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Numerical Analysis of Aerodynamic Characteristics of Iced 
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and 

George Barakos‡ 
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Based on a 3-D rotor icing model and the CLORNS code, aerodynamic characteristics of 

iced rotors in forward flight are calculated and analyzed. At first, ice accretion on the UH-1H 

rotor in hover, and ice accretion on the SRB rotor in forward flight are calculated. The results 

are used to validate the employed numerical simulation method through comparisons with 

experimental data. Then, the degradation of the aerodynamic characteristics of the iced SRB 

rotor is analyzed, and the variation of the pressure coefficients on the rotor blades is discussed 

in detail. Finally, parameters, such as the icing time, the temperature, and the icing position, 

are quantified, and conclusions are obtained. The influence of the ice accretion on the sectional 

aerodynamic characteristics increases along the spanwise direction, and deicing near the 0.7R 

blade section should be preferred at the beginning of the ice accretion. Finally, it is concluded 

that ice will not be removed in time if the deicer is activated based solely on the variation of 

the rotor aerodynamics. 

NOMENCLATUREH 

W  = vector of conservative variables 
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F  = vector of convective fluxes 

Fv  = vector of viscous fluxes 

fh  = thickness of the water film, m 

fu  = mean velocity of the water film, m×s-1 

uref = absolute velocity of the unit on the blade, m×s-1 

A  = area of the cell on the blade surface, m2 

fcen = centrifugal force, kg×m×s-2 

dt  = actual duration time of the centrifugal force working on the water film in the cell, s 

l   = unit vectors of the cell along different direction (I, J, K) 

ice  = density of ice，kg×m-3 

iceh  = thickness of the ice, m 

m  = mass in the mass balances, kg×s-1 

q  = heat in the thermal balances, W×s-1 

c  = chord, m 

Δt = interval time in icing model, s 

ΔT = interval time of coupling CFD solver with icing model, s 

  = droplet volume fraction 

w  = density of water, kg×m-3 

q
r

  = absolute velocity, m×s-1 

q

r
 = convective velocity, m×s-1 

dd  = diameter of the water droplet, m 

a   = dynamic viscosity of the air, N×s×m-2 

Cd = drag coefficient of the water droplet in air 

Red = relative Reynolds number 

S  = possibility of that a grid cell becomes a shadow zone cell 

η   = convergence factor in the shadow zone model 
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Subscript 

d  = water droplet 

a  = airflow over the rotor 

f   = water film 

imp = water impinged on the surface 

out = water flowing out of the cell 

in  = water flowing into the cell from adjacent cells 

so  = water freezing on the surface 

evp = water evaporated and sublimated in the cell 

p  = present cell 

cri = defined value of the shadow zone cell 

Abbreviation 

3-D = three dimensional 

2-D = two dimensional 

INTRODUCTION 

Ice accretion is a significant factor limiting the safe flight envelope of aircraft [1]. When helicopters fly in icing 

conditions, ice accretion may occur on blades of the rotor, and the aerodynamic shape of the rotor may be degraded 

[2, 3]. Consequently, research in the influence mechanism of the ice accretion on the aerodynamic characteristics of 

rotors is an important issue in helicopter safety. 

At present, there are few experimental works on the aerodynamic characteristic of iced rotors in the public domain 

[4-7]. Korkan [4, 5] studied the aerodynamics of helicopter model rotors with attached simulated ice shapes using 

experiments. Lee [6] also studied iced rotors in a wind tunnel at full scale. The rotor was a replica of the main rotor 

of the UH-1H helicopter, hovering in an artificial cloud [7]. Theses measurement for the aerodynamic characteristics 

of iced rotors only approximate real ice accretion, due to the limitations of the experiments and safety considerations. 

With the development of computers, numerical simulation methods provide the possibility to obtain the aerodynamic 

characteristic variation of rotors in ice accretion. 
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In numerical simulation methods for iced rotors, predicting accurate ice shapes is a key problem. In recent years, 

many numerical codes have been successfully developed to simulate ice accretion on aircraft [8-10], for example: 

LEWICE, ONERA, FENSAP-ICE, POLIMICE, etc. There are also some developments in icing models and the icing 

prediction methods [11, 12]. However, current works mainly focus on fixed-wing aircraft. Rotors are operated in a 

strong non-linear vortex flowfield containing 3-D flow features, unsteady flow and centrifugal forces [13, 14]. These 

features were not considered in previous studies. 

