
Management of fault tolerance and traffic congestion

in cloud data center

Humphrey Emesowum
School of Computing, University of Portsmouth

Buckingham Building Lion Terrace PO1 3HE

Portsmouth, United Kingdom

humphrey.emesowum@port.ac.uk

Athanasios Paraskelidis

School of Computing, University of Portsmouth

Buckingham Building Lion Terrace PO1 3HE

Portsmouth, United Kingdom

athanasios.paraskelidis@port.ac.uk

Mo Adda
School of Computing, University of Portsmouth

Buckingham Building Lion Terrace PO1 3HE

Portsmouth, United Kingdom

mo.adda@port.ac.uk

Abstract— In this era of ubiquitous computing, coupled with the

emergence of big data and internet of things, there have been constant
changes in every aspect of cloud data center communications - its

network connectivity, data storage, data transfer, and architectural

design. As a result of this, the amount of data transferable, and the

frequency of data transfer have tremendously increased; causing
device failures and traffic congestions. To cope with these changes so

that performance can be sustained amidst device failures and traffic

congestion, the design of fault tolerant cloud data center is important.

A fault tolerant cloud data center network should be able to provide
alternative paths from source to destination during failures so that

there will not be abrupt fall in performance. But still with the ongoing

researches in this regard, there has not been a robust cloud data center

design that can boast of being suitable for alleviating the poor fault
tolerance of cloud data center. In this paper, we proposed the

improved versions of fat-tree interconnection hybrid designs derived

from the structure called Z-fat tree; to address the issues of fault

tolerance. Then, we compared these designs with single fat tree
architecture with the same amount of resources for client server

communication pattern such as Email application in a cloud data

center. The simulation results obtained based on failed switches and

links, show that our proposed hybrid designs outperformed the single

fat tree design as the inter arrival time of the packets reduces.

Keywords—Fault Tolerance; traffic congestion; Cloud Data

Center; Ubiquitous Computing; Big Data; and Internet of

Things.

I. INTRODUCTION

 The increase in the use of cloud data center became

inevitable because of the rapid growth of internet-based

applications, internet of things, big data transfer and analytics.

In line with this, there is an expected proportional increase in

the size and deployment of interconnection networks to

facilitate communications. Therefore, the performance of the

cloud data center must be considered in terms of its fault

tolerance, congestion control, low latency and reliability for

the effectual data communication and storage. In the same

vein, the authors of [1] stated that due to the economies of

scale in the trend of cloud computing owing to the growth in

internet communication, increase in traffics, emergence of

internet of things (IoT) and big data transfer; many researchers

now focus on robust ways to improve on the cloud data center

networks for better performance in terms of congestion

control, availability, fault tolerance and reliability. It is also

noteworthy that for general performance to increase in data

center network, fault tolerance is an essential and unavoidable

requirement; so that even during failure there will still be

available paths for packet transfer [2]. According to Liu et al.

in [3], data centers are prone to failures because of many

switches, servers, and links. In support of this assertion, [6]

also observed the unavoidable failures in data center

architecture, and suggest that network design should be in a

way that common failures be immediately recovered while

maintaining a graceful performance degradation amidst such

failures.

 To keep abreast with these challenges in data center

network, several network architectures were designed -Fat-

tree, DCell, BCube and VLE [4, 5]. Fat-tree has its origin from

the fixed topology, a subset of tree-based topology used in

designing data center networks [3]. Fat tree is said to be

widely used in designing data center networks [6, 7]; and has

been undergoing different stages of improvement by

researchers because of its significance, which is due to its

ability to improve fault tolerance and congestion control

because of its multi-paths from source to destination [4, 8, 9].

There is issue of scalability with the convectional fat tree,

which led to generalized fat tree that has switches of same

radix and speed port across the entire network; then the

emergence of extended generalized fat tree (XGFT) that

allows variable number of switch ports to be used at different

level of the network [4, 10, 11]. Having said that, our work is

based on a variant of fat tree called Z-node [12], which we

used in our previous projects to prove that our hybrid designs

(for link failures) are better than the single fat tree designs in

alleviating fault tolerance in cloud data center.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/161515199?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 Section II shows a review of related works; section III is

the description of models; section IV is the analysis of

simulation results; and finally, we drew conclusion based on

the received packets to ascertain the level of fault tolerance for

each cloud data center design.

