
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/66828

Please be advised that this information was generated on 2017-12-06 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/16151448?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/66828

ON THE APPLICATION OF FORMAL METHODS TO

CLINICAL GUIDELINES: AN ARTIFICIAL INTELLIGENCE

PERSPECTIVE

Een wetenschappelijke proeve op het gebied van de

Natuurwetenschappen, Wiskunde en Informatica

Proefschrift

ter verkrijging van de graad van doctor

aan de Radboud Universiteit Nijmegen

op gezag van de rector magnificus prof. mr. S.C.J.J. Kortmann,

volgens besluit van de College van Decanen

in het openbaar te verdedigen op vrijdag 18 april 2008

om 13.30 uur precies

door

Aart Jan Hommersom

geboren op 25 februari 1980

te Rheden

Promotor: Prof. dr. ir. Th.P. van der Weide

Copromotor: Dr. P.J.F. Lucas

Manuscriptcommissie:

Prof. dr. F.W. Vaandrager

Prof. dr. J-J.Ch. Meyer (Universiteit Utrecht)

Prof. dr. ir. L.C. van der Gaag (Universiteit Utrecht)

Prof. dr. F.A.H. van Harmelen (Vrije Universiteit Amsterdam)

Dr. M. Balser (Universiteit Augsburg, Duitsland)

SIKS Dissertation Series No. 2008-06

The research reported in this thesis has been carried out under the auspices

of SIKS, the Dutch Research School for Information and Knowledge Systems.

This work has been partially supported by the European Commission’s

IST program, under contract number IST-FP6-508794 (Protocure II).

ISBN: 978-90-9022824-2

To my parents

Preface

It was during the preparation of my master thesis that I realised how much
fun research can be. In particular, to study people’s ideas and to come up
with new ideas, even though the problem may be too difficult to solve in its
full generality. It also made me realise that this attitude is less suitable for
working on a commercial product or at a “scary software company” as my
supervisor at that time, John-Jules Meyer, so strikingly put it. Luckily, he
put me into contact with Peter Lucas, who had a vacancy for a PhD position
at that time. As a PhD student, I joined the Protocure project, which was
a European project that dealt with the topic of this thesis, namely, formal
methods in context of clinical guidelines. The focus on research topics in the
area of artificial intelligence with a clear application and high potential impact
was and still is very appealing.

As in many theses, I would like to devote the rest of this preface on ac-
knowledging the people that supported me in one way or the other the last
four years. First of all, I want to thank my co-promotor and daily supervisor
for the last four years, Peter Lucas, who has taught me a tremendous amount
about research. For a young researcher, the broadness and the depth of work
that is being published in the various areas related to the work in this thesis is
overwhelming. Peter has guided me through this and has given me insight and
confidence in the process of doing research. Peter has not only been a formal
supervisor, we also had a lot of fun. Our trips to meetings and conferences
have always been most enjoyable and always filled with the essentials, such as
art and wine! I am looking forward to continuing working in his group.

After I worked for a year in Nijmegen, Perry Groot joined our group. He
gave me a renewed motivation to continue with the project and has since then
taught me important lessons about research. His opinions are always honest
and do not beat around the bush, which I have always considered very valuable.
Moreover, several chapters are the result of a collaboration with him.

Besides Peter and Perry, several other people have been a co-author on
the papers that formed the basis of this thesis: my promotor Theo van der
Weide, Patrick van Bommel, Michael Balser, Jonathan Schmitt, Annette ten

v

Teije, Radu Serban, Frank van Harmelen, Mar Marcos, and Begoña Mart́ınez-
Salvador. Also, I am very grateful to the rest of the Protocure members that
have taught me many things about clinical guidelines. Furthermore, various
chapters have been improved by careful reading of Julien Schmaltz, Perry
Groot, Nivea de Carvallo Ferreira and by the members of the manuscript
committee.

The former IRIS group in Nijmegen where I have spent the last four years
has been a social and friendly group. For this I would like to thank the various
members that have come and gone the last four years. It is special that so
many of you have become more than just colleagues. My roommates in ‘the
old building’, Marcel and Ildikó, have been very influential in my thinking
about research and life in general. Also, I would like to mention the regular
coffee breaks with Henriëtte and Ildikó, which have been most enjoyable!

In my personal life, Tjarko, Luuk, and Tristan have been great friends
whom I should call more often. Last, but not least, my family is thanked for
their endless support and putting up with me while I was staring at the screen
during the weekends. Thank you.

Arjen Hommersom
February 2008

Contents

1 Introduction 1
1.1 Development of Symbolic Reasoning 2
1.2 Applications of Formal Methods 6
1.3 Clinical Guidelines . 7
1.4 Guideline Representation . 8
1.5 Formal Methods and Clinical Guidelines 10
1.6 Overview of this Thesis . 13

2 Preliminaries 15
2.1 Temporal Logic . 15

2.1.1 Temporal Model . 16
2.1.2 Future-time Temporal Logics 16
2.1.3 Past-time Temporal Logics 20
2.1.4 Expressiveness . 21

2.2 Reasoning . 21
2.2.1 Object-level Reasoning 22
2.2.2 Meta-level Reasoning 23

2.3 Techniques . 23
2.3.1 Theorem Proving . 24
2.3.2 Model Checking . 24

2.4 Formal Systems in Biomedicine 26
2.5 Conclusions . 26

3 Guidelines and Protocols 29
3.1 Development of Guidelines and Protocols 30

3.1.1 Summary of the Process 30
3.1.2 Design of a Guideline 31
3.1.3 Protocol Development 36

3.2 Examples of Guidelines . 36
3.2.1 Diabetes Mellitus type 2 36

vii

3.2.2 Breast Cancer . 37
3.3 Analysis of Guidelines . 37
3.4 Quality Criteria . 41

3.4.1 Quality of Health care: Medical Indicators 42
3.4.2 Quality of Guideline Development: AGREE 42
3.4.3 Quality Criteria for Formal Verification 43

3.5 Conclusions . 48

4 Verification of Guidelines using Automated Theorem Proving 49
4.1 Modelling Clinical Guidelines 50
4.2 Application of Logic to Medical Knowledge 52
4.3 Management of Diabetes Mellitus Type 2 55

4.3.1 Initial Analysis . 55
4.3.2 Diabetes Type 2 Background Knowledge 55
4.3.3 Quality Check . 58

4.4 Automated Quality Checking 59
4.4.1 Motivation for using Automated Reasoning 59
4.4.2 Translation . 60
4.4.3 Results . 63
4.4.4 Disproofs . 65
4.4.5 Plan Structure . 67

4.5 Conclusions . 72

5 Verification of Guidelines using Interactive Theorem Proving 75
5.1 Checking the Quality of Individual Treatments 76

5.1.1 Introduction to KIV . 76
5.1.2 Specification in KIV . 77
5.1.3 Proofs . 78
5.1.4 Disproofs . 78

5.2 Checking the Quality of Clinical Guidelines 80
5.2.1 Formalisation of the Background Knowledge 80
5.2.2 Quality Requirements of Clinical Guidelines 81

5.3 Clinical Guidelines in Asbru . 84
5.3.1 Introduction to Asbru 85
5.3.2 The Semantics of Asbru 86
5.3.3 Asbru Model of the Diabetes Mellitus Type 2 Guideline 87

5.4 Specification in KIV . 88
5.4.1 Specification Methodology in KIV 88
5.4.2 Specification of Background Knowledge in KIV 89
5.4.3 Specification of Asbru in KIV 90
5.4.4 Specification of Quality Requirements in KIV 91

5.5 Verification using KIV . 92
5.5.1 Consistency of the Formal Model 92
5.5.2 Successful Treatment . 93
5.5.3 Optimality of Treatment 96

5.5.4 No New Treatments . 97
5.5.5 Order of Treatments . 98

5.6 Conclusions . 98

6 Applying Model Checking to Formal Models of Guidelines 101
6.1 Protocol Refinement . 102

6.1.1 Approach . 102
6.1.2 Medical Management of Breast Cancer 104
6.1.3 Informal Description of Medical Management 104
6.1.4 Formalisation of Medical Management 105
6.1.5 Model Checking Results 109
6.1.6 Discussion . 110

6.2 Critiquing . 111
6.2.1 Approach . 111
6.2.2 Temporal Logic and Critiquing 113
6.2.3 Application of the Methodology 114
6.2.4 Related Work . 117
6.2.5 Discussion . 117

6.3 Conclusions . 118

7 Language Fragments for Guideline Formalisation 119
7.1 A History-based Formalisation of Medical Guidelines 120

7.1.1 Histories . 120
7.1.2 Expectations . 122
7.1.3 A Logical Perspective on Histories 124
7.1.4 Consistency of Histories 128
7.1.5 Discussion . 129

7.2 Interpretation of Task Execution using Failures 130
7.2.1 Introduction . 130
7.2.2 Exception Handling . 131
7.2.3 Interval Temporal Action Logic with Failure 132
7.2.4 Reduction to ITL . 135
7.2.5 Related Work . 136
7.2.6 Discussion . 137

7.3 Application to a Medical Guideline 137
7.3.1 Modelling of DM2 . 138
7.3.2 Verification . 138
7.3.3 Discussion . 140

7.4 Conclusions . 141

8 Conclusions 143
8.1 Summary of Results . 143
8.2 Limitations and Future Directions 145

8.2.1 Formalisation . 145
8.2.2 Reasoning . 146

8.2.3 Quality . 147
8.3 Final Thoughts . 147

A Proofs 149
A.1 Proof of Meta-level Property (T2) in Chapter 4 149
A.2 Proof of Lemma 4.1 . 150
A.3 Proof of Theorem 7.1 . 152
A.4 Proof of Example 1 of Chapter 7 153

B Specifications 157
B.1 Background Knowledge Diabetes Mellitus type 2 157
B.2 KIV-Asbru Plans . 161
B.3 SMV Translation of Asbru Plan 162

Bibliography 165

SIKS Dissertatiereeks 185

Samenvatting 193

Curriculum Vitae 195

Chapter 1
Introduction

Many systems, both natural and artificial, are very complex, making their
understanding and analysis challenging. There are various reasons why the
analysis of systems is useful. For example, an analysis of a biological system
can be used to predict the behaviour of the system, whereas an analysis of a
computer system can be used to find out if it satisfies its requirements.

In order to support the analysis by means of computers, symbolic calcula-
tion can be used, which allows one to draw conclusions expressed in symbols
according to certain rules of inference. These techniques differ from other types
of mathematical techniques in the sense that, instead of simulating a system
or establishing a numerical value through a numerical analysis, theorems are
proved about the behaviour of a system. This is what is generally understood
by the term formal verification. The formal notation and techniques for the
formal specification and verification that are used in the development of digital
systems are referred to by the term formal methods.

In the context of computer systems, there is a great deal of experience in
applying formal methods, e.g., modelling and verification of hardware com-
ponents or of security-critical applications. Although medicine is a field in
which mistakes made have a major bearing on the health and life expectancy
of people, and thus can be seen as a prototypical safety-critical area, only very
few researchers have considered using formal methods in this context. It was
the aim of this thesis to investigate the potential of using formal methods to
analyse medical problems. In particular, this thesis discusses applications of
formal methods to so-called clinical guidelines, which are documents advising
healthcare professionals and patients in this clinical decision making.

Contrary to what the name suggests, “formal methods” are not methodolo-
gies, i.e., they do not specify how the tools and notation should be applied to
a given problem. It was the main objective of the research described in this
thesis to explore the use of formal methods as we know from computer science
to the verification of clinical guidelines.

1

2 Introduction

In this chapter, we describe the development of symbolic reasoning to its
current state and how this could be relevant to clinical guidelines. On the basis
of a discussion of related work that has been done in this area, several research
questions are formulated that further define the scope of this thesis.

1.1 Development of Symbolic Reasoning

Already at the end of the 17th century, Gottfried Leibniz discussed his idea
for the development of a calculus ratiocinator, a sort of “calculating ma-
chine”, which can determine the truth value of a proposition. He anticipated
that this could settle philosophical problems by purely mechanical means and
“when there are disputes among persons, we can simply say: Let us calcu-
late, without further ado, and see who is right” (The Art of Discovery (1685))
[Stanford Encyclopedia, 2002]. As natural language is inherently ambiguous,
Leibniz understood that this required a clean universal language, which he
called characteristica universalis, to express scientific problems in, which he
started to develop. At the beginning of the 19th century, it was not uncommon
to express basic mathematical notions in symbols, for example in algebra; yet,
basic logical reasoning itself had still not been formalised. Around 1850, Boole
and others introduced symbols for the logical connectives and a few decades
later Frege and Peirce introduced symbols for predicate logic. As the language
is then described purely formal, i.e., it has a mathematically defined form and
meaning, it is possible to describe reasoning as moving around symbols ac-
cording to certain rules of inference. This subject was called ‘mathematical
logic’ by Peano, whereas Venn coined the term ‘symbolic logic’, to stress the
difference with the informal logics which were then prevalent in philosophy,
e.g., by Kant, Hegel, and others [Gabbay and Woods, 2004].

These formalisations of logic in the 19th century lead to the idea that (sym-
bolic) logic and mathematics are in fact the same thing. Even stronger, Frege
(Begriffschrift (1879)) and Russell made themselves famous by insisting that
mathematics can be expressed without relevant loss in a logical framework.
This resulted in Whitehead and Russell’s Principia Mathematica (1910-1913),
which formalises large parts of mathematics. So Leibniz’ ideas seemed to be-
come reality, as least for mathematics. However, the question was, asked by the
mathematician David Hilbert (1928) how to mechanically discriminate between
statements that are true or false, which is known as the entscheidungsproblem
(decision problem). A solution of the this problem is some procedure that,
given a logical sentence, performs a finite number of operations to determine
its validity1. Gödel proved that the entscheidungsproblem cannot be solved by
finding a finite number of postulates (axioms) that describe the mathematical

1 Das Entscheidungsproblem ist gelöst, wenn man ein Verfahren kennt das bei einem
vorgelegten logischen Ausdruck durch endlich viele Operationen die Entscheidung über die
Allgemeingültigkeit (...) erlaubt. [Hilbert and Ackermann, 1928, p. 73], italics in the origi-

nal.

Development of Symbolic Reasoning 3

truths, as these formal systems, besides very simple ones, are necessarily in-
complete, i.e., some truths then remain unprovable. In 1936, the problem was
proved to be unsolvable by Church [Church, 1936] and Turing [Turing, 1936],
i.e., there is no such procedure for arithmetic if one adopts either of the two
(equivalent) notions of computability proposed by Church and Turing. Even
though the highly general problem of answering any mathematical question
is unsolvable, there are all kinds of procedures imaginable that are capable
of solving specific classes of problems, even in mathematics. And if it is true
that the mental function can be described as a machine, as Turing believed
[Turing, 1950], reasoning can be mechanised up to the intelligence of humans
or at least to the level of intelligence indistinguishable from humans.

The further development of digital computers brought about new and
more specific questions that required such symbolic reasoning, for example,
as Turing did in 1949: “How can one check a routine in the sense of mak-
ing sure that it is right?” [Turing, 1949]. After Goldstine and von Neumann
[Goldstine and von Neumann, 1947] a few years earlier, he was one of the first
to ask such questions, though it would take another 20 years before these first
ideas would be made somewhat practical [Morris and Jones, 1984].

In the 1950s a new discipline emerged, for which the term artificial intelli-
gence (AI) was introduced, that aimed at developing computerised intelligent
systems. In 1956, Newell, Shaw, and Simon introduced one of the first AI pro-
gram (The Logic Theorist) that was capable of proving theorems of the Prin-
cipia Mathematica, which showed the feasibility of such an approach. Another
important influence in this time was system theory that aimed at describing
systems (which could be living organism, an organisation, a computer, etc.)
not by its internal structure, but through the mathematical laws which govern
its observable behaviour. It consists of several sub-disciplines, such as control
theory which describes systems by differential equations. Another building-
block of this field is the theory of finite-state machines [Gill, 1962], which was
increasingly more important due to the widening use of digital computers. At
the end of the 1950s and early 1960s, the scientific discipline of computer sci-
ence was established, and finite-state machines was a well-known theory for
describing computer systems. However, it was considered by some far too im-
practicable to reason about these systems mechanically using this theory. For
example, McCarthy writes in 1962 that [McCarthy, 1962]:

Much of the work on the theory of finite automata has been moti-
vated by the hope of applying it to computation. I think this hope
is mostly in vain because the fact of finiteness is used to show that
the automaton will eventually repeat a state. However, anyone who
waits for an IBM 7090 to repeat a state, solely because it is a finite
automaton, is in for a very long wait.

Rather than the low-level view on computation that finite-state machines pro-
vide, McCarthy proposed to formalise computation in terms of more abstract
terms that were found in the programming languages ALGOL 60 and LISP.

4 Introduction

[McCarthy, 1962, McCarthy, 1963], so that one could use logic to reason about
programs. This resulted in a theorem prover for a LISP-like logic, the Boyer-
Moore theorem prover [Boyer and Moore, 1975, Boyer et al., 1995]. A break-
through in program verification came at the end of the 1960s, when Floyd,
Hoare and others developed the theory now known as Floyd-Hoare Logic
[Floyd, 1967, Hoare, 1969] that allows program verification by inserting log-
ical assertions in a program. Hence, a program could then be seen as a special
logical theory that one can reason about. This again gave an abstraction of
what a program does, to a more manageable description, in this case, what can
be proved about a program, which is sometimes called a deductive approach.
On the basis of this work, many systems were developed, such as automated
verification systems (e.g., [King, 1969, Good, 1970]).

In order to make intelligent systems that are capable of advising users,
AI researchers became interested in (human) knowledge representation. They
had to be efficient to reason about, sufficiently expressive to encode relevant
knowledge, and inference should not only be symbolic, but conclusions that
are drawn should also be justified and understandable to the user. In partic-
ular, in the 1970s, new knowledge representation formalism were developed,
such as rules-based formalisms and the frame formalism [Minsky, 1975]. Sys-
tems using such formalisms were called knowledge-based systems or expert
systems, of which early examples were mostly concerned with medical diagno-
sis. For example, MYCIN [Shortliffe, 1976] aimed at advising about diagnosis
and treatment of a number of infectious diseases and is the one of the most
famous expert systems.

In the area of program verification, the deductive approach of Floyd-
Hoare logic and related approaches such as dynamic logic [Pratt, 1976] and
predicate transformers [Dijkstra, 1975] were successful on sequential pro-
grams; however, it was very difficult to apply to programs that contain con-
currency. Work was done in order to verify specific classes of properties
[Ashcroft, 1975, Owicki and Gries, 1976], such as deadlock freedom and data
integrity, but few suggestions were put forward with respect to other prop-
erties dealing with issues such as termination, responsiveness, and liveness
[Pnuelli, 1981]. As a consequence, new approaches were required. One direc-
tion was formed by algebraic approaches, most notably the calculus of con-
current systems (CCS) [Milner, 1980] to describe processes and reason about
these processes explicitly. Since then, many more of these process calculi
have been developed, such as the algebra of communicating processes (ACP)
[Bergstra and Klop, 1987] and more recently the π-calculus [Milner, 1999].
Further development in this direction is described in [Baeten, 2004].

At around the same time as Milner introduced his CCS, Pnueli proposed
to give programs a temporal semantics such that temporal logic can be used to
reason about them [Pnueli, 1977, Pnuelli, 1981]. Many of the properties that
were difficult to express in the deductive approaches for concurrent programs
are naturally described in temporal logic, which takes into account the oper-
ational nature of programs. However, reasoning using temporal logic was still

Development of Symbolic Reasoning 5

tedious and a good deal of ingenuity was required to construct proofs such that
they can be managed. Not much later, Clarke and Emerson proposed to model
a concurrent program as a finite transition system, which can be interpreted
as a model of temporal logic. Verification then involves checking that the con-
current program is a model of the property that one is interested in, a proce-
dure they called model checking [Clarke et al., 1986, Queille and Sifakis, 1982].
This made it possible verify concurrent programs automatically by an exhaus-
tive search of the state space“when the number of global states is not excessive
(i.e., not more than a few thousand)” [Clarke et al., 1986]. In some sense, the
early work of the 1950s in finite state transition systems had become modern
again, as the computers that were available at the beginning of the 1980s had
much more computing power than the machine McCarthy referred to, and the
explicit reasoning about finite state transition system had become feasible for
relatively small systems.

In AI, logic had also gained popularity as a knowledge representation for-
malism. Even though, compared to other knowledge representation mecha-
nisms, they were computationally hard to reason with, a logical formalisation
helps to understand reasoning. Therefore, logical formalisms can act as a solid
base for implementing solutions. For example, temporal logics were used in AI
as one of the candidates for formalisation of reasoning about time, action, and
change [Cohen and Levesque, 1990].

Model checking has further improved significantly since then. McMillan
[McMillan, 1993, Burch et al., 1990] discovered that the state transition sys-
tem could be represented much more succinctly using a different symbolic rep-
resentation based on ordered binary decision diagrams [Bryant, 1986], so that
systems up to 1020 states could be model checked. Furthermore, support for
modularising [Grumberg and Long, 1994, Clarke et al., 1989] and abstracting
[Clarke et al., 1994, Dams et al., 1993, Wolper, 1986] systems has been added.
Also, in AI, model checking has been used, e.g., in order to verify models of
reasoning actors (multi-agent systems) (e.g., [Benerecetti et al., 1998]).

The success of model checking systems of the last years has reduced the
use of theorem proving as an alternative for the verification of software and
hardware systems, but cannot be avoided when the number of states of the
system is beyond the capabilities of model checkers. This is the case when, for
example, infinite data types are modelled or when one is interested in finding
out constraints on parameters that ensure correctness of a system. A no-
table success in verification of hardware is an application of the ACL2 system,
a successor of the aforementioned Boyer-Moore theorem prover, which was
used to prove correctness of the AMD5K86 microprocessor. Moreover, theo-
rem proving has had numerous applications in mathematics and in AI. Many
heuristics have been developed in order to reason efficiently, such as resolution
[Robinson, 1965b]. For example, the automated theorem proving system EQP
proved a long standing conjecture of Robbins in the area of Boolean algebra in
1993 [McCune, 1997]. In AI, theorem provers have for example been used to
verify knowledge-based systems (e.g., [Fensel et al., 1996]), as the knowledge

6 Introduction

representation is often based on logic. Because of a clear separation between
the knowledge base and a reasoning or problem solving method, the domain
knowledge for example, can be validated and verified independently from the
implementation.

For a long time, the tools that were available were difficult to use. As
sketched in [Vaandrager, 2006], the situation is now improving, as many of
the tools that are available have drastically improved in terms of scalabil-
ity, accessibility, convenience, and realisability. Even with a limited amount
of knowledge about the underlying techniques, model checking can be used.
Moreover, they are being integrated with existing software practice, e.g., by
model checking UML models [Knapp et al., 2002]. The developments of the
last decade have made it possible to now apply verification techniques indus-
trially. As an illustration of this, some of these application are discussed in the
next section.

1.2 Applications of Formal Methods

It would be unwise to apply formal methods to all system development. The
successful application of these techniques depend on a number of conditions,
such as the efficacy of applying formal methods. As the costs of using for-
mal methods are typically quite high, a balance has to be made between the
these costs and their benefits. In hardware design, formal methods are well-
established as errors can lead to significant economic losses. In software devel-
opment, formal methods are generally applied to safety-critical and security-
critical systems.

A second issue is that the application of formal methods requires appro-
priate people support. Though many of the formal methods aim at being fully
automatic, for a number of techniques formal methods experts are required.
As we will see in this thesis, it is often useful to abstract away from details of
a system in order to get a useful specification. As it is not always straightfor-
ward to define what the unneeded details are, human intelligence is required.
Furthermore, techniques such as theorem proving may be too computationally
complex to be done by a computer fully automatically.

An example of a safety-critical system is the movable storm surge barrier,
called the Maeslant Kering, that protects the low, western part of the Nether-
lands. The aim of the dams protecting these areas is to make sure that flooding
does not occur more than once every 10,000 years, which is a failure proba-
bility that cannot be reached if the barrier is controlled manually. Therefore,
it is controlled by a fully automatic system containing 450.000 lines of (C++)
code of which 200.000 lines are operational code; the rest deals with simulat-
ing and testing. The software has been operational since 1997 and has been
verified using formal methods [Chaudron et al., 1999, Tretmans et al., 2001].
The correct operation of the barrier is of great importance. If it does not close
in time, then this could result in the flooding of Rotterdam, as large parts

Clinical Guidelines 7

of Rotterdam are situated below sea level. If, on the other hand, it does not
open in time, this could damage the barrier as well as result in great economic
losses, as Rotterdam’s harbour cannot be reached when the barrier is closed.

In order to, for example, prevent fraud, many systems contain security
components. Even when cryptographic algorithms are strong, as many of them
are, a security applications may be broken if the algorithm is used improperly,
i.e., if the protocol in which it is used does not adequately protect the secret.
In these cases, formal methods can be useful. For example, a security-critical
system that has been verified using formal methods is the Universal Electronic
Payment System (UEPS) [Anderson, 1999]. This is an electronic funds transfer
product well-suited for developing country environments. This protocol has
been analysed using a logic, BAN logic [Burrows et al., 1989], designed for
reasoning about security protocols. Other approaches for performing such
analysis exists, such as strand spaces [Fabrega et al., 1998] or by the use of
epistemic logic [Hommersom et al., 2004b].

1.3 Clinical Guidelines

A promising and challenging application area for the application of formal
methods is clinical decision making, as is vital that clinical decisions are sound.
In fact, ensuring safety is the primary preoccupation of medical regulatory
agencies. Nonetheless, mistakes are made in hospitals: it was estimated that
every year, in the Netherlands, 30,000 people are harmed and 1,700 people
die in hospitals due to causes that can be avoided [Bruijne et al., 2007]. As
medical errors may have such far reaching consequences for patients, there is
good reason to be extremely careful.

Clinical guidelines are documents that include recommendations, advice,
and management instructions aimed at supporting the decision-making in
healthcare. For example, after a patient is diagnosed with hypertension, it is
recommended to measure the blood pressure regularly, to inform the patients
of risk factors, to prescribe appropriate medication, etc. Technology that is
based on the recommendations given by the guideline, for example decision-
support systems, should make sure that these decisions are sound with respect
to the guideline. Therefore, technologies that are being developed aim to en-
sure that these technologies are designed to be safe [Fox and Das, 2000] by, for
example, ensuring there is proper facilitation for simulation of new technolo-
gies, so that harmful side effects or adverse consequences of use are kept to an
absolute minimum.

Another question is if the recommendations given by the guideline are cor-
rect or to which extent they are correct. Medicine is getting increasingly more
complicated and specialised, so problems may occur. Even though the use of
clinical guidelines in practice is still growing, problems concerning guidelines
are not of academic nature. For example, in [Boyd et al., 2005], it was found
that adhering to current clinical guidelines in caring for an older person with

8 Introduction

several comorbidities may have undesirable effects. The researchers note that
the focus of clinical guidelines to certain aspects of a disease “could create per-
verse incentives that emphasise the wrong aspects of care for this population
and diminish the quality of their care”. Furthermore, the researchers concluded
that if the relevant guidelines were followed, the hypothetical patient would
be prescribed 12 medications and a complicated non-pharmacological regimen.
Adverse interactions between drugs and diseases could result.

The problems mentioned in this study are due to the complexity of deal-
ing with several comorbidities; however, there are other possible harms of
guidelines [Woolf et al., 1999]. First, scientific evidence may be interpreted in-
correctly, be misleading, or be simply absent. Second, recommendations could
be constructed on the basis of personal views and misconceptions that are not
consistent with the available evidence. Third, recommendations could be sub-
optimal from a patient perspective due to conflicting interests such as cutting
costs or protecting the interests of others, for example, doctors or politicians.
Formal methods have the potential to make assumptions and design decisions
that justify the construction of the recommendations more explicit. This makes
it possible to inspect whether or not the evidence has been interpreted well
and whether recommendations have been based upon sound medical principles,
rather than built on personal views.

1.4 Guideline Representation

Although guidelines are documents in natural language, several guideline rep-
resentation languages have been developed in the past decade to represent es-
sential fragments of guidelines in a computer-interpretable fashion. An older,
but still influential modelling language based on rules is the Arden Syntax
[Arden Syntax Technical Committee of HL7, 1999, Hripcsak et al., 1994]. An
example of an Arden Syntax fragment from a guideline which advises a physi-
cian on impaired kidney function based on the levels of creatine and blood
urea nitrogen (BUN) levels is the following rule2:

if creatine level > 1.5 or BUN > 30
then alert text := ”Consider impaired kidney function (...)”;

The temporal relations between actions that have to be performed is typ-
ically not made explicit in such rule formalisms and is determined by
means of an inference mechanism, which establishes the order in which
the rules are processed. In order to explicitly formalise complex de-
cisions and care pathways, more expressive formalisms were developed
such as EON [Tu and Musen, 1999], PROforma [Fox and Das, 2000], GLIF3
[Peleg et al., 2000], and Asbru [Shahar et al., 1998]. These languages have
been named “task-based networks” in [Peleg et al., 2003], as they consist of

2 Based on http://www.dbmi.columbia.edu/homepages/wandong/KR/krarden.

html, accessed August 1, 2007.

Guideline Representation 9

a number of tasks with temporal and other relations between them. This is
accomplished by defining tasks and sub-tasks that may be executed in a cer-
tain order. The main difference with rule-based languages is that they allow
one to explicitly model the control flow. For example, in PROforma this is
represented graphically as:

enquiry

decision

action 1

action 2

final action

where each of the nodes represent some “task” and the arrows between them
form a partial order, which represent that a successor task can be started when
the current task is finished. Additional constructs exist to refine such temporal
relations, for example, starting of a task may be delayed by pre-conditions
that refer to a specific time after a previous task was completed or conditioned
on the result of a decision. Each of the tasks is further parameterised with
elements such as conditions, triggers, cycles, etc. How these languages relate
to the more well-known workflow systems, which contain similar primitives, is
an interesting question, which the guideline and workflow communities have
started to address recently [Mulyar et al., 2007, Fox et al., 2008].

Those languages are typically very expressive and can be considered
as providing the current paradigm for modelling clinical guidelines. How-
ever, the suitability of these languages for the use of verification of
clinical guidelines is questionable. A crucial problem is that only a
few of those languages have a formal semantics. The exceptions are
PROforma [Sutton and Fox, 2003, Fox and Das, 2000] and a subset of As-
bru [Balser et al., 2002a, Balser et al., 2006] (sometimes referred to as Asbru
Light), for which operational semantics exist. A more fundamental point in the
underlying assumption of some of those languages is that a guideline describes
a series of tasks that have to be executed in a certain order to the extent that
it includes every detail of clinical practice. This is of course something one
wishes to achieve if the goal is to use these models in decision support systems
that have to cover the whole clinical pathway.

In this thesis, we will look at these guidelines somewhat differently. Instead
of seeing guidelines as a rather complete description of medical practice, we
look at guidelines as only putting constraints on this practice. This is jus-
tified if one considers the type of knowledge that is present in the guideline
(cf. Chapter 3). Moreover, other types of knowledge, such as knowledge con-
cerning the patient, pathophysiological processes, and common-sense medical
management is something which also has to be taken into account if one aims

10 Introduction

Evidence

Patient Data

Clinical Knowledge

Patient Management

generates

contributes to supports

lab findings, decisions

guidelines, textbooks

diagnosis, therapyeffectiveness, etiology

Biomedical Research
e.g., in vitro research

builds

Figure 1.1: Cyclic development in healthcare, based on introductory chapter
of [van Bemmel and Musen, 2002] and [Wyatt, 2002].

at verifying relevant properties. In this thesis, this knowledge is referred to as
background knowledge. As such knowledge cannot be specified in the aforemen-
tioned guideline representation languages, they fail to be sufficiently complete
for the type of verification that is proposed and studied in this thesis.

1.5 Formal Methods and Clinical Guidelines

Nowadays, computer science plays an important role in the healthcare pro-
cess. As an illustration, Figure 1.1 provides an overview of the development of
healthcare. Starting from the right, the patient management generates data,
which is stored in some way. The analysis of this data, together with results
obtained from biomedical research, yields evidential knowledge, which is ex-
ploited to formulate clinically useful knowledge, for example in the form of a
guideline. The clinical knowledge is then again employed for the management
of patients. In all four corners, computer science plays a role. For example,
decision support systems are used to support the patient management process
on the basis of clinical knowledge, electronic patient records are used to store
the data that is being generated by the management, data mining techniques
are used to analyse the data, and guideline authoring software supports the
construction of clinical knowledge, i.e., electronic guidelines. Systems designed
in this cycle could be verified using formal methods. For example, the control
program for a radiation therapy machine at the University of Washington has
been developed using formal methods [Bowen and Hinchey, 1997], as incorrect
decisions of the machine may lead to harmful situations. If there is too little
radiation, the tumour will not be eliminated, whereas when there is too much
radiation, the treatment will lead to unnecessary side-effects.

Formal Methods and Clinical Guidelines 11

In this thesis, we apply formal methods to clinical knowledge as
described in clinical guidelines. Early work in verification of clini-
cal guidelines mostly dealt with checking that the guideline is unam-
biguous, complete, and consistent, for example by representing guide-
lines by a decision table [Shiffman and Greenes, 1994, Shiffman, 1997] or
as a set of rules [Miller et al., 1999]. In [Duftschmid and Miksch, 1999,
Duftschmid et al., 1998], Asbru models are translated to first-order logic and
rich structural properties are investigated in order to check the coherence of the
model, for example, by a reachability analysis of each of the specified actions in
the model. Similar to the structure, the coherence of temporal constraints that
have been put on the (Asbru) model is discussed in [Duftschmid et al., 2002].
If problems with coherence can be traced back to the guideline, this can be
considered a form of verification. However, this technique is mostly aimed at
validating the formal model rather than checking the correctness of the original
guideline.

A major influence on the use of formal methods for the verification of
clinical guidelines came from the European Protocure project3, which funded
part of the research in this thesis. The premise of this project was that,
since the task-based models resemble the structure of software programs to
a large extent, verification can take place, as if they are a special type of
programs, i.e., using program verification techniques. The Asbru language was
taken as a starting point and translations were made to a suitable language
for a theorem prover, based on algebra and logic. The left part of Figure 1.2
describes an overview of this approach. First, formalisation of the guideline
and properties takes place by modelling the guideline in Asbru, after which this
can be translated to the logic of the theorem prover KIV [Balser et al., 2000],
designed for the verification of software. If done correctly, proving the formal
properties with respect to the formal model ensures that the informal guideline
satisfies the original properties.

This thesis addresses a number of issues surrounding this process. The first
question is the following:

Which knowledge is required to investigate properties of clinical
guidelines?

In using formal methods for the verification of systems, relevant properties are
often derived from the requirements used during the development of software.
This raises the question what constitutes the requirements in the design of
guidelines. From Figure 1.1, it is clear that the content of guidelines is de-
termined by available medical evidence as well as by ideas about the proper
management of disease in patients, which is “background knowledge” with re-
spect to the guideline. However, guideline recommendations must also be
closely connected to available underlying knowledge about physiological and
clinical processes, otherwise they cannot be effective. As a result, the quality

3 See http://www.protocure.org

12 Introduction

Protocure 1

Property

Guideline

Formal Property

Formal Model

Knowledge
Background

Satisfies?

formalisation

formalisation

Satisfies?

Figure 1.2: In order to find out whether a property is satisfied by the guideline,
a formal property is checked on the formal model of the guideline. Additional
background knowledge can be used to improve this idea.

of guidelines must be considered in this light as well (see Figure 1.2). Thus,
in order to apply formal methods effectively, all relevant knowledge must be
identified. In Chapter 3, various types of knowledge are identified by means of
a number of examples taken from a real-world guideline. This thesis then fo-
cuses on some of these aspects that are considered more relevant, and these are
subsequently formalised and verified or checked in Chapters 4, 5, and 6. The
actual verification shows that this allows one to answer relevant questions with
respect to an actual guideline. In order to use symbolic reasoning techniques,
this knowledge has to be represented well, resulting in the next question:

What is a suitable language for representing clinical guidelines in
order to apply formal methods?

As mentioned before in this chapter, guideline representation languages do not
allow formalising background knowledge in a suitable fashion. Furthermore,
questions were raised about the appropriateness of using only the ideas of
tasks and task decompositions for the modelling of guidelines. Besides these
issues, an important step in using formal methods is choosing the right level
of abstraction of the system that one is interested in. This also puts ad-
ditional restrictions on a suitable knowledge representation formalism. This
thesis provides evidence that a logical approach is feasible and has several of
the desirable aspects of a guideline formalisation language. However, a suit-
able language raises the question how reasoning should commence in order to
derive useful results. This could be summarised into the following question:

How do formal methods contribute to ensuring the quality of guide-
lines?

Previous work, as outlined in Section 1.5 has given a partial answer to this
question. However, the additional approaches with associated techniques that

Overview of this Thesis 13

are considered in this thesis have the potential to provide a more complete an-
swer. From an AI perspective, issues such as understandability of the results
are important and representation and inference should take this into account.
On the other hand, this has something to do with the type of reasoning that
is involved and how such reasoning can be mapped to specific systems. The
results of the experiments reported in this thesis show that appropriate rea-
soning about guidelines is amenable to the verification techniques that are
available. As one can choose from several verification techniques the question
then becomes:

Which techniques are most suitable for answering questions about
clinical guidelines?

In this thesis, a number of techniques are explored, such as interactive and
automated theorem proving and model checking. As discussed in this intro-
ductory chapter, verification serves several purposes. As a result, it is also of
interest to learn more about which technique is most appropriate in a given
situation. For example, as guidelines are considered the golden standard of
medical care, they could also be taken as the requirements that other systems
should comply to, e.g., in the development of local protocols, or the patient
management itself. Formal methods can then be used to verify whether these
systems comply with the guideline. This is a topic that is investigated in this
thesis as well.

1.6 Overview of this Thesis

This thesis deals with different facets of formal methods in relation to clinical
guidelines, i.e., requirements, specification, and verification.

Chapter 2 offers the necessary preliminaries with respect to formal meth-
ods. In particular, we will focus on the use of temporal logics and associated
techniques, in particular theorem proving and model checking. This chapter
more or less sets the scene for most of the technical work underlying this thesis.

Chapter 3 introduces the concepts of clinical guidelines and protocols
and offers an analysis of the current guideline-development process. As formal
methods are employed in the development of systems, it is crucial to under-
stand how a system is developed and what its requirements are. Case studies
are introduced to illustrate this; the case studies are used in subsequent chap-
ters.

In Chapter 4 we investigate ways to verify clinical guidelines using auto-
mated theorem proving techniques. It appears that important requirements
about the quality of clinical guidelines can be represented by schemata bor-
rowed from the theory of abductive diagnosis, using temporal logic to model

14 Introduction

the time-oriented aspects expressed in a guideline. It is investigated how
this approach can be mapped to the facilities of a resolution-based theo-
rem prover, otter, and a complementary program that searches for finite
models of first-order statements, mace-2. It is shown that the reasoning re-
quired for checking the quality of a guideline can be mapped to such fully
automated theorem-proving facilities. Parts of this chapter were published in
[Hommersom et al., 2005a].

Chapter 5 takes a similar approach as Chapter 4. Clinical guidelines are
now represented by a standard guideline representation language, Asbru. In
this chapter, it is proposed to include medical background knowledge into such
task networks. It is investigated how the reasoning as introduced in Chapter 4
can be applied to this setting and be mechanised using an interactive theorem
prover. The yields insight into the question regarding the appropriateness
of techniques for the verification of guidelines. Parts of this chapter were
published in [Hommersom et al., 2004a, Hommersom et al., 2007].

Chapter 6 is concerned with verification using the guideline as a gold stan-
dard. More specifically, we look at the problem of making sure that adaptations
of guidelines for particular purposes are of sufficiently good quality. Further-
more, we investigate how to ensure by means of the use of formal methods
that clinical decisions made by medical doctors are sound with respect to the
guideline. In order to do this automatically, a model checking technique is
investigated in this application area. Parts of this chapter were published in
[Hommersom et al., 2006, Groot et al., 2007].

Chapter 7 deals with more fundamental issues of specifying clinical guide-
lines in logic, and in particular we consider several loose ends of the research
not touched upon in the earlier chapters. Although logical methods are not
commonly used in medical research about clinical guidelines, the results of
the earlier chapters suggest that adopting a logical view allows one to look
at guidelines in a more critical fashion. In this chapter we study two as-
pects of guidelines, the time-oriented decision making underlying the struc-
ture of guidelines and the clinical consideration of choosing alternative ac-
tions based on the results obtained by previous actions, more thoroughly.
The resulting insights from these studies could help in designing a special-
purpose clinical guideline logic. Parts of this chapter were published in
[Hommersom et al., 2005b, Hommersom and Lucas, 2007].

Finally, in Chapter 8 we bring the results of the research described in this
thesis into perspective and consider the questions that drove the research once
again, but now in light of what we have achieved. Also, some future lines of
research that can be seen as natural follow-ups to the research described in
this thesis are discussed.

Chapter 2
Preliminaries

In this chapter, preliminaries with respect to the languages and techniques
that are used throughout this thesis are introduced. As guidelines are tempo-
ral systems, the main type of logic that we use is temporal logic, which is the
main topic of this chapter. Necessary concepts with respect to reasoning and
techniques that are employed for formal verification are introduced. Further-
more, related work with respect to formal systems in biomedicine is mentioned.
Finally, it is summarised how these languages and techniques will be used in
the subsequent chapters.

Familiarity with propositional and first-order logic is assumed throughout
this chapter. Furthermore, we assume the reader is familiar with a few basic
notions related to automata and complexity theory.

2.1 Temporal Logic

Temporal logic refers to a class of logics for reasoning about time. An impor-
tant subclass of these logics is tense logic, which originally dealt with reasoning
about the past, present, and future. Tense logic was first introduced in 1957
by Arthur Prior [Prior, 1957] as a branch of modal logic, which are logics that
deal with relational structures. Since then many variants have been developed,
for example, for use in computer science. In this chapter, we do not give a
complete overview of all of these logics. Instead, we focus on those the logics
that are used in subsequent chapters of this thesis.

This chapter is organised as follows. We first introduce the semantics of
temporal logics. On the basis of these models, we will define a number of logics
that are used, starting with future-time temporal logics as they play such an
important role in computer science for verifying digital systems. After this,
we briefly discuss a comparison, in terms of expressiveness, between the logics
that have been introduced.

15

16 Preliminaries

2.1.1 Temporal Model

As said, the meaning of modal logics can be described in terms of relational
structures. A general model of such a relational structure is a Kripke structure.
Such a structure, over a set of atomic propositions P, is formally defined as a
three tuple M = 〈S,R,L〉 such that [Clarke et al., 2001]:

• S is a set of states;

• R ⊆ S × S is a binary relation;

• L : S → 2P is a function that labels each state with the set of atomic
propositions true in that state.

In the context of temporal logic, R defines a transition relation. A path in the
model M from a state s0 ∈ S is then a (non-empty) sequence π = s0s1s2 . . .
such that R(si, si+1) holds for all i ≥ 0. With πi we denote the suffix of π
starting at si and with π[i,j] we denote the sub-path of π from si to (and
including) sj with i ≤ j. Finally, we denote |π| for one less than the length
of the sequence, i.e., the number of transitions of the path, which is either ∞
if the sequence is infinite (i.e., the sequence does not have a last element) or
some natural number.

In practice, several assumptions are made with respect to the model. In
programming literature, usually a set of initial states S0 ⊆ S is defined. Oth-
erwise, each s ∈ S can be considered an initial state. A second assumption
that is often made is that S is a finite set. Then, M could be seen as a
non-deterministic finite-state machine, which can be used for modelling many
digital systems. It is non-deterministic as from each state it could be possible
to move to several successor states. Finiteness ensures that computing many
types of properties of such a model is, in principle, possible. Finally, R is often
assumed to be serial, i.e., for all s there exists s′ such that R(s, s′). In this
thesis, this assumption is not made, unless otherwise stated.

One might observe that to each state a propositional model (a truth table
modelled by the function L) is associated which is used to describe proposi-
tional temporal logics. In order to acquire a first-order temporal logic instead,
a first-order structure is associated with each state, usually with additional
restrictions on the relationship between successor structures, e.g., that their
underlying sets are equal. This poses many difficult philosophical and tech-
nical issues that go beyond the scope of this thesis. Relevant details will be
mentioned in subsequent chapters if necessary. For a survey of such logics, we
refer to [Cocchiarella, 2002].

2.1.2 Future-time Temporal Logics

The logics that we discuss here use atomic propositions and Boolean connec-
tives (e.g., ¬,∨,∧) to build up more complex expressions for describing proper-
ties of states. There are two types of modalities used, namely, path quantifiers

Temporal Logic 17

skip last

ϕ;ψ

ϕ∗

Fϕ

ϕ

ψϕ

ϕϕ

ϕ

Gϕ

ϕ ϕ ϕ ϕ

ϕ ϕ

ϕ ϕ ϕ ϕ

ϕUψ,ϕWψ

ϕ ψ

Xϕ,X!ϕ Xϕ

¬X!ϕ ϕWψ

¬(ϕUψ)

Figure 2.1: Some example sequences consisting of four states that provide
interpretations for the temporal operators used, where absence of a formula in a
state implies that the formula does not hold there. The bar under the sequence
for the chop and star operator indicate that their sub-formulas are evaluated
on these sub-intervals. For all other temporal operators, sub-formulas can refer
to the complete sequence.

and temporal operators. The path quantifiers are A and E to specify that
all or some of the paths, starting at a specific state, have some property, re-
spectively. The temporal operators describe properties of a path through the
model, some of which specify a property of the whole path and some split up
the path into several sub-intervals. Temporal operators of the first type that
are used are X, X!, G, F, U, and W, with Xϕ being true if ϕ holds in the
next state if there is one, X! is true if Xϕ holds and there is indeed a next
state, Gϕ if ϕ holds in the current state and all future states, Fϕ if ϕ holds in
some state in the future (or is true in the current state), ϕUψ if ϕ holds until
ψ holds, i.e., there is a state on the path where ψ holds and in every preceding
state ϕ holds, and ϕWψ if ϕ holds along the path up to and including the
first state where ψ holds, however ψ is not required to hold eventually. Three
basic interval temporal operators are used here, namely skip, ‘;’ (chop), and
‘∗’ (star), with skip being true exactly if the length of the interval is 1, ϕ;ψ
holds if the path can be “chopped” into two parts, such that ϕ holds in the
first part and ψ holds in the second part, and ϕ∗ holds if it is possible to
decompose the interval into a (possibly infinite) number of finite intervals in
which ϕ holds. Example interpretations of these operators on short sequences
of states are illustrated in Figure 2.1.

The first logic we discuss is Computational Tree Logic (CTL). In CTL there
are two types of formulas: state formulas, which are true in a specific state,
and path formulas, which are true along a specific path. The syntax of state

18 Preliminaries

and path formulas is defined as follows:

1. Each atomic proposition, denoted by p, q, r, . . . is a state formula.

2. If ϕ and ψ are state formulas, then ¬ϕ, ϕ ∨ ψ, and ϕ ∧ ψ are state
formulas.

3. If ϕ is a path formula, then Eϕ and Aϕ are state formulas.

4. If ϕ and ψ are state formulas, then Xϕ, Gϕ, Fϕ, ϕUψ, and ϕWψ are
path formulas.

CTL consists of the set of all state formulas. Note that in this definition, path
quantifiers are always directly followed by a temporal operator, e.g., EG p. If
we drop this restriction on the order of operators, i.e., by building up more
complex expressions of path formulas using temporal and propositional oper-
ators, then the logic it generates is CTL∗ (see [Clarke et al., 2001] for more
details). We can then, for example, express A(Gp ∨ Gq), i.e., for all paths
always p or always q holds, something which cannot be expressed in CTL. The
semantics of CTL∗ (and the sub-logic CTL) is defined with respect to a Kripke
structure M . Given a state formula ϕ, the notation M, s |= ϕ denotes that ϕ
holds in state s of the Kripke structure M . A formula is valid if for all models
M and all initial states s of this M it holds M, s |= ϕ. Assuming that ϕ1 and
ϕ2 are state formulas and ψ1 and ψ2 are path formulas, the relation |= can be
defined inductively as shown in Figure 2.2.

Linear Temporal Logic (LTL) is a logic which is built up by the temporal
operators, i.e., all the formulas can be seen as path formulas, so the language
is defined as follows:

1. Each atomic proposition is a formula.

2. If ϕ and ψ are formulas, then ¬ϕ, ϕ ∨ ψ, and ϕ ∧ ψ are formulas.

3. If ϕ and ψ are formulas, then Xϕ, Gϕ, Fϕ, ϕUψ, and ϕWψ are formulas.

The semantics is defined with respect to paths of a Kripke model. Given a
formula ϕ, M,π |= ϕ denotes that ϕ holds on path π of the Kripke structure
M . Similar to CTL, a formula ϕ is valid if for models M , and all paths π
starting from an initial state of M holds M,π |= ϕ. It is then obvious that an
LTL formula ϕ is equivalent to the CTL∗ formula Aϕ.

Many extensions have been proposed in this linear framework of logics,
mainly by the addition of special and sometimes more powerful operators. One
such proposal is Interval Temporal Logic (ITL), i.e., the logic that is defined
by adding the interval temporal logical operators skip, ‘;’, and ‘∗’, as we have
introduced above to LTL, of which the last two cannot easily be defined in
terms of the other operators.

The main difference between the linear and branching logics is that in
the branching framework one can talk about uncertainty in time, e.g., one

Temporal Logic 19

M, s |= p ⇔ p ∈ L(s)
M, s |= ¬ϕ ⇔ M, s 6|= ϕ
M, s |= ϕ1 ∨ ϕ2 ⇔ M, s |= ϕ1 or M, s |= ϕ2

M, s |= ϕ1 ∧ ϕ2 ⇔ M, s |= ϕ1 and M, s |= ϕ2

M, s |= Eψ ⇔ there is a path π from s such that M,π |= ψ
M, s |= Aψ ⇔ for every path π starting from s such that M,π |= ψ
M,π |= ϕ ⇔ s is the first state of π and M, s |= ϕ
M,π |= ¬ψ ⇔ M,π 6|= ψ
M,π |= ψ1 ∨ ψ2 ⇔ M,π |= ψ1or M,π |= ψ2

M,π |= ψ1 ∧ ψ2 ⇔ M,π |= ψ1 and M, s |= ψ2

M,π |= X!ψ ⇔ |π| 6= 0 and M,π1 |= ψ
M,π |= Xψ ⇔ |π| 6= 0 implies M,π1 |= ψ
M,π |= Fψ ⇔ there exists a k ≥ 0 such that M,πk |= ψ
M,π |= Gψ ⇔ for all k ≥ 0,M, πk |= ψ
M,π |= ψ1 Uψ2 ⇔ there exists a k ≥ 0 such that M,πk |= ψ2 and

for all 0 ≤ j < k,M, πj |= ψ1

M,π |= ψ1Wψ2 ⇔ there exists a k ≥ 0 such that M,πk |= ψ1 and
for all 0 ≤ j < k,M, πj |= ψ2

or for all k ≥ 0,M, πk |= ψ2

M,π |= skip ⇔ |π| = 1
M,π |= ψ1;ψ2 ⇔ |π| = ∞ and π |= ψ1, or

there exists n ≤ |π| with π[0,n] |= ψ1 and π[n,|π|] |= ψ2

M,π |= ψ∗ ⇔ |π| = 0
or there exists 0 = n0 < n1 < . . . < nm < |π|
with π[ni,ni+1] |= ψ for all 0 ≤ i < m
and π[nm,|π|] |= ψ

or there exists infinite many 0 = n0 < n1 < . . .
with π[ni,ni+1] |= ψ for all 0 ≤ i

Figure 2.2: Semantics of CTL∗ with ϕ representing a state formula and ψ
representing a path formula.

20 Preliminaries

can say “a patient may recover”. Note that you should not necessarily read
this uncertainty epistemologically, as the world (or system) could behave non-
deterministically, i.e., it is not necessarily a lack of knowledge that creates this
uncertainty.

