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Abstract

Many applications, such as computer-aided design and game rendering, need to reproduce realistic material appearance in complex
light environment and different visual conditions. The authenticity of the three-dimensional object or the scene is heavily depended
on the representation and rendering of textures, where the Bidirectional Texture Function (BTF) is one of the most widely-used
texture models. In this paper, we proposed a neural network to learn the representation of the BTF data for predicting new texture
images under novel conditions. The proposed method was tested on a public BTF dataset and was shown to produce satisfactory
synthetic results.
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1. Introduction

Realistic visualization of materials and object surfaces is one of the major challenges in computer graphics. Tradi-
tionally, the micro-structure responsible for the reflectance behavior of material is simulated using relatively simple
BRDF models [1]. However, the BRDF model deals well with homogeneous materials. In the real world, many
surfaces are consisted of complex geometric structures, which introduce more complex optical characteristics such
as shadows, mutual reflections, whereas simple BRDF models cannot represent. To solve this problem, Dana et al.
[2] proposed the BTF model, which describes texture images in terms of positions, lighting and viewing directions.
Therefore, it is a 6D function:

F(x,y, 6, 01,0y, ¢v) ey

where (x, y) denotes the pixel location, 6 is the elevation angle and ¢ is the azimuth angle, the subscript i and v specify
illumination and view respectively.
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The research on BTF focuses on data collection, compressed and modeling. Jiri Filip [3] proposed a BTF ac-
quisition setup based on a simple, economical mechanical gantry. Boon University [4] proposed a method to divert
industrial SVBRDF acquisition equipment to full BTF capture devices using sparse reconnaissance technology. In
BTF data compression, Apparent BRDF (ABRDF) [5] decomposition or dedicated reflection model was used [6] [7]
as well as various linear factorization techniques such as SVD, PCA [8] or tensor factorization [9]. BTF modeling
includes sampling methods, spatial enlargement of BTF reflectance models, statistical models and hybrid methods.
Guangzheng Fei [10] proposed a BTF generation algorithm based on the 3D surface mesh and BTF calculation on
fabric surfaces using Ray tracing. Michael [11] proposed a method for creating comprehensive training samples for
material classification. They use synthetic BTF data to overcome the time-consuming problem in manual acquisition
and annotation. There is few relevant research on BTF data generation using deep neural networks.

The Convolutional Neural Network (CNN) has shown great superiority in the latest studies [12] [13]. Goodfellow
et al. proposed a generative adversarial framework (GAN) [14] and showed excellent results in image generation tasks.
To generate more realistic images, Wang factorized the image generation process and proposed a joint model consist-
ing of style and structure generative adversarial networks [15]. It is a promising practice to exploit joint convolutional
neural networks and adversarial training schemes for generating high-quality images. Deep Convolutional Generative
Adpversarial Networks (DCGAN) [16] is a better improvement of GAN. It dramatically improves the stability of GAN
training and the quality of the results.

In this paper we proposed a deep convolutional generative adversarial network (DCGAN) to learn the appearance of
BTF. Our model combined the existing Conditional Generation Adversarial Network (CGAN) [17] and the perception
driven texture generation model (PDTG) [18]. It demonstrates the ability to learn BTF data under various illumination
and viewing directions. The model can synthesize new BTF images given novel illumination and viewing directions.

2. BTF data generation

In this section, we first introduce the architecture of the proposed model for BTF data-driven generation. Then we
provide details on the network design and initialization.
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Fig. 1. An example of light and camera locations above the sample during the measurement UBO 2003 Dataset [19].

2.1. BTF Data Set

We used UBO 2003 BTF Dataset [19]. In this dataset, each sample was captured at pre-defined azimuth and
elevation angles for illumination and viewing directions, as shown in Fig.1. An angular sampling of these BTF mea-
surements covers a whole hemisphere uniformly above the sample. The 81 illumination/view directions result in 6561
images for one sample.