In addition to complex simulation methods for predicting ice accretion on rotors, some simplified methods are 

also developed [15-22]. Based on the Lewice3D, Narducci [15, 16] developed an analysis method to evaluate the ice 

accretion for a helicopter rotor. Rajmohan [17] developed a quasi-steady numerical method for ice accretion on 

helicopter rotors in forward flight using Lewice3D. Bain [18] used the same approach to predict ice accretion and ice 

shedding for rotors in forward flight. All these methods extracted representative airfoil conditions for blade sections 

at different radial and azimuthal locations, and predicted the ice accretion using 2-D simulations, as mentioned in 

reference 16. Ice accretion on rotors can be conveniently achieved using these methods, but it may be difficult to 

obtain accurate 3-D ice shapes. In addition, an aerodynamic method based on a simplified icing model, ignoring 3-D 

effects and the centrifugal force, may not yield accurate results. Based on a simple assumption that liquid water flow 

and mass transfer is mainly affected by the shear stress and the centrifugal force, Zhao [19] studied the ice accretion 

on rotor in hover considering the centrifugal force into account. Similarly, Wang [20, 21] developed an icing model 

accounting for the influence of centrifugal force. They both obtained some meaningful results and verified the 

importance of the centrifugal force in the icing process on rotors. However, the rotor icing models need to be further 

developed, and the researches on the mechanism of ice accretion and iced rotor aerodynamics are also need for more 

reliable icing simulation. 

In addition, there are still other questions in the aerodynamics of iced rotors. Ice accretion is an evolutionary, 

complex process, affected by numerous weather and flight parameters, such as the advancing ratio, the temperature 

and the icing position. At present, a parametric analysis of the aerodynamic characteristics of iced rotors has not been 

carried out.  

Based on the previous work [19, 23] with the Chinese Laboratory of Rotorcraft Navier-Stokes (CLORNS) code 

[24], a method for studying the influence of ice accretion on aerodynamic characteristics of rotor is developed, which 
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contains several improvements, such as a shadow zone dispersion model in Eulerian method and a developed 3-D 

icing model accounting for the velocity of the water film. The main objective of the present work is focused on 

developing better understanding of the mechanism of ice accretion and the effects of icing on the aerodynamics of the 

rotor in forward flight. The experimental data of the  MS(1)-317 [25], NACA0012  [26], and NACA23012 airfoils 

obtained at the NASA Langley Low Turbulence Pressure Tunnel (LTPT) [27], the Helicopter Icing Flight Test (HIFT) 

program [28] and the  Spinning Rotor Blade (SRB) developed at the Anti-icing Material International Laboratory [29] 

are used to validate the present numerical method. The aerodynamic characteristics of the iced SRB rotor in forward 

flight are calculated and analyzed, and the variation of the pressure coefficients on the rotor blade surfaces are detailed. 

Then, the effects of the icing parameters, such as the temperature, the icing time, and the icing position, on the 

aerodynamic characteristics of rotor in forward flight are calculated and analyzed systematically, and some new 

conclusions are drawn. The novelty of the paper is hinged upon our claim that this is one, if not the first, study of the 

aerodynamic characteristic of 3D iced rotor without 2D icing assumptions. 

NUMERICAL METHODS 

The proposed numerical simulation approach for the ice accretion on rotors consists of several modules, including 

the CFD solver module, the Eulerian method for obtaining the droplet impingement property on the rotor, the 3-D 

rotor icing model and the grid regeneration for the iced rotor. The procedure of ice accretion on a rotor is illustrated 

in Figure 1. 

 

Figure 1. Overview of the numerical simulation process for ice accretion on rotor. 

The Chinese Laboratory of Rotorcraft Navier-Stokes (CLORNS) code is employed to predict the complex 

unsteady rotor flowfield [24]. Grids around the rotor blade are generated by interpolating and folding airfoil grids 
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constructed by solving Poisson’s equation. Structured Cartesian grids are used as the background grid of a chimera 

system. The governing equations in integral form for predicting the flowfield of the rotor are described as: 

( ) 0

S

Wd F F dn s
t




 + − =


 

r r rr
                                                         (1) 

In CLORNS, a disturbance diffraction method for hole-cell identification and a minimum distance scheme for 

donor cell searches are used with high efficiency and universality. The explicit Runge-Kutta and implicit Lower-

Upper Symmetric Gauss-Seidel (LU-SGS) methods are both available for solving the unsteady Reynolds-averaged 

Navier-Stokes equations. Three alternative spatial discretization schemes are applied in the code, including a second-

order central difference scheme, a third-order Roe-MUSCL scheme, and a fifth-order WENO-Roe scheme. 