2.1.3 Past-time Temporal Logics

As future-time logics allows one to reason about the future, some tense logics
also allows one to reason about the past. Originally, these logics were developed
from philosophical interest, i.e., to investigate the relationship between tense
and modality; however, it has since then been recognised in the area of artificial
intelligence. In context of formal methods, these operators have not been used
much as past-time operators are typically not part of program specifications.
Furthermore, from a technical point of view, in LTL, these modalities can be
omitted and properties can be rephrased as an equivalent future-only formula
if one focuses on one initial state [Gabbay, 1987]. Nonetheless, past-time tem-
poral logics are useful for knowledge representation as formulas using these
additional operators may be more intuitive and are typically more succinct (in
fact, exponentially more succinct for LTL [Markey, 2003]).

The semantics of such logics is again described by a Kripke model as shown
above in Section 2.1.1. Modalities can be defined by considering the inverse
relation of R of a Kripke model M and paths now have a past as well as a
future, i.e., π = . . . , s−1, s0, s1, . . ., so that, for example the S (since) operator
can be defined (NB: as there is no unique initial state, the state is added as
an additional parameter to the model):

M,π, s0 |= ψ1 Sψ2 ⇔ there exists a k < 0 such that M,π, sk |= ψ2 and
for all k < j < 0,M, π, sj |= ψ1

i.e., ϕSψ means somewhere in the past ψ held and after that until now ϕ held.
Similar to the future-time modalities, linear modalities for the history can be
introduced (which is often called Ockhamist past, after William of Ockham
[Zanardo and Carmo, 1993]), yielding modalities such as S (since), X−1 (one
moment ago), P (in the past), H (always in the past), etc. Branching variants
of past-time modalities are less common, e.g., “yesterday, the patient may
have been given a treatment” cannot be expressed as it either did or did not
happen. Of course, there can be uncertainty whether the patient has been
given the treatment; however, again, standard temporal logic is not concerned
with epistemology. For such purposes other logics have been suggested, such
as alternating-time temporal logic (ATL) [Alur et al., 1998]. It is possible to
combine a branching logic with a linear past (PCTL), which has also been
proposed [Laroussinie and Schnoebelen, 2000]. While for a subset of this logic
there exists a translation to CTL, the PCTL specification can be more natural
and succinct.

Reasoning 21

X!ϕ ≡ skip;ϕ in the next state ϕ
Xϕ ≡ ¬X!¬ϕ if there is a next state, then in the next state ϕ
last ≡ X⊥ this is the last state of the interval
finite ≡ ¬(⊤;⊥) the interval is finite
Fϕ ≡ ⊤Uϕ eventually ϕ
Fϕ ≡ finite;ϕ eventually ϕ
Gϕ ≡ ¬F¬ϕ always ϕ
Pϕ ≡ ⊤Sϕ somewhere in the past ϕ
Hϕ ≡ ¬P¬ϕ always in the past ϕ

Figure 2.3: Some example definition of temporal modalities in terms of other
modalities.

2.1.4 Expressiveness

With respect to expressivity of these logics, many results are known. For ex-
ample, Kamp [Kamp, 1968] has shown that the linear temporal logic with
the S and U modal operator is expressively complete for linear continu-
ous time lines, i.e., every possible temporal operator can be define by this
language. Other first-order theories, such as the ones using the successor
function requires for example the X modality. For a more in-depth study
with respect to completeness results of various temporal logics, we refer to
[Gabbay et al., 1994, Goldblatt, 1987, Venema, 2001]. Minimal sets of modal-
ities can be acquired by omitting the modalities that can be defined in terms
of other modalities, similar to the usual propositional abbreviations such as
⊤ ≡ ϕ ∨ ¬ϕ, ⊥ = ¬⊤, ϕ ∧ ψ ≡ ¬(¬ϕ ∨ ¬ψ), etc. In Figure 2.3, we provide an
(incomplete) set of such equivalences.

2.2 Reasoning

In order to reason with the logics introduced above, a distinction is made
between the object and meta language. The object language is the language
that is “talked about”, whereas the meta-language is the language in which we
“talk about” the object language. This distinction was made clear by Tarski
in his work to formalise the concept of truth [Tarski, 1944], where he used an
appropriate meta-language for defining truth in the object level. Similar to
the distinction between object-language and meta-language, facts that cannot
be derived from within a theory, but that can be asserted about the theory
are called meta-knowledge. In order to discuss some of the reasoning that
is employed, we discuss object-level reasoning and meta-level reasoning and
introduce their notation. This discussion is required for introducing the type
of reasoning that is employed in Chapters 4 and 5.

22 Preliminaries

2.2.1 Object-level Reasoning

In the previous section, we have used the |= symbol in order to denote what
a formula means in a specific model. Throughout this thesis, we will also use
the |= symbol in order to denote entailment, i.e., ϕ |= ψ means that in all
models where ϕ holds, also ψ holds. This is a slight abuse of notation as ϕ
is a sentence in the object language, whereas M is described in some meta-
language. In order to avoid reasoning with models, axioms and inference rules
are defined that preserve truth according to the semantics. In order to describe
logical consequences on the basis of such axioms and inference rules, we write
ϕ ⊢ ψ, where ⊢ is defined according to a set of inference rules, i.e., a proof
procedure. As a convenience, for sets of formulas Γ and ∆, we write Γ ⊢ ∆
and Γ |= ∆ as shorthand for

∧
Γ ⊢

∨
∆ and

∧
Γ |=

∨
∆, respectively.

A proof procedure is called sound if for all formulas ϕ holds that if ⊢ ϕ then
|= ϕ, i.e., everything that can be derived is true. Conversely, we call the proof
procedure complete if for all ϕ it holds that if |= ϕ then ⊢ ϕ, i.e., everything
that is true can be derived.

For first order logics, a plethora of proof systems have been developed (e.g.,
natural deduction, sequent calculi, semantic tableaux, etc.). In general, there
is a trade-off between the amount of axioms and the amount of inference rules.
Systems with many axioms and little inference rules (typically just modus
ponens) are called Hilbert-style systems. Such axiomatisations for temporal
logic have been studied extensively, for example:

FFϕ→ Fϕ

is an axiom of linear temporal logic. A great amount of sound and complete
axiomatisations, i.e., a set of axioms that allows for the derivation of all truths
and no more, have been developed. A systematic overview of these axiomati-
sations is given in [Kuhn and Portner, 2002].

Such axiomatisations are interesting from a theoretical perspective; how-
ever, they are inefficient for computerised reasoning. In Chapter 4, resolution
[Robinson, 1965b] is used, which is based on exactly one inference rule:

p ∨ ψ ¬p ∨ φ

ψ ∨ φ

and a procedure (unification), which replaces variables by terms, in order
to obtain complementary literals which are then used in the resolution rule.
The resolution procedure is sound and refutation-complete, where refutation-
completeness means that if Γ |= ⊥ (note that an empty disjunction equals ⊥),
then Γ ⊢ ⊥ [Robinson, 1965b]. In practice, this does not pose a restriction on
the applicability of resolution to solve problems as in order to establish that
Γ |= ϕ, it suffices to show that Γ∪{¬ϕ} |= ⊥. Similar to first-order logic, infer-
ence rules have been proposed for temporal logic, such as temporal resolution

Techniques 23

[Fisher et al., 2001] and verification diagrams [Manna and Pnueli, 1994].

2.2.2 Meta-level Reasoning

Meta-knowledge and meta-reasoning are important topics for intelligent sys-
tems for obtaining better results. For example, as in mathematics, meta-
knowledge can be used to better understand some system under investigation
by reasoning about it on a meta-level. More specific to artificial intelligence is
that meta-knowledge can be used as heuristics for automated deduction sys-
tems and inference control in problem solving (e.g., [Bundy, 1988]). The idea
there is that the search space is much smaller on a meta-level and results found
there can help finding solutions on the object-level. Finally, as meta-theorems
often cannot be represented appropriately in the object language, describing
reasoning on a meta-level can be useful for modelling for various systems. An
example of the latter are argumentation frameworks [Dung, 1995], where ar-
guments are constructed in a sufficiently expressive object language and are
reasoned about in the meta-language, which deals with notions such as defeat
and aggregation of arguments. A second example of meta reasoning, which is
used in this thesis, is abduction, which aims at finding the best explanation
given certain findings.

2.3 Techniques

There is a large range of formal methods ranging from (computationally) cheap
and very incomplete methods to very expensive and less incomplete methods.
Complete correctness of a system cannot be guaranteed, which is often stated
in literature (e.g., [McMillan, 1993]), as it is impossible to enumerate all the
correctness criteria for any non-trivial system. Even though completeness is
not feasible, formal methods are more than just “proofs of correctness” as
many problems can occur with respect to ambiguity, incompleteness, and mis-
understandings. They force one to make things explicit with respect to the
requirements of the system as well as the assumptions that one relies on.

In order to use formal methods for the verification of systems, Kripke mod-
els are looked upon as a state transition system, i.e., all the states of the model
are considered states of a system. There are two main traditions in formal ver-
ification, namely theorem proving and model checking. The first deals with
establishing logical consequences of logical formulas, i.e., to establish whether
a formula provably follows from a set of premises:

Γ ⊢ ϕ

Model checking on the other hand takes a specification of a model M and
decides whether or not a formula holds, i.e., whether or not:

M |= ϕ

24 Preliminaries

Intuitively, and formally as we will see below, model checking is easier as finding
the logical consequences of Γ as done in theorem proving requires one to take
into account all models that satisfy Γ, while one specific model is given in the
case of model checking. Even though this limits the applicability of model
checking (as one needs to be able to specify a model), many systems can be
described in terms of such a finite Kripke model, which makes model checking
a powerful technique.

Some basic notions with respect to these techniques are discussed next.

2.3.1 Theorem Proving

In this thesis, we mean by theorem proving the computer-supported reason-
ing using a set of inference rules, such as the resolution rule that was intro-
duced in Section 2.2.1. A distinction can be made between automated the-
orem proving and interactive theorem proving. Classical automated theorem
proving aims at proving theorems completely automatically, whereas interac-
tive theorem proving may require additional user interaction. Systems of the
former type include otter [McCune, 2003], Prover9 [McCune, 2007], Vam-
pire [Riazanov and Voronkov, 2002], and E [Schulz, 2002]. Interactive the-
orem provers that are used in computer science are systems such as HOL
[Slind, 1991], PVS [Owre et al., 1992], Isabelle [Paulson, 1989], and a system
that is used in this thesis: KIV [Balser et al., 2000].

If one wants to do actual reasoning with temporal logic, issues such as
completeness, decidability, and complexity are relevant. For first-order logic,
the resolution rule is refutation-complete, i.e., Γ |= ⊥, then Γ ⊢ ⊥, which,
combined with the logical equivalence of Γ |= ϕ and Γ ∧ ¬ϕ |= ⊥ yields com-
pleteness. Completeness of proof procedures of temporal logic vary, e.g., tem-
poral resolution is complete [Dixon et al., 1998], whereas the completeness of
the temporal strategy of KIV is an open issue [Balser, 2005, p. 143]. For
automated reasoning, one would like decidability, i.e., to be able to distin-
guish between theorems and non-theorems. While first-order logic is unde-
cidable (though still semi-decidable, i.e., valid theorems will eventually be
found), the propositional temporal logics we have discussed in this chap-
ter are all decidable, though logical reasoning is typically a hard problem.
For future-time temporal logics, for example, checking validity of a formula
in both LTL [Sistla and Clarke, 1985] and ITL [Aaby and Narayana, 1988]
is PSPACE-complete, while for CTL this problem is EXPTIME-complete
[Emerson and Halpern, 1982]. Nonetheless, smart heuristics make it possible
to reason about interesting problems, even for problems stated in first-order
logic (e.g., [Phillips and Vojtěchovskiý, 2005, Jech, 1995]).

2.3.2 Model Checking

In terms of complexity, model checking is an easier task. While theorem prov-
ing using CTL is EXPTIME-complete, model checking can be done in com-

Techniques 25

putational complexity which is linear to the size of the model and formula
[Clarke et al., 1986]. LTL model checking, given a branching structure, on the
other hand, is still PSPACE-complete, although also polynomial in size of the
model. The former is straightforward to see when considering that all linear
models can be described in the branching structure, making it no easier than
theorem proving. In this sense, it is unfair to call this “model checking” as a
model of an LTL formula is a linear structure. As such linear structures have
no use in modern program verification, such type of model checking is not a
topic of interest.

The discussion on whether to use CTL or LTL for model checking is far
from over, as LTL is usually more intuitive and better suited as a specification
language. For example, recently, Vardi [Vardi, 2001] revived this discussion by
summing up the advantages of linear-time frameworks in terms of expressive-
ness, compositionality, property-specific abstractions, and uniformity.

As also discussed in Chapter 1, symbolic model checking is based on the
use of compact representations of sets of states using clever data structures,
for instance Binary Decision Diagrams (BDD). This approach has been very
successful in the last decade, which can be observed by the fact that this
technique is used on a wide industrial scale. Nonetheless, BDDs may grow ex-
ponentially, which restricts the size of the model that can be verified efficiently.
Hence, other techniques have also been used such as Bounded Model Checking
(BMC), which is based on propositional SAT solving [Biere et al., 2003], which
was first introduced in [Biere et al., 1999]. So far, it has been shown that BMC
can be used for verifying systems that could not be verified with BDD tech-
niques. However, at the same time, problems exist that can be solved more
efficiently using BDD techniques. The idea of BMC is to search for a counter-
model in executions whose length is bounded by some constant k. Typically,
the model checker iterates from 0 to the pre-defined upper bound k and termi-
nates once it has found a counter example. As a consequence, this method is
incomplete as the smallest counter-example may be beyond the upper bound
provided by the user. This is a promising technique for clinical guidelines, usu-
ally only a small number of treatments are discussed (cf. Chapter 3), whereas
there is a large amount of non-determinism present.

Finally, another technique, which is employed in this thesis, is so called
modular verification, i.e., to verify a restricted part of the system (cf.
[Kupferman and Vardi, 1998]). In the assumed-guarantee paradigm, the spec-
ification of a module consists of a specification of guaranteed behaviour as-
suming that the system behaves in a certain way. This is called the assumed
behaviour. In Chapter 7, the assumed behaviour is written down in a linear
temporal logic and the guaranteed behaviour in branching temporal logic. The
assume-guarantee assertions are written down as [ϕ]M〈ψ〉, meaning that the
CTL formula ψ holds in the computation tree consisting of all computations
of the program, described by M , that satisfy the LTL formula ϕ.

26 Preliminaries

2.4 Formal Systems in Biomedicine

One important area where formal calculi have been applied is systems biol-
ogy, that aims at modelling the complex interactions in biological systems. In
particular the modelling of metabolic pathways, i.e., series of chemical reac-
tions occurring within a cell, has been a topic of interest. Several formalisms
have been employed. First, process calculi, such as the well-known π-calculus
[Milner, 1999, Kuttler, 2006], which are used for modelling concurrent sys-
tems, have been applied to this area, e.g., using a stochastic process calculus
in [Errampalli et al., 2004]. Second, Petri-nets have been proposed for mod-
elling such networks in [Hofestädt and Thelen, 1998]. Finally, there are several
papers which aim at modelling biological pathways using specialised languages
in order to apply model checking algorithms for investigating relevant proper-
ties of such a pathway. For example, the rule-based language Pathway Logic
[Eker et al., 2002] and the BIOCHAM language [Chabrier and Fages, 2003],
which can be used to build models that can be queried using CTL in the SMV
model checking tool. Probabilistic modelling and model checking of biological
pathways has also been proposed [Pronk et al., 2007].

With respect to medical reasoning, various representation languages for
formalising and reasoning about medical knowledge have been used and devel-
oped, e.g., (heuristical) rule-based systems [Shortliffe, 1974] and causal repre-
sentations [Patil, 1981]. There has not been done much work in logical reason-
ing about medical knowledge. An exception is [Lucas, 1993], which studied the
use of logic modelling for building expert systems. Predicate logic was used
to formalise models of medical knowledge and could be reasoned with using
classical automated theorem proving. In more recent years, probabilistic mod-
els have gained popularity in this area. For example, statistical knowledge is
succinctly represented in Bayesian networks [Pearl, 1988], and can be used to
represent medical knowledge (e.g., [Lucas et al., 1998] and [van Gerven, 2007]
for recent results).

Less research has been done to exploit formal methods for reasoning about
the correctness of the clinical decisions. Of course, the modelling of clinical
reasoning is a well-known topic in the area of decision support and expert
systems [Lucas and van der Gaag, 1991] resulting in several medical systems
as mentioned in Chapter 1 (e.g., MYCIN [Shortliffe, 1976]) and could be taken
as a basis for such an approach. Despite that, little has been done in order to
study and verify quality of the decisions themselves, besides what was already
mentioned in context of clinical guidelines (cf. Section 1.3).

2.5 Conclusions

In this chapter, we have presented several languages that allows us to formalise
the necessary medical and guideline knowledge. These languages will be ex-
plored in a number of chapters. First, in Chapter 4, linear temporal logic is

Conclusions 27

used for reasoning about medical knowledge and the guideline. Then, in Chap-
ter 5, the medical knowledge formalised in linear temporal logic is combined
with the guideline formalised in a guideline representation language. Formal
aspects of this approach are discussed. In both Chapters 4 and 5, the focus will
be on the use of theorem proving for reasoning about the quality of clinical
guidelines. In Chapter 6, we employ computational tree logic for modelling
parts of a guideline and investigate how this logic can be used for reasoning
about so-called guideline adaption and for investigating the quality of clinical
management. In the latter study, we compare this to linear temporal logic.
The technique that is used here is model checking. Finally, Chapter 7 proposes
to use interval temporal logic for modelling parts of the guideline and we ex-
tend this logic to certain aspects that are underlying clinical guidelines. We
investigate how such an approach can be used to verify parts of the guideline
and compare this to the other approaches of Chapters 4 and 5.

28 Preliminaries

Chapter 3
Guidelines and Protocols

In order to obtain useful results by applying formal methods to a system,
one must first have a clear understanding of the system under consideration.
Compared to clinical guidelines, technical systems are often quite well under-
stood. For guidelines, it is not at all clear what an appropriate model of such a
guideline entails, e.g., in this thesis, it is argued that physiological knowledge
should be part of a model, whereas many of the guideline modelling languages
ignore this aspect of the guideline. Moreover, the modelling itself is difficult
as it requires of a combination of technical knowledge as well as medical ex-
pertise. For example, in the Protocure project, it was found that most errors
in the models were introduced during the modelling of the guideline. Finally,
requirements with respect to guidelines should be made explicit. If it is un-
known what a guideline is supposed to accomplish, or if the requirements are
simply not useful, then any results derived from these requirements are equally
useless. As a result, it is of importance to obtain insight into the nature of
clinical guidelines, which is the goal of this chapter. Even though this will
not solve the inherent difficulty in modelling a guideline, a problem that in
its full generality is beyond the scope of this thesis, it provides a direction for
investigating the formal aspects of a guideline.

The systems that are of interest in this thesis are clinical guidelines, also
sometimes referred to as medical guidelines or clinical practice guidelines
(CPG). These are documents which include recommendations, advice and
management instructions aimed at supporting the decision-making process of
healthcare professionals and patients, based on the results of scientific research
and subsequent professional opinion. Their aim is to establish good medical
practice in healthcare [van Everdingen et al., 2004]. A secondary aim is to
make the care process more effective [CBO, 2002]. Research in the last few
years has shown that clinical guidelines can indeed improve healthcare out-
comes [Woolf et al., 1999] and may even reduce the costs of care up to 25%
[Clayton and Hripsak, 1995]. Worldwide, a number of organisations, such as

29

30 Guidelines and Protocols

the Dutch Institute for Health Care Improvement (CBO) in the Netherlands
and Scottish Intercollegiate Guidelines Network (SIGN) in Scotland, have been
founded to assist specialist groups in the development of guidelines. Other or-
ganisations, such as the Dutch General Practitioners (NHG) carry out similar
activities for general practitioners. In 2002, the Guidelines International Net-
work (GIN) was founded to promote systematic development of clinical prac-
tice guidelines through international collaboration [Ollenschläger et al., 2004].

A related type of document is a clinical protocol, which is seen as a local
version of a guideline, meant to be used to support effective daily clinical care.
The need for a protocol in conjunction with a guideline is twofold: firstly, a
guideline is an extensive document (e.g., the Dutch breast-cancer guideline
is 121 pages), and, therefore, it is not easy to locate relevant information;
secondly, detailed recommendations about duration, dose, or actual procedure
have been omitted from the guideline ensuring that it is generic, and, thus,
these details are included in a protocol to complement the information that is
in the guideline. Hence, basically, a clinical protocol is a summary of the most
important sections that are in the guideline with respect to additional local
management information.

In this chapter, we introduce the necessary preliminaries with respect to
guidelines and protocols. In the first part, we concern ourself with the question
how guidelines are being developed at the moment, and how protocols are
derived from guidelines. In the second part of this chapter we look at two
example guidelines: a guideline about the treatment of diabetes mellitus type 2
and breast cancer. Finally, we address the issue of quality of clinical guidelines.
The description of guidelines and protocols that is presented here essentially
yields an interpretation of guidelines and protocols that is taken as a starting
point for the rest of this thesis.

3.1 Development of Guidelines and Protocols

This section is based on documentation provided by the Dutch Institute for
Health care Improvement (CBO)1.

3.1.1 Summary of the Process

Figure 3.1 gives an overview according to the guideline-development process in
the view of CBO. The development process goes through the following phases:

(1) Selection of the guideline topic. This is based on perceived needs within
the healthcare community with regard to setting standards of care for a
particular patient group.

(2) Installation of the guideline-development team. The people involved in
the development of a guideline have different backgrounds and expertise.

1 http://www.cbo.nl

Development of Guidelines and Protocols 31

For example, the team could include medical specialists, clinical pharma-
cists, patient group representatives, guideline developers, so that they,
from their own field of expertise, can contribute insights and principles.
The chairperson of the group normally has considerable authority in the
topic concerned.

(3) Design. This concerns the actual development of the document, based on
the gathering of relevant information and discussion among the members
of the guideline-development team.

(4) Comment phase. The national community to which the guideline is of
concern is given the opportunity to offer comments in a national guideline
meeting. In addition to this, the scientific organisations (such as the
Netherlands Heart Foundation) may offer comments.

(5) Dissemination. The guideline is sent to various organisations, published
in a journal (often the Netherlands Journal of Medicine, NTVG) and on
the CBO website.

(6) Evaluation. In the end, guideline developers wish to learn whether im-
plementation of the guideline within a healthcare organisation has had
an impact on the quality of care. If this is the case, the effort put into
the guideline development is seen as having been justified. Evaluation is
done by considering indicators, i.e. measurable elements, such as number
of years of survival following treatment.

In this thesis, we are in particularly interested in the main product of the
guideline-development process, i.e., the guideline document, and the way the
knowledge represented in this document changes during the development pro-
cess. This is why in the remainder of this section the focus is only on one of
the phases mentioned above: the design phase.

3.1.2 Design of a Guideline

The identification of the key questions which need to be addressed by a guide-
line is of major importance, because if a guideline does not address these it is
unlikely it will ever be employed by the targeted community. These questions
are answered by selecting relevant scientific evidence from literature, which is
then summarised for inclusion in the guideline, and forms the basis for the rec-
ommendations and included advice. In order to better understand this process,
we will go into somewhat more detail.

The design phase of guideline development focuses on the process of draft-
ing the actual document. It consists of the phases from the problem analysis
to the writing of the actual guideline, which is depicted in Figure 3.1. The
most important phases are discussed below.

32 Guidelines and Protocols

problem
analysis

evaluation

literature search

discussion

comment
phase

dissimination

revision
draft

development group
installation

selection
literature

writing of draft

quality assessment

topic selection

Figure 3.1: Adapted CBO development cycle [CBO, 2005] highlighting some
of the main steps in the development process.

Problem analysis

In the preparatory phase a problem analysis is performed. The goal of the
analysis is to collect a set of key questions for which the following criteria
hold:

• providing an answer is seen as highly relevant by the community of
healthcare professional working in the areas as well as by patient groups,

• there exist no consensus among experts about the appropriate answer,

• answers can be provided in the form of scientific evidence and argumen-
tation by inspecting the scientific literature.

The relevance of problems may be established by sending out surveys to clin-
icians and healthcare organisations and by having discussion in the working
group. This is currently not done on a regular basis. Surveys are also vital
in order to obtain support for the guideline in the medical community and to
make sure that the key questions are seen as being relevant in practice.

Collecting evidence and the role and significance of PICO

The guidelines developed by the CBO are evidence-based, which means that
in practice, when a healthcare professional or patient need to make a decision,
he or she should be aware of the evidence and its strength that support this
decision. The strength of the evidence is judged based on the quality of the
studies that have been performed. For example, strong evidence comes from

Development of Guidelines and Protocols 33

randomised controlled trials (RCTs), which is a scientific method for compar-
ing the effectiveness of medical procedures, while opinions based on clinical
experience are considered to be much weaker.

The first step in collecting relevant evidence from literature consists of
drafting an appropriate question, which is done in a structured fashion. A
question always consists of four subcomponents, which is expressed by the
acronym PICO; PICO stands for:

• Patient group, i.e., the group of patients having particular characteris-
tics (have a particular disease, e.g. patients with breast cancer, or have
undergone a particular treatment);

• Intervention, i.e., an action such as treatment;

• Comparison with other interventions, e.g., one treatment against another
one, or one diagnostic test against another one;

• Outcome: the result of the intervention, for example, diagnosis, cure,
survival or death.

The utilisation of the PICO method is done for a number of reasons: it forces
one to focus on the issues that really matter with regard to the scope of the
guideline, producing questions which can be answered in principle if enough
literature is available. As a result it creates an upper bound on the number of
papers that have to be considered and examined.

The medical literature databases are then searched by reformulated the
PICO into a list of keywords and by doing database searches based on this. The
best way to do this heavily depends on the capabilities of the database used.
Databases which allow the user to search for literature based on methodology
are preferred. In general the results of this search generates a huge amount of
noise, so a successive selection of literature has to be done manually. Popu-
lar literature databases are: MEDLINE/PubMed2, the Cochrane library3 and
EMBASE (Excerpta Medica DataBASE) from Elsevier4.

The quality of the selected literature is then established. Several ‘checklists’
have been developed which can be used to verify the existence of possible bias
in studies. Examples of possible biases are performance bias (the physician
that treats the patient or the patient itself is aware of the assigned treatment)
and detection bias (the physician that has to determine the outcome is aware
of the assigned treatment). It is essential that several members of the group
criticise the literature independently. Afterwards the members argue about
their judgement to reach a consensus.

A systematic review is a structured process that consists of finding relevant
literature as described above, extracting the results from it and by combining

2 http://www.nlm.nih.gov3 http://www.cochrane.nl4 http://www.embase.com

34 Guidelines and Protocols

it using the technique of meta-analysis into a structured document. Thus, the
result is a sort of summary of all the evidence available in the literature. The
highest level of evidence is a systematic review of randomised controlled trials
and it is therefore important these exist when formulating recommendations
from this evidence. An example of a site where systematic reviews are being
offered is EMB Online (Evidence-based Medicine Online)5.

From evidence to recommendation

Evidence from literature is organised in a so-called evidence table. Although
these tables do not have a standard structure or content, they typically list a
number of criteria that is considered important to establish the weight of this
evidence. Examples are the type of study, the number of patients, statistical
relevance, clinical relevance, etc.

From these evidence tables a preliminary text can be composed consisting of
at least the following elements: (1) a clear starting question, which is answered
in a certain section of the guideline, (2) the method used to find literature, (3)
a summary of the literature (results and evidence tables), (4) an examination
and commentary on the results, (5) conclusions based on the literature, (6) a
level of evidence for each conclusion, and (7) the recommendation based on
the conclusion that can be used in practice.

A number of conclusions are formulated from the evidence found in the
literature. A conclusion is a 2-tuple of a statement and an associated level of
evidence. The CBO distinguishes five levels of evidence for treatments:

(A1) Systematic reviews with at least some studies of A2 level, where the
results of the individual studies are consistent.

(A2) Randomised comparative clinical research of good quality and sufficient
size and consistency.

(B) Randomised clinical trials of poor quality of insufficient size or other
comparative research (non-randomised, comparative cohort-research)

(C) Non-comparative research

(D) Opinion of an expert

Diagnostic conclusions are rated with the same evidence levels, but each of
the evidence levels has a different definition associated with it. These defini-
tions are omitted in this thesis.

It is stressed, however, that the levels of evidence are not a measure of
the quality of a guideline, nor can they be used as an excuse to diverge from
a conclusion. They may be used as a tool for the reader and possibly as a
consideration when formulating recommendations.

5 http://ebm.bmjjournals.com

Development of Guidelines and Protocols 35

The construction of recommendations is performed starting with the evi-
dence taking into account a number of other considerations. The considerations
have been organised into 10 ‘domains’.

• Domain 1: Clinical relevance. The working group establishes whether
evidence will be useful and practical for physicians.

• Domain 2: Safety. Interventions should not cause unnecessary side-
effects. Furthermore, risks on short and longterm should be made clear
to patients.

• Domain 3: Patient perspective. Patient satisfaction is important in the
medical field. Expectations of patients about their treatment and the
accessibility to a certain treatment should be considered.

• Domain 4: Perspective of professionals. Risks for physicians and the
amount of time it takes to implement a recommendation.

• Domain 5: Availability of resources. As stated before: the recommenda-
tions must be practically feasible. This means that sufficient human and
non-human resources must be available.

• Domain 6: Costs and effectiveness. Costs and the effectiveness of an
intervention must be in a reasonable balance.

• Domain 7: Organisational. It should be possible to implement recom-
mendations in existing organisations. Typical items here try to capture
the practical possibilities in terms of necessary change to an organisa-
tion and existing infrastructure for the implementation of a particular
intervention to be.

• Domain 8: Judicial. Local judicial consequences for the professional and
specific laws due to implementation of the intervention.

• Domain 9: Ethical. General ethical values have to be applied, such as
truthfulness and honesty, which has, for example, lead to the concept of
informed consent in medicine, which states that a patient has to be give
consent based upon an appreciation and understanding of the facts and
implications of an intervention.

• Domain 10: Industrial. In some cases it can be relevant to question the
commercial interests industry can have in implementing an intervention.

The recommendations are the outcome of discussions carried out in the
working groups. Clearly, given all these considerations, recommendations are
heavily dependent on the opinions of the experts (the working group). This
means that, typically, recommendations on the same subject vary between
countries, even though the evidence is often similar. A few objective criteria

36 Guidelines and Protocols

can be given to judge the quality of recommendations; they should be (1) rele-
vant and practical, (2) clear and unequivocal, (3) prescriptive (not descriptive),
(4) optional, not obligatory and (5) when a consensus cannot be reached, either
recommendations should be omitted or the different considerations should be
denoted.

3.1.3 Protocol Development

One way to reduce the costs and time for developing guideline and protocols,
and avoid unnecessary duplication of effort of guideline development is by re-
lying on the local adaptation of guidelines developed at the (inter)national
level by expert groups [Groot et al., 2008]. In this context ‘guideline adapta-
tion’ is a process in which existing guidelines are adapted so that they can be
used within a different care setting. A local adaptation is called a (clinical)
protocol. As explain earlier, a protocol typically provides detailed information
about duration, dose, or procedure, suited to the local context. Often, such
detailed information is lacking in guidelines. Although a clinical protocol is a
summary of the most important sections that are in a guideline, mostly recom-
mendations, certain recommendations may be changed if they do not fit the
local context.

In this thesis, we will not go into detail about the exact procedure; how-
ever, guideline adaptation should follow similar procedures as used in guide-
line development, including making transparent any decisions and key fac-
tors that influence the modifications. In recent years, several of such proce-
dures have been proposed [Graham et al., 2003, Graham and Harrison, 2005,
Graham et al., 2002, Graham et al., 2005].

3.2 Examples of Guidelines

In this section, we will discuss two case studies that act as a running example
throughout this thesis. In Section 3.2.1, we will discuss the guideline on treat-
ment of diabetes mellitus type 2 (DM2). In Section 3.2.2, the guideline on the
treatment of breast cancer is discussed.

These guidelines are considerably distinct as the diabetes guideline is aimed
at the general practitioner, whereas the breast cancer guideline is developed for
medical specialists. As a result, the latter is more extensive in its justifications,
whereas the diabetes guideline contains more detail.

3.2.1 Diabetes Mellitus type 2

In 2003, about 36 per 1000 men and 39 per 1000 women were diagnosed with
diabetes mellitus type 2 in the Netherlands. Worldwide, the prevalence of
diabetes is rising due to population growth, aging, urbanisation, and increas-
ing prevalence of obesity, and physical inactivity [Wild et al., 2004]. In this
section, we introduce the recommended management of this disease.

Analysis of Guidelines 37

The guideline that acts as a case study here is the Dutch general prac-
titioner’s (NHG) guideline of 2003 [NHG, 2003]. An example of a part of a
guideline is the following (translated) text:

1. refer to a dietician; check blood glucose after 3 months
2. in case (1) fails and Quetelet Index (QI) ≤ 27, then administer a
sulfonylureum derivate (e.g., tolbutamide, 500 mg 1 time per day,
max. 1000 mg 2 per day) and in case of Quetelet Index (QI) > 27
biguanide (500 mg 1 per day, max. 1000 mg 3 times per day); start
with lowest dosage, increase each 2-4 weeks if necessary

This guideline is particularly concise (about 3 A4 pages). While modern guide-
lines can be as large as 100 pages, the number of recommendations they include
are typically few. In complicated diseases, each type of disease is typically de-
scribed in different sections of a guideline, which provides ways to modularise
the guideline in a natural fashion.

At the start of the 2006, this guideline was updated. The most prominent
change compared to the 2003 version is that the biguanide drugs are now
indicated for all patients from step 2 onwards. This is due to new evidence that
suggests that these drugs can reduce the mortality rate, while the sulfonylurea
drugs do not. Subsequently, in case they are is not sufficient, thiazolidinediones
are suggested as a replacement for sulfonylurea drugs for obese patients with
cardiovascular problems and without heart failure.

3.2.2 Breast Cancer

In the Netherlands only, as many as 10,000 women are diagnosed with breast
cancer every year. For women, the chance of ever being diagnosed with this
disease is 10% [CBO, 2002]. Changes in DNA, in particular the genes that
control the instructions for cells to grow, divide, and die, may cause can-
cer; however, little is known under which circumstances this actually happens
[American Cancer Society, 2006].

The guideline that we have used was the 2004 version of the Dutch CBO
guideline on the treatment of breast cancer. This guideline is considerably more
complex than the diabetes guideline due to the fact that it was developed more
systematically described by the methodology in Section 3.1. This warrants a
more comprehensive analysis of the guideline, which is described next.

3.3 Analysis of Guidelines

In this section, we will attempt to give an indication of how a guideline is
organised, where in particular the difference in semantics of the various parts
or fragments is given attention. The structure of the guideline is the product
of the development process. Therefore, by looking at these structures, we will
gain insight into the underlying meaning of the guideline text. As the breast
cancer guideline is much more extensive compared to the diabetes guideline,

38 Guidelines and Protocols

1.2 Diagnostic and treatment of operable invasive breast cancer

In this chapter, operable invasive breast cancer is used to describe: T1-2 N0-1
M0 breast cancer (UICC 2002).

1.2.1 Diagnostic procedures for invasive breast cancer T1-2 N0-1

Please refer to the CBO-guideline ‘Diagnostic procedures for breast cancer’
(Spring 2000).
There are extensive options for investigating dissemination in patients with
breast cancer. The value of carrying out extensive diagnostic procedures in
patients with localised disease is questionable since metastases, if present, can-
not be detected.21

(...)
Conclusion
Level 3 For patients with T1-2 N0-1 breast cancer, preoperative

investigations to detect metastases are not beneficial.

C Samant,23 Ciatto,24 van der Hoeven27

Recommendations
For T1-2 N0-1 breast cancer, preoperative investigations to detect metastases
are not recommended. Symptoms which may be indicative of metastases
should be evaluated. In the case of a high postoperative stage, investigations
to detect metastases may be considered.

Figure 3.2: Structure of the CBO guideline on breast cancer (p. 13)

we use the breast cancer guideline as an example. All the page numbers that
are mentioned in the footnotes refer to pages of the breast cancer guideline.

Global structure

A guideline is divided in several chapters. The first chapter is generally the
introduction. The other chapters have a specific topic related to the primary
topic which do not overlap with other chapters. All chapters are divided in
subsections that contain:

• summary text, which normally serves as an introduction to the issues that
follow so that the reader is able to understand the arguments underlying
recommendations and conclusions;

• conclusions: these are short summary statements of the important in-
sight from the literature, introduced in the preceding guideline text.

• recommendations: these are statements pertaining to (medical) manage-
ment actions.

Analysis of Guidelines 39

See for example Figure 3.2. The structure of these chapters obviously depends
on the questions they want to answer (cf. Section 3.1). For each question
the primary literature is listed together with additional considerations. From
the primary literature the most important conclusions are given a ‘grade of
evidence’ and are put in a separate box, which is based on the level of evidence
of the individual studies (cf. Section 3.1). Finally, note that the recommen-
dations follow from the primary literature and the additional considerations,
i.e., not merely from the conclusions that are highlighted.

Structure in narrative text

The text primarily consists of outcomes of PICOs (e.g., Adjuvant hormone
therapy for locally advanced breast cancer results in improved survival in the
long-term.6), sometimes combined with the type of research (RCT,...) and an
evaluation of the paper (e.g., In addition, in a number of the above-mentioned
studies only the responders to neoadjuvant chemotherapy were analysed, which
has resulted in a bias when comparing locoregional treatment studies.7). Many
other arguments can be found in the guideline that are not directly related to
the main effects and the appraisal of the evidence, for example:

• Advice of treatment in scientific literature:
Some authors therefore recommend just chemotherapy and radiotherapy
for this group of patient.8

• Factors that are important in decisions making, including contra indica-
tions:
In addition, the following conditions are important to ensure an optimum
treatment result with breast-conserving therapy for DCIS: (..).9

• Prioritising of factors that are important for making decisions:
The ultimate choice of treatment (...) lies with the patient.10

• Side-effects of a treatment, although usually considered to be common
knowledge:
The possible occurrence of cancer specific problems is indicated, such as:
limited mobility of the arm, lymphoedema, skin problems, coping prob-
lems, early menopause, pain as a result of damage to the nervus inter-
costobrachialis, or of irradiation of the breast.11

• Relevant tests to reach the goal:
It may be beneficial to select patients for the sentinel node procedure

6 p. 48 7 p. 47 8 p. 49 9 p. 12 10 p. 12 11 p .60

40 Guidelines and Protocols

by carrying out axillary staging using ultrasound of the axilla and
ultrasound-guided fine needle aspiration biopsy.12

Besides these scientific statements, we can also collect a number of non-
scientific arguments. Examples of this vary in structure: from appealing to
common sense (e.g., As long as these questions remain unanswered, the ap-
proach should be based on common sense.13) to stating the acceptable out-
come (e.g., It is generally assumed that a maximum (cumulative) risk of local
recurrence of 1% per year is acceptable for BCT.14). Finally, we sum up some
other aspects of a guideline:

• Definitions:

– Definition of treatments:
BCT implies ample local excision of the tumour, an axillary staging
procedure and radiotherapy of the breast.15

– Definition of diseases:
Definition: Locoregionally advanced breast cancer is used to describe
breast cancer which is unresectable on the basis of the classic unre-
sectability criteria: oedema of the skin (peau d’orange), ulceration,
satellite skin nodules, inflammatory carcinoma, infiltration of the
chest wall (T4), lymph nodes fixed to one another and/or to deeper
structures (N2), or palpable internal mammary, parasternal, infr-
aclavicular and/or supraclavicular lymph nodes (N3). In addition,
large primary tumours (> 5 cm; T3) are also included in this cate-
gory (T3, T4, all N classes, M0; all T classes, N2 or 3, M0).16

• Pros and cons on the basis of scientific literature, situation in the Nether-
lands, bias, etc:
In the groups without radiotherapy in the two Danish studies, locore-
gional recurrence was found in approximately 30% of cases after a 12-year
follow-up period. This suggests that the surgical treatment was inadequate
in many cases. In Denmark axillary dissections were not carried out, in
contrast to the standard procedure in the Netherlands, and instead level
I and II samplings were carried out.17

• Temporal aspects:

– Control flow is usually not provided explicitly, but may be deduced
from advice and evidence that is given:
(...) good communication between those making the diagnoses and

12 p. 24 13 p. 24 14 p. 15 15 p. 14 16 p. 45 17 p. 18

Quality Criteria 41

those treating the patient in the various disciplines is required,
preferably in the form of structured weekly discussions.18

– Order of treatment is usually not explicitly mentioned. Sometimes
optimal order is given, or explicitly stated to be unknown:
The optimal sequence for adjuvant chemotherapy and radiotherapy
is not known.19

• Goals are usually mentioned in the introduction to chapters:
The main objective within the framework of the treatment of metastasised
breast cancer is maintaining or improving the quality of life by treating
complaints.20

Characterisation of Knowledge

Time is used in a guideline to describe the changes in the state of the patient
and its environment. In many cases, an imprecise characterisation of temporal
information is used, e.g., ‘before treatment’ and ‘after treatment’. Sometimes,
guidelines are more specific and actually give reasonably precise time frames,
such as minutes, days, weeks, or months, but only in a limited number of cases
medical science is as precise as in physics, such as the length of time in which
radiotherapy is applied. In the past, time has been thoroughly researched
in the context of logic [Prior, 1957], information modelling, real-time systems
[Chaochen, 1993, Fidge et al., 1998], and other areas. Several logical ontolo-
gies can be taken as a starting point for modelling time, which was described
formally in Chapter 2.

A second important aspect of guidelines is the description of patients and
patient groups. Typical elements in the state of a patient are symptoms,
signs and other measurable elements. Finally, important are the actions that
have to be taken place. In the context of guidelines, we will refer to these as
interventions, i.e., all kinds of medical actions that influence the condition of
a patient or the environment of that patient. A formalisation of these aspects
will be introduced in subsequent chapters in several ways depending on the
purpose for which the formalisation is introduced.

3.4 Quality Criteria

With respect to quality of clinical guidelines, several quality measures have
been proposed. This section will deal with the methods for quality assurance
of guidelines. In the next section we will give a short impression of how so-
called indicators are used, which are formulated during the evaluation phase
of the guideline development. Then, we will present the AGREE instrument
that is often used during the guideline development process. We discuss the

18 p. 52 19 p. 40 20 p. 71

42 Guidelines and Protocols

aspects of these measures for the use of applying formal methods. We conclude
that they are not sufficient and propose a framework of quality measures for
clinical guidelines.

3.4.1 Quality of Health care: Medical Indicators

Indicators are quantitative measures that can be used to monitor and evaluate
the quality of, in this case, healthcare organisations. Three types of indicators
can be distinguished:

1. Structural indicators give insight in the side conditions that have to be
fulfilled to meet healthcare needs.

2. Process indicators assess what a provider did for a patient and how well
he or she did it.

3. Outcome indicators can be used to monitor an outcome variable.

Furthermore, indicators can be internal or external. Internal indicators are not
made public because of their subjectiveness; they can be used to measure qual-
ity inside one’s own healthcare organisation. In contrast, external indicators
are used to give objective advice holding providers of healthcare accountable
for their quality.

It should be noted that guidelines are meant to promote the quality of
healthcare organisations and, therefore, the quality of guidelines is related to
indicators. For example in [ten Teije et al., 2006], process indicators are taken
as quality measures. The main advantage is that these process indicators are
relatively simple to obtain as the external indicators are made public. More-
over, it is conceptually clear that they can be matched to recommendations
given in the guideline.

There are also disadvantages to this approach. The first is that indi-
cators are directly derived from recommendations of guidelines. In such a
case, indicators are trivially consistent with recommendations. Therefore, in
[ten Teije et al., 2006], indicators are used that are derived from other guide-
lines. As guidelines are based on national circumstances, such as the demogra-
phy, it is unlikely that such process indicators should necessarily hold. More-
over, weighing various considerations in the guideline development may result
in a different treatment processes that are of equally high quality. Finally,
indicators are limited to particular aspects of clinical practice, as they are de-
veloped for parts of the clinical pathway that is likely to be done differently
than what is recommended.

3.4.2 Quality of Guideline Development: AGREE

The AGREE instrument [Cluzeau et al., 2003] is a tool to establish the quality
of guidelines developed by the guideline development community. It consists
of a 23 items divided into 6 ‘domains’ dealing with (1) clear scope and purpose

Quality Criteria 43

of the guideline, (2) stakeholder involvement, (3) methodology, (4) clarity and
presentation, (5) possibility to apply the guideline in practice, and (6) editorial
independence.

Even though the AGREE instrument can be used to assess a guideline after
its development, it is typically used as a quality guide during the development
of a guideline. As a result, virtually all the items refer to the rigour of this
development process. The underlying assumption is that if the development
process was of high quality, then the guideline must be of high quality as well.

In case of formal verification, most of these items cannot be exploited.
Exceptions to this are the clarity and presentation, which are important to
properly model a guideline. Furthermore, the possibility to apply the guideline
in practice has a decision-theoretical element to it, as this includes the cost
effect of implementation. Nonetheless, few of the remaining items can be of
use.

3.4.3 Quality Criteria for Formal Verification

In related work with respect to verification of guidelines as described in Sec-
tion 1.5, very similar to software engineering practice, ad-hoc decisions are
made to decide which property is being checked. As a consequence, the speci-
fication of properties has focused on ‘programmatic’ type of properties, in the
sense that properties should be expressed in terms of the syntactical part of
the structure of the guideline. As we are interested in investigating properties
of clinical guidelines, this type of approach is alluring for computer scientists,
because with such a program-like structure it allows them to use program ver-
ification techniques almost directly. However, it is not obvious that these of
properties are indeed the type of properties that are most relevant to quality
checking of a guideline.

From the development of guidelines, it can be seen that evidence alone does
not provide enough means to construct concrete recommendations. First, it is
of importance to assess the nature of the evidence. For example, evidence based
on randomised control trials (RCTs) should have more influence on decision
making than expert opinions alone. Second, the applicability of the evidence
to the population of interest, i.e., its generalisability, should be considered.
Finally, the costs of the treatment and available knowledge about a particular
healthcare system should be taken into account.

Focussing on the nature of the evidence, it is clear that the opinion of
the expert is based on certain trade-offs between wanted and unwanted effects
of interventions. Recommendations based on evidence alone are likely to be
correct. In contrast, trade-offs are much more complex and therefore it can be
expected that problems related to these trade-offs might occur in guidelines.
In this section, we propose a systematic approach for finding quality criteria
based on the idea that guidelines are based heavily on these trade-offs. Note
that it is not always obvious what the relevant trade-offs are; however, in
many cases there is some idea of what the important points of discussion are

44 Guidelines and Protocols

for prescribing a certain treatment. As a consequence, medical expertise is
needed to identify the trade-offs.

In the next section we will sketch the possible approaches there are for a
systematic methodology for finding quality criteria. After this, we will focus
on one specific methodology for finding these quality criteria based on medical
background knowledge.

Approaches

There are three main approaches to identify the goals of a specific high-quality
guideline, namely the so-called knowledge-oriented approach, the guideline-
oriented approach, and an approach based on literature.

In the literature approach one tries to identify goals from external litera-
ture. One possibility is by using indicators, which are measures of quality of
healthcare as described earlier. Besides process indicators, outcome indicators
could also be used. For example, an indicator for many types of breast can-
cer is the 5 year survival rate. Such indicator can then be interpreted as a
goal to maximise the survival of all individual patients. Similarly to process
indicators, the scope for such quality measures is limited.

In the guideline oriented approach one tries to extract medical goals from
the guideline text directly. In [Serban et al., 2004], this was done in two ways
using pattern recognition software. If the goals, intentions and measures of
outcome were mentioned explicitly these were matched with specific patterns.
Goals that are implicit in the guideline text are much harder to find using
patterns. Possibly, background knowledge could be exploited for improving
the search to find such patterns in a highly automated manner. However, it
is a difficult and error-prone process which needs further improving to apply
this in practice.

In this section, we will focus on the knowledge-oriented approach where one
tries to identify important goals based on background knowledge, i.e., knowl-
edge that is present during the design of the guideline but is not necessarily
recognised as such. In the next section we will present a hierarchy of goals and
will provide examples to motivate the approach.

A knowledge-oriented approach towards finding proof goals

Many of the goals that can be formulated are related to each other. In par-
ticular, many goals are more specific or more general instances of other goals.
As a consequence, we present a hierarchy of objectives and goals, based on
medical expert knowledge derived from guideline developers.

In this approach, we distinguish between the main objective of an interven-
tion and a number of optimisation criteria. The objective can for example be
diagnostic or therapeutic and is independent of the question whether or not
it is the ‘best’ intervention given some preference relation. Of course, prefer-
ences of patients can differ, but in practice there are a number of restrictions

Quality Criteria 45

to these preferences which we will refer to as optimality criteria. For example,
we expect that all patients prefer the least amount of side-effects.

prophylaxis

x

y

x is a type

y is an instance

x y

x y

yx

x is an instance of y

x is a subtype of y

x can be combined with y to optimise y

(x is an optimisation criterion of y)min. severe effects on
skin, shoulder complaints
and lymphoedema

of radiotherapy
assess toxicity

diagnosis treatment support

causal symptomatic

intervention

of disease
min. occurence

min. # tests
sensitivity and specificity

test with high

determine locoregional
situation one specialist

coordination by avoid
patient depression

determine presence of
distant metastasis

min. damage max. informedness

breast conservation

min. side−effects remove cause

remove primary tumour

Figure 3.3: A hierarchy of types of interventions and goals, separated by the
product operator, with instances related to the breast cancer guideline.

Schematically, we have outlined such an approach in Figure 3.3. At the
top, a hierarchy of types of interventions is described, e.g., treatments are
intervention and a symptomatic treatment is a treatment. Instances of such
interventions for a specific disease are visualised by a dashed line, e.g., deter-
mining the locoregional situation is a diagnostic intervention. Each of these
types of interventions, which describes the objective of the intervention, is as-
sociated with certain general goals, e.g., to minimise the number of tests is
a general goal related to diagnostic interventions. We have visualised this by
relating the objective with a certain goal. It is also possible that it is inde-
pendent of a specific objective and is therefore associated with all objectives,
hence the most general ‘intervention’ type. For example, minimising the dis-
comfort for a patient is a goal in any intervention that is performed. Finally,
for each of the goals, disease specific instances can be added, e.g., to remove
the primary tumour is an instance of the general goal of removing the cause
in causal breast cancer treatments. Note that this figure is not complete and
other goals and interventions are relevant in the treatment of breast cancer.

Examples of medical proof goals

To evaluate the approach, we study a number of examples from the national
Dutch breast cancer guideline developed under the supervision of CBO and a
protocol from the Dutch Integral Cancer Centre East (IKO) and discuss how
the decisions that are being made are related to the hierarchy discussed in the

46 Guidelines and Protocols

previous section. In particular, it is the intention of this section to make it
plausible that in practice (1) trade-offs are made between certain goals which
affect the decision making process, (2) that these goals have a relation to the
primary objective, and (3) that there are disease-specific goals related to more
general goals that one tries to achieve.

Evidence levels

One particular optimisation in the highest level of the goal hierarchy are ev-
idence levels. This could be viewed as a optimisation of the general concept
‘intervention’, or more precisely, of every objective that an intervention could
have. This means that interventions may be replaced under the condition that
their effects have the same evidence levels, taking into account that the other
criteria for choosing the intervention are equal. This explains why in the IKO
protocol certain therapies recommended by the national guideline are replaced
by others in case the recommendation was based on evidence with a low ev-
idence level, e.g., when the original recommendation was based on an expert
opinion. An example of such a choice is given in the next subsection.

Trade-offs in treatment selection

Selection of the best possible treatment in medicine can be seen as the process
of trading of pros of treatments (e.g., curation) versus cons (e.g., side effects).
Below we will give two examples of such trade-offs.

