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Abstract— Discrete event simulation (DES) is usually used for 

design, analysis and evaluation of a manufacturing system. For 

human-centered manufacturing systems, which employ human 

workers as one of main sources for production, systems 

designers often ignore human effects in development and 

evaluation of human-centered manufacturing systems using 

DES methods. This is partially because of complexity in human 

behaviours and a lack of adequate functionalities of the 

existing DES tools that allow incorporation of human factors 

into considerations, which may have an impact on the system 

performance. These missing parameters of human 

performance in a manufacturing system need to be addressed 

ideally at the early design stage, and thus there is a desire for 

creating a methodology, which enables system designers 

incorporating human factors (parameters) into DES tools. This 

paper presents a framework in development of an integrated 

DES platform, which allows an input of the relevant human 

related parameters into a DES model providing a more 

comprehensive simulation output for decision-makings on 

system performance. 
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I.  INTRODUCTION  

Biomechanical models applied for providing an 
understanding of adverse human effects that may have 
negative implications on system performance [1]. But these 
models cannot provide a straightforward answer in terms of  
an overall impact on system performance of human centered 
manufacturing operations, which are measured in relation to 
product cycle time, throughput, utilization of individual 
human workers and so on [2]. 

Discrete event simulation (DES) is a modelling 
simulation technique, which is widely accepted as an aided 
tool for design and analysis of manufacturing systems. 
Previous studies showed that 46% of automotive 
manufacturers applied DES methods to support production 
planning [3, 4]. Key performance indicators, which are 
throughput, utilizations, space allocations, inventory levels 
and so on, can be investigated using the DES tools. In 
automotive assembly, for instance, human centred 
manufacturing operations are still predominant at many 
plants in which assembly performed by workers may account 
for up to 50% of the entire process [3]. Greasley & Owen [5] 

provided a latest review in modelling human behavior using 
the DES relating to human performance. Nevertheless, 
current DES tools have its own inadequacies in assessing 
human centered manufacturing activities in established DES 
models. In the existing DES tools, operators, who are 
designated to specific tasks or stations, are actually treated 
the same functionalities as such as machines. Boenzi et al. 
[6] suggested that aging ought to be integrated into DES 
tools for human centered system evaluations. Lassila et al. 
[7] studied a human centered assembly system by 
investigating utilization of resources (human and machines) 
leading to an increase in average lead-time from low worker 
utilizations and machine downtimes. In their systematic 
study Kolus et al. [8] explore the rationale linking human 
performance and quality output, observing the impacts of 
products design, process design and workstation design on 
the overall system performance.  Perez et al. [9] investigated 
muscular fatigue and recovery pattern integrating 
biomechanical model into DES. Digiesi, et al.  [10] 
examined learning and tiredness phenomena incorporating a 
model of worker behavior into a self-tailored DES tool and 
concluded that worker behavior has a significant impact on 
buffer levels and throughputs. Mason et al. [11] observed an 
overestimation of assembly line performance due to human 
behavior. Wang et al. [2] investigated the system variation 
due to influence of walking workers whose performance 
vary individually through a training process.   

This paper presents a study by establishing a human 
factor decision tool (namely AutoHmot), which is a user-
friendly platform developed using the Java language. 
AutoHmot allows human parameters (such as age and 
experience) as input into a DES tool. The study shows it can 
be an effective solution in evaluating effects of human 
factors on human centred performance of a manufacturing 
system.  

 

II. HUMAN FACTORS FOR MANUFACTURING SYSTEMS 

DESIGN AND EVALUATION 

The following notations are used 

 nT
: Time to produce 

thn unit 

 Q : Incompressible factor  

 N : 
thn unit 
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 G : Number of times similar operation is performed 

by an assembly operator 

 D : Maximum number of assembly units 

  
1k = Existing age in years 

 
:rmF
Remaining capacity in percentage after 38 

years old 

 2k
: Full capacity (100%) at 38 years old 

 rL
: Loss rate in percentage 

 : Assigned time to assemble first unit  

 ε  : Decline rate of worker performance  

 ω : standard time to complete a task regardless of 

the cumulative number of units produced 

 C: Learning index which determines the speed of 

learning occurring each time as the cumulative 

output increases, it is computed 

as
log( ) / log(2)R

where learning rate (R) is 

measured in percentage (0 ˂ R ˂ 1), e.g., 85% of 

learning rate R implies a reduction of 15% in cost 

of direct man labour hour needed to complete a 

subsequent unit.  

