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Abstract: Wireless Body Area Networks (WBANs) are single-hop network systems, where sensors
gather the body’s vital signs and send them directly to master nodes (MNs). The sensors are
distributed in or on the body. Therefore, body posture, clothing, muscle movement, body temperature,
and climatic conditions generally influence the quality of the wireless link between sensors and
the destination. Hence, in some cases, single hop transmission (‘direct transmission’) is not
sufficient to deliver the signals to the destination. Therefore, we propose an emergency-based
cooperative communication protocol for WBAN, named Critical Data-based Incremental Cooperative
Communication (CD-ICC), based on the IEEE 802.15.6 CSMA standard but assuming a lognormal
shadowing channel model. In this paper, a complete study of a system model is inspected in the
terms of the channel path loss, the successful transmission probability, and the outage probability.
Then a mathematical model is derived for the proposed protocol, end-to-end delay, duty cycle, and
average power consumption. A new back-off time is proposed within CD-ICC, which ensures the
best relays cooperate in a distributed manner. The design objective of the CD-ICC is to reduce
the end-to-end delay, the duty cycle, and the average power transmission. The simulation and
numerical results presented here show that, under general conditions, CD-ICC can enhance network
performance compared to direct transmission mode (DTM) IEEE 802.15.6 CSMA and benchmarking.
To this end, we have shown that the power saving when using CD-ICC is 37.5% with respect to DTM
IEEE 802.15.6 CSMA and 10% with respect to MI-ICC.

Keywords: wireless body area network; critical data index; incremental cooperative communication;
outage and successful probability; end-to-end delay; duty cycle; average power transmission

1. Introduction

WBANs are the communication networks of sensor nodes (and/or actuators) placed on, inside, or
around the human body that shows a new generation of the wireless personal area network (WPAN),
and introduce several challenges for implementation. The sensor nodes in WBANs are small and
embedded with finite source compared to devices in the traditional wireless sensor networks (WSN).
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Finite source make a limitation on the energy spent by sensor nodes in sensing, processing, storing
and delivering the data [1–4].

The end-to-end (e2e) delay, the duty cycle and the average power transmission are the key
factors to determine the overall performance of a WBAN. The most suitable layers to address the
aforementioned factors are data link layer, such as medium access control (MAC) protocol and physical
layer (such as virtual diversity technique) [5–7]. MAC protocol is controlling and organizing the
sensor nodes access to the wireless shared medium. MAC protocol is an essential protocol which
consider the basis for getting Quality of Service (QoS), high data rate and higher power saving in any
wireless networks. In addition, the MAC protocol is preventing collisions and concurrent sending
while conserving data rate, reduce e2e delay, and enhanced the reliability [8–11].

The diversity technique is the method to combat the effect of the of the wireless channel fading,
diversity can be achieved through either embedded the sensor node with multiple antennas or
through using the cooperative communication (CC) [12,13]. Various type of the CCs is considered
in WBAN to improve their performance in the term of power transmission, reliability, and the e2e
delay. Where, in the traditional cooperative communication (TCC), a source sends data to a one
of the on body intermediate node, then intermediate node(s) (relay(s)) retransmit what was sent
by the source to the destination [14]. However, such cooperative communication utilized extra
sub-channels/time slots to transmit single data from the source to the destination, which increases the
delay, and reduce the bandwidth efficiency of the wireless communication [15,16]. Therefore, to solve
the aforementioned problem of the TCC, an incremental cooperative communication (ICC) is utilized.
In such, the intermediate node does not participate in cooperation until the destination does not receive
what was sent by the source correctly [17]. The TCC has been widely considered in the literature for
WBAN systems [18–26], however, in this paper, only the ICC is surveyed.

