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Abstract— In this era of ubiquitous computing, coupled with the 

emergence of big data and internet of things, there have been constant 
changes in every aspect of cloud data center communications - its 

network connectivity, data storage, data transfer, and architectural 

design. As a result of this, the amount of data transferable, and the 

frequency of data transfer have tremendously increased; causing 
device failures and traffic congestions. To cope with these changes so 

that performance can be sustained amidst device failures and traffic 

congestion, the design of fault tolerant cloud data center is important.  

A fault tolerant cloud data center network should be able to provide 
alternative paths from source to destination during failures so that 

there will not be abrupt fall in performance. But still with the ongoing 

researches in this regard, there has not been a robust cloud data center 

design that can boast of being suitable for alleviating the poor fault 
tolerance of cloud data center. In this paper, we proposed the 

improved versions of fat-tree interconnection hybrid designs derived 

from the structure called Z-fat tree; to address the issues of fault 

tolerance. Then, we compared these designs with single fat tree 
architecture with the same amount of resources for client server 

communication pattern such as Email application in a cloud data 

center. The simulation results obtained based on failed switches and 

links, show that our proposed hybrid designs outperformed the single 

fat tree design as the inter arrival time of the packets reduces. 

 

Keywords—Fault Tolerance; traffic congestion; Cloud Data 

Center; Ubiquitous Computing; Big Data; and Internet of 

Things. 

I. INTRODUCTION  

    The increase in the use of cloud data center became 

inevitable because of the rapid growth of internet-based 

applications, internet of things, big data transfer and analytics. 

In line with this, there is an expected proportional increase in 

the size and deployment of interconnection networks to 

facilitate communications. Therefore, the performance of the 

cloud data center must be considered in terms of its fault 

tolerance, congestion control, low latency and reliability for 

the effectual data communication and storage. In the same 

vein, the authors of [1] stated that due to the economies of 

scale in the trend of cloud computing owing to the growth in 

internet communication, increase in traffics, emergence of 

internet of things (IoT) and big data transfer; many researchers 

now focus on robust ways to improve on the cloud data center 

networks for better performance in terms of congestion 

control, availability, fault tolerance and reliability. It is also 

noteworthy that for general performance to increase in data 

center network, fault tolerance is an essential and unavoidable 

requirement; so that even during failure there will still be 

available paths for packet transfer [2]. According to Liu et al. 

in [3], data centers are prone to failures because of many 

switches, servers, and links. In support of this assertion, [6] 

also observed the unavoidable failures in data center 

architecture, and suggest that network design should be in a 

way that common failures be immediately recovered while 

maintaining a graceful performance degradation amidst such 

failures.  

 

     To keep abreast with these challenges in data center 

network, several network architectures were designed -Fat-

tree, DCell, BCube and VLE [4, 5]. Fat-tree has its origin from 

the fixed topology, a subset of tree-based topology used in 

designing data center networks [3]. Fat tree is said to be 

widely used in designing data center networks [6, 7]; and has 

been undergoing different stages of improvement by 

researchers because of its significance, which is due to its 

ability to improve fault tolerance and congestion control 

because of its multi-paths from source to destination [4, 8, 9]. 

There is issue of scalability with the convectional fat tree, 

which led to generalized fat tree that has switches of same 

radix and speed port across the entire network; then the 

emergence of extended generalized fat tree (XGFT) that 

allows variable number of switch ports to be used at different 

level of the network [4, 10, 11]. Having said that, our work is 

based on a variant of fat tree called Z-node [12], which we 

used in our previous projects to prove that our hybrid designs 

(for link failures) are better than the single fat tree designs in 

alleviating fault tolerance in cloud data center.    
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     Section II shows a review of related works; section III is 

the description of models; section IV is the analysis of 

simulation results; and finally, we drew conclusion based on 

the received packets to ascertain the level of fault tolerance for 

each cloud data center design. 