II. RELATED WORKS

 In recent years, researchers have been working round the

clock to mitigate the technical challenges facing computer

communication and networking technology. In data center

network topologies, there have been some contributions to

work-around the challenges of faults tolerance and graceful

performance degradation amidst failures. However, some of

these contributions have their strengths and weaknesses. For

instance, the use of separation techniques to improve data

center network performance as proposed by [13], failed to

consider fault tolerance, which is the bedrock for effective and

reliable network performance. In their work, the authors made

sure that there is no coexistence of different traffic on same

transmission path. So that big data traffic will be transmitted

via a path different from that one used to transmit the ordinary

data traffic, thereby making the source to destination

transmission paths less congested. On the contrary, this means

that the failure of any path will lead to total disruption of

service. Nevertheless, with our proposed hybrids, (H2
+) and

reversed hybrid (H2
-) there exist alternative paths that

encourages graceful performance degradation more than the

single fat tree (Ƶ) during device failures in data center.

 The authors of [2] accepted the fact that fault tolerance is

essential for reliability and availability to increase in data

center [14], they therefore in their work, hosted a virtual data

center on a physical data center to handle the server failures.

They accomplished this by relocating the virtual machines that

were hosted in the failed server to another server, then

recovered fault and server utilization by 90%. Similarly, with

the introduction of load balancing scheme in the network

using clustering to allocate the virtual data center on its

physical host; they reduced the impact of server failures.

Insomuch that this work is aimed at improving fault tolerance

in data center, it is rather time consuming to relocate the

virtual machines during server failure and might cause poor

performance due to delay. However, in our work, our primary

concern is the commonest communication devices e.g.

switches and links. Our previous works, which are based on

only link failures [1, 14, 15], and this current work that is

based on both switches and links failures, show that our

proposed designs can improve the fault tolerance and

congestion of a cloud data center network in real time.

 The wavelength division multiplex links used in optical

interconnection is another interesting new trend in designing

data center. The Helios architecture as proposed by [16], is a

circuit-based data center network with two-level hybrid

consisting of either optical or electrical switches as core

switches for high bandwidth used between the top of rack

(ToR) switches; whereas the electrical packet switches are

used for fast all-to-all communication between pod switches.

Nevertheless, [17] identified the strength and weakness of

using optical interconnection in the design of data center

networks. The strength is that it provides high capacity, low

power, and low latency; while the weakness is the issues of

cost-effectiveness, scalability and fault tolerance that still pose

a threat to the architecture. Based on this claim by [16], our

proposed hybrid designs could be said to have an edge

because of its cost-effectiveness, scalability, minimal network

complexity, and fault tolerance.

 In conclusion, based on the outcome of the survey

carried out on fault tolerance properties by the authors of “On

Performance Evaluation of Fault-Tolerant Multistage

Interconnection Networks” as detailed in [18], shows that

adding more hardware to interconnection networks for its

improvement will not produce a better performance when

compared to the original network. To this end, our hybrid

designs could be appreciated because even with lesser number

of links, fault tolerance was exhibited by the amount of

received data when compared to the single fat tree with higher

number of links. Correspondingly, full bisection bandwidth,

deadlock freedom, and fault tolerance; which make fat tree a

dominant choice for the design of data center are all inherent

in our proposed designs.

