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Abstract— In m odel-based testing the behavior of a  system 
u n d er test is com pared autom atically  w ith the behavior of a 
model. A significant fraction  of issues found in testing appear 
to be caused by m istakes in the model. In  o rd e r to  ensure th a t 
it prescribes the desired behavior, it has to be validated by a 
hum an. In  this w ork we describe a tool, esm V iz, to support 
this validation. M odels a re  given in a  pure, lazy functional p ro 
gram m ing language. esm V iz provides an  interactive sim ulator 
o f the model, as well as d iagram s of the observed behavior. The 
tool is built on the iTask toolkit w hich results in  an  extremely 
concise G U I definition. E xperim ents show th a t esm V iz helps to 
gain understanding  of a  m odel and  to detect and  rem edy errors.

I. INTRODUCTION

In m odel-based  testing  th e  b ehav io r o f  a  system  u nder test, 
sut, is compared automatically with the behavior of its specification. 
Examples of model-based test tools are GVst [5], Q uickCheck
[2], TorX [9], T-Uppaal [7]. The specification is a possibly non- 
deterministic state transition system used as model in the tests. The 
number of states, inputs and outputs can be infinite. The su t is 
assumed to be a state transition system with a hidden state. One 
can only apply inputs to the system and observe the corresponding 
output. Key advantages of model-based test tools are the significant 
reduction of the amount of manual testing; increase of test speed due 
to automation; and reuse of specifications for regression testing.

Model-based test systems execute a finite number of traces. For 
each trace the sut and the specification start in their initial state. An 
input is selected that is covered by the specification, it is applied 
to the sut, and the allowed states of the specification are computed. 
If, during this process, the test system discovers that no states are 
reachable for the specification, then the su t has shown behavior that 
is not covered by the specification. In test jargon it is said that an 
issue is found.

Ideally, each issue indicates an error in the sut. However, in 
practice a significant fraction of issues appear to be caused by 
problems with the specification: it does not correctly capture the 
intentions of the users and the su t does something different. Even 
though the fraction of issues depends on a lot on factors such as the 
kind of system and the effort spent in creating the model, we estimate 
that the specification has to be blamed for about 25% of the issues.

Incorrect specifications are a problem for several reasons. First, 
if an issue is found it is not clear whether we have to blame 
the specification or the sut. Finding and correcting errors in the 
specification takes time during the test phase of the project. Second, 
errors in the specification are only found during model based testing if

the behavior of the su t differs from the specified behavior. Third, any 
change in the specification during the testing phase can cause major 
implementation changes to the sut. Finally, any change in model or 
su t invalidates in principle all previous test results. Hence, errors in 
the specification can be very expensive and it is worthwhile to invest 
effort to ensure its quality.

In the model-based test system GVst the pure, lazy functional 
language C lean serves as specification language. Due to its high 
abstraction level it is possible to write concise specifications which 
contributes to their quality. It allows the test engineer to model arbi
trarily large state, input, and output domains exactly as desired. The 
advantages have been presented earlier ([4], [6]). The C lean compiler 
checks quality aspects like type correctness and consistent definition 
of used identifiers. Other quality aspects such as the reachability 
of states, determinism and completeness, and the preservation of 
constraints can be checked by systematic testing [?].

The use of a high level specification language does not rule out the 
possibility that the specification prescribes the wrong behavior in a 
consistent way. Hence, these kinds of errors can not be found by the 
above mentioned techniques. In order to ensure that the specification 
prescribes the desired behavior, it has to be validated by a human. In 
this work we introduce the tool esm Viz to support validation of GVst 
models. This simulator enables the user to execute the specification. 
Such an interactive execution appears to be more illustrative than 
reviewing the specification. Second, it is possible to record the traces 
of the specification executed in the simulator. The states visited and 
their transitions can be visualized in an expanded state transition 
diagram. Since the type of states, inputs and outputs can be infinite 
and different in each and every specification, doing this conveniently 
is not straightforward. The key to the solution is to use generic 
definitions such that operations on these types can be derived instead 
of defined manually.

The layout of the paper is as follows: in Sect. II we introduce 
the concepts and notation that will be used throughout this paper. In 
Sect. III we discuss the issues that arise when testing against a formal 
specification. In Sect. IV we describe esm V iz. Its implementation 
is discussed in Sect. V. Related work is discussed in Sect. VI. We 
present user experiences in Sect. VII, and conclude in Sect. VIII.