II. RELATED WORKS 

     In recent years, researchers have been working round the 

clock to mitigate the technical challenges facing computer 

communication and networking technology. In data center 

network topologies, there have been some contributions to 

work-around the challenges of faults tolerance and graceful 

performance degradation amidst failures. However, some of 

these contributions have their strengths and weaknesses. For 

instance, the use of separation techniques to improve data 

center network performance as proposed by [13], failed to 

consider fault tolerance, which is the bedrock for effective and 

reliable network performance. In their work, the authors made 

sure that there is no coexistence of different traffic on same 

transmission path. So that big data traffic will be transmitted 

via a path different from that one used to transmit the ordinary 

data traffic, thereby making the source to destination 

transmission paths less congested. On the contrary, this means 

that the failure of any path will lead to total disruption of 

service. Nevertheless, with our proposed hybrids, (H2
+) and 

reversed hybrid (H2
-) there exist alternative paths that 

encourages graceful performance degradation more than the 

single fat tree (Ƶ) during device failures in data center. 

        The authors of [2] accepted the fact that fault tolerance is 

essential for reliability and availability to increase in data 

center [14], they therefore in their work, hosted a virtual data 

center on a physical data center to handle the server failures. 

They accomplished this by relocating the virtual machines that 

were hosted in the failed server to another server, then 

recovered fault and server utilization by 90%. Similarly, with 

the introduction of load balancing scheme in the network 

using clustering to allocate the virtual data center on its 

physical host; they reduced the impact of server failures.  

Insomuch that this work is aimed at improving fault tolerance 

in data center, it is rather time consuming to relocate the 

virtual machines during server failure and might cause poor 

performance due to delay. However, in our work, our primary 

concern is the commonest communication devices e.g. 

switches and links. Our previous works, which are based on 

only link failures [1, 14, 15], and this current work that is 

based on both switches and links failures, show that our 

proposed designs can improve the fault tolerance and 

congestion of a cloud data center network in real time. 

        The wavelength division multiplex links used in optical 

interconnection is another interesting new trend in designing 

data center. The Helios architecture as proposed by [16], is a 

circuit-based data center network with two-level hybrid 

consisting of either optical or electrical switches as core 

switches for high bandwidth used between the top of rack 

(ToR) switches; whereas the electrical packet switches are 

used for fast all-to-all communication between pod switches. 

Nevertheless, [17] identified the strength and weakness of 

using optical interconnection in the design of data center 

networks. The strength is that it provides high capacity, low 

power, and low latency; while the weakness is the issues of 

cost-effectiveness, scalability and fault tolerance that still pose 

a threat to the architecture. Based on this claim by [16], our 

proposed hybrid designs could be said to have an edge 

because of its cost-effectiveness, scalability, minimal network 

complexity, and fault tolerance. 

         In conclusion, based on the outcome of the survey 

carried out on fault tolerance properties by the authors of “On 

Performance Evaluation of Fault-Tolerant Multistage 

Interconnection Networks” as detailed in [18], shows that 

adding more hardware to interconnection networks for its 

improvement will not produce a better performance when 

compared to the original network. To this end, our hybrid 

designs could be appreciated because even with lesser number 

of links, fault tolerance was exhibited by the amount of 

received data when compared to the single fat tree with higher 

number of links. Correspondingly, full bisection bandwidth, 

deadlock freedom, and fault tolerance; which make fat tree a 

dominant choice for the design of data center are all inherent 

in our proposed designs. 