Deepak et al. [27] investigated the energy efficiency (EE) of incremental cooperative
communication (ICC) in WBANs. They also provided an analytical model for the EE of DTM and CCs
and considered the effect of packet error rate (PER) on both systems. The optimisation of packet size
was also taken into account. Paul et al. [28] and Yousaf et al. [29] optimised the packet size to maximise
the EE in IEEE 802.15.6, considering ultra-wideband, where packet size optimisation was done for both
DTM and ICC systems. Liao et al. [30] reduced the energy consumption, and prolonged the network
lifetime, of in-body sensor nodes by using an ICC protocol. They maintained a flexible QoS and
suggested a new in-to-out body path loss (PL) model. Estevez et al. [31] proposed a novel cooperative
energy harvesting (CEH)-MAC model, that adapted its operation to the energy harvesting (EH)
conditions. Their proposed protocol exploits the EH information in order to set an idle time that allows
the relay nodes to charge their batteries and complete the cooperation phase successfully. They have
improved EE, e2e delay, and network throughput. Yousaf et al. [32] investigated and analysed ICC
for WBANs with different numbers of relays where EE and PER were inspected for various scenarios.
Also, a new ICC with three-stage relaying of data is proposed (the so-called ‘Enhanced Incremental
Cooperative Critical data transmission in Emergencies for Static WBANs’ (EInCo-CEStat)) where
the proposed protocol enhances the EE and PER compared to existing work. Prakash et al. [33]
proposed a Linear Acceleration based Transmission Power Decision Control (LA-TPDC) algorithm
where energy consumption, signal-to-noise ratio (SNR), bit error rate (BER), and PER were evaluated
for all participating nodes. Liao et al. [34] proposed mutual information-based incremental cooperative
communication (MI-ICC) protocol, where several on-body relay nodes and one coordinator were
attached to the patient’s clothes. MI-ICC took into account the critical data, while the normal data does
not get transmitted to the destination. It achieved better performance in comparison to the scheme
using two relays, with the residual energy and network lifetime taken into account and improved.

In what follows, the drawbacks and limitations of [27–34] are shown in Table 1 and can be
summarised as follows: MAC protocol was not considered (such as IEEE 802.15.6), e2e delay was not
analysed, the best relay node selection was not considered, the duty cycle was not analysed, and the
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average power transmission was not studied, and the nature of the gathered data was not taken
into account.

To address the aforementioned issues and facilitate cooperative communication in WBAN,
we propose a novel Critical-Data Incremental Cooperative Communication protocol based on the IEEE
802.15.6 CSMA policy. The contributions of this work are summarised as follows:

1. A MAC protocol for the CD-ICC is proposed to coordinate the sensor to act as relay to carry out
the retransmission process.

2. A new back-off time is proposed to achieve the selection of the best relay, where only the
sensor that is nearest to the source can participate in cooperation. In addition, the back-off time
accelerates the access of the selected best relay to the shared medium.

3. The gathered data natures have been considered. Where the critical data is transmitted over
ICC, while the normal data is transmitted over DTM. It is meant that CD-ICC protocol supports
multiple traffics.

4. The e2e delay, duty cycle and average power transmission of CD-ICC are mathematically
modelled and analysed.

5. We show that the proposed protocol can reduce the e2e delay and the duty cycle and can enhance
power saving of the WBAN compared to the existing work and DTM under IEEE 802.15.6
CSMA policy.

The rest of the paper is organized as follows: system model and architecture is presented in
Section 2. Section 3 describes and investigate the wireless link and successful transmission probability
under lognormal shadowing model. Then, modeling and formulating of CD-ICC in details has been
described in Section 4. In Section 5, e2e delay, duty cycle and average power transmission of CD-ICC
are investigated, formulated and analyzed. Simulation and numerical results are addressed in Section 6.
Finally, Section 7 draws the conclusion and future work.
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Table 1. Comparison of state of art work.

Pub. Year [Ref. No.] Proposed Protocol Metrics (Problem Addressed) Compared with Limitations

2013 [27] ICC
• Energy efficiency
• Optimal packet size Single hop

• MAC protocol not considered (IEEE 802.15.6).
• Duty cycle is not considered.
• e2e delay is not analysed.
• Best relay node selection is not considered.
• Nature of the gathered data is not considered.