In our experiment, we selected three materials from UBO2003 Datasets [19]. Each image is labeled by a vector
of five elements: viewing direction, illumination direction and material category. The direction is represented by the
elevation angle and the azimuth angle. In detail, the direction categories are defined as:

6; : 0°,15°,30°,45°,60°,75°
6, : 0°,15°,30°,45°,60°,75°
@; : Variety of direction between 0° and 360°
¢y : Variety of direction between 0° and 360°
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e Material category (a): 10,20,30 (10 represents the material of pulli, 20 represents the material of corduroy, 30
represents the material of wool)

2.2. Structure of the Designed Network Model

We designed a deep joint model by using the light direction, observation direction and material type as conditional
constraints. After the feature extraction and combination, we make predictions under the new illumination and viewing
directions. SSIM [21] was used to evaluate results. As shown in Fig.2, the overall architecture includes two parts:
the generative model and the discriminant model. The generative model is responsible for conditional BTF data
texture generation,and the discriminant model is used to distinguish the generated BTF data texture from the training
sample. In the discriminant model, direction features are mapped to a 100-dimensional space using the full connection
layer. The two parts play an important role in judging whether a sample pair conforms to the true joint probability
distribution. (see Fig.3.) We need the discriminator to figure out the union distribution of the condition and samples,
and we use the conditional label information to constrain the generator which generate desired BTF data. We use G,
D to represent the generative and discriminant model.
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Fig. 2. Network structure diagram of a model for the generative and the discriminant

Then the loss is constrained by D, the definition is:

dioss = =3 Z(mi In(D(x;, yi)) + (1 = my) In(1 = D(x;, y;))) @
i=1

where x; represents a training example, m;is one or zero, y; is the corresponding feature vector, and » is the number of
training examples. The quadratic loss for 4 is defined as:

1 < )
hioss = 5.~ ;my» - x) 3
where f(y;) is estimated value and x; is target value. The loss of G is constrained by D and H:
8loss = Migss T @ * Ploss (€]
Migss = =4 3 I(DG i, 2), 31) )
i=1
Ploss = ﬁ Z(f(yt’ Z) — xi)2 (6)
i=1

Where « is a tradeoff parameter, z; is a random noise vector, G and D are trained in an adversarial scheme. H is another
loss function, In this manner, the discriminator makes the generator produce realistic BTF data textures.

2.3. Network Design Details
To emphasize the importance of the features of the BTF data under illumination and view direction for texture

generation, we stretch the feature vector to 600 dimensions via a fully connected layer. The random noise vector is
uniformly drawn from a 200-dimensional space, ranging from -1 to 1. The 200 dimensions random noise vector can
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be significantly varied to generate diverse textures given certain illumination and views information. If we change
each aspect of the random noise vector with a step of 0.1, we can obtain different vectors. Let z represent the random
variable. Then its variance is Var[z] = 5°°° The features vectors of obtained illumination and observation direction
are scaled between -0.9 and 0.9. We use the following equation for scaling:

71) = min(max(h — E(h))/o(h),-3,3) % 0.3 @)

The purpose is to facilitate data processing and accelerate convergence. In this work, we set up a vector of 800
dimensions after data processing. Note that the variance of the random noise is three times larger than that of the
stretched feature vectors. We tried to fuse kernels of different size to generate realistic textures with more details and
global information, and found the 5 = 5 kernel for convolution or transposed convolution produces better results.

2.4. Training

The architecture was trained by learning its weights using backpropagation with the training examples from the
UBO2003 Datasets [19]. The dataset was randomly divided into a training set and a test set. We randomly select
80% of the data set as a training set. In our model, the generative model and the discriminant model are alternately
optimized. After each optimization of the discriminant model, the generative model is optimized twice in succession.
Then, we choose the ADAM [20] method of optimization. The tradeoff parameter was set as 10. Finally, we ran
100000 optimization iterations. The training process is illustrated in Fig.3
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0.000 20 4000 5000k 80.00 000 2000 000k 60.00 80,00k

(a) is the generative model training loss curve (b) is the discriminant model training loss.

Fig. 3. Training loss curves of the designed model.

3. Experiments
3.1. Quantitative Evaluation

We decided to use the structural similarity (SSIM) [21] to evaluate results. Table.1 shows the result of evaluation
method for the generated data. The SSIM is shown in Table.1. We compute the SSIM as suggested by Wang [21]
while taking the mean value over all pixel values, as follows:

SSIM(x,y) = [1(x, »)]"[e(x, )P .[5(x, )] ®)

While I is denoting the luminance, c is the contrast and s is a structural term. The SSIM covers values from -1 to 1,
while a value of 1 describes two identical images. x and y are two image signals. In order to simplify the expression,
we set @ = 8 =y = 1 in this paper. People like to compare with the Variational Auto-encoder (VAE) [22] and GAN
about image generation. We used CVAE to compare with our method. The results are shown in the following Table.1.
The selection of training set in CVAE is consistent with our method. The values in the table indicate that the learning
ability of different materials is different in the same model. Because the test set contains a lot of data and the values
under each direction of the predicted material are different. We got lots of SSIM, and we can only take the average as
a reference.

