation. 
 

We chose to start with a variant of the intramolecular Stetter reaction as was previously 

published by our group (Figure 4.2.2).13a When comparing two catalysts in a single reaction for 

the formation of an enantioenriched product, we must first meet several important criteria. The 

first condition is that the reaction must be first order with respect to the catalyst. This substrate is 

excellent for the purposes of testing catalyst performance for newly developed NHCs, and is 

especially suitable for our purposes since it satisfies this important criterion. Indeed, it has already 

been shown that the catalyst for this transformation is first order with respect to the intramolecular 

Stetter reaction.23 Another important criterion that must be met at this point is the absence of 

subsequent reactivity for the enantioenriched product. Again, our chosen reaction manifold 

succeeds in this respect since it has been previously shown that the Stetter reaction is an irreversible 

transformation.24 Although catalyst-induced epimerization has been previously demonstrated to 
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be an issue for this transformation for the more Lewis basic NHCs,17 under the right set of reaction 

conditions,25 as well as considering that the NHCs used in this study are all N-pentafluorophenyl 

substituted and thus relatively weakly basic, the deleterious contribution of this effect is 

substantially mitigated.26 The last condition that must be met is the product cannot contain multiple 

stereocenters.27 Again, our chosen proof-of-concept reaction manifold succeeds in this regard since 

only one stereogenic center is formed.  

 

4.3 Obtaining krel values for Benchmarking Experiments 
 

Our reaction set-up is as follows: For the first step we obtain the ee’s of each chiral catalyst 

selected for our protocol. We then re-run the same reaction in the presence of equimolar amounts 

of the designated chiral catalysts under a total mole percent equal to the original runs.28 For best 

results, one chiral catalyst should ideally give one enantiomer of product and the other should be 

stereoselective for the antipode. For the second step, we use Equation 1 to solve for the amount 

of (S)- and (R)-product that is given in the competition experiment (Figure 4.3.1a). Here, CompS 

and CompR refer to the ratio of (S)- to (R)-product, respectively, as measured by the competition 

experiment in the previous step. The variables xS and tR denote the amount of (S)- and (R)-product, 

respectively, that is formed by the standalone benchmarking catalyst – yS and uR are the 

expressions for the catalyst that is being benchmarked. The purpose of this binary equation is to 

obtain the amount of (S)- and (R)-product that was given in the course of the competition 

experiment, and then plug those values into our ratio as shown in Equation 2. Solving this equation 

with our values from Equation 1 gives the relative rate of one chiral catalyst versus the other. As 

an example, in the competition between catalyst 5 (C-5) and catalyst 1 (C-1) for the reaction with 

substrate 10, the ee given by C-1 is 93% eeR, or a ratio of 27.57 : 1 (R)- to (S)-product. For C-5, 
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we see 96% eeS, or a ratio of 49:1 (S)- to (R)-product. At this point, we choose to express variable 

t in terms of x, and variable u in terms of y, thus reducing a binary equation system with four 

variables to a much simpler two-variabled system. For C-1, since the ratio is 27.57R : 1S, and x 

equals the amount of (S)-product by C-1 and t equals the amount of (R)-product by the same 

catalyst, we can thus say that t = 27.57x. Likewise, in doing the same with the reciprocal of C-5, 

we obtain u = 0.02041y. After having appropriately expressed Equation 1 with the proper 

substitutions, we can easily solve for both y and x. In the third and final step, we again express t 

and u in terms of x and y for Equation 2, plug in our obtained values and thus arrive at our desired 

krel, which for this instance is 0.370 (Figure 4.3.1b).29 This protocol was repeated three-fold and 

an average krel of 0.375 ± 0.016 was measured for the competition experiments in toluene for C-5 

and C-6 in the formation of product 11. 

 
Figure 4.3.1. a) Binary equation and krel expression, where the solutions for variables from equation 1 will be used to 
solve equation 2. b) Sample solution for krel expressions. c) krel values for formation of 11 as benchmarked against 
Catalyst 1 and achiral Catalyst 10. 
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We continue this analysis with C-6, C-7, C-8, and C-9, giving us krel values of 0.627 ± 

0.033, 0.548 ± 0.012, 0.227 ± 0.022, and 0.447 ± 0.019, respectively. In each case, we can quite 

clearly see that the benchmarking catalyst is faster than each catalyst in our designated 

pseudoenantiomeric series (Figure 4.3.1c). To demonstrate the modularity and reproducibility of 

these results, achiral benchmarking NHC C-10 was chosen and the experimental protocol was 

repeated for toluene.25 The trends in reactivity for these experiments reflect those for when C-1 

was chosen as the benchmarking catalyst. Furthermore, to showcase the ease of this experimental 

methodology, krel values were easily obtained over a range of different solvents (Figure 4.3.2). In 

every single case, the much more widely known C-1 was shown to be more reactive for the selected 

intramolecular Stetter reaction. Some basic trends do exist strictly for the pseudoenantiomeric 

series, wherein C-6 is shown to be generally more reactive and C-9 is often the worst performing. 

The exception here is when the reaction is conducted in acetonitrile, where the overall reactivity 

for the pseudoenantiomeric series seems to equalize. A number of factors may be operative here, 

ranging anywhere from steric influence for the initial addition of the NHC to the carbonyl of the 

aldehyde to differential rates of catalyst decomposition. Though further studies in this regard are 

currently underway, the premise of the tool is appropriately demonstrated wherein we can quickly 

and quantitatively assess the differences in reactivity as dictated by the backbone of the NHC. 
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Figure 4.3.2. krel values for formation of 11 as benchmarked against catalyst 1 in several solvents. 
 
 

4.4 Comparing Benchmarking Protocol to NMR-Spectroscopy  
 

As previously mentioned, the same data can be potentially extracted by following 

conversion using NMR spectroscopy and comparing initial rate kinetics. In this regard, we moved 

to substrate 12 and re-ran the proposed analysis (Figure 4.4.1). This substrate is of special interest 

to us since it lacks the phenolic oxygen of the previous substrate, which has been implicated in 

assisting with the turn-over limiting step of the Stetter reaction.23 We thus believed that the 

differences in catalyst reactivity could be further demonstrated by the proposed benchmarking 
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of the limit in precision with these early timepoints, any kinetic analysis with respect to a change 
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propagated to the end points and it thus becomes difficult to make any conclusions with respect to 

differential catalyst reactivity. This further validates the notion that utilizing this experimental 

protocol can provide uniquely robust and precise data, since both catalysts are run in the same 

reaction conditions at the same time, thus greatly reducing the risk of error propagation between 

separate runs. In this case, we see that C-6 is 2.051 ± 0.048 times faster than C-1, demonstrably 

enhancing the trends that we saw in the previous experiments. This trend is also reflected in a 

select choice of different solvents as was the case above.25 Overall, this approach shows that we 

can use this approach not only as a high-throughput assessment of differences in catalyst reactivity 

for a given reaction, which can be used to more clearly define an appropriate catalyst for a given 

use, but it can also be used to increase the serendipity with which one finds these potentially hidden 

catalyst backbone effects.  

 

 
Figure 4.4.1. Catalyst reactivity assessment as performed 1H-NMR, as well as with proposed “benchmarking” 
approach. 
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4.5 Validating Approach with Asymmetric TM Catalysis – Rh(I)-Catalysis 
 

Upon demonstrating that the protocol is operative for asymmetric organocatalytic 

transformations, we wished to establish its applicability to a broad range of asymmetric catalytic 

transformations. We chose to demonstrate this with an asymmetric Rh(I)-catalyzed [2+2+2] 

cycloaddition of alkenyl isocyanates and aromatic alkynes, as was previously discovered by our 

group (Figure 4.5.1).30 There are two productive pathways for this approach, one that forms 

vinylogous amides following an oxidative cyclization, CO migration, migratory alkene insertion, 

and subsequent reductive elimination sequence, while the other produces cyclic lactams, both of 

which have been rendered highly enantioselective (Figure 4.5.2).31 This divergence in reactivity 

offers a unique opportunity to showcase the proposed methods ability to assess catalyst reactivity 

for a single productive pathway in the presence of others. The measured krel for one pathway may 

indicate the preference of one pathway to another strictly based on catalyst structure. This body of 

work bears its inception in 2006 with the initial discovery of the achiral transformation.32 

Following an approximately seven year effort, our group disclosed a number of trends and 

generalizations in terms of which ligands worked best for a given substrate, where electron-

deficient ligands give a higher preference for the vinylogous amide product, bulkier substitution 

at the amine gives a higher preference for the lactam product, and binol/bisphenol ligands tend to 

favor vinylogous amide products with aliphatic alkynes.33  

Using this benchmarking approach, we wondered if we could encapsulate these enormous 

efforts within a single experimental protocol. On a related note, we have already demonstrated 

above with the pseudoenantiomeric series of NHCs that complex situations can arise in which it 

becomes exceedingly difficult to generalize some function of a stereoelectronic nature with respect 

to reactivity, especially one that is universal across a broad range of substrates for a specific 
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transformation. This paradigm is also reflective in asymmetric catalysis for TM-metal catalyzed 

reactions. Thus, an application of our experimental protocol under this scenario can potentially 

enable a quick assessment of which chiral ligand is best for a given substrate at any time, a concept 

that is of high interest to industry.34 We thus employed the approach described herein for the 

cycloaddition between aliphatic isocyanate 14 and aryl alkyne 15. We chose ligand 1 (L-1) as the 

benchmark since it has been recognized to be the most chemoselective ligand for the pathway 

invoking a CO-migration.35 The results are shown below, wherein the benchmarking ligand is 

substantially faster than L-2, L-3, L-5, and L-6 (Figure 4.5.3). Since a surprising rate acceleration 

was noted for m-xylyl substituted L-4, we synthesized L-8 to see if a ligand that is isoelectronic 

to L-1, yet isosteric to L-4, would be benchmarked somewhere between them. The results are as 

expected, where L-8 is benchmarked at 1.275 ± 0.028, thus showcasing the potential for 

application of this approach for a more logic-based approach in catalyst development.  
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Figure 4.5.1. Rh(I)-cycloaddition of isocyanate 14 with aryl alkyne 15. Ligand 1 is the benchmarking 
phosphoramidite ligand as compared to a wide range of different phosphoramidite ligands. 

 

  
Figure 4.5.2. Mechanism for the synthesis of vinylogous amides and lactams through the studied Rh(I)-catalyzed 
[2+2+2] cycloaddition. 
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Figure 4.5.3. Ligand-Benchmarking results for phosphoramidite series summarizing a 7-year effort. 