2015 [28] Packet size optimisation of ICC

• Outage probability
• Successful transmission probability
• Energy efficiency

Single hop

• MAC protocol not considered (IEEE 802.15.6)
• Duty cycle is not considered.
• e2e delay is not analysed.
• Best relay node selection is not considered
• Nature of the gathered data is not considered

2015 [29] ICC

• Throughput
• Average power consumption
• Propagation delay

Dual hops

• MAC protocol not considered (IEEE 802.15.6)
• e2e delay is not analysed
• Best relay node selection is not considered
• It used TDMA which is unsuitable for WBAN
• Nature of the gathered data is not considered

2015 [30] ICC
• Packet error rate
• Energy efficiency Single hop

• MAC protocol not considered (IEEE 802.15.6)
• Duty cycle is not considered.
• e2e delay is not analysed
• Best relay node selection is not considered
• Nature of the gathered data is not considered

2015 [31] Cooperative Energy Harvesting (CEH)-MAC

• Network throughput
• Average e2e delay
• Energy efficiency

Single hop-IEEE 802.15.6 standard
• e2e delay is not analysed
• Nature of the gathered data is not considered

2016 [32]
Incremental Cooperative Critical Data
Transmission in Emergencies For Static
WBAN (InCo-CEStat)

• Reliability
• Residual energy increases.
• Throughput

Co-CEStat and EInCo-CEStat

• MAC protocol not considered (IEEE 802.15.6)
• Duty cycle is not considered.
• The e2e delay is not analysed
• Best relay node selection is not considered

2016 [33] Linear Acceleration based Transmission
Power Decision Control (LA-TPDC)

• Energy consumption,
• Signal-to-noise ratio (SNR),
• Bit error rate (BER),
• Packet delivery ratio (PDR)

TCC

• MAC protocol not considered (IEEE 802.15.6)
• The e2e delay is not analysed
• Best relay node selection is not considered
• It used TDMA which is unsuitable for WBAN
• Support critical data

2018 [34] A mutual information (MI)-based ICC

• Network life time
• Residual energy
• Number of packets transmitted

Two-relay based, and ICC

• MAC protocol not considered (IEEE 802.15.6)
• Duty cycle is not considered.
• The e2e delay is not analyse
• Support critical data
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2. System Model and Architecture

Figure 1a shows an example of a WBAN system. There are many sensors uniformly distributed
around the body to monitor the patient’s health, and each sensor gathers data and sends it to the MN.
In a WBAN that is based on the single-hop star topology, all the sensors send their data directly to the
MN. The MN then directs the data to the monitor node, which either analyses it, or forwards it over
the internet to the hospital or doctors.Sensors 2018, 18, 3661 5 of 18 
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Figure 1. (a) Network architecture of WBAN; (b) Cooperative communication in WBAN.

In WBANs, it should consider a number of physical environments, due to the networks are
configured on/in the body. Where, the sensors attached to the body are mobile owing to numerous
body movements. Therefore, the distances between the sensors and MN are varying. Some sensors
may have a large distance or weak link to the MN, thus transporting data sufficiently to the MN in
a single-hop is difficult.

The CC is considered one of the best solutions to overcome the aforementioned problem, i.e., single
hop transmission. Various CC modes are widely inspected in the literature. The ICC is considered
in this work and it is summarized as follow: if the MN (or destination) received the data correctly
from the source sensor (S) based on frame check sequence (FCS), then it sends an acknowledgment
(ACK) to the S and the relay sensor (R) drop what received from S. Otherwise, it sends a negative
acknowledgment (NACK) that allows the R retransmit what was received from the S, but MN drop
what received from the S, see Figure 1b. In what follow, the distance from S to MN, S to R and R to MN
are denoted as dsd, dsr and drd, respectively, and we denoted link between sensor and MN as S− D,
link between source and relay sensor as S− R and the link between relay sensor to MN as R− D.