II . MODEL-BASED TESTING

In model-based testing the test tool compares the observed behav
ior of the system under test, sut, with the model in order to judge the 
correctness of the behavior. Any deviation of the observed behavior 
of the sut from the behavior allowed by the model is called an issue. 
In this section we review the models used by the model-based test 
tool GVst.

The models used by GVst for testing state based systems are 
extended state systems, ESMs. An ESM consists of some initial state

mailto:pieter@cs.ru.nl
mailto:P.Achten@cs.ru.nl
mailto:rinus@cs.ru.nl


so and a set of transitions of the form s — ^  t. In such a transition 
s is the source state, i  is the input triggering this transition, o is the 
output of the system associated with this state and input, and t  is 
the target state of the system. The sets of possible states S , possible 
inputs I , and possible outputs O  of the ESM can all be infinite. The 
i / o  combination is also called the label of the transition from s to t.

A trace s ==£• t  is a sequence of labels. The empty trace contains

no labels. If we have a trace s =$■ t  and a transition t — ^  u  we 
can construct the trace s u . If we are not interested in the

i/o i/o
target state, we will occasionally write s ---- > =  d t.s  ---- > t and
s ==$■ =  3 t.s  ==$■ t. All traces from a given state are defined as: 
traces(s) =  { a |s  = ^ } .  The init of a state s is the set of inputs i, 
such that there is an output o and target state t  in the ESM such that

there exists a transition s — ^  t. The after of a state s is the set of 
possible target states t, reachable after the given trace a : s after a  =  
{ t|s  t} . We overload traces, init, and after for sets of states 
instead of a single state by taking the union of the set members.

A. C onform ance
In model-based testing we try to determine conformance of the 

sut and the model called spec. The sut is assumed to be a transition 
system, but treated as a black box: one can observe its traces, but 
not its internal state. During tests, all observed traces of the su t have 
to be traces of the specification to say that the sut conforms to the 
specification. Formally, this relation is defined as:

su t conf spec =  Va e  tracesspec(s0),
Vi e  in it(s0 afterspec a ),
Vo e  O.

(to aftersut a) — °  ^  (so afterspec a ) — °

Here s 0 is the initial state of spec, and t 0 the initial state of sut. 
Intuitively the conformance relation reads: if the specification allows 
input i after trace a , then the observed output of the su t should be 
allowed by the specification. If spec does not specify a transition for 
the current state and input, anything is allowed. Because the sut is 
a black box, its initial state t 0 is generally not know explicitly. We 
assume that the su t is in this abstract state when we switch it on, or 
we reset it.

Limiting the applied inputs to the init of the states of the current 
traces allows for partial specifications spec.

B. Testing  C onform ance
The conformance relation defined above covers all traces. Most 

interesting systems contain cycles, so traces can become infinitely 
long. Due to the possible infinite types for input and output, there 
can be even infinitely many traces of finite length. It is clear that in 
general a test system cannot prove conformance by executing tests. 
The test system GVst approximates the conformance of the sut to 
the model by executing a finite number of traces of finite length.

To increase efficiency the test system records the set of allowed 
states, s 0 after a, rather than the trace a. If at some point in the test 
this set of states becomes empty we have found an issue: a trace 
that shows that there is no conformance between sut and the model. 
Clearly this way of testing is sound, each trace leading to an issue 
during testing shows that there is no conformance between the su t 
and the model. This way of model-based testing is also complete, if 
there is no conformance between sut and the model, there are one 
or more traces indicating this. Such a trace can be found by testing 
(if the allowed length during tests is sufficiently large).

C. R epresen ta tion  o f  the transitions
To represent the ESM in the model-based test tool GVst we 

need a finite (preferably small) and flexible representation, even if 
the set of transitions is infinite. Furthermore it should be easy to

determine the init of the set of actual states, or to determine if 
an input is in this set, since this information is needed before we 
can apply an input during model based testing. The crucial step 
is to use a function  to model the transitions rather than a data 
structure containing individual transitions. Each function alternative 
with variables in its patterns captures a family of related transitions. 
As usual lists represent sets. To define init easily we use specifications 
of type S  x  I  ^  [Trans O  S].

