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Chapter 1

Introduction

For the last couple of decades a theory that goes by the unassuming name of ‘The Stan-
dard Model’, has been the generally accepted theory of fundamental physics. This Stan-
dard Model has been very successful in describing experiments in particle physics. All
particles that were theoretically predicted by it have been detected, except for one: the
Higgs particle. By now this Higgs particle, often called ‘the holy grail of high-energy
physics’, has become so important that billions of euros are spent to build large par-
ticle colliders, hoping to produce these Higgs particles. In Europe the LHC is being
built, mainly for this purpose, and this 27 km long accelerator is expected to become
operational in 2008.

Knowing this it is clear that the Higgs sector of the Standard Model is very important
and interesting. The Higgs mechanism was proposed in the 60’s by Brout and Englert
[1], Higgs [2, 3] and Guralnik, Hagen and Kibble [4] to give masses to the gauge bosons
and the fermions, while keeping the theory renormalizable. The main feature of this
Higgs mechanism is the mechanism of spontaneous symmetry breaking (SSB), which was
introduced into quantum field theory by Nambu [5, 6], in analogy to the BCS theory of
superconductivity. This mechanism of SSB will be the main topic of this thesis.

A nice introduction to SSB and the Higgs mechanism can be found in a review article
by Bernstein [7].

1.1 Spontaneous Symmetry Breaking

How does SSB work in quantum field theory, and what is it? The canonical approach to
SSB, which one finds in most textbooks (e.g. [8, 9, 10]), is as follows. One starts with
a (bare) Lagrangian, obeying some symmetry in the fields (e.g. reflection or rotational
symmetry), of which the bare (classical) potential has more than one minimum. The
most common, and most important, example is the ‘Mexican hat’ potential. This means
that the set of minima must also obey the symmetry, which means again that in any
given minimum the fields cannot all be zero. Writing all fields into the single vector ϕ
we have at the minima: ϕ 6= 0. Therefore the classical lowest energy states, or vacua,
are degenerate and have a non-zero field value, ϕVAC 6= 0. In a quantum field theory
the lowest energy state, or vacuum |VAC〉, should be calculated from the Schrödinger
equation:

H|VAC〉 = EVAC|VAC〉 . (1.1)

Clearly, because of the very complicated form of the Hamiltonian H in a quantum field
theory, this equation can not be solved. Inspired by the classical minimum-energy states,

1



2 CHAPTER 1. INTRODUCTION

one therefore postulates that also the quantum vacuum is degenerate, and that:

〈VAC|ϕ|VAC〉 6= 0 . (1.2)

So there are multiple vacuum states. But we can only live in one of these, and nature has
chosen one of these vacuum states. Which one has been chosen, cannot be determined,
and is therefore unimportant, because all theories built on one of these states have exactly
the same physics.

This is called spontaneous symmetry breaking, i.e. the vacuum state of the theory
does not have the same symmetry as the Lagrangian. So the dynamics of the theory
obey a certain symmetry, which is not respected by the vacuum state.

Having postulated (1.2) one can then derive, via the equations of motion, the Schwinger-
Dyson equations and the Feynman rules, that this gives a mass-like term for all particles
coupling to the (Higgs) field ϕ. The fluctuation in this (Higgs) field around the constant
value it has in the chosen vacuum is the Higgs particle.

After this one can calculate all Green’s functions of the theory. Also one can construct
the 1PI Green’s functions and sum them, in the appropriate way, to obtain the effective
potential. As we shall see this effective potential comes out to be complex and can
be non-convex in certain domains. This is the well known convexity problem, i.e. the
canonical perturbative calculation gives a non-convex effective potential, whereas general
arguments show that this effective potential is convex. The precise meaning of convex
will be discussed in chapter 2. Also its convexity will be proven there.

1.2 The Path Integral

Now this mechanism of SSB can also be studied from the viewpoint of the path integral.
We know that the path-integral approach, by Feynman, is just another way of formulating
quantum mechanics, or quantum field theory. Like the Feynman rules in the canonical
approach, the path integral is also a solution to the Schwinger-Dyson equations of the
theory.

In this path-integral approach the path integral gives the Green’s functions of the
theory:

∫

Dϕ f(ϕ) exp
(

i
h̄
S(ϕ)

)

∫

Dϕ exp
(

i
h̄
S(ϕ)

) = 〈VAC|f(ϕ)|VAC〉 . (1.3)

Here f(ϕ) is some expression built from the ϕ-fields, like ϕi(x), or ϕi(x)ϕj(y).
So from the path-integral viewpoint one should also be able to see whether we have

SSB:
〈VAC|ϕ|VAC〉 6= 0 , (1.4)

as is postulated in the canonical approach.
It is exactly the path-integral approach to SSB that we shall study in this thesis. The

two simplest models to study SSB are of course the N = 1 and N = 2 Euclidean linear
sigma models, and these models we will consider.

It will appear that, although the canonical results and the path integral are solutions
to the same Schwinger-Dyson equations, the two approaches do not give the same results
in the case of a classical potential with more than one minimum, i.e. a non-convex classical
potential.

Also it will appear that this path-integral approach cures the complexity and non-
convexity that were obtained in the canonical approach.
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1.3 Literature

What has been discussed in the literature about the convexity problem? In [11, 12]
Symanzik and Iliopoulos et al. were the first to realize that the effective potential is
convex. A nice proof of this convexity property is given by Haymaker et al [13]. Note
that this proof is based on the path-integral formalism. The fact that there is a convexity
problem (i.e. the perturbatively calculated effective potential, in case of a non-convex
classical potential, is not convex, despite general proofs that it should be) was first
realized by O’Raifeartaigh et al. [14]. After this there were several attempts to modify
the computation of the effective potential to find a proper, convex effective potential.
These attempts can be found in [15, 16, 17, 18, 19, 20]. Indeed these attempt were
successful, in all of these articles a convex, well-defined effective potential is found for
several models. All these attempts come down to the same idea, to get a convex and
well-defined effective potential one should take the path integral seriously and calculate
from there. This means one should include all minima of the classical potential in the
calculation, i.e. do perturbation theory around each of the minima and add the generating
functionals around each of the minima to obtain the complete generating functional. If
one then computes the effective potential from this complete generating functional one
finds the result to be convex and well-defined for all field values.

However, in this new (path-integral) approach, SSB is lost in the strict sense, i.e.
all of the convex effective potentials that are calculated in the articles above have their
minimum at zero for finite space-time volume. For infinite volume the bottom of the
effective potentials becomes flat (Maxwell construction) and one is left with an infinite
set of minima, living between the classical minima. What, then, is the true vacuum? Can
one still determine what the vacuum is from these effective potentials? In [15] one can
find a short remark about this. There the authors state that in the case of a non-convex
classical potential, maybe the effective potential is not the proper thing to look at to
find the true vacuum. Or alternatively one might define SSB not as a non-zero vacuum
expectation value, but as the sensitivity of the effective potential to small external sources.
In this sense the new, convex effective potential is just as sensitive to a non-zero source
as the old, non-convex effective potential.

However, besides these few vague remarks, no clear explanation is given as to what
the new path-integral approach means for the physics of the theory.

O’Raifeartaigh et al. [21], inspired by [22], introduce a constraint effective potential.
This constraint effective potential is calculated from a path integral, in which a constraint
that keeps the space-time averaged field to a non-zero value is included. Simply because
of the constraint, there is SSB in the strict sense now. However in the infinite volume
limit the constraint effective potential converges to the convex effective potential again,
leaving one again with a flat bottom of minima. Again it is unclear what this means for
the physics. Also Ringwald et al. [23] define a constraint effective potential, however now
the constraint keeps the average of the field over a certain limited domain of space-time
to a non-zero value. Again the constraint effective potential converges to the convex
effective potential in the infinite volume limit. Nothing is said about the physics behind
this theory.

Branchina et al. [24] do go into more details about the physics. Here they also include
all minima of the path integral (no constraint) and find a flat bottom. Their approach
is essentially based on the canonical formalism and they find explicitly the ground states
in a Gaussian approximation. They find two pure Gaussian states, which means that
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all linear superpositions of these states are also ground states. These correspond to the
flat bottom of the effective potential. They calculate the probability to be in one of
these states. This probability is only non-zero for the pure Gaussian states. This is their
interpretation of SSB. However, for the rest nothing is said about the physics that follows
from this approach.

Weinberg et al. [25] further analyze the complex, non-convex effective potential one
finds when only including one minimum (i.e. canonical approach). They define the vac-
uum states of the theory to be states that, of course, minimize the Hamiltonian, but are
also localized around some field value. It appears that the imaginary part of the complex
effective potential is related to the decay rate of the (unstable) vacuum states which are
localized around a point between the classical minima.

Dannenberg [26] further analyzes and resolves the convexity problem. The point is
that the convex effective potential, as calculated from the path integral, and the complex
effective potential, as calculated in the canonical way (the sum of all 1PI diagrams), are
simply not the same thing. In the path-integral approach one includes all minima, in the
canonical approach one includes only one minimum. Although both ways are solutions
to the same Schwinger-Dyson equations, they are not equal. In this way it is completely
understandable that the canonical approach gives a non-convex effective potential, even
though one can prove from the path integral that the effective potential is convex. Both
approaches are simply different and therefore give different results and physics.

Wiedemann [27] further analyzes what the non-convex complex effective potential and
the convex effective potential tell one about the physics of the theory. It is shown that
the flat section of the convex effective potential corresponds to the ground states of the
theory. The complex effective potential gives one the boundaries of the flat section.

Having considered all of this literature one can conclude the following. The convexity
problem is not really a problem, it originates only because one compares two different
things, at first thought to be the same. The canonical approach and the path-integral
approach, although solutions to the same Schwinger-Dyson equation, seem to be different
in the case of a non-convex classical potential. So both approaches also give different
results. This difference between the canonical and path-integral approach will be the
main topic of this thesis. It is also this difference that might create some confusion in for
example Peskin and Schroeder [8]. In their chapter 11 they first calculate the effective
potential in the canonical approach and find it to be non-convex. Later they argue that
the effective potential is always convex. They do not clearly explain how this convexity
property relates to the non-convex result.

Taking the viewpoint of the canonical approach, one postulates a non-zero vacuum
expectation value. This is completely self-consistent and one finds a spontaneously broken
theory. One can define the effective potential as the sum of all 1PI graphs (with the
appropriate factors) and one finds it to be non-convex and complex in certain regions.
This does not matter however, since the proof that the effective potential is convex
originates only in the path-integral approach, which is not the same.

Taking the viewpoint of the path-integral approach one finds a convex effective po-
tential, as can be proven on general grounds (within this approach). However, what the
physics of this approach is, is unclear up to now. Also interesting is whether one can
reproduce the physics as it is found in the canonical approach (with SSB and all) in this
path-integral approach. Can one get the same Green’s functions in this path-integral
approach?
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1.4 Outline of this Thesis

In the articles mentioned above several links between results from the canonical approach
and results from the path-integral approach are proven to exist, although both approaches
do not give the same results in general. So a number of big questions remain: Can one
somehow reproduce the canonical results from the path-integral approach? Or are both
approaches fundamentally different? Can one find SSB, with all the known physics that
goes with it, from the path integral? These questions will be the main topics of this
thesis.

In chapter 2 a short introduction to the effective action will be given. The effective
action and effective potential will be defined, their meaning will be discussed and their
convexity will be proven, via the path integral.

In chapter 3 the canonical approach to the N = 1 linear sigma model will be discussed.
We follow here the same lines as in the quantum field theory textbooks (e.g. [8]). The
renormalized Green’s functions will be computed and the counter terms will be found, so
we can use them in later chapters for different approaches. Also the effective potential
will be computed for several dimensions and shown to be complex where the classical
potential is non-convex. Also it will be shown that it can become non-convex.

In chapter 4 the path-integral approach to the N = 1 linear sigma model will be
discussed. This is done in the same way as Fujimoto et al. [15] and Cooper et al. [18]
do. We find the renormalized effective potential for several dimensions, which is indeed
convex and well-defined everywhere. Also we find the renormalized Green’s functions
and conclude what the physics of this approach is. This physics is different than in the
canonical approach. What the Green’s functions become when other particles interacting
with the (Higgs) fields ϕ are present will also be discussed.

In chapter 5 we will outline another path-integral approach to the N = 1 linear sigma
model. This time, hoping to reproduce the physics of the canonical approach, we will fix
the paths at some time −T at a specific field value over all of space. First we will show
that this model is renormalizable up to 1-loop order. Then we will calculate the effective
potential and the renormalized Green’s functions.

In chapter 6 we will present the canonical approach to the N = 2 linear sigma model.
The calculations there are similar to the standard calculations done in all textbooks, like
[8]. The renormalized Green’s functions will be computed and the counter terms will be
fixed, such that we can use them later throughout the thesis. The effective potential will
also be calculated and shown to be complex where the classical potential is non-convex.
Also it can become non-convex.

In chapter 7 the path-integral approach to the N = 2 linear sigma model will be
presented. We will compute the renormalized Green’s functions by naively integrating
over all minima of the action. Also an approximation to the effective potential will be
found in this naive way. Again, as in the N = 1 linear sigma model, we will see that
the physics of this path-integral approach is different from the physics of the canonical
approach. However, it is questionable whether the naive way of calculating here is correct.

To do the calculation from chapter 7 in a better way we need the path integral in
terms of polar field variables. These variables are the natural variables to describe an
O(2)-invariant model. This complicated transformation to polar field variables will be
the subject of chapter 8. We will show what the path integral looks like in terms of polar
fields, and how it should be calculated.

In chapter 9 we consider again the path-integral approach to the N = 2 linear sigma
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model. Now we do the calculations via the path integral in terms of polar variables,
discussed in chapter 8. We will calculate the renormalized Green’s functions and the
effective potential. We will compare the results obtained here with the results from
chapter 7, and finally discuss the physics of the path-integral approach to the N = 2
linear sigma model.



Chapter 2

The Effective Action

2.1 Definition

Consider a Euclidean scalar quantum field theory with any number of fields and any
number of space-time points (e.g. infinite number). We put all field values in one single
vector ϕ. For each field value we also have a source, all these sources are put in the vector
J . The (bare) action of this theory we denote by S. Then the effective action of this
theory, which is a function of a vector ϕcl, is defined by

∂Γ(ϕcl)

∂ϕcl
m

= Jm(ϕcl) , (2.1)

where Jm(ϕcl) is defined as the inverse function of

ϕcl
m(J) ≡ 〈ϕm〉(J) ≡

∫

Dϕ ϕm exp
(

− 1
h̄

(S(ϕ) − Jmϕm)
)

∫

Dϕ exp
(

− 1
h̄

(S(ϕ) − Jmϕm)
) . (2.2)

That this inverse functional Jm(ϕcl) always exists can be seen as follows. If it exists we
have:

ϕcl
m(J(ϕcl)) = ϕcl

m ⇒ ∂

∂ϕcl
n

ϕcl
m(J(ϕcl)) =

∂ϕcl
m

∂Jl

∂Jl
∂ϕcl

n

=
1

h̄
〈ϕmϕl〉c(J)

∂Jl
∂ϕcl

n

= δmn (2.3)

This means that one requirement for Jm(ϕcl) to exist is that the matrix 〈ϕiϕj〉c(J) has
an inverse. This is true if all eigenvalues of this matrix are non-zero. That this is indeed
the case follows from:

〈ϕiϕj〉c(J) =

∫

Dϕ ϕiϕjP (ϕ)
∫

Dϕ P (ϕ)
−
(∫

Dϕ ϕiP (ϕ)
) (∫

Dϕ ϕjP (ϕ)
)

(∫

Dϕ P (ϕ)
)2

=

∫

DϕDϕ′ (ϕiϕj − ϕiϕ
′
j

)

P (ϕ)P (ϕ′)
∫

DϕDϕ′ P (ϕ)P (ϕ′)

=
1

2

∫

DϕDϕ′ (ϕi − ϕ′
i)
(

ϕj − ϕ′
j

)

P (ϕ)P (ϕ′)
∫

DϕDϕ′ P (ϕ)P (ϕ′)
(2.4)

with

P (ϕ) ≡ exp

(

−1

h̄
(S(ϕ) − Jmϕm)

)

. (2.5)

7
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This means:
ρiρj〈ϕiϕj〉c(J) > 0 (2.6)

for all J and arbitrary vector ρ. This could not immediately be seen from 〈(ρ·ϕ)2〉c(J) be-
cause we are dealing with a connected average here. Writing ρ in terms of the eigenvectors
em (with eigenvalues λm) of the matrix 〈ϕiϕj〉c(J):

ρi = cmei,m , (2.7)

we see that also
ρicmei,mλm = cnei,ncmei,mλm = c2mλm > 0 . (2.8)

Because the ρ’s and thus also the c’s are arbitrary, all the eigenvalues λm have to be
positive. So we see all eigenvalues are not just non-zero, they are also strictly positive.

There is a small loop-hole here, that we have to discuss. In some special situations it
can happen, for some specially chosen ρ, that the left-hand-side of (2.6) becomes exactly
zero. We shall see in chapter 5 how this can happen when we introduce constraints in the
path integral. In that case there is no unique inverse. This will be discussed thoroughly
in chapter 5. In the rest of this chapter we shall assume that we are not in such a special
situation and thus (2.6) holds.

So now we know that the matrix ∂Jl

∂ϕcl
n

exists. To find Jl itself this system of partial
differential equations has to be integrated. This is only possible if

∂2Jl
∂ϕcl

n∂ϕ
cl
p

=
∂2Jl

∂ϕcl
p ∂ϕ

cl
n

. (2.9)

That this is also the case can be seen by taking another derivative in (2.3):

∂

∂ϕcl
p

∂ϕcl
m

∂Jl

∂Jl
∂ϕcl

n

=
∂2ϕcl

m

∂Jq∂Jl

∂Jq
∂ϕcl

p

∂Jl
∂ϕcl

n

+
∂ϕcl

m

∂Jl

∂2Jl
∂ϕcl

p ∂ϕ
cl
n

= 0 (2.10)

Because the first term is symmetric in p and n the second term is too. So indeed it is
possible to find the inverse Jl(ϕ

cl) from (2.3).

2.2 The Meaning of the Effective Action

The generating functional Z(J) of our scalar field theory is

Z(J) ≡
∫

Dϕ exp

(

−1

h̄
(S(ϕ) − Jmϕm)

)

. (2.11)

This functional generates the connected Green’s functions:

h̄n
∂n

∂Jm1 . . . ∂Jmn

lnZ(J) = 〈ϕm1 . . . ϕmn
〉c(J) (2.12)

Now the physical meaning of the effective action can be seen by taking derivatives
and putting the source J to zero in the definition (2.1).

First, just setting J = 0 without taking a derivative we get:

∂Γ(ϕcl)

∂ϕcl
m

∣

∣

∣

∣

ϕcl=〈ϕ〉
= 0 , (2.13)
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where 〈ϕ〉 just means 〈ϕ〉(0). This means the effective action has its minimum at the
vacuum expectation value of the field(s).

Taking one derivative with respect to Jn in (2.1) gives:

∂2Γ(ϕcl)

∂ϕcl
l ∂ϕ

cl
m

∂ϕcl
l

∂Jn
= δmn =

1

h̄

∂2Γ(ϕcl)

∂ϕcl
l ∂ϕ

cl
m

〈ϕlϕn〉c(J)

⇒ ∂2Γ(ϕcl)

∂ϕcl
l ∂ϕ

cl
m

= h̄ (〈ϕlϕm〉c(J))−1 (2.14)

Now if we put J = 0 on both sides in (2.14) the righthand side becomes the inverse of
the ordinary connected 2-point Green’s function:

∂2Γ(ϕcl)

∂ϕcl
l ∂ϕ

cl
m

∣

∣

∣

∣

ϕcl=〈ϕ〉
= h̄ (〈ϕlϕm〉c)−1 (2.15)

This means that the second functional derivative of the effective action at its minimum
is equal to h̄ times the inverse connected 2-point Green’s function.

Taking two derivatives with respect to J and putting J = 0 in (2.1) gives:

∂3Γ(ϕcl)

∂ϕcl
r ∂ϕ

cl
l ∂ϕ

cl
m

∂ϕcl
r

∂Jp

∂ϕcl
l

∂Jn
+
∂2Γ(ϕcl)

∂ϕcl
l ∂ϕ

cl
m

∂2ϕcl
l

∂Jp∂Jn
= 0

⇒ ∂3Γ(ϕcl)

∂ϕcl
r ∂ϕ

cl
l ∂ϕ

cl
m

∂ϕcl
r

∂Jp

∂ϕcl
l

∂Jn

∂ϕcl
m

∂Jq
+

∂2ϕcl
q

∂Jp∂Jn
= 0

⇒ ∂3Γ(ϕcl)

∂ϕcl
r ∂ϕ

cl
l ∂ϕ

cl
m

〈ϕrϕp〉c(J)〈ϕlϕn〉c(J)〈ϕmϕq〉c(J) + h̄〈ϕqϕpϕn〉c(J) = 0

⇒ ∂3Γ(ϕcl)

∂ϕcl
r ∂ϕ

cl
l ∂ϕ

cl
m

∣

∣

∣

∣

ϕcl=〈ϕ〉
= −h̄〈ϕrϕlϕm〉1PI (2.16)

This means the third functional derivative of the effective action at its minimum is equal
to −h̄ times the 1PI 3-point Green’s function.

By taking more derivatives with respect to J and putting J = 0 it can be shown that

∂nΓ(ϕcl)

∂ϕcl
m1
. . . ∂ϕcl

mn

∣

∣

∣

∣

ϕcl=〈ϕ〉
= −h̄〈ϕm1 . . . ϕmn

〉1PI . (2.17)

These relations show that when we expand the effective action around its minimum,
read off the propagator and the coupling constants like we would read them off from the
bare action, the Feynman rules thus obtained would give the complete physical Green’s
functions at tree level. This is the meaning of the effective action, from it one can
immediately see the physical amplitudes.

2.3 The Argument for Convexity

What is ‘convex’? Although ‘convex’ and ‘concave’ are often mixed up in the world-wide
literature, we shall stick to the definition that is most widely used in physics. A convex
function V (ϕ) is a function that, for any ϕ1 and ϕ2 (ϕ1 and ϕ2 can be vectors), and any
λ in [0, 1] (0 ≤ λ ≤ 1), satisfies:

V (λϕ1 + (1 − λ)ϕ2) ≤ λV (ϕ1) + (1 − λ)V (ϕ2) . (2.18)
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In words this means that a linear interpolation of V (ϕ) is always larger than or equal
to V (ϕ) itself. Strictly convex means that the linear interpolation is always larger than
V (ϕ) itself:

V (λϕ1 + (1 − λ)ϕ2) < λV (ϕ1) + (1 − λ)V (ϕ2) , (2.19)

for all ϕ1, ϕ2 and λ ∈ [0, 1].

Now we show that the effective action of a Euclidean quantum field theory is always
convex, in any dimension.

An effective action Γ is convex if and only if

∂2

∂α2
Γ
(

ϕcl + αρ
)

∣

∣

∣

∣

α=0

≥ 0 (2.20)

for all ϕcl and arbitrary vector ρ. It is easy to see that this condition is equivalent to
(2.18).

This condition is equivalent to

ρiρj
∂2Γ(ϕcl)

∂ϕcl
i ∂ϕ

cl
j

≥ 0 for all ϕcl . (2.21)

In (2.8) we showed that the eigenvalues of the matrix 〈ϕiϕj〉c(J) are all strictly positive.
This means that also the eigenvalues of the inverse matrix (〈ϕiϕj〉c(J))−1 are strictly
positive and that

ρiρj (〈ϕiϕj〉c(J))−1 > 0 (2.22)

for arbitrary ρ and all J . Using (2.14) we then see that (2.20) is indeed true, so the
effective action is convex.

The effective action appears to be even strictly convex. However, this is not necessarily
true. Although it is true that the eigenvalues of 〈ϕiϕj〉c(J) are all strictly positive, it can
happen, in the infinite-volume limit, that one of these eigenvalues goes to infinity. Then,
of course, one of the eigenvalues of (〈ϕiϕj〉c(J))−1 goes to zero in this limit. In this way
the effective action can have flat directions, and it is not strictly convex, but just convex.

This completes our proof that the effective action, and with it the effective potential,
always have to be convex for a Euclidean quantum field theory. Our argument does not
depend on the dimension of space-time, nor the number of different fields in our quantum
field theory.

2.4 The Effective Potential

The effective potential is defined as the effective action where we take all fields constant
over space-time divided by the volume of space-time. Up to now we have employed a
general formalism in which we did not explicitly specify what the index of the field ϕ
meant. To obtain the effective potential we have to specify this. Let’s say we have N fields
ϕ1, . . . , ϕN , all depending on space-time coordinates x. Here x is a d-vector containing
all space-time coordinates.

To obtain an expression for the effective potential we first expand the effective action
around its minimum. We denote the deviation of the ϕ-fields from their value 〈ϕ〉 by ηi,
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i = 1, . . . , N . Then the effective action can always be expanded as:

Γ(η1, . . . , ηN) =

1

2!

∫

ddx1d
dx2

δ2Γ

δηi1(x1)δηi2(x2)

∣

∣

∣

∣

ηi=0

ηi1(x1)ηi2(x2) +

1

3!

∫

ddx1d
dx2d

dx3
δ3Γ

δηi1(x1)δηi2(x2)δηi3(x3)

∣

∣

∣

∣

ηi=0

ηi1(x1)ηi2(x2)ηi3(x3) +

. . . (2.23)

Now we use (2.15), (2.16) and (2.17) to obtain the following expression for the effective
action:

Γ(η1, . . . , ηN) =
1

2!

∫

ddx1d
dx2 h̄ (〈ηi1(x1)ηi2(x2)〉c)−1 ηi1(x1)ηi2(x2) +

− 1

3!

∫

ddx1 . . . d
dx3 h̄〈ηi1(x1) . . . ηi3(x3)〉1PI ηi1(x1) . . . ηi3(x3) +

− 1

4!

∫

ddx1 . . . d
dx4 h̄〈ηi1(x1) . . . ηi4(x4)〉1PI ηi1(x1) . . . ηi4(x4) +

. . . (2.24)

Now we can take all η-fields constant to obtain the effective potential V (η1, . . . , ηN):
(∫

ddx

)

V (η1, . . . , ηN) =
h̄

2!
ηi1ηi2

∫

ddx1d
dx2 (〈ηi1(x1)ηi2(x2)〉c)−1 +

− h̄

3!
ηi1 . . . ηi3

∫

ddx1 . . . d
dx3 〈ηi1(x1) . . . ηi3(x3)〉1PI +

− h̄

4!
ηi1 . . . ηi4

∫

ddx1 . . . d
dx4 〈ηi1(x1) . . . ηi4(x4)〉1PI +

. . . (2.25)

Now if the fields ηi correspond to physical particles, then the 2-point connected Green’s
functions are only non-zero when the in- and outgoing lines are of the same type. Then
this propagator becomes diagonal in momentum space and finding the inverse propagator
is very simple, it just means literally inverting it. So, writing the Green’s functions in
terms of the momentum-space Green’s functions, the expression for the effective potential
becomes particularly simple:

V (η1, . . . , ηN) =
h̄

2!

1

〈η̃i(0)η̃i(0)〉c
ηiηi −

h̄

3!
〈η̃i1(0) . . . η̃i3(0)〉1PI ηi1 . . . ηi3 +

− h̄

4!
〈η̃i1(0) . . . η̃i4(0)〉1PI ηi1 . . . ηi4 + . . . (2.26)

Here 0 denotes a d-vector with only zeroes. Now we also know that:

〈η̃i(p)η̃i(−p)〉c =
h̄

p2 +m2
i − h̄〈η̃i(p)η̃i(−p)〉1PI

(2.27)

and with this the effective potential can be written as:

V (η1, . . . , ηN) =
1

2
m2
i ηiηi −

h̄

2!
〈η̃i(0)η̃i(0)〉1PI ηiηi −

h̄

3!
〈η̃i1(0) . . . η̃i3(0)〉1PI ηi1 . . . ηi3 +

− h̄

4!
〈η̃i1(0) . . . η̃i4(0)〉1PI ηi1 . . . ηi4 + . . . (2.28)
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Another convenient way to write this is:

V (η1, . . . , ηN) =
1

2
m2
i ηiηi − h̄

∞
∑

j1,...,jN=0

j1+...+jN≥2

1

j1! . . . jN !
〈η̃j11 (0) . . . η̃jNN (0)〉1PI η

j1
1 . . . ηjNN (2.29)

This is the well known vacuum-graph formula.



Chapter 3

The N = 1 LSM: The Canonical
Approach

In this chapter we shall present the canonical approach to the N = 1 linear sigma model.
Our calculations mostly follow the well known text books on quantum field theory (e.g.
[8, 10]). The renormalized Green’s functions and the counter terms will be computed,
the latter will be used in later chapters. Also the effective potential will be calculated
and shown to be complex and non-convex in general.

The Euclidean linear sigma model with N = 1 field is defined by the bare action

S =

∫

ddx

(

1

2
(∇ϕ(x))2 − 1

2
µϕ2(x) +

λ

24
ϕ4(x)

)

. (3.1)

Here x denotes a d-vector containing all space-time coordinates

x ≡







x1
...
xd






, (3.2)

and ∇ is the d-vector

∇ ≡







∂/∂x1
...

∂/∂xd






. (3.3)

These notations shall be used throughout this thesis. µ Is understood to be positive,
µ > 0, so we have a non-convex classical potential and thus SSB in the canonical approach.

3.1 Green’s Functions

To compute the renormalized Green’s functions we introduce the following renormalized
quantities:

ϕR ≡ 1√
Z
ϕ ,Z ≡ 1 + δZ

µR ≡ µZ − δµ

λR ≡ λZ2 − δλ (3.4)

13
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From here on we shall suppress the R-superscripts, understanding that we always work
with renormalized quantities from now on. Written in terms of these renormalized quan-
tities the action is

S =

∫

ddx

(

1

2
(∇ϕ)2 − 1

2
µϕ2 +

λ

24
ϕ4 +

1

2
δZ (∇ϕ)2 − 1

2
δµϕ

2 +
δλ
24
ϕ4

)

. (3.5)

Now the classical action (i.e. the first line of (3.5)) has its minima at:

ϕmin = ±v , v =

√

6µ

λ
. (3.6)

In the canonical approach it is postulated that also the quantum field has its vacuum
expectation value at one of these classical minima. Which minimum does not matter for
the physics, so we choose ϕ = +v. Therefore we express the action in terms of the field
η, which indicates the deviation from this minimum:

ϕ ≡ v + η . (3.7)

The action then becomes

S =

∫

ddx

(

1

2
(∇η)2 + µη2 +

µ

v
η3 +

µ

4v2
η4 +

(

−vδµ +
1

6
v3δλ

)

η +
1

2
δZ (∇η)2 +

(

−1

2
δµ +

1

4
v2δλ

)

η2 +
1

6
vδλη

3 +
1

24
δλη

4

)

. (3.8)

Now all except the first two terms are treated as perturbations. For convenience define
µ = 1

2
m2. The Feynman rules of this theory are then given by:

↔ h̄

k2 +m2

↔ −3m2

h̄v

↔ −3m2

h̄v2

↔ v

h̄
δµ −

1

6

v3

h̄
δλ

↔ −1

h̄
δZk

2 +
1

h̄
δµ −

1

2

v2

h̄
δλ
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↔ −v
h̄
δλ

↔ −1

h̄
δλ (3.9)

Now we compute the connected momentum-space Green’s functions up to one loop.
In the case of the 3- and 4-point function we will calculate the 1PI-part of the connected
Green’s function, since it is this part that occurs in our renormalization conditions. We
shall write all results in terms of the standard d-dimensional one-loop integral I:

I (q1,m1, q2,m2, . . . , qn,mn) ≡
1

(2π)d

∫

ddk
1

(k + q1)
2 +m2

1

1

(k + q2)
2 +m2

2

· · · 1

(k + qn)
2 +m2

n

(3.10)

〈η̃〉 = +

= −3

2

h̄

v
I(0,m) +

v

m2
δµ|h̄ −

1

6

v3

m2
δλ|h̄ (3.11)

〈η̃ (p) η̃ (q)〉c = + + +

+

=
h̄

p2 +m2
+

1

(p2 +m2)2

(

9

2

h̄2m4

v2
I(0,m, p,m) + 3

h̄2m2

v2
I(0,m)

− h̄p2 δZ |h̄ − 2h̄ δµ|h̄
)

(3.12)
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〈η̃ (q1) η̃ (q2) η̃ (q3)〉1PI = + + +

+ +

= −3m2

h̄v
− 27m6

v3
I(0,m, q1,m,−q2,m)

+
9m4

2v3
(I(0,m, q1,m) + I(0,m, q2,m) + I(0,m, q3,m))

−v
h̄
δλ|h̄ (3.13)

〈η̃ (q1) · · · η̃ (q4)〉1PI = + + 2 permutations +

+ 5 permutations +

+ 2 permutations +

= −3m2

h̄v2

+
81m8

v4
I(0,m, q1,m, q1 + q3,m,−q2,m) + 2 permutations

−27m6

v4
I(0,m, q3,m, q3 + q4,m) + 5 permutations

+
9m4

2v4
I(0,m, q3 + q4,m) + 2 permutations

−1

h̄
δλ|h̄ (3.14)

Now our theory contains three free parameters, Z, µ and λ. To fix these we need
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three renormalization conditions. We shall use the following conditions:

= 0

Res = h̄

1PI = −λ
h̄

at q1 = . . . = q4 = 0 (3.15)

The last condition states that the physical 4-point coupling at q1 = . . . = q4 = 0 is
λ, i.e. we have chosen the renormalized λ to be equal to the physical 4-point coupling
constant at q1 = . . . = q4 = 0. The first condition states that 〈ϕ〉 = v =

√

6µ/λ at all
orders in perturbation theory. This means we have also chosen the renormalized v to
be equal to the physical vacuum expectation value of the ϕ-field. This condition fixes
(the renormalized) µ. This in turn fixes the physical mass mph, which can be calculated
from the 2-point Green’s function. Note that m2

ph is not equal to the classical value 2µ.
The second condition fixes the wave function renormalization Z. This second condition
is equivalent to:

Res = Res
h̄

p2 +m2 − h̄A(p2)
= h̄ lim

p2=−m2
ph

p2 +m2
ph

p2 +m2 − h̄A(p2)

= h̄ lim
p2=−m2

ph

1

1 − h̄ d
dp2
A(p2)

= h̄

⇒ d

dp2
A(p2)

∣

∣

∣

∣

p2=m2
ph

= 0 (3.16)

where

A(p2) ≡ 1PI . (3.17)

With these conditions it is now easy to determine the counter terms:

δµ|h̄ =
3

2

h̄m2

v2
I(0,m) +

9

4

h̄m4

v2
I(0,m, 0,m) − 27

h̄m6

v2
I(0,m, 0,m, 0,m) +

81

2

h̄m8

v2
I(0,m, 0,m, 0,m, 0,m)

δλ|h̄ =
27

2

h̄m4

v4
I(0,m, 0,m) − 162

h̄m6

v4
I(0,m, 0,m, 0,m) +

243
h̄m8

v4
I(0,m, 0,m, 0,m, 0,m)

δZ |h̄ =
9

2

h̄m4

v2

d

dp2
I(0,m, p,m)

∣

∣

∣

∣

p2=−m2
ph

(3.18)
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mph Can be calculated up to order h̄ from the 2-point function (3.12). Substituting
the counter terms obtained in (3.18) and Dyson summing the result (3.12) gives

h̄

p2 +m2 − h̄A(p2)
(3.19)

with

A(p2) =
9

2

m4

v2
I(0,m, p,m) − 9

2

m4

v2
p2 d

dp2
I(0,m, p,m)

∣

∣

∣

∣

p2=−m2
ph

− 9

2

m4

v2
I(0,m, 0,m) +

54
m6

v2
I(0,m, 0,m, 0,m) − 81

m8

v2
I(0,m, 0,m, 0,m, 0,m) . (3.20)

Now the solution p2 of
p2 +m2 − h̄A(p2) = 0 (3.21)

is −m2
ph. It is easy to obtain this solution, of course up to order h̄:

m2
ph = m2 +

9

2

h̄m4

v2
I(0,m, 0,m) − 9

2

h̄m4

v2
I(0,m, p,m)|p2=−m2 +

−9

2

h̄m6

v2

d

dp2
I(0,m, p,m)

∣

∣

∣

∣

p2=−m2

− 54
h̄m6

v2
I(0,m, 0,m, 0,m) +

81
h̄m8

v2
I(0,m, 0,m, 0,m, 0,m) (3.22)

It is easy to see that for d ≤ 4 this mph is indeed finite. However for d > 4 it is not!
This shows that our N = 1 linear sigma model, like all ϕ4-theories, is non-renormalizable
for d > 4.