The first example deals with the choice of curative or palliative (i.e., with
the aim to relieve or sooth symptoms of the disease) treatment. In case there
is a metastasis (secondary cancerous growth elsewhere) of the breast cancer
tumour, the guideline recommends a palliative treatment. Although it is not
explicitly mentioned in the guideline, there is a strong relationship between
this particular choice and a specific intervention. For example, a dissection of
the lymph node, in order to reduce the tumour load clearly has a curative goal.
Furthermore, even though some treatments are applied for both a curative as
well as a palliative objective, such as chemotherapy, it is to be expected that,
for instance, quality of life is a more important factor of a palliative treatment.
In other words, the (optimality) criteria for selecting certain treatments de-
pend on the objective of the treatment. This explains why we associate the
optimality criteria to certain primary objectives.

As a second example, we consider the choice of chemotherapy for a curative
treatment and compare the national guideline with the IKO protocol to uncover
trade-offs made. There are two leading goals that one tries to achieve, namely
to remove the primary tumour as well as minimising the comorbidity. To
achieve the highest survival rate, the most important factor is the removal of
the tumour cells. However, this induces additional risks because of the toxicity
of the treatment which needs to be taken into account. Ideally, one wants
to treat high-risk patients with the most effective chemotherapy regimen, in

Quality Criteria 47

contrast to low-risk patients where the long-term survival rate benefits from a
less toxic therapy. Because the risks are high and the less toxic therapies have
been found to be less effective to treat the disease, the guideline recommends
a more aggressive regimen (FEC or similar anthracycline containing therapies,
which are particular types of chemotherapy). In case this treatment cannot
be applied for certain patient groups because of comorbidity, the guideline
recommends that other chemotherapies, such as AC or CMF, may be applied.
A second indication for choosing AC is pregnancy. However, no evidence exists
that FEC is more harmful for the unborn child than AC and for this reason and
the superior effectiveness of FEC, the IKO protocol excludes the AC option
and recommends to treat pregnant women with FEC. However, in case of a
locoregional advanced breast cancer, a type of breast cancer that is irresectable,
the IKO protocol considers this an option in context of neo-adjuvant treatment
(i.e., to reduce the tumour load to make surgery possible) if after 2 cycles of
treatment with FEC the disease is stable or progresses. The slight variations
between recommendations of the CBO guideline and the IKO protocol show
that there may be differences in recommendation depending on the amount
of risks (in terms of direct toxicity) that one wants to take to possibly cure a
patient. Moreover, it seems that the lack of evidence for toxicity of FEC for
the unborn child is interpreted differently in the two cases, as the guideline
chooses a more conservative approach.

Ordering criteria

Alongside the more high-level optimality criteria such as the minimisation
of side-effects, there are certain disease-specific optimality criteria, e.g., the
ordering of elements of a treatment and diagnostic interventions. There are two
reasons for such an ordering. Firstly, an order is needed because certain medical
actions render other actions useless. Secondly, because there is evidence that a
certain ‘optimal’ order exists between the medical interventions, i.e., one order
yields better results than other orders. For both cases we provide an example.

The first example we look at a diagnostic action, a core biopsy, with a
therapeutic action, chemotherapy. A core biopsy provides histological data if
the patient did not receive chemotherapy and because of this the core biopsy is
performed before chemotherapy. In principle, histological data and information
about the receptor status is obtained after (or during) surgery, by examining
the resected tumour mass. If the patient received chemotherapy before surgery,
then this is no longer possible. In other words, sequences of interventions, i.e.,
plans or protocols, that perform chemotherapy before a core biopsy have to be
considered suboptimal.

In the second example, we see that the reason why a certain order is op-
timal is in some cases unknown. Medical research has given evidence that
postmenopausal women with node-positive, estrogen-receptor-positive breast
cancer which receive tamoxifen, a hormonal therapy, after chemotherapy have
a higher chance to survive than patients which had received hormonal therapy

48 Guidelines and Protocols

before chemotherapy.21 More studies are needed to find out exactly how these
therapies interact and why these they affect each other the way they do, but
it is nonetheless important to find out that the guideline complies with this
order.

3.5 Conclusions

This chapter was used to introduce some important aspects of clinical guide-
lines. We have discussed the route from the development of the guideline to
the end-product. Several conclusions can be drawn from this. First, mod-
ern guidelines are well-structured, making a clear distinction between types
of knowledge that are present. The knowledge that we have tried to identify
in the breast cancer guideline is extremely diverse, e.g., descriptive knowledge
concerning development of the disease, important aspects of interventions, etc.
Some of the relevant knowledge discussed is contained in the guideline, some
of the medical knowledge is derived from the experts in the working group and
partly it is based on subjective criteria, such as the trade-offs that are made
in the selection of treatments.

The particular view on quality of guidelines will be formalised in subse-
quent chapters, in particular Chapters 4 and 5. Trade-offs between treatments
will be discussed in Chapter 4; Chapter 5 will focus on ordering criteria be-
tween treatments. In Chapter 6, we will look at spotting differences between
guidelines and protocols, which was described informally in this chapter. Fi-
nally, the analysis of the breast cancer guideline acts as a basis for modelling
the concepts underlying clinical guidelines in a logical language. Some of these
concepts are further investigated in Chapter 7.

21 See http://www.breastcancer.org

Chapter 4
Verification of Guidelines using
Automated Theorem Proving

This chapter explores the use of automated deduction for the verification of
clinical guidelines. For the rapid development of good quality guidelines it
is required that guidelines can be at least partially verified automatically;
unfortunately, there is still no verification method that can be readily used
by guideline developers. Previously, it was shown that for reasoning about
models of medical knowledge, for example in the context of medical ex-
pert systems [Lucas, 1993], classical automated reasoning techniques (e.g.,
[Robinson, 1965a, Wos et al., 1984]) are a practical option. Important for the
reasoning about knowledge in clinical guidelines is its temporal nature; time
plays a part in the physiological mechanisms as well as in the exploration of
possible treatment plans. As far as we know, the application of automated
reasoning techniques to guideline knowledge has not been investigated. The
guideline we studied to this purpose has a structure similar to other guidelines
and the verification principles used have sufficient generality. Thus, the results
of the study go beyond the actual guideline studied.

There are two approaches to checking the quality of clinical guidelines us-
ing formal methods: (1) the object-level approach amounts to the translation
of a guideline to a formal language, such as Asbru [Shahar et al., 1998], and
subsequently applying program verification or logical methods to analyse the
resulting representation for establishing whether certain domain-specific prop-
erties hold; (2) the meta-level approach, which consists of formalising gen-
eral requirements to which a guideline should comply, and then investigating
whether this is the case for a specific domain. Here we are concerned with the
meta-level approach to guideline-quality checking. For example, a good-quality
clinical guideline regarding treatment of a disorder should preclude the pre-
scription of redundant drugs, or advise against the prescription of treatment
that is less effective than some alternative. An additional goal of this chapter

49

50 Verification of Guidelines using Automated Theorem Proving

is to establish how feasible it is to implement such meta-reasoning techniques
in existing tools for automated deduction for the purpose of quality checking
of a clinical guideline.

The verification approach of this chapter is to translate the modelling for-
malism, a restricted part of temporal logic, to standard first-order logic. Fur-
thermore, the quality criteria are interpreted in such a way that they can be
stated in terms of a monotonic entailment relation. We show that, because
of the restricted language needed for the formalisation of the guideline knowl-
edge, the translation is a relatively simple fragment of first-order logic which
is amended to fully automated verification. Thus, we show that it is indeed
possible, while not easy, to cover the route from informal medical knowledge
to a logical formalisation and automated verification.

The meta-level approach that is used here is particularly important for
the design of clinical guidelines, because it corresponds to a type of reason-
ing that occurs during the guideline development process. Clearly, quality
checks are useful during this process; however, the design of a guideline can
be seen as a very complex process where formulation of knowledge and con-
struction of conclusions and corresponding recommendations are intermingled.
This makes it cumbersome to do interactive (non-automatic) verification of hy-
potheses concerning the optimal recommendation during the construction of
such a guideline, because guideline developers do not generally have the nec-
essary background in formal methods to construct such proofs interactively.
Automated theorem proving could therefore be potentially more beneficial for
supporting the guideline development process.

In the next section, we start by explaining what clinical guidelines are,
and a method for formalising guidelines by temporal logic is briefly reviewed.
Then, the formalisation of guideline quality using a meta-level scheme that
comes from the theory of abductive diagnosis is described. The guideline on
the management of diabetes mellitus type 2 that has been used in the case
study is given attention, and its formalisation is given as well. This part
is based on [Lucas, 2003]. The main topic of this chapter, an approach to
checking the quality of this guideline using the reasoning machinery offered
by automated reasoning tools, is then presented. Finally, we discuss what has
been achieved, and the advantages and limitations of this approach are brought
into perspective. In particular, we will discuss the role of automated reasoning
in quality checking guidelines in comparison to alternative techniques such
interactive verification.

4.1 Modelling Clinical Guidelines

In Section 3.2.1, we have briefly introduced the Dutch guideline for the treat-
ment of diabetes mellitus type 2. Part of this description includes details about
dosage of drugs at specific time periods. As we want to reason about the general
structure of the guideline, rather than about dosages or specific time periods,

Modelling Clinical Guidelines 51

• Step 1: diet

• Step 2: if Quetelet Index (QI) ≤ 27, prescribe a sulfonylurea drug; oth-
erwise, prescribe a biguanide drug

• Step 3: combine a sulfonylurea drug and biguanide (replace one of these
by a α-glucosidase inhibitor if side-effects occur)

• Step 4: one of the following:

– oral anti-diabetics and insulin

– only insulin

Figure 4.1: Tiny fragment of a clinical guideline on the management of diabetes
mellitus type 2. If one of the steps sk where k = 1, 2, 3 is ineffective, the
management moves to step k + 1.

we have made an abstraction as shown in Figure 4.1. This guideline fragment
is used here as a running example.

Guidelines can be as large as 100 pages; however, the number of recommen-
dations they include are typically few. In complicated diseases, each type of
disease is typically described in different sections of a guideline, which provides
ways to modularise the formalisation in a natural fashion. For example, con-
sider the breast cancer guideline described in Section 3.3, which is an extensive
guideline about breast cancer treatment. However, each of the recommenda-
tion, for example, as shown in Figure 3.2, is similar in nature and structure
to the abstraction shown in Figure 4.1. In fact, the recommendation shown in
Figure 3.2 is much more simple in this specific case. In this sense, the fragment
in Figure 4.1 can be lookup upon as one of the recommendations in any guide-
line whatever its size. On the other hand, clinical protocols are normally more
detailed, and the abstraction used here will not be appropriate if one wishes to
consider such details in the verification process. For example, in the Protocure
project, work was also carried on the verification of a clinical protocol about
the management of neonatal jaundice, where there was focus on the levels of a
substance in the blood (bilirubin) [ten Teije et al., 2006]. Clearly, in this case
abstracting away from substance levels would be inappropriate. Thus, where
development of an abstraction of a medical document will be necessary for any
verification task, the way it is done is dependent on what is being verified and
the nature of the document. Clinical guidelines are typically less specific than
protocols, and thus already relatively abstract.

Clinical guidelines regarding a disorder often contain particular parts deal-
ing with the diagnosis, treatment and follow-up of a disorder. In this study, we

52 Verification of Guidelines using Automated Theorem Proving

restrict ourselves to the treatment part; similar principles apply to the other
parts of a guideline.

As discussed in Chapter 3, one way to use formal methods in the context of
guidelines is to automatically verify whether or not a clinical guideline fulfils
particular properties, such as whether it complies with quality indicators as
proposed by healthcare professionals [Marcos et al., 2002]. For example, us-
ing particular patient assumptions such as that after treatment the levels of
a substance are dangerously high or low, it is possible to check whether this
situation does or does not violate the guideline. However, verifying the effects
of treatment as well as examining whether a developed clinical guideline com-
plies with global criteria, such as that it avoids the prescription of redundant
drugs, or the request of tests that are superfluous, is difficult to impossible
if only the guideline text is available. Thus, the capability to check whether
a guideline fulfils particular medical objectives may require the availability of
more medical knowledge than is actually specified in a clinical guideline. How
much additional knowledge is required may vary from guideline to guideline.
In the development of the theory below it is assumed that at least some med-
ical background knowledge is required; the extent and the purpose of that
background knowledge is subsequently established using the diabetes mellitus
type 2 guideline. The development, logical implementation, and evaluation of
a formal method that supports this process is the topic of the remainder of
this chapter.

The logic we use in this chapter is Linear Temporal Logic (LTL). For syntax
and semantics, see Section 2.1.2. Alternative formal languages for modelling
medical knowledge are possible. For example, differential equations describing
compartment models that are used to predict changes in physiological variables
in individual patients have been shown to be useful (e.g., [Magni et al., 2000,
Lehmann, 1998]). In the context of clinical reasoning they are less useful, as
they essentially concern levels of substances as a function of time and, thus,
do not offer the right level of abstraction that we are after.

4.2 Application of Logic to Medical Knowledge

In order to represent the medical knowledge, a specific language is defined in
this section. We restrict ourselves to the knowledge which concerns itself with
the primary aim of a guideline, which is to have a certain positive effect on a
patient. To establish that this is indeed the case, knowledge concerning the
physiology of a patient is required. Therefore, it is assumed that two types of
knowledge are involved in detecting the violation of good medical practice:

• Knowledge concerning the (patho)physiological mechanisms underlying
the disease, and the way treatment influences these mechanisms. The
knowledge involved could be causal in nature, and is an example of object-
knowledge.

Application of Logic to Medical Knowledge 53

• Knowledge concerning good practice in treatment selection; this is meta-
knowledge.

Below we present some ideas on how such knowledge may be formalised using
temporal logic (cf. [Lucas, 1995] for earlier work in the area of formal modelling
of medical knowledge).

We are interested in the prescription of drugs, taking into account their
mode of action. Abstracting from the dynamics of their pharmacokinetics,
this can be formalised in logic as follows:

(G d ∧ r) → G(m1 ∧ · · · ∧mn) (4.1)

where d is the name of a drug, r is a (possibly negative or empty) requirement
for the drug to take effect, and mk is a mode of action, such as decrease of
release of glucose from the liver, which holds at all future times. Note that
we assume that drugs are applied for a long period of time, here formalised as
‘always’. This is reasonable if we think of the models as finite structures that
describe a somewhat longer period of time, allowing the drugs to take effect.
Synergistic effects and interactions amongst drugs can also be formalised along
those lines, as required by the guideline under consideration. This can be done
either by combining their joint mode of action, by replacing d in the formula
above by a conjunction of drugs, or by reasoning about modes of actions. As we
do not require this feature for the clinical guideline considered in this chapter,
we will not go into details. In addition, it is possible to reason about such effects
using special purpose temporal logics with abstraction and constraints, such
as developed by Allen [Allen, 1983] and Terenziani [Terenziani, 2000] without
a connection to a specific field, and by Shahar [Shahar, 1997] for the field of
medicine. Thus, temporal logics are expressive enough to cope with extensions
to the formalisation as used in this chapter.

The modes of action mk can be combined, together with an intention n
(achieving normoglycaemia, i.e., normal blood glucose levels, for example), a
particular patient condition c, and requirements rj for the modes of action to
be effective:

(Gmi1 ∧ · · · ∧ Gmim
∧ r1 ∧ · · · ∧ rp ∧ Hc) → Gn (4.2)

For example, if the mode describes that there is a stimulus to secrete more
insulin and the requirement that sufficient capacity to provide this insulin is
fulfilled, then the amount of glucose in the blood will decrease.

Good practice medicine can then be formalised as follows. Let B be back-
ground knowledge, T ⊆ {d1, . . . , dp} a set of drugs, C a collection of patient
conditions, R a collection of requirements and N a collection of intentions
which the physician has to achieve. As an abbreviation, the union of C and R,
i.e., the variables describing the patient, will be referred to as P , i.e., P = C∪R.
Finding an acceptable treatment given such knowledge amounts to finding an
explanation, in terms of a treatment, that the intention will be achieved. Find-

54 Verification of Guidelines using Automated Theorem Proving

ing the best possible explanation given a number of findings is called abductive
reasoning [Console and Torasso, 1991, Poole, 1990]. We say that a set of drugs
T is a treatment according to the theory of abductive reasoning if [Lucas, 2003]:

(T1) B ∪ GT ∪ P 2 ⊥ (the drugs do not have contradictory effects), and

(T2) B ∪GT ∪P � N (the drugs handle all the patient problems intended to
be managed).

One could think of the formula B ∪GT ∪P as simulating a particular patient
P given a particular treatment T . For each relevant patient groups, these
properties can be investigated. If in addition to (T1) and (T2) condition

(T3) Oϕ(T) holds, where Oϕ is a meta-predicate standing for an optimality
criterion or combination of optimality criteria ϕ,

then the treatment is said to be in accordance with good-practice medicine,
denoted by Goodϕ(T, P).

A typical example of this is subset minimality O⊂:

O⊂(T) ≡ ∀T ′ ⊂ T : T ′ is not a treatment according to (1) and (2) (4.3)

i.e., the minimum number of effective drugs are being prescribed. For example,
if {d1, d2, d3} is a treatment that satisfies condition (3) in addition to (1) and
(2), then the subsets {d1, d2}, {d2, d3}, {d1}, and so on, do not satisfy condi-
tions (1) and (2). In the context of abductive reasoning, subset minimality is
often used in order to distinguish between various solutions; it is also referred
to in literature as Occam’s razor. Another definition of the meta-predicate Oϕ

is in terms of minimal cost Oc:

Oc(T) ≡ ∀T ′,with T ′ a treatment: c(T ′) ≥ c(T) (4.4)

where c(T) =
∑

d∈T cost(d); combining the two definitions also makes sense.
For example, one could come up with a definition of O⊂,c that among two
subset-minimal treatments selects the one that is the cheapest in financial or
ethical sense.

The quality criteria that we have presented in this section could also be
taken as starting points for critiquing (cf. Section 6.2), i.e., criticising clinical
actions performed and recorded by a physician (cf. [Miller, 1984] for an early
critiquing system), especially if we consider the formalisation of the background
knowledge a model for simulating a patient receiving a specific treatment.
However, in this chapter, we look at means to criticise the recommendations
given by the guideline, which is also the reason why we do not make use of a
dataset with patient data, but only of information of hypothetical patients.

Management of Diabetes Mellitus Type 2 55

4.3 Management of Diabetes Mellitus Type 2

In this section, the medical knowledge with respect to the (patho)physiology
of diabetes is formalised. To determine the global quality of the guideline,
the background knowledge itself was only formalised so far as required for
investigating the usefulness of the theory of quality checking introduced above.
The knowledge that is presented here was acquired with the help of a physician,
though this knowledge can be found in many standard textbooks on physiology
(e.g., [Ganong, 2005, Guyton and Hall, 2000]).

4.3.1 Initial Analysis

It is well known that diabetes type 2 is a very complicated disease: various
metabolic control mechanisms are deranged and many different organ systems,
such as the cardiovascular and renal system, may be affected by the disorder.
Here we focus on the derangement of glucose metabolism in diabetic patients,
and even that is nontrivial. To support non-expert medical doctors in the
management of this complicated disease in patients, access to a guideline is
really essential.

One would expect that as this disorder is so complicated, the diabetes
mellitus type 2 guideline is also complicated. This, however, is not the case,
as may already be apparent from the guideline fragment shown in Figure 4.1.
This indicates that much of the knowledge concerning diabetes mellitus type 2
is missing from the guideline, and that without this background knowledge it
will be impossible to spot the sort of flaws we are after. Hence, the conclusion is
that a deeper analysis is required; the results of such an analysis are discussed
next.

4.3.2 Diabetes Type 2 Background Knowledge

Pathophysiologically, there are two main phenomena, namely, insufficient se-
cretion of the hormone insulin due to a decreased production of insulin by
B cells in the Langerhans islets of the pancreas, and insulin resistance in liver,
muscle, and fat tissue. The latter phenomenon sets it apart from other types
of diabetes, e.g., type 1 is due to an autoimmune destruction of the B cells. In-
sulin resistance has been linked to factors such as obesity, in particular around
the waste, hypertension, higher amounts of triglycerides, and lower amounts of
HDL cholesterol. All overweight individuals have insulin resistance, but only
those with an inability to increase B cell production of insulin develop diabetes
type 2. A hypothesis is that due to the insulin resistance, the production of
insulin by the B cells starts to raise. After some time, the B cells become ex-
hausted, and they are no longer capable of meeting the demands for insulin. As
a consequence, the level of glucose in the blood is too high (hyperglycaemia).

Figure 4.2 summarises the most important mechanisms and drugs involved
in the control of the blood level of glucose. The protein hormone insulin, which

56 Verification of Guidelines using Automated Theorem Proving

(2) Biguanides (BG)

(4) Insulin

(3) alpha−Glucosidase
inhibitors

(1) Sulfonylureas (SU)

Insulin

IntestinesLangerhans islets

Pancreas

Muscles

Liver

Figure 4.2: Summary of drugs and mechanisms controlling the blood level of
glucose; − − →: inhibition, · · · · · ·→: stimulation.

is produced by the B cells in the Langerhans islets of the pancreas, has the
following major effects:

• it increases the uptake of glucose by the liver, where it is stored as glyco-
gen, and inhibits the release of glucose from the liver;

• it increases the uptake of glucose by insulin-dependent tissues, such as
muscle and adipose tissue.

Treatment of diabetes type 2 consists of:

• Use of sulfonylurea (SU) drugs, such as tolbutamid. These drugs stimu-
late the B cells in producing more insulin, and if the cells are not com-
pletely exhausted, the hyperglycaemia can thus be reverted to normo-
glycaemia (normal blood glucose levels).

• Use of biguanides (BG), such as metformin. These drugs inhibit the
release of glucose from the liver.

• Use of α-glucosidase inhibitors. These drugs inhibit (or delay) the ab-
sorption of glucose from the intestines.

• Injection of insulin. This is the ultimate, causal treatment.

As insulin is typically administered by injection, in contrast to the other drugs,
which are normally taken orally, doctors prefer to delay prescribing insulin as

Management of Diabetes Mellitus Type 2 57

long as possible. Thus, the treatment part of the diabetes type 2 guideline
mentions that one should start with prescribing oral antidiabetics (SU or BG,
cf. Figure 4.1). Two of these can also be combined if taking only one has
insufficient glucose-level lowering effect. If treatment is still unsatisfactory,
the guideline suggests to: (1) either add insulin, or (2) stop with the oral
antidiabetics entirely and to start with insulin.

From a medical point of view, advice (1) above is somewhat curious. If
the oral antidiabetics are no longer effective enough, the B cells could be com-
pletely exhausted. Under these circumstances, it does not make a lot of sense
to prescribe an SU drug. The guideline here assumes that the B cells are
always somewhat active, which may limit the amount of insulin that has to
be prescribed. Similarly, prescription of a BG (or a α-glucosidase inhibitor)
is justified, as by adding such an oral antidiabetic to insulin, the number of
necessary injections can be reduced from twice a day to once a day. It should
be noted that, when on insulin treatment, patients run the risk of getting hy-
poglycaemia (i.e., the level of glucose in the blood is too low), which is a side
effect of insulin treatment not mentioned explicitly in the guideline.

The background knowledge concerning the (patho)physiology of the glucose
metabolism as described above is formalised using temporal logic, and kept as
simple as possible. The specification is denoted by BDM2:

(1) GDrug(insulin) → G(uptake(liver, glucose) = up ∧
uptake(peripheral-tissues, glucose) = up)

Insulin increases the uptake of glucose into the liver and
into peripheral tissues.

(2) G(uptake(liver, glucose) = up → release(liver, glucose) = down)

An increased uptake of glucose into the liver inhibits the release
of glucose from the liver.

(3) (GDrug(SU) ∧ ¬capacity(b-cells, insulin) = exhausted) →
Gsecretion(b-cells, insulin) = up

If the production of insulin is still possible, then a sulfonylurea
drug increases the secretion of insulin.

(4) GDrug(BG) → Grelease(liver, glucose) = down

Biguanide drugs inhibit the release of glucose from the liver.

(5) (Gsecretion(b-cells, insulin) = up ∧
capacity(b-cells, insulin) = subnormal ∧
QI ≤ 27 ∧ HCondition(hyperglycaemia))
→ GCondition(normoglycaemia)

Diabetic patients with a lower Quetelet-index having a subnormal
capacity to produce insulin, will be cured if the B cells are stimulated
to produce more insulin.

(6) (Grelease(liver, glucose) = down ∧

58 Verification of Guidelines using Automated Theorem Proving

capacity(b-cells, insulin) = subnormal ∧
QI > 27 ∧ HCondition(hyperglycaemia))
→ GCondition(normoglycaemia)

Diabetic patients with a higher Quetelet-index having a subnormal
capacity to produce insulin, will be cured if the release of glucose from
the liver is inhibited.

(7) ((Grelease(liver, glucose) = down ∨
Guptake(peripheral-tissues, glucose) = up) ∧

capacity(b-cells, insulin) = nearly-exhausted ∧
Gsecretion(b-cells, insulin) = up ∧
HCondition(hyperglycaemia))
→ GCondition(normoglycaemia)

Diabetic patients for which the B cells are nearly exhausted will be
cured if the B cells are stimulated to secrete more insulin and either
the release of glucose from the liver is inhibited or the increase of
glucose by peripheral tissues is stimulated.

(8) (Guptake(liver, glucose) = up ∧
Guptake(peripheral-tissues, glucose) = up) ∧
capacity(b-cells, insulin) = exhausted ∧
HCondition(hyperglycaemia))
→ G(Condition(normoglycaemia) ∨ Condition(hypoglycaemia))

If both the uptake of glucose into the liver as well as the peripheral
tissues is stimulated in diabetic patients for which the B cells
exhausted, then the condition will be normo- or hypoglyceamia.

(9) (Condition(normoglycaemia) ⊕ Condition(hypoglycaemia) ⊕
Condition(hyperglycaemia)) ∧ ¬(Condition(normoglycaemia) ∧
Condition(hypoglycaemia) ∧ Condition(hyperglycaemia))

Possible values for the condition of the patient are mutually exclusive.

where ⊕ stands for the exclusive OR. Note that when the B cells are ex-
hausted, increased uptake of glucose by the tissues may result not only in nor-
moglycaemia but also in hypoglycaemia. Note that this background knowledge
was originally developed for reasoning about the application of an individual
treatment. It requires some modification in order to reason about the whole
guideline fragment (see Section 4.4.5).

4.3.3 Quality Check

The consequences of various treatment options can be examined using the
method introduced in Section 4.2. Hypothetical patients for whom it is the
intention to reach a normal level of glucose in the blood (normoglycaemia) and
one of the steps in the guideline is applicable in the guideline fragment given
in Figure 4.1, are considered, for example:

Automated Quality Checking 59

• Consider a patient with hyperglycaemia due to nearly exhausted B cells.
For these patients, the third step of Figure 4.1 is applicable, so we check
that:

BDM2 ∪ GT ∪ {capacity(b-cells, insulin) = nearly-exhausted} ∪

{HCondition(hyperglycaemia)} � GCondition(normoglycaemia)

holds for T = {Drug(SU),Drug(BG)}, which also satisfies the minimality con-
dition O⊂(T).

• Prescription of treatment T = {Drug(SU),Drug(BG),Drug(insulin)} for
a patient with exhausted B cells, for which the intended treatment regime
is described in the fourth step of Figure 4.1, yields:

BDM2 ∪ GT ∪ {capacity(b-cells, insulin) = exhausted} ∪

{HCondition(hyperglycaemia)} �

G(Condition(normoglycaemia) ∨ Condition(hypoglycaemia))

In the last case, it appears that it is possible that a patient develops hypogly-
caemia due to treatment; if this possibility is excluded from axiom (8) in the
background knowledge, then the minimality condition O⊂(T), and also Oc(T),
does not hold since insulin by itself is enough to reach normoglycaemia. In
either case, good practice medicine is violated, which is to prescribe as few
drugs as possible, taking into account costs and side-effects of drugs. Here,
three drugs are prescribed whereas only two should have been prescribed (BG
and insulin, assuming that insulin alone is too costly), and the possible occur-
rence of hypoglycaemia should have been prevented.

4.4 Automated Quality Checking

As mentioned in the introduction, we have explored the feasibility of using
automated reasoning tools to check the quality of guidelines, in the sense de-
scribed above.

4.4.1 Motivation for using Automated Reasoning

Several techniques are available for reasoning with temporal logic. Firstly, an
automated theorem prover aims at proving theorems without any interaction
from the user. This is a problem with high complexity; e.g., for first-order
logic, this problem is only semi-decidable. For this reason, interactive theorem
proving has been used as an alternative, where it is possible and sometimes
necessary to give hints to the system. As a consequence, more complicated
problems can be handled; however, in the worst case every step of the proof
has to be performed manually.

In this chapter, we are concerned with obtaining insight how much of the
proof effort can be automated as this would clearly improve the practical use-
fulness of employing formal methods in the process of guideline development.

60 Verification of Guidelines using Automated Theorem Proving

In Chapter 5, we use interactive theorem proving for quality-checking guide-
lines. This was a successful experiment; however, the number of interactions
that were needed were still high and a lot of expertise in the area of theorem
proving is required for carrying out this task. Furthermore, there has been
considerable progress in terms of speed and the size of problems that theorem
provers can handle [Pelletier et al., 2002]. In our opinion, these developments
provide enough justification to explore the use of automated reasoning tech-
niques in combination with specific strategies.

One of the most important application areas of model finders and theorem
provers is program verification. In programs there is a clear beginning of the
execution, which makes it intuitive to think about properties that occur after
the start of the program. Therefore, it is not surprising that much work that
has been done in the context of model finding and theorem proving only deals
with the future time modality. However, it is more natural to model medical
knowledge with past time operators, i.e., what happened to the patient in the
past. It is well-known that formulas with a past-time modality can be mapped
to a logical formula with only future time modalities such that both formulas
are equivalent for some initial state [Gabbay, 1989]. The main drawback of
this approach is that formulas will get much larger in size [Markey, 2003] and
as a consequence become much harder to verify in a theorem prover designed
for modal logics.

For this reason, we have chosen to use an alternative approach which
uses a relational translation to map the temporal logic formulas to first-order
logic. As primary tools we used the resolution-based theorem prover otter

[McCune, 2003] and the finite model searcher mace-2 [McCune, 2001], which
take first-order logic with equality as their input. These systems have been
optimised for reasoning with first-order logical formulas and offer various rea-
soning strategies to do this efficiently. For example, otter offers the set-of-
support strategy and hyperresolution as efficient reasoning methods. There
are alternative systems that could have been used; however, it is not the aim
of this thesis to compare these systems. otter has been proven to be robust
and efficient, and has been successfully applied to solve problems of high com-
plexity, for example in the area of algebra [Phillips and Vojtěchovskiý, 2005]
and logic [Jech, 1995].

There has been work done to improve the speed of resolution-based theorem
provers on modal formulas [Areces et al., 2000], but again, converse modalities
such as the past-time operators are not considered. We found that the general
heuristics applicable to full first-order logic are sufficient here.

4.4.2 Translation

In order to prove the meta-level quality criteria as defined in Section 4.2, it
is necessary to formulate the requirements in the object-language. This seems
to contradict the general approach of meta-level verification. However, object-
level properties typically do not contain background knowledge concerning the

Automated Quality Checking 61

Quality Criteria
Refutation

Meta Knowledge

Temporal Logic

Fragment of

First Order Logic

Object Knowledge

Searching for Models

Fragment of

Figure 4.3: Translation of medical knowledge.

validity of what is being verified. For example, the (T2) property of Section 4.2
has a clear meaning in terms of the aim of the clinical guideline, which would
be lost if stated as an object-level property. Moreover, it is not (directly)
possible to deductively derive that something does not follow, which is one of
the quality requirements.

Figure 4.3 summarises the general approach. We will first give a definition
for translating the object knowledge to standard logic and then the translation
of the meta-level knowledge will follow.

Translation of Object Knowledge

The background knowledge, as defined in Section 4.3.2, is translated into first
order logic. For every function f with two elements in the co-domain, call
these {c1, c2}, we introduce a fresh variable p for every element a in the do-
main such that f(a) = c1 holds iff p holds, and f(a) = c2 holds iff ¬p holds.
For example, axiom (2) of BDM2 in Section 4.3.2 is represented by defining
‘uptake(liver, glucose) = up’ and ‘release(liver, glucose) = up’ as propositions
and rewriting this axiom as:

G(‘uptake(liver, glucose) = up’ → ¬(‘release(liver, glucose) = up’))

where the quotes pieces of text are propositional variables. In order to ac-
complish this, we do the following. For the capacity function, a function with
three elements in its co-domain, we add a proposition px for each expression
capacity(b-cells, insulin) = x and an axiom saying that each pair of these propo-
sitions are mutually exclusive. Finally, the term QI > 27 is interpreted as a
proposition as well, i.e., we do not reason about the numerical value of QI.

Technically, this translation is not required, since we could extend the trans-

62 Verification of Guidelines using Automated Theorem Proving

lation below to full first-order temporal logic. In practice, however, we would
like to avoid additional complexity from first-order formulas during the auto-
mated reasoning.

The relational translation (e.g., [Moore, 1979, Areces et al., 2000,
Schmidt and Hustadt, 2003]) STt(ϕ), also referred to as the standard trans-
lation, translates a propositional temporal logical formula ϕ into a formula in
a first-order logic with (time-indexed) unary predicate symbols P for every
propositional variable p and one binary predicate >. It is defined as follows,
where t is an individual variable standing for time:

STt(p) iff P (t)
STt(¬ϕ) iff ¬STt(ϕ)
STt(ϕ ∧ ψ) iff STt(ϕ) ∧ STt(ψ)
STt(Gϕ) iff ∀t′ (t 6> t′ → STt′(ϕ))
STt(Hϕ) iff ∀t′ (t > t′ → STt′(ϕ))

Note that the last two elements of the definition give the meaning of the G
modality and its converse, the H modality. For example, the formula G(p →
Pp) translates to ∀t2 (t 6> t2 → (P (t2) → ∃t3 (t2 > t3∧P (t3))). A listing of the
translated knowledge can be found in Appendix B.1. It is straightforward to
show that a formula in temporal logic is satisfiable if and only if its relational
translation is. Also, recall that we use set union to denote conjunction, thus
STt(Γ ∪ ∆) is defined as STt(Γ) ∧ STt(∆).

In the literature a functional approach to translating modal logic has ap-
peared as well [Ohlbach, 1988], which relies on a non-standard interpretation
of modal logic and could be taken as an alternative to this translation.

Translation of Meta-level Knowledge

Again, we consider the criteria for good practice medicine and make them
suitable for use with the automated reasoning tools. In order to stress that we
deal with provability in these tools, we use the ‘⊢’ symbol instead of the ‘|=’
(validity) symbol. We say that a treatment T is a treatment complying with
the requirements of good practice medicine iff:

(T1′) STt(B ∪ GT ∪ C ∪R) 0 ⊥

(T2′) STt(B ∪ GT ∪ C ∪R ∪ ¬N) ⊢ ⊥

(T3′) ∀T ′ ⊂ T : T ′ is not a treatment according to (1) and (2)

Criterion (T3′) is a specific instance of (T3), i.e., subset minimality as ex-
plained in Section 4.2 (Equation 4.3). As the relational translation preserves
satisfiability, these quality requirements are equivalent to their unprimed coun-
terparts in Section 4.2. To automate this reasoning process we use mace-2 to
verify (T1′), otter to verify (T2′), and (T3′) can be seen as a combination
of both for all subsets of the given treatment.

Automated Quality Checking 63

4.4.3 Results

In this subsection we will discuss the actual implementation in otter and
some results obtained by using particular heuristics.

Resolution Strategies

An advantage that one gains from using a standard theorem prover that a
whole range of different resolution rules and search strategies are available
and can be varied depending on the problem. otter uses the set-of-support
strategy [Wos et al., 1965] as a standard strategy. In this strategy the original
set of clauses is divided into a set-of-support and a usable set such that in
every resolution step at least one of the parent clauses has to be a member of
the set-of-support and each resulting resolvent is added to the set-of-support.

Looking at the structure of the formulas in Section 4.3, one can see that for-
mulas are of the form L1∧· · ·∧Ln → Ln+1, where almost all Li, i = 1, . . . , n+1,
are positive literals. Hence, we expect the occurrence of mainly negative lit-
erals in our clauses, which can be exploited by using negative hyperresolution
(neg hyper for short) [Robinson, 1965a] in otter. With this strategy a clause
with at least one positive literal is resolved with one or more clauses only con-
taining negative literals (i.e., negative clauses), provided that the resolvent is
a negative clause. The parent clause with at least one positive literal is called
the nucleus, and the other, negative, clauses that resolve at least one literal in
the nucleus are referred to as the satellites.

Verification of Treatments

The ordering predicate > that was introduced in Section 4.4.2 was defined
by adding axioms of irreflexivity, anti-symmetry, and transitivity. We did not
find any cases where the axiom of transitivity was required to construct the
proof, which can be explained by the low modal depth of our formulas. As
a consequence, the axiom was omitted with the aim to improve the speed of
theorem proving. Furthermore, because we lack the next step modality, we
did not need to axiomatise a subsequent time point. Experiments showed that
this greatly reduces the amount of effort for the theorem prover.

We used otter to perform the two proofs which are instantiations of
(T2′). First, we consider a patient with hyperglycaemia due to nearly ex-
hausted B cells and prove:

ST0(BDM2 ∪ GT ∪ {capacity(b-cells, insulin) = nearly-exhausted}

∪ {HCondition(hyperglycaemia)}

∪ {¬GCondition(normoglycaemia)}) ⊢ ⊥

where T = {Drug(SU),Drug(BG)}, i.e., step 3 of the guideline (see Figure 4.1).
Note that we use ‘0’ here to represent the current time point. This property
was proven using otter in 62 resolution steps with the use of the negative

64 Verification of Guidelines using Automated Theorem Proving

hyperresolution strategy for which roughly 7000 candidate clauses were gener-
ated. A summary of this proof can be found in Appendix A.1.

Similarly, we could prove that given a treatment T such that T =
{Drug(SU),Drug(BG),Drug(insulin)} for a patient with exhausted B cells, as
suggested by the guideline in step 4, it follows that:

ST0(BDM2 ∪ GT ∪ {capacity(b-cells, insulin) = exhausted} ∪

{HCondition(hyperglycaemia)} ∪

{¬(G(Condition(normoglycaemia) ∨ Condition(hypoglycaemia)))})

⊢ ⊥

However, if we take T = {Drug(insulin}, the same holds, which shows that,
as already mentioned in Section 4.3.3, that even if we ignore the fact that the
patient may develop hypoglycaemia, the treatment is not minimal. Compared
to the previous property, a similar magnitude of complexity in the proof was
observed, resulting in 52 resolution steps. In both cases, the amount of CPU
time is within a few minutes on a modern pc.

Using Weighting

One possibility to improve the performance is by using term ordering strate-
gies. This will be explained below. We first give a motivating example why
this is particularly useful for this class of problems. Consider the follow-
ing example taken from [Areces et al., 2000]. Suppose we have the formula
G(p → Fp). Proving that this is satisfiable amounts to proving that the fol-
lowing two clauses are satisfiable (where variables ti are universally quantified
and function f arises due to Skolemnisation):

1. 0 > t1 ∨ ¬P (t1) ∨ t1 6> f(t1)

2. 0 > t2 ∨ ¬P (t2) ∨ P (f(t2))

which is the relational translation of this formula. It can be observed, that
although we have two possibilities to resolve these two clauses, for example on
the P literal, this is useless because the negative P literal is only bound by
the G-operator while the positive P literal comes from a formula at a deeper
modal depth under the F-operator. For example, suppose we resolve these
¬P (t1) and P (f(t2)) and rename t2 to t, which generates the clause:

0 > f(t) ∨ f(t) 6> f(f(t)) ∨ 0 > t ∨ ¬P (t)

and with (2) again we have:

0 > f(f(t)) ∨ f(f(t)) 6> f(f(f(t))) ∨ 0 > f(t) ∨ c > t ∨ ¬P (t)

etc. In this way, we can generate many new increasingly lengthy clauses.
Clearly, these nestings of the Skolem functions will not help to find a contra-

Automated Quality Checking 65

Weights binary resolution negative hyperresolution
(0, 1) 17729 6994
(1, 0) 13255 6805
(1, 1) 39444 7001

(1,−1) 13907 6836
(2,−2) 40548 7001
(2,−3) 16606 6805
(3,−4) 40356 7095
(3,−5) 27478 7001

Figure 4.4: Generated clauses to prove an instance of property T2′ depending
on weights (x, y) for the ordering relation on time.

diction more quickly if the depth of the modalities in the formulas that we
have is small, as the new clauses are similar to previous clauses, except that
they describe a more complex temporal structure.

In otter the weight of the clauses determines which clauses are chosen
from the set-of-support and usable list to become parents in a resolution step.
In case the weight of two clauses is the same, there is a syntactical ordering
to determine which clause has precedence, which is called the Knuth-Bendix
Ordering (KBO) [Knuth and Bendix, 1970]. As the goal of resolution is to
find an empty clause, lighter clauses are preferred. By default, the weight of a
clause is the sum of all occurring symbols (i.e., all symbols have weight 1) in
the literals. As we have argued, since the temporal structure of our background
knowledge is relatively simple, nesting Skolem functions will not help to find
such an empty clause. Therefore it can be of use to manually change the
weight of the ordering symbol, which is done in otter by a tuple (x, y) for
each predicate, where x is multiplied by the sum of the weight of its arguments
and is added to y to calculate the new weight of this predicate. For example,
if x = 2 and y = −3, then v > w has a total weight of 2 + 2 − 3 = 1, and
f(f(c)) > f(d) has a weight of 2 ∗ 3 + 2 ∗ 2 − 3 = 7.

See Figure 4.4 where we show results when we applied this for some small
values for x and y for both binary and negative hyperresolution. What these
numbers show (similar results were obtained for the other properties) is that
the total weight of the ordering predicate should be smaller than the weight of
other, unary, predicates. Possibly somewhat surprisingly, the factor x should
not be increased too much. Furthermore, in the case of a negative hyperreso-
lution strategy the effect is minimal.

4.4.4 Disproofs

mace-2 (Models And CounterExamples) is a program that searches for
small finite models of first-order statements using a Davis-Putman-Loveland-
Logemann decision procedure [Davis and Putman, 1969, Davis et al., 1962] as

66 Verification of Guidelines using Automated Theorem Proving

> : Condition(hyperglycaemia) :
t | 0 1 t 0 1
---+---- -------
0 | F T T T
1 | F F

Drug(SU): Drug(BG) :
t 0 1 t 0 1

------- -------
F F T F

capacity(b-cells, insulin) = nearly-exhausted :
t | 0 1

T T

Figure 4.5: Snippet from a mace-2 generated model. It lists the truth value
of all the unary predicates given each element of the domain (i.e., the time
points ‘0’ and ‘1’) and every combination of domain elements for the binary
predicate <. Truth values are denoted by T (true) and F (false).

its core. Because of the relative simplicity of our temporal formulas, it is to
be expected that counterexamples can be found rapidly, exploring only few
states. Hence, it could be expected that models are of the same magnitude
of complexity as in the propositional case and this was indeed the case. In
fact, the countermodels that mace-2 found consist of only two elements in the
domain of the model.

The first property we checked corresponded to checking whether the back-
ground knowledge augmented with patient data and a therapy was consistent,
i.e., criterion (T1′). Consider a patient with hyperglycaemia due to nearly
exhausted B cells. We used mace-2 to verify consistency:

ST0(BDM2 ∪ G T ∪ {capacity(b-cells, insulin) = nearly-exhausted} ∪

{HCondition(hyperglycaemia)}) 0 ⊥

for T = {Drug(SU),Drug(BG),Drug(insulin)}. From this it follows that there
is a model if T = {Drug(SU),Drug(BG)} and consequently we have verified
(T1′).

Similarly, we found that for all T ⊂ {Drug(SU),Drug(BG)}, it holds that:

ST0(BDM2 ∪ GT ∪ {capacity(b-cells, insulin) = nearly-exhausted}

∪ {HCondition(hyperglycaemia)}

∪ {¬GCondition(normoglycaemia)}) 0 ⊥

i.e., it is consistent to believe the patient will not have normoglycaemia if

Automated Quality Checking 67

less drugs are applied, which violates (T2) for these subsets. So indeed the
conclusion is that the treatment complies with (T3′) and thus complies with
the criteria of good practice medicine. See for example Figure 4.5, which
contains a small sample of the output that mace-2 generated. The output
consists of a first-order model with two elements in the domain, named ‘0’ and
‘1’, and an interpretation of all predicates and functions in this domain. It
shows that it is consistent with the background knowledge to believe that the
patient will continue to suffer from hyperglycaemia if one of the drugs is not
applied. Note that the model specifies that biguanide is applied at the first
time instance, as this is not prohibited by the assumptions.

Finally, consider the treatment T = {Drug(SU),Drug(BG),Drug(insulin)}
for a patient with exhausted B cells, and suppose we exclude the patient de-
veloping hypoglycaemia from the background knowledge, we can show that:

ST0(BDM2 ∪ GT ∪ {capacity(b-cells, insulin) = exhausted} ∪

{HCondition(hyperglycaemia)} ∪

{G(Condition(normoglycaemia)))}) 0 ⊥

so the patient may be cured with insulin treatment, even though this is not
guaranteed as Condition(normoglycaemia) does not deductively follow from
the premises. However, as discussed in Section 4.4.3, it is possible to prove
the property (T1) when T = {Drug(insulin)} and thus (T3′) does not hold in
this case and as a consequence the guideline does not comply with the quality
requirements as discussed in Section 4.3.3.

4.4.5 Plan Structure

So far, we have not considered the order in which treatments are being con-
sidered and executed. In this subsection, we look at the problem of reasoning
about the order of treatments described in the treatment plan listed in Fig-
ure 4.1.

Formalisation

In order to reason about a sequence of treatments, additional formalisation is
required. The background knowledge was developed for reasoning about an
individual treatment, and therefore, is parameterised for the treatment that is
being applied. We postulate BDM2, parameterised by s, where s is a certain
step in the protocol, i.e., s = 1, 2, 3, 4 (cf. Figure 4.1; for example s = 1
corresponds to diet). The first axiom is then described by:

∀s (GDrug(insulin, s) → G(uptake(liver, glucose, s) = up))

The complete description of this background knowledge is denoted by B′
DM2

The reason for this is that the ‘G’ modality ranges over the time period of
an individual treatment, rather than the complete time frame. Similarly, the

68 Verification of Guidelines using Automated Theorem Proving

patient can be described, assuming the description of the patient description
does not change, by ∀s P (s), where P is a parameterised description of the
patient. For example, in diabetes, it may be assumed that the Quetelet index
does not change; however, the condition generally does change due to the
application of a treatment.

The guideline as shown in Figure 4.1 is modelled in two parts. First, we
need to specify which treatment is administered in each step of the protocol.
Second, the transition of one step to the next has to be specified. The former
is modelled as a conjunction of treatments for each step of the guideline. For
example, in the initial treatment step (i.e., step 1) only ‘diet’ is applied, hence,
the following is specified:

G diet(1)

In general, for treatment T (s) in step s, we write GT (s). Here s is a meta-
variable standing for the step in the protocol, i.e., it is a ground atom in the
concrete specification of the protocol. Object-level variables can be recognised
by the fact that they are bounded by quantification. For example, T (s) is a
ground term in the actual specification, while ∀s T (s) is not. In this notation,
we will refer to the set of treatment prescriptions for each step and all patient
groups P (s) as D =

⋃
s P (s) → GT (s).

The second part of the formalisation concern the change of treatments,
which is formalised by a predicate control(s) that describes which step of the
guideline is reached. Recall from Figure 4.1, that treatments are stopped in
case they fail, i.e., when they do not result in the desired effect. This change
of control can be described in the meta-language as:

B ∪ GT (s) ∪ P (s) 6|= N(s) ⇒ control(s+ 1) (4.5)

for all steps s, i.e., if the intention cannot be deduced, then we move to a
subsequent step. We will refer to this axiom as the control axiom C. Note that
¬N(s) cannot be deduced from the background knowledge, due to its causal
nature. However, clearly, in the context of automatic reasoning, it is useful to
reason about the theory deductively. To be able to do this, one can use the
so-called completed theory, denoted as COMP(Γ), where Γ is some first-order
theory. The COMP function is formally defined in [Clark, 1978] for general
first-order theories. For propositional theories one can think of this function
as replacing implication with bi-implications, for example, COMP(p → q)
= p ↔ q and COMP({p → q, p → r}) = p ↔ (q ∨ r). By the fact that
the temporal formulas can be interpreted as first-order sentences, we have for
example:

COMP(GDrug(insulin) → G(uptake(liver, glucose) = up)
= GDrug(insulin) ↔ G(uptake(liver, glucose) = up

This can be extended for the whole set of axioms of diabetes. The relevance

Automated Quality Checking 69

of this operator for this chapter, is that abductive reasoning can be seen as
deductive reasoning in this completed theory [Console et al., 1991]. In the
following section, we introduce an extension to this idea for the restricted part
of temporal logic described in Section 4.2. These results are based on a direct
application of work done by Stärk [Stärk, 1994]. Then, we will apply those
results to the above formalisation.

Completion

An important resolution strategy is SLD resolution which is linear resolution
with a selection function for Horn clauses, i.e., clauses with at most one pos-
itive literal (for a definition see for example [Lucas and van der Gaag, 2005]).
SLD resolution is sound and refutation complete for Horn clause logic. It is
refutation complete in the sense that if one would use a breadth-first strategy
through the tree of all SLD derivations, a finite SLD refutation will be found if
the set of Horn clauses is unsatisfiable. Below, as a convenience, we will write
that we derive ψ from ϕ using SLD resolution iff there is an SLD refutation
from ϕ ∧ ¬ψ.

SLDNF resolution augments SLD resolution with a so-called ‘negation as
failure’ (NAF) rule [Clark, 1978]. The idea is in order to prove ¬A, try proving
A; if the proof succeeds, then the evaluation of ¬A fails; otherwise, if A fails on
every evaluation path, then ¬A succeeds. The latter part of this strategy is not
a standard logical rule and could be described formally as, given some theory Γ,
if Γ 6⊢ A then Γ ⊢ ¬A is concluded. It must be noted that the query A must be
grounded. This type of inference is featured in logic programming languages
such as prolog, although most implementations also infer the negation as
failure for non-ground goal clauses.

This type of resolution is used here to show that a completed theory can
be used in a deductive setting to reason about the meta-theory. In partic-
ular, in [Stärk, 1994], this is used to show that a certain class of programs
have the property that if a proposition deductively follows from that program,
then there is a successful SLDNF derivation. This is shown by so-called in-
put/output specifications, which are given by a set of mode specifications for
every predicate. A mode specification for a predicate says which arguments are
input arguments and which arguments are output arguments; other arguments
are called normal arguments. Given an input/output specification a program
must be written in such a way that in a computed answer the free variables
of the output terms are contained in the free variables in the input terms.
Furthermore, the free variables of a negative literal must be instantiated to
ground terms during a computation. For example, the following well-known
logic program

append([], L, L).

append(L1, L2, L3) → append([X|L1], L2, [X|L3]).

70 Verification of Guidelines using Automated Theorem Proving

has two mode specifications. Either the first two arguments are input argu-
ments resulting in a concatenation of the two lists in the output argument, or,
the first two arguments can act as output arguments resulting in the decom-
position of the third argument into two lists.

In the following, we will write all ground atoms without arguments, e.g., we
denote A when we mean A(c), where c is some constant, unless the constant
is relevant. We then prove the following lemma.

Lemma 4.1. If COMP(Γ) |= ¬Ag, where Γ is a formula of the form:

∀s∀t (A0(s) ∧ · · · ∧An(s) ∧An+1(t, s) ∧ · · · ∧Am(t, s) → Ak(t, s))

where Ai are all positive atoms and Ag is any ground atom, then there exists
an SLDNF derivation of ¬Ag for theory Γ.