The Variational Auto-encoder (VAE) is an important generative model that was proposed by Diederik P. Kingma
and Max Welling in 2013 [22] [23]. VAE is easier to train and has explicit distribution assumptions (Gaussian
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Table 1. SSIM evaluation Table

Pulli Corduroy Wool
CVAE 0.1052 0.2078 0.2645
Our method 0.3805 0.3104 0.4281

distributions) for explicit representation and observation, while our method is better able to capture the distribution
of observations without any observation of the distribution. So we decided to make a comparative experiment on the
method of adopting CVAE and our method. The predicting result and the value of the SSIM are shown in the Table.2.
Images in the same row have the same direction feature. The experimental results show that our method has better
performance in generating BTF data.

a.CVAE (SSIM=0.1888) b. our method(SSIM=0.6085) c. ground truth

Fig. 4. Zoom in on the generated images in Table 2 and compare their appearance textures.

We selected an example to enlarge in Table.2 (45 60 45 120 a=30), and its result is shown in Fig.4. We found
that our method is better than the CVAE. The result of CVAE is fuzzy and the texture’s appearance is different from
ground truth. Its color is deeper due to the Gaussian distribution when encoding. But our method can generate clearer
images and learn better the texture’s appearance. Because our method can capture pixel correlations. We add H loss
function to the generated model. It can solve the joint probability distribution between texture images and feature
vectors, which is responsible for supervising the generation of texture image in accordance with the conditions of
the generated model. It only focuses on whether the generated image is real, regardless of whether it corresponds.
Therefore, our method is clearer and more vivid. But our method is also flawed, it only has a small range of changes
in resolution. The texture generated during darker or brighter light is not ideal, which makes the SSIM value of the
data is lower.

Table 2. Generating images based only the existing direction information and their value of SSIM.

Direction GT CVAE Our SSIM(CVAE) | SSIM(Our)
(a=30)45,60,45,120 0.1888 0.6085
(a=10)0,0,15,120 0.0538 0.3697
(a=30)15,240,45,260 0.2330 0.5732
(a=20)0,0,15,120 0.1782 0.3811
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3.2. Qualitative Evaluation

We designed three experiments to evaluate the qualitative performance of our predicted results. Firstly, we fed
directional feature vectors with different random noise to the generative model(Fig.6). It shows the appearance of the
BTF data under specific illumination and viewing direction. Secondly, we manually edited some directional feature
vectors and used them to generate textures(Fig.5). It should be emphasized that the new directional features were
based on between 0 and 360 degrees, whereas the others were kept the same as the existing ones. We only provide six
results due to the limited space. Finally, we manually edited randomly direction features to compare CVAE with our
method(Table.3). It shows that the CVAE cannot learn well for the appearance of the texture generation. Our method

can randomly generate a lot of data in new directions.

Fig. 5. BTF textures generated from new direction features. These images are generated from new perspectives without database. Images in the
same column have the same direction feature. Every column feature vectors are (a 0 35 60 245), (a 1545 120 60), (a 30 60 180 265 ), (a 45 70

30 120 ), (a 60 45 85 330 ). a is one of 10, 20 or 30

Fig. 6. BTF textures generated from existing feature vectors. Images in the same column have the same feature. The odd rows are ground truth, and
the even rows are predicted images. The direction feature vectors are (a 30 150 45 100 ), (a 30 270 60 234 ), (a 30 33075 90 ), (a 45 300 30 180

), (a60 18 15 60 ). a is one of 20 or 30.

Table 3. Image generation of new feature vectors that aren’t within the dataset.

Direction Wool (a=30)

Pulli (a=10)

Corduroy (a=20)

CVAE Our

20,75,120,256,a

65,120,240,324,a

85,200,60,75,a

CVAE

CVAE Our
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4. Conclusion

We proposed a model to predict BTF data under novel conditions. We used the illumination direction, viewing
direction and material type as conditional constraints to train the network. If we arbitrarily change a feature attribute,
the other related features will not change. By comparative experiments, we found that the CVAE is worse than our
method. Our method can generate clearer images and learn better about the appearance of the texture based on condi-
tional constraints. But there are still problems in the network, such as how to improve the accuracy of predicting data.
The CVAE can make the model to learn the distribution of materials with bright or dark light by Gaussian distribution.
In the future, we will try to combine the two methods to improve the accuracy of the model.
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