A basic assumption in GVst is that a transition always contains 
a sequence (list) of output symbols. This gives some additional 
flexibility as well as a suitable notation for no output (the empty list). 
Usually it is most convenient to specify the sequence of outputs and 
the target state in a transition. However, the number of allowed output 
sequences for one input can get huge, which makes it infeasible to 
state them explicitly. For instance in an authentication procedure a 
typical step is to ask for a challenge (the input), the response is a 
64 bit number. Listing all possible outputs and target states explicitly 
requires 264 transitions. In such a situation we prefer one function of 
type [O] ^  [S] rather than all individual transitions. Here the list of 
states as result has the usual meaning: all states (zero or more) that 
correspond to the given output sequence. Again, a single function 
captures a family of related transitions. In C lean these types are:

: :  Spec s i  o :^ =  s i  ^  [T rans o s]
: :  T rans o s  =  P t  [o] s  | F t  ([o ] ^  [ s ] )

Note that we use type parameters to allow any concrete type to be 
used for state (s), input (i) , and output (o).

1) E xam ple:  As an example specification we show the model of 
a beverage vending machine that supplies coffee and tea (see Fig. 1). 
Initially the machine is in a state called O ff. After the input SwitchOn

Fig. 1. The intented specification of the beverage vending machine

it enters state On 0 without producing any output. The integer in this 
state is used to record the amount of money inserted. Now the user 
can either insert a  coin with a  value given as parameter as long as 
the counter in the state remains less then Max, or press a  button to 
receive a  product. If there is enough money the user gets his product 
and the value of the counter is decreased accordingly. The types used 
in this model are:

: : Money :== I n t
: :  S ta te  =  O ff | On Money
: : In p u t =  SwitchOn | Sw itchO ff

| C oin Money | B u tt  P ro d u c t
: :  P ro d u c t =  C o ffee  | Tea
: :  O u tpu t =  Cup P ro d u c t | R e tu rn  Money

A possible specification is given as the function vSpec below. We 
deliberately introduce some errors and strange transitions in this 
specification, later we return to it in an attempt to find these problems.

vSpec : :  !S ta te  !In p u t ^  [T rans O u tpu t S ta te ]  
vSpec O ff SwitchOn =  [P t [] (On 0)] 
vSpec s Sw itchO ff =  [P t [] O ff] 
vSpec (On s )  (Coin c)

/ /  condition should be s+ c< M ax  
| s<Max =  [P t [] (On (s+ c ))]
/ /  output should be R e t u r n  c
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=  [P t [] (On s )]
/ /  pattern should be ( B u t t  C o f f e e )  

vSpec (On s )  (B u tt c o f fe e )
| s>20 =  [P t [Cup C offee] (On ( s - 2 0 ) ) ,P t  [] (On s ) ]  

vSpec (On s )  (B u tt Tea)
/ /  we get Coffee instead o f Tea 
| s>10 =  [P t [Cup C offee] (On (s -1 0 ) ) ]
/ /  do nothing fo r  other buttons 

vSpec (On s )  (B u tt p ) =  [P t [] (On s )]
/ /  otherwise: nothing defined 

vSpec s t a t e  in p u t  = [ ]

This specification is partial (e.g. the effect of pressing a product 
button when the machine in the state O ff is not defined), and 
nondeterministic (if there is enough money in the machine and the 
user asks for coffee, the machine either produces coffee, or does 
nothing at all). Non-determinism models limited knowledge of the 
state of the real machine: e.g. if there are coffee beans it will 
produce coffee, otherwise it cannot produce coffee and waits for a 
new command.

I I I .  ISSUES FOUND IN MODEL BASED TESTING

Issues are traces that show that there is no conformance between 
the sut and the specification. Ideally each issue found indicates an 
error (bug) in the sut, but that is not always the case. Other sources 
of issues are inaccuracies in the model, problems in the interface 
between the test system and the sut, and internal faults in the test 
tool. One wishes to eliminate these other sources of issues before 
actual testing starts.

In ordinary automatic testing the test tool executes a manually 
specified or recorded trace. As a rule of thumb test engineers say 
that 40% of the issues found in this kind of tests indicates a real 
error in the sut. A tiny fraction of these issues is caused by the test 
tool itself, or the interface with the sut. Most issues are caused by 
the fact that the trace used does not correspond to the current version 
of the specification, or the specification itself is incorrect.