Now it can also be shown that the 3- and 4-point 1PI Green’s function (3.13,3.14),
and in fact all n-point Green’s functions are finite at one-loop order, for d ≤ 4.

Now we have fixed all of our parameters in terms of the physical parameters. Our
renormalized λ is just equal to the physical 4-point coupling λph, an so is our renormalized
v = vph. This then fixes our renormalized µ (and with it m): µ = λphv

2
ph/6. Then all

counter terms as given in (3.18) and the physical mass as given in (3.22) can be expressed
in terms of the two physical parameters λph and vph.

3.2 The Effective Potential

Now we want to find also the one-loop effective potential of our N = 1 linear sigma
model. We know that the effective potential V is given by the vacuum-graph formula,
which, in the N = 1 case, simplifies to:

V (η) =
1

2
m2η2 − h̄

∞
∑

n=2

1

n!
〈η̃n(0)〉1PI η

n (3.23)

This means to obtain the one-loop effective potential we just have to take the sum of
all 1-loop 1PI diagrams with the appropriate factors and with zero momentum in the
external legs.

Let n3 and n4 denote the number of 3- and 4-vertices in a diagram. Then n3 + 2n4

is the number of external legs. Every 3-vertex in a diagram gets a 1/3!, every 4-vertex a
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1/4!. For a diagram with n3 (identical) 3-vertices we get a 1/n3!, likewise we get a 1/n4!.
To see how many ways there are to connect the legs of the vertices and the external legs
we first decide which legs are going to be part of the loop. For each 3-vertex there are
3 ·2/2 ways to choose this, for each 4-vertex there are 4 ·3/2 ways to choose this. The legs
that have been chosen as internal can then be connected in (2n3 + 2n4 − 2)!! ways. The
other legs can be connected to the external legs in (n3 + 2n4)! ways. Then the one-loop
effective potential V1(η) is:

V1(η) =
1

(2π)d

∫

ddk

∞
∑

n3,n4=0
n3+n4≥1

(

−3m2

h̄v

)n3
(

−3m2

h̄v2

)n4
(

h̄

k2 +m2

)n3+n4

(

1

3!

)n3
(

1

4!

)n4 1

n3!

1

n4!
3n36n4(2n3 + 2n4 − 2)!!(n3 + 2n4)!

(

− h̄

(n3 + 2n4)!
ηn3+2n4

)

+

−h̄ η − h̄

2
η2 − h̄

6
η3 − h̄

24
η4 (3.24)

By substituting p = n3 + n4 we can replace the sum over n4 by a sum over p. The sum
over n3 can then easily be done with help of the binomial theorem. We find:

V1(η) = − h̄
2

1

(2π)d

∫

ddk

∞
∑

p=1

(−1)p

p

1

(k2 +m2)p

(

3m2

v
η +

3m2

2v2
η2

)p

+

−h̄ η − h̄

2
η2 − h̄

6
η3 − h̄

24
η4 (3.25)

For d ≤ 4 only the terms with p = 1 and p = 2 in the sum diverge. These diver-
gences are supposed to be cancelled by the counter terms. It is easy to check that this
indeed happens when we substitute the counter terms (3.18) that we found before! After
also expressing η in terms of the original field ϕ = v + η (exact relationship with the
renormalization conditions that we have chosen) we find:

V1(ϕ) = −27

4

h̄m6

v4

(

I(0,m, 0,m, 0,m) − 3m2

2
I(0,m, 0,m, 0,m, 0,m)

)

(

ϕ2 − v2
)2

+

− h̄
2

∞
∑

p=3

(−1)p

p

(

3m2

2v2
(ϕ2 − v2)

)p
1

(2π)d

∫

ddk
1

(k2 +m2)p
(3.26)

Now for d ≤ 4 and p ≥ 3 we have

1

(2π)d

∫

ddk
1

(k2 +m2)p
=

1

(4π)d/2
md−2pΓ(p− d/2)

Γ(p)
, (3.27)

so that we get

V1(ϕ) = −27

8

h̄md

v4

1

(4π)d/2

(

Γ(3 − d/2) − 1

2
Γ(4 − d/2)

)

(

ϕ2 − v2
)2

+

− h̄
2

1

(4π)d/2
md

∞
∑

p=3

(−1)p

p

Γ(p− d/2)

Γ(p)

(

3

2v2
(ϕ2 − v2)

)p

(3.28)

What function this exactly is depends strongly on the dimension d, so to find an explicit
result we have to specify d.
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3.2.1 d = 1

For d = 1 we find:

V1(ϕ) = −1

2
h̄m+

1

2
h̄m

√

1 +
3

2v2
(ϕ2 − v2) − 3

8

h̄m

v2
(ϕ2 − v2) +

117

256

h̄m

v4
(ϕ2 − v2)2 (3.29)

In figure (3.1) V0 = m2

8v2
(ϕ2 − v2)2 and V = V0 + V1 are plotted as a function of ϕ/v for

the case h̄ = 0.1, m = 1, v = 1.

1.25

0.125

0.05

0.75

0.15

0.1

0.0

1.00.50.0

0.075

0.25

0.025

Figure 3.1: V0 And V = V0 + V1 as a function of ϕ/v for h̄ = 0.1, m = 1, v = 1.

It is easy to check that the minima of this 1-loop effective potential are still at ϕ =
±v, like our renormaliztion conditions (3.15) ensures. Expanding around the minimum
ϕ = +v one finds:

V1(ϕ) =
81

64

h̄m

v2
(ϕ− v)2 +

135

64

h̄m

v3
(ϕ− v)3 +

405

512

h̄m

v5
(ϕ− v)5 − 2943

2048

h̄m

v6
(ϕ− v)6 +

O((ϕ− v)7) (3.30)

Indeed there is no tadpole term, and also the 4-point term is absent, as imposed by
our renormalization condition (3.15). From the 2-point term one can read off a mass
correction 81

32
h̄m
v2

. However this is not the correction to the physical mass m2
ph! This

correction is given in (3.22), and is in the case of d = 1:

m2
ph = m2 +

85

32

h̄m

v2
. (3.31)

Here we used the standard integral results given in appendix A.
So in our renormalization scheme the 2-point part of the effective potential does not

give the physical mass. The reason is very simple, the one-loop correction to the effective
potential is given by −h̄A(0), whereas the one-loop correction to the physical mass is
given by −h̄A(−m2), with A as defined in (3.17). To extract the physical mass mph from
the effective action we need the complete effective action including the dynamical part,
not just the effective potential.

The 4-point part of our effective potential does give the physical coupling constant
however, simply because we put λ = λph at zero incoming momentum.
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Now there seems to be a problem with this 1-loop effective potential (3.29). The
argument of the square root in (3.29) becomes negative when

ϕ2 ≤ 1

3
v2 . (3.32)

This means the 1-loop effective potential becomes complex where the classical effective
potential becomes non-convex, i.e. d2

dϕ2Vcl(ϕ) ≤ 0. Even in the domain where the 1-loop
effective potential is defined there is something wrong, it can become non-convex ! In
figure 3.1 V is indeed non-convex, however parameters can also be chosen such that it is
convex where it is defined. However according to our general argument it should always
be convex. As has already been discussed in the literature it is no problem that one finds
a non-convex effective potential in the canonical approach, the proof for the convexity
originates only in the path-integral approach. Also, only in the path-integral approach
one can argue that the effective potential should be real and well-defined everywhere (see
chapter 2).

3.2.2 d = 4

For the case d = 4 we find, using (3.28):

V1(ϕ) =
1

4

1

(4π)2
h̄m4

(

1 +
3

2

1

v2
(ϕ2 − v2)

)2

ln

(

1 +
3

2

1

v2
(ϕ2 − v2)

)

−3

8

1

(4π)2

h̄m4

v2
(ϕ2 − v2) − 81

32

1

(4π)2

h̄m4

v4
(ϕ2 − v2)2 (3.33)

In figure (3.2) V0 and V = V0 + V1 are plotted as a function of ϕ/v for the case h̄ = 2,
m = 1, v = 1.

0.025

0.25 1.251.0

0.125

0.075

0.0

0.1

0.05

0.750.5

0.0

Figure 3.2: V0 And V = V0 + V1 as a function of ϕ/v for h̄ = 2, m = 1, v = 1.

The minima are again at ϕ = ±v. Expanding (3.33) around ϕ = +v gives:

V1(ϕ) = −27

4

1

(4π)2

h̄m4

v2
(ϕ− v)2 − 9

2

1

(4π)2

h̄m4

v3
(ϕ− v)3 +

27

80

1

(4π)2

h̄m4

v5
(ϕ− v)5

− 9

40

1

(4π)2

h̄m4

v6
(ϕ− v)6 + O((ϕ− v)7) (3.34)
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Again we see that there is no tadpole and 4-point part, in accordance with our renormal-
ization conditions (3.15).

The physical mass mph can again be calculated from (3.22). This calculation is some-
what more involved now since we have divergences occurring at intermediate steps in the
calculation. By using the standard integral results from appendix A we find:

m2
ph = m2 − 27

16

h̄m4

v2

1

π2
+

5
√

3

32

h̄m4

v2

1

π
(3.35)

Again, as in d = 1, at first sight there is a problem with (3.33). For ϕ2 ≤ 1
3
v2 the

argument of the logarithm becomes zero or negative, such that the one-loop effective
potential is complex in this domain. Also it can become non-convex in this domain.
Indeed the V in figure 3.2 is non-convex (although this might be a bit hard to see, it can
be seen more clearly by plotting the derivative of V ).

3.3 Instantons

Instantons are classical solutions of the equations of motions, i.e. configurations that
minimize the classical action, which are not constant (like (3.6)), but which go from one
minimum to the other. Also these instantons should have a finite action. For a nice book
on these instantons see [28].

So what about instantons in the N = 1 linear sigma model? For dimension 1 it can
easily be shown that there is a classical solution that takes one from one minimum to the
other and that has a finite action. So for d = 1 we should have included these instanton
solutions in a complete treatment. In [29] such a treatment for the N = 1 linear sigma
model can be found. When including these instantons one will not find a spontaneously
broken theory. This is well known, in one dimension there is no SSB, on account of
tunneling.

However, it is shown in general, by Derrick [30], that for d > 1 no instanton solutions
exist. Of course there exist solutions of the classical equations of motion that go from
one minimum to the other, but these solutions have infinite action. Since we are mostly
interested in higher dimensions, i.e. d > 1, we shall not include instantons at all in this
thesis.



Chapter 4

The N = 1 LSM: The Path-Integral
Approach

In this chapter we discuss the path-integral approach to the N = 1 Euclidean linear
sigma model. This means we take the path integral seriously and take into account both
minima in our calculations. These calculations generally follow Fujimoto at al. [15] and
Cooper at al. [18]. We will calculate the effective potential, which will be convex and
well-defined. Also we will calculate some Green’s functions and say something about the
physics resulting from this approach.

The action we will use is:

S =

∫

ddx

(

1

2
(∇ϕ)2 − 1

2
µϕ2 +

λ

24
ϕ4 − Jϕ

)

. (4.1)

Here, in contrast to the previous chapter, we have included a source term in the action, to
be able to compute the effective potential via this source. In this action the field depends
on the space-time coordinates x, and so does the source J in general. We however limit
ourselves to the case where J is constant over space-time, since we are only interested in
the effective potential and not the complete effective action.

4.1 The Effective Potential

To find the renormalized generating functional and Green’s functions we have to introduce
renormalized quantities, as in (3.4). The source J is renormalized as:

JR =
√
ZJ (4.2)

By renormalizing J in this way we ensure that by taking derivatives with respect to J
one gets the renormalized Green’s functions. As in the previous chapter we will drop the
superscript R from now on. The action becomes:

S =

∫

ddx

(

1

2
(∇ϕ)2 − 1

2
µϕ2 +

λ

24
ϕ4 − Jϕ+

1

2
δZ (∇ϕ)2 − 1

2
δµϕ

2 +
δλ
24
ϕ4

)

. (4.3)

23
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Now the two minima of the first line in (4.3) can be parameterized as:

J =
2µv

3
√

3
sin(3α) , −π

6
< α ≤ π

6

ϕ± =
2v√

3
sin
(

α± π

3

)

≡ 2v√
3

sin± (4.4)

with v2 ≡ 6µ/λ, as in the previous chapter. We see that in this parametrization

− 2µv

3
√

3
< J ≤ 2µv

3
√

3
. (4.5)

These limits are exactly the values of J where one of the minima becomes unstable.
When this happens it is a good approximation to take along only one minimum and the
effective potential of the previous chapter can be used in this region.

Now the action can be expanded around one of the minima ϕ±:

S± =

∫

ddx

(

1

2
(∇η)2 + µ

(

2 sin2
± −1

2

)

η2 +
2√
3

µ

v
sin± η

3 +
µ

4v2
η4 +

2

3
µv2 sin2

± −4

3
µv2 sin4

± +

(

− 2√
3
v sin± δµ +

4

9
√

3
v3 sin3

± δλ

)

η +
1

2
δZ (∇η)2 +

(

−1

2
δµ +

1

3
v2 sin2

± δλ

)

η2 +
1

3
√

3
v sin± δλη

3 +
1

24
δλη

4 +

− 2

3
v2 sin2

± δµ +
2

27
v4 sin4

± δλ

)

. (4.6)

The counter terms cannot depend on the source J , so we can just as well use the
counter terms as derived in (3.18). These counter terms will still make all results finite.
However they will not make our theory have the same physics as in the previous chapter,
also because we take into account both minima now. For now we use (3.18) and we will
see what physics we get.

The complete generating functional Z(J) is given by

Z(J) = Z+(J) + Z−(J) (4.7)

with

Z± =

∫

Dϕ exp

(

−1

h̄
S±

)

. (4.8)

Now we take only the saddle-point approximation to Z±, i.e. discard all interaction terms
(defined as all terms in the action of higher order than h̄). Below we will see that this
saddle-point approximation will already produce the one-loop correction to the effective
potential, which we can then compare to our previous one-loop effective potentials.

Z±(J) = exp

(

−1

h̄

∫

ddx

(

1

3
m2v2 sin2

± −2

3
m2v2 sin4

± −2

3
v2 sin2

± δµ +
2

27
v4 sin4

± δλ

))

·
∫

Dη exp

(

−1

h̄

∫

ddx

(

1

2
(∇η)2 +m2

(

sin2
± −1

4

)

η2

))

(4.9)
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This last line can be calculated as follows (We call the space-time volume Ω ≡
∫

ddx.):

A ≡
∫

Dη exp

(

−1

h̄

∫

ddx

(

1

2
(∇η)2 +

1

2
M2η2

))

⇒ −2h̄

Ω

∂

∂M2
A = h̄A I(0,M)

⇒ A ∼ exp

(

−1

2
Ω

1

(2π)d

∫

ddk ln
(

k2 +M2
)

)

(4.10)

Next we expand the logarithm around sin2
± = 3

4
:

1

(2π)d

∫

ddk ln

(

k2 +m2

(

2 sin2
±−1

2

))

=

1

(2π)d

∫

ddk

(

ln(k2 +m2) −
∞
∑

p=1

(−2m2)p

p

(

sin2
± −3

4

)p
1

(k2 +m2)p

)

(4.11)

The first term in this expansion can be discarded since it is merely a constant, not
depending on J and thus unimportant for physical quantities. Now the counter terms
(3.18) can be inserted and (3.27) can be used to simplify the integrals in Z±(J). After
some algebra one finds:

Z±(J) = exp

(

−1

h̄
Ω (V0 (ϕ±) + V1 (ϕ±) − Jϕ±)

)

(4.12)

where V0 is the zero-loop effective potential when one takes along only one minimum,
which is just the classical potential,

V0(ϕ) = −1

2
µϕ2 +

µ

4v2
ϕ4 (4.13)

and V1 is the one-loop effective potential when one takes along only one minimum, which
is given in (3.28). Notice that this Z± has a J dependence through J and ϕ±.

Now one can also see that if we take into account only one minimum, e.g. Z = Z+, we
again get V0(ϕ

cl) + V1(ϕ
cl) for the effective potential, like we got in the previous chapter.

This also demonstrates that the saddle-point approximation to Z± was enough to get the
one-loop effective potential. It also demonstrates that the canonical approach is in fact
equivalent to taking into account only one minimum in the path-integral approach.

Continuing our calculation of Z = Z+ + Z− and defining:

α ≡ 1

2
(ϕ+ + ϕ−) , β ≡ 1

2
(ϕ+ − ϕ−) ,

A0 ≡
1

2
(V0(ϕ+) + V0(ϕ−)) , A1 ≡

1

2
(V1(ϕ+) + V1(ϕ−)) ,

B0 ≡
1

2
(V0(ϕ+) − V0(ϕ−)) , B1 ≡

1

2
(V1(ϕ+) − V1(ϕ−)) , (4.14)

we find

Z = 2 exp

(

−1

h̄
Ω(A0 + A1 − Jα)

)

cosh

(

1

h̄
Ω(B0 +B1 − Jβ)

)

(4.15)
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and

〈ϕ〉(J) = h̄
δ

δJ
lnZ =

h̄

Ω

∂

∂J
lnZ

= α− ∂A1

∂J
+

(

β − ∂B1

∂J

)

tanh

(

1

h̄
Ω(Jβ −B0 −B1)

)

. (4.16)

Now by inverting this 〈ϕ〉(J) we find J(ϕcl), which is equal to the derivative of the effective
potential V 2min, where the superscript ‘2min’ denotes that we included both minima.

This derivative of V 2min is plotted in figure (4.1) for the case of d = 1 and h̄ = 0.1,
m = 1, v = 1, Ω = 10. Also the derivative of the one-minimum effective potential (3.29)
is plotted for comparison. In figure (4.2) the derivative of V 2min is plotted for the case
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Figure 4.1: ∂
∂ϕclV

2min And ∂
∂ϕclV as a function of ϕ/v for d = 1 and h̄ = 0.1, m = 1,

v = 1, Ω = 10.

of d = 4 and h̄ = 2, m = 1, v = 1, Ω = 100. Also the derivative of the one-minimum
effective potential (3.33) is plotted again.

0.2

0.08

−0.04

−0.08

0.16

0.12

0.5

−0.2

0.0

−0.5

−0.16

1.00.0−1.0

0.04

−0.12

Figure 4.2: ∂
∂ϕclV

2min And ∂
∂ϕclV as a function of ϕ/v for d = 4 and h̄ = 2, m = 1, v = 1,

Ω = 100.
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By plotting the same case for larger and larger Ω it is easy to see that in the limit Ω →
∞ one gets an effective potential with a flat bottom. This is the Maxwell construction of
the one-minimum effective potential. That one gets this Maxwell construction can also
be seen from (4.16). It is easy to see that for small J we have:

〈ϕ〉(J) = v tanh

(

1

h̄
ΩJv + O(J2)

)

+ O(J) ≈ v tanh

(

1

h̄
ΩJv

)

(4.17)

For Ω → ∞ this becomes a kink.
So indeed we get a convex and real effective potential in this case, as dictated by

our general arguments from chapter 2. For finite space-time volume Ω it is even strictly
convex.

For Ω → ∞ our effective potential is not strictly convex because in this limit we have
that

〈ϕ(x)ϕ(y)〉c = v2 + O(h̄) , (4.18)

as will be shown in the next section. If we consider this as a matrix, like we did in section
(2.3), one can see that this matrix has eigenvalues equal to infinity. A function f(x) and
a value kf are eigenfunction and eigenvalue of our matrix 〈ϕ(x)ϕ(y)〉c if:

∫

ddy 〈ϕ(x)ϕ(y)〉c f(y) = kff(x) (4.19)

If our matrix is just v2 (at lowest order) one finds

v2

∫

ddy f(y) = kff(x) ⇒ f(x) = f ⇒ kf = v2Ω , (4.20)

which shows that all eigenvalues are infinite. If we include higher order terms in 〈ϕ(x)ϕ(y)〉c
(many of these are normalizable, i.e. give a finite result when integrated over) the argu-
ment changes, but one will still find at least one eigenvalue equal to infinity. This means
that the eigenvalues of the inverse matrix can become zero for infinite volume and that
the effective action is not strictly convex, but of course still convex.

4.2 The Green’s Functions

Now we calculate the Green’s functions of the theory, to discover what physics this theory
gives. In section (2.2) we showed that the functional derivatives of the effective action
are related to the Green’s functions of the theory. Because we find a flat bottom here,
we also get different Green’s functions than in the canonical approach.

First we compute the tadpole:

〈ϕ(x)〉 =

∫

Dϕ ϕ(x) e−
1
h̄
S(J=0)

∫

Dϕ e− 1
h̄
S(J=0)

=

∫

Dη (ϕ+(0) + η(x)) e−
1
h̄
S+(J=0) +

∫

Dη (ϕ−(0) + η(x)) e−
1
h̄
S−(J=0)

∫

Dη e− 1
h̄
S+(J=0) +

∫

Dη e− 1
h̄
S−(J=0)

=
(ϕ+(0) + 〈η(x)〉+(0))Z+(0) + (ϕ−(0) + 〈η(x)〉−(0))Z−(0)

Z+(0) + Z−(0)
(4.21)
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Here ϕ+, ϕ−, S+, S−, Z+ and Z− are all defined earlier in this chapter, and 〈η〉± is given
by:

〈η〉± =
h̄

Ω

∂

∂J
lnZ± . (4.22)

This is just the η-tadpole from the canonical approach. Now we know:

ϕ±(0) = ±v

Z±(0) =

∫

Dη e− 1
h̄
S±(J=0) = Z+

〈η〉±(0) =

∫

Dη η(x) e− 1
h̄
S±(J=0) = ±〈η〉+(0) (4.23)

So we find
〈ϕ(x)〉 = 0 . (4.24)

In the same way we can find the 2-point Green’s function.

〈ϕ(x)ϕ(y)〉 =

∫

Dϕ ϕ(x)ϕ(y) e−
1
h̄
S(J=0)

∫

Dϕ e− 1
h̄
S(J=0)

=

∫

Dη
(

ϕ2
+(0) + ϕ+(0)(η(x) + η(y)) + η(x)η(y)

)

e−
1
h̄
S+(J=0) + (+ → −)

∫

Dη e− 1
h̄
S+(J=0) + (+ → −)

= v2 + 2v〈η〉+(0) + 〈η(x)η(y)〉+(0) (4.25)

Here 〈η(x)η(y)〉+(0) is again just the η-propagator from the canonical approach. With
the counter terms that we chose in this canonical approach (and that we will use for the
N = 1 linear sigma model in the whole of this thesis) we find, up to one-loop order:

〈ϕ(x)ϕ(y)〉c = v2 +
1

(2π)d

∫

ddp

(

h̄

p2 +m2
+

(

h̄

p2 +m2

)2

A(p2)

)

eip·(x−y) , (4.26)

with A given in (3.20).
In the canonical approach we found for 〈ϕ(x)〉 and 〈ϕ(x)ϕ(y)〉c:

〈ϕ(x)〉 = +v

〈ϕ(x)ϕ(y)〉c =
1

(2π)d

∫

ddp

(

h̄

p2 +m2
+

(

h̄

p2 +m2

)2

A(p2)

)

eip·(x−y) (4.27)

(Remember that we chose the positive minimum in the chapter 3.)
Clearly the tadpole and the ϕ-propagator (it is questionable whether one can still call

this a propagator) are different than in the canonical approach.

4.3 The Green’s Functions Near Another Particle

In the previous section we saw that the Green’s functions one finds in the path-integral
approach are very different from the Green’s functions that one finds in the canonical
approach. Now we can ask: What happens to the field ϕ near another particle that it
couples to like ϕ(x)ψ2(x) (like the Higgs)? Near a ψ-particle we have ψ2(x) 6= 0. This
means this ψ-particle acts like a source-term. So to compute the Green’s functions of the
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ϕ-field we can proceed as in the previous section, not setting the source to zero now, but
setting it to ψ2. It should have become clear that when ψ2 6= 0 immediately one of the
minima is favored non-perturbatively. Then the Green’s functions become what they are
in the canonical approach.

This means that in this path-integral approach the ϕ-field acts the same as in the
canonical approach near other particles, however it acts completely different far away from
other particles. Far away from other matter there is no SSB, and also the propagator is
very different. Near particles there is SSB, and the ϕ-field gives a mass to the ψ-particles.
It is a very interesting, but difficult, question what this exactly means for the physics
involved in the ϕ-field sector. Is this perhaps also a good mechanism to give masses to
other particles? In this thesis we shall not go into this question further.
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Chapter 5

The N = 1 LSM: Fixing the Paths

In this chapter we will again discuss the Euclidean N = 1 linear sigma model from the
path-integral viewpoint, however now we shall introduce an extra constraint in the path
integral. We will keep the paths fixed at a certain time −T at some specific value ϕ̄ over
all of space. In this way we hope to construct a path-integral model which has the same
physics (i.e. Green’s functions) as the canonical approach.

The idea of fixing the paths is very much like what Fukuda et al. [22], O’Raifeartaigh
et al. [21] and Ringwald et al. [23] do in their papers. However they fix some space-time
average of the field to some value, whereas we fix the field itself. The latter seems the
more natural thing to do, when trying to induce SSB. Also, in these articles nothing has
been said about the renormalizability of these models.

In the first section below we will show how to deal with a constraint in the path
integral in case of a free field theory. After that we will proceed with the N = 1 linear
sigma model. We will show that this model, together with the path fixing constraint,
is renormalizable at 1-loop order. We will calculate the alternative effective potential at
lowest order and some Green’s functions, and find that indeed we recover the physics as
found also in the canonical approach.

5.1 The Free Theory with Fixed Paths

To get some feeling for what it means to have the paths in the path integral fixed we
consider a free field theory. The action of a Euclidean free field theory, including source
term, is:

S =

∫

ddx

(

1

2
(∇ϕ(x))2 +

1

2
µϕ2(x) − J(x)ϕ(x)

)

. (5.1)

Now, in the path integral, we are going to keep all paths fixed at ϕ̄ at time −T and
over all of space:

ϕ(~x,−T ) = ϕ̄ ∀ ~x . (5.2)

By ~x we mean the d−1-vector containing all space coordinates. The generating functional
Z(J) is given by:

Z(J) =

∫

ϕ(~x,−T )=ϕ̄

Dϕ e− 1
h̄
S . (5.3)

To find the effective action and the Green’s functions we need to know the ϕ-tadpole
〈ϕ(x)〉(J). To find this we can expand the action around the classical solution. To

31
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compute the classical solution we must find the minimum of the action, taking into
account that we only accept solutions satisfying the constraint (5.2). This constraint
can be built in by using a Lagrange multiplier field λ(~x). Then the problem reduces to
minimizing

S +

∫

dd−1x λ(~x) (ϕ(~x,−T ) − ϕ̄) (5.4)

with respect to ϕ(x) and λ(~x). This means the classical solution ϕc satisfies

−∇2ϕc(~x, t) + µϕc(~x, t) − J(~x, t) + λ(~x)δ(t+ T ) = 0 , (5.5)

and (5.2).
By passing to Fourier fields:

ϕc(~x, t) =
1

(2π)d

∫

ddk ϕ̃c(k) e
ik·x

J(~x, t) =
1

(2π)d

∫

ddk J̃(k) eik·x

λ(~x) =
1

(2π)d−1

∫

dd−1k λ̃(~k) ei
~k·~x (5.6)

equation (5.5) can easily be solved:

ϕc(~x, t) =
1

(2π)d

∫

ddk eik·x
J̃(k) − λ̃(~k)eiktT

k2 + µ
. (5.7)

The Lagrange multiplier can be fixed with the constraint (5.2)

λ(~k) = 2

√

~k2 + µ

(

−(2π)d−1ϕ̄ δd−1(~k) +
1

2π

∫

dkt
J̃(k)e−iktT

k2 + µ

)

. (5.8)

Substituting this in the classical solution we found gives:

ϕc(~x, t) = ϕ̄ e−
√
µ|t+T | +

1

(2π)d

∫

ddk J̃(k)
eik·x

k2 + µ
+

− 1

(2π)d

∫

ddk J̃(k) ei
~k·~x e−

√
~k2+µ|t+T | e−iktT

1

k2 + µ
(5.9)

Now the new action (5.1) can be expanded around this classical solution,

ϕ(x) = ϕc(x) + η(x) , (5.10)

to obtain:

S =

∫

ddx

(

1

2
(∇ϕc(x))2 +

1

2
µϕ2

c(x) − J(x)ϕc(x)

)

+

∫

ddx

(

1

2
(∇η(x))2 +

1

2
µη2(x)

)

.

(5.11)
In this way the ϕ-tadpole 〈ϕ(x)〉(J) can easily be calculated:

〈ϕ(~x, t)〉(J) = ϕc(~x, t) . (5.12)

This simple relationship is of course caused by the fact that the path integral just gives
an overall constant, not depending on the source J . This is because we are working with
a free theory here.
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5.1.1 The Green’s Functions

Now the ϕ-tadpole and propagator can be calculated. To obtain the tadpole just set J to
zero in (5.12). To obtain the propagator take a functional derivative with respect to J(y)
and then put J to zero in (5.12). Taking more derivatives with respect to J in (5.12)
gives zero, so higher connected Green’s functions are zero, as expected in a free theory.
We obtain the following results:

〈ϕ(x)〉 = ϕ̄ e−
√
µ|t+T |

〈ϕ(x)ϕ(y)〉c =
h̄

(2π)d

∫

ddk
eik·(x−y)

k2 + µ
+

− h̄

(2π)d−1

∫

dd−1k ei
~k·(~x−~y)

1
2π

∫

dkt
eikt(tx+T )

~k2+k2
t +µ

· 1
2π

∫

dlt
eilt(ty+T )

~k2+l2t +µ

1
2π

∫

dlt
1

~k2+l2t +µ

(5.13)

Indeed we have, as expected:

〈ϕ(~x,−T )〉 = ϕ̄

〈ϕ(~x,−T )ϕ(y)〉c = 0

〈ϕ(~x,−T )ϕ(y)〉 = ϕ̄〈ϕ(y)〉 (5.14)

5.1.2 The Effective Action

To obtain the effective action we have to invert the relation (5.9). This can be done by
letting the operator −∇2 + µ work on both sides of (5.9). One gets:

−∇2ϕ(x) + µϕ(x) =

(

2
√
µϕ̄− 1

(2π)d

∫

ddk 2

√

~k2 + µ
ei
~k·~x−iktT J̃(k)

k2 + µ

)

δ(t+ T ) + J(x)

(5.15)
From this we see that J has the form:

J(x) = −∇2ϕ(x) + µϕ(x) + A(~x)δ(t+ T ) , (5.16)

where A(~x) is a some functional of the field ϕ(x). Now the A has to be fixed by inserting
this J in (5.15). However, when doing this, one finds that A drops out of the expression.
Instead, after some algebra, one gets a condition for ϕ:

ϕ(~x,−T ) = ϕ̄ ∀ ~x . (5.17)

This means we find the inverse J to be (5.16), but this inverse can only be found
when the field ϕ satisfies the constraint (5.2). This is expected, because the right hand
side of (5.9) only gives a result that obeys the constraint, if someone would come up with
a ϕ that does not satisfy (5.2), there would simply be no solution J that gives this ϕ.

Also A remains undetermined, simply because adding a term like A(~x)δ(t+T ) to the
source does not change the Green’s functions (i.e. the physics) because the field is fixed
at t = −T .

Finally, by integrating (5.16) with respect to the field ϕ, one can find the effective
action now. Clearly this effective action is not unique. Here we find ourselves exactly in
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the loop-hole situation described in the first section of chapter 2. It can easily be seen
that

∫

ddx

∫

ddy ρ(x)ρ(y) 〈ϕ(x)ϕ(y)〉c(J) (5.18)

is zero for the case
ρ(x) = M(x)δ(t+ T ) , (5.19)

simply because of (5.14). This means M(x)δ(t+ T ) is an eigenfunction of the connected
propagator with eigenvalue zero. So the connected propagator has no unique inverse.

So clearly the effective action cannot be defined uniquely. We saw above however that
there are several functionals J which are a solution to (5.15). So in that sense several
effective actions can be defined in this case. However these are not necessarily convex,
because the argument for the convexity in chapter 2 assumes that there exists a unique
inverse. It is easy to construct an A(~x) which gives a non-convex effective action.

Also note that, if we choose one of the possible effective actions, it is not possible to
define an effective potential. Setting the field to a constant, which is what one would
normally do when finding the effective potential from the effective action, is not possible
in this case because a constant field does not satisfy the constraint (5.2) in general (except
ϕ = ϕ̄). This would bring us outside the domain where the effective action is defined.

What one can do, is define an alternative effective potential from (5.16). If we consider
(5.16) and the field ϕ for large t, i.e. t � −T , then it is allowed to put the field ϕ to a
constant. If we then integrate (5.16) with respect to ϕ we have constructed an alternative
effective potential. In this free field theory this alternative effective potential will be the
same as the effective potential of a free field theory without the path-fixing constraint.

5.1.3 Conclusions

In the case of a model where we fix the paths in the path integral at some value ϕ̄ at
some time −T over all of space we have the following conclusions:

• The effective action is defined on the domain of fields that satisfy the constraint,
but this effective action is not unique and in general not convex.

• The effective potential can not be defined in the ordinary way.

• An alternative effective potential can be defined as the anti-derivative of J(x) for
times t� −T .

This last definition of an effective potential we shall use whenever we are dealing with a
model with fixed paths.
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5.2 The N = 1 Linear Sigma Model

Now we proceed with the Euclidean N = 1 linear sigma model. The action of this model,
including source term, is

S =

∫

ddx

(

1

2
(∇ϕ(x))2 − 1

2
µϕ2(x) +

λ

24
ϕ4(x) − J(x)ϕ(x)

)

. (5.20)

Again we take all paths in the path integral fixed at ϕ̄ at time t = −T for all space-points
~x:

ϕ(~x,−T ) = ϕ̄ ∀ ~x . (5.21)

We take the source J in (5.20) to be a constant, first of all for practical purposes, our
calculations are simply too difficult when this source is also space- and time-dependent.
Secondly at the end of the day we will only be interested in the alternative effective
potential, for which it is enough to consider only a constant source J .