 
Nonetheless, as was predicted, we were able to summarize three key conclusions from our 

previous efforts: 1) An increase in the steric bulk on the amine of the phosphoramidite ligand 

negatively affects the amount of vinylogous amide that is formed, thus resulting in a less reactive 

L-2. 2) A more electron-deficient ligand tends to favor more vinylogous amide product, and thus 

L-1 and L-8 are more reactive than L-2, L-3, L-5 and L-6 3) Structural changes to the acetonide 

of the TADDOL-based phosphoramidites results in little to no change in reactivity (L-7). 

Furthermore, in terms of biphenyl L-5 and bisphenol L-6, it has been previously demonstrated that 

L-6 is generally better than L-5 for the formation of vinylogous amide product.36 This conclusion 

is also reflected in the benchmarking data, where L-5 is benchmarked at 0.312 ± 0.036  and L-6 

at 0.242 ± 0.013. Thus, for future cases, in an appropriate asymmetric transformation that is not 

well understood, a researcher may be interested in using this tool for a more rapid discovery of 

these stereoelectronic effects, the data of which can provide a broad platform for further scientific 

discovery and catalyst development.  
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4.6 Conclusions 

 

In summary, the proposed benchmarking approach has been shown to be a facile and 

demonstrably accurate way of assessing differences in reactivity between various chiral 

components in a given asymmetric reaction, on the basis of their enantioselectivities. The 

consistency and reproducibility of this data was demonstrated for runs where both chiral and 

achiral NHCs act as the benchmark. Furthermore, this method of assessment has been shown to be 

amenable to two distinct fields within asymmetric catalysis – organocatalysis, as well as transition 

metal catalysis. Though shown to be robust in the reaction paradigms as shown above, as goes 

with any tool, judicious choice of this approach must be made where inconsistent data may be 

indicative of anything from variable rates of catalyst decomposition between runs, erosion of 

substrate ee by fault of reaction conditions, catalyst-induced epimerization, to even perhaps 

nonlinearity. Nonetheless, the approach is highlighted by its use as a high-throughput manner of 

assessing catalyst activity for a given enantioselective transformation. This raises the potential to 

not only highlight hidden and previously unaccounted for stereoelectronic effects of these chiral 

components, but also to be used as a more logical approach towards catalyst choice in the course 

of methods development.  
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APPENDIX 
 
General Methods 
All reactions were carried out in oven-dried glassware with magnetic stirring. ACS grade MeOH, 
DCM, Et2O, Toluene, MeCN and reagents were purchased from TCI, Strem, Alfa Aesar, and Sigma-
Aldrich and were used without further purification. When necessary, organic solvents were 
routinely dried and/or distilled prior to use and stored over molecular sieves under argon. 
Column chromatography was performed on Silicycle® SilicaFlash® P60 (230-400 mesh) silica gel. 
Thin layer chromatography was performed on Silicycle® 250μm silica gel 60A plates. Visualization 
was accomplished with UV light (254 nm) or potassium permanganate. 1H, 19F, and 13C-NMR 
spectra were collected at ambient temperature on a Bruker 400 MHz spectrometer. Chemical 
shifts are expressed as parts per million (δ, ppm) and are referenced to Acetone-D6 (206.26 ppm 
for 13C-NMR; 2.05 ppm for 1H-NMR). Deuterated solvents were purchased from Cambridge 
Isotope Laboratories and were used without further purification. Proton signal data uses the 
following abbreviations: s = singlet, d = doublet, t = triplet, q = quartet, quint. = quintet, sext. = 
sextet, oct. = octuplet, and m = multiplet. Mass spectra were obtained on a Waters XEVO G2-XS 
QToF mass spectrometer equipped with a UPC2 SFC inlet, on-board fluidics, an ESI probe, an APCI 
probe, and an ASAP (HRMS). [Rh(ethylene)2Cl]2 was purchased from Strem Chemicals. Unless 
otherwise indicated, all commercially available starting materials were purchased from Aldrich 
Chemicals and used without further purification. 
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Synthesis of Substrates 
Ethyl (E)-4-(2-formylphenoxy)but-2-enoate (10) 
 

A slightly modified procedure was used for the synthesis of 10:1 A 100 mL 
round-bottom flask was charged with salicaldehyde (654 µL; 750 mg; 6.142 
mmol; 1.0 eq.), 60 mL acetone (0.1 M), then K2CO3 (1.273 g; 1.5 eq.). This 
mixture was stirred at room temperature for 10 minutes. Neat ethyl 4-
bromocrotonate (930 µL; 6.756 mmol; 1.1 eq.) is subsequently added in one 

portion. The reaction is stirred for 16 hours, upon which the stir-bar is removed and the reaction 
is concentrated in vacuo to dryness. The crude material was quenched with 30 mL water and 
extracted (3x) with diethyl ether. The combined organic layers were washed with brine, and 
further dried with Na2SO4. The solvent was removed under pressure and the crude product was 
purified by flash chromatography on silica gel (10% EtOAc/Hex) to afford 1.178 g of product 10 
(82%) as a pale-yellow solid. Characterization data for this product matches previously reported 
in the literature.1 
 
Ethyl (E)-5-(2-formylphenyl)pent-2-enoate (12) 
 

A slightly modified procedure was used for the synthesis of 12:2 A flame-dried 
250 mL 2-necked round-bottom flask was charged with 1,2-
dihydronaphthalene (752 µL; 750 mg; 5.761 mmol; 1.0 eq.) and 95 mL DCM 
(0.06 M). The reaction mixture was cooled to -78 °C and was sparged with O2 
for 5 minutes. Ozone was then bubbled through the solution until a light-blue 

color persists (~10-15 minutes). O2 is, again, bubbled through the solution until the reaction flask 
is colorless. Triphenylphosphine (2.267 g; 1.5 eq.) was then added in one portion and the reaction 
mixture was stirred and allowed to go to room temperature overnight. The reaction was then 
concentrated in vacuo to dryness [CAUTION!! Unquenched ozonides present an explosion 
hazard – it is crucial to make sure that all ozonides have been completely reduced before 
concentration]. A separate 100 mL solution of diethyl ether was cooled to -78 °C, poured into 
the dry crude mixture, sonicated for ~1 minute, and filtered over a celite plug (this procedure 
was repeated 3x). The combined ether solution was rotovapped, and purified via flash 
chromatography over silica gel (100% Hexanes) to afford 747 mg of 2-(3-oxopropyl)benzaldehyde 
(80%) as a clear oil, which was then immediately dissolved with 15 mL of a 3:1 
toluene:acetonitrile solvent mixture (0.3 M) in a flame-dried 50 mL round-bottom flask under a 
N2 atmosphere. The reaction mixture was cooled to -78 °C, upon which ethyl 
(triphenylphosphoranylidene)acetate (1.365 g; 3.917 mmol; 0.85 eq.) was added portion-wise 
over 10 minutes and stirred overnight to room temperature (16 hr). The solvent was removed 
under pressure and the crude product was purified by flash chromatography on silica gel (slow 
gradient from 100% Hex to 20% EtOAc/Hex; ~15 column volumes) to afford 449 mg of product 
12 (42%) as a clear oil, which was stored at -10 °C under Argon for future use. Characterization 
data for this product matches previously reported in the literature.2 
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5-Isocyanatopent-1-ene (14) 
 

A slightly modified procedure was used for the synthesis of 14:3 [CAUTION!! Neat acyl 
azide presents potential explosion hazards – for safety, do not exceed 10 mmol 
reaction scales with this preparation. For a larger scale, an alternative procedure is 
best suited.4 A flame-dried 50 mL round-bottom flask filled with N2 was charged with 
5-hexenoic acid (500 mL; 480 mg; 4.210 mmol; 1.0 eq.), and 4.5 mL DCM (0.95 M). 

The reaction mixture was cooled to -10 °C, added triethylamine (622 µL; 452 mg; 4.463 mmol; 
1.06 eq.) in one portion, and stirred for 5 minutes. Diphenyl phosphoryl azide (962 µL; 1.228 mg; 
4.463 mmol; 1.06 eq.) was then added dropwise over a period of 10 minutes and the reaction 
mixture was stirred at around -10 - 0 °C for 4 hours. The cold solution was then concentrated at 
room temperature to remove DCM (Warning: do not exceed a vacuum of 160 mmHg – resulting 
acyl azide is volatile) and filtered over a silica plug with 25 mL of a 2% EtOAc/Hex solvent mixture. 
The solvent mixture was then removed in vacuo (not exceeding 160 mmHg) at room 
temperature. The resulting neat acyl azide was allowed to sit under N2 in 4.5 mL CDCl3 (0.95 M) 
overnight until fully converted to isocyanate 14, which upon removal of CDCl3 exists as a clear 
liquid (369 mg; 79%). Characterization data for this product matches previously reported in the 
literature.3 
 
Synthesis of Chiral Complexes 
(S)-5-(3-Methoxy-3-oxopropyl)-2-(perfluorophenyl)-5,6-dihydro-8H-[1,2,4]triazolo[3,4-
c][1,4]oxazin-2-ium tetrafluoroborate (C-5) 
 

A slightly modified procedure for the synthesis of C-1 was used for the 
synthesis of C-5:5 A flame-dried 100 mL round-bottom flask was charged 
with methyl (S)-3-(5-oxomorpholin-3-yl)propanoate (438 mg; 2.343 mmol; 
1.0 eq.) and 10 mL of DCM (0.23 M). Trimethyloxonium tetrafluoroborate 
(353 mg; 2.389 mmol; 1.02 eq.) was added and the reaction mixture was 
stirred overnight (16 hours) at room temperature. 
Pentafluorophenylhydrazine (464 mg; 1.00 eq.) was then added in a single 

portion and stirred for approximately 5 hours. The solvent was removed in vacuo and the crude 
solid was triturated with diethyl ether several times. The flask containing the solid was outfitted 
with a reflux condenser and purged three times with N2. 10 mL acetonitrile (0.23 M) and trimethyl 
orthoformate (2.563 mL; 23.430 mmol; 10.0 eq.) was then added and heated to 100 °C. The 
reaction progress was carefully monitored via UPLC. Once complete (~3 hours), the solvents were 
removed under pressure and dried in vacuo. The crude product was then refluxed in 10 mL of 
anhydrous toluene (0.23 M) overnight (16 hours), and purified via flash chromatography on silica 
gel (slow gradient from 100% DCM to 10% MeOH/DCM) to afford analytically pure C-5 as an 
amorphous solid (327 mg; 30%). 1H-NMR (400 MHz, Acetone-D6), δ 10.49 (1H, s), 5.27-5.11 (2H, 
dd, J = 2.1, 5.9 Hz), 4.98 (1H, m), 4.31-4.18 (2H, ddd, J = 0.5, 1.6, 3.9 Hz), 3.53 (3H, s), 2.61-2.53 
(2H, m), 2.49-2.29 (2H, m);  13C -NMR  (400  MHz,  Acetone-D6) δ 173.3, 152.7, 146.8, 146.0 (m), 
143.1 (m), 140.3 (m), 137.8 (m), 66.8, 62.6, 57.6, 52.0, 31.2, 28.4; 19F -NMR  (400  MHz,  Acetone-
D6) δ -146.7 (2F, m), -150.2 (1F, tt, J = 0.5, 1.1, 2.8, 3.3 Hz), -151.9 (10BF4), -152.0 (11BF4), -162.1 
(2F, m); HRMS (ESI+) calculated for C15H13F5N3O3 378.0877 – Found 378.0874. 
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(S)-2-(Perfluorophenyl)-5-propyl-5,6-dihydro-8H-[1,2,4]triazolo[3,4-c][1,4]oxazin-2-ium 
tetrafluoroborate (C-6) 
 