III. MODEL DESCRIPTION 

    The explanation of Fat tree topology are in several 

literatures, e.g. [12, 19, 20, 21, 22] by the notation 

FT(h;m1,m2..,mh;w1,w2..,wh), fat tree is being defined thus: h 

represents switch levels of the tree numbered from 0 at the 

bottom. The sequence ml, m2 represent the number of children 

each switch at level1 and level2 has respectively; while wl, w2 

represent the number of parent-switches a host and a switch at 

level0 and level1 has respectively [14]. However, as explained 

in our previous works [1, 14, 15], the construction of the 

variants of improved version of fat tree we use in comparing 

the fault tolerance of cloud data center is derived from the 

mathematical equations of switch level relationship, switch 

connectivity, and port mappings (section III, subsections A, B, 

and C). The level2 switches are connected to the clients with 

full connectivity, likewise, the servers at level0 are connected 

to level1 switches in each zone/subtree using a full 

connectivity. The numbering of switches and its ports at every 

level and zone are from left to right starting from zero. To 

connect switch to switch in the case where there are no extra 

links, is by connecting each lower level switch to the quotient 

of the divisor (the greatest common divisor (gcd) of Rn+1 and 

Rn,) and the dividend (Rn+1); which is Rn+1/gcd(Rn+1, Rn). But, 

where extra links are used in the connection, we deploy the 

pattern used for Z-Fat tree by the authors of [12], (see Fig 1 to 

7). The Z-Fat tree describes the number of root nodes per zone 

in its semantics and adds a degree of connectivity as Ƶ (h; z1, 

z2, …,zh; r1, r2, …,rh; g1, g2, …,gh). Where h refers to the 

number of levels, zn represents the number of zones at level n, 

rn is the number of root nodes within each of the zones zn+1, 

and gn specifies the degree of explicit connectivity at level n 

[Fig. 1]. 



 

 

 

 

 

Fig. 1: Sample of Labelling showing positions of the notations used in 

describing the topologies [14] 
                                                                                                                                                          

Therefore, for our single topology, Fig. 2 and 3, 

Ƶ(2;4,6;4,8,1,4), the sequence r1 =4 and r2 =8 refers to the 

number of root nodes inside each of the zones z2 and z3 

respectively. The sequence g1=1 and g2=1 is the explicit 

degree of connectivity, which indicates that there are extra 

connections at level 2. For the Hybrid Fat tree: Fig. 4 and 5, 

H2
+(2;6,4;2,8;1,1), the sequence r1 =2 and r2 =8 refers to the 

number of root nodes inside each of the zones z2 and z3 

respectively. But at levels 1 and 2, r1 and r2 are doubled 8links. 

It implies that each level2 switch has 24 down-ports to be 

mapped. Therefore, mapping level1 switch 0 in the first zone 

of Z2 to level 2 switches is thus:  

Xp+1= ((0\4) %6) * 4/4+ p; 

                                    = (0 %6) * 1+ p,  

                                    = 0+p;  

And p ϵ{0, 1, …, Rn/gcd(Rn, Rn+1)-1). 

It implies that p=0 and Xp+1 = 0. Therefore, level1 switch0 will 
be mapped to ports 0 of each level2 switches. 

A. IP Address Translation 

    A network address translation setup that enables the servers 

of the data center to communicate with the clients across the 

internet. Detailed explanation is in our previous work [14]. 

 

Fig. 8: Mapping Internet Address to Data Center Labels. [14] 

IV. ANALYSIS OF SIMULATION RESULTS 

A. The Network Inventory of and Definitions 

Table 1 is a summary of network inventory for the 
simulation of Email application carried out on Riverbed, where 
results of Received Packets were collected. A total of 24 
servers and 32 switches were used across all topologies in all 
scenarios. All the networks were simulated using 2 
configuration utilities: Application Definition and Profile 
Definition. [23] defined the Application definition as where the 
usage parameters like time, duration and repeatability are 
specified while the Profile definition is for describing the 
activity pattern of a user of the application over a period. In this 
paper, the client is where the profile definition is deployed, for 
modelling the behaviour of a user, and acts as traffic source. It 
represents the users over the internet retrieving information 
from the servers(cloud). A constant simulation time of 15 
minutes with packet size of 10,000000 bytes were used across 
each design of all the three scenarios.  

In scenario one, one client was used, and 5 switches were 
failed; while for scenario two, two clients were used for the 
simulation, with the same number of failed switches as in 
scenario one. However, in scenario three, we used two clients 
as was in scenario two but failed 5 switches and 6 links for the 
simulations.  



because it is a hybrid. The sequence g1=1 and g2=1, 
indicates there are no extra connections. For the Reversed 
Hybrid Fat tree: Fig. 6 and 7, H2

-(2;6,4;2,8;1,1), the topology is 
divided into two parts-left and right (mirror image). So, the 
sequence r1=2 and r2=8 refers to the number of root nodes 
inside each of the zones z2 and z3 respectively. The sequence 
g1=1 and g2=1, indicates that there are no extra connections. 
These sequences stand for each side of the topology in reversed 
form, thus it is called a reversed hybrid. 