Based on the rotor flowfield obtained by CLORNS, the Eulerian method is applied for the simulation of the water 

droplet field around the rotor. The continuity and momentum equations for droplets around a rotor in 3-D could be 

simplified as: 
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where, K is given as: 
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In the process of supercool droplets movement, there is always a region where no droplets pass through, due to the 

presence of the blade in their motion path. This region is called the shadow zone or the shadow region, and the apparent 
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density (  ) in the Eulerian method is very low. Based on this, a shadow zone dispersion model is presented. In this 

model, the formation of the shadow zone is accelerated to avoid numerical problems, such as loss of stability of the 

code and density impulses [30]. 

The variable S, is related to the variation of  , and denotes the possibility of that a grid cell becoming a shadow 

zone cell. This is updated with each iteration step. If a cell is marked as a shadow zone cell, the cell is removed from 

the computational domain. Figure 2 shows a flowchart of the calculation of the variable S during an iteration step. 

 

Figure 2.   Flowchart of the calculation of the variable S. 

Since there are some differences between the ice accretion on the rotor and on the fixed wing [31], the 3-D rotor 

icing model considering the centrifugal force and the water film movement is applied to predict ice accretion. In this 

model, water droplets impinging on a unit area turn into a thin, continuous film of water covering the blade and iced 

surfaces. The velocity of the water film is determined by the airflow and the centrifugal force due to the rotor rotation. 

Figure 3 shows the water film movement in a cell on the blade surface, according to the employed model. 

Current cell

no

yes
( ) 0dn q q − 

r r r

1 1 1( )n n n n n
P P p p pS S    − − −= −  −

1n n
p p

n
p cri

 

 

− 




Next cell

-1n
PS =？

-1 2n
PS = -1 0n

PS =

Is there an 

adjacent cell with 

a SP of 2？

no

yes

Is it adjacent 

to the surface？

yes

no

-1 0n
PS =

-10 <2n
PS

-1 2n
PS =

Current cell is a 

shadow zone cell

0n
PS =1n

PS =

Current cell is not a shadow zone cell

Shadow region

Impingement 

region

In an iteration step

SP is in a range from 0 to 2



 
8 

 

Figure 3. Water film movement on the surface of the blade. 

In the rotor icing model, the mass and thermal balances are performed for each control cell: 

( ) = (t+ t)+ +imp f in f so out evpm m t m m m m m+ +  +                                              (6) 

( ) + + + + (t+ t)imp f evp so hc cnd fin out
q q t q q q q q q q+ + = +                                      (7) 

where, imp stands for impingement, evp for evaporation and sublimation , so for solidification, f for the water film, in 

and out stand for the movement of water film, hc for convection heat transfer, and cnd for the heat from the deicer. 

Introducing the freezing fraction F, it is calculated by solving the mass and thermal balance equations, which 

assumes a freezing temperature. Then, the water freezing on the surface and the height of the water film are defined 

as: 

( )so f imp in evpm F m t m m m =  + + −                                                      (8) 

( )f imp f in unith m m t m A = + +                                                              (9) 

imp unit refm LWC A u=                                                                        (10) 

The typical thickness scale of a water film on the aircraft is 1×10-4m, and a linear velocity distribution normal to 

the film is assumed [32]. In addition, conclusions of previous investigations indicate that the centrifugal force also 

affects the water film movement, displacing it towards the blade tip [19, 23].  The mean velocity of the water film on 

the blade surface and mout can be expressed as:  
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With the ice amount (mso) is determined, the ice volume and thickness are calculated using: 

/ice so iceV m = ,  /ice iceh V A=                                                         (12) 

CFD grid nodes on the iced surface must be moved due to the ice accretion. Assuming that the ice grows in the 

normal direction to the surface, the displacement of each node on the iced front is hice. 