A slightly modified procedure for the synthesis of C-1 was used for the 
synthesis of C-6:5 A flame-dried 100 mL round-bottom flask was charged 
with (S)-5-propylmorpholin-3-one (335 mg; 2.343 mmol; 1.0 eq.) and 10 mL 
of DCM (0.23 M). Trimethyloxonium tetrafluoroborate (353 mg; 2.389 
mmol; 1.02 eq.) was added and the reaction mixture was stirred overnight 
(16 hours) at room temperature. Pentafluorophenylhydrazine (464 mg; 

1.00 eq.) was then added in a single portion and stirred for approximately 5 hours. The solvent 
was removed in vacuo and the crude solid was triturated with diethyl ether several times. The 
flask containing the solid was outfitted with a reflux condenser and purged three times with N2. 
10 mL acetonitrile (0.23 M) and trimethyl orthoformate (2.563 mL; 23.430 mmol; 10.0 eq.) was 
then added and heated to 100 °C. The reaction progress was carefully monitored via UPLC. Once 
complete (~5 hours), the solvents were removed under pressure and dried in vacuo. The crude 
product was then refluxed in 10 mL of anhydrous toluene (0.23 M) overnight (24 hours), and 
purified via flash chromatography on silica gel (slow gradient from 100% DCM to 10% 
MeOH/DCM) to afford analytically pure C-5 (503 mg; 51%) as an amorphous solid. 1H-NMR (400 
MHz, Acetone-D6), δ 10.55 (1H, s), 5.38-5.26 (2H, dd, J = 2.1, 3.8 Hz), 5.01 (1H, m), 4.46-4.26 (2H, 
ddd, J = 0.5, 1.6, 8.0 Hz), 2.32-2.10 (2H, m), 1.66-1.56 (2H, m) 1.04 (3H, t, J = 0.9 Hz);  13C -NMR  
(400  MHz,  Acetone-D6) δ 151.8, 145.7, 144.7 (m), 142.2 (m), 139.5 (m), 137.0 (m), 66.0, 61.7, 
57.5, 33.9, 18.1, 13.05; 19F -NMR  (400  MHz,  Acetone-D6) δ -146.7 (2F, m), -150.3 (1F, tt, J = 0.5, 
1.1, 2.8, 3.3 Hz), -151.9 (10BF4), -152.0 (11BF4), -162.2 (2F, m); HRMS (ESI+) calculated for 
C14H13F5N3O 334.0979 – Found 334.0976. 
 
(S)-2-(Perfluorophenyl)-5-phenethyl-5,6-dihydro-8H-[1,2,4]triazolo[3,4-c][1,4]oxazin-2-ium 
tetrafluoroborate (C-7) 
 

A slightly modified procedure for the synthesis of C-1 was used for the 
synthesis of C-6:5 A flame-dried 100 mL round-bottom flask was charged 
with (S)-5-phenethylmorpholin-3-one (481 mg; 2.343 mmol; 1.0 eq.) and 
10 mL of DCM (0.23 M). Trimethyloxonium tetrafluoroborate (353 mg; 
2.389 mmol; 1.02 eq.) was added and the reaction mixture was stirred 
overnight (16 hours) at room temperature. Pentafluorophenylhydrazine 
(464 mg; 1.00 eq.) was then added in a single portion and stirred for 

approximately 5 hours. The solvent was removed in vacuo and the crude solid was triturated with 
diethyl ether several times. The flask containing the solid was outfitted with a reflux condenser 
and purged three times with N2. 10 mL acetonitrile (0.23 M) and trimethyl orthoformate (2.563 
mL; 23.430 mmol; 10.0 eq.) was then added and heated to 100 °C. The reaction progress was 
carefully monitored via UPLC. Once complete (~5 hours), the solvents were removed under 
pressure and dried in vacuo. The crude product was then refluxed in 10 mL of anhydrous toluene 
(0.23 M) overnight (16 hours), and purified via flash chromatography on silica gel (slow gradient 
from 100% DCM to 10% MeOH/DCM) to afford analytically pure C-5 as an amorphous solid (430 
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mg; 38%). 1H-NMR (400 MHz, Acetone-D6), δ 10.68 (1H, s), 7.32-7.28 (4H, m), 7.21 (1H, m), 5.39-
5.25 (2H, dd, J = 2.1, 3.7 Hz), 5.08 (1H, m) 4.51-4.32 (2H, ddd, J = 0.5, 1.6, 5.0 Hz), 3.00-2.86 (2H, 
m) 2.69-2.40 (2H, m);  13C -NMR  (400  MHz,  Acetone-D6) δ 152.9, 146.9, 145.5 (m), 143.1 (m), 
141.5, 140.6 (m), 138.0 (m), 129.6, 129.3, 127.3, 67.0, 62.8, 58.5, 35.0, 31.9; 19F -NMR  (400  MHz,  
Acetone-D6) δ -146.7 (2F, m), -150.0 (1F, tt, J = 0.5, 1.1, 2.8, 3.3 Hz), -151.6 (10BF4), -151.7 (11BF4), 
-161.9 (2F, m); HRMS (ESI+) calculated for C19H15F5N3O 396.1135 – Found 396.1134. 
 
1-((3aR,8aR)-4,4,8,8-Tetrakis(3,5-bis(trifluoromethyl)phenyl)-2,2-dimethyltetrahydro-
[1,3]dioxolo[4,5-e][1,3,2]dioxaphosphepin-6-yl)pyrrolidine (L-8) 
 

 A modified procedure was used for the synthesis of L-8:6 A flame-dried 
100 mL round-bottom flask filled with N2 was charged with 1-bromo-3,5-
bis(trifluoromethyl)benzene (1.410 mL; 8.178 mmol; 6.0 eq.) and 14 mL 
diethyl ether (0.6 M). The reaction was cooled to -78 °C and stirred for 5 
minutes. n-BuLi (5.111 mL of 1.6 M solution in Hexanes; 6.0 eq.) was 
added dropwise over 5 minutes. Once the addition was completed, the 
reaction was stirred in 0 °C for 1 hour, and then lowered back down to -
78 °C. A premixed solution of (−)-dimethyl 2,3-O-isopropylidene-L-
tartrate (250 µL; 1.363 mmol; 1.0 eq.) in 13 mL of diethyl ether (0.1 M) 
was added dropwise over 15 minutes. The reaction was allowed to stir to 

ambient temperature over 2 hours. The mixture was then quenched with 15 mL of water, 
extracted several times with diethyl ether, and subsequently washed with brine and then dried 
with Na2SO4. The crude mixture was purified via flash column chromatography on silica gel (slow 
gradient from 100% Hexanes to 10% EtOAc/Hex) to afford ((4R,5R)-2,2-dimethyl-1,3-dioxolane-
4,5-diyl)bis(bis(3,5-bis(trifluoromethyl)phenyl)methanol) as a white foamy solid (702 mg, 51% 
yield), which was then submitted to a flame-dried 100 mL round-bottom flask filled with N2 and 
filled with 3 mL of anhydrous THF (0.25 M). The mixture was cooled to 0 °C and stirred for 5 
minutes. Triethylamine (329 µL; 239 mg; 3.4 eq.) was added in one portion, followed by a 5-
minute dropwise addition of PCl3 (73 µL; 115 mg; 1.2 eq.). The solution is stirred to room 
temperature over 45 minutes, cooled down again to 0 °C, and added pyrrolidine (143 µL; 124 
mg; 2.5 eq.) dropwise over 5 minutes. The reaction was stirred overnight and the solvent 
removed via rotary evaporation. The crude mixture was then purified via flash column 
chromatography on silica gel (slow gradient from 100% Hexanes to 10% EtOAc/Hex) to afford L-
8 as a white foamy solid (308 mg; 40% yield), which was then stored in a drybox filled with argon 
for future use. Characterization data for this product matches previously reported in the 
literature.6 
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General Procedures for Benchmarking Protocol 
General Procedure for the NHC-Catalyzed Intramolecular Stetter Reaction 
 

 
 
Stock solutions of 10 (1.0 M in toluene), C-1 (0.1 M in toluene), and KHMDS (0.1 M in toluene) 
were freshly prepared inside a wet-glovebox under N2 atmosphere. From these stock solutions, 
C-1 (6.9 µL; 5 mol%) was dosed inside a scrupulously dried 1-dram vial, upon which 600 µL of 
degassed and anhydrous toluene (0.023 M) was added. KHMDS (6.9 µL from 0.1 M stock solution; 
5 mol%) was added and the reaction was stirred for 5 minutes. Substrate 10 was then dosed (13.8 
µL from 1.0 M stock solution; 1.0 eq.) and the reaction was stirred for 1 hour. The reaction 
mixture was then concentrated to dryness in vacuo. The crude reaction mixture was filtered over 
a celite plug with DCM and then subject to analysis by chiral-phase HPLC. The enantiomeric 
excess of product 11 was determined via separation, according to a slightly modified literature 
method,7 using a Daicel Chirapak AD-H column with 90:10 Hex:IPA at 1.0 mL/min (major 
enantiomer for C-1: 9.1 min; minor enantiomer: 12.4 min). 
 