In terms of renormalized quantities the action (5.20) becomes:

S =

∫

ddx

(

1

2
(∇ϕ(x))2 − 1

2
µϕ2(x) +

λ

24
ϕ4(x) − Jϕ(x) +

1

2
δZ(∇ϕ(x))2 − 1

2
δµϕ

2(x) +
δλ
24
ϕ4(x)

)

. (5.22)

First of all the minimum, or in this case minima, of the classical action (i.e. the first
line of (5.22)) have to be found. Because of the boundary condition (5.21) this is far
from trivial. Then the action has to be expanded around one of these minima (later we
will then sum the contributions from all minima). The action will have three parts: the
classical action, the quantum fluctuations and the counter terms. Because the classical
solutions will be quite complicated, also calculating the classical action will not be as easy
as it sounds. Also the path integral of the quantum fluctuations has to be calculated. In
our treatment we shall only take the saddle-point approximation around each minimum,
which means only Gaussian fluctuations are kept, all interaction terms are discarded.
Even in this approximation it is very difficult to compute the path integral, as we shall
see. We will only look at the divergent parts, to see whether this theory is renormalizable
up to 1-loop. We will find that this is indeed the case. Then, knowing that everything
is finite we can calculate the alternative effective potential at lowest order. Also we can
compute the Green’s functions and compare with the canonical approach.

To make all these remarks more concrete we work out mathematically what we have
to do. First we have to find the minima of the classical action, i.e. the first line of (5.22),
under the condition (5.21). To implement this condition we add to the action a Lagrange
multiplier term and minimize this object with respect to the field ϕ and the Lagrange
multiplier λ′. The action plus the Lagrange multiplier term is given by:

∫

ddx

(

1

2
(∇ϕ(x))2 − 1

2
µϕ2(x) +

λ

24
ϕ4(x) − Jϕ(x)

)

+

∫

dd−1x λ′(~x) (ϕ(~x,−T ) − ϕ̄) .

(5.23)
Minimizing these two terms with respect to the field and the Lagrange multiplier we find:

−∇2ϕ(~x, t) − µϕ(~x, t) +
λ

6
ϕ3(~x, t) − J + λ′(~x)δ(t+ T ) = 0

ϕ(~x,−T ) = ϕ̄ (5.24)
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Now the last term in the left hand side of the first equation forces the classical solution ϕ
to be time dependent, however there is nothing that forces the solution to be dependent
on the space-coordinates ~x. The true minima of the action will have no ~x-dependence,
since this dependence will only increase the action. So we will limit ourselves to find
only classical solutions which only depend on time. In this case the Lagrange multiplier
necessarily has to be constant. So we should solve:

− d2

dt2
ϕ(t) − µϕ(t) +

λ

6
ϕ3(t) − J + λ′δ(t+ T ) = 0

ϕ(−T ) = ϕ̄ (5.25)

Solving this system will be the subject of the first section below.

When we found solutions to this system the action (5.22) can be expanded around
such a solution. Calling the classical solution ϕc(t) and the fluctuation around it η(~x, t)
we find:

S =

∫

ddx

(

1

2
(∇ϕc + ∇η)2 − 1

2
µ(ϕc + η)2 +

λ

24
(ϕc + η)4 − J(ϕc + η) +

1

2
δZ(∇ϕc + ∇η)2 − 1

2
δµ(ϕc + η)2 +

δλ
24

(ϕc + η)4

=

∫

ddx

(

1

2

(

d

dt
ϕc

)2

− 1

2
µϕ2

c +
λ

24
ϕ4
c − Jϕc +

1

2
(∇η)2 +

(

−1

2
µ+

λ

4
ϕ2
c

)

η2 +
λ

6
ϕcη

3 +
λ

24
η4 +

− 1

2
δZϕc

d2

dt2
ϕc −

1

2
δµϕ

2
c +

δλ
24
ϕ4
c +

(

−δZ
d2

dt2
ϕc − δµϕc +

δλ
6
ϕ3
c

)

η +
1

2
δZ(∇η)2 +

(

−1

2
δµ +

δλ
4
ϕ2
c

)

η2 +

δλ
6
ϕcη

3 +
δλ
24
η4

)

(5.26)

Now we will make the saddle-point approximation, so we will only keep terms up to order
η2, i.e. order h̄. Discarding all interaction terms and recognizing that the first line in the
expression above is just the classical action Sc we find:

S = Sc +

∫

ddx

(

1

2
(∇η)2 +

(

−1

2
µ+

λ

4
ϕ2
c

)

η2 − 1

2
δZϕc

d2

dt2
ϕc −

1

2
δµϕ

2
c +

δλ
24
ϕ4
c

)

(5.27)

With this action the generating functional around one minimum is given by:

Z(J) = e−
1
h̄
Sc

∫

η(~x,−T )=0

Dη exp

(

−1

h̄

∫

ddx

(

1

2
(∇η)2 +

(

−1

2
µ+

λ

4
ϕ2
c

)

η2

))

·

exp

(

−1

h̄

∫

ddx

(

−1

2
δZϕc

d2

dt2
ϕc −

1

2
δµϕ

2
c +

δλ
24
ϕ4
c

))

(5.28)
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5.2.1 The Classical Solutions

Now we solve the system (5.25). Of course we need more boundary conditions than
ϕ(~x,−T ) = ϕ̄ to solve this differential system. What we will demand from our solutions
is that, when t→ ±∞, ϕ will converge to one of the two static minima ϕ± of the potential
−1

2
µϕ2 + λ

24
ϕ4 − Jϕ. This means:

ϕ(t) → ϕ± ,
d

dt
ϕ(t) → 0 for t→ ±∞ . (5.29)

Of course we use these boundary conditions because we are looking for solutions giving
a finite, minimal action. Below these conditions will appear to be sufficient to solve the
differential system.

Before we start calculating note first that the differential system (5.25) corresponds to
a mechanical problem of a particle with unit mass in a potential V (x) = 1

2
µx2− λ

24
x4 +Jx

when t 6= −T . For t → −∞ the particle starts at one of the static minima ϕ±, then
it travels such that it is at ϕ̄ at t = −T . Then the Lagrange multiplier term gives the
particle just such a kick that it reaches one of the static minima again for t → +∞. In
this way we have a nice intuitive picture that helps us to solve the differential system
(5.25).

We divide our time domain in two intervals, region 1 where t < −T and region 2
where t > −T . In these regions the delta-function term is absent of course. First we
consider region 1. From the first equation in (5.25) we find by multiplying by ϕ̇ ≡ d

dt
ϕ

and integrating with respect to time:

−1

2
ϕ̇2 − 1

2
µϕ2 +

λ

24
ϕ4 − Jϕ = α (5.30)

For t → −∞ ϕ̇ should go to zero and ϕ should go to one of the two static minima ϕ±.
We denote the minimum ϕ goes to for t→ −∞ by ϕ1. With this we can immediately fix
the constant of integration α:

α = −1

2
µϕ2

1 +
λ

24
ϕ4

1 − Jϕ1 (5.31)

So in region 1 we should find a solution to:

ϕ̇ = ±
√

−µ(ϕ2 − ϕ2
1) +

λ

12
(ϕ4 − ϕ4

1) − 2J(ϕ− ϕ1) (5.32)

By dividing by the square root on both sides and integrating over time again we find:
∫ ϕ(t)

0

dϕ
±1

√

−µ(ϕ2 − ϕ2
1) + λ

12
(ϕ4 − ϕ4

1) − 2J(ϕ− ϕ1)
= t+ β (5.33)

The constant β can be fixed with the second equation in (5.25). One finds:

β = T +

∫ ϕ̄

0

dϕ
±1

√

−µ(ϕ2 − ϕ2
1) + λ

12
(ϕ4 − ϕ4

1) − 2J(ϕ− ϕ1)
(5.34)

And finally the solution in region 1 becomes:
∫ ϕ(t)

ϕ̄

dϕ
±1

√

−µ(ϕ2 − ϕ2
1) + λ

12
(ϕ4 − ϕ4

1) − 2J(ϕ− ϕ1)
= t+ T (5.35)
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Now one should worry a little about the roots of the argument of the square root. In
the corresponding mechanical problem this argument gives (twice) the energy the particle
has at time −∞ minus the potential energy at position ϕ. This is just the kinetic energy
of the particle at position ϕ. Clearly the regions in ϕ where this kinetic energy becomes
negative are forbidden. Also the roots of the argument can only be reached for t→ ±∞,
as can easily be seen in (5.35). This means a solution ϕ(t) always stays between two
roots.

The solution (5.35) can be simplified by passing to a different variable:

f(t) ≡ ϕ(t) − ϕ1

v
(5.36)

If we also define the new dimensionless quantities

m1 ≡
ϕ1

v
, f̄ ≡ ϕ̄− ϕ1

v
, x ≡ J

µv
(5.37)

then the integral equation (5.35) can be written as

∫ f(t)

f̄

df
±1

√

(6m2
1 − 2)f 2 + 4m1f 3 + f 4

=

√

µ

2
(t+ T ) . (5.38)

The linear term in f in the square root has dropped out becausem1 satisfiesm3
1−m1−x =

0.
Of course the same steps can be done in region 2, where t > −T . There we obtain:

∫ g(t)

ḡ

dg
±1

√

(6m2
2 − 2)g2 + 4m2g3 + g4

=

√

µ

2
(t+ T ) , (5.39)

with

g(t) ≡ ϕ(t) − ϕ2

v
, m2 ≡

ϕ2

v
, ḡ ≡ ϕ̄− ϕ2

v
. (5.40)

Now we can explicitly solve (5.38) and (5.39). We will demonstrate the procedure for
region 1, of course things go completely similar in region 2. First remember that f can
never pass a root of the argument in the square root. This means that for one solution,
f always stays between two roots. For this reason we can write (5.38) as

∫ f(t)

f̄

df
±1

f
√

(6m2
1 − 2) + 4m1f + f 2

=

√

µ

2
(t+ T ) . (5.41)

Of course the ± in (5.41) can be a different ± than in (5.38). Next we switch to a new
variable z:

z = f −
√

(6m2
1 − 2) + 4m1f + f 2 (5.42)

Note that for J = 0, so m1 = ±1, the argument of the square root combines to (f+2m1)
2

and for f > 2m1 the f ’s in (5.42) cancel, such that the variable substitution becomes
nonsense. This just means that later on we have to be a bit careful in setting J = 0.
After this variable substitution we do another one,

z =
√

6m2
1 − 2

1

cos θ
, (5.43)
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after which the integral in (5.41) becomes

− 2
√

6m2
1 − 2

∫

dθ
1

sin θ
= − 1

√

6m2
1 − 2

[

ln
1 − cos θ

1 + cos θ

]

. (5.44)

Writing this expression in terms of the f variables and substituting the appropriate
boundaries gives us

f −
√

6m2
1 − 2 + 4m1f + f 2 −

√

6m2
1 − 2

f −
√

6m2
1 − 2 + 4m1f + f 2 +

√

6m2
1 − 2

= Ω1 (5.45)

with

Ω1 =
f̄ −

√

6m2
1 − 2 + 4m1f̄ + f̄ 2 −

√

6m2
1 − 2

f̄ −
√

6m2
1 − 2 + 4m1f̄ + f̄ 2 +

√

6m2
1 − 2

exp

(

±
√

µ(3m2
1 − 1)(t+ T )

)

. (5.46)

Now we know that for t→ −∞ ϕ has to go to ϕ1, so f has to go to zero. From (5.45)
we see that Ω1 has to go to ±∞ in this limit. So we have to choose the minus-sign in the
exponential.

Finally solving (5.45) for f gives

f(t) =
4(6m2

1 − 2)Ω1

4m1(1 − Ω1)2 + 2
√

6m2
1 − 2(1 − Ω2

1)
, (5.47)

with

Ω1 =
f̄ −

√

6m2
1 − 2 + 4m1f̄ + f̄ 2 −

√

6m2
1 − 2

f̄ −
√

6m2
1 − 2 + 4m1f̄ + f̄ 2 +

√

6m2
1 − 2

exp

(

−
√

µ(3m2
1 − 1)(t+ T )

)

. (5.48)

In region 2 we find likewise

g(t) =
4(6m2

2 − 2)Ω2

4m2(1 − Ω2)2 + 2
√

6m2
2 − 2(1 − Ω2

2)
, (5.49)

with

Ω2 =
ḡ −

√

6m2
2 − 2 + 4m2ḡ + ḡ2 −

√

6m2
2 − 2

ḡ −
√

6m2
2 − 2 + 4m2ḡ + ḡ2 +

√

6m2
2 − 2

exp

(

√

µ(3m2
2 − 1)(t+ T )

)

. (5.50)

Note that here we had to choose the plus sign in the exponential in Ω2.

In figures 5.1 and 5.2 one can see the solution plotted for two nice cases.

Notice that when m1 and m2 are not equal we obtain an instanton-like solution, which
takes the field from one static minimum to another. For dimensions greater than one we
know that instantons do not contribute in the path integral (see Derrick [30]). For this
reason we shall only consider classical solutions for which m1 = m2. Then there are in
general two solutions, both symmetric around t = −T . However for some values of J and
ϕ̄ it can happen that one of these two solutions does not exist, which can easily be seen
from the corresponding mechanical problem.
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Figure 5.1: ϕ(t) as a function time t for ϕ1 = ϕ+, ϕ2 = ϕ−, ϕ̄ = −2, T = 0, µ = 1, v = 1
and α = 0.001.

5.2.2 The Classical Action

The classical action can be written as:

Sc =

∫

ddx

(

1

2

(

d

dt
ϕc

)2

− 1

2
µϕ2

c +
λ

24
ϕ4
c − Jϕc

)

=

∫

dd−1x

(

∫ −T

−L/2
dt

(

1

2

(

d

dt
ϕc

)2

− 1

2
µ(ϕ2

c − ϕ2
1) +

λ

24
(ϕ4

c − ϕ4
1) − J(ϕc − ϕ1)

)

+

∫ L/2

−T
dt

(

1

2

(

d

dt
ϕc

)2

− 1

2
µ(ϕ2

c − ϕ2
2) +

λ

24
(ϕ4

c − ϕ4
2) − J(ϕc − ϕ2)

))

+

Ld−1

(

−1

2
µϕ2

1 +
λ

24
ϕ4

1 − Jϕ1

)(

L

2
− T

)

+

Ld−1

(

−1

2
µϕ2

2 +
λ

24
ϕ4

2 − Jϕ2

)(

L

2
+ T

)

=

∫

dd−1x

(

∫ −T

−L/2
dt

(

d

dt
ϕc

)2

+

∫ L/2

−T
dt

(

d

dt
ϕc

)2
)

+

Ld−1

(

−1

2
µϕ2

1 +
λ

24
ϕ4

1 − Jϕ1

)(

L

2
− T

)

+

Ld−1

(

−1

2
µϕ2

2 +
λ

24
ϕ4

2 − Jϕ2

)(

L

2
+ T

)

(5.51)

Here we have used (5.30) in the last step.
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Figure 5.2: ϕ(t) as a function time t for ϕ1 = ϕ+, ϕ2 = ϕ+, ϕ̄ = −0.5, T = 0, µ = 1,
v = 1 and α = π

12
.

Now for the solutions we are interested in, with m1 = m2, this simplifies to:

Sc = 2v2Ld−1

∫ −T

−L/2
dt

(

d

dt
f

)2

+ Ld
(

−1

2
µϕ2

1 +
λ

24
ϕ4

1 − Jϕ1

)

(5.52)

The last term is the classical action of the N = 1 linear sigma model where one does not
fix the paths. This term is

Ldµv2

(

2

3
sin2

±−4

3
sin4

±

)

, (5.53)

with

sin± = sin
(

α± π

3

)

, J =
2µv

3
√

3
sin(3α) . (5.54)

The first term is a little harder to calculate. Just inserting the solution for f (5.47)
gives a very hard integral. However by using a clever trick things become doable. Re-
member

ϕ̇ = ±
√

−µ(ϕ2 − ϕ2
1) +

λ

12
(ϕ4 − ϕ4

1) − 2J(ϕ− ϕ1) , (5.55)

for t < −T , where the plus sign has to be taken when ϕ̄ > ϕ1 and the minus sign when
ϕ̄ < ϕ1. This means

df = ±
√

µ

2

√

(6m2
1 − 2)f 2 + 4m1f 3 + f 4 dt . (5.56)

With this variable substitution the integral can be written as:

∫ −T

−∞
dt

(

d

dt
f

)2

= ±
∫ f̄

0

df

√

µ

2

√

(6m2
1 − 2)f 2 + 4m1f 3 + f 4

=

√

µ

2

∫ f̄

0

df f
√

6m2
1 − 2 + 4m1f + f 2 (5.57)
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After some hard work this gives:
∫ −T

−∞
dt

(

d

dt
f

)2

=

1

6

√

2µ

(

(

f̄ 2 +m1f̄ − 2
)

√

6m2
1 − 2 + 4m1f̄ + f̄ 2 + 2

√

6m2
1 − 2

)

+

−
√

2µ m1

(

m2
1 − 1

)

ln

(

2m1 + f̄ +
√

6m2
1 − 2 + 4m1f̄ + f̄ 2

2m1 +
√

6m2
1 − 2

)

(5.58)

So finally we obtain for the classical action around the ±-minimum (realizing that m1

can be m± ≡ ϕ±/v and f̄ can be f̄± ≡ (ϕ̄− ϕ±)/v):

S±
c = Ldµv2

(

2

3
sin2

± −4

3
sin4

±

)

+

1

3
v2Ld−1

√

2µ

(

(

f̄ 2
± +m±f̄± − 2

)

√

6m2
± − 2 + 4m±f̄± + f̄ 2

± + 2
√

6m2
± − 2

)

+

−2v2Ld−1
√

2µ m±
(

m2
± − 1

)

ln





2m± + f̄± +
√

6m2
± − 2 + 4m±f̄± + f̄ 2

±

2m± +
√

6m2
± − 2





(5.59)

For f̄± = 0 the last two line vanish, as expected, because then the classical solution just
becomes a constant (ϕ±).

5.2.3 The Path Integral

Now we wish to calculate the path integral

A ≡
∫

η(~x,−T )=0

Dη exp

(

−1

h̄

∫

ddx

(

1

2
(∇η(x))2 +

1

2
M(t)η2(x)

))

, (5.60)

with

M(t) = −µ+
λ

2
ϕc(t)

2 . (5.61)

Here ϕc can be any of the two classical solutions we found (starting and ending at ϕ± =
2v√

3
sin±).
To calculate this path integral we first perform a Fourier transform in space. To do

this neatly we take all coordinates in the domain [−L/2, L/2]. Then η can be written as

η(~x, t) =
∞
∑

k1,...,kd−1=−∞
η̃k1,...,kd−1

(t) e−
2πi
L

(k1x1+...+kd−1xd−1) (5.62)

with the condition
η̃k1,...,kd−1

= η̃∗−k1,...,−kd−1
(5.63)

to make η(~x, t) real. From this condition one can see which variables are independent.
We shall choose the following set of independent variables:

Re η̃k1,...,kd−1
, k1 + . . .+ kd−1 ≥ 0

Im η̃k1,...,kd−1
, k1 + . . .+ kd−1 > 0 (5.64)
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Now we can write:

∫ L/2

−L/2
ddx

(

1

2
(∇η)2 +

1

2
M(t)η2

)

=
1

2
Ld−1

∫ L/2

−L/2
dt

∞
∑

k1,...,kd−1=−∞
η̃k1,...,kd−1

(t) ·
(

− d2

dt2
+

(

2πk1

L

)2

+ . . .+

(

2πkd−1

L

)2

+M(t)

)

η̃∗k1,...,kd−1
(t)

= Ld−1

∫ L/2

−L/2
dt

∞
∑

k1,...,kd−1=−∞
k1+...+kd−1>0

[

Re η̃k1,...,kd−1
(t) ·

(

− d2

dt2
+

(

2πk1

L

)2

+ . . .+

(

2πkd−1

L

)2

+M(t)

)

Re η̃k1,...,kd−1
(t) +

Im η̃k1,...,kd−1
(t) ·

(

− d2

dt2
+

(

2πk1

L

)2

+ . . .+

(

2πkd−1

L

)2

+M(t)

)

Im η̃k1,...,kd−1
(t)

]

+

1

2
Ld−1

∫ L/2

−L/2
dt

∞
∑

k1,...,kd−1=−∞
k1+...+kd−1=0

Re η̃k1,...,kd−1
(t) ·

(

− d2

dt2
+

(

2πk1

L

)2

+ . . .+

(

2πkd−1

L

)2

+M(t)

)

Re η̃k1,...,kd−1
(t)

= Ld−1

∫ L/2

−L/2
dt

∞
∑

k1,...,kd−1=−∞
fk1,...,kd−1

(t) ·
(

− d2

dt2
+

(

2πk1

L

)2

+ . . .+

(

2πkd−1

L

)2

+M(t)

)

fk1,...,kd−1
(t) (5.65)

In the last step we defined f as:

fk1,...,kd−1
(t) =







Re η̃k1,...,kd−1
(t) for k1 + . . .+ kd−1 > 0

1√
2
Re η̃k1,...,kd−1

(t) for k1 + . . .+ kd−1 = 0

Im η̃−k1,...,−kd−1
(t) for k1 + . . .+ kd−1 < 0

(5.66)
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Finally the path integral A becomes:

A ∼
∫

f(−T )=0

Df exp

(

− 1

h̄
Ld−1

∫ L/2

−L/2
dt

∞
∑

k1,...,kd−1=−∞
fk1,...,kd−1

(t) ·

(

− d2

dt2
+

(

2πk1

L

)2

+ . . .+

(

2πkd−1

L

)2

+M(t)

)

fk1,...,kd−1
(t)

)

=
∞
∏

k1,...,kd−1=−∞

∫

f(−T )=0

Df(t) exp

(

− 1

h̄
Ld−1

∫ L/2

−L/2
dt f(t) ·

(

− d2

dt2
+

(

2πk1

L

)2

+ . . .+

(

2πkd−1

L

)2

+M(t)

)

f(t)

)

(5.67)

Note that we have reduced the problem of calculating the d-dimensional path integral
A to the problem of calculating a 1-dimensional path integral.

Now focus on this 1-dimensional path integral, which we call B:

B ≡
∫

f(−T )=0

Df(t) exp

(

−1

h̄
Ld−1

∫ L/2

−L/2
dt f(t)

(

− d2

dt2
+ β(t)

)

f(t)

)

(5.68)

where β(t), in our case, is:

β(t) =

(

2πk1

L

)2

+ . . .+

(

2πkd−1

L

)2

+M(t) . (5.69)

We will try to calculate this B with the following formula for Gaussian integrals:
∫

dx0dx1 . . . dxN−1 exp

(

−1

2
~x · A~x

)

= (2π)N/2
1√

detA
, (5.70)

where A is an N ×N real symmetric matrix.
If we make the time interval [−L/2, L/2] discrete by defining

t = ∆i− L/2 i = 0, . . . , N − 1 , (5.71)

and if we define the discrete index j as the index belonging to the time −T :

−T = ∆j − L/2 , (5.72)

then B can be written as:

B =

(

Ld−1

πh̄∆

)N/2 ∫

df0 . . . dfj−1dfj+1 . . . dfN−1 exp

(

−L
d−1

h̄∆
~f · EN−1

~f

)

, (5.73)

where ~f is a vector of length N − 1:

~f =



















f0
...

fj−1

fj+1
...

fN−1



















, (5.74)
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and EN−1 is the N − 1 ×N − 1 matrix:

EN−1 =





































2 + ∆2β0 −1 . . . −1

−1 2 + ∆2β1 −1

−1
. . . −1 ∅

−1 2 + ∆2βj−1 0

0 2 + ∆2βj+1 −1

∅ −1
. . . −1

−1 2 + ∆2βN−2 −1

−1 . . . −1 2 + ∆2βN−1





































.

(5.75)
Note that the −1 in the lower left and upper right corner mean that we have periodic
boundary conditions in our path integral.

Now using (5.70) we find for B:

B =

√

Ld−1

πh̄∆

1
√

detEN−1

. (5.76)

Now it is easy to see that:

detEN−1 = detFN−1 , (5.77)

with

FN−1 =





































2 + ∆2βj+1 −1

−1 2 + ∆2βj+2 −1

−1
. . . −1 ∅

−1 2 + ∆2βN−1 −1

−1 2 + ∆2β0 −1

∅ −1
. . . −1

−1 2 + ∆2βj−2 −1

−1 2 + ∆2βj−1





































.

(5.78)
So now we are interested in ∆ detFN−1 in the limit of ∆ → 0. This quantity can be

found as follows. For detFN−1 one can easily derive the recursion relation:

detFi =
(

2 + ∆2βi+j−N mod N

)

detFi−1 − detFi−2 (5.79)

where Fi is a i× i matrix with always 2 + ∆2βj+1 in the upper left corner, and:

detF0 = 1 , detF1 = 2 + ∆2βj+1 . (5.80)

Now define

α(t) ≡ ∆ detFi (t = ∆i− L/2) . (5.81)
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Then, in the continuum limit the recursion relation (5.79) becomes a differential equation:

d2α(t)

dt2
− β(t− T + L/2) α(t) = 0 for −L/2 < t < T

d2α(t)

dt2
− β(t− T − L/2) α(t) = 0 for T < t < L/2 , (5.82)

with boundary conditions

α(−L/2) = 0 ,
dα

dt
(−L/2) = 1 . (5.83)

The 1-dimensional path integral B is now (in the continuum) given by:

B ∼ 1
√

α(L/2)
. (5.84)

In essence we have now proven the theorem (7.40) in Das’ book [29]. There he states
that the determinant of an operator Ô, with boundary conditions η(−L/2) = η(L/2) = 0,
is proportional to ψ(L/2), where ψ(t) is a solution to the differential equation

Ôψ(t) = 0 (5.85)

with boundary conditions ψ(−L/2) = 0, dψ
dt

(−L/2) = 1. In our case the time is just
shifted because we do not have η(−L/2) = η(L/2) = 0, but η(−T ) = η(−T + L) = 0.

Now the big question is: How do we find a solution to the differential system (5.82)
& (5.83)?

Trying to Solve (5.82)

So the differential equation we wish to solve has the form

d2α(t)

dt2
− b(t) α(t) = 0 (5.86)

with

b(t) ≡
{

β(t− T + L/2) for −L/2 < t < T
β(t− T − L/2) for T < t < L/2

(5.87)

Our differential equation can be transformed to a Riccati equation by the transformation:

γ(t) ≡ d

dt
lnα(t) . (5.88)

Then we get:
dγ(t)

dt
+ γ2(t) = b(t) . (5.89)

It is known that these Riccati type differential equations are very hard to solve, so
there is little hope to solve our differential system.

One last thing that can be done here is write β(t) in a more convenient way, it appears
this β(t) can also be written as:

β(t) =

(

2πk1

L

)2

+ . . .+

(

2πkd−1

L

)2

+

...
f (t)

ḟ(t)
, (5.90)
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for −L/2 < t < −T , where f is the solution in region 1, as defined in (5.36). For
−T < t < L/2 this f should of course be replaced by the g from (5.40).

However, even with this simplification it is very hard to solve our differential equation.
If we would only have had the first d− 1 terms in (5.90), which are just a constant, the
equation can easily be solved. Also, if we would only have the last term in (5.90), then
the equation can also be solved for general f , because of the specific form of a triple
derivative divided by a first derivative. However, when we have both terms, as in our
case, it is very hard to solve the differential equation.

5.2.4 The Divergences

As shown in the previous section it is very hard to compute our path integral (5.60)
exactly. One important thing we can do however, is find the divergences hidden in this
path integral and see whether they can be cancelled by the counter terms, such that (the
physical part of) the generating functional (5.28) becomes finite. If we can indeed cancel
all divergences with the counter terms, then we know at least that the corrections from
the path integral to all physical quantities are higher order, i.e. small. Therefore the
classical approximation to these physical quantities is already a good approximation.

So let’s see whether the divergences cancel. To this end we will compare the infinite
parts of

−h̄ ∂

∂J

(

−1

h̄

∫

ddx

(

−1

2
δZϕc

d2

dt2
ϕc −

1

2
δµϕ

2
c +

δλ
24
ϕ4
c

))

(5.91)

and

−h̄ ∂

∂J
ln







∫

η(~x,−T )=0

Dη exp

(

−1

h̄

∫

ddx

(

1

2
(~∇η)2 +

(

−1

2
µ+

λ

4
ϕ2
c

)

η2

))






. (5.92)

Here we have taken a derivative with respect to the source J , since only the J-dependent
part of the generating functional is important for physical quantities, so only in this part
it is necessary that all divergences cancel.

First consider the infinite part of the counter terms (5.91). We use the counter terms
that we found in the canonical approach (3.18). One does not expect the counter terms
to change just because one fixes the paths. If we use these counter terms the infinite part
of (5.91) becomes:

Ld−1

∫

dt ϕc(t)
∂ϕc(t)

∂J

(

− 3

2

h̄m2

v2
I(0,m) − 9

4

h̄m4

v2
I(0,m, 0,m)

+
9

4

h̄m4

v4
ϕ2
c(t) I(0,m, 0,m)

)

(5.93)

Notice that it is far from obvious that divergences in here are going to cancel against
divergences from the path integral because of the time dependent factors multiplying the
divergences, i.e. the structure of the divergent terms is very different here than in models
without path-fixing.

Now consider (5.92). Using what we found in the previous section this (5.92) can be
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written as:

−h̄ ∂

∂J
ln





∞
∏

k1,...,kd−1=−∞

1
√

α(L/2)





=
h̄

2

∞
∑

k1,...,kd−1=−∞

∂

∂J
ln (α(L/2))

=
h̄

2

∞
∑

k1,...,kd−1=−∞

∫

dt
∂ϕ2

c(t)

∂J

δ

δϕ2
c(t)

ln (α(L/2))

= h̄

∫

dt ϕc(t)
∂ϕc(t)

∂J

∞
∑

k1,...,kd−1=−∞

δ

δϕ2
c(t)

ln (α(L/2)) (5.94)

Now, to find the divergent parts in this expression we can write down the first few
terms of the Taylor expansion of

δ

δϕ2
c(t)

ln (α(L/2)) (5.95)

around ϕ2
c(t) = v2:

δ

δϕ2
c(t)

ln (α(L/2)) =

δα(L/2)
δϕ2

c(t)

α(L/2)

∣

∣

∣

∣

∣

ϕ2
c(t)=v2

+

∫

dt′
(

ϕ2
c(t

′) − v2
)





δ2α(L/2)
δϕ2

c(t′)δϕ2
c(t)

α(L/2)
−

δα(L/2)
δϕ2

c(t′)
δα(L/2)
δϕ2

c(t)

α(L/2)2





∣

∣

∣

∣

∣

∣

ϕ2
c(t)=v2

+

. . . (5.96)

So, to find these first two terms of the expansion we have to know:

α(L/2)|ϕ2
c(t)=v2 ,

δα(L/2)

δϕ2
c(t)

∣

∣

∣

∣

ϕ2
c(t)=v2

and
δ2α(L/2)

δϕ2
c(t

′)δϕ2
c(t)

∣

∣

∣

∣

ϕ2
c(t)=v2

(5.97)

These can all be found from the differential equation (5.82).
α(t)|ϕ2

c(t)=v2 Can of course be found from (5.82) by just setting ϕ2
c(t) = v2 everywhere

in the differential equation. If we define the constant β as:

β ≡ β(t)|ϕ2
c(t)=v2 =

(

2πk1

L

)2

+ . . .+

(

2πkd−1

L

)2

+ 2µ , (5.98)

then the differential equation is

d2

dt2
α(t)|ϕ2

c(t)=v2 − β α(t)|ϕ2
c(t)=v2 = 0 , (5.99)

and the solution that satisfies the boundary conditions (5.83) can easily be found to be

α(t)|ϕ2
c(t)=v2 =

sinh
(√

β(t+ L/2)
)

√
β

. (5.100)
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Now δα(t)
δϕ2

c(t′)

∣

∣

∣

ϕ2
c(t)=v2

Can be found by first taking a functional derivative with respect

to ϕ2
c(t

′) in the differential equation (5.82) and then setting ϕ2
c(t) = v2 everywhere. We

find the differential equation:

d2

dt2
δα(t)

δϕ2
c(t

′)

∣

∣

∣

∣

ϕ2
c(t)=v2

=
λ

2
δ(t− T + L/2 − t′) α(t)|ϕ2

c(t)=v2 + β
δα(t)

δϕ2
c(t

′)

∣

∣

∣

∣

ϕ2
c(t)=v2

for −L/2 < t < T

d2

dt2
δα(t)

δϕ2
c(t

′)

∣

∣

∣

∣

ϕ2
c(t)=v2

=
λ

2
δ(t− T − L/2 − t′) α(t)|ϕ2

c(t)=v2 + β
δα(t)

δϕ2
c(t

′)

∣

∣

∣

∣

ϕ2
c(t)=v2

for T < t < L/2

(5.101)

with boundary conditions:

δα(−L/2)

δϕ2
c(t

′)

∣

∣

∣

∣

ϕ2
c(t)=v2

= 0 ,
d

dt

δα(L/2)

δϕ2
c(t

′)

∣

∣

∣

∣

ϕ2
c(t)=v2

= 0 . (5.102)

This differential system can also be solved easily, we have to distinguish the cases −L/2 <
t′ < −T and −T < t′ < L/2 however. In the case −L/2 < t′ < −T we find:

δα(t)

δϕ2
c(t

′)

∣

∣

∣

∣

ϕ2
c(t)=v2

=

{

0 for t < t′ + T + L/2
λ
2β

sinh
(√

β(t′ + T + L)
)

sinh
(√

β(t− t′ − T − L/2)
)

for t > t′ + T + L/2

(5.103)

In the case −T < t′ < L/2 we find:

δα(t)

δϕ2
c(t

′)

∣

∣

∣

∣

ϕ2
c(t)=v2

=

{

0 for t < t′ + T − L/2
λ
2β

sinh
(√

β(t′ + T )
)

sinh
(√

β(t− t′ − T + L/2)
)

for t > t′ + T − L/2

(5.104)

At t = L/2 we can write the solution for all cases as:

δα(L/2)

δϕ2
c(t

′)

∣

∣

∣

∣

ϕ2
c(t)=v2

= − λ

2β
sinh

(

√

β|t′ + T |
)

sinh
(

√

β(|t′ + T | − L)
)

(5.105)

Finally δ2α(t)
δϕ2

c(t′)δϕ2
c(t′′)

∣

∣

∣

ϕ2
c(t)=v2

can be found from the differential equation (5.82) by taking

two functional derivatives, with respect to ϕ2
c(t

′) and ϕ2
c(t

′′), and then putting ϕ2
c(t) = v2
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everywhere. The differential equation one gets then is:

d2

dt2
δ2α(t)

δϕ2
c(t

′)δϕ2
c(t

′′)

∣

∣

∣

∣

ϕ2
c(t)=v2

=
λ

2
δ(t− T + L/2 − t′)

δα(t)

δϕ2
c(t

′′)

∣

∣

∣

∣

ϕ2
c(t)=v2

+

λ

2
δ(t− T + L/2 − t′′)

δα(t)

δϕ2
c(t

′)

∣

∣

∣

∣

ϕ2
c(t)=v2

+

β
δ2α(t)

δϕ2
c(t

′)δϕ2
c(t

′′)

∣

∣

∣

∣

ϕ2
c(t)=v2

for −L/2 < t < T

d2

dt2
δ2α(t)

δϕ2
c(t

′)δϕ2
c(t

′′)

∣

∣

∣

∣

ϕ2
c(t)=v2

=
λ

2
δ(t− T − L/2 − t′)

δα(t)

δϕ2
c(t

′′)

∣

∣

∣

∣

ϕ2
c(t)=v2

+

λ

2
δ(t− T − L/2 − t′′)

δα(t)

δϕ2
c(t

′)

∣

∣

∣

∣

ϕ2
c(t)=v2

+

β
δ2α(t)

δϕ2
c(t

′)δϕ2
c(t

′′)

∣

∣

∣

∣

ϕ2
c(t)=v2

for T < t < L/2

(5.106)

Also this differential equation can be solved, now we have to distinguish 6 different cases
however. After a lot of algebra one finds for the solution at t = L/2:

δ2α(L/2)

δϕ2
c(t

′)δϕ2
c(t

′′)

∣

∣

∣

∣

ϕ2
c(t)=v2

=
λ2

4β3/2
sinh

(

√

β (max(t′, t′′,−T ) − min(t′, t′′,−T ) − L)
)

·

sinh
(

√

β (mid(t′, t′′,−T ) − min(t′, t′′,−T ))
)

·

sinh
(

√

β (mid(t′, t′′,−T ) − max(t′, t′′,−T ))
)

(5.107)

where min(t′, t′′,−T ), mid(t′, t′′,−T ) and max(t′, t′′,−T ) give respectively the smallest,
middle and largest variable in the set {t′, t′′,−T}.