CALCULATED RESULTS AND ANALYSES 

A. Aerodynamic characteristics on clean and iced NACA23012 airfoil 

The experimental data for an iced NACA23012 airfoil, obtained at the NASA Langley Low Turbulence Pressure 

Tunnel (LTPT) was selected to validate the accuracy of the employed numerical method. The LTPT measurements 

were at Mach number of 0.208 and at Reynolds number of approximately 2×106 [27]. Figure 4 shows the modified 

NACA23012 airfoil and the grids used in the present study. 

 

Figure 4. The modified NACA23012 airfoil and the grids around the airfoil. 

Figure 5 shows the aerodynamic characteristics of the modified obtained from different turbulence models. As 

seen, the results are all close to the experiment data, and the k-ω turbulence model is ever so slightly closer to the test. 

With this in mind, the k-ω turbulence model is used in the subsequent calculations.  
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(a) CL                                                                        (b) CD 

Figure 5. The NACA23012 airfoil and the grids around the airfoil. 

B. Validation of aerodynamic characteristics on the clean rotor 

The flight tests for AH-1G performed at the NASA Ames Research Center were selected for validation. The rotor 

was two-bladed, of rectangular-platform, and teetering. The blade had a linear twist of -10° from blade root to blade 

tip, and the blade aspect ratio was 9.8. The experiment were made at an advance ratio of 0.19 and a tip Mach number 

of 0.65 [33]. 

Figure 6 shows pressure coefficient distributions at 0.6R and at different blade azimuths. Figure 7 shows the 

sectional normal force of different blade sections. From the figures, it can be seen that the agreement between 

calculated results and experimental data is good, indicating that the present CFD method is able to approximate the 

aerodynamic characteristic of the clean rotor in forward flight. 

 

(a) 0.6R, 30° azimuth angle                             (b) 0.6R, 90° azimuth angle 

Figure 6. Pressure coefficient distributions of different blade sections in forward flight. 
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(a) r= 0.6R                                                            (b)r= 0.9R 

Figure 7. Sectional normal force coefficient of different blade sections in forward flight. 

C. Validation of droplet impingement property and ice shape on airfoil 

The experimental data of droplets impingement on the MS(1)-317 airfoil [25] was selected to validate the accuracy 

of the employed numerical method for the droplet impingement property. The airfoil chord was 0.9114m, and the 

inflow velocity was 105.4m/s. The median volumetric drop diameter was 11µm, and the angle of attack was 0º and 

8º. Figure 8 shows the comparison of the droplet impingement property on the airfoil between the calculated results 

and experimental data. As seen, the result obtained from the present method are close to the experiment data, indicating 

that the present method is able to obtain a reliable droplets impingement property. 

 

(a)AOA= 0º                                                                       (b)AOA= 8º 

Figure 8. Comparison of the droplet impingement property on the airfoil 
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The experimental ice accretion shapes on the  NACA0012 airfoil [26] were selected to validate the accuracy of the 

employed numerical method for the ice accretion. The chord was 0.5334m, and the inflow velocity was 67.05m/s. The 

median volumetric drop diameter was 20 µm, and the liquid water content was 1 g/m3. The total accretion time was 7 

minutes. Four different time intervals (420s, 105s, 70s and 35s) were selected to analysis the influence of the time step 

on the ice amount respectively. 

Figure 9 shows the comparison of the ice shapes on the airfoil between the calculated results and experiment data 

at different time intervals. As seen, the calculated results are all close to the experiment data, and the influence of the 

time step on the ice shape is decreasing with the reduction of ΔT. Additionally, the difference of the ice shape between 

the calculated result and experiments is bigger when ΔT is small (ΔT=35s). As a result, a moderate ΔT (one third of 

the total icing time) was selected in the subsequent calculations. 

 

Figure 9. Comparison of the ice shape on the airfoil with different time steps 

D. Validation of numerical simulation of ice accretion on rotors 

The Helicopter Icing Flight Test (HIFT) program [28] was selected for validation. The rotor of the Bell UH-1H 
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accretion time was 3 minutes. The median volumetric drop diameter (MVD) was 30 µm, and the liquid water content 

(LWC) was 0.7 g/m3.  

Considering that ice accretion mainly occurs on the leading-edge of the blade, several different blade grids were 

used in this case. Their difference was the grid refinement near the leading-edge of the blade, as shown in Figure 10. 