3. Link and Successful Transmission Probability Analysis

In this section, the link analysis and successful transmission probability under lognormal channel
model are described. The received power at any given distance can be expressed as [35]:

P
(
dij
)
=

(dij

do

)−ρ

(1)
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where, do is a reference distance and ρ is the path-loss exponent. dij is the distance between node i and
j. Afterwards, according to the lognormal channel model, the received power can be expressed as [35]:

10 log10
(

P
(
dij
))

= 10 log10
(

Pa
(
dij
))

+ σ2
ij (2)

For the sake of the simplicity, we normalized variables as follows: first, let defined G as the

maximum distance where the received power Pa
(
dij
)

is equal to P =
(

G
do

)−ρ
. Then, by dividing powers

by P and with help of (2), the received power under lognormal channel model can be expressed as:

10 log10

(
P
(
dij
)

P

)
= 10 log10

((dij

G

)−ρ
)
+ σ2

ij,

then, this yields:

10 log10
(

Pn(dij
))

= 10 log10

((
dn

ij

)−ρ
)
+ σ2

ij. (3)

where, dn
ij ,

dij
G is the normalized distance and Pn(dij

)
,

P(dij)
P is the normalized power. It is shown

that the l0garithm of a normalized power has a normal distribution with the mean 10 log10

(
dn

ij

)
and

the variance σ2
ij. The condition for correct reception of signals at normalized distance dn

ij is that the
normalized power at this distance is more than ‘1’ or zero dB. The probability of successful reception
at node j due to transmission of node i can be expressed as:

Ps
ij = P

[
10 log10

(
Pn(dij

))
> 0

]
= 1√

2πσij

∞∫
0

exp

−
(

r−10 log10

((
dn

ij

)−ρ
))2

2σ2
ij

dr
(4)

this yields:

Ps
ij = 0.5 er f c

(
ω

Uij

)
(5)

where er f c(x) (= 1− er f (x)) is complementary error function, Uij = σij/ log dn
ij and ω =

10ρ/
√

2 log 10.

4. Critical Data-Based Incremental Cooperative Communication (CD-ICC)

4.1. Proposed Protocol Description

In this paper, we propose an emergency-based cooperative communication for WBAN, named
Critical Data-based Incremental Cooperative Communication. The proposed protocol works in
a cooperative fashion when considering critical data. The CD-ICC has two events which can be
summarised as follows:

1. The first event is the Critical Data Event (denoted as X) which is occurs when data gathered by
the sensor is critical and must be transmitted to the destination efficiently. In such cases, critical
data is delivered to the destination utilising ICC.

2. The second event is the Normal Data Event (denoted as Y) which occurs when data gathered by
the sensor isn’t critical and it can be transmitted directly to the destination.
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4.2. Formulation of the CD-ICC

As described earlier, the CD-ICC comprised from two events and is mathematically expressed as:

PCD−ICC = P(X)︸ ︷︷ ︸
Critical data event

+ P(Y)︸ ︷︷ ︸
Normal data event

(6)

where, P(X) is the probability of the gathered data were critical. The critical data delivered to
destination utilizing ICC and is mathematically expressed as:

P(X) = P(P(ξ ≥ ξthd), Ps
ICC) (7)

where, the P(ξ ≥ ξthd) is the probability of critical data index ξ greater than threshold value ξthd, and
Ps

ICC the successful transmission probability of the ICC. In the (7), events are independent, then the
P(X) can be written as:

P(X) = Pξ(ξthd)Ps
ICC (8)

The Ps
ICC can be expressed as:

Ps
ICC = Ps

sd + (1− Ps
sd)Ps

srPs
rd (9)

where, the term Ps
sd represent S−D link isn’t in the outage, while

(
1− Ps

sd
)

represent the S−D link in
the outage, and the terms Ps

sr and Ps
rd represent S− R and R−D links are not in the outage. Afterwards,

and with help of (5), we obtain Ps
ICC as:

Ps
ICC = 0.5er f c

(
ω

Usd

)
+ 0.25er f c

(
ω

Usr

)
er f c

(
ω

Urd

)(
1− 0.5er f c

(
ω

Usd

))
(10)

where, ξ is normal random variable with zero mean and unity variance, hence the probability that the
critical data index ξ greater than threshold value ξthd is given as:

Pξ(ξthd) = P(ξ ≥ ξthd) = 0.5
∞∫

ξthd

g(y)dy (11)

where, g(y) is given as:

g(y) =
1√
2π

exp
(
−y2

2

)
(12)

insert (12) in (11), we obtain (11) as:

Pξ(ξthd) = 0.5
∞∫

ξthd

1√
2π

exp
(
−y2

2

)
dy (13)

solving the integral of (13), we obtain (13) as:

Pξ(ξthd) = er f c(ξthd) (14)

where, ξthd is threshold that gathered data is critical, and it expressed as:

ξthd =

∣∣∣∣ ξmin − ξmax

ξmax

∣∣∣∣ (15)

A parameter called the critical data index threshold, ξthd, determines the degree of criticality. ξmax

is the maximum critical data index and is equal to 7, while ξmin is the minimum critical data index and
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can vary between 0 and 7. ξmin depends on the gathered data from the human body, and if the data is
critical, then ξmin takes a high value, and vice versa. Table 2 show the probability of the critical data
index with different values of ξmin.