In model-based testing the traces are generated automatically and 
on-the-fly from the specification. This guarantees that the traces used 
during the tests always correspond to the current specification. As one 
expects this implies that a larger fraction of the issues found indicate 
errors in the sut. In our experience about 75% of the issues found 
during model-based testing indicate errors in the sut. The fraction 
of actual errors depends on the amount of effort spent on making 
a high quality specification, the quality of the informal specification 
and requirements used as basis, and the size and complexity of the 
system.

The specification is a C lean function, hence the compiler can 
readily check relevant properties: i) are all used identifiers properly 
defined, ii) is the entire specification type correct, iii) are all alter
natives (transitions) reachable. Still, well typed specifications can go 
wrong. The problems with specifications that cannot be detected by 
the compiler can be divided in the following classes.

1) Relevant behavior of the system is not covered in the speci
fication. Since the test system is carefully designed to handle 
partial specifications, this cannot be detected. Missing parts of 
the behavior are not covered in the tests.

2) The specification contains design errors. Typically a family of 
transitions is too large or too small, or leads to the wrong target 
state. If the su t does a better (or at least different) job, the 
test system will notice the difference if an appropriate trace 
occurs and hence reports an issue. Consider the alternative 
for vSpec (On s )  (C oin c ) in the example of the previous 
section. The wrong condition and forgotten return of money if 
the state becomes too large are probably design errors.

3) The transitions are designed correctly, but the implementation 
is incorrect. A typical example is the use of lowercase iden
tifiers (variables) where an uppercase identifier (constructor)

is intended, or vice versa. Another source of problems is 
copy-paste programming used to define similar transitions, 
where not all necessary changes are made. In our example this 
occurs in the transitions for vSpec (On s )  (B u tt c o f f e e ) ,  
and vSpec (On s )  (B u tt Tea).

All these problems result in well typed models. If the implementation 
is based on such a model, it is not possible to detect the problems 
by testing. Nevertheless, they must be found and preferably before 
model-based testing starts.

Various approaches to find these kind of problems are: Inspection 
o r reviews of the specification. Problems can be found by manual 
inspection of the specification. As the model tells the whole story, 
there is nothing that prevents these errors from being detected by 
reviewing the code. However, due to their subtle nature, they might 
be missed.
M odel checking. If we have the right properties and the specification 
is available in a form suited for model checking, the problems can 
be found by model checking. Limiting factors are the availability of 
the model in a form suited for a particular model checker, and the 
availability of properties to check. If the problems are known we 
can often find such a set of properties quite easily, but that is too 
late. In our example we can require: p1) every transition preserves 
the amount of money, p2) the amount of money in the machine is 
always less then Max, and p3) if we receive a product, it must be 
equal to the requested product. Finding a complete set of properties 
that reveals all problems is in general quite tricky.
Testing properties o f the specification. Properties on transitions 
can be tested by the logical branch of GVst. The advantage is 
that everything can be done within the same framework, especially 
the C lean specification function can be used as subject of tests. 
The drawback is that testing gives less certainty for large systems 
(although for small specifications the logical test system provides a 
proof by exhaustive testing).
Validation by sim ulation. The specification can be used as basis for 
an interactive simulation. With some effort the simulator not only 
displays the current transition, but also depicts the state space that is 
covered in the current simulation. Such a simulation can reveal that 
(important) parts of the behavior are missing, as well as problems 
with individual transitions. This requires a thorough observation of 
the shown behavior. Since the state space is discovered step-by-step 
by the user, the chances of finding the problems are quite good.

Each of the above methods can in principle find problems in the 
specification, but none of them can guaranteed this. Each method 
either requires human spotting of problems, or human formulation of 
properties revealing the problems.

In the remainder we describe esm V iz. It combines model-checking 
of properties on transitions with validation by step-wise simulation. 
Together with GVst, this covers a broad range of tools to investigate 
the quality of models.