B. Switch Level Relationship  

Rn+1 = R1+ Δ(n-1)                                                                         

(I) [14] 

Rn+1 representsnumber of switches at the upper level. R1 

represents the number of switches at the first level 

equal/greater than 2. Δ represents common difference between 

any two levels. n  represents switch level. 

C. Switch Connectivity  

Xn+1 = (Rn+1 ((xn\Rn) \Zn+1) + (xn%Rn) * Rn+1/gcd(Rn, Rn+1) + k) % Rn+1. 

where k represents ϵ {0, 1, …, Rn+1/gcd(Rn , Rn+1)-1};  

              (II) (Down-top connection) [12] 
Xn = (Rn ((xn+1\Rn+1) \Zn) + (xn+1%Rn+1) * Rn/gcd(Rn+1, Rn) + k) % Rn. 

where k represents ϵ {0, 1, …, Rn/gcd(Rn+1 , Rn)-1}  

                      (III) (Top-down connection) [12] 
Xn+1 is switch sought after at the upper level. Rn+1 is the total 
number of switches at the upper level. xn is level n switch 
connecting to upper level switch at Xn+1. Rn is the total number 
of switches on level n connecting to upper level switches at 
Rn+1. Zn+1 is the number of subtrees/zones from upper level 
n+1. gcd is an acronym for Greatest Common Divisor used to 
get the exact number of Rn+1 switches that xn will connect to. 
For example, connecting switch 0 at level2 to level1 switches 
for top-down connection H2

- (Fig.6&7), using (III): 

Xn = (8((0\2) \4) + (0%2) *4+k) %8= (0+0+k) %8 

where k ϵ{0, 1, …, Rn/gcd(Rn+1, Rn)-1}.  

                         So that, k = 0,1,2,3. 

Therefore, If k= 0, (0+ k(0)) %8 = 0%8 = 0; 

If k= 1, (0+ k(1)) %8 =1%8 = 1; 

 If k= 2, (0+ k(2)) %8 = 2%8 = 2;  

If k= 3, (0+ k(3)) %8 = 3%8 = 3. 

Also, switch0 inter-connecting the left-hand-side: 

Xn= (2((0\2) \4) + (0%2) *1+k) %2 

                          = (0+0+k) %2 

where k ϵ{0, 1, …, Rn/gcd(Rn, Rn+1)-1}.  

                      So that, k=0.  

If k= 0, it implies (0+ k(0)) %2 = 0. Therefore, switch 0 at 

level2 will connect to: 0,1,2,3 level1 switches at right-hand-

side; and switch 0 at the left-hand-side [15]. 

 

D. Port Mapping  

 

Xp+1 = ((Xn\Rn) %Zn+1) *Rn/gcd(Rn, Rn+1)+p  

                                          (IV) [13] 

where p, set of switch ports to be mapped, and represented as: 

p ϵ {0, 1, …, Rn/gcd(Rn, Rn+1)-1; Xp+1  represents switch ports 

to be mapped at upper level. In Fig.2&3, at level 1, there are 6 

zones for z2, with r1=4 in each and with one switch having  

Table 1: Summary of Network Inventory 

 

E. Comparing the Simulation Results 

Table 2, 3 and 4 are the summary of the results of the 
Received Email Packets as shown on Fig. 9, 10 and 11 
respectively. Across all the networks in all scenarios, we failed 
5 switches for each design during simulation; and extra 6 links 
in each design of scenario three were failed. There are 
different Inter Arrival Time of the packets in milliseconds for 
each simulation as shown in the abovementioned tables. In 
scenario one, when the Inter Arrival Time was set at 25 
milliseconds, the average received Email packet for the 
Reversed Hybrid FT with 192 links was 34.47 
pkt/millisecond. At same 25 milliseconds, the Hybrid FT with 
240 links was 34.61; while the Single FT with 296 links was 
31.68 pkt/millisecond. Although the difference was not much, 
but as the inter arrival time decreases, the difference in the 
received packets became clearer between our proposed Hybrid 
FT designs and the Single FT design. Take for instance at 
0.195 milliseconds, the Hybrid with 240 links has the highest 
average received packet of 4420.36 pkt/millisecond, followed 
by 4408.16 pkt/millisecond for the Reversed Hybrid with 192 
links, then 4040.68 pkt/millisecond for the single design (see 
table 2). The difference in received packet per millisecond 
between Hybrid FT design and Single design is 379.32, while 
that of Reversed Hybrid FT design and the same Single FT 
design is 367.48. This shows that our proposed hybrid designs 
can tolerate fault more than the single design at high traffic. 