General Procedure for the NHC-Catalyzed Intramolecular Stetter Reaction in MeCN 
 

 
 
Stock solutions of 10 (1.0 M in MeCN), C-1 (0.1 M in toluene), and KHMDS (0.1 M in toluene) were 
freshly prepared inside a wet-glovebox under N2 atmosphere. From these stock solutions, C-1 
(6.9 µL; 5 mol%) was dosed inside a scrupulously dried 1-dram vial, upon which 150 µL of 
degassed and anhydrous toluene (0.09 M) was added. KHMDS (6.9 µL from 0.1 M stock solution; 
5 mol%) was added and the reaction was stirred for 5 minutes. The reaction was then removed 
of all solvent and HMDS in vacuo. To the crude mixture was added 600 µL MeCN (0.023 M), 
followed by substrate 10 (13.8 µL from 1.0 M stock solution; 5 mol%) and the reaction was stirred 
for 1 hour. The reaction mixture was then concentrated to dryness in vacuo. The crude reaction 
mixture was filtered over a celite plug with DCM and then subject to analysis by chiral-phase 
HPLC. 
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General Procedure for the Stetter Reaction Competition Experiment  
 

 
 
Stock solutions of 10 (1.0 M in toluene), C-1 (0.1 M in toluene), C-5 (0.1 M in toluene), and KHMDS 
(0.1 M in toluene) were freshly prepared inside a wet-glovebox under N2 atmosphere. From these 
stock solutions, C-1 (3.45 µL; 2.5 mol%) and C-5 (3.45 µL; 2.5 mol%) were dosed inside a 
scrupulously dried 1-dram vial, upon which 600 µL of degassed and anhydrous toluene (0.023 M) 
was added. KHMDS (6.9 µL from 0.1 M stock solution; 5 mol%) was added and the reaction was 
stirred for 5 minutes. Substrate 10 was then dosed (13.8 µL from 0.1 M stock solution; 5 mol%) 
and the reaction was stirred for 1 hour. The reaction mixture was then concentrated to dryness 
in vacuo. The crude reaction mixture was filtered over a celite plug with DCM and then subject 
to analysis by chiral-phase HPLC. [Note: Competition experiments in MeCN were run following 
the procedure described directly above] 
 
General Procedure for the Rh(I)-Catalyzed [2+2+2] Cycloaddition 
 

 
 
Stock solutions of L-1 (0.01 M in CH2Cl2), and [Rh(C2H4)2Cl]2 (0.01 M in CH2Cl2) were freshly 
prepared inside a wet-glovebox under N2 atmosphere. From these stock solutions, [Rh(C2H4)2Cl]2 
(0.075 mL; 5 mol%) was dosed inside a scrupulously dried 1-dram vial, upon which 0.150 mL of 
degassed and anhydrous CH2Cl2 (0.005 M relative to catalyst) was added. L-1 (0.150 mL; 10 mol%) 
was then added and the reaction was stirred for 30 minutes. The reaction was then removed of 
all solvent in vacuo. 0.300 mL of toluene (0.07 M) was subsequently added to the chiral Rh-
complex, followed by Substrate 14 (15.0 µL from 1.0 M stock solution; 0.015 mmol; 1.0 eq.) and 
then Substrate 15 (3.89 µL; 0.030 mmol; 2.0 eq.). The reaction was taken out of the glovebox, 
lined with Teflon tape, and stirred overnight (16 hours) at 110 °C. The reaction mixture was then 
concentrated to dryness in vacuo. The crude reaction mixture was filtered over a celite plug with 
DCM and then subject to analysis by chiral-phase HPLC. The enantiomeric excess of product 11 
was determined via separation, according to a slightly modified literature method,8 using a Daicel 
Chirapak OD-H column with 80:20 Hex:IPA at 0.5 mL/min (major enantiomer for L-1: 34.2 min; 
minor enantiomer: 29.5 min).  
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General Procedure for the [2+2+2] Cycloaddition Competition Experiment 
 

 
 
Stock solutions of L-1 (0.01 M in CH2Cl2), L-4 (0.01 M in CH2Cl2), and [Rh(C2H4)2Cl]2 (0.01 M in 
CHCl3) were freshly prepared inside a wet-glovebox under N2 atmosphere. From these stock 
solutions, [Rh(C2H4)2Cl]2 (0.075 mL; 5 mol%) was dosed inside a scrupulously dried 1-dram vial, 
upon which 0.150 mL of degassed and anhydrous CHCl3 (0.005 M relative to catalyst) was added. 
L-1 (0.075 mL from 0.01 M stock solution; 5 mol%), followed by L-4 (0.075 mL from 0.01 M stock 
solution; 5 mol%), was then added and the reaction was stirred for 30 minutes. The reaction was 
then removed of all solvent in vacuo. 0.300 mL of toluene (0.07 M) was subsequently added to 
the chiral Rh-complex, followed by Substrate 14 (15.0 µL from 0.1 M stock solution; 0.015 mmol; 
1.0 eq.) and then Substrate 15 (3.89 µL; 0.030 mmol; 2.0 eq.). The reaction was taken out of the 
glovebox, lined with Teflon tape, and stirred overnight (16 hours) at 110 °C. The reaction mixture 
was then concentrated to dryness in vacuo. The crude reaction mixture was filtered over a celite 
plug with DCM and then subject to analysis by chiral-phase HPLC.  
 
Sample Calculations of krel from Experimental Data 
C-1 vs C-5 for Intramolecular Stetter Product 11 
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Step 1: The enantioselectivities for both catalysts employed in the reaction must be known prior 
to running the competition experiment. The reaction with C-1 in toluene gives a peak area of 
8270.7 mAU/min for (R)-11 and 310.3 mAU/min for (S)-11, which gives an ee of 93% according 
to equation 1. 
  

𝑒𝑒 = 	
([𝑅] − [𝑆])
([𝑅] + [𝑆])	 

 
The same is done for benchmarking catalyst C-1 in toluene, which gives a peak area of 8705 
mAU/min for (S)-11 and 161.1 mAU/min for (R)-11. Using equation 2, the ee for this catalyst is 
96%. 
 

𝑒𝑒 = 	
([𝑆] − [𝑅])
([𝑆] + [𝑅]) 

 
Step 2: The competition experiment is performed according to the procedure listed above (see 
General Procedure for the Stetter Reaction Competition Experiment). The ee for all subsequent 
competition experiments is calculated according to equation 1, where the major enantiomer for 
the benchmarking catalyst/ligand is treated as the major component. [Note: This treatment is 
universal, as well as in those instances where a negative ee is given (see L-1 vs L-4 for Rh(I)-
Catalyzed [2+2+2])]. In this case, the ee for the competition between benchmarking catalyst C-1 
and C-5, which gives a peak area of 6220 mAU/min for (R)-11 and 2534 mAU/min for (S)-11, is 
42%. This procedure is repeated as desired for a series of catalysts that wish to be benchmarked 
for a model reaction. 
 
Step 3: In order to solve for krel, we must first express the 3 ee’s obtained above as ratios and 
substitute where appropriate in equation 3. 
 

𝐶𝑜𝑚𝑝0 = 𝑥0 + 𝑦0	
𝐶𝑜𝑚𝑝3 = 𝑡3 + 𝑢3	

 
Here, CompS and CompR refer to the ratio of (S)- to (R)-product, respectively, as measured by the 
competition experiment in the previous step. Variables xS and tR denote the amount of (S)- and 
(R)-product that is formed by benchmarking catalyst – variables yS and uR are the expressions for 

Catalyst 1
vs.

Catalyst 5

(1) 

(2) 

(3) 
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the catalyst that is being benchmarked. For benchmarking C-1, 93% can be expressed as a ratio 
of 96.50R : 3.50S, which is then reduced to 27.57R : 1S. The same is done for C-5, which gives a 
ratio of 49.00S : 1.00R. For the competition experiment between benchmarking C-1 and C-5, which 
gives 42% ee, the ratio is expressed as 71.00R : 29.00S and is not reduced further. Thus, CompS = 
0.29 and CompR = 0.71. At this point we wish to express variable t in terms of x, and u in terms of 
y. Since x and t are both expressions of the same catalyst, we can say that t = 27.57x. If we do the 
same for C-5 we obtain the expression 49.00u = y. We multiply both sides of this expression by 
the reciprocal of 49 and obtain the relationship u = 0.02041y. Equation 3 is expressed for these 
variables and solved simply as follows: 
 

0.29 = 𝑥 + 𝑦	
0.71 = 27.57𝑥 + 0.02041𝑦	

	
0.71 = 	27.57(0.29− 𝑦) + 0.02041𝑦	

	
𝑦 = 0.26444	
𝑥 = 0.02556 

 
At this point, we obtain our krel by substituting our y and x values into equation 4 as shown 
below, giving us a krel of 0.370 for the competition between C-5 and C-1. 
 

𝑘@AB = 	
𝐂-𝟓
𝐂-𝟏 	=

𝑢 + 𝑦
𝑡 + 𝑥 =

0.02041𝑦 + 𝑦
27.57𝑥 + 𝑥 = 𝟎. 𝟑𝟕𝟎	

 
C-1 vs C-5 for Intramolecular Stetter Product 11 (Using Microsoft Excel) 
This procedure may also be expedited in Microsoft Excel. The data points for the example 
shown above is highlighted in Figure S1. 

(4) 
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Figure S1. General layout for expedited krel solutions. 
 
As is shown in Figure S1, the ratios are obtained first by inputting the ee as a percentage. Then 
the E-cells are defined as 1 – ee. F-cells are defined as E-cell/2. G-cells are defined as 1 – F-cells. 
H-cells are defined as G-cells/F-Cells. A simplified form of the equation 3 is written into the Excel 
sheet where cells D2 and E2 are variables x and y and cells D3 and E3 are variables t and u 
expressed in terms of x and y. F2 and F3 are expressed as percentages (e.g. 0.29 and 0.79, 
respectively). In order to solve for x and y, highlight two cells as is shown for I2 and I3. In the 
formula bar, enter the Excel functions “=MMULT(MINVERSE(range1),range2)” where range1 
defines the variables and range 2 defines the ee ratios from the competition. For the case above, 
this should be entered as “=MMULT(MINVERSE(D2:D3),F2:F3)” [NOTE: Since this is a formula for 
an array, the formula MUST be entered using CTRL+SHIFT+ENTER, otherwise you will see a 
“#NAME?” error]. The krel formula is, for the case above, entered as “=(E3*I3+I3)/(D3*I2+I2)”. For 
cases when using an achiral catalyst as a benchmark (see C-5 vs C-10 (Achiral) for Intramolecular 
Stetter Product 13 below), cell D3 will equal 1 and cell E3 should equal variable u expressed as y, 
which should reflect the original value and not the reciprocal (Figure S2).  
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C-5 vs C-10 (Achiral) for Intramolecular Stetter Product 13 

 

 
Step 1: The experiment for C-5 in toluene gives a peak area of 18838.6 mAU/min for (R)-13 and 
943.9 mAU/min for (S)-13, which gives an ee of 90% according to equation 2. Achiral C-10 gives 
a racemic mixture.  
  

𝑒𝑒 = 	
([𝑅] − [𝑆])
([𝑅] + [𝑆])	 

 
Step 2: The competition experiment is performed according to the procedure listed above (see 
General Procedure for the Stetter Reaction Competition Experiment). In this case, the ee for the 
competition between benchmarking achiral catalyst C-10 and C-5, which gives a peak area of 
9791.3 mAU/min for (R)-13 and 5577.8 mAU/min for (R)-13, is 27%. This procedure is repeated 
as desired for a series of catalysts that wish to be benchmarked for a model reaction. 
 
Step 3: In order to solve for krel, we must first express the 2 ee’s obtained above as ratios and 
substitute where appropriate in equation 3. 
 