IV . VALIDATION OF SPECIFICATIONS WITH esm Viz

In this section we describe the web browser-based simulation 
tool, esm V iz, that we have created to determine the quality of 
specifications. The tool also gives an impression of the behavior 
specified by the model, and checks user defined predicates on the 
transitions encountered. Simulation is useful to give non-experts a 
good impression of the specified behavior. The GUI of esm V iz is a 
screen with the following elements (Fig. 2(a)): 1. A list of found 
issues. The list is empty in Fig. 2(a). 2. The explored model as 
an Extended State Diagram (ESD). 3. Within the ESD the set of 
possible active states determines the inputs that can be given. These 
are enumerated as buttons that the user can press to advance the 
system one step. In Fig. 2(a) the active states are S  =  {0, 20}, and 
init (S ) =  { B u ttC o ffee , B u ttT ea , Coin10, Coin20, Sw itchO ff} .
4. Commands for navigation purposes, resetting the exploration, and 
so on. 5. The current trace, as explained in Sect. II. Here the trace
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Issues found:

(20,switch0ff,[],0ff): value is not preserved in this transition, value s+value ¡=20, and value o+value t=0 
(20,But Tea,[Cup Coffee],0): The required product is unequal to the delivered product!
(30,Coin 20,0,50): Value of target state 50 larger than Max (40).
(10,But Tea,[Cup Coffee],0): value is not preserved in this transition, value s+value i=10, and value o+value t=20 
(10,But Tea,[Cup Coffee],0): The required product is unequal to the delivered product!
(40,Coin 10,0,40): value is not preserved in this transition, value s+value i=50, and value o+value t=40

Fig. 2. (a) The validation tool in action with the beverage vending machine case. (b) ESD showing some of the issues in the beverage vending machine.

has length 4. 6. Finally, a legend that tells what the elements of the 
rendering are.

The tool esm Viz creates an ESD of the behavior encountered 
during simulation which is rendered as a directed graph. In ESM 
diagrams a parameterized state is drawn as one state, in the ESD a 
state is created for each value of the parameters encountered during 
simulation. In the beverage vending machine example the states 
(On 10) and (On 20) are different in the ESD, but they are one state

in the ESM (Fig. 1). A transition s t  is rendered as an arrow 
between state s and state t, and has label i / o  at its edge.

A. The E S M  descrip tion
The ESD is created by esm Viz based on an ESM and instances 

of generic functions used for instance to display and compare values 
of the data types used for states S , input I  and output O. The ESM 
as described in Sect. II is a C lean value of type (ESM S  I  O):

: : ESM s i  o =  { s_0 : :  s
, d_F : :  Spec s i  o 
, o u t : :  s i  ^  [ [ o ] ]
, p re d  : :  (SeenTrans s i  o ) ^  [ [ S t r in g ]]} 

: :  SeenTrans s i  o : =  ( s , i ,[ o ] ,  s)

Field s_0 is so, and d_F is 5f  . The function o u t is needed to generate 
the output sequences to be used when esm Viz encounters a transition 
of type [o] ^  [ s ] . If such transitions can not occur in the used 
specification, this field can be undefined. Field p re d  is a predicate 
over the transitions seen during simulation as discussed in Sect. III. 
Each problem detected is reported as a nonempty list of strings.

While exploring esm, the tool collects all visited states, transitions 
and issues. This results in a partially known automaton, and is 
captured concisely with the following type:

: : KnownAutomaton s i  o
=  { t r a n s  : :  [ SeenTrans s i  o]

, i s s u e s  : :  [(SeenT rans s i  o , [ S t r in g ])]  }

Encountered states can be extracted easily from the seen transitions 
and are not recorded separately. Transitions that correspond to an 
issue are drawn in red.

The tool esm Viz also indicates the transitions that are part of 
the current traces. For a nondeterministic specification there can be 
multiple traces active. We record this as a list of transitions that is 
possible in each step of the trace.

: : T race  s i  o : =  [[SeenT rans s i  o ]]

Trace transitions are drawn in blue with larger arrowheads.
For implementation reasons it is convenient to record the set of 

active states. For a nonempty trace these are exactly the states in

the after set of the current traces. Let this set after k  steps be 
Sk. Each state in Sk is rendered with a red interior. States are 
displayed as circles, where esm .s_0 has a double border. Initially, 
So =  {esm .s_0}.