    To confirm our results, we increased the number of clients 

from one to two with the same number of failed switches, so 

that there will be high volume of packets transmitted. In a like 

manner as with the first scenario, at 25 milliseconds, the 

results of the second scenario across the three designs are 

almost the same value too, with just a slight difference. 



However, as the time between each arrival of packet and the 

next (inter arrival time) tends towards zero, our proposed 

hybrid designs show significant margin of received packet 

than the single design. Therefore, at inter arrival time of 0.951 

milliseconds, the received Email packets are 8850.12 

pkt/millisecond, 8821.02 pkt/millisecond, and 8091.22 

pkt/milliseconds for Hybrid, Reversed Hybrid, and Single 

designs respectively (as shown in table 3).  

    To further prove that our hybrid designs outperform the 

single fat tree design, we had to fail more 6 links in each 

design of scenario three, thereby making it a total of 5 

switches and 6 links failed. Based on this, the summary of the 

results from fig. 11 as shown in table 4 shows that our 

proposed hybrid designs exhibit fault tolerance and graceful 

performance degradation. As the inter arrival time decreases 

from 25 milliseconds towards 0.195 milliseconds, a very clear 

difference in received email packets are noticed among the 

three different designs. At the inter arrival time of 25 

milliseconds, the Single FT has a received email packets of 

52.85 pkt/milliseconds, the Reversed Hybrid FT has 63.13 

pkt/milliseconds, and the Hybrid FT has 66.09 

pkt/milliseconds. However, as the inter arrival time is being 

decreased to the point of 0.195 milliseconds, the Single FT has 

6799.44 pkt/milliseconds, the Reversed Hybrid FT has 

8064.89 pkt/milliseconds, and the Hybrid FT has 8472.01 

pkt/milliseconds. When these three scenarios are properly 

looked at, especially the second and third scenarios with two 

clients; one can deduce that our proposed designs are able to 

tolerate failures.     

  

Fig. 9: Received Email Packet for two Clients, and 5 failed switches. 

 

Fig. 10: Received Email Packet for two Clients, and 5 failed switches. 

 

 

Fig. 11: Received Email Packet for two Clients, 5 failed switches and 6 failed 

links. 

F. Tabular Summary of the Results of Received Email 

Packets for all scenarios 

 

     Table 2: Summary of the Results of Received Email Packets 

for Scenarios one. 

 

 

 



Table 3: Summary of the Results of Received Email Packets for 

Scenarios two. 

 

Table 4: Summary of the Results of Received Email Packets for 

Scenarios two. 

 

     CONCLUSION 

     The differences in the received packets between our 
proposed hybrid FT designs (H2

+ and H2
-), and the single 

design (Ƶ) for the Email application show that our proposed 
hybrids are a better choice to sustain fault tolerance in cloud 
data center amidst high volume of data transmission, and 
ranges of device failures. The fault tolerance capability 
exhibited by our proposed hybrid designs shows that switch 
and link failures in cloud data center could be managed in real 
time through bespoke design while waiting for repair or 
replacement. At healthy network, for all the scenarios, the 
received email packet per millisecond are almost the same 
value. But because more traffics are injected as the inter 
arrival time decreases, the network became more congested. 
The traffic congestion amidst failure of 5 switches and 6 links 
became a litmus test to ascertain the fault tolerance and 
robustness of these designs. Having said that, our proposed 
hybrid designs have been able to prove this through their 
sustained and better graceful performance degradation. This is 
also a confirmation of our previous work in [14] where similar 
experiments were carried out with a total failure of 80 links. 
We therefore look forward to real-life implementation of our 
proposal by industries. 
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