Table 2. Threshold and probability of the Critical Data Index.

ξmin ξmax ξthd P (ξ≥ξthd)

0 7 1 0.15
1 7 0.857 0.2255
2 7 0.714 0.3126
3 7 0.571 0.4194
4 7 0.428 0.540
5 7 0.285 0.6869
6 7 0.142 0.8408
7 7 0.0 1.0

It is clear that, as the ξthd is high, the probability of the critical data index is low and vice versa.
Inserting (10) and (14) in (8), we obtain P(X) as:

P(X) = er f c(ξthd)
(

0.5er f c
(

ω
Usd

)
+0.25er f c

(
ω

Urd

)
er f c

(
ω

Urd

)(
1− 0.5er f c

(
ω

Usd

))) (16)

The second term of the (6) represent the event that the gathered data by the sensor were not
critical and with help of (5) and (14), the P(Y) can be expressed as:

P(Y) =
1
2
(1− er f c(ξthd))er f c

(
ω

Usd

)
(17)

finally, summing up the P(X) and P(Y) together, we obtain PCD−ICC as:

PCD−ICC

= er f c(ξthd)

(
0.5er f c

(
ω

Usd

)
+ 0.25er f c

(
ω

Urd

)
er f c

(
ω

Urd

)(
1− 0.5 er f c

(
ω

Usd

)))
︸ ︷︷ ︸

critical data event

+ 0.5( 1− er f c(ξthd)) er f c
(

ω

Usd

)
︸ ︷︷ ︸

normal data event

(18)

5. Delay and Duty Cycle Analysis of CD-ICC

5.1. Delay Analysis of CD-ICC

The average e2e delay of the IEEE 802.15.6 of CD-ICC is evaluated in this subsection. Where, the
average e2e delay is defined as the total time required of the medium access delay to transmit data.
The average e2e delay includes average contention time due to collision (TC), the average successful
transmission time with no collision and no fading (Tsuc), and average failure time due to fading but no
collision (Tf ail) [36]:

Te2e = TC + Tsuc + Tf ail (19)

the average contention time due to collision can be expressed as:

TC = Tdata + TI−ACK + TCW + 2TpSIFS + 2Tα (20)
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the time required to transmit data packet (see Figure 2a) can be expressed as:

Tdata = TP + TPHY + TMAC + TBODY + TFCS. (21)

the transmissi0n time required for I − ACK (see Figure 2b) can be expressed as:

TI−ACK = TP + TPHY + TMAC + TFCS. (22)

where TCW average back0ff time and is expressed as:

TCW = Ts CW (23)
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Average successful transmission time with no collision and no fading can be expressed as:

Tsuc = Pξ (ξthd)
(

Tsd
act Ps

sd +
(

Tsd
act + Trd

act

)
(1− Ps

sd ) Ps
sr Ps

rd

)
+
(
1− Pξ (ξthd)

)
Ps

sd Tsd
act (24)

where Tsd
act is the RF activity time of S− D link, Tsd

act = TC + Ton. Re-write (24) as:

Tsuc = Pξ (ξthd)
(

Tsd
act + Trd

act

)
( 1− Ps

sd ) Ps
sr Ps

rd + Ps
sd Tsd

act (25)

Equation (24) comprises two terms. The first term is e2e required time of the transmission when
the gathered data by the sensor are critical, delivered through ICC. The second term is e2e required
time of the transmission when the gathered data by the sensor are not critical, delivered over DTM.