The user can choose one input of init(Sk ), which is the set of 
all possible inputs. This set of inputs is empty for a final state. The 
number of possible inputs is limited (by default 50). Given a concrete 
choice i G init(Sfc ), esm Viz adds all transitions from the current 
states that correspond to this input. For transition specified by P t  o t  
in spec, the output and target state to be used are immediately clear. 
For transitions specified by a function F t f  of type [o ]b { s] , the 
function esm .ou t is used to determine the outputs and target states 
of transitions. If the target states of these transitions exist the arrows 
go to the existing states, otherwise the states are added to the ESD. 
If the transitions are already in the ESD, they just have to be painted 
red, otherwise they are added. The new transitions are also added 
to the traces, and the existing part of the trace is pruned to reflect 
the new extensions. The set of new states Sk+i is computed with

Sk+i =  { t\s  G Sk A s ----> t G Ôf }.
The system determines for each known state whether the user has 

‘discovered’ all outgoing edges, i.e. all edges with i in the init of that 
state. In that case, the state is rendered with a blue interior instead 
of a light grey default one. This provides a strong clue which part of 
esm has been fully explored.

Pressing the button labeled Back removes the last transition from 
each trace. The known automaton is not affected by going back in the 
trace. The browser’s back button acts as undo action. With the Add all 
button all transitions leaving from the current states are added. These 
transitions are not added to the trace, nor effect Sk. Using an integer 
edit field, adding transitions can be done recursively n  steps deep. 
Pressing Prune removes all transitions and associated issues that do 
not belong to the current trace. The Reset button brings the esm Viz 
tool in its initial state, only the state s o is displayed. The trace can 
be removed by the button Clear trace, the states and transitions in 
the ESD are not effected by this action.

The current state can be changed by clicking on a state in the 
diagram. If this state is part of the trace or reachable from an active 
state in one step the trace will be adapted accordingly, otherwise a 
new trace starts at that node.

B. E xam ple

Here is the beverage vending machine esm specification:

vendingESM : : ESM S ta te  In p u t O utput 
vendingESM
=  { s_0 =  O ff, d_F =  vSpec, o u t =  u n d ef, p re d  =  h e a l th y  }
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where h e a l th y  checks p1 -  p3 (Sect. III). An ESD showing all issues 
discribed by h e a l th y  is depicted in Fig. 2(b).

h e a l th y  : : (SeenT rans S ta te  In p u t O u tpu t) ^  [ [ S tr in g ] ]  
h e a l th y  ( s , i , o ,t )
=  [ i f  (v s+ v i =  vo+ v t) / /  value preservation in transition? (p1) 

["v a lu e  i s  n o t  p re s e rv e d  i n  t h i s  t r a n s i t i o n ,  "
, "v a lu e  s+ v a lu e  i= " , to S t r in g  (v s+ v i)
, ", and  v a lu e  o+ value  t= "  ,to S t r i n g  (v o + v t)] []

, i f  (vt>Max) / /  value o f target state within bound? (p2)
[ "V alue o f  t a r g e t  s t a t e  " , to S t r in g  v t  
,"  l a r g e r  th a n  Max (" , t o S t r i n g  Max, " ) . " ]  []

, case ( i ,  o) o f / /  obtained the ordered product? (p3)
(B u tt p , [Cup q ])  | p  = !=  q

=  ["The r e q u i r e d  p ro d u c t i s  unequal"
, " t o  t h e  d e l iv e r e d  p ro d u c t!"  ]

_  =  []
]

where v s  =  v a lu e  s ; v i  =  v a lu e  i  
vo =  v a lu e  0 ; v t  =  v a lu e  t

V. I m p l e m e n t a t io n

The esm V iz tool has been written in C lean, using the iTask 
toolkit [8]. Despite its conciseness (800loc) it offers a fair amount 
of functionality (see also other tools in Sect. VI). In this section we 
present the most interesting parts of the implementation. These are 
the main structure of the GUI (Sect. V-A) and the integration of the 
ESD rendering tool G raphviz [3] that we used in the application 
(Sect. V-B).