𝐶𝑜𝑚𝑝0 = 𝑥0 + 𝑦0	
𝐶𝑜𝑚𝑝3 = 𝑡3 + 𝑢3	

 
For benchmarking C-10, 96% can be expressed as a ratio of 1S : 1R. The same is done for C-5, which 
at 90% ee gives a ratio of 19.00R : 1S. For the competition experiment between benchmarking C-
10 and C-5, which gives 27% ee, the ratio is expressed as 36.5S : 63.5R and is not reduced further. 
Thus, CompR = 0.635 and CompS = 0.365. At this point we wish to express variable t in terms of x, 
and u in terms of y. Since x and t are both expressions of the same catalyst, and C-10 gives a 
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racemic product, we can say that t = x. If we do the same for C-5 we obtain the expression u = 
19y. Equation 3 is then expressed for these variables and solved simply as follows: 
 

0.365 = 𝑥 + 𝑦	
0.635 = 𝑥 + 19𝑦	

	
0.635 = 	0.365 + 18𝑦	

	
𝑦 = 0.015	
𝑥 = 0.350 

 
At this point, we obtain our krel by substituting our y and x values into equation 4 as shown 
below, giving us a krel of 0.429 for the competition between C-5 and C-10. 
 

𝑘@AB = 	
𝐂-𝟓
𝐂-𝟏𝟎 	=

𝑢 + 𝑦
𝑡 + 𝑥 =

19𝑦 + 𝑦
𝑥 + 𝑥 = 𝟎. 𝟒𝟐𝟗	

 
The Excel array formula above supports this calculation (Figure S2 below). 

 
Figure S2. Expedited calculation for competition C-5 vs C-10. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(4) 
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L-1 vs L-4 for Rh(I)-Catalyzed [2+2+2] Product 16 

 

 

 
Step 1: The enantioselectivities for both catalysts employed in the reaction must be known prior 
to running the competition experiment. The reaction with L-1 in toluene gives a peak area of 
15845.9 mAU/min for (S)-16 and 328.8 mAU/min for (R)-16, which gives an ee of 96% according 
to equation 2. 
  

𝑒𝑒 = 	
([𝑆] − [𝑅])
([𝑆] + [𝑅])	 

 
The same is done for benchmarking catalyst L-4 in toluene, which gives a peak area of 17403.2 
mAU/min for (R)-16 and 669.9 mAU/min for (S)-16. Using equation 1, the ee for this catalyst is 
93%. 
 

𝑒𝑒 = 	
([𝑅] − [𝑆])
([𝑅] + [𝑆]) 
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Step 2: The competition experiment is performed according to the procedure listed above (see 
General Procedure for the [2+2+2] Cycloaddition Competition Experiment). The ee for all 
subsequent competition experiments is calculated according to equation 2, where the major 
enantiomer for the benchmarking catalyst/ligand is treated as the major component. In this case, 
the ee for the competition between benchmarking catalyst L-1 and L-3, which gives a peak area 
of 8482.6 mAU/min for (S)-16 and 19132.8 mAU/min for (R)-16, is -36%. This procedure is 
repeated as desired for a series of catalysts that wish to be benchmarked for a model reaction. 
 
Step 3: In order to solve for krel, we must first express the 3 ee’s obtained above as ratios and 
substitute where appropriate in equation 3. 
 

𝐶𝑜𝑚𝑝3 = 𝑥3 + 𝑦3	
𝐶𝑜𝑚𝑝0 = 𝑡0 + 𝑢0	

 
For benchmarking L-1, 96% can be expressed as a ratio of 98S : 2R, which is then reduced to 49S : 
1R. The same is done for L-2, which gives a ratio of 27.57R : 1S. For the competition experiment 
between benchmarking C-1 and C-5, which gives -36% ee, the ratio is expressed as 32S : 68R and 
is not reduced further. Thus, CompR = 0.68 and CompS = 0.32. At this point we wish to express 
variable t in terms of x, and u in terms of y. Since x and t are both expressions of the same catalyst, 
we can say that t = 49x. If we do the same for C-5 we obtain the expression 27.57u = y. We 
multiply both sides of this expression by the reciprocal of 27.57 and obtain the relationship u = 
0.03627y. Equation 3 is expressed for these variables and solved simply as follows: 
 

0.68 = 𝑥 + 𝑦	
0.32 = 49𝑥 + 0.03627𝑦	

	
0.32 = 	49(0.68 − 𝑦) + 0.03627𝑦	

	
𝑦 = 0.67397	
𝑥 = 0.00603 

 
At this point, we obtain our krel by substituting our y and x values into equation 4 as shown 
below, giving us a krel of 2.316 for the competition between L-4 and L-1. 
 

𝑘@AB = 	
𝐋-𝟒
𝐋-𝟏 	=

𝑢 + 𝑦
𝑡 + 𝑥 =

0.03627𝑦 + 𝑦
49𝑥 + 𝑥 = 𝟐. 𝟑𝟏𝟔	

 
 
 
 
 
 
 
 

(3) 

(4) 
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Computational Details 
krel Values for Product 11 

 
Table S1. First trial krel-values for the competition experiments of Product 11 where C-1 and C-
10 are benchmarking NHC catalysts in Toluene. 
 
 
 
 

 
Table S2. Second trial krel-values for the competition experiments of Product 11 where C-1 and 
C-10 are benchmarking NHC catalysts in Toluene. 
 
 

Toluene Catalyst ee 1 - ee (S)-Product (R)-Product Ratio
C-5 96.00% 4.00% 2.00% 98.00% 49.00
C-6 92.00% 8.00% 4.00% 96.00% 24.00

Solo Runs C-7 92.00% 8.00% 4.00% 96.00% 24.00
Product 11 C-8 94.00% 6.00% 3.00% 97.00% 32.33

C-9 95.00% 5.00% 2.50% 97.50% 39.00
(Benchmark) → C-1 93.00% 7.00% 3.50% 96.50% 27.57 krel

C-5 42.00% 58.00% 29.00% 71.00% 0.370
C-1 C-6 23.00% 77.00% 38.50% 61.50% 0.609

Competitions C-7 27.00% 73.00% 36.50% 63.50% 0.555
C-8 59.00% 41.00% 20.50% 79.50% 0.222
C-9 38.00% 62.00% 31.00% 69.00% 0.414
C-5 31.00% 69.00% 34.50% 65.50% 0.477
C-6 42.00% 58.00% 29.00% 71.00% 0.840

C-10 C-7 35.00% 65.00% 32.50% 67.50% 0.614
Competitions C-8 26.00% 74.00% 37.00% 63.00% 0.382

C-9 32.00% 68.00% 34.00% 66.00% 0.508
C-1 51.00% 49.00% 24.50% 75.50% 1.214

Toluene Catalyst ee 1 - ee (S)-Product (R)-Product Ratio
C-5 96.00% 4.00% 2.00% 98.00% 49.00
C-6 93.00% 7.00% 3.50% 96.50% 27.57

Solo Runs C-7 93.00% 7.00% 3.50% 96.50% 27.57
Product 11 C-8 94.00% 6.00% 3.00% 97.00% 32.33

C-9 95.00% 5.00% 2.50% 97.50% 39.00
(Benchmark) → C-1 93.00% 7.00% 3.50% 96.50% 27.57 krel

C-5 44.00% 56.00% 28.00% 72.00% 0.370
C-1 C-6 17.00% 83.00% 41.50% 58.50% 0.691

Competitions C-7 29.00% 71.00% 35.50% 64.50% 0.525
C-8 63.00% 37.00% 18.50% 81.50% 0.191
C-9 35.00% 65.00% 32.50% 67.50% 0.446
C-5 32.00% 68.00% 34.00% 66.00% 0.500
C-6 44.00% 56.00% 28.00% 72.00% 0.898

C-10 C-7 36.00% 64.00% 32.00% 68.00% 0.632
Competitions C-8 30.00% 70.00% 35.00% 65.00% 0.362

C-9 30.00% 70.00% 35.00% 65.00% 0.462
C-1 54.00% 46.00% 23.00% 77.00% 1.385
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Table S3. Third trial krel-values for the competition experiments of Product 11 where C-1 and C-
10 are benchmarking NHC catalysts in Toluene. 
 
 
 
 

 
Table S4. First trial krel-values for the competition experiments of Product 11 where C-1 and C-
10 are benchmarking NHC catalysts in THF. 
 
 

Toluene Catalyst ee 1 - ee (S)-Product (R)-Product Ratio
C-5 97.00% 3.00% 1.50% 98.50% 65.67
C-6 91.00% 9.00% 4.50% 95.50% 21.22

Solo Runs C-7 92.00% 8.00% 4.00% 96.00% 24.00
Product 11 C-8 95.00% 5.00% 2.50% 97.50% 39.00

C-9 94.00% 6.00% 3.00% 97.00% 32.33
(Benchmark) → C-1 94.00% 6.00% 3.00% 97.00% 32.33 krel

C-5 39.00% 61.00% 30.50% 69.50% 0.404
C-1 C-6 26.00% 74.00% 37.00% 63.00% 0.581

Competitions C-7 27.00% 73.00% 36.50% 63.50% 0.563
C-8 54.00% 46.00% 23.00% 77.00% 0.268
C-9 33.00% 67.00% 33.50% 66.50% 0.480
C-5 28.00% 72.00% 36.00% 64.00% 0.406
C-6 38.00% 62.00% 31.00% 69.00% 0.717

C-10 C-7 38.00% 62.00% 31.00% 69.00% 0.704
Competitions C-8 24.00% 76.00% 38.00% 62.00% 0.338

C-9 29.00% 71.00% 35.50% 64.50% 0.446
C-1 53.00% 47.00% 23.50% 76.50% 1.293

THF Catalyst ee 1 - ee (S)-Product (R)-Product Ratio
C-5 85.00% 15.00% 7.50% 92.50% 12.33
C-6 82.00% 18.00% 9.00% 91.00% 10.11

Solo Runs C-7 83.00% 17.00% 8.50% 91.50% 10.76
Product 11 C-8 90.00% 10.00% 5.00% 95.00% 19.00

C-9 83.00% 17.00% 8.50% 91.50% 10.76
(Benchmark) → C-1 88.00% 12.00% 6.00% 94.00% 15.67 krel

C-5 33.00% 67.00% 33.50% 66.50% 0.466
C-1 C-6 12.00% 88.00% 44.00% 56.00% 0.809

Competitions C-7 34.00% 66.00% 33.00% 67.00% 0.462
C-8 47.00% 53.00% 26.50% 73.50% 0.299
C-9 50.00% 50.00% 25.00% 75.00% 0.286
C-5 32.00% 68.00% 34.00% 66.00% 0.604
C-6 40.00% 60.00% 30.00% 70.00%   0.952

C-10 C-7 30.00% 70.00% 35.00% 65.00% 0.566
Competitions C-8 28.00% 72.00% 36.00% 64.00% 0.452

C-9 24.00% 76.00% 38.00% 62.00% 0.407
C-1 54.00% 46.00% 23.00% 77.00% 1.588
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Table S5. Second trial krel-values for the competition experiments of Product 11 where C-1 and 
C-10 are benchmarking NHC catalysts in THF. 
 