Now all the expressions we found should be inserted in the Taylor expansion (5.96).
Also remember that we are only interested in the divergent part of (5.94). Divergences
in (5.94) are of course caused by the sum over the d − 1 k’s, when the summand does
not drop to zero fast enough for large k’s. So, to find only the divergent terms in (5.94),
we should only keep the terms that do not go to zero very fast in the Taylor expansion
(5.96).

Now the first term in (5.96) is:

δα(L/2)
δϕ2

c(t)

α(L/2)

∣

∣

∣

∣

∣

ϕ2
c(t)=v2

= − λ

2
√
β

sinh
(√

β|t+ T |
)

sinh
(√

β(|t+ T | − L)
)

sinh(
√
βL)

L→∞−→ λ

4
√
β

(

1 − e−2
√
β|t+T |

)

(5.108)

The second term will not give a divergence under the sum, since large k’s are exponentially
damped. (For t = −T this exponential is of course not there, however for t = −T the

whole expressions (5.93) and (5.94) become zero because ∂ϕc(−T )
∂J

= 0.) The first term
will give a divergence, and we shall only keep this term. When we insert this term in
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(5.94) we get:

h̄

∫

dt ϕc(t)
∂ϕc(t)

∂J

∞
∑

k1,...,kd−1=−∞

λ

4

1
√

(

2πk1
L

)2
+ . . .+

(

2πkd−1

L

)2

+ 2µ

L→∞−→ λ

4
h̄Ld−1

∫

dt ϕc(t)
∂ϕc(t)

∂J

1

(2π)d−1

∫

dd−1k
1

√

~k2 +m2

=
λ

2
h̄Ld−1

∫

dt ϕc(t)
∂ϕc(t)

∂J
I(0,m)

=
3

2

h̄m2

v2
Ld−1

∫

dt ϕc(t)
∂ϕc(t)

∂J
I(0,m) (5.109)

This cancels exactly the first term in the counter term part (5.93) of the generating
functional!

Now consider the second order term in the Taylor expansion (5.96).





δ2α(L/2)
δϕ2

c(t′)δϕ2
c(t)

α(L/2)
−

δα(L/2)
δϕ2

c(t′)
δα(L/2)
δϕ2

c(t)

α(L/2)2





∣

∣

∣

∣

∣

∣

ϕ2
c(t)=v2

=
λ2

4β

1

sinh2(
√
βL)

·

[

sinh
(

√

βL
)

sinh
(

√

β (max − min − L)
)

·

sinh
(

√

β (mid − min)
)

sinh
(

√

β (mid − max)
)

− sinh
(

√

β|t+ T |
)

sinh
(

√

β(L− |t+ T |)
)

·

sinh
(

√

β|t′ + T |
)

sinh
(

√

β(L− |t′ + T |)
)

]

(5.110)

After some hard work this can be written to:




δ2α(L/2)
δϕ2

c(t′)δϕ2
c(t)

α(L/2)
−

δα(L/2)
δϕ2

c(t′)
δα(L/2)
δϕ2

c(t)

α(L/2)2





∣

∣

∣

∣

∣

∣

ϕ2
c(t)=v2

= −λ2

4β

1

sinh2(
√
βL)

·

[

cosh
(

√

β(|t− t′| − L/2)
)

cosh

(√
βL

2

)

+

− cosh
(

√

β(|t+ T | − L/2)
)

cosh
(

√

β(|t′ + T | − L/2)
)

]2

(5.111)

Now, all the terms, when worked out for large L, will still contain exponentials which
dampen the large k values in the sum. The square of the first term between the straight
brackets will also contain such an exponential, however the argument of this exponential
(∼ |t− t′|) can become zero without t or t′ becoming −T . So in the case of t = t′ this first
term will give a divergence. The other terms in the expression above (when the square
is worked out) will always contain an exponential with arguments proportional to |t+T |
or |t′ + T |, such that these will only give divergences at t = −T or t′ = −T , where the
whole expression (5.94) becomes zero.
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So let’s only keep the first term between the straight brackets and work out what we
get for large L.

−λ2

4β

cosh2
(√

β(|t− t′| − L/2)
)

cosh2
(√

βL
2

)

sinh2(
√
βL)

L→∞−→ − λ2

16β
e−2

√
β|t−t′| (5.112)

Substituting this in the Taylor expansion (5.96) and then in (5.94) we find:

−λ
2h̄

16

∫

dt

∫

dt′ ϕc(t)
∂ϕc(t)

∂J

(

ϕ2
c(t

′) − v2
)

∞
∑

k1,...,kd−1=−∞

1

β
e−2

√
β|t−t′| (5.113)

As argued above, a divergence can only arise when t = t′, so when we are only interested
in this part we can safely set ϕ2

c(t
′) = ϕ2

c(t). Then we can do the t′ integral and we find:

−λ
2h̄

16

∫

dt ϕc(t)
(

ϕ2
c(t) − v2

) ∂ϕc(t)

∂J

∞
∑

k1,...,kd−1=−∞

1

β3/2

L→∞−→ −λ
2h̄

16
Ld−1

∫

dt ϕc(t)
(

ϕ2
c(t) − v2

) ∂ϕc(t)

∂J

1

(2π)d−1

∫

dd−1k
1

(

~k2 +m2
)3/2

= −λ
2h̄

4
Ld−1

∫

dt ϕc(t)
(

ϕ2
c(t) − v2

) ∂ϕc(t)

∂J
I(0,m, 0,m)

= −9

4

h̄m4

v4
Ld−1

∫

dt ϕc(t)
(

ϕ2
c(t) − v2

) ∂ϕc(t)

∂J
I(0,m, 0,m) (5.114)

And this cancels exactly the second and third term in the counter term part (5.93)!
So finally we have proven that the physical part of the 1-loop generating functional

can be made finite with the same counter terms as in the canonical approach to the N = 1
linear sigma model. Of course also all 1-loop Green’s functions are finite then.

Notice that the cancellation of the divergences does not depend on the specific form
of ϕc(t). We have proven here that the divergences cancel in all physical quantities
independent of what the classical solution looks like explicitly.

5.2.5 The Alternative Effective Potential

Because we know now that the physical part of the generating functional is finite a good
approximation to this Z(J) is the classical approximation:

Z(J) = e−
1
h̄
S+

c + e−
1
h̄
S−

c ≡ Z+(J) + Z−(J) (5.115)

Actually this is the only approximation we can do to find Z(J), since the 1-loop, or saddle-
point, approximation would already involve the difficult path integral (5.60). Defining A
and B as

A ≡ 1

2
(S+

c + S−
c ) , B ≡ 1

2
(S+

c − S−
c ) , (5.116)

we have

Z(J) = 2 e−
1
h̄
A cosh

(

1

h̄
B

)

. (5.117)
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Then we also have:

h̄
∂

∂J
lnZ =

∫

ddx 〈ϕ(x)〉(J) = −∂A
∂J

+
∂B

∂J
tanh

(

1

h̄
B

)

(5.118)

To find the alternative effective potential we have to know J(x) as a functional of
〈ϕ(x)〉 for large t, i.e. t � −T . So we first have to know 〈ϕ(x)〉 as a function of J(x)
for large t. For large t this tadpole goes to a constant, which can be read off from the
formula above:

Ω〈ϕ〉(J) = −∂A
∂J

+
∂B

∂J
tanh

(

1

h̄
B

)

(5.119)

So indeed we see, to obtain the tadpole for large times it was only necessary to do our
calculations for constant source J . From this formula one can now find the inverse and
construct the alternative effective potential. In figure 5.3 the derivative of this alternative
effective potential is plotted for L = 10 and L = 100, for the case d = 1, h̄ = 0.1,
µ = 1, v = 1, ϕ̄ = 1 and T = 0. For comparison we have also plotted the derivative of
the effective potential from the canonical approach. In figure 5.4 the derivative of the
alternative effective potential is plotted for L = 10 and L = 100, for the case d = 4,
h̄ = 2, µ = 1, v = 1, ϕ̄ = 1 and T = 0, also together with the canonical result.
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Figure 5.3: The derivative of the alternative effective potential for L = 10 and L = 100
for the case d = 1, h̄ = 0.1, µ = 1, v = 1, ϕ̄ = 1 and T = 0.

One can see that these alternative effective potentials come out to be convex, which
is not obvious beforehand. Also they converge to the effective potentials from the path-
integral approach without fixing in the limit L→ ∞.
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Figure 5.4: The derivative of the alternative effective potential for L = 10 and L = 100
for the case d = 4, h̄ = 2, µ = 1, v = 1, ϕ̄ = 1 and T = 0.

5.2.6 The Green’s Functions

Now we compute the Green’s functions in this approach. Again, as in the previous
chapter, we have:

〈ϕ(x)〉 =

∫

ϕ(~x,−T )=ϕ̄

Dϕ ϕ(x) e−
1
h̄
S(J=0)

∫

ϕ(~x,−T )=ϕ̄

Dϕ e− 1
h̄
S(J=0)

=
(ϕ+(t)(J = 0) + 〈η(x)〉+)Z+(0) + (ϕ−(t)(J = 0) + 〈η(x)〉−)Z−(0)

Z+(0) + Z−(0)
,

(5.120)

where

〈η(x)〉± =

∫

η(~x,−T )=0

Dη η(x) e− 1
h̄
S(ϕc=ϕ±(J=0))

∫

η(~x,−T )=0

Dϕ e− 1
h̄
S(ϕc=ϕ±(J=0))

(5.121)

where S is the action in (5.26) and ϕ±(t) is the classical solution ϕc(t) around the ±-
minumum.

Now we do not have Z+(0) = Z−(0), as in the previous chapter. Looking only at the
classical actions around each minimum we have (substituting J = 0 in 5.59):

S±
c (J = 0) = −1

4
Ldµv2 +

1

3
mv2Ld−1

(( ϕ̄

v
∓ 2
)( ϕ̄

v
± 1
) ∣

∣

∣

ϕ̄

v
± 1
∣

∣

∣
+ 4
)

(5.122)

The first term is the same for both minima, and thus unimportant. The second term is
not the same for both minima, and thus this term determines which of the minima is
non-perturbatively favored in the infinite-volume limit. It is easy to see that:

S+
c (J = 0) < S−

c (J = 0) for ϕ̄ > 0

S+
c (J = 0) > S−

c (J = 0) for ϕ̄ < 0 (5.123)



5.2. THE N = 1 LINEAR SIGMA MODEL 55

So for ϕ̄ > 0 the negative minimum is non-perturbatively suppressed, whereas for ϕ̄ < 0
the positive minimum is suppressed. So the minimum closest to ϕ̄, i.e. the point where
the paths are fixed, survives in the infinite-volume limit, the other minimum is suppressed
non-perturbatively. We do not even have to know the quantum part of Z± to say this,
since this quantum part is small with respect to the classical part one can already see
from the classical part which minimum wins.

Now we choose ϕ̄ > 0. Then the tadpole becomes:

〈ϕ(x)〉 = ϕ+(t)(J = 0) + 〈η(x)〉+ (5.124)

Notice that this is an exact expression for L→ ∞.
Now we will assume that for large t, i.e. t � −T , the tadpole 〈η(x)〉± does not

notice the path-fixing and the time-dependent mass and coupling constants anymore.
Remember that, in the free field theory considered at the beginning of this chapter, the
tadpole and propagator did indeed not notice the path-fixing anymore for large times.
See (5.13). This makes the current assumption plausible.

Under this assumption we find for large t:

〈ϕ(x)〉 = v + 〈η〉 , (5.125)

where 〈η〉 is defined as in (5.121), but without the path-fixing constraint and with ϕc =
+v. This is the canonical result.

Now consider the ϕ-propagator. This propagator can be written as:

〈ϕ(x)ϕ(y)〉 =
1

Z+(0) + Z−(0)
·

(

(

ϕ2
+(t)(J = 0) + ϕ+(t)(J = 0) (〈η(x)〉+ + 〈η(y)〉+) + 〈η(x)η(y)〉+

)

Z+(0) +

(

ϕ2
−(t)(J = 0) + ϕ−(t)(J = 0) (〈η(x)〉− + 〈η(y)〉−) + 〈η(x)η(y)〉−

)

Z−(0)

)

(5.126)

with

〈η(x)η(y)〉± =

∫

η(~x,−T )=0

Dη η(x)η(y) e− 1
h̄
S(ϕc=ϕ±(J=0))

∫

η(~x,−T )=0

Dϕ e− 1
h̄
S(ϕc=ϕ±(J=0))

. (5.127)

Again the minimum closest to the fixing point ϕ̄ dominates completely for L → ∞.
Since we took ϕ̄ > 0 this propagator becomes:

〈ϕ(x)ϕ(y)〉 = ϕ2
+(t) + ϕ+(t) (〈η(x)〉+ + 〈η(y)〉+) + 〈η(x)η(y)〉+

〈ϕ(x)ϕ(y)〉c = 〈η(x)η(y)〉+,c (5.128)

Also this is an exact expression in the limit L→ ∞.
For large times t, t � −T , again assuming that the η-propagator does not notice

the path-fixing and the explicit time dependence in the action, the connected propagator
becomes:

〈ϕ(x)ϕ(y)〉c = 〈η(x)η(y)〉c , (5.129)

where 〈η(x)η(y)〉 is defined as in (5.127) without the path fixing constraint. This is the
canonical propagator.
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In this way all Green’s functions can be shown to be equal to the canonical Green’s
functions for times t� −T .

So, finally we have shown that in the path-integral approach with fixed paths we get
the same Green’s functions as in the canonical approach, including SSB. Now we get a
convex alternative effective potential however.



Chapter 6

The N = 2 LSM: The Canonical
Approach

In this chapter we will calculate the same things as in chapter 3, now for the N = 2 linear
sigma model. This Euclidean linear sigma model with N = 2 fields is defined by the bare
action

S =

∫

ddx

(

1

2
(∇ϕ1)

2 +
1

2
(∇ϕ2)

2 − 1

2
µ
(

ϕ2
1 + ϕ2

2

)

+
λ

24

(

ϕ2
1 + ϕ2

2

)2
)

. (6.1)

We will outline the canonical treatment of this model for the case µ > 0, i.e. for the case
with spontaneous symmetry breaking. Our calculations will be much like those found in
most textbooks, like e.g. Peskin and Schroeder [8].

6.1 Green’s Functions

To compute the renormalized Green’s functions of this theory we introduce renormalized
quantities as in (3.4). The action in terms of these renormalized quantities is (again we
suppress the R superscripts from now on):

S =

∫

ddx

(

1

2
(∇ϕ1)

2 +
1

2
(∇ϕ2)

2 − 1

2
µ
(

ϕ2
1 + ϕ2

2

)

+
λ

24

(

ϕ2
1 + ϕ2

2

)2
+

1

2
δZ (∇ϕ1)

2 +
1

2
δZ (∇ϕ2)

2 − 1

2
δµ
(

ϕ2
1 + ϕ2

2

)

+
δλ
24

(

ϕ2
1 + ϕ2

2

)2
)

.(6.2)

Now the classical action, i.e. the first line has its minima on the circle

ϕ2
1 + ϕ2

2 = v2 , v ≡
√

6µ

λ
. (6.3)

We choose

ϕ1 = v , ϕ2 = 0 (6.4)

as the true minimum in this canonical approach. Then define

ϕ1 ≡ v + η1 , ϕ2 ≡ η2 . (6.5)
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In terms of these η fields the action becomes:

S =

∫

ddx

(

1

2
(∇η1)

2 +
1

2
(∇η2)

2 + µη2
1 +

µ

v
η3

1 +
µ

v
η1η

2
2 +

µ

4v2
η4 +

µ

4v2
η2

2 +
µ

2v2
η2

1η
2
2 +

(

−vδµ +
1

6
v3δλ

)

η1 +
1

2
δZ (∇η1)

2 +

(

−1

2
δµ +

1

4
v2δλ

)

η2
1 +

1

2
δZ (∇η2)

2 +

(

−1

2
δµ +

1

12
v2δλ

)

η2
2 +

1

6
vδλη

3
1 +

1

6
vδλη1η

2
2 +

1

24
δλη

4
1 +

1

24
δλη

4
2 +

1

12
δλη

2
1η

2
2

)

. (6.6)

Define again µ ≡ 1
2
m2. Then the The Feynman rules are:

↔ h̄

k2 +m2

↔ h̄

k2

↔ −3m2

h̄v

↔ −m
2

h̄v

↔ −3m2

h̄v2

↔ −3m2

h̄v2

↔ −m2

h̄v2

↔ v

h̄
δµ −

1

6

v3

h̄
δλ

↔ −1

h̄
δZk

2 +
1

h̄
δµ −

1

2

v2

h̄
δλ
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↔ −1

h̄
δZk

2 +
1

h̄
δµ −

1

6

v2

h̄
δλ

↔ −v
h̄
δλ

↔ −1

3

v

h̄
δλ

↔ −1

h̄
δλ

↔ −1

h̄
δλ

↔ −1

3

1

h̄
δλ (6.7)

Now let’s calculate the momentum space Green’s functions of this theory, up to one
loop. Again we shall write the results in terms of the standard integrals (3.10).

Notice that standard integrals like I(0, 0, . . . , 0) are zero in the dimensional regulariza-
tion scheme. We shall not specify the regularization scheme in our calculations however,
and keep everything general.

〈η̃1〉 = + +

= −3

2

h̄

v
I(0,m) − 1

2

h̄

v
I(0, 0) +

v

m2
δµ|h̄ −

1

6

v3

m2
δλ|h̄ (6.8)

〈η̃2〉 = 0 (6.9)
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〈η̃1 (p) η̃1 (q)〉c = + + +

+ + +

=
h̄

p2 +m2
+

1

(p2 +m2)2

(

9

2

h̄2m4

v2
I(0,m, p,m) +

1

2

h̄2m4

v2
I(0, 0, p, 0) +

3
h̄2m2

v2
I(0,m) +

h̄2m2

v2
I(0, 0) +

− h̄p2 δZ |h̄ − 2h̄ δµ|h̄
)

(6.10)

〈η̃2 (p) η̃2 (q)〉c = + + +

+ +

=
h̄

p2
+

1

(p2)2

(

h̄2m4

v2
I(0, 0, p,m) +

h̄2m2

v2
I(0,m) − h̄2m2

v2
I(0, 0) +

− h̄p2 δZ |h̄
)

(6.11)

〈η̃1 (p) η̃2 (q)〉c = 0 (6.12)

〈η̃1 (q1) η̃1 (q2) η̃1 (q3)〉1PI = +

+ +

+ +

+ +
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+ +

= −3m2

h̄v
− 27m6

v3
I(0,m, q1,m,−q3,m)

−m
6

v3
I(0, 0, q1, 0,−q3, 0)

+
9m4

2v3
(I(0,m, q1,m) + I(0,m, q2,m) + I(0,m, q3,m))

+
m4

2v3
(I(0, 0, q1, 0) + I(0, 0, q2, 0) + I(0, 0, q3, 0))

−v
h̄
δλ|h̄ (6.13)

〈η̃1 (q1) η̃1 (q2) η̃2 (q3)〉1PI = 0 (6.14)

〈η̃1 (q1) η̃2 (q2) η̃2 (q3)〉1PI = +

+ +

+ +

+ +

= −m
2

h̄v

−3m6

v3
I(0,m, q1,m,−q3, 0) − m6

v3
I(0, 0, q1, 0,−q3,m)

+
3m4

2v3
I(0,m, q1,m) +

3m4

2v3
I(0, 0, q1, 0)

+
m4

v3
I(0,m, q2, 0) +

m4

v3
I(0,m, q3, 0)

− v

3h̄
δλ|h̄ (6.15)
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〈η̃2 (q1) η̃2 (q2) η̃2 (q3)〉1PI = 0 (6.16)

〈η̃1 (q1) · · · η̃1 (q4)〉1PI = + + 2 perm’s +

+ 2 perm’s +

+ 5 perm’s +

+ 5 perm’s +

+ 2 perm’s +

+ 2 perm’s +

= −3m2

h̄v2

+
81m8

v4
I(0,m, q1,m, q1 + q3,m,−q2,m) + 2 perm’s

+
m8

v4
I(0, 0, q1, 0, q1 + q3, 0,−q2, 0) + 2 perm’s

−27m6

v4
I(0,m, q3,m, q3 + q4,m) + 5 perm’s

−m
6

v4
I(0, 0, q3, 0, q3 + q4, 0) + 5 perm’s

+
9m4

2v4
I(0,m, q3 + q4,m) + 2 perm’s

+
m4

2v4
I(0, 0, q3 + q4, 0) + 2 perm’s

−1

h̄
δλ|h̄ (6.17)

〈η̃1 (q1) η̃1 (q2) η̃1 (q3) η̃2 (q4)〉1PI = 0 (6.18)

〈η̃1 (q1) η̃1 (q2) η̃2 (q3) η̃2 (q4)〉1PI = + + 1 perm +
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+ 1 perm +

+ +

+ +

+ 3 perm’s +

+ 3 perm’s +

+ +

+ 1 perm +

= −m2

h̄v2

+
9m8

v4
I(0,m, q1,m, q1 + q3, 0,−q2,m) + 1 perm

+
m8

v4
I(0, 0, q1, 0, q1 + q3,m,−q2, 0) + 1 perm

−9m6

v4
I(0,m, q3, 0, q3 + q4,m)

−m
6

v4
I(0, 0, q3,m, q3 + q4, 0)

−9m6

v4
I(0,m, q1,m,−q2,m)

−3m6

v4
I(0, 0, q1, 0,−q2, 0)

−3m6

v4
I(0, 0, q4,m, q2 + q4,m) + 3 perm’s

−m
6

v4
I(0,m, q4, 0, q2 + q4, 0) + 3 perm’s
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+
3m4

2v4
I(0,m, q3 + q4,m)

+
3m4

2v4
I(0, 0, q3 + q4, 0)

+
m4

v4
I(0, 0, q2 + q4,m) + 1 perm

− 1

3h̄
δλ|h̄ (6.19)

〈η̃1 (q1) η̃2 (q2) . . . η̃2 (q4)〉1PI = 0 (6.20)

〈η̃2 (q1) . . . η̃2 (q4)〉1PI = + + 2 perm’s +

+ 2 perm’s +

+ 5 perm’s +

+ 5 perm’s +

+ 2 perm’s +

+ 2 perm’s +

= −3m2

h̄v2

+
m8

v4
I(0, 0, q1,m, q1 + q3, 0,−q2,m) + 2 perm’s

+
m8

v4
I(0,m, q1, 0, q1 + q3,m,−q2, 0) + 2 perm’s

−m
6

v4
I(0,m, q3, 0, q3 + q4,m) + 5 perm’s

−3m6

v4
I(0, 0, q3,m, q3 + q4, 0) + 5 perm’s

+
m4

2v4
I(0,m, q3 + q4,m) + 2 perm’s
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+
9m4

2v4
I(0, 0, q3 + q4, 0) + 2 perm’s

−1

h̄
δλ|h̄ (6.21)

Now, as in the case of the N = 1 linear sigma model our theory contains three free
parameters, Z, µ and λ, which have to be fixed by three renormalization conditions. We
could try to use the same renormalization conditions as in chapter 3 (3.15) (with the
η-lines replaced by η1-lines):

= 0

Res = h̄

1PI = −λ
h̄

at q1 = . . . = q4 = 0 (6.22)

This is not a good idea however, because some of our amplitudes are singular at zero in-
coming momentum. These singularities are of course caused by loops with the Goldstone
boson. If we would set the 4-point 1PI amplitude to −λ/h̄ at zero external momenta
we would be absorbing infrared divergences, which only occur for very specific external
momenta, in the counter terms. The most straightforward thing to do now is change the
renormalization point. However, this will complicate the calculations greatly.

What we shall do is just remove these infrared divergences from our counter term δλ
by hand.

This is somewhat similar to what is done in Peskin and Schroeder [8], there they work
in the dimensional regularization scheme, in which the infrared divergences are invisible
anyway. (Their renormalization point is at s = 4m2, u = t = 0 however, but also at this
point there occur IR divergences.)

If we strictly use the conditions (6.22) the counter terms become, up to order h̄:

δµ|h̄ =
3

2

h̄m2

v2
I(0,m) +

1

2

h̄m2

v2
I(0, 0) +

1

6
v2 δλ|h̄

δλ|h̄ =
27

2

h̄m4

v4
I(0,m, 0,m) +

3

2

h̄m4

v4
I(0, 0, 0, 0) +

−162
h̄m6

v4
I(0,m, 0,m, 0,m) − 6

h̄m6

v4
I(0, 0, 0, 0, 0, 0) +

243
h̄m8

v4
I(0,m, 0,m, 0,m, 0,m) + 3

h̄m8

v4
I(0, 0, 0, 0, 0, 0, 0, 0)

δZ |h̄ =
9

2

h̄m4

v2

d

dp2
I(0,m, p,m)

∣

∣

∣

∣

p2=−m2
ph,1

+
1

2

h̄m4

v2

d

dp2
I(0, 0, p, 0)

∣

∣

∣

∣

p2=−m2
ph,1

(6.23)

Now we see that the second, fourth and sixth term in δλ|h̄ contain infrared divergences,
which we should not include. (I(0, 0) Is not IR divergent for dimensions greater than
2.) The easiest thing to do is introduce a mass in these terms, such that the infrared
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divergences are regularized. We shall just use m for this mass, to keep the calculation as
simple as possible. After this manual procedure the counter terms are:

δµ|h̄ =
3

2

h̄m2

v2
I(0,m) +

1

2

h̄m2

v2
I(0, 0) +

5

2

h̄m4

v2
I(0,m, 0,m) +

−28
h̄m6

v2
I(0,m, 0,m, 0,m) + 41

h̄m8

v2
I(0,m, 0,m, 0,m, 0,m)

δλ|h̄ = 15
h̄m4

v4
I(0,m, 0,m) − 168

h̄m6

v4
I(0,m, 0,m, 0,m) +

246
h̄m8

v4
I(0,m, 0,m, 0,m, 0,m)

δZ |h̄ =
9

2

h̄m4

v2

d

dp2
I(0,m, p,m)

∣

∣

∣

∣

p2=−m2
ph,1

+
1

2

h̄m4

v2

d

dp2
I(0, 0, p, 0)

∣

∣

∣

∣

p2=−m2
ph,1

(6.24)

The physical masses of the η1- and η2-particle, mph,1 and mph,2, can now be calculated
from the Dyson summed propagators. The Dyson summed η1 propagator is

h̄

p2 +m2 − h̄A1(p2)
(6.25)

with

A1(p
2) =

9

2

m4

v2
I(0,m, p,m) − 9

2

m4

v2
p2 d

dp2
I(0,m, p,m)

∣

∣

∣

∣

p2=−m2
ph,1

+

1

2

m4

v2
I(0, 0, p, 0) − 1

2

m4

v2
p2 d

dp2
I(0, 0, p, 0)

∣

∣

∣

∣

p2=−m2
ph,1

+

−5
m4

v2
I(0,m, 0,m) + 56

m6

v2
I(0,m, 0,m, 0,m) +

−82
m8

v2
I(0,m, 0,m, 0,m, 0,m) . (6.26)

The location of the pole of (6.25) gives −m2
ph,1. Up to order h̄ we can easily find this

pole:

m2
ph,1 = m2 + 5

h̄m4

v2
I(0,m, 0,m) +

−9

2

h̄m4

v2
I(0,m, p,m)|p2=−m2 −

1

2

h̄m4

v2
I(0, 0, p, 0)|p2=−m2 +

−9

2

h̄m6

v2

d

dp2
I(0,m, p,m)

∣

∣

∣

∣

p2=−m2

− 1

2

h̄m6

v2

d

dp2
I(0, 0, p, 0)

∣

∣

∣

∣

p2=−m2

+

−56
h̄m6

v2
I(0,m, 0,m, 0,m) + 82

h̄m8

v2
I(0,m, 0,m, 0,m, 0,m) . (6.27)

For d ≤ 4 this mph,1 is finite, for d > 4 it is not, which shows that the linear sigma model
is non-renormalizable for d > 4.

Likewise we can obtain the physical mass of the η2 particle mph,2. The Dyson summed
η2 propagator is:

h̄

p2 − h̄A2(p2)
(6.28)
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with

A2(p
2) =

m4

v2
I(0, 0, p,m) +

m2

v2
I(0,m) − m2

v2
I(0, 0) +

−9

2

m4

v2
p2 d

dp2
I(0,m, p,m)

∣

∣

∣

∣

p2=−m2
ph,1

− 1

2

m4

v2
p2 d

dp2
I(0, 0, p, 0)

∣

∣

∣

∣

p2=−m2
ph,1

.(6.29)

Again the pole of (6.28) is easily found up to order h̄:

m2
ph,2 = − h̄m

4

v2
I(0, 0, 0,m) − h̄m2

v2
I(0,m) +

h̄m2

v2
I(0, 0) = 0 (6.30)

This is an illustration of the Goldstone theorem, which states that in the case of sponta-
neous symmetry breaking the mass of the Goldstone boson remains zero at all orders.

Actually things are a bit trickier than they look here. The above result for mph,2 seems
to hold for all dimensions below 5, where the theory is renormalizable. This would mean
that also for d = 1, where we know that no spontaneous symmetry breaking can occur,
mph,2 would remain zero up to order h̄. This is not true in general. In general (6.30) is
wrong for d = 1 because we put the momentum p, flowing through the propagator, to
zero before we have done the loop integral. Actually we have to compute the integral and
only then put p to zero. The two operations do not commute. In case of the N = 2 linear
sigma model it happens to be that (6.30) is correct after all, the problem with setting
p to zero before doing the loop integrals only shows up in 2-loop integrals. One can
explicitly verify that at 2-loop order mph,2 is no longer zero for d = 1. For d > 2 (6.30)
is always correct however, which is in complete agreement with the Goldstone theorem.
(Remember that d = 2 is a special case, see Coleman [31] and Coleman et al. [32].

6.2 The Effective Potential

Now we want to calculate the effective potential. We will again use the vacuum-graph
formula (2.29), as we did in the N = 1 linear sigma model. However our calculation will
be much more involved now because we now have two types of lines, which complicates
how we connect the lines inside the loop.

To deal with this complication we consider the same vertex, of which a different set
of legs is going to be part of the loop, as different. In this way each 1-loop diagram is
characterized by 8 numbers, each denoting the number of a certain type of vertices in the
diagram. These numbers are defined as follows:

↔ n3 ↔ m3 ↔ q3

↔ n4 ↔ m4 ↔ q4

↔ p4 ↔ r4
(6.31)
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Here it is understood that the legs pointing to the right are going to be part of the loop.
Before we can write down the expression for the 1-loop effective potential, i.e. the sum
of all 1-loop 1PI diagrams weighed with the appropriate factors, we have to know in how
many ways we can connect the internal legs. If we denote the number of vertices that
give two solid lines to go into the loop as p, the number of vertices that give two dashed
lines as q and the number of vertices that give one solid and one dashed line as r, then
the number of ways to connect these vertices to give a loop is:

2p+q
(

r
2

+ p− 1
)

!
(

r
2
− 1
)

!

(

r
2

+ q − 1
)

!
(

r
2
− 1
)

!
(r − 1)! (6.32)

In our case we have of course p = n3 + n4 + r4, q = m3 +m4 + p4, r = q3 + q4. The
1-loop effective potential V1 is now given by:

V1(η1, η2) =
1

(2π)d

∫

ddk
∞
∑

n3,n4,p4,m3,m4,q3,q4,r4=0
n3+n4+p4+m3+m4+q3+q4+r4≥1

3n36n46p42q34q4

(

−3m2

h̄v

)n3
(

−3m2

h̄v2

)n4
(

−3m2

h̄v2

)p4 (

−m
2

h̄v

)m3+q3 (

−m2

h̄v2

)m4+q4+r4

(

1

3!

)n3
(

1

4!

)n4
(

1

4!

)p4 ( 1

2!

)m3+q3 ( 1

2!2!

)m4+q4+r4

1

n3!

1

n4!

1

p4!

1

m3!

1

q3!

1

m4!

1

q4!

1

r4!

∞
∑

n=0

δ2n,q3+q4

(

h̄

k2

)m3+m4+p4+ 1
2
q3+ 1

2
q4 ( h̄

k2 +m2

)n3+n4+r4+
1
2
q3+ 1

2
q4

2n3+n4+r4+m3+m4+p4
(q3 + q4 − 1)!

(1
2
q3 + 1

2
q4 − 1)!2

(

1

2
q3 +

1

2
q4 + n3 + n4 + r4 − 1

)

!

(

1

2
q3 +

1

2
q4 +m3 +m4 + p4 − 1

)

!

(2p4 + q3 + q4 + 2r4)!(n3 + 2n4 +m3 + 2m4 + q4)!
(

− h̄
1

(2p4 + q3 + q4 + 2r4)!

1

(n3 + 2n4 +m3 + 2m4 + q4)!
·

ηn3+2n4+m3+2m4+q4
1 η2p4+q3+q4+2r4

2

)

+

−h̄ η1 −
h̄

2
η2

1 −
h̄

2
η2

2 −
h̄

6
η3

1 −
h̄

2
η1η

2
2 +

− h̄

24
η4

1 −
h̄

24
η4

2 −
h̄

4
η2

1η
2
2 (6.33)
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After a long calculation this can be written to:

V1(ϕ1, ϕ2) =
h̄

2

1

(2π)d

∫

ddk

(

ln

(

1 +
1

k2

1

2

m2

v2
(ϕ2

1 + ϕ2
2 − v2)

)

+

ln

(

1 +
1

k2 +m2

3

2

m2

v2
(ϕ2

1 + ϕ2
2 − v2)

)

)

+

−1

2

(

δµ|h̄ −
1

6
v2 δλ|h̄

)

(ϕ2
1 + ϕ2

2 − v2) +
1

24
δλ|h̄ (ϕ2

1 + ϕ2
2 − v2)2

(6.34)

This result is identical to what Peskin and Schroeder [8] find in their formula (11.74),
of course taking into account differences in definitions of coupling constants and counter
terms.

6.2.1 Zero Dimensions

There is a much quicker, though less straightforward, way to obtain the 1-loop effective
potential (6.34). In zero dimensions it is very easy to find the 1-loop effective action
through the Schwinger-Dyson equations. Of course in zero dimensions this effective action
is equal to the effective potential. The diagrammatic structure of this 1-loop effective
potential in zero dimensions is exactly the same as in d dimensions, only the mathematical
expressions corresponding to the diagrams is different. For the 1-loop case however the
difference in mathematical expression is not so big: the propagators in the loop, which
are 1/m2 in zero dimensions just become 1/(k2+m2) in d dimensions. So if we are able to
find the zero-dimensional 1-loop effective potential we can do this replacement to obtain
the d-dimensional effective potential.

So we first have to calculate the zero-dimensional 1-loop effective potential through
the Schwinger-Dyson equations. We write the zero-dimensional action of our N = 2
linear sigma model generically as:

S =
1

2
m1η

2
1 +

1

2
m2η

2
2 +

1

3!
g1η

3
1 +

1

2!
g2η1η

2
2 +

1

4!
λ1η

4
1 +

1

4!
λ2η

4
2 +

1

2!2!
λ3η

2
1η

2
2 (6.35)

Notice that we have included a mass
√
m2 for the η2-particle now, to be able to do the

replacement m2 → k2 later. (Also for m2 = 0 the propagator would not even exist in
zero dimensions.)