Blade A (the coarse grids) had a resolution of 189×49×131, and there were 129 points on the surface of each blade 

section. Blade B (the Medium grids) had a resolution of 263×49×131, and there were 203 points on the surface of 

each blade section. Blade C (the refined grids) had a resolution of 341×49×131, and there were 281 points on the 

surface of each blade section. For studying the influence of the nodes in the J and K directions, Blade D had a resolution 

of 263×39×131, Blade E had a resolution of 263×59×131, Blade F had a resolution of 263×49×101, and Blade E had 

a resolution of 263×49×161. The background grids had a resolution 201×99×181. 

 

Figure 10. Seven types of the blade grids 
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Figure 11 shows the ice shapes at r=0.45R obtained for the different blade grids. As seen, the results obtained from 

the medium and refined blade grids (Blade B, C, E, F and G) are nearly the same, and the results obtained from the 

coarse ones (Blade A and D) lose some information near the ice horn and the ice fringe. After a systematic 

consideration of the computational accuracy and time, the medium grids (Blade B) was used in the subsequent 

calculations. 

 

Figure 11. Sectional ice shapes obtained from different types of blade grids.  

Figure 12 shows the sectional ice shapes at r=0.45R and r=0.7R and the sectional maximum ice depth variation in 

the spanwise direction from blade root to blade tip. In the figures, the agreement between computations and 

experiments is good, and is better than published results in reference 15.  
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(a) r=0.45R                                                               (b) r=0.7R 

 

(c) Maximum ice depth of the blade in the spanwise direction. 

Figure. 12 The result of ice accretion on the UH-1H rotor in hover. 

The experimental data of the Spinning Rotor Blade (SRB) developed at the Anti-icing Material International 

Laboratory [29] was selected to validate the accuracy of the numerical method for ice accretion on rotors in forward 

flight. The rotor was a 1/18-scale model of a small helicopter. The blades were untwisted, and made of NACA 0012 

sections with a constant chord 0.07 m and a root cut out of 0.075 m. The rotor diameter was 0.78 m. The forward 

flight speed of the rotor was 15 m/s and the blade-tip speed was 130 m/s, giving an advance ration of 0.115. For the 

experiments, the LWC was 0.84 g/m3, and the MVD was 27 µm. The ambient temperature was -15℃. In addition, the 

rotor operated at a fixed collective of 6° with zero cyclic. 

Figure 13 shows sectional ice shapes, and ice thickness at the blade tip. In the figure, the ice amount calculated by 

the proposed method is close to the experimental data, and it is better than results with the empirical formula of 

reference 29 and published results of reference 18.  
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   (a) Sectional ice shapes                                     (b) Ice thickness at the tip 

Figure 13.  The result of ice accretion on the SRB rotor in forward flight. 

In references 15 and 18, the traditional numerical methods for ice accretion on rotor were used. In these methods, 

representative airfoil conditions for blade sections at different radial and azimuthal locations were extracted, and the 

ice accretion was predicted by using 2-D simulations. Through the comparison of calculated results of the ice accretion 

on rotors, the proposed numerical simulation method with a 3-D icing model can provide a more reliable ice shape for 

analyzing the influence of the ice accretion on aerodynamic characteristics of rotors. 

E. Influence of ice on aerodynamic characteristics of the rotor in forward flight 

The iced SRB rotor at the conditions mentioned above was selected to analyze the influence of ice accretion on 

the aerodynamic characteristics of rotors. According to the experimental parameters in the ice accretion process [29], 

the rotor operated at a fixed collective of 6° with zero cyclic. Figure 14(a) shows the comparison of lift coefficient 

(CL) between the clean and iced rotors. In the advancing blade, the lift coefficient changes between 0° and 120° 

azimuth angles, and it decreases by a maximum of 18% near 60° of azimuth. On the retreating side, the lift coefficient 

changes between 250° and 330°, and decreases by a maximum of 9% near 300° of azimuth. Figure 14(b) shows the 

comparison of the torque coefficient (CQ) between the clean and iced SRB rotors. There is an obvious increase when 

ice forms on the blade surface. 
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 (a) Lift coefficient                                                        (b) Torque coefficient 

Figure 14. Distributions of the lift coefficient and torque coefficient of clean and iced SRB rotors. 