Experience can be defined as the knowledge or a skill to 

be gained through involvement of a specific task, event 

or subject. In a process of human centered assembly, 

working experience improved individual human 

performance through learning after repeatedly 

performing an assigned task until time spent on 

completion of this task stabilized. Performance 

improvement of an individual is often measured in terms 

of a reduction of job cycle time, which is the result of 

the learning process. Thus, the learning curve theory is 

expressed in equation (1) with the parameter Q (0 ≤ Q ≤ 

1), where if Q = zero, it indicates a task that is manually 

performed; if Q = one, it indicates a task that is 

predominantly executed by machines [6].  

 

A. Input data and analysis for simulation  

     To account for worker variation in simulation 
experiments, activity times are collected in a sample of 
observations, which is fitted into a statistical distribution 
with a goodness of fit test between observed data and fitted 
theoretical data. However, difficulty may exist in data 
collection due to paucity of data, either it is because the 
system does not exist or it is not possible to obtain the data. 
Therefore, the input data based on estimations may not be 
sufficiently reliable; also in many cases it is hard to estimate. 
Instead, a probability distribution based on theoretical 
examination is often considered [12]. In manual tasks, most 
studies suggested the gamma distribution as the pattern of 
modelling activity time [9, 13]. However, these distributions 

do not provide a favourable output. A goodness of fit 2X  
test is used to test actual worker time distributions against the 
log-norma, gamma and beta distributions [11].  

 

B. Age and Experience  

A study through a literature review indicated that effect 
of worker job experience and aging has the most significant 
impact on worker performance in terms of variations in task 
time and average production rate [14]. In the literature study, 
it also shows that individual performance may decline from 
the certain age due to the natural decline of physical and 
physiological functions in such as visual ability, 
musculoskeletal force, flexibility/motion capability, memory 
or concentration and thermoregulation. On the other hand, as 
worker’s age increases, it expects that the accumulation of 
experiences may also increase which also offset the decline 
of human abilities [15].  

 

1. Worker experience 

Definition of job experience is an issue of debate among 

scholars, some literature consider job experience as a 

function of time, which can be determined as the number of 

years spent on a job, organisation or position. Others 

described job experience as frequency or times an individual 

perform a particular task [16]. For this study, we define 

worker experience based on the cumulative number of 

similar tasks previously performed by the worker. In 

addition, assumed in this study that age of an assembly 

operator starts from the age of 20 years old and this operator 

will reach her/his full capacity at 38 years old. Workers are 

classified into three catogries based on levels of their 

experience: inexperiece worker who is a novice, 

experienced worker who has produced  more than 20 units 

and highly experienced worker who has produced more than 

40 units. Based on this hypothesis, time to produce   unit by 

inexperienced worker at full capacity gained using the 

learning theory suggested by Anzanello & Fogliatto [17]: 

    max1 C

nT Q Q N T   
 

                                            (1) 

Standard time to complete a task as required expressed as: 

maxT Q                                                                       (2) 

Time to produce 
thn  unit by experienced worker at full 

capacity taken as: 

    max1 C

nT Q Q G T   
 

                                      (3) 

2. Aging 

Aging leads to human physiological decline that has 

undisputable effects on individual performance [6]. 

human physical capacity (to correlate with their 

performance) start to deteriorate between 35 to 40 years 

old, this phenomena was observed by many studies 



through a literature review. in this study, assuming a 

worker at 38 years old will reach his/her full human 

capacity, thus human capacity decline is obtained using 

equation (4) [18, 19] : 

10.57 0.012rL k 
                                               (4) 

Thus, the remaining percentage of human capacity after a 

decline is determined by: 

 2 1 38rm rF k L k                                                          (5) 

To study the negative effects of human physiological 

decline and positive effects of experience on worker 

performance a learning model [17] and aging model [18,19] 

combined. Hence, time to produce 
thn  unit by Inexperience 

worker after the age of 38 years old is given as: 