A. The M a in  G U I S tructure: Itera ting  iTasks
The main GUI structure of esm V iz is an iteration of the main tool 

task function DiGraphFlow. As discussed in Sect. IV, it provides the 
user with a number of elements, expressed as a list of choices (the 
arguments of orTaskL below which folds the basic iTask - | | -  choice 
operator over the list):

DiGraphFlow ( k a ,a s , t r a c e ,n )  1

=  orTaskL 2
[issuesT oH tm l k a . i s s u e s  !>> s t a t e  3

,chooseTaskV (so rtB y  (A (a ,_ )  (b ,_ ) .a < b )  4

[ ( re n d e r  i , s t e p  i )  \ \  i ^ p o s s i b l e l n p u t s  esm a s ] )  5 

,chooseTask
[ ( "Back" , back) 7

, ( "P ru n e" , p ru n e ) 8
, ( "R eset" , re tu rn _ V  (newKA, [esm .s_0] ,[]  ,n ) )  9

, ( "C le a r t r a c e "  , re tu rn _ V  ( k a ,a s , [ ]  , n ) )  ] 10

,stepN  <<! tra c e H tm l t r a c e  <<! le g e n d  ] 11

Note the correspondence between this definition and the GUI as 
displayed in Fig . 2(a) . The list of found issues are displayed before 
the ESD editor (line 3); the possible inputs init are defined in 
lines 4-5; the navigation commands are summarized in lines 6-11; 
and finally, the trace and legend are displayed in line 11 The s t a t e  
task is given below:

s t a t e  1

=  e d itT a s k  "OK" 2

(mkDigraph ThisExe 3

( k a , esm .s_0 , a s ,  a llE dgesF ound  esm k a , 4
map f s t  k a . i s s u e s ,  f l a t t e n  t r a c e  )) 5

=>> A d i g ^  l e t  6 
( a s ‘ ,t r a c e ‘) =  f in d S e le c te d S ta te s  d ig  ka a s  t r a c e  7

in  re tu rn _ V  ( k a , a s ‘ , t r a c e ‘ ,n ) 8

The iTask e d itT a s k  l v  combinator creates an editor with initial 
value v  with which users can create new values of the same type as 
v ’s type. W hen the button labeled with l has been pressed, then the

new value is returned by this editor and the task is done As discussed 
in Sect. IV, the user can select a new state . For reasons of space, we 
do not show the code of the other functions

B. The R endering  o f  the E xp lo red  A u tom a ton
By far the most intricate component of the GUI is the ESD editor. 

Creating attractive renderings of directed graphs is known to be a 
hard problem. Fortunately, we can rely on other tools to solve this 
problem. Here we have used the G raphviz tool set [3]. Directed 
graphs are described using the d o t  language. Given a d o t  text file, 
the dot tool can be invoked to create a rendering in various formats 
(we will use the g if  output). Note that this interface is text-based, 
whereas editors in the iTask toolkit are type based. We can embed 
the text based tools of G raphviz in the type based iTask toolkit in a 
compositional way by defining a suitable collection of data types that 
describe an ESD as a directed graph. This collection of data types 
captures the d o t  language. The relevant top level type definitions 
are:

: : D ig raph  =  D ig raph  S t r in g  [G rap h A ttrib u te ]
[NodeDef]
(Maybe S e le c te d lte m )

: :  NodeDef =  NodeDef I n t  [N odeA ttribu te ] [EdgeDef]
: :  EdgeDef :== ( I n t ,  [E d g e A ttr ib u te ])
: :  S e le c te d I te m  =  Node I n t

A (D igraph name a t t s  nodes item ) value represents a directed 
graph. A  directed graph has nodes, each of which is identified by 
a number, and is connected with other nodes by means of edges. 
Graphs, nodes, and edges have attributes. G raphviz supports an 
extensive set of attributes (almost 150) that can be used to alter and 
tweak the output. In d o t , attributes are specified as name = value 
pairs. Some attributes are shared by graphs, nodes, and edges. We 
have represented attributes separately for graphs, nodes, and edges, 
each as a list of unary data constructors. For instance, for graph 
attributes we have GAtt_name value pairs. A single generic function 
prints these values as correct d o t  expressions. The result is that 
we have both a typed representation of d o t  expressions (D igraph 
values) as well as a textual representation (printing such a value with 
to S tr in g ) .  The function mkDigraph yields the D igraph  value that 
represents the currently explored ESD.

The iTask editor for D ig raph  values performs the following 
actions for a d :: D iGraph value identified by name. First, compute 
e = t o S t r i n g  d and save e in file name.dot. Second, invoke dot on 
name.dot, which yields a rendering as name.gif. Third, invoke dot to 
create a name.map file to allow the user to select states. Fourth, alter 
the lines in name.map to invoke a script that sends the label of the 
selected state to the server application. Finally, generate the proper 
HTML to be included in the application page. The server application, 
when receiving the label of a selected state, updates the corresponding 
D igraph  value to reflect the change. Now the application continues 
with the new D igraph  value.