Figure 15 shows the pressure distributions on the blade surface along the azimuth. As seen, the change in pressure 

distribution due to the ice accretion increases along the spanwise direction from the blade root to the blade tip, and the 

variation of the pressure on the lower surface is much bigger than that on the upper surface. Due to ice near the leading 

edge of the blade, there is a significant change in the movement of the airflow over the blade surface, resulting in a 

low pressure area emerging on the lower surface compared with the clean one. Overall, the low pressure area on the 

lower surface extends from the middle of the blade to the blade tip, and is close to the leading edge of the blade.  
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Figure 15. Pressure distributions on the blade surface at different azimuth angles with and without ice. 

Considering the decrease of lift coefficient at 60° of azimuth is the most significant on the advancing side, Figure 

16 shows the sectional pressure distribution of the blade at 60° of azimuth with and without ice. At 0.45R, there is no 

significant variation in the pressure distribution. The ice amount is small, and the iced section is of a streamlined shape 

as shown in Figure 16(a). At 0.85R, the ice amount is larger, and there is an obvious horn-shaped piece of ice at the 

leading edge of the blade. The movement of the air flow is affected by it, and a low pressure area emerges on the 

lower surface of the blade, where flow separation is also observed. Similarly, Figure 17 shows the sectional pressure 

distribution of the blade at 300° of azimuth with and without ice. Since the rotor operated at a fixed collective of 6° 
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with zero cyclic in this case, the main difference is the relative velocity of the blade at different azimuth angles. At 

300° of azimuth, the relative velocity is smaller, and low pressure area due to the horn-shaped piece of ice is smaller. 

 

 (a) 0.45R section                                                               (b) 0.85R section 

Figure 16. Sectional pressure distribution of clean and iced blade at 60° azimuth angle. 

 

(a) 0.45R section                                                               (b) 0.85R section 

Figure 17. Sectional pressure distribution of clean and iced blade at 300° azimuth angle. 

Additionally, Figure 18 shows the 0.45R sectional pressure coefficient distribution at two azimuth angles. 

Compared with the clean rotor, the pressure coefficient decreases on the lower surface and increases on the upper 

surface, causing the loss of sectional lift. However, the lift force is likely to increase, since the chord is longer by the 

accreted ice at the leading edge of the blade. As a result, there may not be a significant variation in the sectional lift 

force near the blade root, and there may even be a small increase of the lift force at certain conditions. 
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(a) 60° azimuth angle                                                        (b) 300° azimuth angle 

Figure 18. Sectional pressure coefficient distribution of clean and iced blade at r=0.45R section. 

Figure 19 shows the 0.85R sectional pressure coefficient distribution at two azimuth angles. Compared with the 

clean rotor, the pressure coefficient markedly decreases on the lower surface and increases on the upper. This variation 

of the pressure coefficient not only causes lift reduction, but may even lead to the formation of a negative lift force 

area. Since the sectional chord is longer, the ice accretion may provide the blade with additional lift, similar to the 

section near the blade root. This effect is, however,  smaller compared to the negative lift force and the loss of lift 

force, as shown in the figure. As a result, the reduction of lift force near the blade tip is stronger than that that near the 

blade root. 

 

(a) 60° azimuth angle                                                        (b) 300° azimuth angle 

Figure 19. Sectional pressure coefficient distribution of clean and iced blade at r=0.85R section. 
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Figure 20 shows the variation of the aerodynamic characteristics of the SRB rotor due to icing. With increased 

accretion time, the ice amount increases. Then, the lift coefficient decreases, and the torque coefficient increases. 

However, at the beginning of the ice accretion (t<40s), the increase of the torque coefficient is minor. So, if the deicer 

is activated only based on the variation of the torque coefficient, the ice on the blade will not be removed in time. 

 

              (a) Difference of the lift coefficient                                    (b) Difference of the torque coefficient 

Figure 20. Difference of Aerodynamic characteristics of the iced rotor in the icing process. 

F. Influence of the temperature on aerodynamic characteristics of the rotor in forward flight 

For studying the influence of the temperature on the aerodynamic characteristics of rotors in icing condition, the 

ice accretions on the SRB rotor at different temperatures were calculated. The other calculation parameters were the 

same as for the SRB rotor test. Figure 21 shows the sectional area of ice along the radial direction at different 

temperatures in forward flight. As can be seen, the sectional iced area gradually increases as temperature decreases. 
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Figure 21. Ice area on different blade sections in forward flight at different temperatures. 