It is clear from (24), as the value of Pξ(ξthd) approaches one, either Tsd
act is the required time to

transmit the data or Tsd
act + Trd

act is the required time to transmit the data to the destination. On the other
hand, as the value of Pξ(ξthd) approaches zero, then Tsd

act is the required time to transmit the data to the
destination. Trd

act is the RF activity time of the R− D link and can be expressed as:

Trd
act = Trd

on + Trd,∗
CW + Trd

data + Trd
ACK + 2Trd

pSIFS + 2Trd
α . (26)
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In this paper, we propose a new Trd
CW expressed as follows:

TCD−ICC
CW =

⌈
Ts

CWmax

CWmin

∣∣∣∣∣
(

deq

2ρ−2 + d−1
eq

)
ρ−1
√

deq + (ρ− 4)

∣∣∣∣∣
⌉

µs (27)

where CWmin and CWmax are the minimum contention window and maximum contention window
size, respectively. deq is expressed as (dsr + drd)

−ρ. The objective of the proposed back-off time is to
make sure that the best relay sensors can participate in cooperation, and that the best relay sensor can
access the channel first. However, when the relay sensor is willing to help the source, it may have a
greater delay due to (27). Hence, each relay(s) will select the T∗CW according to:

Trd,∗
CW =

{
CW Ts f or TCD−ICC

CW > TCW
TCD−ICC

CW f or TCD−ICC
CW ≤ TCW

(28)

As is clear from (28), the intermediate sensor that overheard the transmitted packet calculates
the proposed back-off time as shown in (27). Then, TCD−ICC

CW > TCW implies an average back-off time
of the relay node (intermediate) is less than the proposed average back-off time (27), and the node
cannot participate in cooperation. On the other hand, if TCD−ICC

CW ≤ TCW , this implies the sensors
whose overheard the transmitted packet are near to the source, such sensor utilised proposed back-off
time shown in (27). Finally, the average failure time due to fading but no collision is expressed as:

Tf ail = (1− Ps
sd) (1− Ps

sr)Ps
rd Tsd

act +
(

Tsd
act + Trd

act

)
(1− Ps

sd)
(
1− Ps

rd
)

Ps
sr

+(1− Ps
sd) (1− Ps

sr) (1− Ps
rd) Tsd

act

(29)

It is clear from (29), the first term corresponds to the events when the S− D, and S− R links in
the outage, while R− D link not in the outage. The second term corresponds to the events when the
S− D, and R− D links in the outage, while S− R link not in the outage. The last term is corresponds
to the events when the S− D, S− R and S− D links in the outage. In (29), we did not include the
Pξ(ξthd), because channel fading do not affected by the nature of the data, i.e., whether it is critical
or not.

The transmission rate of the PHY, MAC headers and payload are depending on the channel
condition between nodes [37]. Where, the Rate of the CD-ICC is given as

Rate = Pξ(ξthd) Ps
ICC R +

(
1− Pξ(ξthd)

)
Ps

sd R (30)

where, R is the transmission rate of IEEE 802.15.6 standard and it is 75.9 Kbps for DPSK modulation [38].
CW: Contention window α: Delay time
Ts: CSMA slot length TP : preamble time
Tc : Collision time TPHY : physical header time
Ton: RF transceiver power-on TMAC : MAC header
TCW : Average back-off time TBODY : MAC frame body time
Tdata : Time to transmit a data packet TFCS : frame check sequence time
TI−ACK : Time to transmit ACK TPSIFS : Short interframe spacing

5.2. Duty Cycle and Average Power Transmission of CD-ICC in WBAN

In this subsection, we address the duty cycle (DC) and average power transmission of the proposed
protocol under CSMA/CA based on IEEE 802.15.6. The average power transmission related directly to
the duty cycle. DC is defined as the ratio of the time required to transmit a packet successfully to the
sleeping time (TSleep). DC can be expressed as [39]:

DCCD−ICC =
TC + Tsuc + Tf ail

TSleep
(1 + PERCD−ICC) (31)
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The packet error rate (PER) of each link is defined as the probability which at least one bit in
a packet is erroneous and can be expressed as:

ER = 1− (1− Pb)
S (32)

where, Pb is the bit error rate (BER) and S is the payload size, and it set to ‘1’. In this paper, the DPSK
modulation is utilized and Pb expressed as:

Pb = Q
(

2γi,j
∣∣ai,j
∣∣2 10σij

)
∼=

1
2

exp
(

γi,j·d
−ρ
ij 10σij

)
(33)

where, γi,j is the signal to interference and noise ratio between two nodes. The PCD−ICC
b of the proposed

protocol can be expressed as:

PCD−ICC
b = Pξ(ξthd) PICC

b +
(
1− Pξ(ξthd)

)
Psd

b (34)

where, PICC
b is the probability of the ICC and can be expressed as:

PICC
b = Psd

b (1− Psr
b ) +

(
1− Psd

b

)
Psr

b Prd
b (35)

where, Psd
b , Psr

b and Prd
b are bit error probability of S− D, S− R and R− D links. Insert (20), (25), (29)

and (34) in (31), we obtain the duty cycle of the proposed protocol.
The complete average power transmission, Pav, can be obtained by multiplying DC, Vdd, and Iact

where Vdd is the radio frequency (RF) of the module supply voltage, and Iact is the average RF active
average current in a one-time frame [39]:

Pav = DCCD−ICC Vdd Iact (36)

6. Simulation and Results Discussion

In this section, the performance of the CD-ICC protocol that is presented in the aforementioned
sections has been evaluated in terms of successful transmission probability, e2e delay, duty cycles, and
average power transmission. In the simulation, random topology has been considered, where sensors
are randomly distributed in 3.5× 3.5 square area with normalized distance, the number of sensors
are fixed in this area. The destination is located at the origin (0, 0), and correspondence source
sensor located at (dsd, 0), in addition, the number of relay sensors are varying and randomly deployed
between source and destination. The SINR threshold γthd is set to be 0 dB. The pseudo code of the
CD-ICC based on IEEE 802.15.6 policy and numerical parameter used in this paper given in Algorithm 1
and Table 3, respectively.

Figure 3, shows the comparison of successful transmission probability of the DTM, and CD-ICC
protocol as a function of dsd and σ. The important results appeared in the figure:

1. In the case of σ > 0 dB the successful transmission probability is vary, which it is reduced at the
short distances and increases at large distances this is due to signal fluctuations become more at
σ > 0 dB.

2. Even at large distance (greater than normalized threshold distance ‘1’), we get successful
transmission probability less than 0.7.

3. The proposed protocol shows better successful transmission probability at the short and large
distance compared to DTM.

4. For the low values of σ correspond to small variations of the signal power and high values of σ

corresponding to stronger power variations.
5. At distance dsd = 2, and σ = 9 dB, the successful transmission probability increased by 1.6 times

over DTM. Further, At the distance dsd = 2, and σ = 7 dB, the successful transmission probability
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increased by 5 times over DTM. While, At distance dsd = 1.5, anda σ = 5 dB, the successful
transmission probability increased by 13 times over DTM.

Table 3. Numerical parameters.

Frequency band [MHz] 402–405 (MICS)
Bandwidth [MHz] 1

Maximum transmission rate (R) [Kbps] 75.9
Threshold transmission rate (βo) [Mbps] 1

Modulation DPSK
Payload size [bits] 2000

Minimum contention windows CWmin [slots] 16
Maximum contention windows CWmax [slots] 64

SINR threshold (γthd) [dB] 0
MAC header [bits] 56
MAC footer [bits] 16
PHY header [bits] 32

RF transceiver power on (Ton) [s] 2
Short interframe spacing time TpSIFS [µs] 50

Preamble [bits] 88
Slot time Ts [µs] 125

Delay time α [µs] 1
Maximum critical data index ξmax 7

Algorithm 1: CD-ICC Pseudo Code.