 
 
 

 
Table S6. Third trial krel-values for the competition experiments of Product 11 where C-1 and C-
10 are benchmarking NHC catalysts in THF. 
 
 
 

THF Catalyst ee 1 - ee (S)-Product (R)-Product Ratio
C-5 86.00% 14.00% 7.00% 93.00% 13.29
C-6 83.00% 17.00% 8.50% 91.50% 10.76

Solo Runs C-7 83.00% 17.00% 8.50% 91.50% 10.76
Product 11 C-8 88.00% 12.00% 6.00% 94.00% 15.67

C-9 82.00% 18.00% 9.00% 91.00% 10.11
(Benchmark) → C-1 90.00% 10.00% 5.00% 95.00% 19.00 krel

C-5 38.00% 62.00% 31.00% 69.00% 0.419
C-1 C-6 10.00% 90.00% 45.00% 55.00% 0.860

Competitions C-7 36.00% 64.00% 32.00% 68.00% 0.454
C-8 48.00% 52.00% 26.00% 74.00% 0.309
C-9 48.00% 52.00% 26.00% 74.00% 0.323
C-5 32.00% 68.00% 34.00% 66.00% 0.593
C-6 40.00% 60.00% 30.00% 70.00%   0.930

C-10 C-7 26.00% 74.00% 37.00% 63.00% 0.456
Competitions C-8 27.00% 73.00% 36.50% 63.50% 0.443

C-9 22.00% 78.00% 39.00% 61.00% 0.367
C-1 54.00% 46.00% 23.00% 77.00% 1.500

MeCN Catalyst ee 1 - ee (S)-Product (R)-Product Ratio
C-5 82.00% 18.00% 9.00% 91.00% 10.11
C-6 89.00% 11.00% 5.50% 94.50% 17.18

Solo Runs C-7 82.00% 18.00% 9.00% 91.00% 10.11
Product 11 C-8 86.00% 14.00% 7.00% 93.00% 13.29

C-9 83.00% 17.00% 8.50% 91.50% 10.76
(Benchmark) → C-1 88.00% 12.00% 6.00% 94.00% 15.67 krel

C-5 23.00% 77.00% 38.50% 61.50% 0.619
C-1 C-6 25.00% 75.00% 37.50% 62.50% 0.553

Competitions C-7 27.00% 73.00% 36.50% 63.50% 0.560
C-8 18.00% 82.00% 41.00% 59.00% 0.673
C-9 16.00% 84.00% 42.00% 58.00% 0.727
C-5 33.00% 67.00% 33.50% 66.50% 0.673
C-6 35.00% 65.00% 32.50% 67.50% 0.648

C-10 C-7 34.00% 66.00% 33.00% 67.00% 0.708
Competitions C-8 45.00% 55.00% 27.50% 72.50% 1.097

C-9 44.00% 56.00% 28.00% 72.00% 1.128
C-1 55.00% 45.00% 22.50% 77.50% 1.600
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Table S7. First trial krel-values for the competition experiments of Product 11 where C-1 and C-
10 are benchmarking NHC catalysts in MeCN. 
 
 
 
 

 
Table S8. Second trial krel-values for the competition experiments of Product 11 where C-1 and 
C-10 are benchmarking NHC catalysts in MeCN. 
 

MeCN Catalyst ee 1 - ee (S)-Product (R)-Product Ratio
C-5 87.00% 13.00% 6.50% 93.50% 14.38
C-6 84.00% 16.00% 8.00% 92.00% 11.50

Solo Runs C-7 86.00% 14.00% 7.00% 93.00% 13.29
Product 11 C-8 91.00% 9.00% 4.50% 95.50% 21.22

C-9 87.00% 13.00% 6.50% 93.50% 14.38
(Benchmark) → C-1 92.00% 8.00% 4.00% 96.00% 24.00 krel

C-5 28.00% 72.00% 36.00% 64.00% 0.557
C-1 C-6 23.00% 77.00% 38.50% 61.50% 0.645

Competitions C-7 29.00% 71.00% 35.50% 64.50% 0.548
C-8 19.00% 81.00% 40.50% 59.50% 0.664
C-9 19.00% 81.00% 40.50% 59.50% 0.689
C-5 37.00% 63.00% 31.50% 68.50% 0.740
C-6 36.00% 64.00% 32.00% 68.00% 0.750

C-10 C-7 36.00% 64.00% 32.00% 68.00% 0.720
Competitions C-8 43.00% 57.00% 28.50% 71.50% 0.896

C-9 42.00% 58.00% 29.00% 71.00% 0.933
C-1 60.00% 40.00% 20.00% 80.00% 1.875

MeCN Catalyst ee 1 - ee (S)-Product (R)-Product Ratio
C-5 85.00% 15.00% 7.50% 92.50% 12.33
C-6 86.00% 14.00% 7.00% 93.00% 13.29

Solo Runs C-7 88.00% 12.00% 6.00% 94.00% 15.67
Product 11 C-8 87.00% 13.00% 6.50% 93.50% 14.38

C-9 88.00% 12.00% 6.00% 94.00% 15.67
(Benchmark) → C-1 91.00% 9.00% 4.50% 95.50% 21.22 krel

C-5 36.00% 64.00% 32.00% 68.00% 0.455
C-1 C-6 24.00% 76.00% 38.00% 62.00% 0.609

Competitions C-7 32.00% 68.00% 34.00% 66.00% 0.492
C-8 26.00% 74.00% 37.00% 63.00% 0.575
C-9 21.00% 79.00% 39.50% 60.50% 0.642
C-5 43.00% 57.00% 28.50% 71.50% 1.024
C-6 38.00% 62.00% 31.00% 69.00% 0.792

C-10 C-7 43.00% 57.00% 28.50% 71.50% 0.956
Competitions C-8 40.00% 60.00% 30.00% 70.00% 0.851

C-9 39.00% 61.00% 30.50% 69.50% 0.796
C-1 56.00% 44.00% 22.00% 78.00% 1.600
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Table S9. Third trial krel-values for the competition experiments of Product 11 where C-1 and C-
10 are benchmarking NHC catalysts in MeCN. 
 
 
 
 

 
Table S10. First trial krel-values for the competition experiments of Product 11 where C-1 and C-
10 are benchmarking NHC catalysts in PhCF3. 
 
 

MeCN Catalyst ee 1 - ee (S)-Product (R)-Product Ratio
C-5 82.00% 18.00% 9.00% 91.00% 10.11
C-6 89.00% 11.00% 5.50% 94.50% 17.18

Solo Runs C-7 82.00% 18.00% 9.00% 91.00% 10.11
Product 11 C-8 86.00% 14.00% 7.00% 93.00% 13.29

C-9 83.00% 17.00% 8.50% 91.50% 10.76
(Benchmark) → C-1 88.00% 12.00% 6.00% 94.00% 15.67 krel

C-5 23.00% 77.00% 38.50% 61.50% 0.619
C-1 C-6 25.00% 75.00% 37.50% 62.50% 0.553

Competitions C-7 27.00% 73.00% 36.50% 63.50% 0.560
C-8 18.00% 82.00% 41.00% 59.00% 0.673
C-9 16.00% 84.00% 42.00% 58.00% 0.727
C-5 33.00% 67.00% 33.50% 66.50% 0.673
C-6 32.00% 68.00% 34.00% 66.00% 0.561

C-10 C-7 30.00% 70.00% 35.00% 65.00% 0.577
Competitions C-8 45.00% 55.00% 27.50% 72.50% 1.097

C-9 44.00% 56.00% 28.00% 72.00% 1.128
C-1 55.00% 45.00% 22.50% 77.50% 1.667

PhCF3 Catalyst ee 1 - ee (S)-Product (R)-Product Ratio
C-5 89.00% 11.00% 5.50% 94.50% 17.18
C-6 86.00% 14.00% 7.00% 93.00% 13.29

Solo Runs C-7 89.00% 11.00% 5.50% 94.50% 17.18
Product 11 C-8 89.00% 11.00% 5.50% 94.50% 17.18

C-9 87.00% 13.00% 6.50% 93.50% 14.38
(Benchmark) → C-1 81.00% 19.00% 9.50% 90.50% 9.53 krel

C-5 37.00% 63.00% 31.50% 68.50% 0.349
C-1 C-6 24.00% 76.00% 38.00% 62.00% 0.518

Competitions C-7 43.00% 57.00% 28.50% 71.50% 0.288
C-8 61.00% 39.00% 19.50% 80.50% 0.133
C-9 45.00% 55.00% 27.50% 72.50% 0.273
C-5 44.00% 56.00% 28.00% 72.00% 0.978
C-6 50.00% 50.00% 25.00% 75.00% 1.389

C-10 C-7 40.00% 60.00% 30.00% 70.00% 0.816
Competitions C-8 32.00% 68.00% 34.00% 66.00% 0.561

C-9 38.00% 62.00% 31.00% 69.00% 0.776
C-1 66.00% 34.00% 17.00% 83.00% 4.398
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Table S11. Second trial krel-values for the competition experiments of Product 11 where C-1 and 
C-10 are benchmarking NHC catalysts in PhCF3. 
 
 
 
 

 
Table S12. Third trial krel-values for the competition experiments of Product 11 where C-1 and 
C-10 are benchmarking NHC catalysts in PhCF3. 
 