III. MODEL DESCRIPTION

 The explanation of Fat tree topology are in several

literatures, e.g. [12, 19, 20, 21, 22] by the notation

FT(h;m1,m2..,mh;w1,w2..,wh), fat tree is being defined thus: h

represents switch levels of the tree numbered from 0 at the

bottom. The sequence ml, m2 represent the number of children

each switch at level1 and level2 has respectively; while wl, w2

represent the number of parent-switches a host and a switch at

level0 and level1 has respectively [14]. However, as explained

in our previous works [1, 14, 15], the construction of the

variants of improved version of fat tree we use in comparing

the fault tolerance of cloud data center is derived from the

mathematical equations of switch level relationship, switch

connectivity, and port mappings (section III, subsections A, B,

and C). The level2 switches are connected to the clients with

full connectivity, likewise, the servers at level0 are connected

to level1 switches in each zone/subtree using a full

connectivity. The numbering of switches and its ports at every

level and zone are from left to right starting from zero. To

connect switch to switch in the case where there are no extra

links, is by connecting each lower level switch to the quotient

of the divisor (the greatest common divisor (gcd) of Rn+1 and

Rn,) and the dividend (Rn+1); which is Rn+1/gcd(Rn+1, Rn). But,

where extra links are used in the connection, we deploy the

pattern used for Z-Fat tree by the authors of [12], (see Fig 1 to

7). The Z-Fat tree describes the number of root nodes per zone

in its semantics and adds a degree of connectivity as Ƶ (h; z1,

z2, …,zh; r1, r2, …,rh; g1, g2, …,gh). Where h refers to the

number of levels, zn represents the number of zones at level n,

rn is the number of root nodes within each of the zones zn+1,

and gn specifies the degree of explicit connectivity at level n

[Fig. 1].

Fig. 1: Sample of Labelling showing positions of the notations used in

describing the topologies [14]

Therefore, for our single topology, Fig. 2 and 3,

Ƶ(2;4,6;4,8,1,4), the sequence r1 =4 and r2 =8 refers to the

number of root nodes inside each of the zones z2 and z3

respectively. The sequence g1=1 and g2=1 is the explicit

degree of connectivity, which indicates that there are extra

connections at level 2. For the Hybrid Fat tree: Fig. 4 and 5,

H2
+(2;6,4;2,8;1,1), the sequence r1 =2 and r2 =8 refers to the

number of root nodes inside each of the zones z2 and z3

respectively. But at levels 1 and 2, r1 and r2 are doubled 8links.

It implies that each level2 switch has 24 down-ports to be

mapped. Therefore, mapping level1 switch 0 in the first zone

of Z2 to level 2 switches is thus:

Xp+1= ((0\4) %6) * 4/4+ p;

 = (0 %6) * 1+ p,

 = 0+p;

And p ϵ{0, 1, …, Rn/gcd(Rn, Rn+1)-1).

It implies that p=0 and Xp+1 = 0. Therefore, level1 switch0 will
be mapped to ports 0 of each level2 switches.

A. IP Address Translation

 A network address translation setup that enables the servers

of the data center to communicate with the clients across the

internet. Detailed explanation is in our previous work [14].

Fig. 8: Mapping Internet Address to Data Center Labels. [14]

IV. ANALYSIS OF SIMULATION RESULTS

A. The Network Inventory of and Definitions

Table 1 is a summary of network inventory for the
simulation of Email application carried out on Riverbed, where
results of Received Packets were collected. A total of 24
servers and 32 switches were used across all topologies in all
scenarios. All the networks were simulated using 2
configuration utilities: Application Definition and Profile
Definition. [23] defined the Application definition as where the
usage parameters like time, duration and repeatability are
specified while the Profile definition is for describing the
activity pattern of a user of the application over a period. In this
paper, the client is where the profile definition is deployed, for
modelling the behaviour of a user, and acts as traffic source. It
represents the users over the internet retrieving information
from the servers(cloud). A constant simulation time of 15
minutes with packet size of 10,000000 bytes were used across
each design of all the three scenarios.

In scenario one, one client was used, and 5 switches were
failed; while for scenario two, two clients were used for the
simulation, with the same number of failed switches as in
scenario one. However, in scenario three, we used two clients
as was in scenario two but failed 5 switches and 6 links for the
simulations.

because it is a hybrid. The sequence g1=1 and g2=1,
indicates there are no extra connections. For the Reversed
Hybrid Fat tree: Fig. 6 and 7, H2

-(2;6,4;2,8;1,1), the topology is
divided into two parts-left and right (mirror image). So, the
sequence r1=2 and r2=8 refers to the number of root nodes
inside each of the zones z2 and z3 respectively. The sequence
g1=1 and g2=1, indicates that there are no extra connections.
These sequences stand for each side of the topology in reversed
form, thus it is called a reversed hybrid.

B. Switch Level Relationship

Rn+1 = R1+ Δ(n-1)

(I) [14]

Rn+1 representsnumber of switches at the upper level. R1

represents the number of switches at the first level

equal/greater than 2. Δ represents common difference between

any two levels. n represents switch level.