V I. RELATED WORK

The mCRL2 tool set [?], [?] uses a process algebraic specifica
tion language, mCRL2 [?], to describe distributed, communicating 
systems. It has a functional style data language with recursive types, 
data constructors, functions, lambda-abstraction, and structured data. 
It comes with an extensive number of tools (15) for analysis purposes. 
Five are relevant to our work: with xsim  a user can explore a 
linearized mCRL2 specification in a similar way as with our tool, 
using a GUI (the simulation tool sim  has a command line interface): 
the user can select actions, after which the tool shows the resulting 
state. Besides interactively exploring the mCRL2 specification, the 
tool set also allows to render the complete state space: N oodleView 
(for 2D rendering) and FSMView (for 3D rendering). Before this is 
possible, the state space needs to be generated with lps2lts.
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The TorX tool set [9], [?] is a model based test tool to check 
conformance of real suts, based on the ioco theory of testing. The 
specification is a Labeled Transition System (LTS), or one that is 
derived from a higher level specification language that converts to 
LTS (e.g. m CRL2 described above). The tool uses the specification 
to automatically determine inputs, observe outputs from the sut, and 
make a final verdict. In this sense, it is not useful for exploring a 
specification. However, once a test run has been created, the user 
can explore the actual trace which is depicted as a message sequence 
chart.

The U ppaal tool set [1], [7] can be used for both validation and 
verification (using model checking) of time-based systems. Validation 
is done by means of a graphical simulator of a time-based automaton 
specification. The automaton specification is basically a labeled 
transition system with timing constraints. U ppaal allows for simple 
data types, clocks, and constraints on these clocks. The user can create 
specifications in an intuitive, graphical way. The user can stepwise 
direct the system’s behavior, or generate a random trace.

The esm V iz tool differs with the mCRL2 approach in that we 
use a single modeling formalism. Except for the 3D rendering all 
of the functionality of the mCRL2 tool set is available in esm Viz. 
The TorX tool set is really a model based testing harness, and is less 
suited for exploration purposes. Specifications within U ppaal can be 
created graphically. In esm V iz specifications are given as a function, 
out of which a graphical approximation is ‘discovered’ by the user or 
by the system. In our opinion this combines the best of both worlds: 
the succinctness of functional programming with the intuitive appeal 
of a graphical rendering.

V II . E x p e r ie n c e s

In order to judge the quality of esm Viz 10 master students in 
computer science studied some test cases with and without esm Viz. 
These students are literate C lean programmers, have a basic un
derstanding of model-based testing with GVst and the specifications 
needed (but no hands-on experience). After an introduction to e sm - 
Viz and playing with an example similar to the beverage vending 
machine in this paper the students were asked to locate problems 
in two other case studies. The examples were heavily parameterized 
specifications of a number guessing game and a telephone number 
database that contains potentially over one million states. Drawing 
all these states makes finding the problems only harder. The errors 
in the specification can however all be found by traces of about ten 
to twenty transitions.

The students found esm V iz very handy to get a feeling for the 
behavior of the specified system. Everybody found it much easier 
to understand a specified system with the tool than without. Finding 
errors in the specification by simulation remains hard, but the tool 
makes it easier. The same holds for finding the source of issues found 
by GVst. This is consistent with the general observation in all kinds of 
testing: finding issues is one thing, but finding their cause is another.

V III .  C o n c l u s io n s

There are two kinds of conclusions from the work described 
in this paper. First, the specification simulator esm V iz described 
in this paper really helps a lot to understand the behavior of the 
extended state machines used as specification in model-based testing. 
Although the compiler of the statically typed functional programming 
language used as carrier of these specifications checks the models, 
the models can still contain errors. Finding these semantical errors 
is hard. The simulator helps in locating these problems, especially if 
an appropriate constraint on transitions or states is known. Second, 
implementing such a tool with iTasks is a real pleasure. Integrating 
G raphviz with iTasks turned out to be smooth. Implementing a 
browser interface for esm V iz using the iTask system imposes some 
restrictions on the layout of the GUI, but works well. The different 
possible user actions are modeled each by an iTask. The iTask system

is well suited to compose these tasks in a flexible way and takes care
of rendering them.
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