Require: dsd = 0.1 : 0.1 : 3.5, scal = random (1, length(dsd)), ξmax, γthd,

01 begin
02 for dsd

03 for z = 1 : 1 : length(dsd)

04 dsr = scal (z) ∗ dsd(z)
05 drd = scal (z) ∗ dsd (z)
06 Select ξmin ∈ random [0, 7]
07 Calculate back-off time given in (27)
08 Calculate Rate given in (30)
09 Calculate time as

10 Tx =
number o f bits o f x

Rate

11 Calculate e2e delay given in (19)
12 Calculate duty cycle given in (31)
13 Calculate average power consumption given in (32)
14 Endfor
15 Endfor

Figure 4, shows the comparison of successful transmission probability of the CD-ICC protocol as
a function of ξmin. The important results appeared in the figure: As the ξmin increases, the successful
transmission probability required is rises, in order to transmit the critical data efficiently. We can
also note from Figure 3 that as the inter-nodes distance of S− R and R− D links are decreases, the
successful transmission probability is increased.
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Figure 5, shows the comparison of end-to-end delay of the DTM, and CD-ICC protocol as
a function of dsd and σ. The important results appeared in the figure:

1) The e2e delay of CD-ICC is less compared to the DTM.
2) For large distances between S− R and R− D links, the e2e delay is high.
3) At distance dsd = 2, and σ = 12 dB, the e2e delay is reduce by 23.5% compared to DTM. Further,

at distance dsd = 2, anσ = 9.5 dB, the e2e delay is reduced by 20% compared to DTM. However,
at distance dsd = 2, and σ = 7 dB, the e2e delay is reduced by 18% compared to DTM.
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Figure 6, shows the comparison of e2e delay of CD-ICC protocol as a function of ξmin.
The important results appeared in the figure are summarized as follows: As the ξmin increases,
e2e delay increases as well that is because of the critical data sent over different paths to guarantee
delivering of the data to the destination. Furthermore, It can be seen from Figure 5 that at the large
ξmin (more than 5), the e2e delay is large at small dsr and drd and vice versa.Sensors 2018, 18, 3661 14 of 18 
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Figure 7 shows the comparison of the duty cycle of the DTM, MI-ICC [34], and CD-ICC protocol
as a function of dsd. The important results appeared in the figure: The duties cycle of the DTM, MI-CC
and CD-ICC are reduced with large dsd. While the duties cycle of the MI-CC and CD-ICC less than
DTM. However, the duties cycle of CD-ICC is less than MI-ICC. At distance dsd = 2.5, the duty cycle of
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CD-ICC is improved by 60% compared to DTM and by 13% compared to MI-ICC. We consider MI-ICC
because it support critical data, while CD-ICC support both critical and normal data.
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Figure 8, shows the comparison of the duty cycle of CD-ICC protocol as a function of ξmin.
Where, as the ξmin increases, duty cycle increases as well that is because of the critical data sent over
different paths to guarantee data delivering. When the relay sensor located at mid-distance between
source and destination, the duty cycle is reduced for ξmin (< 5). On the other hand, the duty cycle is
increased for ξmin (> 5), when the relay sensor located far away from source and destination.
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Figure 9, shows the comparison of average power transmission of the DTM, MI-ICC [34] and
CD-ICC protocol as a function of dsd and σ. The average power transmission of the proposed protocol
is low compared to MI-ICC [34] and DTM. In addition, at distance dsd = 2.5, the power saving of
CD-ICC with respect to DTM is 37.5%, and with respect to MI-ICC is 10%. Finally, Figure 10 shows
the comparison of the average power transmission of CD-ICC protocol as a function of ξmin. When
the ξmin is growing up, then more power transmission is required to deliver the data efficiently to
the destination.
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7. Conclusions

In this paper, we have proposed a novel cooperative communication protocol for WBAN that
is aware of the nature of the gathered data. It is based on the IEEE 802.15.6 CSMA policy under
a lognormal shadowing channel model and is called CD-ICC. We have also proposed a new back-off
procedure to be aware of the strategy for relay selection and chooses the best relay in an efficient and
distributed manner. The proposed protocol increases the probability of a successful transmission if
the gathered data were critical. In addition, we have demonstrated that the CD-ICC can substantially
enhance the successful transmission, reduce e2e delay, and enhance power saving, compared to DTM
IEEE 802.15.6 CSMA and MI-ICC. To this end, we have shown that the power saving of the CD-ICC
is 37.5% with respect to DTM IEEE 802.15.6 CSMA and 10% with respect to MI-ICC. In future work,
we will design and investigate a MAC protocol for inter-WBAN cooperation.
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