C. Switch Connectivity

Xn+1 = (Rn+1 ((xn\Rn) \Zn+1) + (xn%Rn) * Rn+1/gcd(Rn, Rn+1) + k) % Rn+1.

where k represents ϵ {0, 1, …, Rn+1/gcd(Rn , Rn+1)-1};

 (II) (Down-top connection) [12]
Xn = (Rn ((xn+1\Rn+1) \Zn) + (xn+1%Rn+1) * Rn/gcd(Rn+1, Rn) + k) % Rn.

where k represents ϵ {0, 1, …, Rn/gcd(Rn+1 , Rn)-1}

 (III) (Top-down connection) [12]
Xn+1 is switch sought after at the upper level. Rn+1 is the total
number of switches at the upper level. xn is level n switch
connecting to upper level switch at Xn+1. Rn is the total number
of switches on level n connecting to upper level switches at
Rn+1. Zn+1 is the number of subtrees/zones from upper level
n+1. gcd is an acronym for Greatest Common Divisor used to
get the exact number of Rn+1 switches that xn will connect to.
For example, connecting switch 0 at level2 to level1 switches
for top-down connection H2

- (Fig.6&7), using (III):

Xn = (8((0\2) \4) + (0%2) *4+k) %8= (0+0+k) %8

where k ϵ{0, 1, …, Rn/gcd(Rn+1, Rn)-1}.

 So that, k = 0,1,2,3.

Therefore, If k= 0, (0+ k(0)) %8 = 0%8 = 0;

If k= 1, (0+ k(1)) %8 =1%8 = 1;

 If k= 2, (0+ k(2)) %8 = 2%8 = 2;

If k= 3, (0+ k(3)) %8 = 3%8 = 3.

Also, switch0 inter-connecting the left-hand-side:

Xn= (2((0\2) \4) + (0%2) *1+k) %2

 = (0+0+k) %2

where k ϵ{0, 1, …, Rn/gcd(Rn, Rn+1)-1}.

 So that, k=0.

If k= 0, it implies (0+ k(0)) %2 = 0. Therefore, switch 0 at

level2 will connect to: 0,1,2,3 level1 switches at right-hand-

side; and switch 0 at the left-hand-side [15].

D. Port Mapping

Xp+1 = ((Xn\Rn) %Zn+1) *Rn/gcd(Rn, Rn+1)+p

 (IV) [13]

where p, set of switch ports to be mapped, and represented as:

p ϵ {0, 1, …, Rn/gcd(Rn, Rn+1)-1; Xp+1 represents switch ports

to be mapped at upper level. In Fig.2&3, at level 1, there are 6

zones for z2, with r1=4 in each and with one switch having

Table 1: Summary of Network Inventory

E. Comparing the Simulation Results

Table 2, 3 and 4 are the summary of the results of the
Received Email Packets as shown on Fig. 9, 10 and 11
respectively. Across all the networks in all scenarios, we failed
5 switches for each design during simulation; and extra 6 links
in each design of scenario three were failed. There are
different Inter Arrival Time of the packets in milliseconds for
each simulation as shown in the abovementioned tables. In
scenario one, when the Inter Arrival Time was set at 25
milliseconds, the average received Email packet for the
Reversed Hybrid FT with 192 links was 34.47
pkt/millisecond. At same 25 milliseconds, the Hybrid FT with
240 links was 34.61; while the Single FT with 296 links was
31.68 pkt/millisecond. Although the difference was not much,
but as the inter arrival time decreases, the difference in the
received packets became clearer between our proposed Hybrid
FT designs and the Single FT design. Take for instance at
0.195 milliseconds, the Hybrid with 240 links has the highest
average received packet of 4420.36 pkt/millisecond, followed
by 4408.16 pkt/millisecond for the Reversed Hybrid with 192
links, then 4040.68 pkt/millisecond for the single design (see
table 2). The difference in received packet per millisecond
between Hybrid FT design and Single design is 379.32, while
that of Reversed Hybrid FT design and the same Single FT
design is 367.48. This shows that our proposed hybrid designs
can tolerate fault more than the single design at high traffic.