 

   

       max max

100 100 0.57 0.012 38 0.01

1 1

n

C C

T K K

Q Q N T Q Q N T

        
 

       
             (6)                                          

And assembly time to produce  unit by experience 

worker after the age of 38 years old is express as: 

  

   

       max max

100 100 0.57 0.012 38 0.01

1 1

n

C C

T K K

Q Q G T Q Q G T

        
 

       
             (7)                                                                        

III. INCORPORATING HUMAN FACTORS INTO   DES TOOL  

In a manual assembly flow line, material move 
sequentially through the line for successive operations until 
last task is completed. In a DES model using the Enterprise 
Dynamics package, human operators treated as assembler as 
the same function as servers. However, in reality, human acts 
as a much complex system with their abilities, which are 
subject to human and many other factors [2]. Few studies 
were reported in the literature relating to human factors 
being considered in DES applications [2, 9, 13]. In these 
studies, human factors can be manipulated externally by a 
series of MS Excel worksheet containing key input/output 
data in terms of cognitive and physical elements for DES 
models. Thus, the possible and realistic assignment of 
selected assembly tasks for each worker can be quantified [2, 
9, 13].  

For this study, a human factor decision tool called 
AutoHmot created and used as an aid for manufacturing 
system designers and analysists to examine system 
performance by considering effects of some human factors. 
With this tool, assembly time associated with worker aging 
and job experience can be integrated into a DES model 
providing simulation results of human performance at an 

early design stage of a manufacturing process. Figure 1 
shows the AutoHmot graphical user interface developed 
using the java based JBuilder tool.  
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 Figure 1. AutoHmot user interface and solutions 

Figure 2 shows data obtained from AutoHmot, it indicates 

assembly time of a worker at full capaicty of 39 years old 

declines over the increasing number of assembled units this 

work completed. 
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Figure 2. Assembly time vs assembly units completed by a worker at full 

capacity of 38 years old 

 
 
Figure 3 illustrates mechanism of the integrated DES 

model interfaced with AutoHmot. Once the relevant 



information data are collected and entered into AutoHmot by 
users, assembly time will be computed. One of the benefits 
of this developed tool is that it requires minimum inputs 
from uses. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The data information required from AutoHmot include: 

1. Existing age of an assembly operator 
2. Experience level  of the tasks performed by 

assembly operator 
3. The cycle time in which time is assigned to 

assemble a unit 
4. The total number of assembly units that need to be 

completed 
 

IV. SIMULATION RESULTS 

For this study, a DES model of a human centered 
assembly line constructed with each workstation manned by 

a worker. In total, 240 units of product assembled. The 
literature study shows that individual performance of human 
workers usually approaches their full capacity at the age of  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

      38 years old. After this age, it may start to decline over 
the increasing age of workers [18]. Figure 4 shows the 
simulation result of assembly time of workers over the 
increase of age, it shows that assembly time for workers 
without prior experience increases by an average of 1% per 
year. While for the experienced workers, it decreases by an  

average of 1.28%, increase by 4.02% at the age of 40 
years old and increased by 28.36% at the age of 70 years old. 
For highly experienced workers, assembly time decreased by 
an average of 3.18% at age of 40 years old, increased by 
2.2% at the age of 45 years old, and increased by 27.1% at 
age of 70 years old.  
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Figure 3. Integration of human elements into a DES model 
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Figure 4. Decline rate (%) of assembly time over the increase of age  

 

V. CONCLUSIONS  

 The existing DES tools in the market do not sufficiently 
offer capabilities for system analysts to evaluate performance 
of manufacturing systems incorporating human factors. For a 
human centred assembly system, it may lead to a poor 
estimation in simulation results without considering effects 
of human factors [2]. The result from this study indicates that 
assembly time of workers increases over the increase of their 
age.  Also, assembly time is affected by levels of experience 
of assembly worker. The paper presents a framework of a 
user-friendly integrated DES tool that allows manufacturing 
system designers to examine the overall performance of a 
human centred system with considerations of effects of 
human factors (age and experience).  
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