 
 
 

PhCF3 Catalyst ee 1 - ee (S)-Product (R)-Product Ratio
C-5 89.00% 11.00% 5.50% 94.50% 17.18
C-6 87.00% 13.00% 6.50% 93.50% 14.38

Solo Runs C-7 90.00% 10.00% 5.00% 95.00% 19.00
Product 11 C-8 90.00% 10.00% 5.00% 95.00% 19.00

C-9 88.00% 12.00% 6.00% 94.00% 15.67
(Benchmark) → C-1 80.00% 20.00% 10.00% 90.00% 9.00 krel

C-5 39.00% 61.00% 30.50% 69.50% 0.320
C-1 C-6 25.00% 75.00% 37.50% 62.50% 0.491

Competitions C-7 42.00% 58.00% 29.00% 71.00% 0.288
C-8 65.00% 35.00% 17.50% 82.50% 0.097
C-9 47.00% 53.00% 26.50% 73.50% 0.244
C-5 42.00% 58.00% 29.00% 71.00% 0.894
C-6 50.00% 50.00% 25.00% 75.00% 1.351

C-10 C-7 49.00% 51.00% 25.50% 74.50% 1.195
Competitions C-8 34.00% 66.00% 33.00% 67.00% 0.607

C-9 39.00% 61.00% 30.50% 69.50% 0.796
C-1 63.00% 37.00% 18.50% 81.50% 3.706

PhCF3 Catalyst ee 1 - ee (S)-Product (R)-Product Ratio
C-5 88.00% 12.00% 6.00% 94.00% 15.67
C-6 86.00% 14.00% 7.00% 93.00% 13.29

Solo Runs C-7 89.00% 11.00% 5.50% 94.50% 17.18
Product 11 C-8 86.00% 14.00% 7.00% 93.00% 13.29

C-9 88.00% 12.00% 6.00% 94.00% 15.67
(Benchmark) → C-1 81.00% 19.00% 9.50% 90.50% 9.53 krel

C-5 36.00% 64.00% 32.00% 68.00% 0.363
C-1 C-6 21.00% 79.00% 39.50% 60.50% 0.561

Competitions C-7 39.00% 61.00% 30.50% 69.50% 0.328
C-8 59.00% 41.00% 20.50% 79.50% 0.152
C-9 45.00% 55.00% 27.50% 72.50% 0.271
C-5 48.00% 52.00% 26.00% 74.00% 1.200
C-6 48.00% 52.00% 26.00% 74.00% 1.263

C-10 C-7 39.00% 61.00% 30.50% 69.50% 0.780
Competitions C-8 36.00% 64.00% 32.00% 68.00% 0.720

C-9 32.00% 68.00% 34.00% 66.00% 0.571
C-1 65.00% 35.00% 17.50% 82.50% 4.061
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Figure S3. krel-values for the competition experiments of Product 11 where C-10 is the 
benchmarking NHC catalyst in a variety of solvents. 
 
 
 
krel Values for Product 13 

 
Table S13. First trial krel-values for the competition experiments of Product 11 where C-1 and C-
10 are benchmarking NHC catalysts in toluene. 
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Toluene Catalyst ee 1 - ee (S)-Product (R)-Product Ratio
C-5 90.00% 10.00% 5.00% 95.00% 19.00
C-6 94.00% 6.00% 3.00% 97.00% 32.33

Solo Runs C-7 94.00% 6.00% 3.00% 97.00% 32.33
Product 13 C-8 96.00% 4.00% 2.00% 98.00% 49.00

C-9 95.00% 5.00% 2.50% 97.50% 39.00
(Benchmark) → C-1 95.00% 5.00% 2.50% 97.50% 39.00 krel

C-5 -13.00% 113.00% 56.50% 43.50% 1.403
C-1 C-6 -32.00% 132.00% 66.00% 34.00% 2.048

Competitions C-7 -10.00% 110.00% 55.00% 45.00% 1.333
C-8 8.00% 92.00% 46.00% 54.00% 0.837
C-9 22.00% 78.00% 39.00% 61.00% 0.624
C-5 27.00% 73.00% 36.50% 63.50% 0.429
C-6 29.00% 71.00% 35.50% 64.50% 0.446

C-10 C-7 25.00% 75.00% 37.50% 62.50% 0.362
Competitions C-8 17.00% 83.00% 41.50% 58.50% 0.215

C-9 13.00% 87.00% 43.50% 56.50% 0.159
C-1 18.00% 82.00% 41.00% 59.00% 0.234
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Table S14. Second trial krel-values for the competition experiments of Product 11 where C-1 and 
C-10 are benchmarking NHC catalysts in toluene. 
 
 
 
 

 
Table S15. Third trial krel-values for the competition experiments of Product 11 where C-1 and 
C-10 are benchmarking NHC catalysts in toluene. 
 
 
 
 

Toluene Catalyst ee 1 - ee (S)-Product (R)-Product Ratio
C-5 91.00% 9.00% 4.50% 95.50% 21.22
C-6 94.00% 6.00% 3.00% 97.00% 32.33

Solo Runs C-7 94.00% 6.00% 3.00% 97.00% 32.33
Product 13 C-8 95.00% 5.00% 2.50% 97.50% 39.00

C-9 96.00% 4.00% 2.00% 98.00% 49.00
(Benchmark) → C-1 96.00% 4.00% 2.00% 98.00% 49.00 krel

C-5 -14.00% 114.00% 57.00% 43.00% 1.429
C-1 C-6 -30.00% 130.00% 65.00% 35.00% 1.969

Competitions C-7 -14.00% 114.00% 57.00% 43.00% 1.375
C-8 12.00% 88.00% 44.00% 56.00% 0.785
C-9 30.00% 70.00% 35.00% 65.00% 0.524
C-5 27.00% 73.00% 36.50% 63.50% 0.422
C-6 31.00% 69.00% 34.50% 65.50% 0.492

C-10 C-7 27.00% 73.00% 36.50% 63.50% 0.403
Competitions C-8 19.00% 81.00% 40.50% 59.50% 0.250

C-9 14.00% 86.00% 43.00% 57.00% 0.173
C-1 19.00% 81.00% 40.50% 59.50% 0.250

Toluene Catalyst ee 1 - ee (S)-Product (R)-Product Ratio
C-5 90.00% 10.00% 5.00% 95.00% 19.00
C-6 92.00% 8.00% 4.00% 96.00% 24.00

Solo Runs C-7 93.00% 7.00% 3.50% 96.50% 27.57
Product 13 C-8 96.00% 4.00% 2.00% 98.00% 49.00

C-9 95.00% 5.00% 2.50% 97.50% 39.00
(Benchmark) → C-1 93.00% 7.00% 3.50% 96.50% 27.57 krel

C-5 -10.00% 110.00% 55.00% 45.00% 1.287
C-1 C-6 -33.00% 133.00% 66.50% 33.50% 2.136

Competitions C-7 -9.00% 109.00% 54.50% 45.50% 1.214
C-8 10.00% 90.00% 45.00% 55.00% 0.783
C-9 17.00% 83.00% 41.50% 58.50% 0.679
C-5 22.00% 78.00% 39.00% 61.00% 0.385
C-6 28.00% 72.00% 36.00% 64.00% 0.438

C-10 C-7 24.00% 76.00% 38.00% 62.00% 0.348
Competitions C-8 14.00% 86.00% 43.00% 57.00% 0.215

C-9 15.00% 85.00% 42.50% 57.50% 0.188
C-1 16.00% 84.00% 42.00% 58.00% 0.208
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Table S16. First trial krel-values for the competition experiments of Product 11 where C-1 and C-
10 are benchmarking NHC catalysts in THF. 
 
 
 
 

 
Table S17. Second trial krel-values for the competition experiments of Product 11 where C-1 and 
C-10 are benchmarking NHC catalysts in THF. 
 

THF Catalyst ee 1 - ee (S)-Product (R)-Product Ratio
C-5 94.00% 6.00% 3.00% 97.00% 32.33
C-6 95.00% 5.00% 2.50% 97.50% 39.00

Solo Runs C-7 94.00% 6.00% 3.00% 97.00% 32.33
Product 13 C-8 85.00% 15.00% 7.50% 92.50% 12.33

C-9 55.00% 45.00% 22.50% 77.50% 3.44
(Benchmark) → C-1 97.00% 3.00% 1.50% 98.50% 65.67 krel

C-5 30.00% 70.00% 35.00% 65.00% 0.540
C-1 C-6 2.00% 98.00% 49.00% 51.00% 0.979

Competitions C-7 17.00% 83.00% 41.50% 58.50% 0.721
C-8 52.00% 48.00% 24.00% 76.00% 0.328
C-9 41.00% 59.00% 29.50% 70.50% 0.584
C-5 35.00% 65.00% 32.50% 67.50% 0.593
C-6 46.00% 54.00% 27.00% 73.00%   0.939

C-10 C-7 39.00% 61.00% 30.50% 69.50% 0.709
Competitions C-8 28.00% 72.00% 36.00% 64.00% 0.491

C-9 21.00% 79.00% 39.50% 60.50% 0.618
C-1 61.00% 39.00% 19.50% 80.50% 1.694

THF Catalyst ee 1 - ee (S)-Product (R)-Product Ratio
C-5 96.00% 4.00% 2.00% 98.00% 49.00
C-6 93.00% 7.00% 3.50% 96.50% 27.57

Solo Runs C-7 95.00% 5.00% 2.50% 97.50% 39.00
Product 13 C-8 88.00% 12.00% 6.00% 94.00% 15.67

C-9 63.00% 37.00% 18.50% 81.50% 4.41
(Benchmark) → C-1 96.00% 4.00% 2.00% 98.00% 49.00 krel

C-5 34.00% 66.00% 33.00% 67.00% 0.477
C-1 C-6 7.00% 93.00% 46.50% 53.50% 0.890

Competitions C-7 15.00% 85.00% 42.50% 57.50% 0.736
C-8 48.00% 52.00% 26.00% 74.00% 0.353
C-9 50.00% 50.00% 25.00% 75.00% 0.407
C-5 37.00% 63.00% 31.50% 68.50% 0.627
C-6 42.00% 58.00% 29.00% 71.00%   0.824

C-10 C-7 42.00% 58.00% 29.00% 71.00% 0.792
Competitions C-8 30.00% 70.00% 35.00% 65.00% 0.517

C-9 26.00% 74.00% 37.00% 63.00% 0.702
C-1 56.00% 44.00% 22.00% 78.00% 1.400
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Table S18. Third trial krel-values for the competition experiments of Product 11 where C-1 and 
C-10 are benchmarking NHC catalysts in THF. 
 
 
 

 
Table S19. First trial krel-values for the competition experiments of Product 11 where C-1 and C-
10 are benchmarking NHC catalysts in MeCN.  
 