 To confirm our results, we increased the number of clients

from one to two with the same number of failed switches, so

that there will be high volume of packets transmitted. In a like

manner as with the first scenario, at 25 milliseconds, the

results of the second scenario across the three designs are

almost the same value too, with just a slight difference.

However, as the time between each arrival of packet and the

next (inter arrival time) tends towards zero, our proposed

hybrid designs show significant margin of received packet

than the single design. Therefore, at inter arrival time of 0.951

milliseconds, the received Email packets are 8850.12

pkt/millisecond, 8821.02 pkt/millisecond, and 8091.22

pkt/milliseconds for Hybrid, Reversed Hybrid, and Single

designs respectively (as shown in table 3).

 To further prove that our hybrid designs outperform the

single fat tree design, we had to fail more 6 links in each

design of scenario three, thereby making it a total of 5

switches and 6 links failed. Based on this, the summary of the

results from fig. 11 as shown in table 4 shows that our

proposed hybrid designs exhibit fault tolerance and graceful

performance degradation. As the inter arrival time decreases

from 25 milliseconds towards 0.195 milliseconds, a very clear

difference in received email packets are noticed among the

three different designs. At the inter arrival time of 25

milliseconds, the Single FT has a received email packets of

52.85 pkt/milliseconds, the Reversed Hybrid FT has 63.13

pkt/milliseconds, and the Hybrid FT has 66.09

pkt/milliseconds. However, as the inter arrival time is being

decreased to the point of 0.195 milliseconds, the Single FT has

6799.44 pkt/milliseconds, the Reversed Hybrid FT has

8064.89 pkt/milliseconds, and the Hybrid FT has 8472.01

pkt/milliseconds. When these three scenarios are properly

looked at, especially the second and third scenarios with two

clients; one can deduce that our proposed designs are able to

tolerate failures.

Fig. 9: Received Email Packet for two Clients, and 5 failed switches.

Fig. 10: Received Email Packet for two Clients, and 5 failed switches.

Fig. 11: Received Email Packet for two Clients, 5 failed switches and 6 failed

links.

F. Tabular Summary of the Results of Received Email

Packets for all scenarios

 Table 2: Summary of the Results of Received Email Packets

for Scenarios one.

Table 3: Summary of the Results of Received Email Packets for

Scenarios two.

Table 4: Summary of the Results of Received Email Packets for

Scenarios two.

 CONCLUSION

 The differences in the received packets between our
proposed hybrid FT designs (H2

+ and H2
-), and the single

design (Ƶ) for the Email application show that our proposed
hybrids are a better choice to sustain fault tolerance in cloud
data center amidst high volume of data transmission, and
ranges of device failures. The fault tolerance capability
exhibited by our proposed hybrid designs shows that switch
and link failures in cloud data center could be managed in real
time through bespoke design while waiting for repair or
replacement. At healthy network, for all the scenarios, the
received email packet per millisecond are almost the same
value. But because more traffics are injected as the inter
arrival time decreases, the network became more congested.
The traffic congestion amidst failure of 5 switches and 6 links
became a litmus test to ascertain the fault tolerance and
robustness of these designs. Having said that, our proposed
hybrid designs have been able to prove this through their
sustained and better graceful performance degradation. This is
also a confirmation of our previous work in [14] where similar
experiments were carried out with a total failure of 80 links.
We therefore look forward to real-life implementation of our
proposal by industries.

REFERENCES

[1] H. Emesowum, A. Paraskelidis, and M. Adda. “Fault tolerance capability

of cloud data centers”, 2017 IEEE 13th International Conference on

Intelligent Computer Communication and Processing (ICCP 2017), pages

495 – 502.

[2] S.C. Joshi, & K.M. Sivalingam, 2013. On fault tolerance in data center
network virtualization architectures. 2013 IEEE International Conference on
Advanced Networks and Telecommunications Systems (ANTS), pp.1–6.

[3] Y. Liu, K.K. Muppala, & M. Veeraraghavan, 2014. A survey of data center
network architectures. , p.22pp.

[4] M. Al-Fares, A. Loukissas, and A. Vahdat. (2008). A scalable, commodity
data center network architecture. Proceedings of the ACM SIGCOMM 2008
Conference on Data Communication - SIGCOMM ’08, 63.