In diagrammatic form the Schwinger-Dyson equations read:

= +
1

2
+

1

2
+

1

2
+

1

2
+

1

3!
+

1

2
+

1

3!
+

1

2
+

1

2
+ +

1

2

= + + +
1

2
+

1

2
+ +

1

2
+

1

3!
+

1

2
+

1

3!
(6.36)
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Here the little crosses indicate the vertices from the sources, respectively J1/h̄ and J2/h̄.
If we denote the tadpoles by φ(J1, J2) and ψ(J1, J2):

≡ φ(J1, J2) , ≡ ψ(J1, J2) , (6.37)

and their derivatives by

φi1i2...in ≡ ∂n

∂Ji1∂Ji2 . . . ∂Jin
φ

ψi1i2...in ≡ ∂n

∂Ji1∂Ji2 . . . ∂Jin
ψ , (6.38)

then the Schwinger-Dyson equations read

m1φ = J1 −
1

2
g1(φ

2 + h̄φ1) −
1

2
g2(ψ

2 + h̄ψ2) −
1

6
λ1(φ

3 + 3h̄φφ1 + h̄2φ11) +

−1

2
λ3(φψ

2 + h̄φψ2 + 2h̄ψφ2 + h̄2φ22)

m2ψ = J2 − g2(φψ + h̄φ2) −
1

2
λ3(φ

2ψ + h̄φ1ψ + 2h̄φφ2 + h̄2φ12) +

−1

6
λ2(ψ

3 + 3h̄ψψ2 + h̄2ψ22) (6.39)

Now the definition of the effective action is

∂Γ

∂φ
(φ, ψ) = J1(φ, ψ)

∂Γ

∂ψ
(φ, ψ) = J2(φ, ψ) , (6.40)

from which one can derive

φ1 =
− ∂2Γ
∂ψ2

(

(

∂2Γ
∂φ∂ψ

)2

− ∂2Γ
∂φ2

∂2Γ
∂ψ2

) ,

ψ1 =

∂2Γ
∂φ∂ψ

(

(

∂2Γ
∂φ∂ψ

)2

− ∂2Γ
∂φ2

∂2Γ
∂ψ2

) ,

φ2 =

∂2Γ
∂φ∂ψ

(

(

∂2Γ
∂φ∂ψ

)2

− ∂2Γ
∂φ2

∂2Γ
∂ψ2

) ,

ψ2 =
−∂2Γ
∂φ2

(

(

∂2Γ
∂φ∂ψ

)2

− ∂2Γ
∂φ2

∂2Γ
∂ψ2

) . (6.41)

Through these relations we can write the Schwinger-Dyson equations in terms of (partial
derivatives of) the effective action and the tadpole. Then it appears one can solve these
partial differential equations iteratively up to some order to express the effective action
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in terms of the tadpole. Assuming that the effective action starts with a term of order
h̄0, which is characteristic of the canonical approach, and writing

Γ(φ, ψ) = A(φ, ψ) + h̄B(φ, ψ) + . . . (6.42)

we find:

A(φ, ψ) =
1

2
m1φ

2 +
1

2
m2ψ

2 +
1

6
g1φ

3 +
1

2
g2φψ

2 +
1

24
λ1φ

4 +
1

24
λ2ψ

4 +
1

4
λ3φ

2ψ2

B(φ, ψ) =
1

2
ln

(

∂2A

∂φ2

∂2A

∂ψ2
−
(

∂2A

∂φ∂ψ

)2
)

+ C (6.43)

Here the constant C is just a constant of integration, which is unimportant for the physics.
It is convenient to fix it however by demanding that for a free theory B = 0, which gives
C = −1

2
lnm1m2.

Now to obtain the 1-loop effective potential in d dimensions (excluding counter terms)
we have to make the replacements

m1 → k2 +m2 , m2 → k2 , (6.44)

in h̄B(φ, ψ) and add the integration 1
(2π)d

∫

ddk.

If we do this, specify all the masses and coupling constants m, g and λ to the masses
and coupling constants we have in the N = 2 linear sigma model, and write the η1- and
η2-field in terms of the ϕ1- and ϕ2-field again we find exactly (6.34), of course excluding
the counter terms.

Also notice that (6.43) shows in general (for a 2-field theory) that the effective po-
tential becomes complex when the classical potential A becomes non-convex. Inside the
logarithm in B in (6.43) is the Hessian of the function A, which is negative where the
function A is non-convex.

6.2.2 Calculating The Effective Potential

To proceed calculating (6.34) we have to expand the logarithms again to let any diver-
gent parts cancel the divergences in the counter terms. Of course when we expand the
logarithm with the 1/k2 a lot of infrared divergences are going to appear. These diver-
gences should later sum up to something finite again, but for the moment we have to
regularize them, which we do by introducing a mass ε for the η2-particle. The 1-loop
effective potential becomes:

V1 =

(

1

16

h̄m4

v4
(I(0,m, 0,m) − I(0, ε, 0, ε)) − 7

h̄m6

v4
I(0,m, 0,m, 0,m) +

41

4

h̄m8

v4
I(0,m, 0,m, 0,m, 0,m)

)

(ϕ2
1 + ϕ2

2 − v2)2 +

− h̄
2

∞
∑

n=3

1

n

(

−1

2

m2

v2
(ϕ2

1 + ϕ2
2 − v2)

)n
1

(2π)d

∫

ddk
1

(k2 + ε2)n
+

− h̄
2

∞
∑

n=3

1

n

(

−3

2

m2

v2
(ϕ2

1 + ϕ2
2 − v2)

)n
1

(2π)d

∫

ddk
1

(k2 +m2)n
(6.45)
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In the first term the ultraviolet divergences cancel, we can write this term as:

I(0,m, 0,m) − I(0, ε, 0, ε) =

2(ε2 −m2) I(0,m, 0,m, 0, ε) − (ε2 −m2)2 I(0,m, 0,m, 0, ε, 0, ε) (6.46)

Now using that for d ≤ 4 and n ≥ 3 we have

1

(2π)d

∫

ddk
1

(k2 +m2)n
=

1

(4π)d/2
md−2nΓ(n− d/2)

Γ(n)
, (6.47)

and for d ≤ 4 and n+ p ≥ 3 we have

1

(2π)d

∫

ddk
1

(k2 +m2)n
1

(k2 + ε2)p
=

1

(4π)d/2
Γ(n+ p− d/2)

Γ(n)Γ(p)

∫ 1

0

dx xn−1(1 − x)p−1(xm2 + (1 − x)ε2)d/2−n−p ,

(6.48)

we find for the 1-loop effective potential

V1 =

(

1

16

h̄m4

v4

(

md−4 − εd−4
) 1

(4π)d/2
Γ(2 − d/2) − 7

2

h̄md

v4

1

(4π)d/2
Γ(3 − d/2) +

41

24

h̄md

v4

1

(4π)d/2
Γ(4 − d/2)

)

(ϕ2
1 + ϕ2

2 − v2)2 +

− 1

(4π)d/2
εd
h̄

2

∞
∑

n=3

1

n!

(

−1

2

m2

v2ε2
(ϕ2

1 + ϕ2
2 − v2)

)n

Γ(n− d/2) +

− 1

(4π)d/2
md h̄

2

∞
∑

n=3

1

n!

(

−3

2

1

v2
(ϕ2

1 + ϕ2
2 − v2)

)n

Γ(n− d/2) . (6.49)

We see that for d ≤ 4 all ultraviolet divergences cancel, which shows again that the
theory is renormalizable for d ≤ 4.

To find a more explicit expression for V1 we have to specify the dimension d.

6.2.3 d = 1 And d = 2

If one substitutes d = 1 in (6.49), performs the sums and works everything out one finds
that the divergences for ε → 0 do not cancel. The same happens for d = 2. This is
generally known, in one and two dimensions there is no SSB, which is manifested by the
remaining infrared divergences. See for example Coleman [31] and Coleman, Jackiw and
Politzer [32].

6.2.4 d = 4

In d = 4 the infrared divergences do cancel and one finds:

V1 = −3

8

h̄m4

v2

1

16π2
(ϕ2

1 + ϕ2
2 − v2) − 131

48

h̄m4

v4

1

16π2
(ϕ2

1 + ϕ2
2 − v2)2 +

1

16

h̄m4

v4

1

16π2
(ϕ2

1 + ϕ2
2 − v2)2 ln

(

1

2

1

v2
(ϕ2

1 + ϕ2
2 − v2)

)

+

1

4
h̄m4 1

16π2

(

1 +
3

2

1

v2
(ϕ2

1 + ϕ2
2 − v2)

)2

ln

(

1 +
3

2

1

v2
(ϕ2

1 + ϕ2
2 − v2)

)

(6.50)
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This result does not correspond to (11.79) in Peskin and Schroeder [8], simply because
we use different renormalization conditions.

In figure 6.1 the complete effective potential (up to one loop) and the classical potential
are plotted for the case h̄ = 2, m = 1, v = 1.
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Figure 6.1: V0 And V = V0 + V1 as a function of
√

ϕ2
1 + ϕ2

2/v for h̄ = 2, m = 1, v = 1.

The minimum of the effective potential is at ϕ2
1 +ϕ2

2 = v2, as our tadpole renormaliza-
tion condition in (6.22) ensures. Also exactly at this point the effective potential becomes
complex because of the first logarithm in (6.50). This shows again that the effective po-
tential in the canonical approach becomes complex where the classical potential becomes
non-convex. Because the effective potential becomes complex exactly at the location of
the minima we cannot compute the n-points Green’s functions from it. This is related to
the fact that all these n-points Green’s functions suffer from infrared divergences at zero
incoming momentum.

Note that the effective potential we have computed here is convex where it is defined.
This is not always the case. We could easily have chosen other renormalization conditions
such that the minima of the effective potential occur for ϕ2

1 + ϕ2
2 > v2 (by for example

adding a constant term to δµ|h̄). Then there is a non-convex region between these minima
and the circle ϕ2

1 +ϕ2
2 = v2, where the effective potential becomes complex again. In fact

in Peskin and Schroeder [8] such an effective potential is found in (11.79). They use the
MS renormalization scheme. Their remark that fortunately the minima of the effective
potential occur outside the region where it becomes complex is somewhat inappropriate,
since we have shown here that this is not always the case.

So also for the N = 2 linear sigma model there is an apparent convexity problem.
Again, as has been thoroughly discussed in the N = 1-case this problem is resolved by
realizing that the canonical and path-integral approach are not the same in the case of a
non-convex classical action.
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Chapter 7

The N = 2 LSM: The Path-Integral
Approach I

In this chapter we will discuss the path-integral approach to the Euclidean N = 2 linear
sigma model. This means we want to calculate the path integral of this model in some
approximation. For the N = 1 linear sigma model we calculated the path integral (in
chapter 4) with a saddle-point approximation. This means we expand the generating
functional around each minimum and add all these generating functionals to obtain the
complete generating functional. In the N = 1-case this is a good approximation because
the minima lie far away from each other. In the N = 2-case we can also use such a
saddle-point approximation, however now the minima form a continuous set and do not
lie far apart. So it is questionable whether expanding around each minimum and then
summing, or rather integrating, the contributions from each minimum gives a reasonable
approximation to the path integral.

Another questionable point is the perturbative expansion around each minimum.
When making this expansion one has replaced the, in principle damped, η2-direction
(i.e. tangential direction) by a non-damped straight line. There is an η4

2-term that damps
oscillations in the η2-direction in principle, however in perturbation theory the exponen-
tial of this term is expanded, and not all terms are kept. In this way we loose the damping
effect in the tangential direction, which is actually there.

In this chapter we shall just use this naive saddle-point approximation, even though
the arguments above advise strongly against it. There is also an argument in favor of
this naive approach. We know that expanding around one minimum (i.e. the canoni-
cal approach) gives a self-consistent theory and the Green’s functions calculated in this
way satisfy the Schwinger-Dyson equations. Also the generating functional calculated by
including only one minimum satisfies the Schwinger-Symanzik equations. Because the
Schwinger-Dyson and Schwinger-Symanzik equations are linear (in the full Green’s func-
tions or generating functional) also the sum of several full Green’s functions or generating
functionals around different minima are solutions to these equations. So we know at least
that the full Green’s functions and generating functional obtained by summing or inte-
grating over all minima are solutions to the Schwinger-Dyson and Schwinger-Symanzik
equations.

75
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7.1 Green’s Functions

The renormalized action of the d-dimensional N = 2 linear sigma model is:

S =

∫

ddx

(

1

2
(∇ϕ1)

2 +
1

2
(∇ϕ2)

2 − 1

2
µ
(

ϕ2
1 + ϕ2

2

)

+
λ

24

(

ϕ2
1 + ϕ2

2

)2
+

1

2
δZ (∇ϕ1)

2 +
1

2
δZ (∇ϕ2)

2 − 1

2
δµ
(

ϕ2
1 + ϕ2

2

)

+
δλ
24

(

ϕ2
1 + ϕ2

2

)2
)

.(7.1)

The minima of the first line are given by

ϕ1 = v cos δ ≡ v1(δ)

ϕ2 = v sin δ ≡ v2(δ) , (7.2)

with v =
√

6µ/λ again. Now we expand the action around one of these minima:

ϕ1 = v1 + η1 , ϕ2 = v2 + η2 (7.3)

When writing the action in terms of these η-fields the Gaussian part becomes non-diagonal
in η1 and η2. To make this part diagonal again we introduce the ψ-fields:

ψ1 =
1

v
(v1η1 + v2η2)

ψ2 =
1

v
(v2η1 − v1η2) (7.4)

η1 =
1

v
(v1ψ1 + v2ψ2)

η2 =
1

v
(v2ψ1 − v1ψ2) (7.5)

In terms of these ψ-fields the action reads (again defining µ ≡ 1
2
m2):

S =

∫

ddx

(

1

2
(∇ψ1)

2 +
1

2
(∇ψ2)

2 +
1

2
m2ψ2

1 +

1

2

m2

v
ψ3

1 +
1

2

m2

v
ψ1ψ

2
2 +

1

8

m2

v2
ψ4

1 +
1

8

m2

v2
ψ4

2 +
1

4

m2

v2
ψ2

1ψ
2
2 +

1

2
δZ (∇ψ1)

2 +
1

2
δZ (∇ψ2)

2 +

(

−vδµ +
1

6
v3δλ

)

ψ1 +

(

−1

2
δµ +

1

4
v2δλ

)

ψ2
1 +

(

−1

2
δµ +

1

12
v2δλ

)

ψ2
2 +

1

6
vδλψ

3
1 +

1

6
vδλψ1ψ

2
2 +

δλ
24
ψ4

1 +
δλ
24
ψ4

2 +
δλ
12
ψ2

1ψ
2
2

)

(7.6)

Notice that this action does not depend on δ anymore, as is expected from the O(2)-
invariance of this model. Also notice that the action for the ψ-fields is exactly the same
as the action for the η-fields in the canonical approach (6.6). This means the ψ-Green’s
functions are also identical to the η-Green’s functions in the canonical approach, and for
these Green’s functions we can use the results from the previous chapter.
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Now we wish to obtain the ϕ-Green’s functions. As stated in the introduction we
are going to calculate these by just integrating over the contributions from all minima,
i.e. integrate over δ. One should keep in mind here that the ψ-Green’s functions do not
depend on δ anymore.

〈ϕ1(x)〉 =
1

2π

∫ π

−π
dδ (v1 + 〈η1(x)〉) =

1

2π

∫ π

−π
dδ
(

v1 +
v1

v
〈ψ1(x)〉 +

v2

v
〈ψ2(x)〉

)

= 0

〈ϕ2(x)〉 =
1

2π

∫ π

−π
dδ (v2 + 〈η2(x)〉) =

1

2π

∫ π

−π
dδ
(

v2 +
v2

v
〈ψ1(x)〉 −

v1

v
〈ψ2(x)〉

)

= 0

(7.7)

〈ϕ1(x)ϕ1(y)〉 =
1

2π

∫ π

−π
dδ 〈(v1 + η1(x)) (v1 + η1(y))〉

=
1

2
v2 +

1

2
v〈ψ1(x)〉 +

1

2
v〈ψ1(y)〉 +

1

2
〈ψ1(x)ψ1(y)〉 +

1

2
〈ψ2(x)ψ2(y)〉

〈ϕ2(x)ϕ2(y)〉 =
1

2
v2 +

1

2
v〈ψ1(x)〉 +

1

2
v〈ψ1(y)〉 +

1

2
〈ψ1(x)ψ1(y)〉 +

1

2
〈ψ2(x)ψ2(y)〉

〈ϕ1(x)ϕ2(y)〉 = 0 (7.8)

In this last line we also used 〈ψ2(x)〉 = 〈ψ1(x)ψ2(y)〉 = 0.
With the results of the previous chapter it is now easy to obtain the ϕ1- and ϕ2-

propagator up to 1-loop order. If we use the same counter terms as in the canonical
approach we have, up to 1-loop order (using the tadpole renormalization condition (3.15)
and the Dyson summed propagators (6.25) and (6.28)):

〈ψ1(x)〉 = 0

〈ψ1(x)ψ1(y)〉 =
1

(2π)d

∫

ddp eip·(x−y)
h̄

p2 +m2 − h̄A1(p2)

〈ψ2(x)ψ2(y)〉 =
1

(2π)d

∫

ddp eip·(x−y)
h̄

p2 − h̄A2(p2)
(7.9)

with A1 and A2 given in (6.26) and (6.29). Finally we find:

〈ϕ1(x)ϕ1(y)〉 = 〈ϕ2(x)ϕ2(y)〉 =
1

2
v2 +

1

2

1

(2π)d

∫

ddp eip·(x−y)
h̄

p2 +m2 − h̄A1(p2)
+

1

2

1

(2π)d

∫

ddp eip·(x−y)
h̄

p2 − h̄A2(p2)
. (7.10)

With the formulas (7.8) it is also easy to calculate the ϕ1- and ϕ2-propagator up
to order h̄2. All we need more is 〈ψ1(x)〉 at order h̄2. This quantity can easily be
calculated with the Feynam rules from chapter 6. In this case we shall not specify the
counter terms, but keep them general. This will later be convenient when comparing the
upcoming result for the ϕ1- and ϕ2-propagator to the result obtained from a calculation
via the path integral in terms of polar field variables. 〈ψ1(x)〉 At order h̄2 is now:

〈ψ̃1〉|h̄2 = + + +
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+ + +

+ + +

+

= −1

8

h̄2

v3
I(0, 0)2 − 3

4

h̄2

v3
I(0, 0)I(0,m) − 9

8

h̄2

v3
I(0,m)2

−3

2

h̄2m2

v3
I(0, 0)I(0,m, 0,m) − 9

2

h̄2m2

v3
I(0,m)I(0,m, 0,m)

−1

2

h̄2m2

v3
I(0,m)I(0, 0, 0, 0) +

1

2

h̄2m2

v3
I(0, 0)I(0, 0, 0, 0)

+
1

2

h̄2m2

v3
D00m +

3

2

h̄2m2

v3
Dmmm − 3

4

h̄2m4

v3
Bm00 −

27

4

h̄2m4

v3
Bmmm

−1

2

h̄2m4

v3
B00m

+
3

2

h̄

v
I(0,m) δZ |h̄ +

3

2

h̄

m2v
I(0,m) δµ|h̄ −

1

4

h̄v

m2
I(0,m) δλ|h̄

+
1

2

h̄

v
I(0, 0) δZ |h̄ +

1

2

h̄

m2v
I(0, 0) δµ|h̄ −

1

12

h̄v

m2
I(0, 0) δλ|h̄

−3

2

h̄m2

v
I(0,m, 0,m) δZ |h̄ + 3

h̄

v
I(0,m, 0,m) δµ|h̄ +

−1

2

v

m4
(δµ|h̄)2 +

1

24

v5

m4
(δλ|h̄)2 − 1

6

v3

m4
δµ|h̄δλ|h̄ +

v

m2
δµ|h̄2 − 1

6

v3

m2
δλ|h̄2

(7.11)

Here we have defined the following new two-loop standard integrals:

Dm1m2m3 ≡ 1

(2π)2d

∫

ddk ddl
1

k2 +m2
1

1

l2 +m2
2

1

(k − l)2 +m2
3

Bm1m2m3 ≡ 1

(2π)2d

∫

ddk ddl
1

(k2 +m2
1)

2

1

l2 +m2
2

1

(k − l)2 +m2
3

(7.12)

Substituting this and the already obtained ψ1- and ψ2-propagator in (7.8) gives:

〈ϕ1(0)ϕ1(x)〉c = +
1

2
v2

−1

2
h̄ I(0, 0) +

1

2
h̄ A0(x) −

3

2
h̄ I(0,m) +

1

2
h̄ Am(x)

+
v2

m2
δµ|h̄ −

1

6

v4

m2
δλ|h̄
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+
1

2

h̄2m2

v2
I(0, 0)I(0, 0, 0, 0) − 1

2

h̄2m2

v2
I(0,m)I(0, 0, 0, 0)

−3

2

h̄2m2

v2
I(0, 0)I(0,m, 0,m) − 9

2

h̄2m2

v2
I(0,m)I(0,m, 0,m)

+
1

2

h̄2m2

v2
D00m +

3

2

h̄2m2

v2
Dmmm − 1

2

h̄2m4

v2
B00m − 3

4

h̄2m4

v2
Bm00

−27

4

h̄2m4

v2
Bmmm

−1

2

h̄2m2

v2
I(0, 0)C00(x) +

1

2

h̄2m2

v2
I(0,m)C00(x)

+
1

2

h̄2m2

v2
I(0, 0)Cmm(x) +

3

2

h̄2m2

v2
I(0,m)Cmm(x)

+
1

2

h̄2m4

v2
B00m(x) +

1

4

h̄2m4

v2
Bm00(x) +

9

4

h̄2m4

v2
Bmmm(x)

+
1

2
h̄ I(0, 0) δZ |h̄ −

1

2
h̄ A0(x) δZ |h̄ +

3

2
h̄ I(0,m) δZ |h̄ −

1

2
h̄ Am(x) δZ |h̄

−3

2
h̄m2 I(0,m, 0,m) δZ |h̄ + 3h̄ I(0,m, 0,m) δµ|h̄

+
1

2
h̄m2 Cmm(x) δZ |h̄ − h̄ Cmm(x) δµ|h̄

+
1

18

v6

m4
(δλ|h̄)2 − 1

3

v4

m4
δµ|h̄ δλ|h̄ +

v2

m2
δµ|h̄2 − 1

6

v4

m2
δλ|h̄2

+O
(

h̄3
)

(7.13)

Here we have defined another four standard integrals:

Am(x) ≡ 1

(2π)d

∫

ddk eik·x
1

k2 +m2

Cm1m2(x) ≡ 1

(2π)d

∫

ddk eik·x
1

k2 +m2
1

1

k2 +m2
2

Dm1m2m3(x) ≡ 1

(2π)2d

∫

ddk ddl eik·x
1

k2 +m2
1

1

l2 +m2
2

1

(k − l)2 +m2
3

Bm1m2m3(x) ≡ 1

(2π)2d

∫

ddk ddl eik·x
1

(k2 +m2
1)

2

1

l2 +m2
2

1

(k − l)2 +m2
3

(7.14)

7.2 The Effective Potential

Now we will try to find the effective potential of the N = 2 linear sigma model. To this
end we introduce source terms in the action again. Because we are only interested in the
effective potential we shall take the sources to be constant over space time. Including
these source terms the action is:

S =

∫

ddx

(

1

2
(∇ϕ1)

2 +
1

2
(∇ϕ2)

2 − 1

2
µ
(

ϕ2
1 + ϕ2

2

)

+
λ

24

(

ϕ2
1 + ϕ2

2

)2 − J1ϕ1 − J2ϕ2 +

1

2
δZ (∇ϕ1)

2 +
1

2
δZ (∇ϕ2)

2 − 1

2
δµ
(

ϕ2
1 + ϕ2

2

)

+
δλ
24

(

ϕ2
1 + ϕ2

2

)2
)

. (7.15)
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Now we have to find the minima of the first line again. Only for the case J1 = J2 = 0
we have a ring of minima, as found in the previous section. For one of the sources non-
zero however there is only one minimum (and one saddle point). This means that when
both sources are of order h̄0 taking into account one minimum is a good approximation.
Below we shall show that taking into account one minimum is equivalent to the canonical
approach, outlined in the previous chapter. However, when the sources become of order
h̄ the minimum becomes so unstable that quantum fluctuations along the ring become
important. Clearly in this regime it is a bad approximation to take into account only
this single minimum, although it is the only true minimum (for J 6= 0). In this regime
we have to take notice of all the points in the ring. What all the points in the ring have
in common is that they are minima in r =

√

ϕ2
1 + ϕ2

2. So to find these points, also for
non-zero sources, we have to minimize the classical action with respect to r. Writing the
classical field as:

ϕ1 = r cos δ

ϕ2 = r sin δ , (7.16)

we find the equation

−µr +
λ

6
r3 − J1 cos δ − J2 sin δ = 0 . (7.17)

Writing

J1 = J cos β

J2 = J sin β (7.18)

and parameterizing J as

J =
2µv

3
√

3

sin(3α)

cos(δ − β)
, α = 0, . . . ,

π

6
(7.19)

we find the solution

r =
2v√

3
sin
(

α+
π

3

)

. (7.20)

So for each angle δ we have a point on the ring given by (7.20).
Again we should expand the action around the classical points (7.16). To make the

action diagonal we have to introduce the ψ-fields again:

ψ1 = cos δ η1 + sin δ η2

ψ2 = sin δ η1 − cos δ η2 (7.21)

The action becomes:

S =

∫

ddx

(

1

2
µr2 − 3

4

µ

v2
r4 − 1

2
δµr

2 +
δλ
24
r4 +

1

2
(∇ψ1)

2 +
1

2
(∇ψ2)

2 +

(

−1

2
µ+

3

2

µ

v2
r2

)

ψ2
1 +

− J sin(δ − β)ψ2 +

(

−1

2
µ+

1

2

µ

v2
r2

)

ψ2
2 +

µ

v2
rψ3

1 +
µ

v2
rψ1ψ

2
2 +

1

4

µ

v2
ψ4

1 +
1

4

µ

v2
ψ4

2 +
1

2

µ

v2
ψ2

1ψ
2
2 +
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1

2
δZ (∇ψ1)

2 +
1

2
δZ (∇ψ2)

2 +

(

−δµr +
1

6
δλr

3

)

ψ1 +

(

−1

2
δµ +

1

4
δλr

2

)

ψ2
1 +

(

−1

2
δµ +

1

12
δλr

2

)

ψ2
2 +

1

6
δλrψ

3
1 +

1

6
δλrψ1ψ

2
2 +

1

24
δλψ

4
1 +

1

24
δλψ

4
2 +

1

12
δλψ

2
1ψ

2
2

)

(7.22)

Now we shall take the magnitude of the source J =
√

J2
1 + J2

2 to be of order h̄.
To proceed further with the calculation one has to make an approximation. The most
straightforward option is to treat all terms of order higher than h̄ in the action as a
perturbation. This means we should also expand r in h̄:

r(δ) =
2v√

3
sin

(

1

3
arcsin

(

3
√

3

2µv
J cos(δ − β)

)

+
π

3

)

= v +
1

2µ
J cos(δ − β) − 3

8

1

vµ2
J2 cos2(δ − β) + O(h̄3) (7.23)

Then one can read off the Feynman rules from the action and calculate the generating
functional and the ψ1- and ψ2-tadpole with Feynman diagrams. This is all straightfor-
ward, but at the end one finds an infrared-divergent expression. One might have expected
this from the results of the previous chapter. There we saw that, in d = 3 and d = 4,
the infrared divergences only sum up to something finite if we include all 1-loop graphs.
Because we take J of order h̄ here it means effectively that we cannot calculate any
n-points Green’s functions from our generating functional. For this one would need to
know the exact J-dependence. This in turn means we are not including all 1-loop graphs
and we cannot expect the infrared divergences to disappear.

Another thing one can do, which is less straightforward, but gives results without
remaining infrared divergences, is ignore the term

−J sin(δ − β)ψ2 (7.24)

in the action, because J is small anyway. Then ψ2
1 and ψ2

2 are of order h̄ and we shall
only keep the Gaussian terms. Doing this we find for the generating functional:

Zδ = exp

(

−1

h̄
Ω

(

1

2
µr2 − 3

4

µ

v2
r4 − 1

2
δµr

2 +
δλ
24
r4

))

·
∫

Dψ1Dψ2 exp

(

− 1

h̄

[

1

2
(∇ψ1)

2 +
1

2
(∇ψ2)

2 +

(

−1

2
µ+

3

2

µ

v2
r2

)

ψ2
1 +

(

−1

2
µ+

1

2

µ

v2
r2

)

ψ2
2

])

(7.25)

Notice that this generating functional depends on δ, as well as on the sources J1 and J2.
With formula (4.10) one can compute Zδ further. After some algebra one finds:

Zδ ∼ exp

(

− 1

h̄
Ω

[

V0

(

r(δ) cos δ, r(δ) sin δ
)

+ V1

(

r(δ) cos δ, r(δ) sin δ
)

− J1r(δ) cos δ − J2r(δ) sin δ

]

)

, (7.26)
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with V0 the classical potential

V0 = −1

2
µ
(

ϕ2
1 + ϕ2

2

)

+
λ

24

(

ϕ2
1 + ϕ2

2

)2
(7.27)

and V1 the 1-loop effective potential found in the canonical approach, given in (6.34).

7.2.1 Including One Minimum

Now we can see what happens if, for some reason, we would only include the single
minimum. For non-zero source this minimum is at δ = β and r given by (7.20). Notice
that in this case it is correct to discard the term (7.24), because δ = β. So in this case
the generating functional is given by Zβ and the ϕ1- and ϕ2-tadpole can be calculated as
follows.

〈ϕ1〉(J1, J2) =
h̄

Ω

∂

∂J1

lnZβ

=

(

−∂V0

∂ϕ1

− ∂V1

∂ϕ1

+ J1

)

∂ϕ1

∂J1

+

(

−∂V0

∂ϕ2

− ∂V1

∂ϕ2

+ J2

)

∂ϕ2

∂J1

+ ϕ1

〈ϕ2〉(J1, J2) =
h̄

Ω

∂

∂J2

lnZβ

=

(

−∂V0

∂ϕ1

− ∂V1

∂ϕ1

+ J1

)

∂ϕ1

∂J2

+

(

−∂V0

∂ϕ2

− ∂V1

∂ϕ2

+ J2

)

∂ϕ2

∂J2

+ ϕ2

(7.28)

Using

∂V0/1

∂ϕ1

=
∂V0/1

∂r
cos β

∂V0/1

∂ϕ2

=
∂V0/1

∂r
sin β (7.29)

and

∂ϕ1

∂J1

=
∂r

∂J1

cos β +
r

J
sin2 β

∂ϕ2

∂J1

=
∂r

∂J1

sin β − r

J
cos β sin β

∂ϕ1

∂J2

=
∂r

∂J2

cos β − r

J
cos β sin β

∂ϕ2

∂J2

=
∂r

∂J2

sin β +
r

J
cos2 β (7.30)

one finds

〈ϕ1〉(J1, J2) = ϕ1 −
∂V1

∂J1

〈ϕ2〉(J1, J2) = ϕ2 −
∂V1

∂J2

. (7.31)
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These equations can easily be inverted, up to order h̄, to obtain J1 and J2 as a function
of 〈ϕ1〉 and 〈ϕ2〉. One finds:

J1(ϕ1, ϕ2) =
∂V0

∂ϕ1

(ϕ1, ϕ2) +
∂V1

∂ϕ1

(ϕ1, ϕ2)

J2(ϕ1, ϕ2) =
∂V0

∂ϕ2

(ϕ1, ϕ2) +
∂V1

∂ϕ2

(ϕ1, ϕ2) (7.32)

This can be integrated to give for the effective potential, up to order h̄:

V (ϕ1, ϕ2) = V0(ϕ1, ϕ2) + V1(ϕ1, ϕ2) . (7.33)

Indeed we see that including one minimum in the path integral gives the canonical
effective potential.

7.2.2 Including All Minima

Including all minima, i.e. all points on the ring, means:

Z =
1

2π

∫ π

−π
dδ Zδ . (7.34)

This generating functional can be calculated further. If we define the function R as

R (J cos(δ − β)) = r(δ) , (7.35)

with r defined in (7.23), the generating functional Z can be written as

Z ∼
∫ π

−π
dδ exp

(

− 1

h̄
Ω
(

V0 (R(J cos(δ − β))) + V1 (R(J cos(δ − β))) +

−R(J cos(δ − β))J cos(δ − β)
)

)

∼
∫ π

0

dδ exp

(

− 1

h̄
Ω
(

V0 (R(J cos δ)) + V1 (R(J cos δ)) +

−R(J cos δ)J cos δ
)

)

(7.36)

For the tadpoles we find

〈ϕ1〉(J1, J2) =
h̄

Ω

∂

∂J1

lnZ =
h̄

Ω

(

∂J

∂J1

∂

∂J
+
∂β

∂J1

∂

∂β

)

lnZ =
h̄

Ω
cos β

∂

∂J
lnZ

〈ϕ2〉(J1, J2) =
h̄

Ω

∂

∂J2

lnZ =
h̄

Ω

(

∂J

∂J2

∂

∂J
+
∂β

∂J2

∂

∂β

)

lnZ =
h̄

Ω
sin β

∂

∂J
lnZ

(7.37)

√

〈ϕ1〉2(J1, J2) + 〈ϕ2〉2(J1, J2) =
h̄

Ω

∣

∣

∣

∣

∂

∂J
lnZ

∣

∣

∣

∣

=

∫ π

0
dδ
[

R(J cos δ) − ∂V1

∂r
(R(J cos δ))R′(J cos δ)

]

cos δ exp (. . .)
∫ π

0
dδ exp (. . .)

(7.38)
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In this last line the argument of the exponent is the same as in (7.36).
We see that the magnitude of the ϕ-field only depends on the magnitude of the sources

J , as expected because of the O(2)-symmetry.
Now this last expression is only valid for small J , because we discarded the term

(7.24). So we will expand our result (7.38) also in J and keep all terms up to order h̄.
(Remember that J is also of order h̄.) We find:

√

〈ϕ1〉2 + 〈ϕ2〉2 =

∫ π

0
dδ
[

v cos δ + J
m2 cos2 δ + 1

2
Ω
h̄
vJ2

m2 cos3 δ
]

exp
(

ΩvJ
h̄

cos δ
)

∫ π

0
dδ
[

1 + 1
2

Ω
h̄
J2

m2 cos2 δ
]

exp
(

ΩvJ
h̄

cos δ
) (7.39)

This can be calculated analytically:

√

〈ϕ1〉2 + 〈ϕ2〉2 =
vI1
(

ΩvJ
h̄

)

+ 1
2
J
m2

(

I0
(

ΩvJ
h̄

)

+ I2
(

ΩvJ
h̄

))

+ 1
8

Ω
h̄
vJ2

m2

(

3I1
(

ΩvJ
h̄

)

+ I3
(

ΩvJ
h̄

))

I0
(

ΩvJ
h̄

)

+ 1
4

Ω
h̄
J2

m2

(

I0
(

ΩvJ
h̄

)

+ I2
(

ΩvJ
h̄

))

(7.40)
Here In(x) is the modified Bessel function of the first kind.

This result is plotted in figure 7.1. The left curve is J , so the derivative of the
effective potential, as a function of

√

〈ϕ1〉2 + 〈ϕ2〉2. The right curve is the derivative of

the canonical effective potential as a function of
√

ϕ2
1 + ϕ2

2. Both curves do not join at
some point, the left curve is only valid for very small J , whereas the right curve is only
valid for large J .
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Figure 7.1: The derivative of the effective potential as a function of
√

ϕ2
1 + ϕ2

2/v for
h̄ = 2, m = 1, v = 1, Ω = 100. The left curve is only valid for small J , i.e. small
√

ϕ2
1 + ϕ2

2/v, the right curve is only valid for large J .