A proof can be found in Appendix A.2. Note here that Γ only contains
Horn clauses. Further note that the relation between the completed theory
and SLDNF derivation holds for a much more elaborate class of formulas
[Stärk, 1994]. Hence, this result could be generalised to a more elaborate tem-
poral descriptions. However, the fact that we are dealing with Horn clauses
yields the following property, which is the main result of this section.

Theorem 4.1. If Γ is in the form assumed in Lemma 4.1 and A is again any
ground atom, then COMP(Γ) |= ¬A, then Γ 6|= A.

Proof. Suppose COMP(Γ) |= ¬A. Then by Lemma 4.1 it holds that ¬A is
derived by SLDNF resolution from Γ. From the definition of SLDNF derivation
either ¬A holds by SLD resolution or a derivation for A fails. In either way,
it follows from the soundness of SLD resolution that deriving A from Γ using
SLD resolution will fail. Since each of the clauses is Horn and SLD resolution
is complete for these Horn clauses, it follows that Γ 6|= A.

Implementation

The result of Theorem 4.1 is used to investigate the completion of a restricted
subset of temporal logic. To simplify matters, we introduce the following
assumptions. First, the H operator is omitted. In this case, this is justified
as this operator only plays a role to denote the fact that the patient suffers
from hyperglycaemia and plays no role in the temporal reasoning. Hence, we
have a (propositional) variable that expresses exactly the fact that in the past
the condition was hyperglycaemic. Second, as there is no reasoning about the
past, we may translate Gϕ to ∀t ϕ(t). Finally, we only make a distinction
between whether the glucose level is decreasing or not, i.e., we abstract from
the difference between normo- and hypoglycaemia. Furthermore, we assume
that the mutual exclusion of values for capacity is omitted and part of the
description of the patient, i.e., a patient with QI > 27 is now described by
{QI > 27,¬(QI ≤ 27)}. We will refer to these translation assumptions in

Automated Quality Checking 71

Temporal Logic First-order Logic
A1 ∧ · · · ∧An ∧ GAn+1∧ ∀t (A1 ∧ · · · ∧An ∧An+1∧
· · · ∧ GAm → GAi · · · ∧Am → Ai(t))

G(A1 ∧ · · · ∧An → Ai) ∀t (A1(t) ∧ · · · ∧An(t) → Ai(t))
GAi, Ai Ai(t), Ai

¬GAi ¬Ai

Figure 4.6: The type of temporal formulas and their translation, where the
Skolem constants describing time instances are omitted.

addition to the translation to first-order logic described in Section 4.4.2 as ST′
t.

Furthermore, let COMP(Γ) be understood as the formula which is equivalent
according to ST to COMP(ST′

t(Γ)) whenever Γ is a theory in temporal logic.
Note that this abstraction is sound, in the sense that anything that is proven
with respect to the condition of the patient by the abstracted formulas can be
proven from the original specification.

Let pi be a patient characteristic, d a drug, and li either a patient character-
istic or drug. The temporal formulas that are allowed are listed in Figure 4.6.
We claim that each temporal formula is an instance of a temporal formula
mentioned in Figure 4.6, universally quantified by a step s, except for the last
goal clause which is grounded. The background knowledge can be written in
terms of the first and second clause, taken into account that axiom (7) can be
rephrased to two clauses of the first type and we need to make sure that each
literal is coded as a positive atom. This is a standard translation procedure
that can be done for many theories and is described in e.g., [Shepherdson, 1987,
p. 23]. Axiom (3) needs to be rewritten for each of the cases of capacity implied
by the negated sub-formula. For each drug and patient characteristic in the
hypothesis, the third clause of Figure 4.6 applies. A goal is an instance of the
fourth clause of Figure 4.6. As the first three clauses are Horn, Theorem 4.1
can be instantiated for the background knowledge, which yields:

Theorem 4.2. COMP(B′
DM2

∪GT (s)∪P (s)) |= ¬N(s) implies B′
DM2

∪P (s)∪
GT (s) 6|= N(s).

This states that, if the completed theory implies that the patient will not
have normoglycaemia, then this is consistent conclusion with respect to the
original specification, for any specific step described by s. Therefore, there is
no reason to assume that T is the correct treatment in step s. This result is
applied to the control axiom C as described in Section 4.4.5, i.e., formula 4.5.
If we were to deduce that

COMP(B ∪ GT (s) ∪ P (s)) |= ¬N(s)

then, assuming the literals are in a proper form required by Theorem 4.2, this

72 Verification of Guidelines using Automated Theorem Proving

implies that

B ∪ GT (s) ∪ P (s) 6|= N(s)

Thus, we postulate the following axiom describing the change of control, de-
noted by C′

COMP(B ∧ GT (s) ∧ P (s)) ∧ ¬N(s) → control(s+ 1)

The axioms D (cf. Section 4.4.5) and C′ are added to the guideline formalisa-
tion in order to reason about the structure of the guideline.

To investigate the quality of the treatment sequence, a choice of quality
criteria has to be chosen. Similarly to individual treatments, notions of op-
timality could be studied. Here, we investigate the property that for each
patient group, the intention should be reached at some point in the guideline.
For the diabetes guideline, this is formalised as follows:

B′
DM2 ∪ D ∪ ∀s P (s) |= ∃s N(s)

As we restrict ourselves to a particular treatment described in step s, this
property is similar to the property proven in Section 4.4.3. However, it is
possible that the control never reaches s for a certain patient group, hence,
using the knowledge described in C, it is also important to verify that this step
is indeed reachable, i.e.,

B′
DM2 ∪ D ∪ ∀s P (s)) ∪ C′ |= ∃s (N(s) ∧ control(s))

We experimented with this idea and verified a number of properties for
different groups. For example, assume P (s) = {capacity(liver, glucose, s) =
exhausted,QI(s) ≤ 27,HCondition(normoglycaemia)} (note the H operator is
abstracted from the specification) then:

B′
DM2 ∪D ∪ ∀s P (s) ∪ C′ |= GCondition(normoglycaemia, 3) ∧ control(3)

i.e., the third step will be reached and in this step the patient will be cured.
This was implemented in otter using the translation as discussed in the
previous subsection. As the temporal reasoning is easier due to the abstraction
that was made, the proofs are reasonably short. For example, in the example
above, the proof has length 25 and was found immediately.

4.5 Conclusions

The quality of guideline design is for the largest part based on its com-
pliance with specific treatment aims and global requirements. We have
made use of a logical meta-level characterisation of such requirements, and
with respect to the requirements use was made of the theory of abductive,

Conclusions 73

diagnostic reasoning, i.e., to diagnose potential problems with a guideline
[Lucas, 1997, Lucas, 2003, Poole, 1990]. In particular, what was diagnosed
were problems in the relationship between medical knowledge, and suggested
treatment actions in the guideline text and treatment effects; this is different
from traditional abductive diagnosis, where observed findings are explained in
terms of diagnostic hypotheses. Moreover, we were able to reason about the
necessity of applying certain interventions using the optimality criterion. This
method allowed us to examine fragments of a guideline and to prove properties
of those fragments. Furthermore, we have succeeded in proving a property us-
ing the structure of the guideline, namely that the blood glucose will go down
eventually for all patients if the guideline is followed (however, patients run
the risk of developing hypoglycaemia, which should be avoided).

In Chapter 5, we will use a tool for interactive program verification, (KIV
[Reif, 1995]) for the purpose of quality checking of the diabetes type 2 guide-
line and further develop quality criteria for clinical guidelines. The main ad-
vantage of the use of interactive theorem proving is that the resulting proofs
were relatively elegant as compared to the solutions obtained by automated
resolution-based theorem proving. This may be important if one wishes to
convince the medical community that a guideline complies with their medical
quality requirements and to promote the implementation of such a guideline.
However, to support the design of guidelines, this argument is of less impor-
tance. A push-button technique would there be more appropriate. The work
that needs to be done to construct a proof in an interactive theorem prover
would severely slow down the development process as people with specialised
knowledge are required.

74 Verification of Guidelines using Automated Theorem Proving

Chapter 5
Verification of Guidelines using
Interactive Theorem Proving

In this chapter, we explore ways to verify clinical guidelines using interac-
tive theorem proving. Interactive theorem proving is a technique for gradually
proving properties by means of computerised reasoning under the guidance of
a human, i.e., usually interactions between the system and the user are manda-
tory; these may ultimately lead to a proof if the interactions guide the system
into the right direction. As mentioned in the conclusions of the previous chap-
ter, a significant advantage of the use of interactive theorem proving is that
the resulting proofs are relatively understandable, by means of a proof tree,
compared to the solutions obtained by automated resolution-based theorem
proving. This is important if one wishes to convince the medical commu-
nity that a guideline does or does not comply to their quality requirements.
The second advantage is that interactive theorem proving can be applied to
problems of almost arbitrary complexity, provided one is prepared to invest
significant amounts of time into the manual work.

In this chapter, we employ the methodology of the previous chapter with
respect to checking the quality of individual treatments, which may consist
of multiple simultaneous actions, such as the prescription of multiple drugs,
using interactive theorem proving. Furthermore, the semantics of a guideline
representation language, Asbru, are reviewed, and the methodology is extended
to be able to handle Asbru-based guideline models. We specifically focus on the
modelling of quality requirements for such types of model, which is an extension
of the ideas presented in Chapter 4, as we need to integrate guideline knowledge
as represented in a guideline representation language with medical background
knowledge. Finally, the complete diabetes mellitus type 2 guideline is verified
on the basis of these quality criteria.

75

76 Verification of Guidelines using Interactive Theorem Proving

5.1 Checking the Quality of Individual Treatments

In this section, the quality of individual treatments is investigated using the
interactive theorem prover KIV. We first review the techniques used in this
chapter, and, subsequently, we discuss some of the peculiarities that arise us-
ing these techniques in comparison to the fully automated techniques presented
in Chapter 4. This implies that we will reconsider some of the material of
the previous chapter but now look upon it in the context of interactive the-
orem proving. This makes it easier for the reader to compare the different
approaches.

5.1.1 Introduction to KIV

KIV is an integrated software environment that supports the process of soft-
ware development using formal methods [Balser et al., 2000]. It has been
used, and found suitable, for the verification of large software systems, such
as a prolog compiler [Schellhorn and Ahrendt, 1997] or an electronic purse
[Schellhorn et al., 2006]. The specification language of KIV is based on higher-
order algebraic specifications. Reactive systems can be described in KIV by
means of either state-charts or parallel programs; here we use parallel pro-
grams. Parallel programs are modelled as follows. Let e denote an arbitrary
(first-order) expression and vd a dynamic variable (see below), then constructs
for parallel programs include: vd := e (assignments), if ψ then ϕ1 else ϕ2

(conditionals), while ψ do ϕ (loops), var vd = e in ϕ (local variables), patom
ϕ end (atomic execution), φ1

f
ϕ2 (interleaved execution), and [p#(e; vd)] (call

to procedure p with value parameters e and reference parameters vd). The
semantics of this extended language are defined in [Balser, 2005].

V V’ V"

system

transition

environment

transition

Figure 5.1: The relation between unprimed and primed variables as two dis-
tinct transitions: the system transition and the environment transition.

The correctness of systems is ensured by reasoning about the parallel pro-
gram using future-time linear temporal logic [Balser et al., 2002b]. In KIV,
linear temporal logic as described in Chapter 2 is extended with static vari-
ables vs, which are variables that are mapped to the same element in the
universe of discourse at each time point. Dynamic variables vd, such as pro-
gram variables, may have different interpretations at different time points. In
the upcoming sections, the use of static variables will be explicitly mentioned.
A speciality of KIV is the use of primed and double-primed variables: a primed
variable v′d represents the value of this variable after a system transition, the
double-primed variable v′′d is interpreted as the value after an environment

Checking the Quality of Individual Treatments 77

Specification Data elements
capacity exhausted, nearly-exhausted, subnormal
condition hyperglycaemia, hypoglycaemia, normoglycaemia
updown up, down
drug SU, BG, glucosidase, insulin
setdrugs set of elements of sort drug
setsetdrugs set of elements of sort setdrugs

Table 5.1: Data specifications.

transition. System and environment transitions alternate, with v′′d being equal
to vd in the successive state (cf. Figure 5.1 and Section 5.5.1).

5.1.2 Specification in KIV

In KIV, data types are expressed in a many-sorted algebra with possibilities for
parameterisation, allowing the creation of specific sorts by defining constraints
on the parameters. The sorts with associated data elements required to create
a specification of the domain of diabetes mellitus type 2 are listed in Table
5.1.2.

In KIV, functions and predicates are static, i.e. they do not change over
time. Therefore, for the formalisation in KIV functions and predicates were
mapped to dynamic variables. For example, secretion(B-cells, insulin) was
mapped to a dynamic variable named ‘BsecretionI’. Since variables in axioms
of algebraic specifications are universally quantified, a procedure with name
‘patient’ was used to bind these variables. This gives each relevant variable a
context and prohibits instantiations of axioms with variables that have differ-
ent names. In order to make formulas more readable, we will continue to write
the variables as in their original notation.

KIV does not support past-time operators; however, as Gabbay has shown
[Gabbay, 1989], it is possible to translate any temporal formula with past-time
operators to an equivalent temporal formula with only future-time operators
that includes ‘until’. This implies that after translation it is possible, at least
in principle, to verify the temporal formulas introduced in sections 4.2 and 4.3.
All of the axioms with past-time operators are of the following fixed form:

ϕ ∧ HCondition(hyperglycaemia) → ψ

We can rewrite this, through the semantical definitions, and obtain a pure
future-time formula, i.e., a formula with only future-time operators:

¬ (Condition(hyperglycaemia) U ¬ (φ→ ψ))

For more details, see [Hommersom et al., 2004a]. In the next sections, we
continue to use the past-time modality, however. This makes the relation to
Chapter 4 easier to comprehend.

78 Verification of Guidelines using Interactive Theorem Proving

5.1.3 Proofs

Again, consider a patient with hyperglycaemia due to nearly exhausted B-
cells and T = {Drug(SU),Drug(BG)}. Then the following sequent (T2) of
Section 4.2, was proven by KIV in about 50 steps:

BDM2 ∪ GT ∪ {capacity(b-cells, insulin) = nearly-exhausted} ∪

{HCondition(hyperglycaemia)} � GCondition(normoglycaemia)

We can consider this an implication in the form:

|= ϕ ∧ HCondition(hyperglycaemia) → ψ

as mentioned in the previous section, where ϕ contains the background knowl-
edge, treatment, and patient and ψ contains the intention. Hence, in future-
time temporal logic, we need to prove a negated until formula. An outline
of this proof follows. The proof obligation Γ ⊢ ∆, ¬(ϕuntilψ) is equivalent
to Γ, ϕuntilψ ⊢ ∆. The sequent is proved by induction over the number of
steps it takes to satisfy ψ. For this, introduce a fresh dynamic variable N and
generalise the sequent to (N = N ′′ + 1 ∧ φ)untilψ, Γ ⊢ ∆. The equation
N = N ′′ + 1 ensures that N decreases in each step. Now, we can perform
induction with induction term N which yields

(N = N ′′ + 1 ∧ φ)untilψ, Γ, N = n, 2(N < n→ IndHyp) ⊢ ∆

where IndHyp = ((N = N ′′ +1∧φ)untilψ)∧
∧

Γ →
∨

∆ and n is a new static
variable. We move to the next state by symbolically executing the temporal
formulae. For example,

φuntilψ ⇔ ψ ∨ (φ ∧ ◦(φuntilψ))

is used to execute the until operator. In this case, the induction hypothesis
can be applied in all possible successive states.

Other of such proofs have a similar structure and length.

5.1.4 Disproofs

The final part of this section we will show disproofs of properties that do not fol-
low from the background knowledge by using program verification techniques.
In the previous section we reasoned with the background knowledge; here we
use a more extensive implementation of the ‘patient ’ procedure as shown in
Figure 5.2, which implements part of the therapeutic reasoning.

Define the following theory which defined the implements of the background
knowledge:

I = {[patient(...)]} ∪
⋃

x6=Drugs

{G x′ = x′′}

Checking the Quality of Individual Treatments 79

patient(var Drugs, Condition, UptakeLG, UptakePG,

ReleaseLG, BcapacityI, BsecretionI, QI)

begin
var oncebcapi = false, hchyper = true, nownormal = false

in while true do
patom

if SU ∈ Drugs ∧ (BcapacityI 6= exhausted ∨ oncebcapi)

then begin
BsecretionI := up; oncebcapi := true

end;
if BG ∈ Drugs then ReleaseLG := down;

if (ReleaseLG = down ∨ UptakePG = up)

∧ BsecretionI = up

∧((Bcapacity = nearly-exhausted ∧ hchyper)

∨ nownormal)

then begin
nownormal := true; hchyper := false;

Condition := normoglycaemia

end
end

end

Figure 5.2: Declaration of the patient procedure.

where the last term denotes that variables, except for ‘Drugs’, are not altered
by the environment, but only by the program itself. In about 400 steps using
KIV it was proved that I ⊢ BDM2, which implies I � BDM2 assuming KIV
is sound. From this and the fact that I is consistent (since a program is
consistent and the environment is not altered), we have shown that BDM2 2 ⊥
and therefore condition (T1) (cf. Section 4.2). The number of steps shows
that this proof was significantly harder. The reason is that in many cases an
invariant could only be defined after an initial symbolic execution. This caused
an explosion of states that had to be considered. Furthermore, the invariants
that had to be formulated were less straightforward.

Now showing that this set of drugs is a minimal treatment (condition (T3)),
as discussed in Section 4.3, we construct a specific patient as follows:

I ′ = I ∪ {secretion(b-cells, insulin) = down,
release(liver, glucose) = down,
uptake(liver, glucose) = down}

Again, I ′ is consistent by its construction. It was proved in about 25 steps

80 Verification of Guidelines using Interactive Theorem Proving

with KIV that for all Ts ⊂ {SU,BG}:

I ′ ∪ GTs ∪ {capacity(b-cells, insulin) = nearly-exhausted} ∪

{Condition(hyperglycaemia)} � ¬GCondition(normoglycaemia)

Because of monotonicity of temporal logic and I � BDM2, we have I ′ � BDM2.
Since I ′ is consistent, we can conclude:

BDM2 ∪ GTs ∪ {capacity(b-cells, insulin) = nearly-exhausted} ∪

{Condition(hyperglycaemia)} 6� GCondition(normoglycaemia)

Hence, T = {Drug(SU),Drug(BG)} is a minimal treatment. As one might
expect, it shows that after the construction of the appropriate countermodel,
disproofs are fairly easy.

5.2 Checking the Quality of Clinical Guidelines

In this section, we lay the framework for checking the quality of the clinical
guidelines. First, we introduce the background knowledge that is used here.
Then, quality criteria of individual treatments are extended to the complete
guideline.

5.2.1 Formalisation of the Background Knowledge

The formalisation of the background knowledge of diabetes mellitus type 2
described here is based work described in Chapter 4, which formalised back-
ground knowledge for the purpose of verifying quality requirements of individ-
ual treatments (cf. Section 4.2). An example of a formula from Chapter 4 is
the following:

(G uptake(liver, glucose) = up
∧ G (uptake(peripheral-tissues, glucose) = up

∧ capacity(b-cells, insulin) = exhausted)
∧ HCondition(hyperglycaemia)
) → G (Condition(normoglycaemia)

∨ Condition(hypoglycaemia))

Unfortunately, when combining this background knowledge formula with the
logical theory of a fully formalised guideline, a theory results that is unsuitable
for verification purpose as the time frame in which we have to verify quality
requirements has changed. In large parts of Chapter 4, the time frame was
restricted to the start and end of the application of one, individual treatment,
whereas now we are interested in verifying quality requirements in the time
frame of an entire guideline in which multiple treatments may be started and
ended at any time. Hence, the assumption made in the formalisation of the
background knowledge that a certain drug should always be applied to give

Checking the Quality of Clinical Guidelines 81

rise to its effects, no longer holds when verifying quality requirements in the
time frame of an entire guideline.

In order to pass through subsequent possible treatments in Chapter 4, the
background knowledge was parameterised with a particular step taken in the
guideline. However, in this chapter, a different approach is taken. It should be
noted that this adaptation does not render the previous method invalid; rather
the formalisation proposed in this chapter provides a different interpretation
to the temporal model, which makes it more appropriate to be used in this
new context. We have employed the same logic as used for formalising the
guidelines, i.e., future-time linear logic (cf. Section 2.1.2), with the time frame
starting at the beginning of the guideline and continuing to either infinity or
the end of the guideline. It is assumed that any additional knowledge needed
about the patient history is available at the start of the guideline, allowing us to
omit the converse modality H from [Lucas, 2003, Hommersom et al., 2004a],
again similar to the abstraction performed in Chapter 4. An alternative to this
approach is to translate formulas to equivalent temporal formulas with only
future-time operators. However, we do not compare to Chapter 4 here, this
provides little additional value in this case.

Furthermore, we interpreted the time period between causes (e.g., drug
administration) and effects (e.g., drug effects) as the time period between
the current state and the next state. In summary, the G operator used in
[Lucas, 2003, Hommersom et al., 2004a] to model global qualitative behaviour
is replaced by the X! operator to model cause-effect relationships. Hence, the
above formula is replaced by the following formula:

(X! uptake(liver, glucose) = up
∧X! (uptake(peripheral-tissues, glucose) = up

∧ capacity(b-cells, insulin) = exhausted)
∧ Condition(hyperglycaemia)
) → X! (Condition(normoglycaemia)

∨ Condition(hypoglycaemia))

The final specification is denoted by BDM2 and is shown in Figure 5.3. One
additional axiom for reasoning about diet is added (axiom (5)), which was
not part of the original specification. As an illustration on how to read these
formulas, consider Formula (6). This formula denotes that in case the B cells
are being stimulated to secrete more insulin, i.e., the secretion is up after some
unspecified time period, the capacity of these B cells is subnormal, and the QI
index is less or equal than 27, then we expect that the condition will change
from hyperglycaemia to normoglycaemia.

5.2.2 Quality Requirements of Clinical Guidelines

In Chapter 4, we have given a formalisation of the diabetes guideline using
temporal logic. Here, we go one step further and investigate to which extend

82 Verification of Guidelines using Interactive Theorem Proving

(1) Drug(insulin)→X! (uptake(liver, glucose) = up∧
uptake(peripheral-tissues, glucose) = up)

(2) uptake(liver, glucose) = up→ release(liver, glucose) = down

(3) (Drug(SU)∧¬capacity(b-cells, insulin) = exhausted)→
X! secretion(b-cells, insulin) = up

(4) Drug(BG)→X! release(liver, glucose) = down

(5) diet∧ capacity(b-cells, insulin) = normal→X!Condition(normoglycaemia)

(6) (X! secretion(b-cells, insulin) = up∧
capacity(b-cells, insulin) = subnormal∧QI ≤ 27∧
Condition(hyperglycaemia))→X!Condition(normoglycaemia)

(7) (X! release(liver, glucose) = down∧
capacity(b-cells, insulin) = subnormal∧QI > 27∧
Condition(hyperglycaemia)) →X!Condition(normoglycaemia)

(8) ((X! release(liver, glucose) = down ∨
X! uptake(peripheral-tissues, glucose) = up)∧
capacity(b-cells, insulin) = nearly-exhausted∧X! secretion(b-cells, insulin) =
up∧Condition(hyperglycaemia))→X!Condition(normoglycaemia)

(9) (X! uptake(liver, glucose) = up∧X! uptake(peripheral-tissues, glucose) =
up∧ capacity(b-cells, insulin) = exhausted∧Condition(hyperglycaemia))→
X! (Condition(normoglycaemia) ∨ Condition(hypoglycaemia))

(10) (Condition(normoglycaemia) ⊕ Condition(hypoglycaemia) ⊕
Condition(hyperglycaemia)) ∧ ¬ (Condition(normoglycaemia)
∧ Condition(hypoglycaemia) ∧ Condition(hyperglycaemia))

Figure 5.3: Background knowledge BDM2 of diabetes mellitus type 2. Drug(x)
holds iff drug x is being administered at that moment in time. The ⊕ operator
denotes the exclusive OR operator.

Checking the Quality of Clinical Guidelines 83

it is possible to use a guideline representation language for this purpose. We
also look in detail at possible guideline quality criteria.

Clinical guidelines consist, besides a description of treatments, of a control
structure that uses patient information to decide on a particular treatment
plan, i.e., the order (sequentially or in parallel) of treatments. Quality require-
ments for guidelines should extend the quality requirements of treatments as
shown in the previous section to include requirements on the control structure.

Analogous to the previous section, good practice medicine of clinical guide-
lines can be formalised as follows. Let B be background knowledge, T be a
treatment, P be a patient group, N be a collection of intentions, and M a
clinical guideline in the form of a plan hierarchy. The structure M is com-
posite and entails at certain points in time a treatment T that corresponds to
a particular stage in the treatment process as described by the guideline. At
all other time points M entails the empty treatment, i.e., T = ∅. A clinical
guideline M is called a proper guideline according to the theory of abductive
reasoning, i.e., M ∈ PrP , if:

(M1) B∪M ∪P 6|= ⊥ (the guideline does not have contradictory effects), and

(M2) B ∪ M ∪ P |= FN (at some future state, the guideline satisfies all
intentions)

In contrast to meta-axioms (T1) and (T2) (see Chapter 4), we focus here on
treatment plans M rather than separate treatments T . Note that in contrast
to (T2), in (M2) we state FN , i.e., eventually N , as the guideline may consist
of multiple interventions and diagnoses that may not directly result in reaching
each intention. Note that we here assume a broad notion of intention in the
sense that intentions may hold for a longer period of time, e.g., after two weeks
the intention may be satisfied that a certain drug is administered within the
first week. This persistence of satisfied intentions explains why we require that
at some point all the intentions should all be satisfied at once.

If, in addition to (M1) and (M2), condition

(M3) Oϕ(M) holds, where Oϕ is a meta-predicate standing for an optimality
criterion or a combination of optimality criteria ϕ, which is defined as:
Oϕ(M) ≡ ∀M ′ ∈ PrP : ¬(M ≺ϕ M

′),

then the guideline is said to be in accordance with good-practice medicine, again
denoted as Goodϕ(M,P).

A particular instance of condition (M3) and the preference relation can
be constructed using a predicate. This predicate divides the possible guideline
models into two groups, namely one group in which all models satisfy the pred-
icate and one in which all models do not satisfy the predicate. The preference
relation is then the preference over one of these two groups. For example, some
predicates that should hold for a proper guideline are the completion of treat-
ments as soon as the patient is cured, or consistency of the order of prescribed
treatments with the preference order between treatments.

84 Verification of Guidelines using Interactive Theorem Proving

Formally, one can represent this by specifying, in addition to (M1) and
(M2), additional proof obligations. For example:

• The plan never prescribes treatments that are less preferred than the
treatment that is in accordance with good practice medicine (see Sec-
tion 4.2 for the definition of Goodϕ(T, P)):

B ∪M ∪ P |= G (∀T ′ : Goodϕ(T ′, P) ∧ T → ¬(T ≺ϕ T
′))

where the preference relation ≺ϕ is defined on treatments, i.e., T ≺ϕ T
′

denotes that T is less preferred than T ′ given some criteria ϕ.

• If the patient is successfully treated, i.e., assuming no new conditions or
comorbidities, the plan should not start new treatments, but unbound-
edly long treatments (like insulin) are allowed:

B ∪M ∪ P |= G (N ∧ T → X! (T ∨ last))

• The order of prescribed treatments is consistent with the preference re-
lation:

B ∪M ∪ P |= G (T ∧ F T ′ → ¬(T �ϕ T
′))

These quality requirements are examples that we consider realistic in the
case study and in some sense corresponds to the idea that many quality crite-
ria can be traced back to orderings between treatments (cf. Section 3.4). We
believe that these examples have sufficient generality and can be used to illus-
trate the techniques that we employ. Nonetheless, further research will have
to decide which quality requirements are most suitable for which guidelines as
quality requirements should always be considered in the context of a specific
guideline. In Section 5.5 we describe the actual verification process of these
proof obligations for the guideline for the management of diabetes.

5.3 Clinical Guidelines in Asbru

Much research has already been devoted to the development of representation
languages for clinical guidelines. Most of them look at guidelines consist-
ing of a composition of actions, whose execution is controlled by conditions
[Miksch, 1999]. However, most of them are not formal enough for the pur-
pose of our research as they often incorporate free-text elements which do not
have a clear semantics. Exceptions to this are PROforma [Fox et al., 1996,
Fox et al., 1997] and Asbru [Seyfang et al., 2002, Shahar et al., 1998]. The
latter has been chosen in this chapter as a basis to implement the clinical
guideline M mentioned in the previous section.

Clinical Guidelines in Asbru 85

5.3.1 Introduction to Asbru

A clinical guideline is considered in Asbru as a hierarchical plan. The main
components of an Asbru plan are intentions, conditions, plan-body, and time
annotations. Furthermore, a plan can have arguments and can return a value.

Plan_Control

Considered

Possible

F

Selection

Execution

Suspended

Su

Re

Activated

..._Control

<Plan Body>

Rejected_Setup

Rejected_Filter

Aborted Completed

CA
SR

FR

S

Terminated

S: [Satisfied(setup cond)] SR: [¬Satisfiable(setup cond)] A: [Satisfied(abort cond)]
F: [Satisfied(filter cond)] FR: [¬Satisfied(filter cond)] C: [Satisfied(complete cond)]

Su: [Satisfied(suspend cond)] Re: [Satisfied(reactivate cond)]

Figure 5.4: The plan state model, where Satisfied(cond) denotes that the en-
vironment satisfied the condition cond whereas Satisfiable(cond) denotes that,
theoretically, the environment could still satisfy the condition cond, i.e., that
no deadline has passed in case of time constraints.

The intentions are the high-level goals of a plan. Intentions can be ex-
pressed in terms of achieving, maintaining, or avoiding a certain state or ac-
tion. The states or actions to which intentions refer can be intermediate or
final (overall). In total there are twelve possible forms of intentions built up by
combining elements from the sets {achieve, maintain, avoid}, {intermediate,
overall}, and {state, action}.

Conditions can be associated to a plan to define different aspects of its
execution. The most important types of condition are: (1) filter and setup
conditions,1 which must be true before a plan can start, (2) abort conditions,

1 filter conditions are conditions about values that cannot change value, e.g., sex = male,

86 Verification of Guidelines using Interactive Theorem Proving

which define when a plan must abort, and (3) complete conditions, which define
when a started plan finishes successfully. Conditions can be ‘overridable’ (i.e.,
healthcare personnel can manually satisfy the condition) or ‘require confirma-
tion’ (i.e., conditions must be explicitly confirmed before they are satisfied).

The plan-body contains the actions, sub-plans, or both to be executed as
part of the plan. The main types of plan-body are: (1) user-performed: an
action has to be performed by a user, which requires interaction, which is not
further modelled, (2) single-step: an action which can be either an activation
of a sub-plan, an assignment of a variable, a request for an input value, or
an if-then-else statement, (3) sub-plans: a set of plans to be performed in a
given order, either sequentially, in parallel, in any-order, or unordered, and (4)
cyclical plans: a repetition of actions over a time period. In case of sub-plans,
it is also required to specify a waiting strategy to describe which of the sub-
plans must be completed for the super plan to complete, e.g., all sub-plans
should be executed (wait-for all).

Time annotations can be associated to various Asbru elements, e.g., inten-
tions, conditions, plan activations. A time annotation specifies (1) in which
interval things must start, (2) in which interval things must end, (3) their
minimal and maximal duration, and (4) a reference time point.

5.3.2 The Semantics of Asbru

To help in the understanding of Asbru we review here the semantics of Asbru
in a semi-formal statechart notation [Balser et al., 2006]. In Asbru, plans are
organised in a hierarchy, where a plan may include a number of sub-plans. The
semantics of Asbru is defined in [Balser et al., 2002a] by flattening the hierar-
chy of plans and using one top level control to execute all plans synchronously.
Within each top level step, a step of every plan is executed. Whether a plan is
able to progress depends on its conditions. The plan state model shown in Fig-
ure 5.4 defines the semantics of the main plan hierarchy. The ‘Plan Control’
is divided into a selection phase, an execution phase, and a termination phase.
Each plan goes into the ‘Considered’ state when it receives a consider signal.
In this state its filter condition is checked. If it evaluates to true, control ad-
vances to the state ‘Possible’. Then the setup condition is checked and if it
is passed, control advances to the execution phase. If the filter condition is
not satisfied or the setup condition is not satisfiable anymore (i.e., it is not
possible to satisfy the condition in the future, because a deadline has passed),
the plan is rejected. The same happens, if the super-plan terminates. In the
execution phase the plan waits for an external signal activate, to be sent by its
super-plan.

In state ‘Activated’, the sub-plans are executed, which can be sequentially,
in parallel, unordered, or in any order, and each order determines a different
controlling statechart [Balser et al., 2002a]. A plan can synchronise its sub-
plans using the signals consider and activate. Additional control to propagate

whereas setup conditions are conditions about values that may change, e.g., glucose level.

Clinical Guidelines in Asbru 87

execution states of a sub-plan to its parent and vice versa is also present, e.g.,
the abortion of a mandatory sub-plan enforces the parent-plan also to abort.
Sub-plans can either be completed successfully or aborted, e.g., in the case of
emergency patient readings.

The complete technical definitions, in addition to the semantics of the other
constructs not shown here, can be found in [Balser et al., 2006].

5.3.3 Asbru Model of the Diabetes Mellitus Type 2 Guideline

The overall structure of the Asbru model of the guideline fragment (Fig-
ure 4.1) of the treatment of diabetes mellitus type 2 is shown in Fig-
ure 5.5. The Asbru model consists of a hierarchy of seven plans. The
top level plan ‘Treatments and Control’ sequentially executes the four sub-
plans ‘Diet’, ‘SU or BG’, ‘SU and BG’, and ‘Insulin Treatments’, which cor-
respond to the four steps of the guideline fragment in Figure 4.1. The fourth
sub-plan ‘Insulin Treatments’ is further refined by the two sub-plans ‘In-
sulin and Antidiabetics’ and ‘Insulin’, which can be executed in any order.

Treatments_and_Control

SU_and_BG Insulin_TreatmentsDiet SU_or_BG

InsulinInsulin_and_Antidiabetics

Figure 5.5: Asbru plan hierarchy of the diabetes mellitus type 2 guideline.

The Asbru specifications of two plans in the hierarchy, namely ‘SU or BG’
and ‘Insulin Treatments’ are shown in Figure 5.6. Independent from the in-
tentions, which are high level goals, one can describe the expected behaviour
of plans using the effects attribute. In the case of ‘SU or BG’ there is a re-
lationship between the Quetelet index (QI) and the drug administered. If the
Quetelet index is less than or equal to 27, then SU is administered, else BG
is administered. The plan ‘SU or BG’ corresponds to step 2 in the guideline
fragment of Figure 4.1, which completes if the patient condition improves, i.e.,
the patient no longer has hyperglycaemia. In Figure 5.6 this is represented by
the complete condition. The plan ‘SU or BG’ aborts when the condition of
the patient does not improve. In Figure 5.6 this is represented by the abort
condition, which requires a manual confirmation to ensure that some time
passes for the drugs to have an impact on the patient condition.

88 Verification of Guidelines using Interactive Theorem Proving

The plan ‘Insulin Treatments’ consists of two sub-plans, which correspond
to the two options of step 4 in the guideline fragment of Figure 4.1, i.e., either
insulin is administered or insulin and anti-diabetics are administered. Sub-
plans are represented using the body attribute (Figure 5.6). In this case, the
sub-plans are executed in any order and execution completes if one of the two
sub-plans successfully completes (wait-for one).

plan SU or BG
effects

(QI ≤ 27 → SU ∈ Drugs) ∧
(QI > 27 → BG ∈ Drugs)

abort condition
condition = hyperglycaemia confirmation required

complete condition
condition = hypoglycaemia ∨
condition = normoglycaemia

plan Insulin Treatments
body anyorder wait for one

Insulin and Antidiabetics
Insulin

Figure 5.6: Asbru specifications of two treatments recommended in the dia-
betes mellitus type 2 guideline.

5.4 Specification in KIV

Previous sections have given the temporal logic formalisation of the background
knowledge of diabetes mellitus type 2, the quality requirements, and the Asbru
model of the medical guideline for diabetes mellitus type 2. In this section we
discuss how these elements can be translated into KIV representations, so that
they become amendable to verification.

5.4.1 Specification Methodology in KIV

The guideline and patient can be looked upon as a system (guideline) that
interacts with the environment (patient). KIV allows a clear distinction be-
tween system and environment transitions by using primed and double-primed
variables. Therefore, the Asbru model is only allowed to map variables into
primed variables, whereas the environment is only allowed to map primed
variables into double primed variables. System and environment transitions
alternate (Figure 5.1).

However, system transitions in Asbru may involve a large number of steps
(e.g., signals, plan state changes) before the model reaches a stable state from

Specification in KIV 89

which no further step can be made unless time progresses or the environment
changes. Asbru is mainly a control oriented language and many control steps
are not considered to take any real time at all. In an interactive theorem
prover like KIV, this behaviour can be modelled by the introduction of two
transition types, micro-steps and macro-steps [Schmitt et al., 2006a]. Micro-
steps are technical Asbru steps where time and environment are not allowed to
change. Macro-steps are temporal steps in which interaction can occur with the
environment (e.g., plan activations) and are only executed when there are no
micro-steps possible. The variable ‘Tick’, controlled by the symbolic execution
of the Asbru semantics, holds when a macro-step occurs.

Standard data structures

Asbru Semantics Guideline specific data types

Guideline specific control stucture

Background knowledge

Figure 5.7: Dependency structure of Asbru specifications with A→ B denoting
that A depends on B.

In KIV, system descriptions are represented by means of a set of algebraic
specifications. These algebraic specifications can be enriched with additional
algebraic structures, which form a dependency structure between the different
specifications. To maximise re-usability, several layers are used for representing
our framework in KIV. The lowest layer in this dependency structure consists
of standard data structures like Booleans and sets, which are typically obtained
from libraries in KIV. On top of that, all data structures required to obtain a
full definition of the semantics of Asbru were provided. The remaining layers
consist of the structures dependent on the specific guideline under study. On
top of the standard data structures, additional data structures are represented.
For the diabetes case study, the data types are modelled as enumeration types.
On top of the asbru semantics and data structures the background knowledge
is represented. The top layer consists of the control structure of the guideline,
which is the structure of Figure 5.5 in the diabetes case study (cf. Figure 5.7).

5.4.2 Specification of Background Knowledge in KIV

The background knowledge, i.e., axioms (1)–(9) in Figure 5.3, has been refor-
mulated in terms of preconditions and postconditions, for reasons which will

90 Verification of Guidelines using Interactive Theorem Proving

become clear in Section 5.5.1. Every element that refers to the current point in
time is interpreted as a precondition and each element that refers to the next
point in time is interpreted as a postcondition. The values of these elements
are stored in a data structure, denoted by ‘Patient’. The patient is modelled
by a sequence of pairs [v, c], where v is the name of a variable and c a constant
denoting the value of that variable, depending on the point in time. Updates
to the patient record are done by appending a pair to the end of the sequence.
Moreover, the most recent value of a variable v in a sequence s is given by the
term s[v]. An example of the final translation can be found in Figure 5.8.

predicates
Knowledge : patient × patient;

axioms
BDM2-1:

Knowledge(pre, post) → (insulin ∈ pre[treatment] →
post [uptake(liver,glucose)] = up ∧
post [uptake(peripheral-tissues, glucose)] = up)

BDM2-8:
Knowledge(pre, post) → (post [uptake(liver,glucose)] = up

∧ post [uptake(peripheral-tissues,glucose)] = up)
∧ pre[capacity(b-cells,insulin)] = exhausted
∧ pre[condition] = hyperglycaemia →
post [condition] = normoglycaemia)

Figure 5.8: Background knowledge in KIV as a first order predicate using pre-
and postconditions, i.e., pre and post are shorthand notations for patient data
structures with pre[v] = c and post [v] = c referring to the condition v = c of
the patient in the current and next state respectively. The use of pre and post
variables is necessary to parameterise the background knowledge for arbitrary
patient data structures. In addition, two translated rules from the background
formalisation in Figure 5.3 are shown with BDM2-i representing rule (i).

5.4.3 Specification of Asbru in KIV

As each Asbru plan has a strict format, an algebraic function ‘mk-asbru-def’
has been defined for the translation of Asbru plans into KIV specifications. By
calling ‘mk-asbru-def’ with the parameters that constitute a plan, translation
of any guideline in Asbru becomes straightforward. The parameters consist
of the various conditions that control plan state changes, the control type of
sub-plans, a list of sub-plans, a retry value (for aborted plans), a wait-for
condition (for mandatory sub-plans), and an optional wait-for flag (whether to
wait for sub-plans). As there are quite a number of parameters, default values
are provided to ease specification.

Specification in KIV 91

The Asbru semantics is implemented as a parallel program, parametrised
with a given Asbru model. Temporal properties are proven using symbolic
execution and induction [Balser, 2005].

5.4.4 Specification of Quality Requirements in KIV

With the help of KIV, we have verified that the diabetes guideline is proper,
i.e., that the guideline satisfies conditions (M1) and (M2), which is discussed
in detail in Section 5.5.1 and 5.5.2. Meta-level quality requirements are verified
in KIV using a sequent Γ⊢Σ where the conclusion Σ is some instantiation of
(M3) and the antecedent Γ is a fixed structure that consists of the initial state
of the patient and the Asbru model, the Asbru model, the effects of treatments,
the background knowledge, and the environment assumptions. The sequent in
Figure 5.9 is the specification in KIV of the quality requirement mentioned in
Section 5.2.2, i.e., each patient is eventually cured from hyperglycaemia.

/* Initial state of patient */

Patient[condition] = hyperglycaemia,
/* Initial state of guideline */

AS[Treatments and Control] = inactive, . . . ,
/* Asbru model */

[asbru#(Treatments and Control; AS, P)],
/* Effects */

G (AS[SU or BG] = activated↔
BG ∈ Patient′[treatment]∧ . . .),

/* Background knowledge */

GKnowledge(Patient′,Patient′′)
/* Environment assumption */

G (AS′′[Treatments and Control] =
AS′[Treatments and Control]∧ . . .)

⊢
/* Property */

F (Patient[condition] = hypoglycaemia∨
Patient[condition] = normoglycaemia)

Figure 5.9: Specification in KIV of the quality requirement that each patient
is eventually cured from hyperglycaemia.

The initial state of the patient and the Asbru model are represented using
additional data structures [Schmitt et al., 2005]. The patient data is repre-
sented in a data structure ‘patient-data-history’, which in Figure 5.9 is set to
the patient group {Condition(hyperglycaemia)}. The initial state of the Asbru
model is represented using a data structure ‘AS’ of type ‘asbru-state’, which
keeps track of all plan states over time, and in which initially each plan is set
to inactive. The Asbru model of the guideline describes the control structure,

92 Verification of Guidelines using Interactive Theorem Proving

and its specification in KIV has already been discussed in Section 5.4.3. The
effects of treatments specify in KIV the behaviour of plans in the Asbru model.
This is a direct translation of the effects attribute used in the Asbru model (cf.
Section 5.3.3). In our diabetes case study the effects of plans are the admin-
istration of a certain drug as soon as the plan becomes activated, which may
depend on the value of other variables like the Quetelet index (cf. Figure 5.6).
The background knowledge is represented in the sequent using the first-order
predicate ‘Knowledge’ and has already been discussed in Section 5.4.2. The
environment is in principle allowed to change every variable arbitrarily. The
environment assumptions restrict the behaviour of the environment. These
restrictions (1) forbid the environment to change any variable, (2) force the
environment to deterministically change a variable (e.g., advancing a clock),
and (3) guarantee certain variable assignments in a nondeterministic way (e.g.,
the existence of a value when a signal is sent).

5.5 Verification using KIV

This section discusses in detail the verification of the quality requirements
that we have defined in Section 5.2.2 for the guideline for the management of
diabetes mellitus type 2 using KIV.

5.5.1 Consistency of the Formal Model

Property (M1) ensures that the formal model, including the Asbru guideline
and the background knowledge, is consistent. Verifying property (M1) corre-
sponds to verifying that the preconditions of the sequent in Figure 5.9 are not
contradictory. KIV is a theorem prover, as such, it can only derive theorems
and cannot be used to directly show that a given set of formulas is consistent.
Nonetheless, the KIV system can be used to derive a theorem that creates a
strong argument to show that our model is consistent, which we will illustrate
here.

The initial state is – in our case – described as a set of equations and it
has been trivial to see that they are consistent, as they do not contain any
logical operators. The guideline is given as an Asbru plan. The semantics of
any Asbru plan is defined in a programming language where every program
construct ensures that the resulting reactive system is consistent: in every step,
the program either terminates or calculates a consistent output for arbitrary
input values. The Asbru plan thus defines a total function from unprimed to
primed variables in every step (Figure 5.1). The formula defining the effects
maps the output variables of the guideline to input variables of the patient
model, which cannot violate the consistency of the resulting model.

The background knowledge defines our patient model. We consider the
patient to be part of the environment which is the relation between the primed
and the double primed variables in every step, i.e., respectively the states
before and after an environment transition (cf. Figure 5.1). If the patient

Verification using KIV 93

model ensures that for an arbitrary primed state there exists a double primed
state, the overall system of alternating guideline and environment transitions
is consistent: given an initial (unprimed) state, the guideline calculates an
output (primed) state; the effects define a link between the variables of the
guideline and the variables of the patient model; the patient model reacts to
the (primed) output state and yields a (double primed) state which acts again
as input to the Asbru guideline in the next step. The additional environment
assumption of Figure 5.9 does not destroy consistency, as the set of restricted
variables of the environment assumption is disjunct to the set of variables of
the patient model.

post = pre[uptake(peripheral-tissues, glucose), up]
[uptake(liver, glucose), up]
[release(liver, glucose), down]
[secretion(b-cells, insulin), up]
[condition,normoglycaemia]

Figure 5.10: Example patient adhering to background knowledge, with pre and
post denoting patient data structures. Using the algebraic sequence notation
for patient data structures described in Section 5.4.2, pre denotes an arbitrary
patient data structure and post denotes the patient data structure equal to the
patient data structure pre in which certain variables are updated.

It remains to ensure consistency of the background knowledge, which is
defined in terms of a predicate ‘Knowledge’. An additional property

∀ pre. ∃ post. Knowledge(pre, post)

ensures that the relation is total. In order to verify that the properties of
Figure 5.3 together with the property above is consistent, we have assumed a
specific patient (see Figure 5.10), for whom all possible physiological effects de-
scribed by the background knowledge occur. The patient reacts to an arbitrary
input state pre with raised uptake of glucose in liver and peripheral-tissues,
raised secretion of insulin from the B cells, and lowered release of glucose from
the liver. Furthermore, the condition of the patient always improves to normal.
Verifying that the example patient satisfies all of the properties of Figure 5.3
has been fully automatic.

5.5.2 Successful Treatment

In order to verify property (M2), i.e., the guideline eventually manages
all patient problems, a proof for the sequent of Figure 5.9 must be con-
structed. The verification strategy in KIV is symbolic execution with induc-
tion [Balser, 2005, Balser et al., 2002b]. The plan state model of Figure 5.4

94 Verification of Guidelines using Interactive Theorem Proving

tc is inactive
tc is considered

diet is aborted

invariant is introduced

 and induction is applied
diet is still activated

case distinction about
 B−cell capacity

patient with normal
capacity is cured

tc is activated

diet is considered

diet is activated

patient with subnormal
capacity is cured

su_or_bg is aborted

su_or_bg is considered

su_or_bg is activated

su_and_bg is activated

su_and_bg is aborted

su_and_bg is considered

insulin_and_anti and
 insulin are considered

insulin_and_anti and
 insulin are ready

insulin is activatedinsulin_and_anti
is activated

nearly−exhausted
patient with

capacity is cured

insulin_treatments

insulin_treatments
 is considered

 is activated

Figure 5.11: Annotated proof tree for property (M2), i.e., the guideline even-
tually manages all patient problems. Proofs are started at the bottom with
each subsequent bullet representing a proof step. Different branches represent
case distinctions. The term ‘tc’ stands for ‘Treatments and Control’.

Verification using KIV 95

is implemented by a procedure called ‘asbru’. This procedure is symbolically
executed. In the initial state, the top level plan ‘Treatments and Control’ is in
‘inactive’ state. After executing the first step, the plan is ‘considered’. Execu-
tion continues as described by the plan state model of Figure 5.4 and produces
the proof tree of Figure 5.11. Starting at the bottom, the proof consists of
a number of step execution rules followed by simplification rules to simplify
the first order formulas describing the current state. Each proof step is rep-
resented graphically with a bullet. The final proof tree contains all of the
possible execution paths of the guideline.

After the ‘Treatments and Control’ plan is activated, the first sub-plan
‘diet’ is considered. Execution continues until the ‘diet’ plan is activated. The
axioms of Figure 5.3 do not contain any knowledge about how diet effects a
patient. We have therefore added the axiom

(10) diet∧Patient[capacity(b-cells, insulin)] = normal
→Patient[condition] = normoglycaemia

Patients whose capacity of the B cells is normal are cured with diet (left branch
of case distinction). For other patients, diet may not be sufficient (right branch
of case distinction). In this case, we assume that the doctor eventually aborts
the diet treatment. We use induction to reason about the unspecified time
period that a diet is followed by the patient. As an invariant,

Patient[capacity(b-cells, insulin)] 6= normal

is used. In the next step, the doctor has either aborted ‘diet’ (left branch)
or ‘diet’ is still active (right branch). In the second case, induction can be
applied. If the first treatment is ‘aborted’, the second treatment ‘SU or BG’ is
‘considered’ and after some steps is ‘activated’. In this case, either SU or BG
is prescribed, depending on the Quetelet index QI. For a patient whose B cell
capacity is subnormal, the background knowledge ensures that the condition
of the patient improves (properties (3), (4), (5), and (6) of Figure 5.3). Thus,
for the rest of the proof we can additionally assume that

Patient[capacity(b-cells, insulin)] 6= subnormal

The third treatment (‘SU and BG’) is similarly executed and because of prop-
erties (3), (4), and (7) of the background knowledge patients with nearly ex-
hausted B cell capacity are cured. Thus, the precondition concerning the
capacity of the B cells can be strengthened to

Patient[capacity(b-cells, insulin)] 6= normal
∧Patient[capacity(b-cells, insulin)] 6= subnormal
∧Patient[capacity(b-cells, insulin)] 6= nearly-exhausted

Here, we require an additional axiom which says that capacity(b-cells, insulin)

96 Verification of Guidelines using Interactive Theorem Proving

is a function and therefore can only obtain one of the values from the set

{normal, subnormal,nearly-exhausted, exhausted}

to conclude

Patient[capacity(b-cells, insulin)] = exhausted

This axiom together with properties (1) and (8) of the background knowledge
ensure that the prescription of insulin finally cures the patient.

5.5.3 Optimality of Treatment

With respect to property (M3), an optimality criterion of the guideline is that
no treatments are prescribed that are not in accordance with good practice
medicine (Section 4.2), i.e., some preference relation � between treatments
exists and the guideline never prescribes a treatment T , with T � T ′, and T ′

being sufficient for reaching the physicians’ intentions for the patient group in
question.

In our case study the preference for treatments is based on the minimisation
of (1) the number of insulin injections, and (2) the number of drugs involved
(cf. Section 4.2). We have defined this using a reflexive, transitive order ≤
such that for all treatments T , it holds that {insulin} ≤ T and T ≤ {diet}.
Furthermore, the treatments prescribing the oral anti-diabetics sulfonylurea
and biguanide are incomparable. The proof obligation is then as follows:

/* Initial state of guideline */

AS[Treatments and Control] = inactive, . . . ,
/* Asbru plan */

[asbru#(Treatments and Control, st; AS,Patient)],
/* Effects */

G (AS[SU or BG] = activated↔
BG ∈ Patient′[treatment]∧ . . .),

/* Background knowledge */

GKnowledge(Patient′,Patient′′)
/* Environment assumption */

G (AS′′[Treatments and Control] =
AS′[Treatments and Control]∧ . . .)