Figure 22 shows the distributions of the lift (CL) and torque coefficients (CQ) of the blade at the different 

temperatures. In the advancing blade (near 60° azimuth), the ice formed on the blade at T=-10°C has the biggest 

effects on the lift force. At higher temperature (T=-5°C), the ice amount is smaller, and the lift force of the blade is 

not seriously affected. Although the ice amount at the lower temperature (T=-28°C) is much bigger, the lift reduction 

is not greatly affected. This is because that the rime ice at lower temperature has a streamline shape. Regarding the 

torque coefficient, there is a smaller increase at lower temperature and a larger increase at higher temperature.  

 

(a) Lift coefficient                                                         (b) Torque coefficient 

Figure 22. Distributions of the lift coefficient and torque coefficient of the blade at different 

temperatures. 

Figure 23 shows the distributions of the sectional pressure coefficient (CP) at -5°C and -28°C temperatures. At 

the higher temperature (T=-10°C), the pressure coefficient on the lower surface markedly decreases, and it is smaller 

than that of the upper surface from 0.0c to 0.1c along the chordwise direction. Therefore, there is a larger zone of 

negative lift force, especially near the blade tip, and this is the main reason for the lift reduction. Also, this phenomenon 

is not obvious near the blade root, since ice amount is smaller. At the lower temperature (T=-28°C), the pressure 

coefficient on the lower surface also decreases, but the area of the negative lift force is smaller compared with that at 

the highest temperature.  
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(a) T=-28°C                                                                   (b) T=-10°C 

Figure 23. Distributions of the sectional pressure coefficient at different temperatures. 

G. Influence of icing position on aerodynamic characteristics of the rotor in forward flight. 

At some icing conditions, there is always a small amount of ice on rotors before the rotor deicer starts. These ice 

shapes, albeit very small, will still have an effect on the aerodynamic characteristics of rotors.  

The SRB rotor was again selected as the clean, baseline, case. Figure 24 shows one of iced rotors and the sectional 

ice shape. There are 9 different iced rotors, and the icing extends from 0.29R to 0.93R at intervals of 0.08R, and for a 

total length of 0.048R. As shown, there are two transitions from iced to clean surface, and the length is 0.008R. These 

nine iced rotors are labeled from A to I. Note that the sectional ice thickness is very small compared to the chord, with 

a maximum thickness of only 0.015c. In the calculations, the advance ratio was set to be 0.2, and the blade-tip speed 

was 130 m/s. The rotors were operated at a fixed collective pitch of 10 degrees with a same periodic pitch (θ1c =7°, 

θ1s =-4°). 

               

             (a) Icing position on rotors                                      (b) The detail view of the ice shape 
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Figure 24. Iced rotors with different icing positions. 

Figure 25 shows the lift coefficients of the iced rotors next to the clean. As can be seen, the change in rotor lift 

mainly occurs on the advancing blade, from 30° to 90° azimuth. Dynamic stall may occur since the angle is large on 

the retreating blade, and the influence of ice accretion on lift coefficient is less significant compared with that on the 

advancing blade.  In the figure 25(b), the displayed zone of the lift coefficient from 25° to 65° azimuth is enlarged. 

As seen, there is no obvious change in the lift coefficient between rotors A (icing at 0.29R) and I (icing at 0.93R), and 

the drop of the lift coefficient of rotor F (icing at 0.69R) is the largest, up to 3.41% at 60° azimuth. In figure 25(c), the 

differences of the lift coefficient due to ice at two azimuth angles (30° and 60° azimuth) are given. Due to the effect 

of ice accretion, the reduction of the lift coefficient increases along the spanwise direction from blade root till 0.7R 

blade section, and then decreases. So, a small ice shape has almost no effect on the lift coefficient of rotors when the 

icing position is near the blade tip or the blade root. When the icing position is near the middle of blade, the lift 

coefficient obviously decreases. 

 

(a) Lift coefficient 
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(b) Local enlarged image 

 

(c) Lift coefficient at 30° and 60° of azimuth 

Figure 25. Comparisons of rotor lift coefficient of iced and clean rotors. 