[5] M. Bradonji, B. Labs, & M. Hill. (2014). Scaling of Capacity and
Reliability in Data Center Networks Categories and Subject Descriptors, 2, 3–
5. Bilal, K., Khan, S., Zhang, L., & Li, H. (2013).

[6] C. Guo et al., 2009. BCube: A High Performance, Server-centric Network
Architecture for Modular Data Centers. Proceedings of the ACM SIGCOMM
2009 conference on Data communication, pp.63–74.

[7] A. Akella, T. Benson, B. Chandrasekaran, C. Huang, B. Maggs, & D.
Maltz, (2015). A universal approach to data center network design. Proc. of
16th Int. Conf. on Distributed Computing and Networking (ICDCN).

[8] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S.
Radhakrishnan, V. Subramanya, and A. Vahdat, “Portland: a scalable fault-
tolerant layer 2 data center network fabric,” ACM SIGCOMM Computer
Communication Review, vol. 39, no. 4, pp. 39–50, 2009.

[9] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic flow scheduling for data center networks,” in Proceedings
of the 7th USENIX conference on Networked systems design and
implementation. USENIX Association, 2010, p. 19.

[10] Y. Liu, J.K. Muppala, & M. Veeraraghavan, 2014. A survey of data center
network architectures., p.22pp.

[11] R.M. Niranjan et al. “Portland: a scalable fault-tolerant layer 2 data center
network fabric,” ACM SIGCOMM Computer Communication Review, vol. 39,
no. 4, pp. 39–50, 2009.

[12] M. Adda; A. Peratikou. Routing and Fault Tolerance in Z-Fat Tree. IEEE
Transactions on Parallel and Distributed Systems. Year: 2017, Volume: PP,
Issue: 99 Pages: 1 -1

[13] H. W. Park, I. Y. Yeo, J. R. Lee, & H. Jang, (2013). Study on Big Data
Center Traffic Management Based on the Separation of Large-Scale Data
Stream. 2013 Seventh International Conference on Innovative Mobile and
Internet Services in Ubiquitous Computing, 591–594.

[14] H. Emesowum, A. Paraskelidis, and M. Adda. "Fault Tolerance
Improvement for Cloud Data Center," Journal of Communications, vol. 12, no.
7, pp. 412-418, 2017.

[15] H. Emesowum, A. Paraskelidis, and M. Adda. “Fault Tolerance and
Graceful Performance Degradation on Cloud Data Center”, The 10th
International Conference on Computer Science and Information Technology,
ICCSIT 2017, Florence, Italy, in press.

[16] N. Farrington et al., “Helios: A Hybrid Electrical/OpticalSwitch
Architecture for Modular Data Centers,” Proc. ACM SIGCOMM ’10, 2010,
pp. 339–50

[17] E. For, (2013). Optical Interconnection Networks in Data Centers: Recent
Trends and Future Challenges, (Sept.), 39–45.

[18] F.O. Sem-Jacobsen et al., 2011. Dynamic fault tolerance in fat trees. IEEE
Transactions on Computers, 60(4), pp.508–525.

[19] Bogdanski, B., 2014. Optimized Routing for Fat-Tree Topologies. PhD
Thesis submitted for the degree of Philosophy Doctor Department of
Informatics Faculty of Mathematics and Natural Sciences University of Oslo
January 2014.

[20] A. Peratikou, 2014. An optimized and generalized node for fat tree classes.
PhD Thesis submitted for the degree of Doctor of Philosophy, Department of
Computer Science, Faculty of Technology. University of Portsmouth, UK.
April 2014.

[21] S.R. Ohring, M. Ibel, S.K. Das, and M.J. Kumar, 2002 “On generalized fat
trees,” in IPPS, Santa Barbara, CA, USA, pp. 37–44. ISBN: 0-8186-7074-6.

[22] E. Zahavi, I. Keslassy, & A. Kolodny, (2014). Quasi fat trees for HPC
clouds and their fault-resilient closed-form routing. Proceedings - 2014 IEEE
22nd Annual Symposium on High-Performance Interconnects, 41–48.

[23] OPNET Configuring Applications and Profiles: Optimum Network
Performance. Available online at: Network lab configuring applications