⊢
/* Property */

G (∀T : Good≤(T,Patient) → ¬ (Patient[treatment] < T))

Furthermore, we needed to add the following axiom to our system:

G Patient[QI] = Patient′′[QI]

Verification using KIV 97

i.e., the Quetelet index QI does not change during the execution of the guide-
line. This axiom is needed, because the decision to prescribe a treatment is
not exactly made at the same time as the actual application of the treatment,
and, therefore, the decision to prescribe this treatment could be based on a
patient with a Quetelet index different from the patient that takes the drugs.

Proving this property in KIV was done in approximately one day using
particular heuristics for the straightforward parts, e.g., propositional simplifi-
cation and symbolic execution. The theorem was proven using two lemmas for
two specific patient groups. In total, it took approximately 500 steps to verify
this property with a degree of automation of approximately 90%. The verifi-
cation process yields insight in the inferences needed to construct the proof,
which provides the opportunity to construct case-specific heuristics. This im-
proves the level of automation, however, verification of other properties will
not necessarily benefit from the additional heuristics.

5.5.4 No New Treatments

The previous property does not rule out that the guideline for diabetes mellitus
type 2 prescribes additional treatments in case the patient is cured. This can
be formalised as follows:

G ∀Ts
(Tick∧Ts = Patient[treatment]∧

X!Patient[condition] 6= hyperglycaemia →
XG ((¬ last∧Tick)→Patient[treatment] = Ts)))

To compare the current treatment with any future treatment a static vari-
able Ts is used to store the current treatment administered to patient ‘Patient’
as ‘Patient’ may dynamically change. The variable Ts only needs to be com-
pared with future treatments in case the patient is cured. Because curing the
patient requires one time step in the formalisation of the background knowl-
edge, to check if treatment Ts has cured the patient we need to check whether
the patient’s condition is different from hyperglycaemia in the next state using
the X! modal operator (cf. Figure 2.2). When both conditions hold then
either the execution of the guideline should complete or, when it does not,
only treatment Ts should be administered. The ‘Tick’ variable is introduced
to restrict the property to macro-steps (cf. Section 5.4.1). As we are only
interested in the temporal behaviour of plan activations, the property would
trivially be violated when one would allow micro-steps as micro-steps do not
allow temporal behaviour, i.e., plans are never activated in micro-steps.

The effort to prove this property was of the same order as proving that the
treatment is successful. The difficult part was to find the right formalisation,
taking into account that the execution of the guideline completes and that
internal (micro) steps can violate the proof obligation.

98 Verification of Guidelines using Interactive Theorem Proving

5.5.5 Order of Treatments

Finally, it was proven that the order of any two treatments in the guideline
is consistent with the order relation as we have defined in Section 5.5.3. The
formalisation of the property in KIV was done as follows:

G ∀Ts
(Tick∧Ts = Patient[treatment]

→G (last∨ (Tick→¬(Ts ≤ Patient[treatment]))))

At each time the current treatment is bound to a static variable Ts, which
can be used to compare against subsequent steps in the guideline. For any
future steps, we require that either the guideline completes (last holds) or that
activated treatments are not more preferred than Ts, i.e., the property states
that less preferred treatments should not be applied first. The formalisation
represents the property introduced in Section 5.2.2, by using convenient KIV
features. Again, the variable ‘Tick’ is needed in the formalisation to abstract
from technical system steps (cf. Section 5.5.4).

This property also had a high degree of automation with roughly 800 steps
in total. The reason for this slightly higher number of steps is due to nested
temporal operators. However, the steps were straightforward, as the different
branches have a similar structure. The only knowledge used was the axiom that
states that the Quetelet index QI is constant during the run of the guideline.
Without this assumption it is possible that the treatment switches from ‘SU’ to
‘BG’ or from ‘BG’ to ‘SU’ during the activation of the plan ‘SU or BG’. This
unwanted behaviour would lead to a counter-example as these two drugs are
assumed to be incomparable. This shows that additional assumptions about
patients may be necessary even for properties that only state something about
the structure of the guideline.

5.6 Conclusions

In this chapter we have set up a general framework for the verification of clin-
ical guidelines, consisting of a clinical guideline, medical background knowl-
edge, and quality requirements. A model for the background knowledge of
glucose level control in diabetes mellitus type 2 patients was developed based
on a general temporal logic formalisation of (patho)physiological mechanisms
and treatment information. Furthermore, we developed a theory for quality
requirements of good practice medicine based on the theory of abductive di-
agnosis. This theory of quality requirements and the model of background
knowledge were then used in a case study in which we verified several quality
criteria of the diabetes mellitus type 2 guideline used by the Dutch general
practitioners. In the case study we used Asbru to model the guideline as a
network of tasks and KIV for the formal verification.

In the course of our study we have shown that setting up a general frame-
work for the formal verification of clinical guidelines with medical background

Conclusions 99

knowledge is feasible and that actual verification of quality criteria can be done
with a high degree of automation. We believe that both the inclusion of med-
ical background knowledge and semi-automatic decision support are essential
elements for adequately supporting the development and management of clini-
cal guidelines. Our approach allows one to reason about the guideline in terms
of the effects treatments have on patients and, consequently, it is possible to
specify general requirements in terms of the outcome of a guideline, rather
than in terms of the fairly arbitrary document structure of the guideline.

Although, the presented case study is small compared to some other guide-
lines, the framework has been setup to be scalable for larger verification studies.
First, a large number of algebraic specifications in KIV dealing with the Asbru
semantics and data types are re-usable. Second, translation of Asbru models
into KIV can be done automatic. Third, KIV has an integrated proof main-
tenance system that keeps track of invalidated proofs in case of changes to
specifications and even tries to correct invalidated proofs automatically. How-
ever, KIV is an expressive tool, which may result in an additional overhead
when verifying quality criteria of clinical guidelines. Additional research could
focus on other techniques like model checking, which may be less expressive,
but require less overhead for verifying quality criteria. Such techniques could
be part of a process of quality checking guidelines in which our approach would
be at the far end of the spectrum of possible techniques while simpler tech-
niques can be used as early as the modelling of the guideline itself to remove
errors and ambiguities in the guideline. This would improve scalability even
further.

100 Verification of Guidelines using Interactive Theorem Proving

Chapter 6
Applying Model Checking to Formal
Models of Guidelines

Clinical guidelines are often underspecified, which is sometimes seen as an
anomaly in the guideline [Shiffman, 1997, Miller et al., 1999]. As discussed in
Chapter 3, the development of guidelines is based more and more on answer-
ing particular key questions while ignoring others, which makes such incom-
pleteness to be expected. This poses a problem for applying model checking
technology: if a system is largely underspecified, then there are a large number
of possible behaviours that have to be taken into consideration. This was one
of the reasons for the use of theorem proving facilities in the previous chap-
ters. Nonetheless, we may expect that at least parts of the guideline contain
detailed information, making model checking of those parts a feasible option.
In addition, one may also expect that clinical protocols contain less under-
specification as they are seen as local adaptation of clinical guidelines. The
hypothesis is that protocols therefore also contain more detailed information.
Furthermore, in using a guideline to support the actual medical management,
a detailed model of the care process is needed. In such a situation, we also
expect that the model includes additional knowledge.

One way to look upon a patient and a patient’s disease logically is as a state
machine, i.e., as a system described in terms of states and state transitions in
time. Model checking technology offers methods that allow one to analyse
concurrent systems for their consistency. For this purpose, one can rely on an
extensive collection of tools and techniques readily available. Model checking
is a well-investigated technique for the verification of systems modelled by a
finite transition system. However, model checking has been applied mainly to
technical systems, such as hardware, software-based communication protocols,
concurrent programs, etc. This global view on the representation of disease
process, patient conditions, and disease management actions raises the ques-
tion whether model checking can be used as a basis for checking properties of

101

102 Applying Model Checking to Formal Models of Guidelines

guidelines. It is this question that is being explored in detail in this chapter.
This chapter consists of two parts. In the first part, we concern ourselves

with protocols and how consistency can be checked on the basis of guidelines.
Model checking is employed to actually perform these checks. In the second
part of this chapter, we look at so-called critiquing which aims at spotting and
analysing differences between the proposed actions taken by a medical doctor,
and a set of ‘ideal’ actions as prescribed by the computerised guideline. As
such systems are supposed to be deployed in actual practice, we assume that
the underlying model is relatively complete. Again, this raises the question
how we can use model checking techniques to find these differences.

6.1 Protocol Refinement

In the past, protocol conformance to guidelines has only been looked at from
an informal angle [Marcos et al., 2006]. In this section we address the problem
of protocol conformance to guidelines using formal methods. This is done by
interpreting guidelines as defining (logical) constraints on the medical manage-
ment of patients performed in practice, whereas protocols are interpreted as
more or less executable models. The constraint-based approach of looking at
guidelines was inspired by a statement by Wiersma and Burgers that “recom-
mendations in guidelines should not only be based on evidence extracted from
scientific literature, but take into account the context of daily medical practice
as well” [van Everdingen et al., 2004]. In principle this approach would allow
one to discover flaws or suboptimal management actions in the medical man-
agement in practice, assuming that a given protocol and guideline are correct,
or to find incorrect or suboptimal medical management decisions in a proto-
col or guideline, assuming that the medical management in practice is correct
and optimal. In this chapter, we assume that the guideline augmented with
information from general medical practice is correct and use model checking
techniques to find flaws in the protocol.

6.1.1 Approach

The premise in this work is that clinical practice guidelines and protocols pro-
vide necessary, but not sufficient conditions for making medical decisions. In
particular, the guideline requires interpretation of medical doctors to apply
the advice in practice. Thus, treatments which are acceptable given a strict
interpretation of the protocol, might not be acceptable in practice. For exam-
ple, the Dutch breast cancer guideline (cf. Section 3.2.2) does not exclude the
possibility of informing the patient after treatment about the different treat-
ment possibilities. Clearly, such incompleteness of the guideline or protocol
will not cause problems in practice as the advice is not mechanically followed
by the physician. Hence, differences related to such a (lack of) advice can be
considered irrelevant in practice. This is abstractly represented in Figure 6.1,
which shows several paths of a protocol compared with all paths allowed by

Protocol Refinement 103

acceptable protocols

medical management in practice

guideline constraints

Figure 6.1: Sketch of medical management paths occurring in a protocol.

a guideline and the medical management in practice. In this case, violations
occurring in the dotted line are most interesting, as the violation in the dashed
line will not occur in practice. For example, physicians have been trained to
inform a patient properly and to avoid doing unnecessary tests when a diagno-
sis has been established. As guidelines are not meant as textbooks for teaching
medical students, such common sense medical reasoning is typically ignored in
a guideline.

Thus, the question is whether or not a protocol, restricted to medical man-
agement in practice, conforms to the constraints that the guideline imposes.
The problem of this approach is that this medical management in practice
cannot easily be assessed, because it is based on general and abstract medical
knowledge, which is difficult to articulate and express directly, which makes
it difficult to elicitate and formalise. Therefore, the approach we have taken
in this chapter is that we have formulated a concrete description of treatment
paths that are taken in practice, extracted from a medical textbook. This does
not formalise the general medical practice, but provides a good estimation of
what is usually done in practice for a specific domain. Then, the approach con-
sists of the following steps. Firstly, concrete treatment paths are formulated,
which are known to be part of medical management in practice. Secondly, this
information is weakened up to a point it is consistent with the protocol, i.e.,
we investigate which paths of medical practice are consistent with the proto-
col. Finally, the protocol restricted by medical practice is compared with the
constraints imposed by the guideline.

In other words, the guideline restricted to medical practice, i.e., the in-
tersection of the two ellipses in Figure 6.1, is defined as the gold standard.
Finding a deviation from this gold standard in a protocol might indicate a
problem in the protocol, although it is possible that it only indicates an error
in the medical textbook or guideline. Nonetheless, we believe that such infor-
mation is more valuable to guideline and protocol developers than deviations
which are not even part of common sense medical practice.

104 Applying Model Checking to Formal Models of Guidelines

6.1.2 Medical Management of Breast Cancer

First, we give an informal description on the medical management as stated in
the CBO guideline, the IKO protocol, and the specialised textbook of Roses
[Roses, 2005] that deals with locoregional treatment of operable breast cancer,
i.e., T1-2 N0-1 M0 breast cancer according to the TNM classification system
[Green et al., 2002]. Thereafter, we give formalisations according to the ap-
proach described in the previous section.

6.1.3 Informal Description of Medical Management

According to the CBO guideline there are only two options for local treat-
ment of operable invasive breast cancer: breast-conserving therapy (BCT) or
modified radical mastectomy (MRM). BCT implies ample local excision of the
tumour, an axillary staging procedure, and radiotherapy of the breast. MRM
involves a total resection of the breast (mastectomy) and dissection of the
axillary nodes (AND). The aim of BCT is to achieve a survival rate compa-
rable to that following MRM with an optimal cosmetic result in terms of the
treated breast. BCT is usually the preferred treatment unless the patient has
a clear preference for MRM or there are contra indications for BCT, i.e., there
is either (1) multicentricity (two or more tumour foci in different quadrants),
(2) diffuse malignant microcalcifications, or (3) previous radiotherapy of the
breast. Whereas these three contra indications are obtained before surgery, one
other contra indication for BCT is obtained during surgery, i.e., (4) the mar-
gins of the local excision remain tumour-positive after repeated local excision
attempts. In this case, local excision attempts are unsuccessful in removing
the primary tumour and treatment therefore switches to MRM.

Treatment of the axillary nodes is also part of the treatment of breast can-
cer as the pathologic assessment of axillary lymph nodes remains the most
important prognostic variable for the invasive breast cancer patient. An op-
timal assessment would be achievable by means of a complete axillary node
dissection. However, AND may lead to morbidity, e.g., pain, limited shoul-
der movement, and lymphoedema An alternative for axillary staging is the
sentinel node procedure (SNP), which only dissects the sentinel nodes, i.e.,
those nodes that drain the area of the breast where the primary tumour is
located and thus are most likely to contain metastasis. The SNP is currently
the standard procedure for axillary staging in breast cancer provided that the
contra indications do not hold, where contra indications of SNP are defined
as (1) suspected or proven malignancy in the axillary nodes, (2) tumour >
T2, (3) multiple tumour foci, or (4) potentially disrupted lymph drainage due
to recent axillary surgery or a large biopsy cavity following tumour excision.
When the SNP is not possible, complete axillary node dissection should be
carried out. Furthermore, treatment of the axilla is indicated (i.e., dissection,
radiotherapy) for all forms of lymph node metastasis.1

1 The CBO guideline differs at this point with the IKO protocol as it makes an exception

Protocol Refinement 105

Whereas the CBO guideline and IKO protocol lack many details about
treatment order, [Roses, 2005] provides a much more detailed description. In
addition, according to [Roses, 2005], the sentinel node procedure (SNP) is
started before segmental excision (i.e., used in BCT) or mastectomy. The
sentinel nodes (SNs) are then immediately sent to the pathology lab, where
they are examined during surgery. If the SNs are found to be positive, axillary
dissection can be completed during the primary breast surgery in one setting.
Furthermore, [Roses, 2005] differs with the CBO guideline and IKO protocol in
the case of recurrent tumour positive resection margins in the BCT treatment.
Whereas CBO and IKO recommend to switch the treatment to MRM, which
includes axillary dissection, [Roses, 2005] only recommends a mastectomy with
axillary dissection dependent on sentinel node histopathology.

6.1.4 Formalisation of Medical Management

Here, we introduce the constraint-based representation of the guideline, an
executable model of the protocol, and the model of the medical management
performed in practice.

Constraint-Based Representation of the CBO Guideline

The language we use for atomic propositions consists of medical actions
Actions, medical plans Plans (composite actions), and data structures Data
(patient characteristics):

Actions : {tumour-excision,mastectomy,AND,SNP}
Plans : {TREATMENT,BCT,MRM,AXILLA-STAGING}
Data : {ci-bct,ci-snp,tf, sn, itc}

with ci-bct,ci-snp ∈ {⊤,⊥} (true, false) denoting the contra indications for
BCT and SNP respectively, sn ∈ {unknown, neg, pos} denotes whether there
is a metastasis found in the lymph nodes after performing the SN procedure,
tf ∈ {unknown,⊤,⊥} denotes whether the re-section margins are tumour
free, and itc ∈ {unknown,⊤,⊥} denotes whether the tumour cells are isolated
when the sentinel node is found positive. In formulas, we write the variable
name if it is meant that the variable is equal to ⊤, and the negated variable
name is used to denote the respective variable is equal to ⊥. As the guideline
does not refer to a variable as if it were unknown, apparently assuming that
appropriate diagnostic tests have been performed, this value is not used in the
formulas. An action or a plan is true the moment it is started, e.g., activated
according to the Asbru semantics (cf. Section 5.3). The final representation
in temporal logic of the medical management in the CBO guideline is shown
in Figure 6.2.

for isolated tumour cells.

106 Applying Model Checking to Formal Models of Guidelines

Constraints related to control structure
(1) AG(TREATMENT → AF(BCT ∨ MRM))
(2) AG(ci-bct → ¬BCT)
(3) AG(BCT → AF(AXILLA-STAGING ∨ MRM) ∧ AF tumour-excision)
(4) AG(MRM → AF AND ∧ AF mastectomy)
(5) AG(AXILLA-STAGING → AF (AND ∨ SNP))
(6) AG(ci-snp → ¬SNP)
(7) AG(tumour-excision → ((¬tf → AF MRM) ∧ (tf → AG ¬MRM))
(8) AG(SNP → (sn = pos ∧ ¬itc → AF AND))
(9) AG((AG¬MRM) → AG(SNP → AG(itc → AG¬AND)))

Figure 6.2: Constraint-based representation of the CBO guideline. BCT =
breast conserving treatment, MRM = modified radical mastectomy, ci-bct =
contra indications for BCT, sn = result of sentinel node procedure, ci-snp =
contra indications for SNP, tf = tumour free resection margins.

Some constraints given by the guideline are not easily expressible in tempo-
ral logic as other modalities than treatment order are involved. For example,
the preference for BCT over MRM and the preference for the SNP over axillary
dissection for staging the axilla. Furthermore, certain assumptions regarding
the patient data are implicit in the guideline. For example, the status of the
resection margins (tumour free (tf) or not (¬tf)) becomes known after tu-
mour excision and the existence of metastasis (sn=pos or sn=neg) becomes
known after the SNP. Here we have chosen not to consider these more implicit
constraints, as they are not directly related to the recommendations given in
the guideline.

Asbru Representation of the IKO Protocol

To transform the IKO protocol into a more or less executable model, which can
be verified with respect to the constraints set by the CBO guideline, we have
chosen to use the guideline representation language Asbru [Shahar et al., 1998]
as intermediate representation. We use Asbru, because its semantics has been
defined precisely in previous research [Balser et al., 2002a] and can be trans-
lated automatically into SMV [McMillan, 1993] for model checking purposes
[Bäumler et al., 2006]. An example fragment of this SMV model can be con-
sulted in Appendix B.3.

The Asbru model constructed (Figure 6.3) consists of nine plans ordered in
a hierarchy. Arrows indicate sequentially executed sub-plans, dashed lines un-
ordered executed sub-plans. The latter is in particular used when the protocol
lacks any information about treatment order, e.g., MRM with sub-plans AND and
mastectomy. The top level plan treatment first executes BCT unless there
are contra indications (filter condition). If BCT successfully completes, so will
treatment (wait-for condition), else MRM will be executed. The execution of

Protocol Refinement 107

BCT surgery

mastectomy

treatment

BCT

excision
tumour

MRM

manual activation

axillary staging

manual activation

abort: SN=positive

SNP

wait−for BCT or MRM

wait−for axillary staging and tumour excision

wait−for BCT surgery or MRM

AND

wait−for SNP or AND

filter: not CI−BCT

filter: not CI−SNP

abort: not TF

Figure 6.3: Asbru interpretation of the IKO protocol. Arrows represent se-
quential plans, dashed lines represent unordered sub-plans.

BCT surgery and MRM by BCT is analogous. BCT surgery may execute its
sub-plans in any order. To allow for a particular order we use a manual activa-
tion which we assume to occur eventually. The SNP and tumour excision
may abort (abort condition) in case of positive SNs or not tumour free re-
section margins respectively, which is then propagated up the hierarchy, re-
sulting in BCT executing MRM. (cf. Section 5.3 and [Balser et al., 2002a] for
details about the Asbru semantics.)

In the SMV model, which is automatically constructed from the Asbru
model, most variables dealing with patient data are initialised as unknown
and receive an non-deterministic value in the second step to make sure there is
only one root of the model. Furthermore, we assume that they do not change
during the treatment. The only variables that are initialised at a later stage
are the status of the sentinel node, which becomes known during the SNP
and whether or not the re-section margins are tumour free, which becomes
known after excising the tumour. Furthermore, fairness constraints have been
added to ensure that the manual activation of both the axillary staging and
the tumour excision eventually occurs. In other words, the patient will not
wait indefinitely for the treatments to start.

Decision Tree of Medical Management in Practice

Information from [Roses, 2005] can be represented in a decision tree as shown
in Figure 6.4, which deals with the ordering of medical actions treating the

108 Applying Model Checking to Formal Models of Guidelines

(path 2)

(path 1)BCT

MRM

BCT+AND

MRM

TF

¬TF

¬TF

(path 3)

(path 4)

(path 6)

(path 7)

excision

tumour
excision

excision

¬ ci-bct∧ ci-snp

¬ ci-bct∧¬ ci-snp

T1-2,N0-1,M0

ci-bct

SN=neg

MRM

tumour

(path 5)

mastectomy

BCT+ANDTF

¬TF

TF

tumour

SN=pos

SNP

Figure 6.4: Background knowledge: possible treatment paths for surgery of
operable invasive breast cancer. CI-BCT = contra indications BCT, CI-SNP =
contra indications SNP, TF = tumour free resection margins, AND = axillary
node dissection.

primary tumour (BCT and MRM) and the axilla (SNP and/or AND).2 Nodes
represent medical actions or plans, arcs represent constraints. A path from the
root node to a leaf node represents a treatment path, which defines the order
of medical actions when the constraints on the path are satisfied. Leaf nodes
labelled with BCT or MRM denotes the summary of the medical strategy
followed in that treatment path.

The formal interpretation of this decision tree is two-fold. First, we can give
a CTL characterisation of these paths in terms of an existential path operator,
which allows us to verify whether each of these paths exists in the protocol.
This set of formulas is denoted by ∆. Each action that occurs in the decision
tree has been interpreted as a plan activation in the execution of the Asbru
model, although the technical details of this have been omitted here for clarity.
The first two paths are described as follows:

(1) EX(¬ci-bct∧¬ci-snp∧
EF(SNP∧ sn = neg ∧

EF(tumour-excision∧tf∧
AG(¬mastectomy∧¬AND))))

(2) EX(¬ci-bct∧¬ci-snp∧
EF(SNP∧ sn = neg ∧

EF(tumour-excision∧¬tf∧
EF(mastectomy)∧AG(¬AND))))

2 In this section, we abstract from radiotherapy and isolated tumour cells.

Protocol Refinement 109

On the other hand, we may view the decision tree as a number of constraints
on medical management in practice. To this end, we extract a number of
assumptions from the decision tree about the normal implementation of the
advice given in the protocol. It is quite obvious that it can be guaranteed that
such statements are sound with respect to the decision tree. In this case study,
we consider the following LTL assumptions referred to by Γ.

(1) (¬ci-bct∧¬ci-snp) ↔ F SNP
(2) (F SNP) → ((¬tumour-excision U SNP)∧F tumour-excision)
(3) ((F sn = neg)∧ (F tf)) → (¬(F AND)∧¬(F MRM))
(4) ((F sn = neg)∧ (F ¬tf)) → ((F mastectomy)∧¬F AND)
(5) ((F sn = pos)∧ (F tf)) → ((F AND)∧¬(F MRM))
(6) ((F sn = pos)∧ (F ¬tf)) → F MRM

(7) (ci-bct → (¬(F tumour-excision)∧F MRM))
(8) (¬ci-bct∧ci-snp) → F tumour-excision
(9) (¬ci-bct∧ci-snp∧ (F tf)) → ((F AND)∧¬(F MRM))

(10) (¬ci-bct∧ci-snp∧ (F ¬tf)) → F MRM

Assumption (1) and (2) deals with the use of sentinel node procedure and the
order between this and the excision of the tumour. Assumptions (3) to (6) are
concerned with paths (1) to (4). Assumption (7) deals with path (5). Finally
assumptions (8) and (9) deals with path (6) and (7).

6.1.5 Model Checking Results

As explained in Section 6.1.3, the medical management stated by the IKO pro-
tocol is less precise than the medical management performed in practice. Typ-
ically, one would expect the medical management in the protocol to be under-
constrained when compared to the medical management in practice. With the
Cadence SMV model checker we were able to verify that all paths described
by ∆, except (2), can occur in the IKO protocol. Path (2) does not hold
in the IKO protocol because it recommends a MRM whereas [Roses, 2005]
recommends a mastectomy, i.e., axillary dissection is included in the medical
management according to the protocol, but not according to [Roses, 2005].
The guideline does not provide specific evidence related to this advice, which
suggests that both possibilities are acceptable. Nonetheless, such differences
could be discussed with medical experts to find out whether the protocol or
textbook is incomplete or incorrect.

Because treatment path (2) from the medical textbook is not part of the
protocol, it follows that sentence (4) of Γ can not be coherent with the model
(i.e., from (4) it follows the antecedent of (4) is false), so in this form it is not
usable. We could therefore either adapt the assumption so that it corresponds
to the guideline or omit it. Here, we have omitted it. Let Γ′ be Γ without
(4), then we verify each guideline constraint ϕ by model checking the mod-
ular statement (cf. Section 2.3.2) [Γ′]M〈ϕ〉 using SMV on the Asbru model

110 Applying Model Checking to Formal Models of Guidelines

of the IKO protocol. This shows that constraint (9) does not hold in the As-
bru model of the IKO protocol, indicating a difference between protocol and
guideline with respect to medical management in practice. The reason for this
difference can be tracked back to preliminary evidence stated in the guideline,
which has a low certainty degree, i.e., a low level of evidence. Although, in this
case the difference between protocol and guideline is clear and could also have
more easily been found through an informal analysis, this is largely because the
protocol and guideline have a very similar structure and their recommenda-
tions are almost identical. However, the approach taken is independent of the
underlying structure of the protocol and guideline. Therefore, this case study
shows that formal techniques can be used to compare guideline and protocol
independent of their underlying document structure.

The resources to check that paths from the decision tree exists were min-
imal. The number of nodes in the binary decision diagram (BDD) was only
100,000, and terminated within 3 seconds on a modern pc. The number of
BDD nodes allocated for checking that the protocol conforms with the guide-
line was 250,000, and time spent on the verification of all the constraints took
175 seconds. While it is to be expected that more resources will be needed
for larger case-studies, we have not used advanced techniques such as bounded
model checking, variable ordering, or proof decomposition to reduce the com-
putational complexity.

6.1.6 Discussion

The aim of this work was to use formal methods for obtaining insight into
the differences and similarities between guidelines and protocols, based on the
assumption that protocols should be looked upon as local modifications of
guidelines. In the work presented in this section, the view was taken that clin-
ical guidelines and protocols usually only specify necessary but not sufficient
constraints on medical management.

In our study we have set up a modular model checking approach for check-
ing the conformance of a protocol to the guideline from which it has been
adapted. In this approach, clinical guidelines and protocols are considered to
be constraints on medical management. Medical guidelines are representable as
temporal logic formulas whereas protocols are interpretable as executable mod-
els. Furthermore, medical management as used in practice was used as addi-
tional background knowledge for restricting the guideline and protocol thereby
rejecting treatment paths which are illogical for medical management in prac-
tice. In this chapter we have applied the modular model checking approach
to the CBO breast cancer guideline, the IKO protocol, and used [Roses, 2005]
for additional background knowledge. We have shown that with this approach
interesting differences between guidelines and protocols with respect to back-
ground knowledge can be obtained. These differences can then be communi-
cated to healthcare professionals for further clarification. In our case, one of
the medical oncologists responsible for the IKO protocol confirmed that some

Critiquing 111

differences found could be traced back to low levels of evidence, suggesting
that such differences may be ignored.

The research presented in this chapter is a novel approach in locating dif-
ferences between protocols and guidelines giving a promising starting point
for further investigating the relations between guidelines, protocols, and med-
ical management in practice. Some questions still remain for further research.
Firstly, a limitation of this research is that it was only based on one reference
protocol on breast cancer treatment, selected at the start of this research. A
second protocol for this type of breast cancer by the NKI (the Netherlands
Cancer Institute) is available; however, this protocol is very different from the
first IKO protocol and the guideline, resulting in other challenges than those
discussed in this chapter. Secondly, a question that emerged during the course
of our research was whether the level of evidence as indicated by the oncologist
can be incorporated in our approach as differences based on low levels of evi-
dence can be ignored. Thirdly, formally obtaining differences between protocol
and guideline may be useful for protocol designers. In this research, we have
only been able to find end point protocols; as a consequence, the transforma-
tion process could only be described as consisting of a single step, which in
reality may be a more iterative process.

6.2 Critiquing

As a second application area for the use of model checking formal models of
clinical guidelines or protocols, we focus on spotting and analysing differences
between the proposed actions taken by a medical doctor, and a set of, ‘ideal’
actions as prescribed by the computerised guideline, which is called critiquing.

Model checking takes domain knowledge, called a system description, and
sequences of actions as input. In this case, a formalised guideline is taken as a
system description; the actions that have been performed on a specific patient
are represented as a temporal formula. Model checking then involves investi-
gating the consistency of the formalised guideline and actual treatment. The
exploration of the use of model checking in the analysis of medical knowledge
(guidelines and patient data) with the purpose of critiquing, is the innovative
part of this work.

6.2.1 Approach

The common feature of a critiquing system is that the user of the system
provides as input (1) a problem description (e.g., patient symptoms), and (2)
a proposed solution (e.g., a treatment plan). This second input is what dis-
tinguishes critiquing systems from the more traditional expert systems, which
only take a problem description as input [Silverman, 1992, Gertner, 1995]. The
second input to a critiquing system, i.e., a proposed solution, is typically the
output of an expert system.

112 Applying Model Checking to Formal Models of Guidelines

(1) patient data

(2) treatment plan

model

checker

(1)+(2)
Compliant?

inspect subsets of actions, or

relax ordering constraints

produce

critique

no new

formula

yes

critiqueguideline

model

electronic

patient record

no

new

formula

Figure 6.5: Critiquing approach using model checking. Given patient data and
a treatment plan as input (temporal specifications), the critiquing system uses
a model checker to verify consistency with respect to a guideline model (state
transition system) to generate a critique (empty in case of compliance).

In our approach of critiquing medical treatment plans using model checking,
the input to the system consists of patient data and a treatment plan (cf.
Figure 6.5). Patient data consists of patient symptoms and test outcomes
measured for the patient, whereas the treatment plan consists of all actions
(to be) performed by the practitioner. As the critiquing process is difficult to
accept by practitioners when they are continually interrupted to provide input
to the system, both patient data and treatment plan are typically provided
by electronic records. We will assume that these are given to the system as
temporal logic formulas.

The critiquing system uses the patient data and treatment plan as spec-
ifications that need to be checked against a formal model of the guideline,
i.e., a state transition system. When the specifications are consistent with the
guideline model, no critique needs to be generated as the proposed treatment
plan conforms with the guideline. In case an inconsistency is found between
the specification and the guideline model, the specification is weakened to get
insight to which extent the treatment plan is consistent with the guideline.
There are two possible reasons for the incompatibility:

Non-compliant order: It is possible that each of the actions in the treatment
plan can be applied to this patient, but only in a different order than the
treatment plan proposes. This can be established by removing the order
between some of the actions in the treatment plan.

Non-compliant actions: Another possibility is that, according to the guide-
line, some of the actions cannot be prescribed at all for the patient in
question. This can be investigated by considering a subset of the actions
in the treatment plan.

The approaches can be combined and lead to further insight into the nature of
the detected inconsistency allowing the system to exploit these insights into a
critique, which is then given to the practitioner.

Critiquing 113

6.2.2 Temporal Logic and Critiquing

Each path in the state transition system can be considered a patient who is
given a treatment that is consistent with the recommendation described by
the guideline. Global properties of the guideline can be checked using LTL
formulas or CTL formulas starting with A, for example, ‘AF radio-therapy’,
denotes that in each possible treatment, somewhere in the future radio-therapy
is applied.

In the context of critiquing, CTL properties always start with an E, i.e.,
it is established that some treatment path exists in the guideline where the
proposed treatment is described. For example, abstracting from the patient,
a treatment given by a sequence of actions α1, α2, . . . can then be represented
as:

EF(α1 ∧ EXEF (α2 ∧ EXEF (. . .))) (6.1)

i.e., in some treatment α1 is done, and after that α2, etc. In general, CTL
model checking is more efficient than LTL model checking, however, in case
we do not know the order between the actions, a CTL formula consists of a
disjunction of each possible order of actions and considers the existence of each
order. In case of n actions, with all order unknown, this leads to formulas of
size O(n × 2n). Similarly, when global properties of the treatment path are
introduced, for example the state of the patient or the fact that some action
never occurs, such knowledge becomes difficult to express. Assume for example
a global property described by β, then Formula (6.1) must be rephrased to the
rather complicated formula:

E(βU (α1 ∧ β ∧ EXE(βU (α2 ∧ β ∧ EXE(. . . ∧ EGβ))))) (6.2)

i.e., β holds until at some point α1 and β (still) holds, after which β holds, etc.

Usually, the knowledge is reasonably complete and the global information
is sparse, however, for a more succinct representation we can either use a more
expressive logic such as CTL∗ (cf. Section 2.1.1) or consider LTL model check-
ing. In the latter approach, one possibility is again modular model checking
(cf. Section 2.3.2), where the model is restricted using an LTL formula to
those traces where the formula is valid. Thus, to prove the existence of a
treatment in this approach, it is required to verify that the model restricted
to a specification of a certain patient and treatment is not empty. Let ϕ be an
LTL formula and [ϕ]M〈⊥〉 denote that the set of LTL assertions ϕ leads to an
empty model, i.e., ϕ describes a trace not present in the model. In contrast,
if [ϕ]M〈⊥〉 is shown to be false, then M can not be empty when restricted to
ϕ proving that the trace described by ϕ exists in the model M . Formula (6.2)
can thus be verified by showing that

[Gβ ∧ F(α1XF(α2 ∧ . . .))]M〈⊥〉 (6.3)

114 Applying Model Checking to Formal Models of Guidelines

is false, i.e., there is no such trace where always β holds and at some point
α1 is followed by α2. An additional benefit of this presentation is that when
order information is absent, the property is typically more intuitively specified.
Nonetheless, when there are few actions involved and much of the order infor-
mation is present, CTL formulas are expected to be more efficient to verify.

6.2.3 Application of the Methodology

Design and choice of case studies

The clinical guideline used is the Dutch breast cancer guideline (cf. Sec-
tion 3.2.2). The models used here were developed as part of the Protocure
project, and is somewhat more elaborate than the model of the protocol as
used in Section 6.1. Patient data were obtained from the Dutch Comprehen-
sive Cancer Centre South (CCC), a registry in the Netherlands used for cancer
research, planning of services, and evaluation and implementation of guide-
lines. The data collected concerns breast cancer patients treated in the period
January 2003 - June 2004, when the guideline was applicable, and therefore
suitable for compliance checks with the guideline. Each patient record consists
of 269 variables, which includes information about the diagnosis and treatment.

The patient data from the registry could, in principle, directly be used for
critiquing with respect to the guideline. However, matching such data records
to the terminology of the guideline is hard [Marcos et al., 2001] and differs
from the course commonly followed in medicine. In medical literature, specific
patient cases, called casuistics, are frequently discussed in detail to gain insight
into the way the patient’s disease was managed. These papers follow a long
standing tradition and are seen as part of the ‘education permanente’ of the
medical profession. Critiquing in this chapter was therefore done casuistically
by having the CCC patient data interpreted by medical experts who provided
a direct mapping from the patient data in the registry to the guideline. Sec-
tion 6.2.3 presents in more detail a case-study in critiquing using the casuistic
interpretation of the CCC data.

A second case-study is presented in Section 6.2.3, which was obtained from
the New South Wales Breast Cancer Institute, Australia.3 These studies have
been developed from the casuistic point of view to “allow clinicians, healthcare
professionals and members of the public to examine and understand some of
the controversial and difficult aspects of breast cancer management”. They are
therefore more detailed than the patient data collected by the registry and are
more suitable for an investigation of critiquing from a clinical point of view.

Case study 1: ductal carcinoma in situ

The steps of critiquing on one specific patient derived from the data, and sub-
sequently interpreted by medical experts, is illustrated here. The diagnosis

3 http://www.bci.org.au/medical/caseindex.htm

Critiquing 115

Medical condition: 79 years-old woman. Lesion
of right breast: carcinoma in-situ with size between
1 and 2 cm. Two lymph nodes investigated and
none positive.
Treatment: sentinel node biopsy + breast-
conserving surgery without axillary clearance.

Figure 6.6: Description of patient in conjunction with the prescribed treat-
ment.

and treatment is summarised in Figure 6.6. It can be said that this is a rather
typical patient as it is a patient with one of the most frequent diagnoses in
the data records. The following property describes the treatment sequence
that our example patient has undergone. “For a patient with diagnosis Duc-
tal Carcinoma In Situ (DCIS), the following sequence of states is possible: the
treatment starts, then axillary staging by sentinel node is activated, after which
breast conserving therapy is activated”. To specify and then verify that breast
conserving therapy (denoted bct) can take place after axillary staging by sen-
tinel node procedure (denoted asbSN), the following CTL formula is used:

EF(DCIS ∧ EXEF(asbSN ∧ EXEF bct))

A more strict formula could be obtained by assuming that the diagnosis DCIS,
holds up to the moment of breast conserving therapy. However, this property
stated above turns out to be false as it is, i.e., this treatment is non-compliant
with respect to the guideline. In other words, according to the model of the
guideline describing the treatment of DCIS, the sequence of actions performed
by the doctor is incorrect for this patient. It could also be explained by the
fact that, according to the model, at least one of the two actions in patient
treatment should not be started, or they should be started in a different se-
quence. To identify this inconsistency, we reduce the actions that are being
performed. If we reduce the sequence to only one action, then both actions
are found possible, as shown by the following property (corresponding to the
case when only ‘bct’ is activated as part of the DCIS treatment):

EF(DCIS ∧ EXEFbct)

The new conclusion is that under these circumstances the two actions cannot
be activated in this sequence, or the ordering should be reversed.

In the experiment on the seven fairly prototypical patient-cases that can
be found in the Dutch CCC data-set, some deviation was found between the
guideline and each of the seven prototypical cases. Interestingly, for three of
these, some differences could indeed be explained by looking at the new 2004
revision of the guideline. For example, the model of the 2004 guideline con-

116 Applying Model Checking to Formal Models of Guidelines

tained necessary references to chemotherapy for certain patients as described
by the data [Serban et al., 2006].

Case study 2: infiltrating ductal carcinoma

For the second case study we have more elaborate information available. It
concerns a patient who is a female with a lump in the 3 o’clock position of
the right breast and a second lump just above this. No palpable axillary
nodes or other abnormalities were found. The mammography revealed no
focal mass, grouped microcalcifications, or anatomic distortion. Finally, the
histopathology showed two lesions: both infiltrating duct carcinoma, 20mm
in size, and with similar morphology. The sentinel nodes were mapped using
lymphoscintigraphy and a biopsy was taken of a right axillary lymph node and
an internal mammary node (the sentinel node procedure). In the right axillary
lymph node, no malignancy was found. However, in the internal mammary
node, metastatic carcinoma was identified. The treatment consisted of a total
mastectomy of the right breast with immediate reconstruction. The axilla was
treated by means of an axillary clearance and re-section of two further internal
mammary nodes at higher levels (these were sampled partly because of the
original pathology finding and partly because of ready access to the IMC).

The vocabulary of the guideline does not include the term ‘infiltrating duc-
tal carcinoma’, but rather discusses ‘operable invasive breast cancer’ (OIBC).
According to the guideline, operable invasive breast cancer is defined as T1-2
N0-1 M0, i.e., a tumour smaller than 5cm, with maximally one lymph node
positive, and no distant metastasis. On basis of information provided by the
diagnostic tests, the patient can be considered part of this patient group. Each
of the three interventions (sentinel node procedure, mastectomy, and axillary
clearance) can be mapped to terms found in the guideline. This can be done
with reasonable confidence, however, some details have to be ignored such as
the re-section of the internal mammary nodes as part of the axillary clear-
ance, as this part of the treatment is not mentioned in the guideline. With
respect to the order between interventions, it is only clear that the sentinel
node procedure (asbSN) is performed before the other two interventions.

The treatment can again be critiqued using a CTL proof obligation, but as
some of the information is missing here, we illustrate critiquing using modular
model checking. The proof obligation is then described by [ϕ]M〈⊥〉 where

ϕ = GOIBC ∧ F (asbSN ∧ X(F axillary-clearance ∧ Fmastectomy))

The proof obligation [ϕ]M〈⊥〉 is true, showing that this combination of inter-
ventions is not possible (cf. Section 6.2.2). The reason for this can be further
analysed by removing one of the order constraints between the two actions
yielding:

ϕ′ = GOIBC ∧ F asbSN ∧ F axillary-clearance ∧ Fmastectomy

Critiquing 117

As [ϕ′]M〈⊥〉 is true, the formula ϕ′ is further weakened by removing one of the
interventions from the conjunct, i.e., removing one of the three interventions
provides a new proof obligation. The results of model checking these proof
obligations show that the guideline model does not contain a trace with both
a sentinel node procedure and axillary clearance for this patient, while all
other combinations appear to be possible. Thus, the conclusion is that the
combination of actions that are being prescribed is non-compliant with respect
to the guideline.

6.2.4 Related Work

The use of the term critiquing to describe a system that criticises the solution
provided by a human can be attributed to Miller [Miller, 1984], who devel-
oped his ATTENDING system for critiquing anaesthesia management. Al-
though critiquing has first been used for evaluating medical treatment plans,
since then it has been applied to a wide variety of problems such as engi-
neering design, decision making, word processing, knowledge base acquisi-
tion, and software engineering [Silverman, 1992]. At the end of the 1990s,
when several guideline representation languages were introduced, critiquing
using guidelines became a topic of interest, e.g., the approach of Shahar et
al. [Shahar et al., 1997]. In contrast with previous work, in this approach the
patient states are considered for critiquing, besides the physician’s actions.
Advani et al. [Advani et al., 1998] argued that a critiquing system should
adjust its critique for cases when the physician’s actions are following the
spirit and overall goals or intentions of the guideline designers, even though
the actions deviate from the guideline. However, in [Marcos et al., 2001], a
case study showed that intentions of the protocol are often implicit and more-
over, the intentions reported by experts almost always differ, which makes it
hard to model. Recently, there was some progress to overcome this difficulty
[Sips et al., 2006], which might be interesting to integrate in our proposed
methodology.

6.2.5 Discussion

The main conclusion of this work is that it is, in principle, possible to use
model checking on formalised models in order to critique medical guidelines
against patient data. We have shown how critiquing can be characterised in
temporal logic and have applied this to a case study on the treatment of breast
cancer. The strong aspect of this technology is the high degree of automation,
making it suitable for deployment in a critiquing system.

Model checking provides additional value to a simulation-based critiquing
of an operational version of the guideline. Such critiquing based on running the
operational guideline model through an interpreter only checks the consistency
of a patient record against a single trace through the guideline (namely, the one
chosen by the interpreter), while model checking compares the patient record

118 Applying Model Checking to Formal Models of Guidelines

against all possible traces through the guideline. This difference is crucial
when the guideline is underspecified, which is usually the case, and therefore
contains non-deterministic choices between treatments.

The fully automated nature of model checking also brings a weakness with
it: model checking only detects inconsistencies, but does not contribute to the
interpretation of the inconsistency. In general, model checking can construct
a counter-example illustrating the inconsistency, which is often a very good
guide towards tracing its source. However, this only works when model check-
ing global properties, i.e., properties dealing with all possible treatment paths,
while in Section 6.2.2 we argue that critiquing deals with formulas that estab-
lish the existence of an individual treatment, thereby making it impossible for
the model checker to generate a counter-example. In this chapter, we have
proposed some general strategies to deal with this (repeated experiments with
weaker specifications by relaxing order constraints and by removing actions).

A general conclusion with respect to the breast cancer case study that can
be drawn is that a closer correspondence is needed between the processes of
guideline construction and data-collection. In fact, this is currently already
being partially implemented by the Dutch Institute of Healthcare Improve-
ment: newly constructed guidelines are currently being equipped with a data-
collection dictionary, which will ensure the correspondence between collected
data and guideline terminology.

Even though the steps in the analysis of the case studies was done manu-
ally, it is not difficult to see how to automate this process since the temporal
formulas could be generated mechanically. A more challenging question is
how to use the result of this process for the construction of a human readable
critique. In evidence-based guidelines, explanation and references are often
provided, however, formal models of guidelines often abstract from this infor-
mation making it difficult to provide elaborate information to the practitioner.
This is an interesting topic for future research.

6.3 Conclusions

General conclusions with respect to model checking in context of clinical guide-
lines are speculative due to its preliminary state of research. What is shown in
this chapter is that in certain circumstances, when there is sufficient knowledge
available about the possible courses of treatment, model checking is a feasi-
ble technique. Moreover, [Bäumler et al., 2006] showed that, when focusing
on a single chapter of the breast cancer treatment, it is often possible to do
model checking automatically. For some chapters, however, model checking
was problematic though it may be different for other clinical guidelines. While
further empirical research could shed more light on this issues, modelling a
single guideline takes many man-months. Moreover, the nature of a guideline
highly depends on the guideline development method, making results of one
guideline development organisation difficult to compare to others.

Chapter 7
Language Fragments for Guideline
Formalisation

The results obtained in the previous chapters have offered motivation for the
further investigation of the use of logical languages for guideline formalisation.
In this chapter, we zoom in on two aspects of clinical guidelines and these are
then studied in some detail from a formal, logical point of view. To start, we
reconsider some of the reasons why we thought the alternative methods to be
worth studying.

In Chapter 5, use was made of the task-network paradigm for modelling
clinical guidelines. The task-network languages are mainly developed to ex-
ecute guidelines and therefore either lack formal semantics or the formal se-
mantics is extremely intricate [Schmitt et al., 2006b]. Furthermore, guidelines
often lack sufficient detail, which makes the idea of describing guideline as
tasks and, thus, in terms of task decomposition, less suitable. A third reason
for looking at alternative methods for the formalisation of guidelines is abstrac-
tion. For the successful application of these formal methods it is necessary to
describe a guideline at an appropriate level of abstraction, which is difficult to
accomplish in task-based networks. In Chapter 4, we employ standard tempo-
ral logic in order to reach this goal; however, on further reflection, the question
is raised if a more specialised language would not be more appropriate for this
purpose.

Many textbooks on logic are reductionist in nature as they provide the
bare minimum of concepts in order to represent all what is part of the logic.
For example, in temporal logic, the ‘until’ operator may be used to define
many of the standard operators such as ‘always’ and ‘eventually’. However, in
order to represent knowledge, languages which only provide primitive operators
have little practical value as a richer language may make modelling easier.
Therefore, the aim of this chapter is not to introduce a new ‘minimal’ type of
logic. Instead, the aim is to provide a number of ontological considerations with

119

120 Language Fragments for Guideline Formalisation

respect to the formalisation of guidelines. The aim is then to provide ways to
formally represent certain phenomena which point out the underlying notions
of guidelines. The great variety in knowledge that is present in guidelines
makes it impossible to do this in full generality. Task-network languages, such
as Asbru and PROforma, focus on the management of the guideline, whereas,
other important types of knowledge are ignored. The results of Chapters 4
and 5 show that this cannot always be justified when checking the quality of
a guideline.

First, we propose a simple language defined in terms of set theory for
guideline formalisation, inspired by the insights provided by our analysis of the
development of clinical guidelines summarised in Chapter 3. Then, we study
how a logical language can used to accomplish similar goals and compare the
result to the former language. Second, we study a natural interpretation of
clinical guidelines as a sort of action planning, where execution of one action
may be a consequence of failure to succeed of another. It appears that the
concept of failure, as used in exception handling in programming languages,
offers this natural interpretation. It is, subsequently, formalised as a first-class
citizen of a temporal logic.

7.1 A History-based Formalisation of Medical Guidelines

We further elaborate on the analysis given in Section 3.3. Additional examples
to motivate the formalisation are provided in the text.

To be able to verify quality criteria of clinical guidelines using formal meth-
ods, we need to have a language that can be used to express quality criteria
that can be related to the key elements in a guideline. In this thesis, it was
stated several times that the key elements in clinical guidelines are (at least)
order in time, patients, and interventions. Here, we discuss our choices for
a language for the formal representation of those key elements, used in the
remainder of the section. These elements may be particularly useful in the de-
velopment of a guideline and allows comparing the available evidence against
recommendations given to physicians.

7.1.1 Histories

A clinical guideline contains descriptions of processes concerning the disease,
medical management and recommendations. Typical elements in the descrip-
tion of a patient are symptoms, signs and other observable elements. Because
many of these elements are unknown and often irrelevant we have chosen to
define the state space as a many-sorted first-order logic including equality; the
set of all well-formed expressions in this logic is denoted by State, as basically
we use the logic to describe the state of the patient (group) under consider-
ation at a particular time point. Note that the word ‘state’ is not used here
in a technical sense (i.e., a complete description of the patient). Instead, the

A History-based Formalisation of Medical Guidelines 121

state refers to a description of the patient that can be found in, e.g., a patient
record.

Let there be a structure A consisting of a domain for every sort σ and an
interpretation I of every constant cσ of a given sort to the domain of this sort
such that I(cσi) 6= I(cσ

′

j) if i 6= j, i.e., we assume unique names. Let State be a
language built up inductively consisting of terms and propositional connectives
in the usual manner such that elements of State can be interpreted on the
structure. For example, ‘temperature = 37 ∨ systolic-blood-presure = 120’ is
a typical element of State.

Interventions include all kinds of medical actions that influence the con-
dition of a patient or the environment of that patient. We formalise this as
a countable set of interventions Interventions. The interpretation of a set of
interventions I ⊆ Interventions is that the interventions in I occur in parallel.
For example, the use of a number of drugs during a longer period of time.

Unlike for states, we assume a closed-world assumption for the interven-
tions: if it is described that a patient received a treatment I and there is an i
s.t. i 6∈ I, then i was not applied. This corresponds to the use of medical files,
where a medical doctor does not expect an exhaustive description of a patient,
but if the medical record does not list a certain treatment, then it is assumed,
by default, that this treatment has not been administered to this patient.

Let ℘(X) denote the powerset of X and let [V → W] denote the function
space of functions f : V →W . We then define a history as follows:

Definition 7.1. A history is defined as an element of the set History such that:

History = [Time → ((State × ℘(Intervention)) ∪ {ǫ})]

such that Time is a totally ordered set and ǫ has the interpretation ‘undefined’.

The assumption that Time is totally ordered is not strictly necessary,
though it is convenient in upcoming paragraphs. Note that these elements
of Time do not express anything about the absolute difference between the
time points. So the distance between t0 and t1 is not necessarily the same
distance as the distance between t1 and t2. We denote the total order as ≺
and as a convention, it holds that ti ≺ tj , whenever i < j. In addition to being
imprecise about certain patients it also allows us to ‘instantiate’ patients of a
certain patient-group by adding patient-specific information to this history.

Consider the following example from the CBO breast cancer guideline (cf.
Section 3.2.2) :

After a mastectomy or breast-conserving treatment, there is an
increased risk of movement problems, impaired sensation, pain, and
lymphoedema. Adjuvant radiotherapy increases the risk of limited
movement of the shoulder and of lymphoedema. Physiotherapeutic
intervention can have a positive effect on the recovery of mobility
and functionality of the shoulder joint. Early initiation of intensive

122 Language Fragments for Guideline Formalisation

remedial therapy (in other words, during the first postoperative
week) has an unfavourable effect on the wound drainage volume
and duration.