Figure 26 shows torque coefficients of different iced rotors alongside the clean. Overall, the torque coefficients 

of iced rotors all increase compared with the clean rotor, although the average torque coefficient does not change 
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significantly. The change in rotor torque mainly occurs in a narrow range from -30° to 30° blade azimuth. In figure 

26(b), the displayed zones of the lift coefficient from 0° to 60° azimuth and from 300° to 360° azimuth are enlarged. 

As seen, the rotor torque is much influenced by ice when the icing position is near 0.7R, similar to the variation of the 

lift coefficient. At 20° azimuth, the increase of the torque coefficient for rotor F was the largest, followed by rotors G 

and E. At 360° azimuth angle, the increase of the torque coefficient for rotor G is the largest, followed by rotors F and 

H. As a result, the influence of the small ice on aerodynamic characteristic of rotor should not be neglected when the 

icing position is near the 0.7R blade section, and deicing near the 0.7R section of the blade may be preferred at the 

beginning of ice accretion on rotors. 

 

(a) Torque coefficient 
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(b) Local enlarged image 

 

(c) Torque coefficient at 30° and 60° of azimuth 

Figure 26. Comparisons of rotor torque coefficient of iced and clean rotors. 

To reveal the influence of the icing position on the aerodynamic characteristics of the rotor in forward flight, the 

pressure distributions on the blade surface of three iced rotors at 60° azimuth are given in Figure 27. Since the ice 

amount is very small, there is no obvious change in the pressure distributions on the lower surface, as seen in the 

Figure 28. On the upper surface, the small ice amount does not only affect the pressure distribution near the icing 
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position, but it also changes the pressure in a larger area on the blade surface. When the icing position is 0.69R (rotor 

F), the change of the pressure distribution from 0.69R to 0.93R is visible. Since the rotor lift is mainly supplied from 

that blade area, the lift is worst affected when icing occurs near 0.69R for this condition.  

 

Figure 27. Pressure distributions on the blade surface at 60° azimuth angle. 

 

Figure 28. Comparison of pressure distributions between clean and iced rotors at 60° azimuth angle. 

The comparison of the pressure distributions of the blade sections between rotor F and the clean one is given in 

Figure 29. At r=0.69R, there is an additional, small ice shape compared with the clean rotor, and the pressure 

distribution changes, especially near the leading edge of the blade. At r=0.65R, the shape of blade section of rotor F 

is the same as the clean rotor, and the pressure distribution changes slightly. At r=0.73R, although the shapes are the 

same, the difference of the pressure distribution is visible, and it is bigger even than that of the icing position (0.69R).  
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Figure 29. Comparisons of rotor lift coefficient of iced and clean rotors. 

CONCLUSIONS 

Based on the numerical simulation of rotor icing, the influence of the ice accretion on the aerodynamic 

characteristics of a rotor in forward flight is calculated and analyzed. The main conclusions are: 

1) In forward flight, the influence of the ice accretion on the blade lift coefficient is larger on the advancing blade 

than the retreating. Normally, there is an obvious increase in the torque coefficient when ice forms on the blade surface. 

However, at the beginning of the ice accretion, the increase of the torque coefficient is very small. This could lead to 

a late activation of the deicer, and late removal of the ice. 

2) In a blade section of an iced rotor, the pressure coefficient often has a decrease on the lower surface and an 

increase on the upper, resulting in loss of lift. Since the chord is longer by the accreted ice at the leading edge of the 

blade, the sectional lift force may increase for some cases. Overall, the influence of the ice accretion on the sectional 

aerodynamic characteristics gradually increases along the blade radius. 

3) At higher temperatures, the pressure on the lower surface markedly decreases, and it is smaller than the pressure 

on the upper surface in some areas, result in a negative lift force. This phenomenon is more obvious near the blade 
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tip, and is the main reason for the reduction of the lift force. At lower temperatures, although the pressure on the lower 

surface decreases, the area of the negative lift zone is smaller compared with that at higher temperatures.  

4) If the icing position is close to the blade tip or root, a small amount of ice has no effects on the aerodynamic 

characteristics of the rotor. If the icing position is closer to the 0.7R blade section, the influence on aerodynamics is 

larger. As a result, deicing near the 0.7R blade section may be preferred at the beginning of the ice accretion on the 

whole blade. 
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