Apparently the way we calculate here, simply integrating over the ring of minima (in
r), is not a good way to cover the whole range of J , from small J of order h̄, to J of order
1. However we do find that the effective potential has a flat bottom in the limit Ω → ∞.



Chapter 8

Path Integrals in Polar Variables

8.1 Introduction

In the next chapter we shall calculate the Green’s functions in the N = 2 linear sigma
model via the path integral in terms of polar field variables. These polar variables are the
natural variables to describe an O(2)-invariant model. Before we can do these calculations
however, we have to know how to transform to polar variables in a d-dimensional path
integral.

When dealing with a normal integral a common technique to solve it is to transform to
a different integration variable. Since the path integral is merely an infinite-dimensional
integral, one should also be able to transform to different integration variables in this
case. In particular, in the case of a path integral over two fields, ϕ1 and ϕ2, one can
transform to polar field variables, r and θ, defined as:

ϕ1(x) = r(x) cos θ(x)

ϕ2(x) = r(x) sin θ(x) . (8.1)

It is this transformation to polar field variables that we shall study in this chapter. We
wish to emphasize here that not the space-time coordinates, but the quantum fields ϕ1

and ϕ2 are transformed to polar fields r and θ.
The infinite dimensionality of the path integral makes such a variable transformation

very complicated. Several difficult questions immediately pop up:

1. In principle the whole path integral is only defined on a lattice, so the transformation
should also be done with the path integral in discrete form. This means one cannot
simply let the transformation work on the continuous action. Instead one has to
write out the action in discrete form and only then let the transformation work.
After this one gets a complicated action, with also terms proportional to the lattice
spacing ∆. These terms cannot be discarded, since one has to perform the path
integration first and then take the continuum limit ∆ → ∞. It is not obvious that
the terms proportional to ∆ will not give a finite contribution in this continuum
limit. In fact, in this chapter we will see that they do give finite contributions to
Green’s functions.

2. After the transformation the domain of integration is not 〈−∞,∞〉. For the r-
variables it is [0,∞〉, whereas for the θ-variables it is [−π, π]. How does one evaluate
such a path integral, especially because we can only compute path integrals with
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perturbation theory? To do perturbation theory we have to be able to identify a
Gaussian part, and the fields in such a Gaussian part are always integrated from
−∞ to ∞.

3. After the transformation one gets a Jacobian, how does one deal with this? Since
we can only do perturbation theory we also have to identify the Gaussian part and
the perturbative part of this Jacobian.

From these questions it is clear that transforming to polar variables in a d-dimensional
path integral is very complicated. For 1-dimensional systems, i.e. quantum-mechanical
systems, there is quite some literature on the transformation to polar variables.

In his textbook [33] Lee derives the quantum-mechanical path integral in curvilinear
coordinates in chapter 19. The result (19.49) is a path integral with a new action Leff,
which is not equal to the action one would find by transforming to polar coordinates in
the continuum action (in Cartesian coordinates).

Edwards et al. [34] and Peak et al. [35] also transform to polar coordinates in the
discrete quantum-mechanical path integral. They find that terms of order ∆ or higher,
which arise when transforming to polar coordinates in the discrete action (in Cartesian
coordinates), cannot all be neglected.

8.2 A Conjecture

From the above it should be clear that transforming a path integral in terms of the normal
(i.e. Cartesian) fields ϕ1 and ϕ2 to a path integral in terms of polar fields is far from trivial.
To be able to do computations at all we will present a conjecture in this section. In the
next sections we will then try to make this conjecture plausible by considering certain
toy models where we can see that the conjecture actually works.

The generic form of a d-dimensional Euclidean path integral P in two fields is:

P =

∫

Dϕ1Dϕ2 ϕ1(x1) · · ·ϕ1(xn) ϕ2(y1) · · ·ϕ2(ym) ·

exp

(

−1

h̄

∫

ddx

(

1

2
(∇ϕ1)

2 +
1

2
(∇ϕ2)

2 + V (ϕ1, ϕ2)

))

(8.2)

Very naively, one could hope that the transformation to polar variables works as:
∫ ∞

−∞
Dϕ1

∫ ∞

−∞
Dϕ2 →

∫ ∞

−∞
Dr

∏

x

r(x)

∫ ∞

−∞
Dθ

ϕ1(x) → r(x) cos θ(x)

ϕ2(x) → r(x) sin θ(x)
∫

ddx

(

1

2
(∇ϕ1)

2 +
1

2
(∇ϕ2)

2

)

→
∫

ddx

(

1

2
(∇r)2 +

1

2
r2 (∇θ)2

)

∫

ddx V (ϕ1, ϕ2) →
∫

ddx V (r cos θ, r sin θ) (8.3)

Here one has just extended the integration domains for r and θ to 〈−∞,∞〉. In the
fourth line one has just transformed the continuum action to an action in terms of polar
fields, disregarding the fact that one should do this on the lattice, where the path integral
is defined.
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To make all these expressions completely continuous we still have to do something
about the Jacobian factor

∏

x

r(x) , (8.4)

since this is still a lattice expression. We shall write this Jacobian as:

∏

x

r(x) =
∏

x

exp

(

−1

h̄
(−h̄ ln r(x))

)

= exp

(

−1

h̄

∑

x

(−h̄ ln r(x))

)

→ exp

(

−1

h̄

1

∆d

∫

ddx (−h̄ ln r(x))

)

→ exp

(

−1

h̄

[

1

(2π)d

∫

ddk

] ∫

ddx (−h̄ ln r(x))

)

(8.5)

This is a continuum expression, which looks a lot like the exponential of an action.
So, we might hope that the continuum form of a path integral in polar field variables

is given by making the substitutions
∫ ∞

−∞
Dϕ1

∫ ∞

−∞
Dϕ2 →

∫ ∞

−∞
Dr

∫ ∞

−∞
Dθ ·

exp

(

−1

h̄

[

1

(2π)d

∫

ddk

] ∫

ddx (−h̄ ln r(x))

)

ϕ1(x) → r(x) cos θ(x)

ϕ2(x) → r(x) sin θ(x)
∫

ddx

(

1

2
(∇ϕ1)

2 +
1

2
(∇ϕ2)

2

)

→
∫

ddx

(

1

2
(∇r)2 +

1

2
r2 (∇θ)2

)

∫

ddx V (ϕ1, ϕ2) →
∫

ddx V (r cos θ, r sin θ) (8.6)

in the path integral in Cartesian form.
Now the conjecture we are going to make is:

Conjecture It is correct to transform to polar variables naively, as in (8.6), provided
one does the calculation in a d-dimensional way.

This seems a very strange conjecture, and with all the remarks we made in the introduc-
tion it is hard to imagine how it can work. However in the next two sections we shall
demonstrate that indeed this conjecture is true for two toy models. Also there we will
demonstrate what is meant exactly by ‘calculating in a d-dimensional way’.

These two toy models are selected with the following two criteria:

1. The model should have one minimum.

2. This minimum should not be at ϕ1 = 0, ϕ2 = 0.

The reason for the first criterion is that we want a toy model where we can calculate
Green’s functions both through the path integral in normal (Cartesian) fields and through
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the path integral in polar fields. Only then can we check whether the conjecture, used
in the calculation through polar fields, works. Notice that the N = 2 linear sigma
model does not satisfy the first criterion, there we have an infinite set of minima. In
that case it is not clear whether a calculation through the Cartesian path integral (as
done in the previous chapter) is correct. The reason for the second criterion is that at
ϕ1 = 0, ϕ2 = 0, i.e. r = 0, the transformation to polar fields becomes problematic. To be
on the safe side we simply avoid these difficulties by only considering toy models which
have their minimum away from r = 0, such that we can do perturbation theory around
a point where the transformation is well-defined.

8.3 The Shifted Toy Model

In this section we shall calculate several Green’s functions in the so-called shifted toy
model. This model has an action

S =

∫

ddx

(

1

2
(∇ϕ1)

2 +
1

2
(∇ϕ2)

2 +
1

2
m2(ϕ1 − v)2 +

1

2
m2ϕ2

2

)

. (8.7)

This is just the action of a free model with the ϕ1-field shifted, hence the name. We
shifted this field such that the minimum of the action is at ϕ1 = v, ϕ2 = 0.

To prove that the conjecture indeed works in the case of this model we shall now
calculate several Green’s functions through the normal, Cartesian, path integral and
through the path integral in terms of polar fields. Then we can compare results.

8.3.1 Cartesian Results

Because the shifted toy model is just a free theory with one field shifted it is very easy
to obtain the exact full Green’s functions. They are:

〈ϕ1(x)〉 = v

〈ϕ2(x)〉 = 0

〈ϕ1(x)ϕ1(y)〉 = v2 +
h̄

(2π)d

∫

ddk
eik·(x−y)

k2 +m2

= v2 + h̄ Am(x− y)

〈ϕ2(x)ϕ2(y)〉 =
h̄

(2π)d

∫

ddk
eik·(x−y)

k2 +m2

= h̄ Am(x− y)

〈ϕ1(x)ϕ2(y)〉 = 0 (8.8)

8.3.2 Polar Results

Now we perform the transformation to polar fields in the path integral:

ϕ1(x) = r(x) cos

(

w(x)

v

)

ϕ2(x) = r(x) sin

(

w(x)

v

)

. (8.9)
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Here we have used w(x)/v instead of θ(x) to have a new angular field-variable with also
the dimensions of a field. This is purely a matter of convenience.

To calculate the Green’s functions through the path integral in polar fields now we
will use the conjecture. According to this conjecture, the new action we have to work
with is:

S =

∫

ddx

(

1

2
(∇r(x))2 +

1

2v2
r2(x) (∇w(x))2 +

1

2
m2r2(x) −m2vr(x) cos(w(x)/v)

)

.

(8.10)
The minimum of the action is at r(x) = v and w(x) = 0. Expanding around r(x) = v
and writing

r(x) ≡ v + η(x) (8.11)

we get

S =

∫

ddx

(

1

2
(∇η(x))2 +

1

2
(∇w(x))2 +

1

v
η(x) (∇w(x))2 +

1

2v2
η2(x) (∇w(x))2 +

m2vη(x) +
1

2
m2η2(x) −m2v2 cos(w(x)/v) −m2vη(x) cos(w(x)/v)

)

.

(8.12)

Expanding also around w(x) = 0, i.e. expanding the cosine gives:

S =

∫

ddx

(

1

2
(∇η(x))2 +

1

2
(∇w(x))2 +

1

v
η(x) (∇w(x))2 +

1

2v2
η2(x) (∇w(x))2 +

1

2
m2η2(x) +

1

2
m2w2(x) − m2

24v2
w4(x) +

m2

2v
η(x)w2(x) − m2

24v3
η(x)w4(x) +

O(h̄3)

)

. (8.13)

The Jacobian gives, according to the conjecture:

exp

(

−1

h̄

[

1

(2π)d

∫

ddk

] ∫

ddx (−h̄ ln r(x))

)

∼

exp

(

−1

h̄

[

1

(2π)d

∫

ddk

] ∫

ddx

(

−h̄ ln

(

1 +
η(x)

v

)))

=

exp

(

−1

h̄

[

1

(2π)d

∫

ddk

] ∫

ddx

(

−h̄
∞
∑

n=1

(−1)n+1

n

(

η(x)

v

)n
))

(8.14)

It is convenient to define also the standard integral I:standard integrals

I ≡ 1

(2π)d

∫

ddk . (8.15)

Now can read off the Feynman rules from the action and the Jacobian, and the
conjecture states that we can calculate everything in the continuum, provided we do a
d-dimensional calculation. The Feynman rules are (up to order h̄5/2):

↔ h̄

k2 +m2
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↔ h̄

k2 +m2

k1

k2 ↔ 2

h̄v
k1 · k2 −

m2

h̄v

k1

k2 ↔ 2

h̄v2
k1 · k2

↔ m2

h̄v2

↔ m2

h̄v3

↔ 1

v
I

↔ − 1

v2
I

↔ 2

v3
I (8.16)

Here all momenta are counted as going into the vertex. With these rules we can now
compute Green’s functions up to order h̄2.

First we will demonstrate however what we mean exactly by ‘calculating in a d-
dimensional way’. What we mean can most easily be seen in the following ‘d-dimensional
calculation’ of a tadpole diagram.

=
1

2

h̄

m2

1

(2π)2d

∫

ddk ddl

(

− 2

h̄v
k2 − m2

h̄v

)(

− 2

h̄v
k · l − m2

h̄v

)2

(

h̄

k2 +m2

)2
h̄

l2 +m2

h̄

(k − l)2 +m2

=
1

2

h̄2

m2v3

1

(2π)2d

∫

ddk ddl (−2k2 −m2)(−2k · l −m2)2

(

1

k2 +m2

)2
1

l2 +m2

1

(k − l)2 +m2

= − h̄2

m2v3

1

(2π)2d

∫

ddk ddl (−2k · l −m2)2 ·
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1

k2 +m2

1

l2 +m2

1

(k − l)2 +m2
+

1

2

h̄2

v3

1

(2π)2d

∫

ddk ddl (−2k · l −m2)2 ·
(

1

k2 +m2

)2
1

l2 +m2

1

(k − l)2 +m2

(8.17)

Now use
−2k · l −m2 =

[

(k − l)2 +m2
]

−
[

k2 +m2
]

−
[

l2 +m2
]

. (8.18)

Then the tadpole diagram becomes:

− h̄2

m2v3

1

(2π)2d

∫

ddk ddl (−2k · l −m2)

(

1

k2 +m2

1

l2 +m2
− 2

1

k2 +m2

1

(k − l)2 +m2

)

+

1

2

h̄2

v3

1

(2π)2d

∫

ddk ddl (−2k · l −m2)

(

1

(k2 +m2)2

1

l2 +m2
− 1

k2 +m2

1

l2 +m2

1

(k − l)2 +m2
+

− 1

(k2 +m2)2

1

(k − l)2 +m2

)

=
h̄2

v3
I(0,m)2 + 2

h̄2

m2v3

1

(2π)2d

∫

ddk ddl (−2k · l − 2k2 −m2)
1

k2 +m2

1

l2 +m2
+

−1

2

h̄2m2

v3
I(0,m)I(0,m, 0,m) +

−1

2

h̄2

v3

1

(2π)2d

∫

ddk ddl

(

1

k2 +m2

1

l2 +m2
− 2

1

k2 +m2

1

(k − l)2 +m2

)

+

−1

2

h̄2

v3

1

(2π)2d

∫

ddk ddl (−2k · l − 2k2 −m2)
1

(k2 +m2)2

1

l2 +m2

=
9

2

h̄2

v3
I(0,m)2 − 4

h̄2

m2v3
I(0,m)I − h̄2m2

v3
I(0,m)I(0,m, 0,m) (8.19)

In the above steps, and in all d-dimensional calculations, one essentially uses three rules:
One writes dot-products from the vertices in terms of the denominators of the propaga-
tors, to let them cancel as much as possible, one can shift all loop momenta and one can
set

∫

ddk
ki

k2 +m2
= 0 . (8.20)

Using these three rules is what we mean by a ‘d-dimensional calculation’.
Notice that, for example in dimension 1, where k · l becomes a simple product, we

could also have combined momenta coming from different vertices and let them cancel
denominators. This simplifies the calculation of the tadpole diagram considerably, how-
ever this is not what we mean by a ‘d-dimensional calculation’. The result in terms of
standard integrals is also different. Even the numerical result is different because the
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diagram contains a divergence, also in d = 1. (The divergence comes from I.) In order
for the conjecture to work we have to perform a d-dimensional calculation.

Now we compute 〈ϕ1(x)〉, 〈ϕ2(x)〉, 〈ϕ1(x)ϕ1(y)〉, 〈ϕ2(x)ϕ2(y)〉 and 〈ϕ1(x)ϕ2(y)〉 via
the polar fields, up to order h̄2. To do this we first have to express these Green’s functions
in terms of the η- and w-Green’s-functions.

〈ϕ1(x)〉 = 〈(v + η(x)) cos(w(x)/v)〉

= v + 〈η(x)〉 − 1

2v
〈w2(x)〉 − 1

2v2
〈η(x)w2(x)〉 +

1

24v3
〈w4(x)〉 + O(h̄3)

〈ϕ2(x)〉 = 〈(v + η(x)) sin(w(x)/v)〉

= 〈w(x)〉 +
1

v
〈η(x)w(x)〉 − 1

6v2
〈w3(x)〉 − 1

6v3
〈η(x)w3(x)〉 + O(h̄3)

〈ϕ1(x)ϕ1(y)〉 = 〈(v + η(x))(v + η(y)) cos(w(x)/v) cos(w(y)/v)〉

= v2 + 2v〈η(x)〉 + 〈η(x)η(y)〉 − 〈w2(x)〉 − 1

v
〈η(x)w2(x)〉 +

− 1

2v
〈η(x)w2(y)〉 − 1

2v
〈η(y)w2(x)〉 +

1

12v2
〈w4(x)〉 +

1

4v2
〈w2(x)w2(y)〉 − 1

2v2
〈η(x)η(y)w2(x)〉 − 1

2v2
〈η(x)η(y)w2(y)〉 +

O(h̄3)

〈ϕ2(x)ϕ2(y)〉 = 〈(v + η(x))(v + η(y)) sin(w(x)/v) sin(w(y)/v)〉

= 〈w(x)w(y)〉 +
1

v
〈η(x)w(x)w(y)〉 +

1

v
〈η(y)w(x)w(y)〉 +

1

v2
〈η(x)η(y)w(x)w(y)〉 − 1

6v2
〈w3(x)w(y)〉 − 1

6v2
〈w(x)w3(y)〉 +

O(h̄3)

〈ϕ1(x)ϕ2(y)〉 = 〈(v + η(x))(v + η(y)) cos(w(x)/v) sin(w(y)/v)〉

= v〈w(y)〉 + 〈η(x)w(y)〉 + 〈η(y)w(y)〉 − 1

6v
〈w3(y)〉 +

− 1

2v
〈w2(x)w(y)〉 +

1

v
〈η(x)η(y)w(y)〉 − 1

6v2
〈η(x)w3(y)〉 +

− 1

6v2
〈η(y)w3(y)〉 − 1

2v2
〈η(x)w2(x)w(y)〉 − 1

2v2
〈η(y)w2(x)w(y)〉 +

O(h̄3) (8.21)

Notice that in these formulas only the full η- and w-Green’s-functions occur.

Now we compute all the η- and w-Green’s-functions that we need, up to order h̄2.
All results will be expressed in the standard integrals again. One-loop standard integrals
have already been defined in (3.10). One would expect that we also need the two-loop
standard integrals here, since two-loop diagrams will occur in the η-tadpole at order h̄2.
However it will appear that no two-loop integrals occur in the final expressions for the
tadpole diagrams, all expressions can be written in terms of one-loop standard integrals,
probably because of the simple action of the shifted toy model. From the Feynman rules
we can also immediately see that any Green’s function with an odd number of w’s is zero,
we will not list them explicitly below.
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The η-Tadpole

Below we list all the diagrams contributing to 〈η̃〉 = 〈η〉 up to order h̄2.

= − h̄

m2v
I +

1

2

h̄

v
I(0,m)

=
h̄

m2v
I

= −1

2

h̄2

v3
I(0,m)2 +

1

4

h̄2m2

v3
I(0,m, 0,m) I(0,m)

= −4
h̄2

m2v3
I(0,m) I +

9

2

h̄2

v3
I(0,m)2 +

− h̄
2m2

v3
I(0,m, 0,m) I(0,m)

= 2
h̄2

m2v3
I(0,m) I − 2

h̄2

v3
I(0,m)2

= −1

2

h̄2

v3
I(0,m)2 +

1

4

h̄2m2

v3
I(0,m, 0,m) I(0,m)

=
h̄2

m2v3
I(0,m) I − 3

2

h̄2

v3
I(0,m)2 +

1

2

h̄2m2

v3
I(0,m, 0,m) I(0,m)

=
1

8

h̄2

v3
I(0,m)2

=
h̄2

m2v3
I(0,m) I (8.22)
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The complete result for the η-tadpole is finally:

〈η̃〉 =
1

2

h̄

v
I(0,m) +

1

8

h̄2

v3
I(0,m)2. (8.23)

Notice that all the (infinite) I-integrals from the Jacobian have nicely cancelled against
identical terms from w-loops.

The η-Propagator

Below we list the diagrams contributing to the connected momentum-space η-propagator
〈η̃(p)η̃(−p)〉c.

=
h̄

p2 +m2

= 2
h̄2

v2

1

(p2 +m2)2
I − h̄2

v2

p2 + 2m2

(p2 +m2)2
I(0,m) +

1

2

h̄2

v2
I(0,m, p,m)

= − h̄
2

v2

1

(p2 +m2)2
I +

h̄2m2

v2

1

(p2 +m2)2
I(0,m)

= − h̄
2

v2

1

(p2 +m2)2
I (8.24)

For the connected η-propagator we get:

〈η̃(p)η̃(−p)〉c =
h̄

p2 +m2
− h̄2

v2

1

p2 +m2
I(0,m) +

1

2

h̄2

v2
I(0,m, p,m) (8.25)

The w-Propagator

Below we list the diagrams contributing to the connected w-propagator 〈w̃(p)w̃(−p)〉c.

=
h̄

p2 +m2

=
h̄2

v2
I(0,m, p,m) +

h̄2

v2

2p2

(p2 +m2)2
I(0,m)

= − h̄
2

v2

p2 + 1
2
m2

(p2 +m2)2
I(0,m)
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=
1

2

h̄2m2

v2

1

(p2 +m2)2
I(0,m)

= − h̄
2

v2

p2

(p2 +m2)2
I(0,m)

(8.26)

〈w̃(p)w̃(−p)〉c =
h̄

p2 +m2
+
h̄2

v2
I(0,m, p,m) (8.27)

Configuration-Space Green’s Functions

Knowing these η- and w-Green’s-functions we can write down the configuration space
Green’s functions needed in (8.21), up to order h̄2.

〈η(x)〉 =
1

2

h̄

v
I(0,m) +

1

8

h̄2

v3
I(0,m)2

〈w(x)〉 = 0

〈η(x)η(y)〉 =
1

(2π)d

∫

ddp eip·(x−y) 〈η̃(p)η̃(−p)〉c + 〈η(x)〉2

=
1

4

h̄2

v2
I(0,m)2 +

h̄

(2π)d

∫

ddp
eip·(x−y)

p2 +m2
+

− h̄
2

v2
I(0,m)

1

(2π)d

∫

ddp
eip·(x−y)

p2 +m2
+

1

2

h̄2

v2

1

(2π)d

∫

ddp eip·(x−y) I(0,m, p,m)

=
1

4

h̄2

v2
I(0,m)2 + h̄ Am(x− y) − h̄2

v2
I(0,m)Am(x− y) +

1

2

h̄2

v2
Am(x− y)2

〈w(x)w(y)〉 =
1

(2π)d

∫

ddp eip·(x−y) 〈w̃(p)w̃(−p)〉c

=
h̄

(2π)d

∫

ddp
eip·(x−y)

p2 +m2
+

h̄2

v2

1

(2π)d

∫

ddp eip·(x−y) I(0,m, p,m)

= h̄ Am(x− y) +
h̄2

v2
Am(x− y)2

〈η(x1)η(x2)η(x3)〉 = 〈η〉3 +

〈η〉 (〈η(x1)η(x2)〉c + 〈η(x1)η(x3)〉c + 〈η(x2)η(x3)〉c) +

〈η(x1)η(x2)η(x3)〉c

=
1

2

h̄2

v
I(0,m) (Am(x1 − x2) + Am(x1 − x3) + Am(x2 − x3))
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〈η(x1)η(x2)w(x3)〉 = 0

〈η(x1)w(x2)w(x3)〉 = 〈η〉〈w(x2)w(x3)〉c + 〈η(x1)w(x2)w(x3)〉c

=
1

2

h̄2

v
I(0,m)

1

(2π)d

∫

ddp
eip·(x2−x3)

p2 +m2
+

1

(2π)d

∫

ddk1 · · ·
1

(2π)d

∫

ddk3 e
i(k1·x1+...+k3·x3) ·

2k2 · k3 −m2

h̄v

h̄

k2
1 +m2

· · · h̄

k2
3 +m2

(2π)dδd(k1 + . . .+ k3)

=
1

2

h̄2

v
I(0,m)Am(x2 − x3) +

h̄2

v
Am(x1 − x2)Am(x1 − x3) +

− h̄
2

v
Am(x1 − x2)Am(x2 − x3) +

− h̄
2

v
Am(x1 − x3)Am(x2 − x3)

〈w(x1)w(x2)w(x3)〉 = 0

〈η(x1) · · · η(x4)〉 = 〈η〉4 +

〈η〉2
(

〈η(x1)η(x2)〉c + 〈η(x1)η(x3)〉c + 〈η(x1)η(x4)〉c +

〈η(x2)η(x3)〉c + 〈η(x2)η(x4)〉c + 〈η(x3)η(x4)〉c
)

+

〈η〉
(

〈η(x1)η(x2)η(x3)〉c + 〈η(x1)η(x2)η(x4)〉c +

〈η(x1)η(x3)η(x4)〉c + 〈η(x2)η(x3)η(x4)〉c
)

+

〈η(x1)η(x2)〉c〈η(x3)η(x4)〉c +

〈η(x1)η(x3)〉c〈η(x2)η(x4)〉c +

〈η(x1)η(x4)〉c〈η(x2)η(x3)〉c +

〈η(x1)η(x2)η(x3)η(x4)〉c
= h̄2 Am(x1 − x2)Am(x3 − x4) +

h̄2 Am(x1 − x3)Am(x2 − x4) +

h̄2 Am(x1 − x4)Am(x2 − x3)

〈η(x1) · · · η(x3)w(x4)〉 = 0

〈η(x1)η(x2)w(x3)w(x4)〉 = h̄2 Am(x1 − x2)Am(x3 − x4)

〈η(x1)w(x2) · · ·w(x4)〉 = 0

〈w(x1) · · ·w(x4)〉 = h̄2 Am(x1 − x2)Am(x3 − x4) +

h̄2 Am(x1 − x3)Am(x2 − x4) +

h̄2 Am(x1 − x4)Am(x2 − x3)

(8.28)



8.3. THE SHIFTED TOY MODEL 97

Now, substituting all these results in (8.21) gives us finally:

〈ϕ1(x)〉 = v

〈ϕ2(x)〉 = 0

〈ϕ1(x)ϕ1(y)〉 = v2 + h̄ Am(x− y)

〈ϕ2(x)ϕ2(y)〉 = h̄ Am(x− y)

〈ϕ1(x)ϕ2(y)〉 = 0 (8.29)

These are indeed the correct results for the Green’s functions. So the conjecture is verified
for several Green’s functions in the shifted toy model up to order h̄2.
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8.4 The Arctangent Toy Model

As another illustration of the conjecture we now consider the arctangent toy model. The
action of this model is:

S =

∫

dx

(

1

2
(∇ϕ1)

2 +
1

2
(∇ϕ2)

2 +
m2

4v2
(ϕ2

1 + ϕ2
2 − v2)2 +

m2v4

2(ϕ2
1 + ϕ2

2)
arctan2

(

ϕ2

ϕ1

))

(8.30)
This action has a single minimum at

ϕ1 = v , ϕ2 = 0 . (8.31)

We want to stress that this model is not at all a physical model. The action has an
infinite number of vertices (by expanding the arctangent), which means this model is not
renormalizable. We just want to use this model as a toy model to test the conjecture.
Especially because it is not renormalizable, so no big cancellations can be expected to
occur, the arctangent toy model is a very good test of the conjecture.

8.4.1 Cartesian Results

To find the Cartesian Green’s functions we expand the action around the minimum (8.31):

ϕ1(x) = v + η1(x) , ϕ2(x) = η2(x) . (8.32)

Notice that also the arctangent in the action has to be expanded, this term will give an
infinite number of vertices. Up to order h̄5/2 the Feynman rules are:

↔ h̄

k2 + µ2

↔ h̄

k2 +m2

↔ −1

h̄

6m2

v

↔ 1

h̄

2m2

v

↔ −1

h̄

6m2

v2

↔ −1

h̄

22m2

v2

↔ 1

h̄

14m2

v2
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↔ 1

h̄

120m2

v3

↔ −1

h̄

120m2

v3
(8.33)

Here the solid lines indicate the η1-particle, the dashed lines indicate the η2-particle and
µ is given by µ =

√
2m. (Notice that this is a different definition of µ than in the rest of

this thesis, this definition will only be used in calculations in the arctangent toy model.)
With these Feynman rules we can now compute some Green’s functions up to order h̄2.
We shall not present all diagrams here, since this Cartesian calculation is straightforward
and quite lengthy.

This time we will also get two-loop integrals in our expressions for the Green’s func-
tions. They don’t drop out in this case, as in they did in the shifted toy model, because
this model has a more complicated action.

Now the Green’s functions are, up to order h̄2:

〈ϕ1(x)〉 = v + 〈η1(x)〉

= v − 3

2

h̄

v
I(0, µ) +

1

2

h̄

v
I(0,m) +

−9

8

h̄2

v3
I(0, µ)2 − 85

8

h̄2

v3
I(0,m)2 +

99

4

h̄2

v3
I(0, µ)I(0,m) +

−9
h̄2m2

v3
I(0, µ, 0, µ)I(0, µ) + 4

h̄2m2

v3
I(0,m, 0,m)I(0,m) +

21
h̄2m2

v3
I(0, µ, 0, µ)I(0,m) − 7

h̄2m2

v3
I(0,m, 0,m)I(0, µ) +

−27
h̄2m4

v3
Bµµµ − 3

h̄2m4

v3
Bµmm + 2

h̄2m4

v3
Bmµm +

3
h̄2m2

v3
Dµµµ − 11

h̄2m2

v3
Dmmµ

〈ϕ2(x)〉 = 〈η2(x)〉 = 0

〈ϕ1(x)ϕ1(y)〉 = v2 + 2v〈η1(x)〉 + 〈η1(x)η1(y)〉
= v2 − 3h̄ I(0, µ) + h̄ I(0,m) + h̄ Aµ(x− y) +

−21
h̄2

v2
I(0,m)2 + 48

h̄2

v2
I(0, µ)I(0,m) − 18

h̄2m2

v2
I(0, µ, 0, µ)I(0, µ) +

8
h̄2m2

v2
I(0,m, 0,m)I(0,m) + 42

h̄2m2

v2
I(0, µ, 0, µ)I(0,m) +

−14
h̄2m2

v2
I(0,m, 0,m)I(0, µ) − 54

h̄2m4

v2
Bµµµ − 6

h̄2m4

v2
Bµmm +

4
h̄2m4

v2
Bmµm + 6

h̄2m2

v2
Dµµµ − 22

h̄2m2

v2
Dmmµ +

6
h̄2m2

v2
I(0, µ)Cµµ(x− y) − 14

h̄2m2

v2
I(0,m)Cµµ(x− y) +
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18
h̄2m4

v2
Bµµµ(x− y) + 2

h̄2m4

v2
Bµmm(x− y)

〈ϕ2(x)ϕ2(y)〉 = 〈η2(x)η2(y)〉
= h̄ Am(x− y) +

−14
h̄2m2

v2
I(0, µ)Cmm(x− y) + 8

h̄2m2

v2
I(0,m)Cmm(x− y) +

4
h̄2m4

v2
Bmmµ(x− y)

〈ϕ1(x)ϕ2(y)〉 = v〈η2(y)〉 + 〈η1(x)η2(y)〉 = 0 (8.34)

8.4.2 Polar Results

According to the conjecture we can just transform the continuum action (8.30) to an
action in terms of the polar field variables to obtain the Feynman rules for the polar
calculation. So the action becomes:

S =

∫

ddx

(

1

2
(∇r)2 +

1

2

r2

v2
(∇w)2 +

m2

4v2
(r2 − v2)2 +

1

2
m2v2w

2

r2

)

(8.35)

This can be expanded around r = v again. Defining

r(x) ≡ v + η(x) , (8.36)

we find the following Feynman rules for the η- and w-field (up to order h̄5/2). The vertices
from the Jacobian are exactly the same as in the shifted toy model.

↔ h̄

k2 + µ2

↔ h̄

k2 +m2

↔ −1

h̄

6m2

v

k1

k2

↔ 2

h̄v
k1 · k2 +

1

h̄

2m2

v

↔ −1

h̄

6m2

v2

k1

k2

↔ 2

h̄v2
k1 · k2 −

1

h̄

6m2

v2

↔ 1

h̄

24m2

v3
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↔ 1

v
I

↔ − 1

v2
I

↔ 2

v3
I (8.37)

Here the solid lines denote the η-field, the dashed lines denote the w-field and all momenta
are counted into the vertex. Also we have defined µ =

√
2m again, as in the Cartesian

calculation. (Note that this is a different definition of µ than in the rest of this thesis.)

Now we can again compute the η- and w-Green’s-functions up to order h̄2.

The η-Tadpole

Below we list the diagrams contributing to the η-tadpole up to order h̄2.