There are several possible ways to formalise this excerpt depending on the focus
of the modeller. One possibility is to pick some patient-group, for example the
patient-group which receives physiotherapy too early after the mastectomy.
Then, a lymphoedema develops resulting in high drainage, i.e.,

{(t0,breast cancer,∅), (t1,breast cancer, {mastectomy}),
(t2, lymphoedema, {physiotherapy}), (t3,high drainage,∅)}

7.1.2 Expectations

When dealing with guidelines, we are concerned with the dynamic aspect,
for example, the description of how a history is expected to continue. As a
consequence, this means that the history is extended with new information. A
typical example is an expectation of a treatment, i.e., the expected effects of a
treatment. First, some notation is introduced: let dom(h) denote the domain
of the function h, i.e., {t ∈ Time | h(t) 6= ǫ}, and max and min the maximum
and minimum, respectively, of a set S that is totally ordered. Note that if a
minimum or maximum does not exist then their maximum and minimum are
undefined.

Definition 7.2. Given a history h, then (1) maxt(h) = max(dom(h)), (2)
mint(h) = min(dom(h)).

Note that we assumed that the time is totally ordered, so there is at most
one minimum and maximum, and otherwise they are undefined.

Definition 7.3. Given a history h and h′ then h′ is an extension of h iff (1)
dom(h) ⊆ dom(h′) and (2) for all t ∈ Time: h(t) 6= ǫ implies h(t) = h′(t).
The extension is strict if h 6= h′.

Definition 7.4. The projection of a history h to two elements t, t′ ∈ Time,
denoted as 〈h〉(t,t′), is defined as the history h′ such that: (1) dom(h′) ⊆
dom(h), (2) for all t ∈ Time: h(t) 6= ǫ implies h(t) = h′(t) and, (3) t′′ ∈
dom(h′) ⇒ t ≺ t′′ ≺ t′.

Extensions extend a description of the patient at points in time that were
undefined. Projections restrict a history to certain time points. Obviously, a
history is always an extension of a projection on itself.

Definition 7.5. The right projection of a history h to the elements t ∈ Time,
denoted as 〈h〉|t, is defined as the history h′ such that: (1) dom(h′) ⊆ dom(h),
(2) for all t ∈ Time: h(t) 6= ǫ implies h(t) = h′(t) and, (3) t′ ∈ dom(h′) ⇒
t′ ≺ t.

A History-based Formalisation of Medical Guidelines 123

The right projection describes a projection to a certain upper limit in time.
With these definitions, we define the expectation function as follows:

Definition 7.6. The expected continuation of a given history is the function
space:

E = [MHistory → ℘(History)]

where h ∈ MHistory iff h ∈ History and maxt(h) is defined, such that for each
e ∈ E, h ∈ MHistory it holds:

1. e(h) 6= ∅

2. h′ ∈ e(h) ⇒ h′ is a strict extension of h

3. Let M = max(dom(h)), i ≥ M : if h′ ∈ e(h) and i ∈ dom(h′), then there
exists h′′ ∈ e(〈h′〉|i) such that h′′ is an extension of h′.

Condition (1) expresses that if we have an expectation about a history,
then it introduces new information. The second condition says that expecta-
tion functions only extend histories, i.e., no information is lost. Finally, the
third condition makes sure that an expectation function is consistent with it-
self. Informally, it means the expectation does not contradict expectations
of expected histories, i.e., if we have expectations of expected histories, then
these expectations do not violate our original expectations. For example, if we
expect that it will rain tomorrow morning after which it will get sunny, then
just on the basis of it raining tomorrow morning (and no additional informa-
tion), we should still consider it possible that it will become sunny. Otherwise,
our original expectation seems unjustified.

Example 7.1. Consider a patient p with breast cancer:

p = {(t1,breast cancer, {chemotherapy})}

The use of chemotherapy can cause an infection, which we can describe as an
expectation e(p) = {h} where

h = {(t1,breast cancer, {chemotherapy}), (t2, infection,∅)}

Note that this is of course a rather naive example, because in this case there
is only one expectation of future events, whereas in a more realistic setting,
more alternatives would be listed.

This is not the only dynamic aspect concerning clinical guidelines. For
example, in the context of so-called living guidelines, the guideline is revised
based on new evidence. In practice, this means that either a new patient-
group is described by a new history, or the description of the patient-group is
narrowed to a more detailed description. This idea is formalised as follows.

124 Language Fragments for Guideline Formalisation

Definition 7.7. Given an expectation function e, a history h, and h′ ∈ e(h),
a proper expansion of e is the expectation function e′ if and only if there exists
an h′′ in e′(h) such that for all t ∈ Time: if t ∈ dom(h′), h′(t) = (s′, I ′) and,
h′′(t) = (s′′, I ′′) then s′′ implies s′.

So intuitively, this means that the expansion of an expectation function
details information about situations that the original expectation function con-
sidered and additionally consists of new situations that were not considered
before.

Example 7.2. Again consider the patient described by p from Example 7.1
and assume we have a expanded expectation function e′ based on new evidence
which says:

e′(p) = {(t1,breast cancer, {chemotherapy}), (t2,hairloss ∧ infection,∅)}

Clearly, by Definition 7.7, this is a proper expansion of the guideline.

7.1.3 A Logical Perspective on Histories

As large parts of this thesis deal with logic, we will look at histories from a
logical perspective. We will assume that the semantics of a suitable logic has
to be able to deal with the issues that were described in the previous section,
i.e., it has to be able to describe time, states, and interventions. With respect
to time, we note that natural language, and in particular clinical guidelines,
is tensed. Therefore, a tensed formal language for the formalisation of clinical
guidelines might well be regarded as natural by domain experts.

Histories

Consider the history of Section 7.1:

{(t0,breast cancer,∅), (t1,breast cancer, {mastectomy}),
(t2, lymphoedema, {physiotherapy}), (t3,high drainage,∅)}

Given the explanation of the meaning of such a history, this history could be
described by the following formula in linear temporal logic (assuming for a
moment that the time instances above may overlap):

F (breast cancer ∧ Drugs = ∅∧
(F breast cancer ∧ Drugs = {mastectomy} ∧ (. . .))

From a knowledge representation point of view, there are some issues with
this formalisation. The first issue is with all the nestings in the formula,
which makes adding additional information tedious, i.e., the formula is not
modular. This can be improved by using the interval temporal logic operators

A History-based Formalisation of Medical Guidelines 125

(cf. Section 2.1.2), i.e.,

⊤; breast cancer ∧ Drugs = ∅; breast cancer ∧ Drugs = {mastectomy}; ...

which is arguably easier to comprehend. The second issue with this formalisa-
tion is that the closed world assumption for the interventions is non-monotonic,
so this either requires additional specification, i.e., not applying a certain drug
should be specified explicitly or a non-monotonic mechanism such as abduction
is required.

Expectations

From a logical point of view, expectations describe beliefs about the future. In
literature, a distinction was made between two notions of expectations. The
first being the more serious beliefs about the future that may not, ever, under
any circumstances, be shown to be false. Typically, these beliefs contain propo-
sitions that cannot be proven to be false, such as religious beliefs. The second
is less strict and can be described as a ‘readiness to bet’, such as the belief that
an aspirin will help to reduce a headache. In [Kraus and Lehmann, 1988], this
was investigated by combining belief (B) and linear temporal modalities. The
axiom that was proposed for the former type of belief is:

B Xϕ→ X Bϕ

i.e., if ϕ is believed to happen next, then in the next moment, ϕ will be believed.
For the second interpretation, the following is proposed:

B Xϕ→ B X Bϕ

i.e., if ϕ is believed to happen next, then it is believed that in the next state, ϕ is
believed, i.e., not necessarily ϕ will happen. In [Kraus and Lehmann, 1988], it
is mentioned that finding a natural model for these axioms is an open problem.
While this axiom focuses on the belief of an agent, it does provide any means to
reason about the actual expectations, which makes the second axiom somewhat
weak, whereas the first axiom does not capture the intuitive notion of an
expectation that we have in mind in the medical context.

Here we take a different approach by interpreting path quantifiers of branch-
ing temporal logic as a type of belief or knowledge operator, i.e., A stands for
all possible futures that an agent considers possible. Pursuing this idea, what
is clear is that in CTL the path quantifiers could be interpreted as a type of
knowledge operators, as Aϕ means that ϕ will necessarily become true, what-
ever the behaviour of the system. However, this is different for expectations,
where there is uncertainty about the future.

The idea of giving a specific interpretation to the path quantifiers
is not new; for example, in [Ågotnes et al., 2007], these operators are
given a deontic interpretation. Such a logic is different from the logic

126 Language Fragments for Guideline Formalisation

CTLK [Fagin et al., 1995], in which CTL is combined with an additional
K operator for expressing knowledge. Similarly, the logic introduced in
[van der Meyden, 1994] is LTL is combined with such a knowledge operator.
Such logics allow arbitrary reasoning about knowledge orthogonal to the tem-
poral reasoning, while we want to explicitly focus on reasoning about temporal
knowledge. So, for example, we will not be concerned with knowledge about
knowledge, yielding a conceptually simpler logic. For example, the logic of
[van der Meyden, 1994] is not recursively axiomisable, whereas, standard CTL
is [Reynolds, 2005]. Of course, we cannot express the axiom by Kraus and
Lehmann, yet, such beliefs do not seem of much relevance in this context.

To illustrate this approach, we define semantics of the CTL operators in
terms of histories and expectations and provide some insight in its logical
properties. Let h be a non-empty path, which represents the ‘current’ state and
e an expectation function. Furthermore, assume that State is a propositional
language, by only considering finite data-types and translating the sentences
as described in Section 4.4.2. The semantics of this logical language can then
described as follows, where P is a set of propositional variables, where each
model is described by an h ∈ MHistory and e ∈ E:

h |=e p iff (s, I) = h(maxt(h)) and s implies p (p ∈ P)
h |=e i iff (s, I) = h(maxt(h)) and i ∈ I (i ∈ Intervention)
h |=e ¬ϕ iff h 6|=e ϕ
h |=e ϕ ∧ ψ iff h |=e ϕ and h |=e ψ
h |=e EX!ϕ iff M = maxt(h) and there exists h′ ∈ e(h) s.t. h′|M+1 |= ϕ

h |=e EϕUψ iff M = maxt(h) and there exists h′ ∈ e(h) and t ∈ dom(h′),
t > M s.t. h′|t |=e ψ and h′|i |=e ϕ for all i ∈ dom(h) and

M ≤ i < t
h |=e AϕUψ iff M = maxt(h) and for all h′ ∈ e(h), there exists a

t ∈ dom(h′), t > M s.t. h′|t |=e ψ and h′|i |=e ϕ

for all i ∈ dom(h) and M ≤ i < t

h |=e X−1 ϕ iff h 6= ∅ and h|maxt(h)−1 |= ϕ
h |=e ϕSψ iff M = maxt(h) and there exists t ∈ dom(h) s.t. t < M

and h|t |=e ψ and for all i ∈ dom(h) : h|i |=e ϕ
where t < i < M

where (+1) and (−1) denote the successor and predecessor, respectively, in
the total order ≺ for which this time point is defined. As every h′ ∈ e(h)
is a strict extension, the weak next operator coincides with the strong next
operator (X!). Note that with the equivalences as defined in Figure 2.3, the
other usual temporal operators can be defined. The main difference between
this logic and standard branching temporal logic is that in this logic the history
changes as the history is growing. The reason is that, even though we have
certain expectations about the future, our expectations do not necessarily have
to become true. For example, we may expect that a drug cures the patient,
but this does not necessarily mean that the patient will be cured. For example,

A History-based Formalisation of Medical Guidelines 127

the following is a consistent formula:

PAGp ∧ AG¬p

meaning that in the past we have expected p, yet now p is not expected any-
more, in fact, ¬p is now to be expected. On the other hand, we do have:

EF p→ EFEF p

i.e., if it is considered possible that p will happen, then this possibility is
considered possible. This is also true in standard branching temporal logic,
which is not a coincidence. In fact, we have the following relation.

Proposition 7.1. Let |= be defined on the basis of the semantics as defined
in Chapter 2 for serial Kripke models, then it holds that for any formula ϕ:
|=e ϕ⇒ |= ϕ

Proof. (sketch) Observe that Kripke model M can be defined in terms of an
expectation function, in particular by interpreting the accessibility relationship
as expectations of the next state. We restrict our histories to paths in M , i.e.,
a path s0, s1, . . . yields a history {(t0, l0,∅), (t1, l1,∅, . . .}, where li =

∧
L(si)

(cf. Section 2.1.2 for the definition of L). We define a function e such that e(h)
are all paths in M that start with the sequence h. It remains to be shown that
this is an expectation function. Due to seriality of M , clearly conditions (1)
and (2) hold. Furthermore, condition (3) holds because all expectations of the
extension of a history were already in the expectations of the original history.

Now given that h |=e ϕ, it in particular holds for the constructed h, e
derived from the Kripke model. Finally, the claim is that there is a one-to-one
mapping between the semantics under this interpretation. This can be proven
by induction on the structure of the formulae. For example, take AϕUψ.
Each possible path corresponds to each expectation, by construction. Given
such a path constructed path π, we have ϕUψ. This implies that for some t,
we have πt |= ψ, which corresponds to the condition that h|t |=e ψ. Similarly,

for each t′ ≤ t we have πt′ |= ψ iff h|t′ |=e ϕ. The other cases are similar.

It is not difficult to see that the converse does not hold. For example,

AGp→ AX! AGp

is a theorem of CTL, but does not follow from the semantics as defined above,
as in the next time step there may be other expectations where p does not hold.
Expectation functions can be strengthened to accomplish this. At the far end
of this spectrum, there are expectations that coincide exactly with serial Kripke
and then it holds that |=e ϕ iff |= ϕ. Of course, in such a case, there is little
reason to use expectation functions. However, it is useful to consider special
types of expectation function, for example, it may be reasonable to assume

128 Language Fragments for Guideline Formalisation

that you have actual expectations about the near future. This suggests the
following definition.

Definition 7.8. Let e be an expectation function, then we say that e has
expectation lookahead if for all mhistories h 6= ∅, we have h′ ∈ e(h|maxt(h)−1)
implies that h′|maxt(h) = h.

This definition expresses that your expectations are consistent about the
next time point. Moreover, call h all-knowing, if for all t ∈ Time, we have
h(t) 6= ǫ. These types of expectations can then be characterised by the follow-
ing proposition.

Proposition 7.2. If an expectation function e has a lookahead and is defined
on all-knowing histories, then it holds

h |=e X−1 AX!ϕ→ ϕ

Proof. Suppose h |=e X−1 AX!ϕ. Then we have h|maxt(h)−1 |=e AX!ϕ. Then
for all h′ ∈ e(h|maxt(h)−1), we have h′|maxt(h)−1+1 |= ϕ. So h′|max(h) |= ϕ. By

lookahead h|max(h) |= ϕ. So h |= ϕ.

A similar looking formula is AX!X−1 ϕ → ϕ. However, it is not difficult to
see that this is true for any history and expectation function, as anyone would
expect that in the next moment, the previous moment is the same as it is right
now. This is different from saying that what was expected in the previous
moment has come true.

7.1.4 Consistency of Histories

While a logical analysis provides ways to consider what can be derived from
the given information, consistency is a more tangible subject in the context of
guidelines. Some useful notions of consistency are introduced.

Given s, s′ ∈ State, s and s′ are state-consistent iff there exists a model A
such that A |= s and A |= s′. Given I, J ⊆ Intervention, I and J are called
intervention-consistent iff I 6= J . The tuples (s, I) and (s′, I ′) are called SI-
consistent iff s and s′ are consistent and I and I ′ are consistent. Finally, given
two histories h and h′. We call h and h′ history-consistent iff for all t ∈ Time,
h(t) is consistent with h(t′) or if one of them equals ǫ.

Because of the commitment of guideline developers to produce high qual-
ity guidelines, we do not expect to find unambiguous inconsistencies within a
guideline. This was the reason for focusing on other types of issues related to
quality of guidelines in Chapters 4 and 5, i.e., from the perspective of what
happens to a patient when prescribing a certain treatment. Nonetheless, it is
expected that during the process of developing guidelines different views on
how the patient should be treated are considered. Clearly, in many cases these
views will be inconsistent and it is therefore of use to detect such inconsisten-
cies.

A History-based Formalisation of Medical Guidelines 129

Every country typically develops their own version of a guideline about
similar subjects. Therefore, we have the possibility to simulate the process
as described above by comparing recommendations of different guidelines. As
an illustration, we compare the Dutch CBO guideline with the Scottish SIGN
guideline for breast cancer [SIGN, 1998]. Consider chapter 13.2 of this guide-
line concerning local recurrence in the axilla after mastectomy.

nodule(s)/nodes should be excised (...) and if not previously irra-
diated, locoregional radiotherapy should be given.

Hence, the SIGN guideline describes the following patient-group:

h = {(t0,breast cancer, {mastectomy}), (t1,breast cancer, {radiotherapy}),
(t2,¬breast cancer,∅), (t3,breast cancer, I)}

such that t0 ≺ t1 ≺ t2 ≺ t3 and radiotherapy 6∈ I.
The more recent CBO guideline discusses the local treatment of local re-

currence following modified radical mastectomy.

If an isolated local recurrence occurs in a previously irradiated area,
high-dose radiotherapy is not an option. In that case, low-dose re-
radiation with thermotherapy is the treatment of choice.

Hence, in this case we find that there are patient-groups which are treated
taking this guideline into account described by:

h′ = {(t0,breast cancer, {mastectomy}), (t1,breast cancer, {radiotherapy}),
(t2,¬breast cancer,∅),
(t3,breast cancer, {radiotherapy, thermotherapy)})}

such that t0 ≺ t1 ≺ t2 ≺ t3. Hence, we find by definition that h and h′ are in-
consistent. In particular, we find that on time t3 this fragment is intervention-
inconsistent.

Whereas logic provides means to find an inconsistency between two spec-
ifications, it is more difficult to define the notions of types of inconsistency,
as done above, for arbitrary formulas. The formalisation of intervention-
inconsistency requires an explicit match between time points, e.g.,

(h; I) ∧ (h;J)

where h is a description of the patient and I 6= J may be consistent if the time
of h has not been fixed to a certain length.

7.1.5 Discussion

In this section, we have investigated an interpretation of guidelines as sequences
of time-state-intervention tuples, called histories. The history-based approach

130 Language Fragments for Guideline Formalisation

offered a special-purpose framework that, as we see it, allows one to express the
most important aspects of the clinical management of patients. One would,
thus, expect that it is also suitable as a knowledge-representation formalism
for clinical guidelines. The examples given in this section more or less confirm
this impression.

In addition, we have provided an logical analysis of the history-based lan-
guages. In particular, we have studied some logical results with respect to
the idea of expectations. Further work in line of what has been described in
this thesis might the addition of more meta-level properties, which would one
allow to develop a logic of guideline quality, possibly related to ideas studied
in Chapter 4 and 5 of this thesis in terms of logical abduction. Given the fact
that we use standard logic CTL to model expectation, though with different
logical properties, provides means to exploit standard techniques, e.g., model
checking. Furthermore, the language is simple enough to allow one to for-
mally describe the evolution of clinical guidelines as they are being developed.
This is an application of the theory developed above we think may be worth
investigating further, both from a theoretical and application point of view.

7.2 Interpretation of Task Execution using Failures

The rest of this chapter is focused on a specific concept of guidelines that was
ignored until now, failures, which provides an interpretation of the application
of tasks in practice.

7.2.1 Introduction

For agents that do not have a complete model of their environment or lack
certain control over it, it is unavoidable that failures to perform tasks oc-
cur. Many systems require some type of robustness against these failures,
e.g., robots need to make sure that their task will be accomplished, avia-
tion systems need to make sure that the plane does not crash, etc. For ex-
ample, in June 2007, there was a crisis in the International Space Station
(ISS) as the computer systems failed, even though they were supposedly built
robustly using a triply redundant control computer complex1. In agent lit-
erature, the semantics of failures have been investigated in a logical sense
[Rao and Georgeff, 1991] and have been incorporated in agent programming
languages [Hindriks et al., 1998]. Similarly, in software engineering, the use of
exceptions as first-class citizens in programming languages is wide-spread.

Besides the internal aspects of a system, i.e., a program state or mental
state of an agent, an important aspect of systems is behaviour, i.e., how it acts
and reacts in a dynamic environment. To reason about this behaviour, mech-
anisms that go beyond the scope of classical predicate logic are employed.
Since the late seventies, several temporal logics have been proposed to deal

1 http://www.spectrum.ieee.org/oct07/5598. Accessed: October 25, 2007.

Interpretation of Task Execution using Failures 131

with specification and verification of hardware and software systems. In artifi-
cial intelligence, many of the logics dealing with actions usually contain some
temporal component. In systems where failures heavily determine the final
behaviour, modelling of this behaviour is more natural when failures are part
of the modelling language. Moreover, we will argue that, since temporal log-
ical formulas can be used to describe behaviour, the failure of a behaviour is
best described using a sentential operator, i.e., as a property of a (temporal)
logical sentence. This contrasts with other approaches, where failure is seen
as a property of primitive events and corresponds to the major contribution of
this chapter.

Suppose we are modelling an agent, typically a physician, who treats a
patient. As almost all drugs may result in side-effects, it is of great importance
that the agent does not over-medicate the patient. Therefore, if the disease
is not directly life-threatening, management of a disease should start with a
non-invasive treatment where one expects as little side-effects as possible. It is
not always possible to measure beforehand if the effects of the treatment will
be desirable, as this could require a test that is considered to be too invasive or
because it is not known which physiological variable should be measured. As a
result, a failure to treat the patient may occur, which means that subsequent
actions are required.

Medical treatments are performed in sequence or in parallel. Sequential
actions are typically done in case an earlier treatment fails or when a certain
physiological state should be reached before a subsequent state can be effective.
In such a case, failure to perform a treatment will result in a failure of the
whole protocol, as it will block the successful administering of subsequent
treatments. Parallel treatments occur for example when multiple drugs are
prescribed at the same time. If the effects of these drugs are combined, then
the combination of drugs will fail if one of the individual actions fails. If failures
are not handled appropriately, it may lead to medical mismanagement, e.g.,
in case drugs become ineffective due to failure of other treatment components,
continuing to administer these drugs is considered bad medical practice. As
a consequence, failure handling plays an important role in maintaining the
quality of medical management.

This idea of an implicit mechanism that “propagates” the failures through-
out the management of a disease leads to the idea that such failures could be
seen as exceptions that need to be handled appropriately. This idea is pursued
in the next section.

7.2.2 Exception Handling

The idea of handling failures while performing a task is well-known in the
context of programming languages by means of exception handling mecha-
nisms. An exception is a failure of an operation that cannot be resolved by the
operation itself [Tucker and Noonan, 2007]. Exception handling mechanisms
provides a way for a program to deal with them. Many programming languages

132 Language Fragments for Guideline Formalisation

(C++, Ada, Java, etc) now incorporate such extensive exception mechanism
in order to facilitate robust applications. Typically, such a mechanism consists
of two parts. There is a mechanism to throw an exception, which sends a
signal that an exception has occurred. Second, catching an exception transfers
control to the exception handler that defines the response that the program
takes when the exception occurs. Looking at it slightly differently, one could
say that the program determines the plan that is being executed, while the
exception handler is able to revise this plan in case an failure occurs.

For the purpose of this section, it is useful to summarise the semantics
of exception handling mechanisms. A formal semantic model of exceptions
in Java based on denotational semantics [Alves-Foss and Lam, 1999] as well as
operational semantics [Oheimb and Nipkow, 1999] exists. The complete math-
ematical description of these mechanisms is too extensive to be discussed here,
as only a small part of the semantics deals with failures. Instead, we give a
more general description of the operational semantics of the exception mech-
anism. A state, here denoted by σ, consists of the heap, values of the local
variables, and optionally an exception. Evaluation rules describe how state-
ments change the state, typically in the form σ0

s
−→ σ1 which denotes that

the execution of statement s starting in state σ0 can terminate in state σ1.
For exception handling, the state is extended with an exception, i.e., we then
deal with assertions σ0

s
−→ σe

1 which means that the execution of s in σ0 can
terminate in σ1 throwing an exception denoted by the superscript e2. The
operational semantics is then also extended with these assertions, e.g., for se-
quential composition this yields the following two rules depending on whether
or not a failure has occurred in the first statement:

Γ ⊢ σ0
s1−→ σ1 Γ ⊢ σ1

s2−→ σ2

Γ ⊢ σ0
s1;s2
−−−→ σ2

Γ ⊢ σ0
s1−→ σe

1

Γ ⊢ σ0
s1;s2
−−−→ σe

1

where Γ defines the context of the rule. Logically speaking, what we see here
is that failures are propagated through the semantics of each programming
structure. We will show how to incorporate this idea in terms of temporal
logic in the next two sections.

7.2.3 Interval Temporal Action Logic with Failure

In this section, we extend the logic of ITL with actions and introduce an
operator that denotes failure of the formula. We will refer to this extended
logic as ITALF.

Let A be a set of actions, and P a set of atomic propositions, which describe
a part of the state and is disjunct with A. Models σ we will be working
with consists of a (possible infinite) sequence of states σ0, Each σi is
defined as 〈πi, αi〉, where πi is a function P → {⊤,⊥} and αi a function
A → {inactive, active, failed}. When discussing a σ′, we will write α′

i and

2 abstracting from the different types of exceptions

Interpretation of Task Execution using Failures 133

π′
i such that σ′

i = 〈α′
i, π

′
i〉. Let the language be extended with actions and

an operator fail. All semantics given by the language of ITL remains the
same. Entailment of ITL will be denoted as |=ITL from now on and |= will be
understood as entailment for ITALF. Actions are interpreted as activations,
hence, negations of actions are understood as actions that are not active (i.e.,
inactive or failed). This is formalised as follows:

σ |= a ⇔ α0(a) = active

For the definition of failure, we need to consider models where we abstract
from the difference between inactive and activation, but instead only consider
the difference between failures and non-failures. In order to accomplish this,
we use the following models, that we denote as failmodel(σ):

Definition 7.9. For all σ, failmodel(σ) = σ′ if:

• |σ| = |σ′|

• for all i such that 0 ≤ i ≤ |σ|:

– for all p ∈ P: πi(p) = π′
i(p)

– for all a ∈ A: if αi(a) = failed then α′
i(a) = failed,

otherwise α′
i(a) = active

So failmodel(σ) describes σ where non-failures (in particular inactive ac-
tions) are interpreted as activations. We can then consider failure as a type of
negation in the definition of fail, as follows:

σ |= failϕ ⇔ σ 6|= ϕ and failmodel(σ) 6|= ϕ

To understand this definition, consider ϕ as a formula that implies that certain
propositions and actions are true or false at certain moments in time, even
though for some formulas, there is a choice to be made on which point in time.
For atomic propositions, the definition is clear and is equivalent to the negation
as failmodel(σ) does not evaluate propositions differently than σ. For actions,
the situation is more complicated. First, if an action a is implied by ϕ at a
certain moment in time, then ϕ fails if the action fails on that point in time,
which is exactly given looking at ¬a on failmodel(σ). This seems sufficient;
however, consider the converse, i.e., that ϕ implies ¬a at a certain point in
time. Then, the formula fails if in fact the action is activated at that point,
which corresponds to the first part of the definition. Note that by just looking
at failmodel(σ), we can only derive that it must be active or inactive; however,
a failure not to do an action does not correspond to this idea.

To get more feeling for this definition, suppose we know that ‘surgery’, at
some point, fails, i.e., fail 3surgery. A model σ is then a model of this failure
if we have two conditions. First, σ 6|= 3surgery, hence, we know that surgery
is never activated. Second, we know that in failmodel(σ) 6|= 3surgery. In this

134 Language Fragments for Guideline Formalisation

1. fail(ϕ) → fail(ϕ ∧ ψ)
2. fail(ϕ ∨ ψ) → fail(ϕ) ∨ fail(ψ)
3. fail(ϕ) → fail(ϕ;ψ), where ϕ is objective
4. fail(ϕ) → fail(ϕ∗), where ϕ is objective

Figure 7.1: Propagation of failures in ITALF, where objective formulas are
formulas that do not contain any temporal operators.

failmodel, we make a distinction between failures and non-failures, so, if in this
failmodel surgery is false everywhere, we know that the αi(surgery) = failed

for all i. Hence, in other words, fail 3surgery = 2fail surgery,.

We now discussed some properties of this logic. As already mentioned in
the previous section, with respect to atomic propositions p, it follows:

fail p ≡ ¬p

i.e., failure to accomplish p simply means it is not true. So, the formalisa-
tion considers failure as a kind of negation. Typically, in the formalisation of
medical management, we are interested in formulas such as:

fail (p→ a)

i.e., in situation described by p, the action a must be activated. According
to the semantics, this is equivalent to p ∧ fail a, i.e., if the implication fails,
then in the situation described by p, the action a indeed fails. As argued in
the previous subsection, failure not to do an action a, i.e., fail¬a means that
a is in fact done. Conversely ¬fail a means that a is either active or inactive.
Hence fail¬ϕ 6= ¬failϕ.

In general, the definition of fail is such as to propagate to larger formulas.
This is summarised in Figure 7.1. To prove the first one, for example, consider
some model σ |= failϕ. Then σ 6|= ϕ, so σ 6|= ϕ ∧ ψ. Moreover, failmodel(σ) 6|=
ϕ, so also failmodel(σ) 6|= ϕ ∧ ψ. Thus σ |= fail(ϕ ∧ ψ). The third one can
be proved as follows. Consider σ |= failϕ, where ϕ is objective. Then clearly
for any n ≤ |σ| we have σ[0,n] 6|= ϕ. Hence, it follows that σ 6|= ϕ;ψ. This is
similar for the failmodel, hence σ |= fail(ϕ;ψ). The other two cases have a
similar proof.

What is interesting is that the calculus rules of the operational semantics
of an imperative programming language described in Section 7.2.2 can now
be understood in terms of failure inside the logic. For example, for sequential
composition, the following calculus rule is sound with respect to the semantics:

Γ ⊢ fail(ϕ)

Γ ⊢ fail(ϕ;ψ)

Interpretation of Task Execution using Failures 135

fail αi

ϕ ψ

t t+ 2t+ 1

Figure 7.2: Sketch of ϕ orelse{αi} ψ in case of failure of αi.

where ϕ is objective, which follow directly from item (3) of Figure 7.1 and
modus ponens. In order to describe acting on the basis of failure, we define an
additional operator:

ϕ orelseA ψ , ϕ ∧ ¬last;X! (failstateA ∧ X!ψ)

where

failstateA =
∨

ai∈A

fail ai ∧
∧

ai∈A

¬ai

i.e., ϕ holds forever, or, an action fails at some point after which ψ holds. We
assume that ϕ is true in at least a unit interval, which prevents failures to
occur right away. In Figure 7.2, a model where a failure occurs and is handled
is sketched. The definition of the failstate ensures that during this time no
action can be active, and thus no additional failures may occur. In some sense,
this operator may be read as an exception handling mechanism where failures
of ‘type’ A are caught in the execution of ϕ, such that ψ is executed when this
occurs.

7.2.4 Reduction to ITL

In this subsection, we will show how ITALF can be translated to ITL. We
thereby give means to exploit the proof techniques that were developed for
ITL. To accomplish a reduction to ITL, additional propositional variables are
required. We assume we have an infinite number of propositional variables
such that we have a (unique) fresh proposition fa, standing for failure, for
each a ∈ A.

Definition 7.10. Given a formula ϕ, define Φ(ϕ) as ϕ where every occurrence
of some action a ∈ A has been replaced with ¬fa.

Definition 7.11. The reduction of a formula ϕ is defined on the structure of

136 Language Fragments for Guideline Formalisation

ϕ as follows:

reduce(p) = p
reduce(a) = a
reduce(¬ϕ) = ¬reduce(ϕ)
reduce(ϕ ∧ ψ) = reduce(ϕ) ∧ reduce(ψ)
reduce(skip) = skip

reduce(ϕ;ψ) = reduce(ϕ); reduce(ψ)
reduce(ϕ∗) = reduce(ϕ)∗

reduce(failϕ) = ¬reduce(ϕ) ∧ ¬Φ(reduce(ϕ))

Below, we refer to reduct(ϕ) as the ITALF formula that is found by applying
the definition exhaustively from left to right. The main result of this subsection
which provides the connection between ITL and ITALF follows.

Definition 7.12. Given a ITALF formula ϕ, intended meaning of the failure
propositions is defined as follows:

I(ϕ) = G (a0 → ¬fa0
∧ · · · ∧ an → ¬fan

)

where {a0, . . . , an} ⊆ actions(ϕ), such that actions(ϕ) is defined as the set of
those a ∈ A that is a sub-formula of ϕ.

Note that I(ϕ) is finitely bounded by actions in a formula, which is impor-
tant as the total number of actions in the language may be infinite. Then, we
have the following result:

Theorem 7.1. |= ϕ iff I(ϕ) |=ITL reduct(ϕ)

Therefore, reasoning in ITALF can be encoded in ITL. Proof of this theorem
can be found in Appendix A.3.

7.2.5 Related Work

Failure has received little attention in formal theories of action. Of course,
reasoning of actions had always taken into account the notion of failure, as
illustrated by the logic of [Rao and Georgeff, 1991]. However, it is assumed
that failure can be added in a relatively straightforward manner. One notable
example of where the notion of failure is part of both the syntax and semantics
is the approach of Giunchiglia et al. [Giunchiglia et al., 1994]. Its primitive
syntactic structure is:

iffail α then β else γ

And from this, abbreviations are defined such that it allows one to reason
conveniently about failures. The semantics is defined in terms of behaviours
where it said that some behaviours have failed, while others are successful.
Behaviours are defined technically in terms of linear models.

Application to a Medical Guideline 137

What this language lacks is the notion of time, as behaviours are simply
considered a sequence of actions which either fail or do not fail. For medical
management, this poses a problem, as failure may occur after a longer period
of time. This means that the notion of failure needs a richer structure, so that
it is possible to interact between time and failure.

Another important shortcoming for using this language in the context of
medical management is that failures is a property of a behaviour. As said
before, in medical management, actions are often performed in parallel, for
example, the administering of a combination of drugs. In such cases, some
drugs may fail to reach the required effects, while others may be successful.
Hence, in the language decisions need to be made on, not only if a failure has
occurred, but also what action has failed.

7.2.6 Discussion

In this section, we have introduced semantics of failures in interval temporal
logic inspired by the exception mechanism that can be found in many pro-
gramming languages. The practical usefulness of our approach in context of
clinical guidelines is illustrated by verifying a fragment of diabetes mellitus
type 2 using this logic. However, we think that the ideas and results could
be applied in a much wider context. First, the reasoning about failures can
have its applications in agent-based systems. Failures to perform tasks are an
important aspect for decision making by agents, so having a reasonably rich
language for modelling these failures seems justified. Second, in the context
of program refinement, the process of (high-level) specifications to implemen-
tations of systems, exceptions are introduced at some point to model failure
of components. The results of this section makes it possible to abstract of
concrete programming construct to describe how control of flow should change
in case exceptions occur.

The logic that is proposed here can be seen as a three-valued logic, i.e.,
formulas are true, false, or failed. Some work has been done to link three-
valued logics idea to temporal reasoning [Konikowska, 1998], which is based on
Kleen’s three-valued calculus that deals with ‘unknown’ values. This results in
different logical properties compared to ITALF, e.g., unknown values propagate
over a disjunctions, while failures do not.

7.3 Application to a Medical Guideline

In this section, we consider the modelling of the diabetes mellitus type 2 (DM2)
guideline (cf. Figure 4.1) using the failure interpretation of the guideline that
was discussed in the previous section. The knowledge in this fragment concerns
information about order and time of treatment (e.g., sulfonylurea in step 2),
about patients and their environment (e.g., Quetelet index lower than or equal
to 27), and finally which drugs are to be administered to the patient (e.g., a
sulfonylurea drug).

138 Language Fragments for Guideline Formalisation

7.3.1 Modelling of DM2

The physiological mechanisms were originally modelled in temporal logic,
which is described in Figure 5.3. The next state of the model is interpreted
as a state after some unknown time period, which is important, as we will see
below, for deciding when to move to a new treatment.

In this Chapter, we mainly focus on the modelling of the guideline fragment
of Figure 4.1. The possible actions that can be performed is the set A consisting
of {diet,SU,BG, insulin}. Each treatment A is a subset of A. Treatment
changes if a treatment has failed, which can be conveniently be formalised in
ITALF. The main structure of the guideline, denoted by M, is then:

G treatment = {diet}
orelse{diet} (if QI < 27 then (G treatment = {SU})

else (G treatment = {BG})
orelse{SU,BG} (G treatment = {SU,BG}

orelse{SU,BG} G treatment = {insulin}))

where each term treatment = A is an abbreviation for:
∧

({α | α ∈ A} ∪ {¬α,¬fail α | α ∈ (A \A)})

i.e., the actions in A are activated, and all other actions are inactive (i.e., false
and have not failed). This formalisation includes the handling of the failures in
some sense; however, we also need to define in which cases these failures occur.
One can think of this as ‘throwing’ the exceptions during the management of
the disease. Define an abbreviation for this as follows:

failsϕ , X! failϕ

The guideline does not specify what amount of time is allowed to pass before it
can be concluded that the treatment is not effective. Clearly, if a failure occurs
immediately, then patients will all receive insulin treatment. Here, we assume
the property of the background knowledge that relevant effects with respect
to the condition of the patient are known in the next state. Hence, decisions
whether the treatment fails can be taken after one step in the execution. These
failure axioms are denoted as F and formalised as follows:

G (αi →X! ((αi ∧Condition(hyperglycaemia)) ↔ failsαi))

for all α ∈ A.

7.3.2 Verification

Several tools for ITL have been developed, such as the interpreter Tem-
pura [Moszkowski, 1996] and support for ITL in the theorem prover PVS
[Cau and B., 1996]. For our experiments, we have used the KIV system, an

Application to a Medical Guideline 139

interactive theorem prover, as described in Section 5.1.1. Below, we will write
sequents Γ ⊢ ∆ to denote I(Γ ∪ ∆) ⊢KIV reduce(

∧
Γ →

∨
∆), where ⊢KIV

denotes the deductibility relation defined by the sound (propositional and tem-
poral) inference rules implemented in KIV.

In the specification of properties presented, we made use of algebraic spec-
ification to specify the variables in the background knowledge, though it could
be translated to propositional logic if necessary. Furthermore, we made use
of some additional variables to represent each treatment (e.g., ‘treatmentdiet ’
defined as ‘treatment = {diet}’), and both failure-states. In practice, this
makes the proofs more manageable. The relationship between the actions and
these additional variables are defined appropriately in the system, i.e., all the
additional propositional variables could be replaced by actions and failure of
actions.

Example 1: Diet may be applied indefinitely

The first example is the following property. Let BDM2 be the background
knowledge, M be the guideline, and F failure axioms, then:

BDM2, M,F , G capacity(b-cells, insulin) = normal
⊢GXCondition(normoglycaemia)

i.e., in case the patient has B cells with sufficient capacity to produce insulin,
then diet is sufficient for lowering the level of glucose in the blood. As only
the failure of diet is relevant in the proof, M can be weakened to:

(G treatmentdiet)∧¬ last; fdiet

Symbolic execution, in the context of the background knowledge, leads to the
situation where:

(G treatmentdiet; fdiet)∧Condition(normoglycaemia)

Since we have Condition(normoglycaemia), it can be derived that diet does
not fail, thus in the next step it can be derived that the condition is still
normoglycaemia, which is exactly the same situation as we had before. By
induction, we can then reason that this will always be the case. A more
detailed proof can be found in Appendix A.4.

Example 2: Reasoning about the patient in case of failure

Guidelines are not applied blindly by physicians, as the physician has to make
a decision for an individual patient on the basis of all known information. As
a consequence, a physician might be interested in reasons of failure. Suppose
we have an arbitrary patient, then we can prove the following:

BDM2, M,F ⊢ fail(G diet) → F capacity(b-cells, insulin) 6= normal

140 Language Fragments for Guideline Formalisation

i.e., if always applying diet fails, then apparently the patient has non-normal
capacity of its B cells at a certain moment in time. M is needed here to
derive that in case diet stops, a failure has occurred rather than a non-failing
termination of diet. Proving this in KIV is similar as the previous example.

Example 3: Level of sugar in the blood will decrease

As a third example, we use one of the quality criteria for the diabetes guideline
defined in Section 5.2.2, i.e., the guideline reaches its intention, namely, the
level of sugar in the blood will be lowered for any patient group. This property
is formalised as follows:

BDM2, M, F ,G (capacity(b-cells, insulin) = capacity(b-cells, insulin)′′)∧
GQI = QI′′ ⊢F¬Condition(hyperglycaemia)

where V ′′ denotes the value of the variable V in the next step. Our proof
strategy consisted of splitting the patient group into groups which are cured
by the same treatment, e.g., similar to the previous example, when the capacity
is normal, then diet is sufficient.

Consider the example where the capacity of insulin in the B cells is nearly-
exhausted. KIV derives from the failure axioms that:

G (αi →X! (αi ↔X! (¬αi ∧ fαi
)))

as we may assume that G¬Condition(hyperglycaemia), because the negation
of this formula immediately proves the property. Furthermore, reasoning with
the background knowledge, we can derive that proving F (SU∧BG) is sufficient
to prove this property, because for this patient group a treatment consisting
of SU and BG is sufficient to conclude Condition(normoglycaemia). It is then
easy to see how to complete this proof as the failure axioms specify that all
the treatments will fail (after two steps), hence symbolic execution shows that
eventually the third step will be activated.

7.3.3 Discussion

Compared to the results of Chapter 5, the verification of the investigated prop-
erties required significantly less effort. This is mainly due to the fact that in
Chapter 5 the guideline was formalised in the guideline representation language
Asbru, which yields overhead in complexity due to a complicated semantics.
On the other hand, many of the steps that are required in ITALF were done
manually, as it is not obvious to predict the correct next step in the proof. For
example, it is important during verification to ‘weaken’ the irrelevant parts of
the guideline, which is described by calculus rules such as:

Γ, ϕ; true ⊢ ∆

Γ, ϕ;ψ ⊢ ∆
weaken chop

Conclusions 141

making the symbolic execution more efficient. Moreover, failure propositions
on the sequent introduce additional complexity, as the human needs to re-
member the semantics of these propositions in order to apply the relevant
axioms. These facts combined makes it interesting to consider more automatic
techniques, such as automated theorem proving or model checking.

7.4 Conclusions

In this chapter, we have aimed to uncover some elements of guideline formalisa-
tion in order to formally reason guidelines. In the first part of this chapter, we
studied possible formalisations of medical knowledge for designing a guideline.
The history-based approach has the advantage that it can easily be extended
with relevant structure. For example, in [Lucas et al., 2005], the guideline de-
velopment process was described abstractly using this approach. The logical
approach, however, provides direct means to formally reason about the guide-
line. Moreover, it provides intuitive means to investigate properties of concepts
that are of importance to formally modelling of guidelines. In this context, we
discussed the concept of expectations. Furthermore, we discussed the failure
concept in modelling clinical guidelines, and show how this can be made prac-
tical in terms of clinical guidelines. In this case, we were inspired by failures in
programming languages; however, other semantics of can be imagined. This is
a possible topic for future work.

142 Language Fragments for Guideline Formalisation

Chapter 8
Conclusions

The goal of this thesis was to explore the use of formal methods for the verifi-
cation of clinical guidelines. First, we will summarise the results of this thesis
given the research questions that were presented in the first chapter of this
thesis. Then, the results are placed in the broader context of the use of formal
methods for the development of clinical guidelines.

8.1 Summary of Results

Each of the chapter conclusions describes the contribution of that respective
chapter. Here, we reconsider the results on the basis of the research questions
that were posed in Chapter 1.

Which knowledge is required to investigate properties of clinical
guidelines?

In Chapter 3, we reviewed some of the thoughts from the medical community
on the quality of clinical guidelines. The AGREE instrument has been de-
veloped by the guideline development community as the principal tool for the
assessment of the quality of guidelines. However, this tool focuses primarily on
the guideline development process, such as on the quality of the evidence used
as a basis for the guideline, and does not really address the quality of a guide-
line itself. We discussed several aspects of the knowledge underlying guidelines
that can be used to study their quality, and an explicit choice was made to
focus on properties that deal with the knowledge-based goals of the use of a
guideline, i.e., we decided to investigate whether or not the goals of the use of
guidelines are reached, taking into account medical background knowledge.

To realise this aim, various types of medical background knowledge were
formalised in the subsequent chapters; examples were: knowledge concerning
(patho)physiological processes, the ordering of treatments and quality require-
ments. In Chapter 4, this idea was pursued for individual treatments, whereas

143

144 Conclusions

in Chapter 5, this was further refined for complete treatment paths. In Chap-
ter 6, that deals with the refinement of guidelines to protocols, knowledge
concerning medical management is added. The rationale is that guidelines
should be seen in the context of an actual clinical treatment process, rather
than as constraints in isolation.

What is a suitable language for representing clinical guidelines in
order to apply formal methods?

In this thesis, doubts were expressed regarding the suitability of current guide-
lines representation languages for use in conjunction with formal methods.
The first reason for this is that standard logical languages already appear ap-
propriate for expressing various abstractions of guidelines, as illustrated by
the formalisation presented in Chapter 4. Second, current guideline repre-
sentation languages have a complicated semantics, which renders the veri-
fication process hard (e.g., see the semantics of time-annotations in Asbru
[Schmitt et al., 2006b]). For example, the examination of some properties of
an Asbru model, verified in Chapter 5, took significantly more effort than
the verification of properties on the basis of a logical model, as described in
Chapter 7. Nonetheless, guideline representation languages are not likely to
disappear soon; therefore, the question how current state-of-the-art guideline
representation languages, such as Asbru, might become more amenable to ver-
ification remains valid. Some insight into this is given in Chapter 5 through
the application of theorem proving to a concrete Asbru model of a guideline.

How do formal methods contribute to ensuring the quality of guide-
lines?

The process of modelling a guideline often already reveals most of the flaws
included in a guideline, which typically have to do with issues such as incom-
pleteness of descriptions and confusing terminology. Actually, some of the flaws
may be introduced by the modellers themselves, in translating the document’s
text into a formal model. As formal methods people usually have had no med-
ical training, they may quite easily come up with the wrong interpretations of
guideline text, which thus results into a incorrect formal model. Nonetheless,
in the research several flaws were found that may give rise to an ambiguous
interpretation of the text.

The second contribution of formal methods is that they make assumptions
about the recommendations included in the clinical guideline explicit. In the
studies described in Chapters 4 and 5, the quality of guidelines was the main
topic of concern and requirements concerning the quality of recommendations
was made explicit. One might argue that the ones proposed there are incom-
plete requirements from a medical point of view; yet, most alternative quality
measures can be expressed along similar lines. Unfortunately, such quality
measures are not mentioned in current clinical guidelines, as they are more or
less taken for granted.

Limitations and Future Directions 145

Verification challenges guideline developers to make their underlying as-
sumptions about medical knowledge and their notion of quality explicit. One
such challenge is presented for the prescription of insulin in combination with
oral antidiabetics for treating diabetics. If one accepts the medical principle
of limiting the number of drugs to a patient to the minimum, then this recom-
mendation seems unacceptable. This issue was discovered before [Lucas, 2003];
however, we have shown that such errors can be detected fully automatic given
a formal model of a guideline. Moreover, interactive techniques can be applied
to find more complex flaws in guidelines, as discussed in Chapter 5.

Which techniques are most suitable for answering questions about
clinical guidelines?

In this thesis, we explore the use of three of the most frequently applied tech-
niques, i.e., automated theorem proving, interactive theorem proving, and
model checking. For investigating quality, we have made use of theorem
proving as the required background knowledge cannot be represented suc-
cinctly as a branching model. Even though linear temporal logical formu-
las can be represented as an automaton (e.g., [Somenzi and Bloem, 2000]),
such a model can have up to 2O(n) states where n is the number of sub-
formulas [Vardi and Wolper, 1994]. Moreover, the underspecification of guide-
lines creates serious challenges for applying standard model checking technol-
ogy [Bäumler et al., 2006]. Further abstractions were needed to keep the state
space under control, which raises doubts whether model checking provides a
useful technique for quality-checking. However, in cases where guidelines are
applied in practice, and thus reasonably well-specified, and where background
knowledge is not required, model checking is a suitable choice. This was demon-
strated by experiments of which the results are reported in Chapter 6.

Similar to the question whether or not to use model checking or theorem
proving, a trade-off has to be made between automated or interactive theo-
rem proving. Automated theorem proving provides a push-button technique
for verification, which makes it particularly suitable during the design of a
guideline if the complexity of the model can be kept under control. Interac-
tive verification was used in the research described in this thesis in order to
overcome the complexity of the Asbru specification. Moreover, an advantage
of the interactive approach is that its yields proofs that can be inspected. The
proof tree it generates is intuitive and in case a property does not hold, the
reason for this is clear by the structure of the proof.

8.2 Limitations and Future Directions

8.2.1 Formalisation

One of the main challenges of applying formal methods to clinical guidelines
remains bridging the gap between guideline developers and knowledge about

146 Conclusions

formal methods needed to carry out verification. The practical usefulness
of the work that is presented in this thesis depends on such developments,
although there is evidence that these developments will be initiated in the
near future. Some progress in this area have already been made, for example,
in visualisation [Kosara and Miksch, 2001], interactive execution of guideline
representation languages, and into the development of semi-formal modelling
languages [Seyfang et al., 2006], although these developments are still fairly
preliminary.

The logical language that we have employed in Chapter 4 is conceptually
relatively simple compared to language used for the representation of guidelines
and complex temporal knowledge as discussed in [Shahar and Cheng, 2000];
however, in principle all these mechanisms could be formalised in first-order
logic and could be incorporated in our approach. The suitability of employing
a logical languages was illustrated by the investigation in the appropriateness
of using similar mechanisms as described in Chapter 7. Finally, we are cur-
rently moving into an era where guidelines are evolving into highly structured
documents and are constructed more and more using information technology.
It is not unlikely that the knowledge itself will be stored using a more formal
language. A method to assist guideline developers for looking into the quality
of clinical guidelines using, for example, automated verification will then be
practically useful.

8.2.2 Reasoning

With respect to the reasoning in guidelines, more general frameworks are imag-
inable. We have shown that treatment selection in guidelines can be described
abductively, which raises the question to which other areas of medicine this
may be applied. While abductive reasoning is seen as an essential aspect of
theories of model-based diagnosis, it remains to be seen how it relates to rea-
soning about preventive and supportive interventions. Furthermore, abductive
reasoning can be seen as part of more general frameworks of non-monotonic
reasoning, such as argumentation frameworks [Prakken and Vreeswijk, 2002],
which suggests that in some circumstances a more powerful reasoning method
may be required.

Certain characteristic aspects of clinical reasoning, such as reasoning with
uncertain knowledge, were ignored in this research. The guidelines under con-
siderations did not contain sufficient amounts of probabilistic information to
warrant its consideration. Nonetheless, uncertainty reasoning does play a part
in clinical guidelines, even though this is hard to make explicit quantitatively.
Qualitative uncertainty can be easily incorporated into the abductive frame-
work as suggested by [Console and Torasso, 1991]. For example, the back-
ground knowledge could be extended to incorporate expressions of uncertainty,
e.g., instead of writing

Drug(BG) → X! release(liver, glucose) = down

Final Thoughts 147

we could have written:

Drug(BG) ∧ α→ X! release(liver, glucose) = down

where α is a literal expressing the uncertainty of the effects that the drug BG
has on the patient (it is called an incompleteness-assumption literal in the
terminology of [Console and Torasso, 1991]). For the successful application of
BG, it requires the physician to assume that α is true, i.e., that it is a ‘nor-
mal’ patient, in order to derive the desired effects. An optimality criterion
could then take into account such uncertainty on the basis of, for example, an
ordering over these uncertainty literals. However, as we did not include such
knowledge in the case study, these uncertainty literals have not played a role
in the pathophysiological models. In some guidelines, quantitative uncertainty
is present in the guideline, which may require probabilistic representation and
inference. Moreover, it could be useful to combine quantitative knowledge from
data with the qualitative knowledge of guidelines. In both cases, probabilis-
tic logics may be applicable (e.g. [Poole, 1993, Kersting and De Raedt, 2000,
Richardson and Domingos, 2006]).