THF Catalyst ee 1 - ee (S)-Product (R)-Product Ratio
C-5 95.00% 5.00% 2.50% 97.50% 39.00
C-6 95.00% 5.00% 2.50% 97.50% 39.00

Solo Runs C-7 94.00% 6.00% 3.00% 97.00% 32.33
Product 13 C-8 82.00% 18.00% 9.00% 91.00% 10.11

C-9 51.00% 49.00% 24.50% 75.50% 3.08
(Benchmark) → C-1 96.00% 4.00% 2.00% 98.00% 49.00 krel

C-5 32.00% 68.00% 34.00% 66.00% 0.504
C-1 C-6 -3.00% 103.00% 51.50% 48.50% 1.076

Competitions C-7 10.00% 90.00% 45.00% 55.00% 0.827
C-8 51.00% 49.00% 24.50% 75.50% 0.338
C-9 39.00% 61.00% 30.50% 69.50% 0.633
C-5 35.00% 65.00% 32.50% 67.50% 0.583
C-6 45.00% 55.00% 27.50% 72.50%   0.900

C-10 C-7 40.00% 60.00% 30.00% 70.00% 0.741
Competitions C-8 28.00% 72.00% 36.00% 64.00% 0.519

C-9 24.00% 76.00% 38.00% 62.00% 0.890
C-1 63.00% 37.00% 18.50% 81.50% 1.909

MeCN Catalyst ee 1 - ee (S)-Product (R)-Product Ratio
C-5 92.00% 8.00% 4.00% 96.00% 24.00
C-6 89.00% 11.00% 5.50% 94.50% 17.18

Solo Runs C-7 90.00% 10.00% 5.00% 95.00% 19.00
Product 13 C-8 93.00% 7.00% 3.50% 96.50% 27.57

C-9 90.00% 10.00% 5.00% 95.00% 19.00
(Benchmark) → C-1 93.00% 7.00% 3.50% 96.50% 27.57 krel

C-5 2.00% 98.00% 49.00% 51.00% 0.968
C-1 C-6 7.00% 93.00% 46.50% 53.50% 0.896

Competitions C-7 7.00% 93.00% 46.50% 53.50% 0.887
C-8 22.00% 78.00% 39.00% 61.00% 0.617
C-9 20.00% 80.00% 40.00% 60.00% 0.664
C-5 20.00% 80.00% 40.00% 60.00% 0.278
C-6 19.00% 81.00% 40.50% 59.50% 0.271

C-10 C-7 19.00% 81.00% 40.50% 59.50% 0.268
Competitions C-8 15.00% 85.00% 42.50% 57.50% 0.192

C-9 15.00% 85.00% 42.50% 57.50% 0.200
C-1 21.00% 79.00% 39.50% 60.50% 0.292
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Table S20. Second trial krel-values for the competition experiments of Product 11 where C-1 and 
C-10 are benchmarking NHC catalysts in MeCN. 
 
 
 
 

 
Table S21. Third trial krel-values for the competition experiments of Product 11 where C-1 and 
C-10 are benchmarking NHC catalysts in MeCN. 
 
 
 

MeCN Catalyst ee 1 - ee (S)-Product (R)-Product Ratio
C-5 87.00% 13.00% 6.50% 93.50% 14.38
C-6 85.00% 15.00% 7.50% 92.50% 12.33

Solo Runs C-7 91.00% 9.00% 4.50% 95.50% 21.22
Product 13 C-8 91.00% 9.00% 4.50% 95.50% 21.22

C-9 85.00% 15.00% 7.50% 92.50% 12.33
(Benchmark) → C-1 91.00% 9.00% 4.50% 95.50% 21.22 krel

C-5 4.00% 96.00% 48.00% 52.00% 0.956
C-1 C-6 2.00% 98.00% 49.00% 51.00% 1.023

Competitions C-7 10.00% 90.00% 45.00% 55.00% 0.802
C-8 13.00% 87.00% 43.50% 56.50% 0.750
C-9 12.00% 88.00% 44.00% 56.00% 0.814
C-5 14.00% 86.00% 43.00% 57.00% 0.192
C-6 9.00% 91.00% 45.50% 54.50% 0.118

C-10 C-7 27.00% 73.00% 36.50% 63.50% 0.422
Competitions C-8 18.00% 82.00% 41.00% 59.00% 0.247

C-9 7.00% 93.00% 46.50% 53.50% 0.090
C-1 21.00% 79.00% 39.50% 60.50% 0.300

MeCN Catalyst ee 1 - ee (S)-Product (R)-Product Ratio
C-5 89.00% 11.00% 5.50% 94.50% 17.18
C-6 90.00% 10.00% 5.00% 95.00% 19.00

Solo Runs C-7 88.00% 12.00% 6.00% 94.00% 15.67
Product 13 C-8 90.00% 10.00% 5.00% 95.00% 19.00

C-9 86.00% 14.00% 7.00% 93.00% 13.29
(Benchmark) → C-1 89.00% 11.00% 5.50% 94.50% 17.18 krel

C-5 -5.00% 105.00% 52.50% 47.50% 1.119
C-1 C-6 9.00% 91.00% 45.50% 54.50% 0.808

Competitions C-7 -1.00% 101.00% 50.50% 49.50% 1.034
C-8 23.00% 77.00% 38.50% 61.50% 0.584
C-9 22.00% 78.00% 39.00% 61.00% 0.620
C-5 22.00% 78.00% 39.00% 61.00% 0.328
C-6 20.00% 80.00% 40.00% 60.00% 0.286

C-10 C-7 14.00% 86.00% 43.00% 57.00% 0.189
Competitions C-8 25.00% 75.00% 37.50% 62.50% 0.385

C-9 19.00% 81.00% 40.50% 59.50% 0.284
C-1 26.00% 74.00% 37.00% 63.00% 0.413
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Table S22. First trial krel-values for the competition experiments of Product 11 where C-1 and C-
10 are benchmarking NHC catalysts in PhCF3.  
 
 
 
 

 
Table S23. Second trial krel-values for the competition experiments of Product 11 where C-1 and 
C-10 are benchmarking NHC catalysts in PhCF3.  
 
 
 
 
 

PhCF3 Catalyst ee 1 - ee (S)-Product (R)-Product Ratio
C-5 91.00% 9.00% 4.50% 95.50% 21.22
C-6 90.00% 10.00% 5.00% 95.00% 19.00

Solo Runs C-7 92.00% 8.00% 4.00% 96.00% 24.00
Product 13 C-8 94.00% 6.00% 3.00% 97.00% 32.33

C-9 94.00% 6.00% 3.00% 97.00% 32.33
(Benchmark) → C-1 88.00% 12.00% 6.00% 94.00% 15.67 krel

C-5 -13.00% 113.00% 56.50% 43.50% 1.295
C-1 C-6 -41.00% 141.00% 70.50% 29.50% 2.633

Competitions C-7 -45.00% 145.00% 72.50% 27.50% 2.83
C-8 -4.00% 104.00% 52.00% 48.00% 1.022
C-9 1.00% 99.00% 49.50% 50.50% 0.916
C-5 30.00% 70.00% 35.00% 65.00% 0.492
C-6 31.00% 69.00% 34.50% 65.50% 0.525

C-10 C-7 35.00% 65.00% 32.50% 67.50% 0.614
Competitions C-8 26.00% 74.00% 37.00% 63.00% 0.382

C-9 24.00% 76.00% 38.00% 62.00% 0.343
C-1 24.00% 76.00% 38.00% 62.00% 0.375

PhCF3 Catalyst ee 1 - ee (S)-Product (R)-Product Ratio
C-5 92.00% 8.00% 4.00% 96.00% 24.00
C-6 91.00% 9.00% 4.50% 95.50% 21.22

Solo Runs C-7 92.00% 8.00% 4.00% 96.00% 24.00
Product 13 C-8 96.00% 4.00% 2.00% 98.00% 49.00

C-9 96.00% 4.00% 2.00% 98.00% 49.00
(Benchmark) → C-1 90.00% 10.00% 5.00% 95.00% 19.00 krel

C-5 -16.00% 116.00% 58.00% 42.00% 1.395
C-1 C-6 -38.00% 138.00% 69.00% 31.00% 2.415

Competitions C-7 -40.00% 140.00% 70.00% 30.00% 2.500
C-8 -8.00% 108.00% 54.00% 46.00% 1.114
C-9 4.00% 96.00% 48.00% 52.00% 0.860
C-5 33.00% 67.00% 33.50% 66.50% 0.559
C-6 28.00% 72.00% 36.00% 64.00% 0.444

C-10 C-7 37.00% 63.00% 31.50% 68.50% 0.673
Competitions C-8 27.00% 73.00% 36.50% 63.50% 0.391

C-9 28.00% 72.00% 36.00% 64.00% 0.412
C-1 26.00% 74.00% 37.00% 63.00% 0.406
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Figure S4. krel-values for the competition experiments of Product 13 where C-10 is the 
benchmarking NHC catalyst in a variety of solvents. 
 
 

 
Table S5. krel-values for the competition experiments of Product 13 where C-1 is the 
benchmarking NHC catalyst in a variety of solvents. 
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krel Values for Product 16 

 
Table S24. First trial krel-values for the competition experiments of Product 16 where L-1 is the 
benchmarking ligand toluene. 
 
 
 
 

 
Table S25. Second trial krel-values for the competition experiments of Product 16 where L-1 is 
the benchmarking ligand toluene. 
 
 
 
 
 
 
 

Toluene Catalyst ee 1 - ee (S)-Product (R)-Product Ratio
L-2 77.00% 23.00% 11.50% 88.50% 7.70
L-3 87.00% 13.00% 6.50% 93.50% 14.38

Solo Runs L-4 93.00% 7.00% 3.50% 96.50% 27.57
Product 16 L-5 7.00% 93.00% 46.50% 53.50% 1.15

L-6 -9.00% 109.00% 54.50% 45.50% 0.83
L-7 81.00% 19.00% 9.50% 90.50% 9.53
L-8 90.00% 10.00% 5.00% 95.00% 19.00

(Benchmark) → L-1 96.00% 4.00% 2.00% 98.00% 49.00 krel
L-2 83.00% 17.00% 8.50% 91.50% 0.081
L-3 49.00% 51.00% 25.50% 74.50% 0.346

L-1 L-4 -36.00% 136.00% 68.00% 32.00% 2.316
Competitions L-5 69.00% 31.00% 15.50% 84.50% 0.355

L-6 80.00% 20.00% 10.00% 90.00% 0.226
L-7 10.00% 90.00% 45.00% 55.00% 0.945
L-8 -7.00% 107.00% 53.50% 46.50% 1.241

Toluene Catalyst ee 1 - ee (S)-Product (R)-Product Ratio
L-2 78.00% 22.00% 11.00% 89.00% 8.09
L-3 87.00% 13.00% 6.50% 93.50% 14.38

Solo Runs L-4 92.00% 8.00% 4.00% 96.00% 24.00
Product 16 L-5 9.00% 91.00% 45.50% 54.50% 1.20

L-6 -12.00% 112.00% 56.00% 44.00% 0.79
L-7 83.00% 17.00% 8.50% 91.50% 10.76
L-8 92.00% 8.00% 4.00% 96.00% 24.00

(Benchmark) → L-1 95.00% 5.00% 2.50% 97.50% 39.00 krel
L-2 85.00% 15.00% 7.50% 92.50% 0.061
L-3 52.00% 48.00% 24.00% 76.00% 0.309

L-1 L-4 -27.00% 127.00% 63.50% 36.50% 1.877
Competitions L-5 73.00% 27.00% 13.50% 86.50% 0.268

L-6 78.00% 22.00% 11.00% 89.00% 0.257
L-7 -2.00% 102.00% 51.00% 49.00% 1.198
L-8 -11.00% 111.00% 55.50% 44.50% 1.309
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