= −3

2

h̄

v
I(0, µ)

= −1

2

h̄

m2v
I +

h̄

v
I(0,m)

=
1

2

h̄

m2v
I

= −3

4

h̄2

v3
I(0,m)2 +

3

2

h̄2

v3
I(0, µ)I(0,m) +

−9
h̄2m2

v3
I(0, µ, 0, µ)I(0, µ) +

21
h̄2m2

v3
I(0, µ, 0, µ)I(0,m) +

−27
h̄2m4

v3
Bµµµ − 3

h̄2m4

v3
Bµmm − 3

h̄2m2

v3
Dmmµ

=
h̄2

m2v3
I(0,m) I − 3

h̄2

m2v3
I(0, µ) I − 7

h̄2

v3
I(0,m)2 +
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16
h̄2

v3
I(0, µ)I(0,m) + 8

h̄2m2

v3
I(0,m, 0,m)I(0,m) +

−14
h̄2m2

v3
I(0,m, 0,m)I(0, µ) +

4
h̄2m4

v3
Bmµm − 6

h̄2m2

v3
Dmmµ

=
9

4

h̄2

v3
I(0, µ)2 − 3

2

h̄2

v3
I(0, µ)I(0,m)

= −1

2

h̄2

m2v3
I(0,m) I +

3

4

h̄2

m2v3
I(0, µ) I +

− h̄
2

v3
I(0,m)2 +

3

2

h̄2

v3
I(0, µ)I(0,m)

= −1

2

h̄2

m2v3
I(0,m) I +

3

4

h̄2

m2v3
I(0, µ) I

= −27

8

h̄2

v3
I(0, µ)2 − 3

2

h̄2

v3
I(0,m)2 +

9

2

h̄2

v3
I(0, µ)I(0,m)

= 3
h̄2m2

v3
Dµµµ

=
h̄2

m2v3
I(0, µ) I − h̄2

v3
I(0,m)2 +

h̄2

v3
I(0, µ)I(0,m) +

−3
h̄2m2

v3
Dmmµ

= 3
h̄2

v3
I(0, µ)I(0,m)

=
1

2

h̄2

m2v3
I(0, µ) I (8.38)
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The complete result for the η-tadpole is finally:

〈η̃〉 = −3

2

h̄

v
I(0, µ) +

h̄

v
I(0,m) +

−9

8

h̄2

v3
I(0, µ)2 − 45

4

h̄2

v3
I(0,m)2 + 26

h̄2

v3
I(0, µ)I(0,m) +

−9
h̄2m2

v3
I(0, µ, 0, µ)I(0, µ) + 8

h̄2m2

v3
I(0,m, 0,m)I(0,m) +

21
h̄2m2

v3
I(0, µ, 0, µ)I(0,m) − 14

h̄2m2

v3
I(0,m, 0,m)I(0, µ) +

−27
h̄2m4

v3
Bµµµ − 3

h̄2m4

v3
Bµmm + 4

h̄2m4

v3
Bmµm +

3
h̄2m2

v3
Dµµµ − 12

h̄2m2

v3
Dmmµ (8.39)

The η-Propagator

The diagrams for the momentum-space η-propagator are:

=
h̄

p2 + µ2

= 18
h̄2m4

v2

1

(p2 + µ2)2
I(0, µ, p, µ)

= 2
h̄2

v2

1

(p2 + µ2)2
I − 6

h̄2m2

v2

1

(p2 + µ2)2
I(0,m) +

− h̄
2

v2

1

p2 + µ2
I(0,m) + 2

h̄2m2

v2

1

p2 + µ2
I(0,m, p,m) +

1

2

h̄2

v2
I(0,m, p,m) + 2

h̄2m4

v2

1

(p2 + µ2)2
I(0,m, p,m)

= −3
h̄2m2

v2

1

(p2 + µ2)2
I(0, µ)

= − h̄
2

v2

1

(p2 + µ2)2
I − 2

h̄2m2

v2

1

(p2 + µ2)2
I(0,m)

= 9
h̄2m2

v2

1

(p2 + µ2)2
I(0, µ) − 6

h̄2m2

v2

1

(p2 + µ2)2
I(0,m)

= − h̄
2

v2

1

(p2 + µ2)2
I (8.40)
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For the connected η-propagator we get:

〈η̃(p)η̃(−p)〉c =
h̄

p2 + µ2
+ 6

h̄2m2

v2

1

(p2 + µ2)2
I(0, µ) − 14

h̄2m2

v2

1

(p2 + µ2)2
I(0,m) +

− h̄
2

v2

1

p2 + µ2
I(0,m) + 18

h̄2m4

v2

1

(p2 + µ2)2
I(0, µ, p, µ) +

2
h̄2m4

v2

1

(p2 + µ2)2
I(0,m, p,m) + 2

h̄2m2

v2

1

p2 + µ2
I(0,m, p,m) +

1

2

h̄2

v2
I(0,m, p,m)

(8.41)

The w-Propagator

The diagrams contributing to the w-propagator up to order h̄2 are:

=
h̄

p2 +m2

= − h̄
2

v2

1

p2 +m2
I(0,m) + 4

h̄2m2

v2

1

(p2 +m2)2
I(0,m) +

3
h̄2

v2

1

p2 +m2
I(0, µ) − 6

h̄2m2

v2

1

(p2 +m2)2
I(0, µ) +

4
h̄2m4

v2

1

(p2 +m2)2
I(0, µ, p,m) − 4

h̄2m2

v2

1

p2 +m2
I(0, µ, p,m) +

h̄2

v2
I(0, µ, p,m)

= −2
h̄2

v2

1

p2 +m2
I(0,m) + 4

h̄2m2

v2

1

(p2 +m2)2
I(0,m) +

3
h̄2

v2

1

p2 +m2
I(0, µ) − 6

h̄2m2

v2

1

(p2 +m2)2
I(0, µ)

= − h̄
2

v2

1

p2 +m2
I(0, µ) − 2

h̄2m2

v2

1

(p2 +m2)2
I(0, µ)

(8.42)
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〈w̃(p)w̃(−p)〉c =
h̄

p2 +m2
+ 8

h̄2m2

v2

1

(p2 +m2)2
I(0,m) − 3

h̄2

v2

1

p2 +m2
I(0,m)

−14
h̄2m2

v2

1

(p2 +m2)2
I(0, µ) + 5

h̄2

v2

1

p2 +m2
I(0, µ) +

h̄2

v2
I(0, µ, p,m)

−4
h̄2m2

v2

1

p2 +m2
I(0, µ, p,m) + 4

h̄2m4

v2

1

(p2 +m2)2
I(0, µ, p,m)

(8.43)

Configuration-Space Green’s Functions

To compute the Cartesian ϕ1- and ϕ2-Green’s-functions we can again use the expan-
sions (8.21), since these expansions are model independent. First we have to find the
configuration-space η- and w-Green’s functions however.

〈η(x)〉 = −3

2

h̄

v
I(0, µ) +

h̄

v
I(0,m) +

−9

8

h̄2

v3
I(0, µ)2 − 45

4

h̄2

v3
I(0,m)2 + 26

h̄2

v3
I(0, µ)I(0,m) +

−9
h̄2m2

v3
I(0, µ, 0, µ)I(0, µ) +

8
h̄2m2

v3
I(0,m, 0,m)I(0,m) +

21
h̄2m2

v3
I(0, µ, 0, µ)I(0,m) +

−14
h̄2m2

v3
I(0,m, 0,m)I(0, µ) +

−27
h̄2m4

v3
Bµµµ − 3

h̄2m4

v3
Bµmm + 4

h̄2m4

v3
Bmµm +

3
h̄2m2

v3
Dµµµ − 12

h̄2m2

v3
Dmmµ

〈w(x)〉 = 0

〈η(x)η(y)〉 =
1

(2π)d

∫

ddp eip·(x−y) 〈η̃(p)η̃(−p)〉c + 〈η(x)〉2

=
9

4

h̄2

v2
I(0, µ)2 +

h̄2

v2
I(0,m)2 − 3

h̄2

v2
I(0, µ)I(0,m) +

h̄ Am(x− y) +

− h̄
2

v2
I(0,m)Aµ(x− y) − 14

h̄2m2

v2
I(0,m)Cµµ(x− y) +

6
h̄2m2

v2
I(0, µ)Cµµ(x− y) +

1

2

h̄2

v2
Am(x− y)2 +

2
h̄2m2

v2
Dµmm(x− y) + 2

h̄2m4

v2
Bµmm(x− y) +

18
h̄2m4

v2
Bµµµ(x− y)

〈w(x)w(y)〉 =
1

(2π)d

∫

ddp eip·(x−y) 〈w̃(p)w̃(−p)〉c
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= h̄ Am(x− y) +

−3
h̄2

v2
I(0,m)Am(x− y) + 5

h̄2

v2
I(0, µ)Am(x− y) +

8
h̄2m2

v2
I(0,m)Cmm(x− y) +

−14
h̄2m2

v2
I(0, µ)Cmm(x− y) +

h̄2

v2
Aµ(x− y)Am(x− y) − 4

h̄2m2

v2
Dmµm(x− y) +

4
h̄2m4

v2
Bmµm(x− y)

〈η(x1)η(x2)w(x3)〉 = 0

〈η(x1)w(x2)w(x3)〉 = 〈η〉〈w(x2)w(x3)〉c + 〈η(x1)w(x2)w(x3)〉c

=
h̄2

v
I(0,m)

1

(2π)d

∫

ddp
eip·(x2−x3)

p2 +m2
+

−3

2

h̄2

v
I(0, µ)

1

(2π)d

∫

ddp
eip·(x2−x3)

p2 +m2
+

1

(2π)d

∫

ddk1 · · ·
1

(2π)d

∫

ddk3 e
i(k1·x1+...+k3·x3) ·

2k2 · k3 + 2m2

h̄v

h̄

k2
1 + µ2

h̄

k2
2 +m2

h̄

k2
3 +m2

·

(2π)dδd(k1 + . . .+ k3)

=
h̄2

v
I(0,m)Am(x2 − x3) −

3

2

h̄2

v
I(0, µ)Am(x2 − x3) +

h̄2

v
Am(x1 − x2)Am(x1 − x3) +

− h̄
2

v
Am(x1 − x2)Am(x2 − x3) +

− h̄
2

v
Am(x1 − x3)Am(x2 − x3) +

2
h̄2m2

v

1

(2π)2d

∫

ddkddl
eik·(x1−x2)

k2 +m2

eil·(x1−x3)

l2 +m2

1

(k + l)2 + µ2

〈w(x1)w(x2)w(x3)〉 = 0

〈η(x1)η(x2)w(x3)w(x4)〉 = h̄2 Aµ(x1 − x2)Am(x3 − x4)

〈η(x1)w(x2)w(x3)w(x4)〉 = 0

〈w(x1)w(x2)w(x3)w(x4)〉 = h̄2 Am(x1 − x2)Am(x3 − x4) +

h̄2 Am(x1 − x3)Am(x2 − x4) +

h̄2 Am(x1 − x4)Am(x2 − x3)

(8.44)

Now these results can be substituted in (8.21). Doing this one finds again the results
(8.34). So also in case of the arctangent toy model the conjecture is verified for several
Green’s functions up to order h̄2.
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8.5 Proof of the Conjecture

In the last two sections evidence for the truth of the conjecture has accumulated. In this
section we shall prove this conjecture for a general model in d space-time dimensions. A
general action (in terms of normal, Cartesian fields) for a d-dimensional model with two
fields is given by:

S =

∫

ddx

(

1

2
(∇ϕ1)

2 +
1

2
(∇ϕ2)

2 + V (ϕ1, ϕ2)

)

. (8.45)

Our proof will be based on the fact that the transformation to polar field variables
actually has to be performed in the path integral on the lattice, i.e. in the path integral
formulated in a discrete way. After transforming to polar fields one gets a path integral in
terms of polar fields formulated on a lattice. This path integral gives a (complicated) set of
Feynman rules, and diagrams actually have to be calculated with space-time still discrete.
Only in the end result for the Green’s function one should then take the continuum limit,
i.e. ∆ → 0.

Now a d-dimensional continuum calculation is correct if one can see that all the steps
one performs there to calculate a diagram correspond to a similar step in a discrete
calculation. In a continuum calculation one performs the following three steps when
calculating any diagram:

1. One writes momentum-dependent factors from the vertices in terms of the denom-
inators of propagators, such that one can let them cancel. For example:

k · l =
1

2
((k + l)2 +m2) − 1

2
(k2 +m2) − 1

2
(l2 +m2) +

1

2
m2 . (8.46)

2. One shifts momenta, for example:

∫

ddk
k2 +m2

(k + l)2 +m2
=

∫

ddk
(k − l)2 +m2

k2 +m2
. (8.47)

3. When there is momentum dependence left in the numerator, which cannot cancel
anything in the denominator anymore, one uses

∫

ddk
ki

k2 +m2
= 0 . (8.48)

For example:

∫

ddk

∫

ddl
(k − l)2 +m2

(k2 +m2)(l2 +m2)

=

∫

ddk

∫

ddl
(k2 +m2) + (l2 +m2) −m2

(k2 +m2)(l2 +m2)

=

∫

ddk

∫

ddl

(

1

l2 +m2
+

1

k2 +m2
− m2

(k2 +m2)(l2 +m2)

)

(8.49)

If we can somehow see that these steps are also valid in a discrete calculation, then we
have proven the conjecture. For then we know that every operation one performs in
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the d-dimensional continuum calculation corresponds to a valid operation in a discrete
calculation, even though one writes down these steps in a continuum formalism.

Because we need the path integral on a lattice we define discrete space-time variables
i as:

x ≡ (−L/2 + ∆i1,−L/2 + ∆i2, . . . ,−L/2 + ∆id) , i = 0, . . . , N − 1 ,∆N = L (8.50)

Notice that we have limited the space-time domain (each direction goes from −L/2 to
L/2) and we have made this domain discrete (in every direction there are N lattice sites).
The fields on the discrete lattice are denoted by:

ϕ1 i1,...,id ≡ ϕ1(x)

ϕ2 i1,...,id ≡ ϕ2(x) (8.51)

For these fields we shall assume periodic boundary conditions in all directions. For the
1-direction this means:

ϕ1 N,i2,...,id = ϕ1 0,i2,...,id

ϕ2 N,i2,...,id = ϕ2 0,i2,...,id (8.52)

The action (8.45), formulated on this lattice, is:

S = ∆d

N−1
∑

i1,...,id=0

(

1

2

1

∆2
(ϕ1 i1+1,i2,...,id − ϕ1 i1,i2,...,id)

2 + . . .+

1

2

1

∆2

(

ϕ1 i1,...,id−1,id+1 − ϕ1 i1,...,id−1,id

)2
+

1

2

1

∆2
(ϕ2 i1+1,i2,...,id − ϕ2 i1,i2,...,id)

2 + . . .+

1

2

1

∆2

(

ϕ2 i1,...,id−1,id+1 − ϕ2 i1,...,id−1,id

)2
+

V (ϕ1 i1,...,id , ϕ2 i1,...,id)

)

(8.53)

Now we may transform to polar field variables, since now the path integral is properly
defined, it has become merely a 2Nd-dimensional integral. The transformation goes as
follows:

ϕ1 i1,...,id = ri1,...,id cos
(wi1,...,id

v

)

ϕ2 i1,...,id = ri1,...,id sin
(wi1,...,id

v

)

(8.54)

This can be substituted in the action above. To keep things readable we define the
shorthand notations:

i ≡ i1, . . . , id

∇ri1,...,id ≡
(

1

∆
(ri1+1,i2,...,id − ri1,i2,...,id) , . . . ,

1

∆

(

ri1,...,id−1,id+1 − ri1,...,id−1,id

)

)

(8.55)



8.5. PROOF OF THE CONJECTURE 109

The action becomes:

S = ∆d

N−1
∑

i1,...,id=0

(

1

2
(∇ri)2 +

1

∆2
r2
i

((

1 − cos
∆∇1wi
v

)

+ . . .+

(

1 − cos
∆∇dwi
v

))

+

1

∆
ri∇1ri

(

1 − cos
∆∇1wi
v

)

+ . . .+
1

∆
ri∇dri

(

1 − cos
∆∇dwi
v

)

+

V
(

ri cos
wi
v
, ri sin

wi
v

)

)

(8.56)

Now we will expand the cosines in the first two lines. Also we will assume that
the potential is such that the minimum of the complete action is at v, where v is some
nonzero constant (the same v that divides w in the cosine). This assumption is necessary
to avoid difficulties with the singularity at r = 0 in the transformation (8.54). Because
the minimum of the action is at r = v we also expand the action around this value:

ri = v + ηi . (8.57)

The final form of the discrete action is:

S = ∆d

N−1
∑

i1,...,id=0

(

1

2
(∇ηi)2 +

1

2
(∇wi)2

−
∞
∑

n=2

(−1)n

(2n)!

∆2n−2

v2n−2

(

(∇1wi)
2n + . . .+ (∇dwi)

2n)

− 2
∞
∑

n=1

(−1)n

(2n)!

∆2n−2

v2n−2

(

ηi (∇1wi)
2n + . . .+ ηi (∇dwi)

2n)

−
∞
∑

n=1

(−1)n

(2n)!

∆2n−2

v2n−2

(

(∇1ηi) (∇1wi)
2n + . . .+ (∇dηi) (∇dwi)

2n)

−
∞
∑

n=1

(−1)n

(2n)!

∆2n−2

v2n−2

(

η2
i (∇1wi)

2n + . . .+ η2
i (∇dwi)

2n)

−
∞
∑

n=1

(−1)n

(2n)!

∆2n−2

v2n−2

(

ηi (∇1ηi) (∇1wi)
2n + . . .+ ηi (∇dηi) (∇dwi)

2n)

+ V
(

(v + ηi) cos
wi
v
, (v + ηi) sin

wi
v

)

)

(8.58)

Note that this expression is still exact, as long as we keep all the terms in the sums
coming from expanding the cosines. Our complete discrete path integral P (defined in
(8.2)), formulated in terms of the polar fields, now looks like:

P =

∫ ∞

−v

(

N−1
∏

i=0

(v + ηi)dηi

)

∫ vπ

−vπ

(

N−1
∏

i=0

dwi

)

O exp

(

−1

h̄
S

)

, (8.59)

where the action S is given by (8.58), O is some product of the ϕ-fields:

O ≡ (v + ηj1) cos
wj1
v

· · · (v + ηjm) cos
wjm
v

·(v + ηk1) sin
wk1
v

· · · (v + ηkn
) sin

wkn

v
, (8.60)
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and i still is a shorthand notation for i1, . . . , id. Here j1, . . . , jm and k1, . . . , kn are discrete
space-time coordinates. (By j1 we actually mean j1 1, . . . , j1 d, as in (8.55).)

The product
N−1
∏

i=0

(v + ηi) =
N−1
∏

i=0

ri (8.61)

is the Jacobian from the transformation to polar fields. This Jacobian factor can be
recast in the following form:

(

N−1
∏

i=0

(v + ηi)

)

= exp

(

N−1
∑

i=0

ln(v + ηi)

)

(8.62)

Also the domain of integration for the w-fields can be extended from [−vπ, vπ] to
〈−∞,∞〉, because the whole integrand is periodic in the w-fields. Finally we can also
extend the lower integration boundary for the η-fields from −v to −∞, this shift will
only have non-perturbative effects.

So we have brought our path integral to the form

P =

∫ ∞

−∞

(

N−1
∏

i=0

dηi

)

∫ ∞

−∞

(

N−1
∏

i=0

dwi

)

O exp

(

−1

h̄
S +

N−1
∑

i=0

ln(v + ηi)

)

. (8.63)

This is a normal path integral on a lattice, in the sense that it has the same form of
a path integral in terms of Cartesian fields. Such a path integral we can calculate in
the ordinary way, with perturbation theory. The action of this path integral does have
an infinite number of vertices however, because the discrete action (8.58) has an infinite
number of interaction terms and also because the expansion of the logarithm coming from
the Jacobian has an infinite number of terms. But it is still an exact expression, because
we keep all terms.

Now we have to write down the (discrete) Feynman rules for the action we have
found. To write down the momentum-space Feynman rules we must first transform the
configuration-space fields η and w to momentum-space fields η̃ and w̃. In the continuum
such a transformation is given by:

η̃(k) =

∫

ddx η(x) eik·x , (8.64)

and similar for the w̃-field. The discrete analogue of this formula is:

η̃k1,...,kd
= ∆d

N−1
∑

i1,...,id=0

ηi1,...,id exp

(

2πi

L
(k1(∆i1 − L/2) + . . .+ kd(∆id − L/2))

)

, (8.65)

where we have used that the continuous momentum is related to the discrete momentum
as

kcont =
2πkdiscr

L
. (8.66)

The inverse transformation of (8.65) is

ηi1,...,id =
1

Ld

N/2−1
∑

k1,...,kd=−N/2
η̃k1,...,kd

exp

(

−2πi

L
(k1(∆i1 − L/2) + . . .+ kd(∆id − L/2))

)

,

(8.67)
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and similar for the w-field. To see that this is indeed the inverse transformation of (8.65)
one can use the identity

1

Nd

N−1
∑

i1,...,id=0

exp

(

2πi

N
(k1i1 + . . .+ kdid)

)

= δk1,0 mod N · · · δkd,0 mod N . (8.68)

From the relation (8.66) we can see that when we take L→ ∞ the momenta become
a continuous set. Their domain is still finite however. Because the discrete momenta are
between −N/2 and N/2 − 1, the continuous momenta are in the domain

kcont ∈
〈

− π

∆
,
π

∆

〉

. (8.69)

The finiteness of this domain reflects the discreteness of space-time. From now on we
shall understand that we have taken the limit L→ ∞, such that all sums over momenta
become integrals. But of course ∆ is still finite.

By using (8.67), in the limit L→ ∞, we can now express the discrete action (8.58) in
terms of the momentum-space fields η̃ and w̃. From this action one can then read of the
discrete, momentum-space Feynman rules. Notice that we did not specify the potential
V , so we will not include the Feynman rules coming from this part of the action. This
potential V will also determine the masses for the η- and w-field. We shall keep these
masses general, the upcoming proof for the conjecture will not depend on the explicit
form of the potential V and the masses. In the Feynman rules below we will neither
include the Feynman rules from the Jacobian, the proof of the conjecture will also not
depend on the exact form of these vertices.

The discrete, momentum-space Feynman rules are then:

↔ h̄
2d
∆2 − 2

∆2 cos ∆k1 − . . .− 2
∆2 cos ∆kd +m2

η

↔ h̄
2d
∆2 − 2

∆2 cos ∆k1 − . . .− 2
∆2 cos ∆kd +m2

w

p k(1)

k(2)
↔ − 1

h̄v

1

∆2

[

(

e−i∆p1 + 1
)

(

e−i∆k
(1)
1 − 1

)(

e−i∆k
(2)
1 − 1

)

+ . . .+

(

e−i∆pd + 1
)

(

e−i∆k
(1)
d − 1

)(

e−i∆k
(2)
d − 1

)

]

...

p

k(1)

k(2n)

↔ (−1)n

h̄v2n−1

1

∆2

[

(

e−i∆p1 + 1
)

(

e−i∆k
(1)
1 − 1

)

· · ·
(

e−i∆k
(2n)
1 − 1

)

+ . . .+

(

e−i∆pd + 1
)

(

e−i∆k
(1)
d − 1

)

· · ·
(

e−i∆k
(2n)
d − 1

)

]
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...

p

q

k(1)

k(2)
↔ − 1

h̄v2

1

∆2

[

(

e−i∆p1 + e−i∆q1
)

(

e−i∆k
(1)
1 − 1

)(

e−i∆k
(2)
1 − 1

)

+ . . .+

(

e−i∆pd + e−i∆qd
)

(

e−i∆k
(1)
d − 1

)(

e−i∆k
(2)
d − 1

)

]

...

p

q

k(1)

k(2n)

↔ (−1)n

h̄v2n

1

∆2

[

(

e−i∆p1 + e−i∆q1
)

(

e−i∆k
(1)
1 − 1

)

· · ·
(

e−i∆k
(2n)
1 − 1

)

+ . . .+

(

e−i∆pd + e−i∆qd
)

(

e−i∆k
(1)
d − 1

)

· · ·
(

e−i∆k
(2n)
d − 1

)

]

...

k(1)

k(2)

k(3)

k(4)
↔ 1

h̄v2

1

∆2

[

(

e−i∆k
(1)
1 − 1

)

· · ·
(

e−i∆k
(4)
1 − 1

)

+ . . .+

(

e−i∆k
(1)
d − 1

)

· · ·
(

e−i∆k
(4)
d − 1

)

]

...

k(1)

k(2n)

↔ (−1)n

h̄v2n−2

1

∆2

[

(

e−i∆k
(1)
1 − 1

)

· · ·
(

e−i∆k
(2n)
1 − 1

)

+ . . .+

(

e−i∆k
(1)
d − 1

)

· · ·
(

e−i∆k
(2n)
d − 1

)

]

... (8.70)

Here all the (continuum) momenta are counted incoming. Together with these Feynman
rules for the propagator and the vertices we have the rule that every internal momentum
should be integrated over from −π/∆ to π/∆.

Now all these vertices can be written in a more convenient form. By combining all the
complex exponentials (i.e. writing out all products) and using momentum conservation
at the vertex one will notice that for each exponential also its complex conjugate occurs.
They can be combined into a cosine, the same cosine that occurs in the discrete propaga-
tor. In this way we can write the vertex expressions above in terms of the denominator
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of the propagator. As a shorthand notation we denote the denominators by Πk and Π̄k:

Πk ≡ 2d

∆2
− 2

∆2
cos

2πk1

N
− . . .− 2

∆2
cos

2πkd
N

+m2
w

Π̄k ≡ 2d

∆2
− 2

∆2
cos

2πk1

N
− . . .− 2

∆2
cos

2πkd
N

+m2
η (8.71)

To write the vertices into this more convenient form we also have to define an operator
P . We denote the set consisting of the jth components of the momenta k(1), . . . , k(2n) by
{kj}:

{kj} ≡ {k(1)
j , k

(2)
j , . . . , k

(2n)
j } . (8.72)

Then the operator Pi working on {kj} returns the sum of i momenta chosen from the set
{kj}. There are

(

2n
i

)

ways to choose i momenta from a set of 2n momenta, so there are

also
(

2n
i

)

different operators Pi. For example:

P2{kj} = k
(1)
j + k

(2)
j . (8.73)

With these notations we can write the vertex expressions as follows.

p k(1)

k(2)
↔ − 1

h̄v

(

Πk(1) + Πk(2) − Π̄p − 2m2
w +m2

η

)

...

p

k(1)

k(2n)

↔ (−1)n

h̄v2n−1

(

− Π̄p +
∑

P1

ΠP1{k} +
∑

P1

Πp+P1{k} +

−
∑

P2

Π̄P2{k} −
∑

P2

Π̄p+P2{k} + . . .+

(−1)n
∑

Pn−1

ΠPn−1{k} + (−1)n
∑

Pn−1

Πp+Pn−1{k} +

1

2
(−1)n+1

∑

Pn

Π̄Pn{k} +
1

2
(−1)n+1

∑

Pn

Π̄p+Pn{k} +

− 22n−1m2
w −

(

1 − 22n−1
)

m2
η

)

...

p

q

k(1)

k(2)
↔ − 1

h̄v2

(

− Π̄p − Π̄q +

1

2
Πp+k(1) +

1

2
Πp+k(2) +

1

2
Πq+k(1) +

1

2
Πq+k(2) +

− 2m2
w + 2m2

η

)
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...

p

q

k(1)

k(2n)

↔ (−1)n

h̄v2n

(

− Π̄p − Π̄q +
∑

P1

Πp+P1{k} +
∑

P1

Πq+P1{k} +

−
∑

P2

Π̄p+P2{k} −
∑

P2

Π̄q+P2{k} + . . .+

(−1)n
∑

Pn−1

Πp+Pn−1{k} + (−1)n
∑

Pn−1

Πq+Pn−1{k} +

1

2
(−1)n+1

∑

Pn

Π̄p+Pn{k} +
1

2
(−1)n+1

∑

Pn

Π̄q+Pn{k} +

− 22n−1m2
w + 22n−1m2

η

)

...

k(1)

k(2)

k(3)

k(4)
↔ 1

h̄v2

(

Πk(1) + Πk(2) + Πk(3) + Πk(4) +

− 1

2
Π̄k(1)+k(2) − 1

2
Π̄k(1)+k(3) − 1

2
Π̄k(1)+k(4) +

− 1

2
Π̄k(2)+k(3) − 1

2
Π̄k(2)+k(4) − 1

2
Π̄k(3)+k(4) − 4m2

w + 3m2
η

)

...

k(1)

k(2n)

↔ (−1)n

h̄v2n−2

(

∑

P1

ΠP1{k} −
∑

P2

Π̄P2{k} + . . .+

(−1)n
∑

Pn−1

ΠPn−1{k} +
1

2
(−1)n+1

∑

Pn

Π̄Pn{k} +

− 22n−2m2
w −

(

1 − 22n−2
)

m2
η

)

... (8.74)

Notice that the bars are always placed on the terms with an operator Pi with i even.
For the sake of the argument it is convenient to place these bars in this way. Whether or
not a bar is placed on the last term, with Pn, thus depends on n, whether n is even or
odd. Above the bars are placed as if n were even, but it should be clear how they should
be placed when n is odd.

Now notice that these vertex rules look identical to the rules one would use when doing
a d-dimensional continuum calculation. For example, in the continuum the 3-vertex would
be:
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p k(1)

k(2)
↔ 2

h̄v
k(1) · k(2) (8.75)

To simplify the dot-product in a d-dimensional calculation one would write it as

2

h̄v
k(1) · k(2) = − 1

h̄v

(

(

(

k(1)
)2

+m2
w

)

+
(

(

k(2)
)2

+m2
w

)

+

−
(

(

k(1) + k(2)
)2

+m2
η

)

− 2m2
w +m2

η

)

, (8.76)

which corresponds exactly to the discrete vertex expression given in (8.74) for the 3-
vertex. So when one uses the continuum rules to rewrite dot-products of momenta, as in
the 3-vertex example above, one is actually doing a correct calculation, although one is
doing a continuum calculation.

Another rule that one uses in a continuum calculation is that it is allowed to shift the
loop momenta. Also in a discrete calculation this is allowed, because of the periodicity
of the discrete propagators and vertex expressions.

What then goes wrong in a continuum calculation? There is one more rule that one
uses in a continuum calculation that we have not mentioned up to now. This rule is:

1

2π

∫

ddk
ki

k2 +m2
= 0 . (8.77)

This rule, however, is not correct in a discrete calculation. For example, in dimension 1,
we have to realize that by k and k2 +m2 we actually mean:

k ↔ i

∆

(

e−i∆k − 1
)

k2 +m2 ↔ 2

∆2
− 2

∆2
cos(∆k) +m2 (8.78)

So by the integral above we actually mean:

1

2π

∫

dk
k

k2 +m2
↔ 1

2π

∫ π/∆

−π/∆
dk

i
∆

(

e−i∆k − 1
)

2
∆2 − 2

∆2 cos(∆k) +m2
= −1

2
i+ O(∆) (8.79)

This shows that the rule (8.77) is not correct to use. The only instances that one would
use the rule (8.77) is when a Π (or Π̄) is left in the numerator, and cannot cancel anything
in the denominator anymore.

Below we shall show that all such terms, where a Π (or Π̄) remains in the numerator,
cancel when one adds all diagrams for a certain Green’s function. To this end it is
convenient to split up the vertices in (8.74) as follows:

p

k(1)

k(2n)

↔ (−1)n

h̄v2n−1

(

−Π̄p

)

p

k(1)

k(2n)

↔ (−1)n

h̄v2n−1
Πk(1)
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...

p

k(1)

k(2n)

↔ (−1)n

h̄v2n−1
Πk(2n)

p

k(1)

k(2n)

↔ (−1)n

h̄v2n−1

(

∑

P1

Πp+P1{k} −
∑

P2

Π̄P2{k} −
∑

P2

Π̄p+P2{k} + . . .+

(−1)n
∑

Pn−1

ΠPn−1{k} + (−1)n
∑

Pn−1

Πp+Pn−1{k} +

1

2
(−1)n+1

∑

Pn

Π̄Pn{k} +
1

2
(−1)n+1

∑

Pn

Π̄p+Pn{k}

)

p

k(1)

k(2n)

↔ (−1)n

h̄v2n−1

(

−22n−1m2
w −

(

1 − 22n−1
)

m2
η

)

...

p

q

k(1)

k(2n)

↔ (−1)n

h̄v2n

(

−Π̄p

)

p

q

k(1)

k(2n)

↔ (−1)n

h̄v2n

(

−Π̄q

)

p

q

k(1)

k(2n)

↔ (−1)n

h̄v2n

(

∑

P1

Πp+P1{k} +
∑

P1

Πq+P1{k} +

−
∑

P2

Π̄p+P2{k} −
∑

P2

Π̄q+P2{k} + . . .+

(−1)n
∑

Pn−1

Πp+Pn−1{k} + (−1)n
∑

Pn−1

Πq+Pn−1{k} +

1

2
(−1)n+1

∑

Pn

Π̄p+Pn{k} +
1

2
(−1)n+1

∑

Pn

Π̄q+Pn{k}

)

p

q

k(1)

k(2n)

↔ (−1)n

h̄v2n

(

−22n−1m2
w + 22n−1m2

η

)
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...

k(1)

k(2n)

↔ (−1)n

h̄v2n−2
Πk(1)

k(1)

k(2n)

↔ (−1)n

h̄v2n−2
Πk(2n)

k(1)

k(2n)

↔ (−1)n

h̄v2n−2

(

−
∑

P2

Π̄P2{k} + . . .+

(−1)n
∑

Pn−1

ΠPn−1{k} +
1

2
(−1)n+1

∑

Pn

Π̄Pn{k}

)

k(1)

k(2n)

↔ (−1)n

h̄v2n−2

(

−22n−2m2
w −

(

1 − 22n−2
)

m2
η

)

... (8.80)

Having written the vertices in this form it is clear where the problem terms in a certain
diagram come from. They come from a vertex with a dot in the center or two vertices
connected by a line with two dots. That a dotted vertex is a source can immediately be
seen from the vertex expressions above. A line with two dots and momentum k flowing
through it gets two Πk’s in the numerator, from the vertices, and only one Πk in the
denominator, from the propagator.

It is now easy to derive the following recursion relation, valid for n ≥ 2:

2n− 2 + 2n− 4 + . . .+

e(n) 2n− e(n) +

2n− 3 + 2n− 5 + . . .+

e(n) + 12n− e(n) − 1 +
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2n = 0 (8.81)

In these diagrams it is understood that the outgoing legs should be connected in all
possible ways. e(n) Is defined as:

e(n) ≡
{

n if n is even
n− 1 if n is odd

(8.82)

Notice that the third and fourth line in the recursion relation above are not there when
n = 2, these diagrams simply do not exist.

We also have the following two recursion relations:

2n− 2 + . . .+ e(n) 2n− e(n) +

2n− 2 + . . .+ e(n) 2n− e(n) +

2n− 1 + . . .+ e(n) + 12n− e(n) − 1 +

2n− 3 + . . .+ e(n) + 12n− e(n) − 1 +

2n = 0 (8.83)

In this recursion relation n ≥ 2.

2n− 2 + . . .+ e(n) 2n− e(n) +

2n− 2 + . . .+ e(n) 2n− e(n) +



8.5. PROOF OF THE CONJECTURE 119

2n− 1 + . . .+ e(n) + 12n− e(n) − 1 +

2n− 1 + . . .+ e(n) + 12n− e(n) − 1 +

2n = 0 (8.84)

In this recursion relation n ≥ 1. The first two lines are not there when n = 1.

With these recursion relations it is easy to see that the problem terms always cancel
in the complete set of diagrams for a certain Green’s function. If somewhere in a diagram
an internal line with two dots occurs, then at this same point in the diagram also the
dotted vertex can occur. These diagrams then sum up to zero.

So finally we have proven that the problem terms cancel in the complete set of dia-
grams for a certain Green’s function. If they cancel out anyway it is also correct to treat
these problem terms like one would in the continuum. Of course one makes a mistake for
each problem term, but these mistakes cancel out again in the complete set of diagrams.
So there is nothing wrong with taking the continuum limit right from the start and doing
a d-dimensional continuum calculation.

Notice that it is no problem to add the vertices coming from the potential V and the
Jacobian to this argument. These vertices give no problem terms themselves. They can
be combined with the dotted vertices, but the problem terms always come from a clear,
separated part of the diagram, either two vertices connected by a line with two dots, or
a dotted vertex.

Now we know it is correct to take the continuum limit ∆ → 0 straightaway in the
discrete Feynman rules (8.74). If we do this it is easy to see that only the ηww- and
ηηww-vertex do not vanish. All the other vertices go to zero, as can be seen from their
expressions in (8.74), but also, and much quicker, from (8.70), because they all have one
or more factors of ∆ in front when the exponentials are expanded.

So, finally we are left with the Feynman rules:

↔ h̄

k2 +m2
η

↔ h̄

k2 +m2
w

k1

k2

↔ 2

h̄v
k1 · k2
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k1

k2

↔ 2

h̄v2
k1 · k2 (8.85)

plus the Feynman rules coming from the potential V and the Jacobian. These are exactly
the Feynman rules that one would have read off from the continuum action:

S =

∫

ddx

(

1

2
(∇r)2 +

1

2
(∇w)2 +

1

v
η (∇w)2 +

1

2v2
η2 (∇w)2 + V

(

r cos
w

v
, r sin

w

v

)

)

=

∫

ddx

(

1

2
(∇r)2 +

1

2

r2

v2
(∇w)2 + V

(

r cos
w

v
, r sin

w

v

)

)

(8.86)

Recapitulating the proof, we have done the following. The basis of our proof is the
discrete path integral in terms of the Cartesian fields ϕ1 and ϕ2. In this path integral
on the lattice it is completely legitimate to transform to polar fields. After this transfor-
mation we get a very big, complicated action. Looking at the discrete vertex expressions
we find how we can simplify these expressions, and how we can let them cancel against
propagators in a certain diagram. We notice that these rules are exactly the same as in
a d-dimensional continuum calculation. All the rules that we would use in a continuum
calculation appear to be valid in a calculation on the lattice as well, except for one: rule
(8.77). The terms where we would need to use this rule can then be shown to cancel
in the complete set of diagrams, by using the three recursion relations. So by using the
incorrect rule (8.77) we actually make a mistake, but all these mistakes cancel in the
complete set of diagrams. Thus we know that all the rules that we use in d-dimensional
continuum calculation are also valid in a correct, discrete calculation. This means we
might as well take the continuum limit directly in the discrete Feynman rules (8.70).
Then these Feynman rules simplify to (8.85), and we have proven that a d-dimensional
continuum calculation with the action (8.86) is correct.