8.2.3 Quality

One of the limitations of this thesis is that part of the quality of a guideline,
and thus of medical decisions in general, was defined as an extremely gen-
eral proposition, i.e., “optimal with respect to cost”, whether it be financial,
ethical cost or cost related to the patient preferences. Of course, many cost
functions would be silly and medically unacceptable. However, to make this
more precise, what is needed is a rational theory of medicine. Unfortunately,
it is fair to say that medicine does not have one. As discussed in Chapter 3,
decisions are based on a wide range of ‘heuristic’ principles related to e.g., phys-
iological, ethical, and psychological frameworks and there does not seem to be
an articulated theory that ties these considerations together. As for example
[Hoey and Todkill, 2001] mentions, the quip “That’s all very well in practice,
but will it work in theory?” poses a valid question for medicine. Moreover,
even if we would be able to define the correct cost function, the cost function
would contain many attributes compared to, for example digital systems. Al-
though multi-attribute utility functions (e.g., [Keeney and Raiffa, 1976]) are
well-known in decision-analysis, it will be challenging to combine these ideas
with the use of formal methods.

8.3 Final Thoughts

In the artificial intelligence community, there has been a trend to move to
machine learning methods, as more and more data become available. In this
sense, this thesis goes against the tide, as it is mainly concerned with knowledge
representation and reasoning, though there are obvious differences between this

148 Conclusions

work in comparison to the work on knowledge representation at the end of the
1980s, namely the use of modal logics and powerful verification techniques,
which have only become more practically useful during the last decade.

There is some initial work on the use of machine learning techniques for
the construction of guidelines [Mani and Aliferis, 2007], but a rational theory
for decision making is then imperative. First, machine learning techniques are
extremely good for building predictive and descriptive models of the data, but
cannot be prescriptive. This is related to Hume’s is-ought problem, i.e., just
by knowing what is the case, you cannot know what you ought to do. Data-
mining techniques are essential to construct medical knowledge, but a gap
remains for constructing clinical knowledge. What ought to be the case requires
at least knowledge about patients’ preferences and some measure of quality.
Several machine-learning proposals deal with this problem by assuming utility
functions and subsequently maximising the expected utility of a particular
treatment; however, it is a question how feasible it is to encode qualitatively
described quality criteria in a utility function as these utility functions must
contain large amounts of attributes which makes knowledge elicitation difficult.

In order to bridge the gap between biomedical scientific and clinical knowl-
edge, the reasons for studying logical representations are as valid as they were
in the early days of artificial intelligence. Large parts of the guideline can be
represented using temporal logic, logical sentences are fairly easy to understand
(in a sense that they can often be intelligibly phrased in natural language), and
a logical justification can be provided. Nonetheless, some of the knowledge in
guidelines has been ignored, as it occurs so sporadically. Such knowledge may
be integrated with the logical parts using one of the probabilistic logics that
have appeared the last couple of years. This thesis can act as a basis for such
further investigations.

Appendix A
Proofs

A.1 Proof of Meta-level Property (T2) in Chapter 4

In the formulas below, each literal is augmented with a time-index. These
implicitly universally quantified variables are denoted as t and t′. Recall that
g(x, y) = down is implemented as ¬(g(x, y) = up) and functions f and f ′ are
Skolem functions introduced by otter. Both Skolem functions map a time
point to a later time point. Consider the following clauses in the usable and
set-of-support list:

2 capacity(b-cells, insulin, t) 6= nearly-exhausted ∨
capacity(b-cells, insulin, t) 6= exhausted

14 t 6> f(t) ∨ capacity(b-cells, insulin, t) = exhausted ∨ t > t′ ∨
secretion(b-cells, insulin, t′) = up

15 ¬Drug(SU, f(t)) ∨ capacity(b-cells, insulin, t) = exhausted ∨ t > t′ ∨
secretion(b-cells, insulin, t′) = up

51 0 > t ∨ Drug(SU, t)

53 capacity(b-cells, insulin, 0) = nearly-exhausted

For example, assumption (53) models the capacity of the B cells, i.e., nearly
exhausted at time 0 where the property as shown above should be refuted. Note
that some of the clauses are introduced in the translation to propositional logic,
for example assumption (2) is due to the fact that that values of the capacity
are mutually exclusive. This is consistent with the original formalisation, as
functions map to unique elements for element of the domain.

Early in the proof, otter deduced that if the capacity of insulin in B cells
is nearly-exhausted, then it is not completely exhausted:

56 [neg_hyper,53,2] capacity(b-cells, insulin, 0) 6= exhausted

149

150 Proofs

Now we skip a part of the proof, which results in information about the relation
between the capacity of insulin and the secretion of insulin in B cells at a certain
time point:

517 [neg_hyper,516,53] 0 6> f ′(0)

765 [neg_hyper,761,50,675]
capacity(b-cells, insulin, f ′(0)) 6= nearly-exhausted ∨
secretion(b-cells, insulin, f ′(0)) = down

This information allows otter to quickly complete the proof, by combining
it with the information about the effects of a sulfonylurea drug:

766 [neg_hyper,765,15,56,517]
capacity(b-cells, insulin, f(0)) 6= nearly-exhausted ∨
¬Drug(SU, f ′(0))

767 [neg_hyper,765,14,56,517]
capacity(b-cells, insulin, f(0)) 6= nearly-exhausted ∨
0 6> f(0)

after which (53) can be used as a nucleus to yield:

768 [neg_hyper,767,53] 0 6> f1(0)

and consequently by taking (51) as a nucleus, we find that at time point 0 the
capacity of insulin is not nearly exhausted:

769 [neg_hyper,768,51,766]
capacity(b-cells, insulin, 0) 6= nearly-exhausted

This directly contradicts one of the assumptions and this results in an empty
clause:

770 [binary,769.1,53.1] ⊥

A.2 Proof of Lemma 4.1

Let Γ and Π denote lists of literals. An n-tuple (x1, . . . , xn) ∈ {in, out, normal}n

is called a mode specification for an n-place relation symbol R ∈ Rel, denoted
by α, β, γ. The set of input variables of the atom R(t1, . . . , tn) (where ti is a
term) given a mode specification is defined by:

in(R(t1, . . . , tn), (x1, . . . , xn)) =
⋃

{vars(ti) | 1 ≤ i ≤ n, xi = in}.

Analogously, the set of output variables is given by

out(R(t1, . . . , tn), (x1, . . . , xn)) =
⋃

{vars(ti) | 1 ≤ i ≤ n, xi = out}.

Proof of Lemma 4.1 151

An input/output specification is a function S which assigns to every n-place
relation symbol R a set S+(R/n) ⊆ {in, out, normal}n of positive mode specifi-
cation and a set S−(R/n) ⊆ {in, normal}n of negative mode specifications for
R.

Definition A.1 (Definition 2.1 [Stärk, 1994]). A clause Π → A is called cor-
rect with respect to an input/output specification S or S-correct iff

(C1) for all positive modes α ∈ S+(A) there exists a permutation of the literals
of the body Π of the form B1, . . . , Bm,¬C1, . . .¬Cn and for all 1 ≤ i ≤ m
a positive mode βi ∈ S+(Bi) such that

• for all 1 ≤ i ≤ m, in(Bi, βi) ⊆ in(A,α) ∪
⋃

1≤j≤i out(Bj , βj),

• out(A,α) ⊆ in(A,α) ∪
⋃

1≤j≤m out(Bj , βj),

• for all 1 ≤ i ≤ n,
S−(Ci) 6= ∅ and vars(Ci) ⊆ in(A,α) ∪

⋃
1≤j≤m out(Bj , βj),

(C2) for all negative modes α ∈ S−(A) for all positive literals B of Π there
exists a negative mode β ∈ S−(B) with in(B, β) ⊆ in(A,α) and for all
negative literals ¬C of Π there exists a positive mode γ ∈ S+(C) with
in(C, γ) ⊆ in(A,α).

A program P is called correct with respect to an input/output specification
S iff all clauses of P are S-correct.

Definition A.2 (Definition 2.2 [Stärk, 1994]). A goal Γ is called correct with
respect to an input/output specification S or S-correct iff there exists a per-
mutation B1, . . . , Bm,¬C1, . . .¬Cn of the literals of Γ and for all 1 ≤ i ≤ m a
positive mode βi ∈ S+(Bi) such that

(G1) for all 1 ≤ i ≤ m, in(Bi, βi) ⊆
⋃

1≤j≤i out(Bj , βj),

(G2) for all 1 ≤ i ≤ m, S−(Ci) 6= ∅ and vars(Ci) ⊆
⋃

1≤j≤m out(Bj , βj).

Theorem A.1 (reformulation of Theorem 5.4 [Stärk, 1994]). Let P be a nor-
mal program which is correct with respect to the input/output specification S
and let L1, . . . , Lr be a goal.

(a) If COMP(P) |= L1 ∧ . . . ∧ lr and L1, . . . , Lr is correct with respect to S
then there exists a substitution θ such that there is a successful SLDNF
derivation for L1, . . . , Lr with answer θ. (...)

Define S+ = S− = {(normal} for every unary predicate and
{(normal, normal)} for every binary predicate. Observe that Γ contains only
definite clauses, so each condition in Definition 1 is trivially satisfied, thus Γ
is S-correct. As the goal ψ is grounded, all clauses of Definition 2 are trivially
satisfied, thus also S-correct. Hence, by Theorem 3, we find that there is a
successful SLDNF derivation of ψ given Γ.

152 Proofs

A.3 Proof of Theorem 7.1

A helpful semantic notion is faithfulness, which means that the failure proposi-
tions correspond exactly to the failure of the the action it has been introduced
for.

Definition A.3. σ is called faithful iff for all a ∈ A and all i s.t. 0 ≤ i ≤ |σ|
holds αi(a) = failed iff πi(fa) = ⊤.

In the following two lemmas, it is proven that the reduction is found with
respect to those faithful models. In the first lemma, we show that Φ acts as
failmodel on the syntactic level, which is then used to prove equivalence of
formulas with its reduction.

Lemma A.1. For all faithful σ and ϕ:

failmodel(σ) |= ϕ iff σ |= Φ(ϕ)

Proof. By induction on the structure of ϕ. Suppose ϕ = a: (⇒) suppose
failmodel(σ) |= a then α0(a) 6= failed. By faithfulness πi(fa) = ⊥, thus σ |=
¬fa. All steps can be reversed. The rest of the cases follow almost immediately,
taking into account that if the model is faithful, so is every interval within this
model, and vice versa.

Lemma A.2. For all faithful models σ it holds that σ |= ϕ↔ reduce(ϕ).

Proof. By induction on the structure of ϕ. In this case, the only interested case
is for ϕ = fail(ψ): (⇒) σ |= fail(ψ) iff σ 6|= ψ and failmodel(σ) 6|= ψ. By I.H.
on the first part, it follows that σ 6|= reduce(ϕ). As σ is faithful, it follows that
failmodel(σ) is faithful. Therefore failmodel(σ) 6|= reduce(ϕ). Using Lemma
A.1, we get σ 6|= Φ(reduce(ϕ)). Therefore σ |= ¬reduce(ϕ) ∧ ¬Φ(reduce(ϕ)).
By definition, σ |= reduce(fail(ϕ)). All steps are valid in the other direction
as well.

These results do not hold for any model, e.g., it is not for all models the
case that fa → ¬a. A weak form of faithfulness can be encoded as an ITL
formula, bounded by the number of actions in some formula. The fact it is
bounded by actions in a formula is relevant, because we may have an infinite
number of actions in the language, while each formula has a finite length in
standard temporal logic.

Using Definition 7.12, we can then proof the main lemma of this section,
which characterises the relation between a formula and its reduction for any
model.

Lemma A.3. |= ϕ iff |= I(ϕ) → reduce(ϕ)

Proof. Without loss of generality, this property can be reformulated as

|= ¬ϕ iff I(ϕ) |= reduce(¬ϕ)

Proof of Example 1 of Chapter 7 153

as every formula can be stated as a negation and I(¬ϕ) = I(ϕ). Using the
definition of reduce, and taking negation on both sides, rewrite this to:

∃σσ |= ϕ iff ∃σσ |= I(ϕ) ∧ reduce(ϕ)

(⇒) Suppose there is some σ such that σ |= ϕ. Construct a σ′ such that
π′

i(fa) = ⊤ iff αi(a) = failed, for all 0 ≤ i ≤ |σ|, actions a, and all fresh
variables fa introduced in the reduction. Let σ′ be the same as σ in every
other respect. As ϕ does not contain any variables fa, it is clear that then
σ′ |= ϕ. As σ′ is faithful (by construction), it then follows by Lemma A.2 that
σ′ |= reduce(ϕ). Moreover, by construction, it follows that σ′ |= I(ϕ).
(⇐) Suppose for some σ, σ |= I(ϕ)∧ reduce(ϕ). Construct σ′ such that for all
i such that 0 ≤ i ≤ |σ|, and all actions a:

• if πi(fa) = ⊤ then α′
i(a) = failed

• if πi(fa) = ⊥ and αi(a) = active then α′
i(a) = active

• if πi(fa) = ⊥ and αi(a) 6= active then α′
i(a) = inactive

In all other respects (length, valuation of atomic propositions), σ and σ′ are
the same. We then prove for all i and a ∈ actions(ϕ):

αi(a) = active ⇔ α′
i(a) = active

(⇒) αi(a) = active. Then, by the fact σ |= I(ϕ), we know that πi(fa) = ⊥.
Thus, by definition α′

i(a) = active. (⇐) Suppose αi(a) 6= active. Then either
α′

i(a) = failed (if πi(fa) = ⊤) or α′
i(a) = inactive (if πi(fa) = ⊥). In any case,

we conclude: α′
i(a) 6= active.

As reduce(ϕ) does not contain a fail operator, it cannot distinguish if an action
is inactive or failed. Hence, it follows that σ′ |= reduce(ϕ). It is easy to see
that σ′ is faithful, so by Lemma A.2 it follows that σ′ |= ϕ.

Theorem A.2.

|= ϕ iff I(ϕ) |=ITL reduct(ϕ)

Proof. (sketch). By Lemma A.3, we know |= ϕ iff |= I(ϕ) → reduce(ϕ). Ob-
serve that the right side does not contain the fail operator, hence it cannot
distinguish between failures and inactivations. Therefore, |= I(ϕ) → reduce(ϕ)
if all actions are interpreted as propositions. By doing this, I(ϕ) → reduce(ϕ)
is also an ITL formula. Finally, note that the semantics of ITL and ITALF
coincide for the language of ITL.

A.4 Proof of Example 1 of Chapter 7

This appendix provides an outline of the proof performed in KIV. The first
steps of the proof consists of simple manipulation of the formulas in order to

154 Proofs

put them in a comfortable form for presenting the proof. First, recall that the
translated failure axiom for diet is:

G (diet→X! ((diet∧Condition(hyperglycaemia)↔X! fail diet))

Reduction of this to an ITL formula yields:

G (diet→X! ((diet∧Condition(hyperglycaemia)↔X! (¬diet ∧ fdiet)))

which, by the use of Γ, can be written as:

G (diet→ (X! (diet∧Condition(hyperglycaemia))↔X!X! fdiet)) (A.1)

Second, from the background knowledge, we know that:

G (diet∧ capacity(b-cells, insulin) = normal→X!Condition(normoglycaemia))

which, together with the fact that G capacity(b-cells, insulin) = normal, it can
be automatically derived that:

G (diet→X!Condition(normoglycaemia)) (A.2)

Finally, note that the proof obligation can be presented as

XGCondition(normoglycaemia) (A.3)

By weakening all the uninteresting parts for proving the property, we finally
end up with the main proof obligation:

G (diet→ (X! (diet∧Condition(hyperglycaemia))↔X!X! fdiet)), Eq.(1)
G (diet→X!Condition(normoglycaemia)), Eq.(2)
(G treatmentdiet∧¬ last); X! fdiet, M
G (treatmentdiet→ diet),
⊢ XGCondition(normoglycaemia) Eq.(3)

Symbolically executing this sequent requires only one possible situation that
needs to be proven:

G (diet→ (X! (diet∧Condition(hyperglycaemia))↔X!X! fdiet)),
G (diet→X!Condition(normoglycaemia)),
(G treatmentdiet); X! fdiet,
G (treatmentdiet→ diet),
Condition(normoglycaemia),¬X! fdiet

⊢ GCondition(normoglycaemia)

This sequent represents the situation where diet has been applied in the first
step. From this it was derived that then the condition is normoglycaemia.

Proof of Example 1 of Chapter 7 155

Using this fact, the failure axiom is used to derive that ¬X! fdiet, i.e., diet
will not fail in the next step. The rest of the proof consists of the claim that
this temporal situation will remain as it is. So we reason by induction that
GCondition(normoglycaemia). Abbreviate the sequent above as Γ ⊢ ∆: then
the sequent is rewritten to:

G (diet→ (X! (diet∧Condition(hyperglycaemia))↔X!X! fdiet)),
G (diet→X!Condition(normoglycaemia)),
(G treatmentdiet); X! fdiet,
G (treatmentdiet→ diet),
Condition(normoglycaemia),¬X! fdiet,
t = N,N = N ′′ + 1until¬Condition(normoglycaemia), IND-HYP ⊢

where IND-HYP , t < N → (
∧

Γ →
∨

∆), N a fresh dynamic variable
and t a static variable. The remaining steps consists of symbolically executing
this sequent, which ends up in the same sequent with t = N − 1. Then, the
induction hypothesis can be applied, which finishes the proof.

156 Proofs

Appendix B
Specifications

B.1 Background Knowledge Diabetes Mellitus type 2

The following specification is in the TPTP (Thousands of Problems for The-
orem Provers) [Sutcliffe and Suttner, 1998] syntax. Recent releases of this li-
brary also contain scripts to convert the problem to otter’s input syntax.

fof(irreflexivity_gt,axiom,(
! [X] : ~ gt(X,X))).

fof(transitivity_gt,axiom,(
! [X,Y,Z] :
((gt(X,Y)
& gt(Y,Z))

=> gt(X,Z)))).

fof(xorcapacity1,axiom,(
! [X0] :
(bcapacityne(X0)
| bcapacityex(X0)
| bcapacitysn(X0)))).

fof(xorcapacity2,axiom,(
! [X0] :
(~ bcapacityne(X0)
| ~ bcapacityex(X0)))).

fof(xorcapacity3,axiom,(
! [X0] :
(~ bcapacityne(X0)

157

158 Specifications

| ~ bcapacitysn(X0)))).

fof(xorcapacity4,axiom,(
! [X0] :
(~ bcapacityex(X0)
| ~ bcapacitysn(X0)))).

fof(xorcondition1,axiom,(
! [X0] :
(conditionhyper(X0)
| conditionhypo(X0)
| conditionnormo(X0)))).

fof(xorcondition2,axiom,(
! [X0] :
(~ conditionhyper(X0)
| ~ conditionhypo(X0)))).

fof(xorcondition3,axiom,(
! [X0] :
(~ conditionhyper(X0)
| ~ conditionnormo(X0)))).

fof(xorcondition4,axiom,(
! [X0] :
(~ conditionhypo(X0)
| ~ conditionnormo(X0)))).

fof(insulin_effect,axiom,(
! [X0] :
(! [X1] :

(~ gt(X0,X1)
=> drugi(X1))

=> ! [X1] :
(~ gt(X0,X1)
=> (uptakelg(X1)

& uptakepg(X1)))))).

fof(liver_glucose,axiom,(
! [X0,X1] :
(~ gt(X0,X1)
=> (uptakelg(X1)
=> ~ releaselg(X1))))).

fof(sulfonylurea_effect,axiom,(

Background Knowledge Diabetes Mellitus type 2 159

! [X0] :
((! [X1] :

(~ gt(X0,X1)
=> drugsu(X1))

& ~ bcapacityex(X0))
=> ! [X1] :

(~ gt(X0,X1)
=> bsecretioni(X1))))).

fof(biguanide_effect,axiom,(
! [X0] :
(! [X1] :

(~ gt(X0,X1)
=> drugbg(X1))

=> ! [X1] :
(~ gt(X0,X1)
=> ~ releaselg(X1))))).

fof(sn_cure_1,axiom,(
! [X0] :
((! [X1] :

(~ gt(X0,X1)
=> bsecretioni(X1))

& bcapacitysn(X0)
& qilt27(X0)
& ! [X1] :

(gt(X0,X1)
=> conditionhyper(X1)))

=> ! [X1] :
(~ gt(X0,X1)
=> conditionnormo(X1))))).

fof(sn_cure_2,axiom,(
! [X0] :
((! [X1] :

(~ gt(X0,X1)
=> ~ releaselg(X1))

& bcapacitysn(X0)
& ~ qilt27(X0)
& ! [X1] :

(gt(X0,X1)
=> conditionhyper(X1)))

=> ! [X1] :
(~ gt(X0,X1)
=> conditionnormo(X1))))).

160 Specifications

fof(ne_cure,axiom,(
! [X0] :
(((! [X1] :

(~ gt(X0,X1)
=> ~ releaselg(X1))

| ! [X1] :
(~ gt(X0,X1)
=> uptakepg(X1)))

& bcapacityne(X0)
& ! [X1] :

(~ gt(X0,X1)
=> bsecretioni(X1))

& ! [X1] :
(gt(X0,X1)
=> conditionhyper(X1)))

=> ! [X1] :
(~ gt(X0,X1)
=> conditionnormo(X1))))).

fof(ex_cure,axiom,(
! [X0] :
((! [X1] :

(~ gt(X0,X1)
=> uptakelg(X1))

& ! [X1] :
(~ gt(X0,X1)
=> uptakepg(X1))

& bcapacityex(X0)
& ! [X1] :

(gt(X0,X1)
=> conditionhyper(X1)))

=> ! [X1] :
(~ gt(X0,X1)
=> (conditionnormo(X1)

| conditionhypo(X1)))))).

Some sample conjectures follow. The first is a theorem given the axioms above:

% Whether or not patients with subnormal production
% of glucose in the B-cells and a low QI index are
% cured with sulfonylurea.

% Status : Theorem

fof(treatmentsn2,conjecture,

KIV-Asbru Plans 161

((! [X0] :
(~ gt(n0,X0)
=> drugsu(X0))

& ! [X0] :
(gt(n0,X0)
=> conditionhyper(X0))

& bcapacitysn(n0)
& qilt27(n0))

=> ! [X0] :
(~ gt(n0,X0)
=> conditionnormo(X0)))).

The second example illustrates a non-theorem:

% There is not a suitable therapy for patients
% with exhausted B-cells available.
% Status : CounterSatisfiable

fof(treatmentex_sub,conjecture,
((! [X0] :

(~ gt(n0,X0)
=> (drugi(X0)

& drugsu(X0)
& drugbg(X0)))

& ! [X0] :
(gt(n0,X0)
=> conditionhyper(X0))

& bcapacityex(n0))
=> ! [X0] :

(~ gt(n0,X0)
=> conditionnormo(X0)))).

All other properties can be found in the latest TPTP release or at
http://www.tptp.org.

B.2 KIV-Asbru Plans

The following is an example of an Asbru plan as used in Chapter 6:

asbru(‘BCT’) = mk-asbru-def
(mk-aasbruc(mk-acond(\lambda pdh, vh, ash, as, ac.
\not (pdh[ac][‘multi-centricity’] .val
\or
pdh[ac][‘diffuse-maligant-microcalcifications’].val
\or
pdh[ac][‘previous-breast-radiotherapy’].val)),

162 Specifications

false,false),
setup_condition,
suspend_condition,
resume_condition,
abort_condition,
complete_condition,
sequential,
‘BCTsurg’ + ‘MRM’ ’,
wait-for-n(1, ‘BCTsurg’ + ‘MRM’ ’),
false); used for : s ,ls;

The filter condition ensures that properties of the patient are fulfilled before the
plan is considered. If so, it sequentially executes plans ‘BCTsurg’ and ‘MRM’
and completes when one of them has succesfully completed. A more compre-
hensive explanation of the constructs can be found in [Schmitt et al., 2005].

B.3 SMV Translation of Asbru Plan

The following SMV illustrates the SMV code as generated by the tools and
method described in [Bäumler et al., 2006]. Each of the parameters of the
plan is defined and for each plan an SMV module implements the state chart
semantics of Asbru. For the plan in Appendix B.2, the following is generated:

...

BCTp_is_terminated
:= (BCTp_state = rejected) | (BCTp_state = aborted)

| (BCTp_state = completed);
BCTp_is_aborted
:= (BCTp_state = rejected) | (BCTp_state = aborted);

BCTp_consider_condition
:= (treatmentp_control_consider_signal = BCT)

| (treatmentp_control_consider_signal = all);
BCTp_filter_condition
:= ~(multi_centricity=1
| diffuse_maligant_microcalcifications=1
| previous_breast_radiotherapy=1);

BCTp_setup_condition := 1;
BCTp_activate_condition
:= ((treatmentp_control_activate_signal = BCT)

| (treatmentp_control_activate_signal = all));
BCTp_parentterm_condition
:= (treatmentp_is_terminated

| treatmentp_state=inactive);
BCTp_reject_condition

SMV Translation of Asbru Plan 163

:= BCTp_parentterm_condition
| (BCTp_state = considered
& !BCTp_filter_condition);

BCTp_abort_multi_condition
:= BCTp_abort_condition
| BCTp_parentterm_condition
| BCTp_child_is_aborted;

BCTp_abort_condition := 0;
BCTp_complete_multi_condition
:= (BCTp_complete_condition & BCTp_waitfor_condition);

BCTp_complete_condition := 1;
BCTp_waitfor_condition
:= (BCTsurgp_state=completed) | (MRMp_state=completed);

BCTp_is_in_selection_phase
:= (BCTp_state = considered) | (BCTp_state = possible)

| (BCTp_state = ready);
BCTp_retry_condition := 0;
BCTp_child_is_aborted
:= (BCTsurgp_is_aborted) & (MRMp_is_aborted);

BCTp_ifthen_condition := 1;

...

module BCT_plan(BCTp_state,BCTp_parentterm_condition,
BCTp_consider_condition,BCTp_filter_condition,
BCTp_is_terminated,BCTp_is_in_selection_phase,
BCTp_setup_condition,BCTp_reject_condition,
BCTp_activate_condition,BCTp_abort_multi_condition,
BCTp_complete_multi_condition,
BCTp_retry_condition,tick)
{
init(BCTp_state) := inactive;
case
{

BCTp_parentterm_condition :
next(BCTp_state) := inactive;

BCTp_is_terminated
& BCTp_retry_condition :
next(BCTp_state) := considered;

BCTp_state = inactive
& BCTp_consider_condition :
next(BCTp_state) := considered;

BCTp_is_in_selection_phase
& BCTp_reject_condition :
next(BCTp_state) := rejected;

164 Specifications

BCTp_state = considered
& BCTp_filter_condition :
next(BCTp_state) := possible;

BCTp_state = possible
& BCTp_setup_condition :
next(BCTp_state) := ready;

BCTp_state = ready
& BCTp_activate_condition :
next(BCTp_state) := activated;

BCTp_state = activated
& BCTp_complete_multi_condition :
next(BCTp_state) := completed;

BCTp_state = activated
& BCTp_abort_multi_condition :
next(BCTp_state) := aborted;

1 : next(BCTp_state) := BCTp_state;
}
}

Bibliography

[Aaby and Narayana, 1988] Aaby, A. A. and Narayana, K. T. (1988). Propo-
sitional temporal interval logic is PSPACE complete. In 9th International
Conference on Automated Deduction, number 310 in LNCS, pages 218–237.
Springer.

[Advani et al., 1998] Advani, A., Lo, K., and Shahar, Y. (1998). Intention-
based critiquing of guideline-oriented medical care. In Proceedings of AMIA
Annual Symposium, pages 483–487.

[Ågotnes et al., 2007] Ågotnes, T., van der Hoek, W., Rodŕıguez-Aguilar, J.,
Sierra, C., and Wooldridge, M. (2007). On the logic of normative systems. In
Veloso, M. M., editor, Twentieth International Joint Conference on Artificial
Intelligence (IJCAI), pages 1175–1180. AAAI Press.

[Allen, 1983] Allen, J. F. (1983). Maintaining knowledge about temporal in-
tervals. Communications of the ACM, 26(11):832–843.

[Alur et al., 1998] Alur, R., Henzinger, T. A., and Kupferman, O. (1998).
Alternating-time temporal logic. LNCS, 1536:23–60.

[Alves-Foss and Lam, 1999] Alves-Foss, J. and Lam, F. S. (1999). Dynamic
denotational semantics of Java. In Formal Syntax and Semantics of Java,
volume 1523 of LNCS. Springer.

[American Cancer Society, 2006] American Cancer Society (2006). Do we
know what causes breast cancer? http://www.cancer.org/docroot/
CRI/content/CRI_2_4_2X_Do_we_know_what_causes_breast_
cancer_5.asp. Accessed: August 15, 2007.

[Anderson, 1999] Anderson, R. (1999). The formal verification of a payment
system. In Hinchey, M. and Bowen, J., editors, Industrial-Strength Formal
Methods in Practice (Formal Approaches to Computing and Information
Technology (FACIT)), pages 43–52.

165

166 BIBLIOGRAPHY

[Arden Syntax Technical Committee of HL7, 1999] Arden Syntax Technical
Committee of HL7 (1999). Arden Syntax for Medical Logic Systems.

[Areces et al., 2000] Areces, C., Gennari, R., Heguiabehere, J., and de Rijke,
M. (2000). Tree-based heuristics in modal theorem proving. In Proceedings
of the ECAI’2000, Berlin, Germany.

[Ashcroft, 1975] Ashcroft, E. A. (1975). Proving assertations about parallel
programs. Journal of Computer System Science, 10(1):110–135.

[Baeten, 2004] Baeten, J. C. M. (2004). A brief history of process algebra.
Technical Report CSR-04-02, Technical University Eindhoven.

[Balser, 2005] Balser, M. (2005). Verifying Concurrent Systems with Symbolic
Execution – Temporal Reasoning is Symbolic Execution with a Little Induc-
tion. PhD thesis, University of Augsburg, Augsburg, Germany.

[Balser et al., 2002a] Balser, M., Duelli, C., and Reif, W. (2002a). Formal
semantics of Asbru - an overview. In Proceedings of the International Con-
ference on Integrated Design and Process Technology, Passadena. Society for
Design and Process Science.

[Balser et al., 2002b] Balser, M., Duelli, C., Reif, W., and Schellhorn, G.
(2002b). Verifying concurrent systems with symbolic execution. Journal
of Logic and Computation, 12(4):549–560.

[Balser et al., 2006] Balser, M., Duelli, C., Reif, W., and Schmitt, J. (2006).
Formal semantics of asbru – v2.12. Technical report, University of Augsburg.

[Balser et al., 2000] Balser, M., Reif, W., Schellhorn, G., Stenzel, K., and
Thums, A. (2000). Formal system development with KIV. In Maibaum,
T., editor, Fundamental Approaches to Software Engineering, number 1783
in LNCS. Springer-Verlag.

[Bäumler et al., 2006] Bäumler, S., Balser, M., Dunets, A., Reif, W., and
Schmitt, J. (2006). Verification of medical guidelines by model checking
– a case study. In Valmari, A., editor, Proceedings of 13th International
SPIN Workshop on Model Checking of Software, volume 3925 of LNCS,
pages 219–233. Springer-Verlag.

[Benerecetti et al., 1998] Benerecetti, M., Giunchiglia, F., and Serafini, L.
(1998). Model checking multiagent systems. Journal of Logic and Com-
putation, 8(3):401–423.

[Bergstra and Klop, 1987] Bergstra, J. A. and Klop, J. W. (1987). A universal
axiom system for process specification. In CWI Quarterly 15, pages 3–23.
CWI.

BIBLIOGRAPHY 167

[Biere et al., 1999] Biere, A., Cimatti, A., Clarke, E. M., Fujita, M., and Zhu,
Y. (1999). Symbolic model checking using SAT procedures instead of BDDs.
In Design Automation Conference (DAC’99).

[Biere et al., 2003] Biere, A., Cimatti, A., Clarke, E. M., Strichman, O., and
Zhu, Y. (2003). Bounded Model Checking, volume 58 of Advances in Com-
puters. Academic Press.

[Bowen and Hinchey, 1997] Bowen, J. P. and Hinchey, M. G. (1997). The
use of industrial-strength formal methods. In 21st International Computer
Software & Application Conference (COMPSAC’97), pages 332–337. IEEE
Computer Society Press.

[Boyd et al., 2005] Boyd, C. M., Darer, J., Boult, C., Fried, L. P. Boult, L.,
and W., W. A. (2005). Clinical practice guidelines and quality of care for
older patients with multiple comorbid diseases. The Journal of the American
Medical Association, 294(6):716–724.

[Boyer et al., 1995] Boyer, R. S., Kaufmann, M., and Moore, J. S. (1995). The
Boyer-Moore theorem prover and its interactive enhancement. Computers
and Mathematics with Applications, 29(2):27–62.

[Boyer and Moore, 1975] Boyer, R. S. and Moore, J. S. (1975). Proving the-
orems about LISP functions. Journal of the Association for Computing
Machinery, 22(1):129–144.

[Bruijne et al., 2007] Bruijne, M. C. d., Zegers, M., Hoonhout, L. H. F.,
and Wagner, C. (2007). Onbedoelde schade in Nederlandse ziekenhuizen:
dossieronderzoek van ziekenhuisopnames in 2004. Instituut voor Extramu-
raal Geneeskundig Onderzoek (NIVEL).

[Bryant, 1986] Bryant, R. E. (1986). Graph-based algorithms for Boolean func-
tion manipulation. IEEE Transactions on Computers, 35(8):677–691.

[Bundy, 1988] Bundy, A. (1988). Meta-level inference two applications. Jour-
nal of Automated Reasoning, 4(1):15–27.

[Burch et al., 1990] Burch, J. R., Clarke, E. M., McMillan, K., L., D. D., and
Hwang, L. J. (1990). Symbolic model checking: 1020 states and beyond.
Information and Computation, 98(2):142–170.

[Burrows et al., 1989] Burrows, M., Abadi, M., and Needham, R. (1989). A
logic of authentication. In Proceedings of the Royal Society of London, Series
A, volume 426, pages 233–271.

[Cau and B., 1996] Cau, A. and B., M. (1996). Using PVS for interval tem-
poral logic proofs. part 1: The syntactic and semantic encoding. Technical
report, SERCentre, De Montfort University, Leicester.

168 BIBLIOGRAPHY

[CBO, 2002] CBO (2002). Richtlijn Behandeling van het mammacarcinoom.
van Zuiden.

[CBO, 2005] CBO (2005). Evidence-based Richtlijnontwikkeling – Handlei-
ding voor werkgroepleden. CBO. http://www.cbo.nl/product/
richtlijnen/handleiding_ebro/handl_totaal.pdf?

[Chabrier and Fages, 2003] Chabrier, N. and Fages, F. (2003). Symbolic model
checking of biochemical networks. In Priami, C., editor, Proceedings CMSB,
number 2602 in LNCS, pages 149–162.

[Chaochen, 1993] Chaochen, Z. (1993). Duration calculi: an overview. In
Bjørner, D., Broy, M., and Pottosin, I., editors, Formal Methods in Program-
ming and their Applications, volume 735 of LNCS, pages 256–266, Berlin.
Springer.

[Chaudron et al., 1999] Chaudron, M. R. V., Tretmans, J., and Wijbrans, K.
(1999). Lessons from the application of formal methods to the design of
a storm surge barrier control system. In Wing, J., Woodcock, J., Davies,
J., Wing, J. M., Woodcock, J., and Davies, J., editors, Proceedings World
Congress on Formal Methods in the Development of Computing Systems,
volume 1709 of LNCS, pages 1511–1526. Springer-Verlag.

[Church, 1936] Church, A. (1936). An unsolvable problem of elementary num-
ber theory. American Journal of Mathematics, 58:345–363.

[Clark, 1978] Clark, K. L. (1978). Negation as failure. In Gaillaire, H. and
Minker, J., editors, Logic and Data Bases, pages 293–322. Plenum Press,
New York.

[Clarke et al., 1986] Clarke, E. M., Emerson, E. A., and Sistla, A. P. (1986).
Automatic verification of finite state concurrent systems using tempo-
ral logic. ACM Transactions on Programming Languages and Systems,
8(2):244–263.

[Clarke et al., 1994] Clarke, E. M., Grumberg, O., and Long, D. E. (1994).
Model checking and abstraction. ACM Transactions on Programming Lan-
guages and Systems, 16(5):1512–1542.

[Clarke et al., 2001] Clarke, E. M., Grumberg, O., and Peled, A. D. (2001).
Model Checking. The MIT Press, Cambridge, Massachusetts, London, Eng-
land.

[Clarke et al., 1989] Clarke, E. M., Long, D. E., and McMillan, K. L. (1989). A
language for compositional specification and verification of finite state hard-
ware controllers. In Darringer, J. A. and Rammig, F. J., editors, Proceed-
ings of the 9th International Symposium on Computer Hardware Description
Languages and Their Applications, pages 281–295. North-Holland.

BIBLIOGRAPHY 169

[Clayton and Hripsak, 1995] Clayton, P. and Hripsak, G. (1995). Decision sup-
port in healthcare. International Journal of Biomedical Computing, 39:59–
66.

[Cluzeau et al., 2003] Cluzeau, F. A., Burgers, J. S., M., B., Grol, R., M.,
M., Littlejohns, P., Grimshaw, J., and Hunt, C. (2003). Development and
validation of an international appraisal instrument for assessing the quality
of clinical practice guidelines: the AGREE project. Quality and Safety in
Health Care, 12(1):18–23.

[Cocchiarella, 2002] Cocchiarella, N. (2002). Philosophical perspectives on
quantification in tense and modal logic. In Gabbay, D. and Guenther, F.,
editors, Handbook of Philosophical Logic, volume 7, pages 235–275. Kuwer
Academic Publishers.

[Cohen and Levesque, 1990] Cohen, P. R. and Levesque, H. J. (1990). Inten-
tion is choice with commitment. Artificial Intelligence, 42:213–261.

[Console et al., 1991] Console, L., Dupre, D. T., and Torasso, P. (1991). On
the relationship between abduction and deduction. Journal of Logic and
Computation, 1(5):661–690.

[Console and Torasso, 1991] Console, L. and Torasso, P. (1991). A spectrum
of logical definitions of model-based diagnosis. Computational Intelligence,
pages 133–141.

[Dams et al., 1993] Dams, D., Grumberg, O., and Gerth, R. (1993). Genera-
tion of reduced models for checking fragments of ctl. In CAV ’93: Proceedings
of the 5th International Conference on Computer Aided Verification, pages
479–490, London, UK. Springer-Verlag.

[Davis et al., 1962] Davis, M., Logemann, G., and Loveland, D. (1962). A ma-
chine program for theorem proving. Communications of the ACM, 5(7):394–
397.

[Davis and Putman, 1969] Davis, M. and Putman, H. (1969). A computing
procedure for quantification theory. Journal of the ACM, 7:201–215.

[Dijkstra, 1975] Dijkstra, E. W. (1975). Guarded commands, nondeterminacy
and formal derivation of programs. Communications of the ACM, 18(8):453–
457.

[Dixon et al., 1998] Dixon, C., Fisher, M., and Wooldridge, M. (1998). Reso-
lution for temporal logics of knowledge. Journal of Logic and Computation,
8(3):345–372.

[Duftschmid and Miksch, 1999] Duftschmid, G. and Miksch, S. (1999).
Knowledge-based verification of clinical guidelines by detection of anomalies.
OEGAI Journal, pages 37–39.

170 BIBLIOGRAPHY

[Duftschmid et al., 2002] Duftschmid, G., Miksch, S., and Gall, W. (2002).
Verification of temporal scheduling constraints in clinical practice guidelines.
Artificial Intelligence in Medicine, 25:93–121.

[Duftschmid et al., 1998] Duftschmid, G., Miksch, S., Shahar, Y., and John-
son, P. (1998). Multi-level verification of clinical protocols. In Proceedings of
the Workshop on Validation and Verification of Knowledge-Based Systems,
Trento, Italy.

[Dung, 1995] Dung, P. M. (1995). An argumentation theoretic foundation of
logic programming. Journal of Logic Programming, 22:151–177.

[Eker et al., 2002] Eker, S., Knapp, M., Laderoute, K., Lincoln, P., Meseger,
J., and Sönmez, K. M. (2002). Pathway logic: Symbolic analysis of biological
signaling. In Proceedings of the seventh Pacific Symposium on Biocomputing,
pages 400–412.

[Emerson and Halpern, 1982] Emerson, E. A. and Halpern, J. Y. (1982). Deci-
sion procedures and expressiveness in the temporal logic of branching time.
In STOC ’82: Proceedings of the fourteenth annual ACM symposium on
Theory of computing, pages 169–180, New York, NY, USA. ACM Press.

[Errampalli et al., 2004] Errampalli, D. D., Priami, C., and Quaglia, P. (2004).
A formal language for computational systems biology. OMICS A Journal
Of Integrative Biology, 8(4):371–380.

[Fabrega et al., 1998] Fabrega, F. J. T., Herzog, J. C., and D., G. J. (1998).
Why is a security protocol correct? In IEEE Symposium on Security and
Privacy.

[Fagin et al., 1995] Fagin, R., Halpern, J. Y., Moses, Y., and Vardi, M. Y.
(1995). Reasoning about Knowledge. MIT Press, Cambridge.

[Fensel et al., 1996] Fensel, D., Schonegge, A., Groenboom, R., and B., W.
(1996). Specification and verification of knowledge-based systems. In Gaines,
B. R. and Musen, M. A., editors, Proceedings of the 10th Banff knowledge
acquisition for knowledge-based systems workshop, pages 1–20, Department
of Computer Science, University of Calgary.

[Fidge et al., 1998] Fidge, C. J., Hayes, I. J., Martin, A. P., and Wabenhorst,
A. K. (1998). A set-theoretic model for real-time specification and reasoning.
In Jeuring, J., editor, Mathematics of Program Construction (MPC’98),
volume 1422 of LNCS, pages 188–206, Berlin. Springer.

[Fisher et al., 2001] Fisher, M., Dixon, C., and Peim, M. (2001). Clausal tem-
poral resolution. ACM Transactions on Computational Logic, 2(1):12–56.

BIBLIOGRAPHY 171

[Floyd, 1967] Floyd, R. W. (1967). Assigning meaning to programs. In Pro-
ceedings of Symposia in Applied Mathematics, pages 19–32, Providence, RI.
American Mathematical Society.

[Fox and Das, 2000] Fox, J. and Das, S. (2000). Safe and Sound: Artificial
Intelligence in Hazardous Applications. AAAI Press.

[Fox et al., 2008] Fox, J., Dunlop, R., Black, E., Chronakis, I., Patkar, V.,
South, M., and Thomson, R. (2008). Computer-based Medical Guidelines
and Protocols: a Primer and Current Trends, chapter From Guidelines to
Careflow: analysis and discussion. IO Press.

[Fox et al., 1996] Fox, J., Johns, N., Rahmanzadeh, A., and Thomson, R.
(1996). PROforma: A method and language for specifying clinincal guide-
lines and protocols. In Brender, J., Christensen, J., Scherrer, J. R., and
McNair, P., editors, Medical Informatics Europe, pages 516–520. IOS Press.

[Fox et al., 1997] Fox, J., Johns, N., Rahmanzadeh, A., and Thomson, R.
(1997). PROforma: a general technology for clinical decision support sys-
tems. Computer Methods and Programs in Biomedicine, 54:59–67.

[Gabbay, 1987] Gabbay, D. M. (1987). The declarative past and imperative
future: executable temporal logic for interactive systems. In Barringer, H.,
editor, Temporal Logic in Specification, volume 398 of LNCS, pages 409–448,
London, UK. Springer-Verlag.

[Gabbay, 1989] Gabbay, D. M. (1989). The declarative past and imperative
future: Executable temporal logic for interactive systems. In Barringer, H.,
editor, Temporal Logic in Specification, volume 398 of LNCS, pages 409–448.
Springer-Verlag, Berlin.

[Gabbay et al., 1994] Gabbay, D. M., Hodkinson, I., and Reynolds, M. (1994).
Temporal Logic: Mathematical Foundations and Computational Aspects. Ox-
ford Logic Guides. Oxford University Press.

[Gabbay and Woods, 2004] Gabbay, D. M. and Woods, J. (2004). The Rise
of Modern Logic: from Leibniz to Frege. Handbook of the History of Logic.
Elsevier.

[Ganong, 2005] Ganong, W. F. (2005). Review of Medical Physiology.
McGraw-Hill, 22nd edition.

[Gertner, 1995] Gertner, A. S. (1995). Critiquing: effective decision support in
time-critical domains. PhD thesis, Deptartment of Computer & Information
Science, University of Pennsylvania.

[Gill, 1962] Gill, A. (1962). Introduction to the Theory of Finite-State Ma-
chines. McGraw-Hill.

172 BIBLIOGRAPHY

[Giunchiglia et al., 1994] Giunchiglia, F., Spalazzi, L., and Traverso, P. (1994).
Planning with failure. In Artificial Intelligence Planning Systems, pages 74–
79.

[Goldblatt, 1987] Goldblatt, R. (1987). Logics of time and computation. CSLI
lecture notes, Center for the Study of Langugage and Information.

[Goldstine and von Neumann, 1947] Goldstine, H. H. and von Neumann, J.
(1947). Planning and coding of problems for an electronic computing instru-
ment. In Taub, A., editor, Collected Works of J. von Neumann, volume 5,
pages 80–151. Pergamon.

[Good, 1970] Good, D. I. (1970). Toward a Man-Machine System for Proving
Program Correctness. PhD thesis, University of Wisconsin, Madison, WI.

[Graham et al., 2003] Graham, I., Harrison, M., and Brouwers, M. (2003).
Evaluating and adapting practice guidelines for local use: a conceptual
framework. In Pickering, S. and Tomlinson, J., editors, Clinical Gover-
nance and Best Value: Meeting the Modernisation Agenda, pages 213–229.
Churchill Livingstone, London.

[Graham and Harrison, 2005] Graham, I. D. and Harrison, M. B. (2005). Eval-
uation and adaptation of clinical practice guidelines. Evidence-based nursing,
8:68–72.

[Graham et al., 2002] Graham, I. D., Harrison, M. B., Brouwers, M., Davies,
B. L., and Dunn, S. (2002). Facilitating the use of evidence in practice:
evaluating and adapting clinical practice guidelines for local use by health
care organizations. Journal of obstetric, gynecologic, and neonatal nursing,
31:599–611.

[Graham et al., 2005] Graham, I. D., Harrison, M. B., Lorimer, K., Pier-
cianowski, T., Friedberg, E., Buchanan, M., and Harris, C. (2005). Adapting
national and international leg ulcer practice guidelines for local use: the on-
tario leg ulcer community care protocol. Advances in skin & wound care,
18:307–318.

[Green et al., 2002] Green, F. L., Page, D. L., Fleming, I. D., Fritz, A., Balch,
M. C., Haller, D. G., and Morrow, M. (2002). AJCC Cancer Staging Manual.
Springer-Verlag, New York.

[Groot et al., 2008] Groot, P. C., Hommersom, A. J., and Lucas, P. J. F.
(2008). Adaptation and refinement: From guidelines to protocols. In Com-
puterized Guidelines and Protocols. IOS Press. To appear.

[Groot et al., 2007] Groot, P. C., Hommersom, A. J., Lucas, P. J. F., Serban,
R., ten Teije, A., and van Harmelen, F. (2007). The role of model checking in
critiquing based on clinical guidelines. In Bellazzi, R., Abu-Hanna, A., and

BIBLIOGRAPHY 173

Hunter, J., editors, 11th Conference on Artificial Intelligence in Medicine,
number 4595 in LNAI, pages 411–420. Springer-Verlag Berlin Heidelberg.

[Grumberg and Long, 1994] Grumberg, O. and Long, D. E. (1994). Model
checking and modular verification. ACM Transactions on Programming
Languages and Systems, 16(3):843–871.

[Guyton and Hall, 2000] Guyton, A. C. and Hall, J. E. (2000). Textbook of
Medical Physiology. W.B. Saunders Company.

[Hilbert and Ackermann, 1928] Hilbert, D. and Ackermann, W. (1928).
Grundzüge der Theoretischen Logik. Verlag von Julius Springer, Berlin.

[Hindriks et al., 1998] Hindriks, K., Boer, F. d., van der Hoek, W., and Meyer,
J.-J. C. (1998). Failure, monitoring and recovery in the agent language
3APL. In Giacomo, G. D., editor, AAAI 1998 Fall Symposium on Cognitive
Robotics, pages 68–75.

[Hoare, 1969] Hoare, C. A. R. (1969). An axiomatic basis for computer pro-
gramming. Communications of the ACM, 12(10):576–580.

[Hoey and Todkill, 2001] Hoey, J. and Todkill, A. M. (2001). No mere the-
ory: Olli Miettinen’s “The modern scientific physician”. Canadian Medical
Association Journal, 165(4):439–440.

[Hofestädt and Thelen, 1998] Hofestädt, R. and Thelen, S. (1998). Quantita-
tive modeling of biochemical networks. In Silico Biology, 1(1):39–53.

[Hommersom et al., 2006] Hommersom, A. J., Groot, P. C., Lucas, P., Mar-
cos, M., and Martinez-Salvador, B. (2006). A constraint-based approach
to medical guidelines and protocols. In ECAI 2006 WS – AI techniques in
healthcare: evidence based guidelines and protocols.

[Hommersom et al., 2007] Hommersom, A. J., Groot, P. C., Lucas, P. J. F.,
Balser, M., and Schmitt, J. (2007). Verification of medical guidelines using
background knowledge in task networks. IEEE Transactions on Knowledge
and Data Engineering, 19(6):832–846.

[Hommersom and Lucas, 2007] Hommersom, A. J. and Lucas, P. J. F. (2007).
Actions with failures in interval temporal logic. In Proceedings of the Eight
Workshop on Computational Logic in Multi-Agent Systems (CLIMA VIII).

[Hommersom et al., 2004a] Hommersom, A. J., Lucas, P. J. F., and Balser,
M. (2004a). Meta-level verification of the quality of medical guidelines using
interactive theorem proving. In Logics in Artificial Intelligence: 9th Euro-
pean Conference, volume 3229 of LNCS, pages 654–666, Lisbon, Portugal.
Springer-Verlag.

174 BIBLIOGRAPHY

[Hommersom et al., 2005a] Hommersom, A. J., Lucas, P. J. F., and van Bom-
mel, P. (2005a). Automated theorem proving for quality-checking medical
guidelines. In Empirically Successful Classical Automated Reasoning (ES-
CAR). CADE.

[Hommersom et al., 2005b] Hommersom, A. J., Lucas, P. J. F., van Bommel,
P., and van der Weide, T. P. (2005b). A history-based algebra for quality-
checking medical guidelines. In Miksch, S., Hunter, J., and Karavnou, E.,
editors, Artificial Intelligence in Medicine, volume 3581 of LNAI, pages 163–
168. Springer-Verlag.

[Hommersom et al., 2004b] Hommersom, A. J., Meyer, J. J., and de Vink,
E. P. (2004b). Update semantics of security protocols. Synthese, 142:229–
267. Knowledge, Rationality and Action subseries.

[Hripcsak et al., 1994] Hripcsak, G., Ludemann, P., Pryor, T. A., Wigertz,
O. B., and Clayton, P. D. (1994). Rationale for the Arden Syntax. Comput
Biomed Res, 7:291–324.

[Jech, 1995] Jech, T. (1995). OTTER experiments in a system of combinatory
logic. Journal of Automated Reasoning, 14(3):413–426.

[Kamp, 1968] Kamp, J. A. W. (1968). Tense Logic and the Theory of Linear
Order. PhD thesis, University of California, Los Angeles.

[Keeney and Raiffa, 1976] Keeney, R. L. and Raiffa, H. (1976). Decisions with
Multipe Objectives: Preferences and Value Tradeoffs. John Wiley & Sons.

[Kersting and De Raedt, 2000] Kersting, K. and De Raedt, L. (2000).
Bayesian logic programs. In Cussens, J. and Frisch, A., editors, Proceed-
ings of the Work-in-Progress Track at the 10th International Conference on
Inductive Logic Programming, pages 138–155.

[King, 1969] King, J. C. (1969). A Program Verifier. PhD thesis, Carnegie-
Mellon University, Pittburgh, PA.

[Knapp et al., 2002] Knapp, A., Merz, S., and Rauh, C. (2002). Model check-
ing timed uml state machines and collaborations. In 7th International Sym-
posium on Formal Techniques in Real-Time and Fault Tolerant Systems,
volume 2469 of LNCS, pages 395–414. Springer-Verlag.

[Knuth and Bendix, 1970] Knuth, D. E. and Bendix, P. B. (1970). Simple
word problems in universal algebras. In Leech, J., editor, Computational
Algebra, pages 263–297. Pergamon Press.

[Konikowska, 1998] Konikowska, B. (1998). A three-valued linear temporal
logic for reasoning about concurrency. Technical report, ICS PAS, Warsaw.

BIBLIOGRAPHY 175

[Kosara and Miksch, 2001] Kosara, R. and Miksch, S. (2001). Metaphors of
movement: a visualization and user interface for time-oriented, skeletal
plans. Artificial Intelligence in Medicine, 22(2):111–131.

[Kraus and Lehmann, 1988] Kraus, S. and Lehmann, D. (1988). Knowledge,
belief and time. Theoretical Compututer Science, 58(1–3):155–174.

[Kuhn and Portner, 2002] Kuhn, S. T. and Portner, P. (2002). Tense and time.
In Gabbay, D. M. and Guenthner, F., editors, Handbook of philosophical
logic, volume 7, pages 277–346. Kluwer, second edition.

[Kupferman and Vardi, 1998] Kupferman, O. and Vardi, M. Y. (1998). Mod-
ular model checking. LNCS, 1536:381–401.

[Kuttler, 2006] Kuttler, C. (2006). Simulating bacterial transcription and
transltion in a stochastic π-calculus. In Priami, C. and Plotkin, G., edi-
tors, Transactions on Computational Systems Biology VI, number 4220 in
LNBI, pages 113–149.

[Laroussinie and Schnoebelen, 2000] Laroussinie, F. and Schnoebelen, Ph.
(2000). Specification in CTL+past for verification in CTL. Information
and Computation, 156(1-2):236–263.

[Lehmann, 1998] Lehmann, E. (1998). Compartmental models for glycaemic
prediction and decision-support in clinical diabetes care: promise and reality.
Computer Methods and Programs in Biomedicine, 56(2):193–204.

[Lucas, 1993] Lucas, P. J. F. (1993). The representation of medical reason-
ing models in resolution-based theorem provers. Artificial Intelligence in
Medicine, 5:395–419.

[Lucas, 1995] Lucas, P. J. F. (1995). Logic engineering in medicine. The
Knowledge Engineering Review, 10(2):153–179.

[Lucas, 1997] Lucas, P. J. F. (1997). Symbolic diagnosis and its formalisation.
The Knowledge Engineering Review, 12(2):109–146.

[Lucas, 2003] Lucas, P. J. F. (2003). Quality checking of medical guidelines
through logical abduction. In Coenen, F., Preece, A., and Mackintosh,
A. L., editors, Proceedings of AI-2003, the 23rd SGAI International Con-
ference on Innovative Techniques and Applications of Artificial Intelligence,
volume XX, pages 309–321, London. Springer.

[Lucas et al., 1998] Lucas, P. J. F., Boot, H., and Taal, B. G. (1998).
Decision-theoretic network approach to treatment management and prog-
nosis. Knowledge-based Systems, 11:321–330.

176 BIBLIOGRAPHY

[Lucas et al., 2005] Lucas, P. J. F., Hommersom, A. J., Galan, J. C., Mar-
cos, M., Coltell, O., Rosenbrand, K., Wittenberg, J., and van Croo-
nenborg, J. (2005). Protocure deliverable 1.3: New model of guide-
line development process. http://www.keg.uji.es/deliverables/
D13-new-model.pdf.gz, Accessed: October 1, 2007.

[Lucas and van der Gaag, 1991] Lucas, P. J. F. and van der Gaag, L. C.
(1991). Principles of Expert Systems. Addison-Wesley, Wokingham.

[Lucas and van der Gaag, 2005] Lucas, P. J. F. and van der Gaag, L. C.
(2005). Principles of intelligent systems. http://www.cs.ru.nl/
~peterl/teaching/IS/boek.html.

[Magni et al., 2000] Magni, P., Bellazzi, R., Sparacino, G., and Cobelli, C.
(2000). Bayesian identification of a population compartmental model of
c-peptide kinetics. Annals of Biomedical Engineering, 28:812–823.

[Mani and Aliferis, 2007] Mani, S. and Aliferis, C. (2007). A causal modeling
framework for generating clinical practice guidelines from data. In Bel-
lazzi, R., Abu-Hanna, A., and Hunter, J., editors, Artificial Intelligence in
Medicine, LNAI.

[Manna and Pnueli, 1994] Manna, Z. and Pnueli, A. (1994). Temporal verifica-
tion diagrams. In Theoretical Aspects of Computer Software, pages 726–765.

[Marcos et al., 2002] Marcos, M., Balser, M., ten Teije, A., and van Harmelen,
F. (2002). From informal knowledge to formal logic: a realistic case study
in medical protocols. In Proceedings of the 12th EKAW-2002.

[Marcos et al., 2001] Marcos, M., Berger, G., van Harmelen, F., ten Teije, A.,
Roomans, H., and Miksch, S. (2001). Using critiquing for improving medical
protocols: Harder than it seems. In 8th European Conference on Artificial
Intelligence in Medicine, pages 431–441.

[Marcos et al., 2006] Marcos, M., Mart́ınez-Salvador, B., Hommersom, A. J.,
Groot, P. C., Lucas, P. J. F., Jovell, A., and Blancafort, S. (2006). Case-
study in transformations for protocol development from guidelines. Techni-
cal Report D5.1, Protocure II.

[Markey, 2003] Markey, N. (2003). Temporal logic with past is exponentially
more succinct. EATCS Bulletin, 79:122–128.

[McCarthy, 1962] McCarthy, J. (1962). Towards a mathematical science of
computation. In Popplewell, C. M., editor, Proceedings of IFIP Congress,
pages 21–28. North-Holland.

[McCarthy, 1963] McCarthy, J. (1963). A basis for a mathematical theory of
computation. In Braffort, P. and Hirschberg, D., editors, Computer Pro-
gramming and Formal Systems, pages 33–70. North-Holland.

BIBLIOGRAPHY 177

[McCune, 2007] McCune, N. (2007). Prover9. http://www.cs.unm.edu/
~mccune/prover9. Accessed: August 15, 2007.

[McCune, 1997] McCune, W. (1997). Solution of the Robbins problem. Jour-
nal of Automated Reasoning, 19(3):263–276.

[McCune, 2001] McCune, W. (2001). MACE 2.0 Reference Manual and Guide.
Technical Memo ANL/MCS-TM-249, Argonne National Laboratory, Ar-
gonne, IL.

[McCune, 2003] McCune, W. (2003). Otter 3.3 Reference Manual. Technical
Memo ANL/MCS-TM-263, Argonne National Laboratory, Argonne, IL.

[McMillan, 1993] McMillan, K. L. (1993). Symbolic Model Checking. Kluwer
Academic Publishers.

[Miksch, 1999] Miksch, S. (1999). Plan management in the medical domain.
AI Communications, 12(4):209–235.

[Miller et al., 1999] Miller, D. W., Frawley, S. J., and Miller, P. L. (1999).
Using semantic constraints to help verify the completeness of a computer-
based clinical guideline for childhood immunization. Computer Methods and
Programs in Biomedicine, 58(3):267–280.

[Miller, 1984] Miller, P. (1984). A Critiquing Approach to Expert Computer
Advice: ATTENDING. Pittman Press, London.

[Milner, 1980] Milner, R. (1980). A Calculus of Communicating Systems.
Springer-Verlag.

[Milner, 1999] Milner, R. (1999). Communicating and Mobile Systems: the
Pi-Calculus. Cambridge University Press.

[Minsky, 1975] Minsky, M. (1975). A framework for representing knowledge. In
Winston, P. H., editor, The Psychology of Computer Vision. McGraw-Hill,
New York (U.S.A.).

[Moore, 1979] Moore, R. C. (1979). Reasoning about Knowledge and Action.
PhD thesis, MIT.

[Morris and Jones, 1984] Morris, F. L. and Jones, C. B. (1984). An early pro-
gram proof by Alan Turing. Annals of the History of Computing, 6(2):139–
143.

[Moszkowski, 1996] Moszkowski, B. (1996). The programming language Tem-
pura. Journal of Symbolic Computation, 22(5/6):730–733.

[Mulyar et al., 2007] Mulyar, N., van der Aalst, W., and Peleg, M. (2007). A
pattern-based analysis of clinical computer-interpretable guideline model-
ing languages. Journal of the American Medical Informatics Association,
14:781–787.

178 BIBLIOGRAPHY

[NHG, 2003] NHG (2003). http://web.archive.org/web/
20031018093525/http://nhg.artsennet.nl/standaarden/
M01/start.htm. Accessed: August 31, 2007.

[Oheimb and Nipkow, 1999] Oheimb, D. v. and Nipkow, T. (1999). Machine-
checking the Java specification: Proving type-safety. In Formal Syntax and
Semantics of Java, volume 1523 of LNCS. Springer.

[Ohlbach, 1988] Ohlbach, H. J. (1988). A Resolution Calculus for Modal Log-
ics. In Lusk, E. and Overbeek, R., editors, Proceedings CADE-88: Inter-
national Conference on Auomated Deduction, volume 310 of LNCS, pages
500–516. Springer-Verlag.

[Ollenschläger et al., 2004] Ollenschläger, G., Marshall, C., Qureshi, S.,
Rosenbrand, K., Burgers, J., Mäkelä, M., and Slutsky, J. (2004). Improv-
ing the quality of health care: using international collaboration to inform
guideline programmes by founding the Guidelines International Network (G-
I-N)*. Quality and Safety in Health Care, 13:455–460.

[Owicki and Gries, 1976] Owicki, S. S. and Gries, D. (1976). An axiomatic
proof technique for prallel programs. Acta Informatica, 6:319–340.

[Owre et al., 1992] Owre, S., Rushby, J. M., , and Shankar, N. (1992). PVS:
A prototype verification system. In Kapur, D., editor, 11th International
Conference on Automated Deduction (CADE), volume 607 of LNAI, pages
748–752, Saratoga, NY. Springer-Verlag.

[Patil, 1981] Patil, R. S. (1981). Causal representation of patient ill-
ness for ELECTROLYTE and ACID-BASE diagnosis. Technical Report
MIT/LCS/TR-267, MIT.

[Paulson, 1989] Paulson, L. C. (1989). The foundation of a generic theorem
prover. Journal of Automated Reasoning, 5(3):363–397.

[Pearl, 1988] Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference. Morgan Kaufmann.

[Peleg et al., 2000] Peleg, M., Boxwala, A., Ogunyemi, O., Zeng, P., Tu, S.,
Lacson, R., Begnstam, E., and Ash, N. (2000). GLIF3: The evolution
of a guideline representation format. In Proceedings of American Medical
Informatics Association Symposium, pages 645–649.

[Peleg et al., 2003] Peleg, M., Tu, S., Bury, J., Ciccarese, P., and Fox,
J. (2003). Comparing computer-interpretable guideline models: a case-
study approach. Journal of the American Medical Informatics Association,
10(1):52–68.

[Pelletier et al., 2002] Pelletier, F. J., Sutcliffe, G., and Suttner, C. B. (2002).
The development of CASC. AI Communications, 15(2-3):79–90.

BIBLIOGRAPHY 179

[Phillips and Vojtěchovskiý, 2005] Phillips, J. D. and Vojtěchovskiý, P.
(2005). Linear groupoids and the associated wreath products. Journal of
Symbolic Computation, 40(3):1106–1125.

[Pnueli, 1977] Pnueli, A. (1977). The temporal logic of programs. In Pro-
ceedings of the 18th IEEE Symposium on Foundation of Computer Science,
pages 46–57.

[Pnuelli, 1981] Pnuelli, A. (1981). A temporal logic of concurrent programs.
Theoretical Computer Science, 13:45–60.

[Poole, 1990] Poole, D. (1990). A Methodology for using a Default and Ab-
ductive Reasoning System. International Journal of Intelligent System,
5(5):521–548.

[Poole, 1993] Poole, D. (1993). Probabilistic Horn abduction and Bayesian
networks. Artificial Intelligence, 64(1):81–129.

[Prakken and Vreeswijk, 2002] Prakken, H. and Vreeswijk, G. (2002). Logics
for defeasible argumentation, volume 4. Kluwer Academic Publishers, Dor-
drecht.

[Pratt, 1976] Pratt, V. R. (1976). Semantical considerations on Floyd-Hoare
logic. In Proceedings of the 17th Annual IEEE Symposium on Foundations
of Computer Science, pages 109–121.

[Prior, 1957] Prior, A. N. (1957). Time and Modality. Clarendon Press.

[Pronk et al., 2007] Pronk, T. E., de Vink, E. P., Bosnacki, D., and Breit,
T. M. (2007). Stochastic modeling of codon bias with PRISM. In Linden, I.
and Talcott, C., editors, Proceedings of MTCoord 2007. Computer Science
Department, University of Cyprus, Nicosia.

[Queille and Sifakis, 1982] Queille, J. and Sifakis, J. (1982). Specification and
verification of concurrent systems is CESAR. In International Symposium
on Programming, LNCS 137, pages 337–351. Springer Verlag.

[Rao and Georgeff, 1991] Rao, A. S. and Georgeff, M. P. (1991). Modeling ra-
tional agents within a BDI-architecture. In Allen, J., Fikes, R., and Sande-
wall, E., editors, Proceedings of KR’91, pages 473–484. Morgan Kaufmann.

[Reif, 1995] Reif, W. (1995). The KIV Approach to Software Verification. In
Broy, M. and Jähnichen, S., editors, KORSO: Methods, Languages, and
Tools for the Construction of Correct Software, volume 1009 of LNCS.
Springer-Verlag, Berlin.

[Reynolds, 2005] Reynolds, M. (2005). An axiomatization of pctl. Information
and Computation, 201(1):72–119.

180 BIBLIOGRAPHY

[Riazanov and Voronkov, 2002] Riazanov, A. and Voronkov, A. (2002). The
design and implementation of VAMPIRE. AI Communications, 15(2):91–
110.

[Richardson and Domingos, 2006] Richardson, M. and Domingos, P. (2006).
Markov logic networks. Machine Learning, 62(1-2):107–136.

[Robinson, 1965a] Robinson, J. A. (1965a). Automated deduction with hyper-
resolution. International Journal of Computatational Mathematics, 1:23–41.

[Robinson, 1965b] Robinson, J. A. (1965b). A machine-oriented logic based
on the resolution principle. Journal of the ACM, 12(1):23–41.

[Roses, 2005] Roses, D. F. (2005). Breast Cancer. Elsevier, Philadelphia, PA,
2nd edition.

[Schellhorn and Ahrendt, 1997] Schellhorn, G. and Ahrendt, W. (1997). Rea-
soning about abstract state machines: The wam case study. Journal of Uni-
versal Computer Science, 3(4):377–413. available at http://hyperg.iicm.tu-
graz.ac.at/jucs/.

[Schellhorn et al., 2006] Schellhorn, G., Grandy, H., Haneberg, D., and Reif,
W. (2006). The mondex challenge: Machine checked proofs for an electronic
purse. In Misra, J., Nipkow, T., and Sekerinski, E., editors, Formal Methods
2006, Proceedings, volume 4085 of LNCS, pages 16–31. Springer.

[Schmidt and Hustadt, 2003] Schmidt, R. A. and Hustadt, U. (2003). Mecha-
nised reasoning and model generation for extended modal logics. In de Swart,
H., Orlowska, E., Schmidt, G., and Roubens, M., editors, Theory and Ap-
plications of Relational Structures as Knowledge Instrument, volume 2929
of LNCS, pages 38–67. Springer.

[Schmitt et al., 2005] Schmitt, J., Balser, M., and Reif, W. (2005). Comple-
mentary material to deliverable d4.2b: Improved verification system (pro-
totype). In Protocure II - Integrating formal methods in the development
process of medical guidelines and protocols. Protocure II.

[Schmitt et al., 2006a] Schmitt, J., Balser, M., and Reif, W. (2006a). Sup-
port for interactive verification of asbru in kiv. Technical Report 2006-16,
Universität Augsburg, Institut für Informatik.

[Schmitt et al., 2006b] Schmitt, J., Reif, W., Seyfang, A., and Miksch, S.
(2006b). Temporal dimension of medical guidelines: The semantics of as-
bru time annotations. In ECAI 2006 WS – AI techniques in healthcare:
evidence-baded guidelines and protocols.

[Schulz, 2002] Schulz, S. (2002). E - a brainiac theorem prover. AI Commu-
nications, 15(2/3):111–126.

BIBLIOGRAPHY 181

[Serban et al., 2006] Serban, R., ten Teije, A., van Harmelen, F., Hom-
mersom, A., Lucas, P. J. F., Jovell, A., Blancafort, S., Witten-
berg, J., Rosenbrand, K., and van Croonenborg, J. (2006). How
to use model-checking for critiquing using medical guidelines. Tech-
nical report, Protocure. http://www.keg.uji.es/deliverables/
D52-how-to-use-model-checking.pdf.

[Serban et al., 2004] Serban, R., ten Teije, A., van Harmelen, F., Marcos, M.,
Polo, C., Galan, J. C., Hommersom, A. J., Lucas, P. J. F., Rosenbrand,
K., Wittenberg, J., and van Croonenborg, J. (2004). Library of design
patterns for guidelines. http://www.keg.uji.es/deliverables/
D25-library-of-design-patterns.pdf.

[Seyfang et al., 2002] Seyfang, A., Kosara, R., and Miksch, S. (2002). Asbru’s
reference manual, asbru version 7.3. Technical Report Asgaard-TR-20002-1,
Vienna University of Technology, Institute of Software Technology.

[Seyfang et al., 2006] Seyfang, A., Miksch, S., Marcos, M., Wittenberg, J.,
Polo-Conde, C., and Rosenbrand, K. (2006). Bridging the grap between
informal and formal guideline representations. In Brewka, K., Coradeschi, S.,
Perini, A., and Traverso, P., editors, 17th European Conference on Artificial
Intelligence, volume 141, pages 447–451. IOS Press.

[Shahar, 1997] Shahar, Y. (1997). A framework for knowledge-based temporal
abstraction. Artificial Intelligence, 90(1-2):79–133.

[Shahar and Cheng, 2000] Shahar, Y. and Cheng, C. (2000). Model-based vi-
sualization of temporal abstractions. Computational Intelligence, 16(2):279–
306.

[Shahar et al., 1997] Shahar, Y., Miksch, S., and Johnson, P. (1997). A task-
specific ontology for the application and critiquing of time oriented clinical
guidelines. In Proceedings of the sixth Conference on Artificial Intelligence
in Medicine in Europe, pages 51–61.

[Shahar et al., 1998] Shahar, Y., Miksch, S., and Johnson, P. (1998). The As-
gaard project: A task-specific framework for the application and critiquing of
time-orientied clinical guidelines. Artificial Intelligence in Medicine, 14:29–
51.

[Shepherdson, 1987] Shepherdson, J. C. (1987). Negation in logic program-
ming. In Minker, J., editor, Deductive Databases and Logic Programming,
pages 19–88. Morgan Kaufmann Publishers.

[Shiffman, 1997] Shiffman, R. N. (1997). Representation of clinical practice
guidelines in conventional and augmented decision tables. Journal of the
American Medical Informatics Association, 4:382–393.

182 BIBLIOGRAPHY

[Shiffman and Greenes, 1994] Shiffman, R. N. and Greenes, R. A. (1994). Im-
proving clinical guidelines with logic and decision-table techniques: applica-
tion in hepatitis immunization recommendations. Medical Decision Making,
14:245–254.

[Shortliffe, 1976] Shortliffe, E. (1976). Computer-based Medical Consultations.
Elsevier.

[Shortliffe, 1974] Shortliffe, E. H. (1974). MYCIN: a rule-based computer pro-
gram for advising physicians regarding antimicrobial therapy selection. PhD
thesis, Stanford University.

[SIGN, 1998] SIGN (1998). Breast Cancer in Women. SIGN.

[Silverman, 1992] Silverman, B. G. (1992). Survey of expert critiquing sys-
tems: Practical and theoretical frontiers. Communications of the ACM,
35(4):106–127.

[Sips et al., 2006] Sips, R., Braun, L., and Roos, N. (2006). Applying formal
medical guidelines for critiquing. In ECAI 2006 WS – AI techniques in
healthcare: evidence based guidelines and protocols.

[Sistla and Clarke, 1985] Sistla, A. P. and Clarke, E. M. (1985). The complex-
ity of propositional linear temporal logics. Journal of the Association for
Computing Machinery, 32(3):733–749.

[Slind, 1991] Slind, K. (1991). An implementation of higher order logic. Tech-
nical Report 91–419–03, Computer Science Department, University of Cal-
gary.

[Somenzi and Bloem, 2000] Somenzi, F. and Bloem, R. (2000). Efficient büchi
automata from ltl formulae. In Emerson, E. A. and Sistla, A. P., editors,
Twelfth Conference on Computer Aided Verification (CAV’00), pages 248–
263. Springer-Verlag. LNCS 1855.

[Stanford Encyclopedia, 2002] Stanford Encyclopedia (2002). Leibniz’s
philosophy of mind. http://plato.stanford.edu/entries/
leibniz-mind/. Accessed August 15, 2007.

[Stärk, 1994] Stärk, R. F. (1994). Input/output dependencies of normal logic
programs. Journal of Logic and Computation, 4(3):249–262.

[Sutcliffe and Suttner, 1998] Sutcliffe, G. and Suttner, C. B. (1998). The
TPTP Problem Library: CNF Release v1.2.1. Journal of Automated Rea-
soning, 21(2):177–203.

[Sutton and Fox, 2003] Sutton, D. and Fox, J. (2003). The syntax and seman-
tics of the proforma guideline modeling language. Jounal of the American
Medical Informatics Association, 10(5):433–443.

BIBLIOGRAPHY 183

[Tarski, 1944] Tarski, A. (1944). The semantic conception of truth and
the foundations of semantics. Philosophy and Phenomenological Research,
4(3):341–376.

[ten Teije et al., 2006] ten Teije, A., Marcos, M., Balser, M., van Croonenborg,
J., Duelli, C., van Harmelen, F., Lucas, P., Miksch, S., Reif, W., Rosenbrand,
K., and S., S. (2006). Improving medical protocols by formal methods.
Artificial Intelligence in Medicine, 36(3):193–209.

[Terenziani, 2000] Terenziani, P. (2000). Integrating temporal reasoning with
periodic events. Computational Intelligence, 16(2):210–256.

[Tretmans et al., 2001] Tretmans, J., Wijbrans, K., and Chaudron, M. (2001).
Software engineering with formal methods: The development of a storm
surge barrier control system revisiting seven myths of formal methods. For-
mal Methods in System Design, 19(2):195–215.

[Tu and Musen, 1999] Tu, S. and Musen, M. (1999). A flexible approach to
guideline modeling. In Proceedings of American Medical Informatics Asso-
ciation Symposium (AMIA 1999), pages 420–424.

[Tucker and Noonan, 2007] Tucker, A. B. and Noonan, R. E. (2007). Program-
ming Languages – Principles and Paradigms. McGraw-Hill, second edition.

[Turing, 1936] Turing, A. M. (1936). On computable numbers, with an appli-
cation to the Entscheidungsproblem. In Proceedings of the London Mathe-
matical Society, volume 42, pages 230–265.

[Turing, 1949] Turing, A. M. (1949). Checking a large routine. In Report of
a Conference on High Speed Automatic Calculating Machines, pages 67–69.
Cambridge University.

[Turing, 1950] Turing, A. M. (1950). Computing machinery and intelligence.
Mind, 50:433–460.

[Vaandrager, 2006] Vaandrager, F. W. (2006). Does it pay off? model-based
verification and validation of embedded systems! In PROGRESS White
Papers 2006, pages 43–66.

[van Bemmel and Musen, 2002] van Bemmel, J. and Musen, M., editors
(2002). Handbook of Medical Informatics. Springer-Verlag, Heidelberg.

[van der Meyden, 1994] van der Meyden, R. (1994). Axioms for knowledge
and time in distributed systems with perfect recall. In Symposium on Logic
in Computer Science, pages 448–457.

[van Everdingen et al., 2004] van Everdingen, J. J. E., Burgers, J. S., As-
sendelft, W. J. J., Swinkels, J. A., van Barneveld, T. A., and van de Klun-
dert, J. L. M., editors (2004). Evidence-based Guideline Development, chap-
ter Formulating Recommendations, page 171. Bohn, Houten.

184 BIBLIOGRAPHY

[van Gerven, 2007] van Gerven, M. (2007). Bayesian Networks for Clinical
Decision Support. PhD thesis, University of Nijmegen.

[Vardi, 2001] Vardi, M. Y. (2001). Branching vs. linear time: Final showdown.
LNCS, 2031:1–19.

[Vardi and Wolper, 1994] Vardi, M. Y. and Wolper, P. (1994). Reasoning
about infinite computations. Information and Computation, 115(1):1–37.

[Venema, 2001] Venema, Y. (2001). Temporal logic. In Goble, L., editor, The
Blackwell Guide to Philosophical Logic, pages 203–223. Blackwell Publishers,
Malden, USA.

[Wild et al., 2004] Wild, S., Roglic, G., Green, A., Sicree, R., and King, H.
(2004). Global prevalence of diabetes: Estimates for the year 2000 and
projections for 2030. Diabetes Care, 27:1047–1053.

[Wolper, 1986] Wolper, P. (1986). Expressing interesting properties of pro-
grams in propositional temporal logic. In POPL ’86: Proceedings of the
13th ACM SIGACT-SIGPLAN symposium on Principles of programming
languages, pages 184–193, New York, NY, USA. ACM Press.

[Woolf et al., 1999] Woolf, S., Grol, R., Hutchinson, A., Eccles, M., and
Grimshaw, J. (1999). Potential benefits, limitations, and harms of clini-
cal guidelines. British Medical Journal, 318:527–530.

[Wos et al., 1984] Wos, L., Overbeek, R., Lusk, E., and Boyle, J. (1984). Auto-
mated Reasoning: Introduction and Applications. Prentice-Hall, Englewood
Cliffs, NJ.

[Wos et al., 1965] Wos, L., Robinson, G., and Carson, D. (1965). Efficiency
and completeness of the set of support strategy in theorem proving. ACM
Journal, 12:536–541.

[Wyatt, 2002] Wyatt, J. C. (2002). http://www.apsr78.dsl.pipex.
com/jwconsultancy/medinf.html. Accessed August 1, 2007.

[Zanardo and Carmo, 1993] Zanardo, A. and Carmo, J. (1993). Ockhamist
computational logic: Past-sensitive necessitation in CTL. Journal of Logic
and Computation, 3(3):249–268.

SIKS Dissertatiereeks

1998

1998-1 Johan van den Akker (CWI)
DEGAS - An Active, Temporal
Database of Autonomous Objects

1998-2 Floris Wiesman (UM)
Information Retrieval by Graphi-
cally Browsing Meta-Information

1998-3 Ans Steuten (TUD)
A Contribution to the Linguis-
tic Analysis of Business Conversa-
tions within the Language/Action
Perspective

1998-4 Dennis Breuker (UM)
Memory versus Search in Games

1998-5 Eduard Oskamp (RUL)
Computerondersteuning bij Straf-
toemeting

1999

1999-1 Mark Sloof (VU)
Physiology of Quality Change Mod-
elling; Automated modelling of
Quality Change of Agricultural
Products

1999-2 Rob Potharst (EUR)
Classification using decision trees
and neural nets

1999-3 Don Beal (UM)
The Nature of Minimax Search

1999-4 Jacques Penders (UM)
The practical Art of Moving Phys-
ical Objects

1999-5 Aldo de Moor (KUB)
Empowering Communities: A

Method for the Legitimate User-
Driven Specification of Network
Information Systems

1999-6 Niek Wijngaards (VU)
Re-design of compositional systems

1999-7 David Spelt (UT)
Verification support for object
database design

1999-8 Jacques Lenting (UM)
Informed Gambling: Conception
and Analysis of a Multi-Agent
Mechanism for Discrete Realloca-
tion

2000

2000-1 Frank Niessink (VU)
Perspectives on Improving Soft-
ware Maintenance

2000-2 Koen Holtman (TUE)
Prototyping of CMS Storage Man-
agement

2000-3 Carolien Metselaar (UvA)
Sociaal-organisatorische gevolgen
van kennistechnologie; een proces-
benadering en actorperspectie

2000-4 Geert de Haan (VU)
ETAG, A Formal Model of Compe-
tence Knowledge for User Interface
Design

2000-5 Ruud van der Pol (UM)
Knowledge-based Query Formula-
tion in Information Retrieval

2000-6 Rogier van Eijk (UU)
Programming Languages for Agent
Communication

185

186 SIKS Dissertatiereeks

2000-7 Niels Peek (UU)
Decision-theoretic Planning of
Clinical Patient Management

2000-8 Veerle Coupé (EUR)
Sensitivity Analyis of Decision-
Theoretic Networks

2000-9 Florian Waas (CWI)
Principles of Probabilistic Query
Optimization

2000-10 Niels Nes (CWI)
Image Database Management Sys-
tem Design Considerations, Algo-
rithms and Architecture

2000-11 Jonas Karlsson (CWI)
Scalable Distributed Data Struc-
tures for Database Management

2001

2001-1 Silja Renooij (UU)
Qualitative Approaches to Quanti-
fying Probabilistic Networks

2001-2 Koen Hindriks (UU)
Agent Programming Languages:
Programming with Mental Models

2001-3 Maarten van Someren (UvA)
Learning as problem solving

2001-4 Evgueni Smirnov (UM)
Conjunctive and Disjunctive Ver-
sion Spaces with Instance-Based
Boundary Sets

2001-5 Jacco van Ossenbruggen (VU)
Processing Structured Hypermedia:
A Matter of Style

2001-6 Martijn van Welie (VU)
Task-based User Interface Design

2001-7 Bastiaan Schonhage (VU)
Diva: Architectural Perspectives
on Information Visualization

2001-8 Pascal van Eck (VU)
A Compositional Semantic Struc-
ture for Multi-Agent Systems Dy-
namics

2001-9 Pieter Jan ’t Hoen (RUL)
Towards Distributed Development

of Large Object-Oriented Models,
Views of Packages as Classes

2001-10 Maarten Sierhuis (UvA)
Modeling and Simulating Work
Practice BRAHMS: a multiagent
modeling and simulation language
for work practice analysis and de-
sign

2001-11 Tom van Engers (VU)
Knowledge Management: The Role
of Mental Models in Business Sys-
tems Design

2002

2002-01 Nico Lassing (VU)
Architecture-Level Modifiability
Analysis

2002-02 Roelof van Zwol (UT)
Modelling and searching web-based
document collections

2002-03 Henk Ernst Blok (UT)
Database Optimization Aspects for
Information Retrieval

2002-04 Juan Roberto Castelo Val-
dueza (UU)
The Discrete Acyclic Digraph
Markov Model in Data Mining

2002-05 Radu Serban (VU)
The Private Cyberspace Modeling
Electronic Environments inhabited
by Privacy-concerned Agents

2002-06 Laurens Mommers (UL)
Applied legal epistemology; Build-
ing a knowledge-based ontology of
the legal domain

2002-07 Peter Boncz (CWI)
Monet: A Next-Generation DBMS
Kernel For Query-Intensive Appli-
cations

2002-08 Jaap Gordijn (VU)
Value Based Requirements Engi-
neering: Exploring Innovative E-
Commerce Ideas

2002-09 Willem-Jan van den Heuvel
(KUB)

SIKS Dissertatiereeks 187

Integrating Modern Business Ap-
plications with Objectified Legacy
Systems

2002-10 Brian Sheppard (UM)
Towards Perfect Play of Scrabble

2002-11 Wouter Wijngaards (VU)
Agent Based Modelling of Dynam-
ics: Biological and Organisational
Applications

2002-12 Albrecht Schmidt (UvA)
Processing XML in Database Sys-
tems

2002-13 Hongjing Wu (TUE)
A Reference Architecture for Adap-
tive Hypermedia Applications

2002-14 Wieke de Vries (UU)
Agent Interaction: Abstract Ap-
proaches to Modelling, Program-
ming and Verifying Multi-Agent
Systems

2002-15 Rik Eshuis (UT)
Semantics and Verification of
UML Activity Diagrams for
Workflow Modelling

2002-16 Pieter van Langen (VU)
The Anatomy of Design: Founda-
tions, Models and Applications

2002-17 Stefan Manegold (UvA)
Understanding, Modeling, and Im-
proving Main-Memory Database
Performance

2003

2003-01 Heiner Stuckenschmidt (VU)
Ontology-Based Information Shar-
ing in Weakly Structured Environ-
ments

2003-02 Jan Broersen (VU)
Modal Action Logics for Reasoning
About Reactive Systems

2003-03 Martijn Schuemie (TUD)
Human-Computer Interaction and
Presence in Virtual Reality Expo-
sure Therapy

2003-04 Milan Petkovic (UT)
Content-Based Video Retrieval
Supported by Database Technology

2003-05 Jos Lehmann (UvA)
Causation in Artificial Intelligence
and Law - A modelling approach

2003-06 Boris van Schooten (UT)
Development and specification of
virtual environments

2003-07 Machiel Jansen (UvA)
Formal Explorations of Knowledge
Intensive Tasks

2003-08 Yongping Ran (UM)
Repair Based Scheduling

2003-09 Rens Kortmann (UM)
The resolution of visually guided
behaviour

2003-10 Andreas Lincke (UvT)
Electronic Business Negotiation:
Some experimental studies on the
interaction between medium, inno-
vation context and culture

2003-11 Simon Keizer (UT)
Reasoning under Uncertainty in
Natural Language Dialogue using
Bayesian Networks

2003-12 Roeland Ordelman (UT)
Dutch speech recognition in multi-
media information retrieval

2003-13 Jeroen Donkers (UM)
Nosce Hostem - Searching with Op-
ponent Models

2003-14 Stijn Hoppenbrouwers (KUN)
Freezing Language: Conceptu-
alisation Processes across ICT-
Supported Organisations

2003-15 Mathijs de Weerdt (TUD)
Plan Merging in Multi-Agent Sys-
tems

2003-16 Menzo Windhouwer (CWI)
Feature Grammar Systems - Incre-
mental Maintenance of Indexes to
Digital Media Warehouses

188 SIKS Dissertatiereeks

2003-17 David Jansen (UT)
Extensions of Statecharts with
Probability, Time, and Stochastic
Timing

2003-18 Levente Kocsis (UM)
Learning Search Decisions

2004

2004-01 Virginia Dignum (UU)
A Model for Organizational Inter-
action: Based on Agents, Founded
in Logic

2004-02 Lai Xu (UvT)
Monitoring Multi-party Contracts
for E-business

2004-03 Perry Groot (VU)
A Theoretical and Empirical Anal-
ysis of Approximation in Symbolic
Problem Solving

2004-04 Chris van Aart (UVA)
Organizational Principles for
Multi-Agent Architectures

2004-05 Viara Popova (EUR)
Knowledge discovery and mono-
tonicity

2004-06 Bart-Jan Hommes (TUD)
The Evaluation of Business Pro-
cess Modeling Techniques

2004-07 Elise Boltjes (UM)
Voorbeeldig onderwijs; voor-
beeldgestuurd onderwijs, een
opstap naar abstract denken,
vooral voor meisjes

2004-08 Joop Verbeek(UM)
Politie en de Nieuwe Interna-
tionale Informatiemarkt, Grensre-
gionale politi ele gegevensuitwissel-
ing en digitale expertise

2004-09 Martin Caminada (VU)
For the Sake of the Argument; ex-
plorations into argument-based rea-
soning

2004-10 Suzanne Kabel (UVA)
Knowledge-rich indexing of
learning-objects

2004-11 Michel Klein (VU)
Change Management for Dis-
tributed Ontologies

2004-12 The Duy Bui (UT)
Creating emotions and facial ex-
pressions for embodied agents

2004-13 Wojciech Jamroga (UT)
Using Multiple Models of Reality:
On Agents who Know how to Play

2004-14 Paul Harrenstein (UU)
Logic in Conflict. Logical Explo-
rations in Strategic Equilibrium

2004-15 Arno Knobbe (UU)
Multi-Relational Data Mining

2004-16 Federico Divina (VU)
Hybrid Genetic Relational Search
for Inductive Learning

2004-17 Mark Winands (UM)
Informed Search in Complex
Games

2004-18 Vania Bessa Machado (UvA)
Supporting the Construction of
Qualitative Knowledge Models

2004-19 Thijs Westerveld (UT)
Using generative probabilistic mod-
els for multimedia retrieval

2004-20 Madelon Evers (Nyenrode)
Learning from Design: facilitating
multidisciplinary design teams

2005

2005-01 Floor Verdenius (UVA)
Methodological Aspects of Design-
ing Induction-Based Applications

2005-02 Erik van der Werf (UM))
AI techniques for the game of Go

2005-03 Franc Grootjen (RUN)
A Pragmatic Approach to the Con-
ceptualisation of Language

2005-04 Nirvana Meratnia (UT)
Towards Database Support for
Moving Object data

2005-05 Gabriel Infante-Lopez (UVA)
Two-Level Probabilistic Grammars
for Natural Language Parsing

SIKS Dissertatiereeks 189

2005-06 Pieter Spronck (UM)
Adaptive Game AI

2005-07 Flavius Frasincar (TUE)
Hypermedia Presentation Genera-
tion for Semantic Web Informa-
tion Systems

2005-08 Richard Vdovjak (TUE)
A Model-driven Approach for
Building Distributed Ontology-
based Web Applications

2005-09 Jeen Broekstra (VU)
Storage, Querying and Inferencing
for Semantic Web Languages

2005-10 Anders Bouwer (UVA)
Explaining Behaviour: Using
Qualitative Simulation in Interac-
tive Learning Environments

2005-11 Elth Ogston (VU)
Agent Based Matchmaking and
Clustering - A Decentralized Ap-
proach to Search

2005-12 Csaba Boer (EUR)
Distributed Simulation in Industry

2005-13 Fred Hamburg (UL)
Een Computermodel voor
het Ondersteunen van Eu-
thanasiebeslissingen

2005-14 Borys Omelayenko (VU)
Web-Service configuration on the
Semantic Web; Exploring how se-
mantics meets pragmatics

2005-15 Tibor Bosse (VU)
Analysis of the Dynamics of Cog-
nitive Processes

2005-16 Joris Graaumans (UU)
Usability of XML Query Lan-
guages

2005-17 Boris Shishkov (TUD)
Software Specification Based on
Re-usable Business Components

2005-18 Danielle Sent (UU)
Test-selection strategies for proba-
bilistic networks

2005-19 Michel van Dartel (UM)
Situated Representation

2005-20 Cristina Coteanu (UL)
Cyber Consumer Law, State of the
Art and Perspectives

2005-21 Wijnand Derks (UT)
Improving Concurrency and Recov-
ery in Database Systems by Ex-
ploiting Application Semantics

2006

2006-01 Samuil Angelov (TUE)
Foundations of B2B Electronic
Contracting

2006-02 Cristina Chisalita (VU)
Contextual issues in the design and
use of information technology in
organizations

2006-03 Noor Christoph (UVA)
The role of metacognitive skills in
learning to solve problems

2006-04 Marta Sabou (VU)
Building Web Service Ontologies

2006-05 Cees Pierik (UU)
Validation Techniques for Object-
Oriented Proof Outlines

2006-06 Ziv Baida (VU)
Software-aided Service Bundling -
Intelligent Methods & Tools for
Graphical Service Modeling

2006-07 Marko Smiljanic (UT)
XML schema matching – balanc-
ing efficiency and effectiveness by
means of clustering

2006-08 Eelco Herder (UT)
Forward, Back and Home Again
- Analyzing User Behavior on the
Web

2006-09 Mohamed Wahdan (UM)
Automatic Formulation of the Au-
ditor’s Opinion

2006-10 Ronny Siebes (VU)
Semantic Routing in Peer-to-Peer
Systems

2006-11 Joeri van Ruth (UT)
Flattening Queries over Nested
Data Types

190 SIKS Dissertatiereeks

2006-12 Bert Bongers (VU)
Interactivation - Towards an e-
cology of people, our technological
environment, and the arts

2006-13 Henk-Jan Lebbink (UU)
Dialogue and Decision Games for
Information Exchanging Agents

2006-14 Johan Hoorn (VU)
Software Requirements: Update,
Upgrade, Redesign - towards a
Theory of Requirements Change

2006-15 Rainer Malik (UU)
CONAN: Text Mining in the
Biomedical Domain

2006-16 Carsten Riggelsen (UU)
Approximation Methods for Effi-
cient Learning of Bayesian Net-
works

2006-17 Stacey Nagata (UU)
User Assistance for Multitasking
with Interruptions on a Mobile De-
vice

2006-18 Valentin Zhizhkun (UVA)
Graph transformation for Natural
Language Processing

2006-19 Birna van Riemsdijk (UU)
Cognitive Agent Programming: A
Semantic Approach

2006-20 Marina Velikova (UvT)
Monotone models for prediction in
data mining

2006-21 Bas van Gils (RUN)
Aptness on the Web

2006-22 Paul de Vrieze (RUN)
Fundaments of Adaptive Personal-
isation

2006-23 Ion Juvina (UU)
Development of Cognitive Model
for Navigating on the Web

2006-24 Laura Hollink (VU)
Semantic Annotation for Retrieval
of Visual Resources

2006-25 Madalina Drugan (UU)
Conditional log-likelihood MDL
and Evolutionary MCMC

2006-26 Vojkan Mihajlovic (UT)
Score Region Algebra: A Flexi-
ble Framework for Structured In-
formation Retrieval

2006-27 Stefano Bocconi (CWI)
Vox Populi: generating video docu-
mentaries from semantically anno-
tated media repositories

2006-28 Borkur Sigurbjornsson (UVA)
Focused Information Access using
XML Element Retrieval

2007

2007-01 Kees Leune (UvT)
Access Control and Service-
Oriented Architectures

2007-02 Wouter Teepe (RUG)
Reconciling Information Exchange
and Confidentiality: A Formal Ap-
proach

2007-03 Peter Mika (VU)
Social Networks and the Semantic
Web

2007-04 Jurriaan van Diggelen (UU)
Achieving Semantic Interoperabil-
ity in Multi-agent Systems: a
dialogue-based approach

2007-05 Bart Schermer (UL)
Software Agents, Surveillance, and
the Right to Privacy: a Legisla-
tive Framework for Agent-enabled
Surveillance

2007-06 Gilad Mishne (UVA)
Applied Text Analytics for Blogs

2007-07 Natasa Jovanovic (UT)
To Whom It May Concern - Ad-
dressee Identification in Face-to-
Face Meetings

2007-08 Mark Hoogendoorn (VU)
Modeling of Change in Multi-Agent
Organizations

2007-09 David Mobach (VU)
Agent-Based Mediated Service Ne-
gotiation

SIKS Dissertatiereeks 191

2007-10 Huib Aldewereld (UU)
Autonomy vs. Conformity: an In-
stitutional Perspective on Norms
and Protocols

2007-11 Natalia Stash (TUE)
Incorporating Cognitive/Learning
Styles in a General-Purpose Adap-
tive Hypermedia System

2007-12 Marcel van Gerven (RUN)
Bayesian Networks for Clinical
Decision Support: A Rational
Approach to Dynamic Decision-
Making under Uncertainty

2007-13 Rutger Rienks (UT)
Meetings in Smart Environments;
Implications of Progressing Tech-
nology

2007-14 Niek Bergboer (UM)
Context-Based Image Analysis

2007-15 Joyca Lacroix (UM)
NIM: a Situated Computational
Memory Model

2007-16 Davide Grossi (UU)
Designing Invisible Handcuffs.
Formal investigations in Insti-
tutions and Organizations for
Multi-agent Systems

2007-17 Theodore Charitos (UU)
Reasoning with Dynamic Networks
in Practice

2007-18 Bart Orriens (UvT)
On the development an manage-
ment of adaptive business collabo-
rations

2007-19 David Levy (UM)
Intimate relationships with artifi-
cial partners

2007-20 Slinger Jansen (UU)
Customer Configuration Updating
in a Software Supply Network

2007-21 Karianne Vermaas (UU)
Fast diffusion and broadening use:
A research on residential adoption
and usage of broadband internet in
the Netherlands between 2001 and
2005

2007-22 Zlatko Zlatev (UT)
Goal-oriented design of value and
process models from patterns

2007-23 Peter Barna (TUE)
Specification of Application Logic
in Web Information Systems

2007-24 Georgina Ramı́rez Camps
(CWI)
Structural Features in XML
Retrieval

2007-25 Joost Schalken (VU)
Empirical Investigations in Soft-
ware Process Improvement

2008

2008-01 Katalin Boer-Sorbán (EUR)
Agent-Based Simulation of Fi-
nancial Markets: A modular,
continuous-time approach

2008-02 Alexei Sharpanskykh (VU)
On Computer-Aided Methods for
Modeling and Analysis of Organi-
zations

2008-03 Vera Hollink (UVA)
Optimizing hierarchical menus: a
usage-based approach

2008-04 Ander de Keijzer (UT)
Management of Uncertain Data –
towards unattended integration

2008-05 Bela Mutschler (UT)
Modeling and simulating causal de-
pendencies on process-aware infor-
mation systems from a cost per-
spective

2008-06 Arjen Hommersom (RUN)
On the Application of Formal
Methods to Clinical Guidelines: an
Artificial Intelligence Perspective

192 SIKS Dissertatiereeks

Samenvatting

In de geneeskunde kunnen fouten grote gevolgen hebben voor de gezondheid
en levensverwachting van patiënten. Goede kwaliteit van zorg is daarom zeer
belangrijk. In toenemende mate wordt in de gezondheidszorg gedefinieerd hoe
voor een bepaald ziektebeeld kwaliteit van zorg moet worden opgevat. Diverse
nationale en internationale instanties zien erop toe dat de opgestelde richtlijnen
voor het handhaven van de kwaliteit van zorg worden nageleefd.

In de informatica zijn in de afgelopen decennia methoden en technieken
ontwikkeld waarmee eigenschappen van allerlei soorten systemen kunnen wor-
den onderzocht. Hierbij kan men denken aan het simuleren van het gedrag van
een systeem aan de hand van een model van het systeem. Als men eenmaal een
model van een systeem heeft, is het ook mogelijk bepaalde eigenschappen ervan
te bewijzen of de toestanden van het systeem te doorzoeken. De wiskundige
methoden en technieken die hiertoe gebruikt worden, staan in de informatica
bekend als formele methoden.

Een medische of klinische richtlijn is een document met aanbevelingen,
adviezen en handelingsinstructies ter ondersteuning van de besluitvorming
van professionals in de zorg en patiënten, berustend op de resultaten van
wetenschappelijk onderzoek met daarop gebaseerde discussie en aansluitende
meningsvorming gericht op het expliciteren van doeltreffend en doelmatig pro-
fessioneel handelen1. Vanuit het gebied uit de informatica dat zich bezig houdt
met kunstmatige intelligentie is sinds enige tijd interesse om deze richtlijnen
te gebruiken als basis voor elektronische beslissingsondersteuning van artsen
of ter aanvulling van een elektronische patiëntdossier. Hierdoor is het begrip
‘elektronische richtlijn’ ontstaan. Vanuit het oogpunt van formele methoden
roept dit verschillende vragen op. De eerste vraag is of de elektronische richtlijn
inderdaad een juiste afspiegeling is van de papieren richtlijn. De tweede vraag,
die meer medische georiënteerd is, is of de aanbevelingen, adviezen en han-
delingsinstructies wel juist zijn. Het proces om correctheid van de richtlijn te
bewijzen wordt ook wel verificatie van richtlijnen genoemd.

De hoofdstukken 1, 2 en 3 van dit proefschrift zijn inleidende hoofdstukken
waarin de relevante technische en medische concepten worden gëıntroduceerd.
In hoofdstuk 4 wordt de de kwaliteit van de richtlijn voor de behandeling van

1 Van Everdingen e.a., Evidence-based richtlijnontwikkeling, 2004, Houten, Bohn Stafleu

Van Loghum, p.4

193

194 Samenvatting

diabetes mellitus type 2 in de huisartsenpraktijk onderzocht. Door middel
van hypothetisch te redeneren over verschillende mogelijke behandelingen, ge-
bruikmakende van medische achtergrondkennis, kunnen er uitspraken worden
gedaan over wat de juiste behandeling is. In het bijzonder gaat het in dit
hoofdstuk over de vraag hoe dit kan worden uitgevoerd in een automatische
stellingenbewijzer.

In de afgelopen tijd zijn er speciale talen ontwikkeld om de verschillende
interventies en de temporele relatie tussen deze interventies die in richtlijnen
staan te modelleren. In hoofdstuk 5 wordt deze taal gebruikt om de diabetes
richtlijn uit hoofdstuk 4 te beschrijven en wordt een methode ontwikkeld om
deze kennis met de medische achtergrondkennis te combineren. De kwaliteit
wordt onderzocht met behulp van een interactieve stellingenbewijzer.

Een andere manier om formele methoden te gebruiken in de context van
richtlijnen is om de richtlijn als gouden standaard te nemen voor verificatie.
Protocollen zijn documenten afgeleid van richtlijnen die zijn toegespitst op
lokale situaties (instellingsniveau). Dit roept de vraag op in hoeverre deze pro-
tocollen consistent zijn met de (nationale) richtlijn. Dezelfde vraag kan worden
gesteld voor de handelingen van artsen in de praktijk: in hoeverre zijn deze
handelingen in overeenstemming met de aanbevelingen uit de richtlijn? Ge-
bruikmakende van een techniek genaamd model-checking worden deze vragen
in hoofdstuk 6 onderzocht.

In hoofdstuk 7 gaat het over de vraag hoe richtlijnen kunnen worden
gespecificeerd in een logische taal. Ondanks dat dit geen aanpak is die lijkt
op huidige richtlijnmodelleertalen, is het een onderzoeksrichting die kan wor-
den gemotiveerd uit enerzijds de structuur van moderne richtlijn en anderzijds
de speciale wensen die bij verificatie aan een formeel model kunnen worden
gesteld, zoals de complexiteit van redeneren. Inzichten voorkomende uit dit
hoofdstuk zouden ondersteuning kunnen bieden bij het ontwerpen van een
specifieke richtlijnmodelleertaal.

In hoofdstuk 8 worden de verschillende hoofdstukken in perspectief ge-
bracht. We gaan in op de vragen die de basis vormden voor dit onderzoek en
welke vragen verder zouden kunnen worden onderzocht.

Curriculum Vitae

Arjen Hommersom was born on February 25, 1980 in Velp, the Netherlands.
In 1998, he finished secondary school at ‘t Rhedens in Rozendaal. As he had
a keen interest in both medicine and technology, he decided to study medical
technical computer science at the University of Utrecht. During the first years,
he became interested in the area of artificial intelligence, so he focused his
studies on courses related to this area. At the end of 2003, he graduated in
the field of intelligent systems by writing a thesis which deals with reasoning
about security protocols using logic.

Since the beginning of 2004, he has been a junior researcher at the institute
for computing and information sciences. He never lost his interest in medicine,
which is the reason he sought a working environment where he could combine
his interest in artificial intelligence with medicine. He became a member of
the Protocure project, which was a European project aimed at improving the
quality of medical guidelines using information technology.

Currently, Arjen is working as a postdoctoral researcher at the same re-
search institute.

195

	Title-page
	Preface
	Contents
	Chapter 1: introduction
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8: conclusions
	Appendix A
	Appendix B
	Bibliography
	Samenvatting
	Curriculum vitae