8.5.1 An Example

To see explicitly how the mechanism described in the previous section works we consider
an example. Consider the 1-loop η-propagator. There are two types of diagrams (We do
not include vertices from the potential V and the Jacobian, because such vertices will
never give problem terms.):

and

Here, dots should still be put on the lines or in the vertices. There are a lot of diagrams,
but it is easy to see that there are only two diagrams that contain problem terms. These
are:
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=
1

(2π)d

∫ π/∆

−π/∆
ddk

(

− 1

h̄v

)

Πk

(

− 1

h̄v

)

Πk
h̄

Πk

h̄

Πp−k

=
1

v2

1

(2π)d

∫ π/∆

−π/∆
ddk

Πp−k
Πk

=
1

2

1

(2π)d

∫ π/∆

−π/∆
ddk

(

− 1

h̄v2

)

(

1

2
(Πp−k + Πp+k) +

1

2
(Πp+k + Πp−k)

)

h̄

Πk

= − 1

v2

1

(2π)d

∫ π/∆

−π/∆
ddk

Πp−k
Πk

(8.87)

Indeed these diagrams cancel, as is guaranteed by the recursion relations derived in the
previous section. The other diagrams, contributing to this η-propagator at 1-loop order,
have their dots in other places, or have vertices without dots, that can also come from the
potential V . These diagrams can never have a problem term. And thus the whole 1-loop
propagator is free of problem terms, and the continuum limit could have been taken right
from the start.

8.5.2 The Jacobian and w-Loops

In the previous sections it has become clear that it is allowed to work with the continuum
Feynman rules (8.85), as the conjecture states. Together with these Feynman rules we
have of course the rules from the arbitrary potential V , and the rules from the Jacobian.
From the discrete calculation it is easy to see that the Jacobian can indeed be rewritten
as:

∏

x

r(x) =
∏

x

exp

(

−1

h̄
(−h̄ ln r(x))

)

= exp

(

−1

h̄

∑

x

(−h̄ ln r(x))

)

→ exp

(

−1

h̄

1

∆d

∫

ddx (−h̄ ln r(x))

)

→ exp

(

−1

h̄

[

1

(2π)d

∫

ddk

] ∫

ddx (−h̄ ln r(x))

)

= exp

(

−1

h̄

[

1

(2π)d

∫

ddk

] ∫

ddx

(

−h̄
∞
∑

n=1

(−1)n+1

n

(

η(x)

v

)n
))

,

(8.88)

as the conjecture states. The Feynman rules coming from this Jacobian are:
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↔ 1

v
I

↔ − 1

v2
I

...

n ↔ (−1)n+1(n− 1)!

vn
I (8.89)

Here the standard integral I has been defined earlier, in (8.15).

We see that all these vertices give strange integrals I. In the case of the shifted toy
model and the arctangent toy model we already saw that these integrals I always cancelled
against identical terms coming from w-loops. We shall now prove this in general.

Consider a w-loop with only ηww- and ηηww-vertices (as given in (8.85)) on it. So
the diagrams we are calculating can only have external η-legs. Such a diagram would
look like:

Now these diagrams have a part which is going to cancel the I-integrals from the Jacobian.
This part is exactly the worst divergent part of the diagrams above. To calculate this
worst divergent part the masses and incoming momenta can be neglected.

In this case it is easy to write down the generating functional for such diagrams. This
generating functional is defined as:

Z(x) =
∞
∑

n=1

xn

n!
, (8.90)

where the diagram symbolizes all 1-loop diagrams of this type with n outgoing η-lines.

We denote the number of ηww-vertices in the w-loop by n3 and the number of ηηww-
vertices by n4. Then the generating functional Z(x) for diagrams of this type is given
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by:

Z(x) =
1

(2π)d

∫

ddk

∞
∑

n3,n4=0
n3+n4>0

(

1

2!

)n3
(

1

2!2!

)n4 1

n3!

1

n4!

(

2

h̄v
(−k2)

)n3
(

2

h̄v2
(−k2)

)n4

(

h̄

k2

)n3+n4

(2n3 + 2n4)!!(n3 + 2n4)!
xn3+2n4

(n3 + 2n4)!

= −I ln
(

1 +
x

v

)

= I
∞
∑

n=1

(−1)n(n− 1)!

vn
xn

n!
(8.91)

So we can read off that a w-loop with n outgoing η-lines has a worst divergent part given
by:

(−1)n(n− 1)!

vn
I (8.92)

This exactly cancels the vertices from the Jacobian. In any diagram, wherever a dotted
vertex from the Jacobian with n legs occurs, also a w-loop with n outgoing legs can occur,
and their part that contains the standard integral I cancels!

8.5.3 The Dimensional Regularization Scheme

In the case that one uses the dimensional regularization scheme one has that:

1

(2π)d

∫

ddk
1

(k2)m
= 0 ∀ m , (8.93)

which means that also our standard integral I becomes zero:

I = 0 . (8.94)

This means that in the dimensional regularization scheme it becomes even easier to work
with a path integral in polar field variables. In this case one can also completely forget
about the Jacobian one gets from the transformation. Also one can ignore the integrals
I that are generated by w-loops.

In this thesis we will keep everything general however, and not specify a regularization
scheme.

8.6 The 1-Dimensional Case

In section 8.5 we have proven the conjecture for a general model with two fields in
d space-time dimensions. This conjecture, which is promoted to a theorem by now,
enables us to actually calculate things via the path integral in terms polar fields for
any d-dimensional model. In a d-dimensional model the only analytical computations
we can do in practice are continuum calculations. Analytical discrete calculations, i.e.
calculations on the lattice, are in practice much too hard to do. That is why we have
not bothered to simplify the discrete d-dimensional path integral, hoping to do a discrete
calculation with this simplified form.
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In one dimension analytical discrete calculations are sometimes possible (as we will
see in the next section). Therefore it is convenient to have a reasonably simple, discrete
path integral in terms of polar fields for the case d = 1. It is this path integral that we
shall derive in this section.

By deriving this path integral we shall also make contact with the literature on quan-
tum mechanical (i.e. 1-dimensional) path integrals in terms of polar fields [33, 34, 35].

Our starting point will again be the discrete Feynman rules (8.70), now specified to
d = 1 however. Also, for the sake of the argument, we will split up the vertices as given
below. The 1-dimensional Feynman rules are then:

↔ h̄
2

∆2 − 2
∆2 cos ∆k +m2

η

↔ h̄
2

∆2 − 2
∆2 cos ∆k +m2

w

p

k(1)

k(2n)

↔ 2(−1)n

h̄v2n−1

1

∆2

[(

e−i∆k
(1) − 1

)

· · ·
(

e−i∆k
(2n) − 1

)]

p

k(1)

k(2n)

↔ (−1)n

h̄v2n−1

1

∆2

[

(

e−i∆p − 1
)

(

e−i∆k
(1) − 1

)

· · ·
(

e−i∆k
(2n)
)]

p

q

k(1)

k(2n)

↔ 2(−1)n

h̄v2n

1

∆2

[(

e−i∆k
(1) − 1

)

· · ·
(

e−i∆k
(2n) − 1

)]

p

q

k(1)

k(2n)

↔ (−1)n

h̄v2n

1

∆2

[

(

e−i∆p − 1
)

(

e−i∆k
(1) − 1

)

· · ·
(

e−i∆k
(2n)
1 − 1

)]

k(1)

k(2n)

↔ (−1)n

h̄v2n−2

1

∆2

[(

e−i∆k
(1) − 1

)

· · ·
(

e−i∆k
(2n) − 1

)]

(8.95)

Looking at these vertex expressions we notice that only the vertices

and (8.96)

have a finite continuum limit, all the other vertices go to zero when ∆ is sent to zero
in the Feynman rules. First we are going to consider all diagrams which have at least
one of these vertices that vanish in the continuum limit. The only way these vertices can
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survive a continuum limit in a complete diagram is when there occur loops that give a
1/∆.

First consider 1-loop diagrams. All 1-loop diagrams can be built from the vacuum
diagram

(8.97)

By attaching legs we can build any 1-loop diagram from these. Having an η-line in the
loop will never give a 1/∆, no matter which vertices we use. If the whole loop is a w-line
this loop can give 1/∆’s. If we construct a diagram from this vacuum graph with at least
one of the vertices that go to zero in the continuum limit, one can verify easily that either
the whole diagram goes to zero in the continuum limit or diagrams cancel among each
other in the complete set of graphs for a certain process, such that the whole process is
zero.

The same thing can now be done on 2-loop level. Here we can construct all diagrams
from the vacuum graphs

, and (8.98)

One can see that the only diagrams surviving the continuum limit and containing at
least one of the vertices that vanish in the continuum limit can be constructed from the
following vacuum graphs by only attaching lines with the vertices (8.96), because these
vertices do not give additional powers of ∆.

, , and
(8.99)

For the vacuum graphs we have the following expressions, excluding vertex constants and
symmetry factors. Only the discrete loop integration is done and the worst behavior in
∆ is kept.

=
h̄2

∆2

= −1

2

h̄2

∆

= −1

2

h̄3

∆

=
h̄3

∆2
(8.100)
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We now construct all 1PI diagrams from these vacuum graphs by attaching lines with
the vertices (8.96). Because we can only attach lines with these vertices we can only get
external η-lines. We shall now calculate the generating functional of all the diagrams
that can be constructed in this way:

Z(x) =
∞
∑

n=0

n
1

n!
xn (8.101)

Now this Z, for the first vacuum graph, is given by:

Z =
1

8

h̄2

∆2

∞
∑

m3,m4,n3,n4=0

(

∆2

h̄v2
+

2∆2

h̄v3
x+

2∆2

h̄v4

1

2
x2

)

h̄m3+m4+n3+n4

(

− 2

h̄v

)m3+n3
(

− 2

h̄v2

)m4+n4
(

1

2!

)m3+n3
(

1

2!2!

)m4+n4

1

m3!

1

n3!

1

m4!

1

n4!
(2m3 + 2m4)!!(2n3 + 2n4)!!x

m3+n3+2n4+2m4

=
1

8

h̄

v2

1
(

1 + x
v

)2

=
h̄

8

∞
∑

n=0

(−1)n(n+ 1)!

vn+2

1

n!
xn (8.102)

Here 1/8 is the symmetry factor of the vacuum graph, m3 and m4 denote respectively
the number of ηww- and ηηww-vertices in the left loop and n3 and n4 denote the number
of ηww- and ηηww-vertices in the right loop. Now we can read off

n =
h̄

8

(−1)n(n+ 1)!

vn+2
(8.103)

for the first vacuum graph.
Also the contributions from the three other vacuum blobs can be constructed in the

same way. Their generating functions appear to cancel each other. The reason for this
shall become clear below. For now the only 2-loop contribution we get is (8.103).

The n-leg diagrams that we find in (8.103) are exactly the vertices one would get from
a term

− h̄
2

8

1

r2
i

(8.104)

in the action. This can easily be seen by substituting r = v+η in this term and expanding
it in η. This means, up to 2-loop level, one can discard the vertices that go to zero in the
continuum limit and replace them by the vertices from (8.104). In the action this means
one is left with

S = ∆
N−1
∑

i=0

(

1

2

(ri+1 − ri)
2

∆2
+

1

2

r2
i

v2

(wi+1 − wi)
2

∆2
− h̄2

8r2
i

)

. (8.105)
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Disregarding 3- and higher-loop level we have now proven that our 1-dimensional
discrete path integral P (defined in (8.2)) is equal to:

P =

∫ ∞

−∞
dr0 . . . drN−1 r0 . . . rN−1

∫ ∞

−∞
dw0 . . . dwN−1 O

exp

(

− 1

h̄
∆

N−1
∑

i=0

(

1

2

(ri+1 − ri)
2

∆2
+

1

2

r2
i

v2

(wi+1 − wi)
2

∆2
− h̄2

8r2
i

+

V
(

ri cos
wi
v
, ri sin

wi
v

)

)

)

. (8.106)

This is a form that one can also find in the literature. This same path integral is
derived by Lee [33] in chapter 19, formula (19.49). Also Edwards et al. [34] and Peak et
al. [35] find a term (8.104). However they start with the discrete path integral in terms of
Cartesian fields, transform to polar fields and actually perform the angular integration.
Only then they find the term (8.104). We have presented a more general proof of this
term here, like Lee [33].

Up to now we have not proven that at 3- and higher-loop level there are diagrams,
containing at least on of the vertices that vanish in the continuum limit, that can not be
built also from vertices from the term (8.104). We shall not prove this in this thesis. In
this thesis we are mostly interested in d-dimensional models, and the conjecture needed
to compute via polar fields in these models has already been fully proven. It should be
clear however that, to have agreement with the literature, the path integral (8.106) is
correct, up to all orders. So, although we cannot prove it at this point, there are no
diagrams at 3- and higher-loop order that cannot also be constructed with only the term
(8.104).

Lee’s Proof

The strictly 1-dimensional (i.e. quantum mechanical) derivation of (8.106) by Lee [33]
is based on how quantum mechanical path integrals are mostly derived in elementary
textbooks. Note that Lee derives the Minkowskian version of (8.106). Here we will
shortly sketch Lee’s proof.

One starts with a certain amplitude

〈x′, y′|x, y〉 (8.107)

that one wants to calculate, where |x, y〉 is a state in the Heisenberg picture. Here we
have a two-dimensional space-time, the analog of this in our quantum field theory is the
two-dimensional field-space with fields ϕ1 and ϕ2. To derive the path integral one makes
time discrete and at each discrete time point t one inserts the unit operator

∫

dxdy |x, y, t〉〈x, y, t| . (8.108)

(Here |x, y, t〉 is a state in the Schrödinger picture.) Working this out one finds the path
integral in Cartesian coordinates.

One might also have inserted the unit operator
∫

drdθ |r, θ, t〉P P 〈r, θ, t| (8.109)
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at each discrete time point t. Here the subscript P denotes that we are dealing with polar
states, which are related to the Cartesian states as:

|r, θ, t〉P =
√
r|r cos θ, r sin θ〉 . (8.110)

We need the
√
r to have the proper normalization for the polar states. Only with this√

r we have that the operator (8.109) is a unit operator.
At some point in the derivation towards the path integral we have to let the Lagrangian

density

L =
1

2
π̂2
x +

1

2
π̂2
y − V (x, y) (8.111)

operate on the polar states. Here π̂x and π̂x are the canonical momenta conjugate to x
and y. We know that these canonical momenta operate on the Cartesian states as:

π̂x = −ih̄ ∂
∂x

,

π̂y = −ih̄ ∂
∂y

. (8.112)

If we then define the canonical momenta conjugate to r and θ as

π̂r = −ih̄ ∂
∂r

,

π̂θ = −ih̄ ∂
∂θ

, (8.113)

we have

π̂2
x + π̂2

y = π̂2
r +

1

r2
π̂2
w − h̄2

4r2
. (8.114)

Here we see the emergence of the term (8.104) in this derivation of the path integral in
polar fields. This roughly sketches how (8.106) can also be derived in this way.

Notice that the term (8.104) is only found in a 1-dimensional argument. In d dimen-
sions there is no hope that all the vertices that vanish in the continuum can be replaced
by a simple term like (8.104).

Another Way to Derive (8.106)

Another way to derive the discrete 1-dimensional path integral (8.106) is by first using the
conjecture. So one computes all diagrams in a d-dimensional way in the continuum, with
the simple Feynman rules from the continuum action, then one lets d → 1. To obtain
the discrete version of these diagrams one has to know what the difference is between
calculating in the continuum and calculating in the discrete. This difference, we know,
comes from the problem terms. If we formulate the (continuum) ηww and ηηww-vertex
with the dots, as we did in section 8.5, then we have a clear source of problem terms.
Because in this case we only have the ηww- and ηηww-vertex we also only have the
recursion relation:

+ + = 0 (8.115)
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This recursion relation ensures that all problem terms from a w-line with two dots cancel
against the dotted part of the ηηww-vertex. So the problem terms from w-lines are never
going to give a difference between a discrete and continuum calculation. All we have to
do is find the problem terms coming from η-lines with two dots.

Now, as in the previous (partial) derivation of (8.106) we can build all diagrams from
the vacuum graphs. At 1-loop order there is no difference between a continuum and
discrete calculation. At 2-loop order the only problem terms come from the vacuum
graph

(8.116)

Now we can understand why, in the other derivation of (8.106), the generating functionals
from the last three vacuum graphs in (8.99) cancelled. Only the first graph in (8.99)
corresponds to the vacuum graph above. This correspondence can be seen by pinching
the dotted η-line in the vacuum graph above. The last three vacuum graphs in (8.99)
correspond to problem terms from dotted w-lines or a dotted ηηww-vertex. These cancel
among each other because of the recursion relation (8.115).

Now the difference between a continuum and discrete calculation of the graph (8.116)
can be calculated. Also the generating functional of diagrams where we connect any
number of η-legs via the ηww- and ηηww-vertices can be calculated. The result of this
generating functional is given by (8.102). In this way we find that, to compensate for the
differences that we get by doing a discrete instead of a continuum calculation, we have
to introduce the term (8.104) in the action again.

Also in this way of deriving (8.106) we do not know how to show that 3- and higher-
loop diagrams give no new differences.

8.7 A 1-Dimensional Illustration

In the previous section we have shown that, in the case of one dimension, the path
integral in polar field variables is given by (8.106). In this section we give a specific
example of how (8.106) can be used in a discrete calculation. We will calculate 〈r(x)〉
and 〈ϕ1(0)ϕ1(x)〉 in the arctangent toy model through this formula and compare the
results with the results we can find in a Cartesian calculation. The Cartesian results for
some ϕ-Green’s-functions have already been found in section 8.4.1.

8.7.1 〈r(x)〉
According to (8.106) 〈r(x)〉 is given by:

〈r(x)〉 =
1

Z(0)

∫ ∞

−∞
dr0 . . . drN−1 r0 . . . rN−1

∫ ∞

−∞
dw0 . . . dwN−1 rj

exp

(

− 1

h̄
∆

N−1
∑

i=0

(

1

2

(ri+1 − ri)
2

∆2
+

1

2

r2
i

v2

(wi+1 − wi)
2

∆2
− h̄2

8r2
i

+

m2

4v2
(r2
i − v2)2 +

m2v2

2r2
i

w2
i

)

)

. (8.117)
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Here j is the discrete coordinate corresponding to x:

x = −L
2

+ j∆ , (8.118)

and Z(0) is given by

Z(0) =

∫ ∞

−∞
dr0 . . . drN−1 r0 . . . rN−1

∫ ∞

−∞
dw0 . . . dwN−1

exp

(

− 1

h̄
∆

N−1
∑

i=0

(

1

2

(ri+1 − ri)
2

∆2
+

1

2

r2
i

v2

(wi+1 − wi)
2

∆2
− h̄2

8r2
i

+

m2

4v2
(r2
i − v2)2 +

m2v2

2r2
i

w2
i

)

)

. (8.119)

First we shall focus our attention on the w-part in (8.117). This part we call Zw(0),
it is defined as:

Zw(0) ≡
∫ ∞

−∞
dw0 . . . dwN−1 exp

(

−1

h̄
∆

N−1
∑

i=0

(

1

2

r2
i

v2

(wi+1 − wi)
2

∆2
+
m2v2

2r2
i

w2
i

)

)

. (8.120)

This Zw(0) is a quantity depending on all r’s. It is this dependence we have to know
before we can do the r-integrals.

We will now try to find this dependence by finding a set of N differential equations
which are satisfied by Zw(0). Then we will try to solve these differential equations. If we
are successful we will have fixed Zw(0) up to a constant, which is unimportant. Such a
set of differential equations is readily found. If we let

−h̄ 1

∆

∂

∂r2
j

, j = 0, . . . , N − 1 (8.121)

operate on Zw(0) we get:

−h̄ 1

∆

∂

∂r2
j

Zw(0) =

∫ ∞

−∞
dw0 . . . dwN−1

(

1

2v2

(wj+1 − wj)
2

∆2
− m2v2

2r4
j

w2
j

)

exp

(

−1

h̄
∆

N−1
∑

i=0

(

1

2

r2
i

v2

(wi+1 − wi)
2

∆2
+
m2v2

2r2
i

w2
i

)

)

=
1

2v2
Zw(0)

〈

(wj+1 − wj)
2

∆2

〉

w

− Zw(0)
m2v2

2r4
j

〈w2
j 〉w . (8.122)

This differential equation is satisfied by Zw(0) for j = 0, . . . , N − 1. Here the w-average
(〈. . .〉w) of some product of fields α is given by:

〈α〉w ≡ 1

Zw(0)

∫ ∞

−∞
dw0 . . . dwN−1 α exp

(

−1

h̄
∆

N−1
∑

i=0

(

1

2

r2
i

v2

(wi+1 − wi)
2

∆2
+
m2v2

2r2
i

w2
i

)

)

.

(8.123)
Before we can proceed we have to know the quantities

〈

(wj+1 − wj)
2

∆2

〉

w

and 〈w2
j 〉w . (8.124)

So first we will have to calculate the discrete w-propagator 〈wjwk〉w.
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The Discrete w-Propagator

The discrete w-propagator is given by:

〈wjwk〉w ≡ 1

Zw(0)

∫ ∞

−∞
dw0 . . . dwN−1 wjwk

exp

(

−1

h̄
∆

N−1
∑

i=0

(

1

2

r2
i

v2

(wi+1 − wi)
2

∆2
+
m2v2

2r2
i

w2
i

)

)

. (8.125)

We will find the w-propagator through the discrete Schwinger-Dyson equations. To find
these Schwinger-Dyson equations we first have to know the Schwinger-Symanzik equation
for Zw(J) in discrete form. Zw(J) is defined by

Zw(J) ≡
∫ ∞

−∞
dw0 . . . dwN−1 exp

(

−1

h̄
∆

N−1
∑

i=0

(

1

2

r2
i

v2

(wi+1 − wi)
2

∆2
+
m2v2

2r2
i

w2
i − Jiwi

)

)

.

(8.126)
and the Schwinger-Symanzik equation it satisfies is





1

∆

∂S

∂wj

∣

∣

∣

∣

wj=h̄
1
∆

∂
∂Jj

− Jj



Zw(J) = 0 . (8.127)

The part with the partial derivative of S can be written out. When doing this it is
convenient to introduce the following discrete derivative definitions:

α′
j ≡

αj+1 − αj
∆

, α′′
j ≡

−2αj+1 + αj + αj+2

∆2
(8.128)

where α can be any quantity with a label j.

The Schwinger-Symanzik equation becomes:

(

− r2
j

(

h̄
1

∆

∂

∂Jj−1

)′′
+ ∆(r′j−1)

2

(

h̄
1

∆

∂

∂Jj−1

)′
− 2rjr

′
j−1

(

h̄
1

∆

∂

∂Jj−1

)′
+

m2v4

r2
j

(

h̄
1

∆

∂

∂Jj

)

− Jj

)

Zw(J) = 0 (8.129)

Now, to obtain the Schwinger-Dyson equations for the w-propagator, let h̄ 1
∆

∂
∂Jk

work on

both sides of the Schwinger-Symanzik equation (8.129) and put all J ’s to zero. If we also
divide by Zw(0) we get:

r2
j 〈w′′

j−1wk〉w − ∆(r′j−1)
2〈w′

j−1wk〉w + 2rjr
′
j−1〈w′

j−1wk〉w − m2v4

r2
j

〈wjwk〉w = −h̄v
2

∆
δjk

(8.130)

Now we have to find a solution that satisfies this discrete Schwinger-Dyson equation.
Because later we are only interested in the continuum limit of our final result, this solution
only has to satisfy the Schwinger-Dyson equation up to order ∆0. The following solution
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does the job:

〈wjwk〉w =
h̄

2m
exp

(

−mv2∆
k
∑

i=j+1

1

r2
i−1

)

if k > j

〈wjwk〉w =
h̄

2m
if k = j

〈wjwk〉w =
h̄

2m
exp

(

−mv2∆

j
∑

i=k+1

1

r2
i−1

)

if k < j. (8.131)

To verify this one has to treat the cases k < j − 1, k = j − 1, k = j, k = j + 1 and
k > j+1 separately. As an example we will verify the case k > j+1 below. In this case,
the average 〈w′

j−1wk〉w becomes:

〈w′
j−1wk〉w =

1

∆

h̄

2m

(

exp

(

−mv2∆
k
∑

i=j+1

1

r2
i−1

)

− exp

(

−mv2∆
k
∑

i=j

1

r2
i−1

))

=
1

∆

h̄

2m
exp

(

−mv2∆
k
∑

i=j+1

1

r2
i−1

)

(

1 − e
−mv2∆ 1

r2
j−1

)

= 〈wjwk〉w
1

∆

(

mv2∆
1

r2
j−1

+ O(∆2)

)

= 〈wjwk〉w
(

mv2 1

r2
j

+ 2mv2 1

r3
j

∆r′j−1 + O(∆)

)

. (8.132)

Remember that r′j is of order 1√
∆

in one dimension. The average 〈w′′
j−1wk〉w becomes:

〈w′′
j−1wk〉w =

1

∆2

h̄

2m

(

− 2 exp

(

−mv2∆
k
∑

i=j+1

1

r2
i−1

)

+ exp

(

−mv2∆
k
∑

i=j+2

1

r2
i−1

)

+

exp

(

−mv2∆
k
∑

i=j

1

r2
i−1

))

= 〈wjwk〉w
1

∆2

(

−2 + e
mv2∆ 1

r2
j + e

−mv2∆ 1

r2
j−1

)

= 〈wjwk〉w
1

∆2

(

mv2∆
1

r2
j

+
1

2
m2v4∆2 1

r4
j

−mv2∆
1

r2
j−1

+
1

2
m2v4∆2 1

r4
j−1

+

O(∆3)

)

= 〈wjwk〉w
1

∆2

(

mv2∆
1

r2
j

+m2v4∆2 1

r4
j

mv2∆

(

− 1

r2
j

− 2
1

r3
j

(rj − rj−1) − 3
1

r4
j

(rj − rj−1)
2

)

+

O(∆5/2)

)

= 〈wjwk〉w
(

−2mv2

r3
j

r′j−1 −
3mv2∆

r4
j

(r′j−1)
2 +

m2v4

r4
j

+ O(∆
1
2 )

)

. (8.133)
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These results can now be substituted in the Schwinger-Dyson equation (8.130) and we
see that it is indeed satisfied.

Now we have our desired discrete solution and we can continue calculating Zw(0).

The Calculation Of Zw(0)

Now that we know the discrete w-propagator we can use this result in the differential
equations for Zw(0). In these differential equations the two following quantities occur.

〈

(wj+1 − wj)
2

∆2

〉

w

=
1

∆2
(〈w2

j 〉w + 〈w2
j+1〉w − 2〈wjwj+1〉w)

=
1

∆2

(

h̄

m
− h̄

m
e
−mv2∆ 1

r2
j

)

=
h̄v2

∆

1

r2
j

− h̄mv4

2

1

r4
j

+ O(∆)

〈w2
j 〉w =

h̄

2m
(8.134)

With these results the differential equations for Zw(0) become:

−h̄ 1

∆

∂

∂r2
j

Zw(0) =
1

2
Zw(0)

( h̄

∆

1

r2
j

− h̄mv2 1

r4
j

+ O(∆)
)

(8.135)

or
∂

∂r2
j

Zw(0) = − 1

2r2
j

Zw(0) +
∆mv2

2r4
j

Zw(0) + O(∆2)Zw(0). (8.136)

We now have a set of N uncoupled differential equations, which are easily solved:

1

Zw(0)

∂

∂r2
j

Zw(0) = − 1

2r2
j

+
∆mv2

2r4
j

+ O(∆2)

∂

∂r2
j

lnZw(0) =
∂

∂r2
j

(

− 1

2
ln r2

j −
∆mv2

2r2
j

+ O(∆2)
)

lnZw(0) = ln r−1
j − ∆mv2

2r2
j

+ O(∆2) + C

Zw(0) =
1

rj
e
−∆mv2

2r2
j

+O(∆2)+C

(8.137)

Here C can depend on ri with i 6= j. The complete Zw(0) is then easily constructed:

Zw(0) = C ′

(

N−1
∏

i=0

1

ri

)

exp

(

−∆
N−1
∑

i=0

(

mv2

2r2
i

+ O(∆)

)

)

(8.138)

We see that in the continuum limit the term of order ∆ between the brackets in the
exponential is unimportant, this verifies our earlier statement that we only have to know
the discrete w-propagator up to order ∆0. So the important part of Zw(0) is:

Zw(0) =

(

N−1
∏

i=0

1

ri

)

exp

(

−∆
N−1
∑

i=0

mv2

2r2
i

)

. (8.139)
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The Calculation Of 〈r(x)〉
Now that we know Zw(0) we can actually calculate 〈r(x)〉. Remember that 〈r(x)〉 is given
by:

〈r(x)〉 =
1

Z(0)

∫ ∞

−∞
dr0 . . . drN−1r0 · · · rN−1

∫ ∞

−∞
dw0 . . . dwN−1

exp
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− 1
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∆

N−1
∑

i=0
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1
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(ri+1 − ri)
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∆2
+

1

2

r2
i

v2
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2

∆2
− h̄2

8r2
i

+

m2

4v2
(r2
i − v2)2 +

m2v2

2r2
i

w2
i

)

)
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=
1

Z(0)

∫ ∞

−∞
dr0 . . . drN−1r0 . . . rN−1

exp

(

−1

h̄
∆

N−1
∑

i=0

(

1

2

(ri+1 − ri)
2

∆2
− h̄2

8r2
i

+
m2

4v2
(r2
i − v2)2

)

)

Zw(0) rj .

(8.140)

Substituting our solution (8.139) for Zw(0) in here gives:

〈r(x)〉 =
1

Z(0)

∫ ∞

−∞
dr0 . . . drN−1

exp

(

−1

h̄
∆

N−1
∑

i=0

(

1

2

(ri+1 − ri)
2

∆2
− h̄2

8r2
i

+
m2

4v2
(r2
i − v2)2 +

h̄mv2

2r2
i

)

)

rj .

(8.141)

What we have here is a normal path integral in r. This means we can do this path integral
in the ordinary way by using Feynman diagrams. At this point also the continuum limit
can be taken in the action, since we have no derivative couplings anymore. The continuum
form of the action is:

S =

∫

dx

(

1

2
(r′(x))2 +

m2

4v2
(r2(x) − v2)2 − h̄2

8r2(x)
+
h̄mv2

2r2(x)

)

. (8.142)

First we should find the minimum of the action. This minimum is not exactly at
r = v, but is shifted a little because of the terms Zw(0) has introduced in the action. The
minimum rm satisfies:

m2

v2
(r2
m − v2)rm +

h̄2

4r3
m

− h̄mv2

r3
m

= 0 . (8.143)

Again we want to know rm up to order h̄2. The rm that satisfies (8.143) up to order h̄2

is:

rm = v +
h̄

2mv
− 5h̄2

4m2v3
. (8.144)

The expectation value of r(0) becomes:

〈r(0)〉 = v +
h̄

2mv
− 5h̄2

4m2v3
+ 〈η(0)〉 + O(h̄3) . (8.145)
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Now we should expand the action around the minimum rm and read off the Feynman
rules. To get 〈η(0)〉 correct up to order h̄2 we have to keep all terms of order h̄5/2 and
lower in the action. After the expansion around the minimum the action becomes:

S =

∫

dx
(1

2
(η′(x))2 +

h̄m

2
− 3h̄2

8v2
+m2η2 +

3h̄m

v2
η2 +

m2

v
η3 − 3h̄m

2v3
η3 +

m2

4v2
η4
)

. (8.146)

The Feynman rules are:

↔ h̄

k2 + µ2

↔ −6m

v2

↔ −6m2

v

1

h̄

↔ 9h̄m

v3

1

h̄

↔ −6m2

v2

1

h̄
(8.147)

With these Feynman rules we have to compute 〈η(0)〉 up to order h̄2. We get the following
contributions.

= − 3

4
√

2

h̄

vm

=
9

8
√

2

h̄2

v3m2

=
9

4
√

2

h̄2

v3m2

=
9

8
√

2

h̄2

v3m2

= −27

64

h̄2

v3m2

= −27

64

h̄2

v3m2
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= − 3

16

h̄2

v3m2

=
9

64

h̄2

v3m2

=
9

32

h̄2

v3m2

=
1

16

h̄2

v3m2
(8.148)

Summing up these contributions we get:

〈η(0)〉 =
h̄

vm

(

− 3

4
√

2

)

+
h̄2

v3m2

(

− 35

64
+

9

2
√

2

)

+ O(h̄3). (8.149)

For 〈r(0)〉 we finally get:

〈r(0)〉 =
h̄

vm

(1

2
− 3

4
√

2

)

+
h̄2

v3m2

(

− 115

64
+

9

2
√

2

)

+ O(h̄3). (8.150)

From our Cartesian results in section 8.4.1 〈r(x)〉 can easily be found via the formula:

〈r(x)〉 =

〈

√

(v + η1(x))2 + η2
2(x)

〉

= v + 〈η1(x)〉 +
1

2v
〈η2

2(x)〉 −
1

2v2
〈η1(x)η

2
2(x)〉 +

1

2v3
〈η2

1(x)η
2
2(x)〉 +

− 1

8v3
〈η4

2(x)〉 + O(h̄3) (8.151)

Substituting the results from section 8.4.1, specified to the case d = 1, indeed gives the
same result as (8.150). Here we used the 1-dimensional results for the standard integrals
given in appendix A.

8.7.2 The ϕ1-Propagator

As a last illustration of the 1-dimensional path integral in terms of polar fields we will
calculate the ϕ1-propagator. We have:

〈ϕ1(x)ϕ1(y)〉 = 〈r(x)r(y) cos(w(x)) cos(w(y))〉

= 〈r(x)r(y)〉 − 1

2
〈r(x)r(y)w2(x)〉 − 1

2
〈r(x)r(y)w2(y)〉 +

1

24
〈r(x)r(y)w4(x)〉 +

1

24
〈r(x)r(y)w4(y)〉 +

1

4
〈r(x)r(y)w2(x)w2(y)〉 +

O(h̄3). (8.152)
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We calculate the six averages that occur one by one.

〈r(x)r(y)〉 = r2
m + 2rm〈η(0)〉 + 〈η(x)η(y)〉 (8.153)

Here rm is, as in the calculation of 〈r(0)〉, given by (8.144). The quantity 〈η(0)〉 is already
known from earlier calculations, it is given by (8.149). So we only have to calculate
〈η(x)η(y)〉. For this average we get the following contributions.

=
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2
√

2m
e−µ|x−y|

=
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4
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16
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9
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(8.154)

Summing these contributions gives:

〈η(x)η(y)〉 =
h̄

m

1

2
√
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e−µ|x−y| +
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)

. (8.155)

Now 〈r(x)r(y)〉 becomes:

〈r(x)r(y)〉 = v2 +
h̄

m

(

1 − 3

2
√

2
+

1

2
√

2
e−µ|x−y|

)

+

h̄2

v2m2

(

− 49

16
+

33

4
√

2
+

1

4
e−µ|x−y| − 3

4
√

2
e−µ|x−y| +

1

16
e−2µ|x−y| − 3

4
m|x− y|e−µ|x−y| + 3

4
√

2
m|x− y|e−µ|x−y|

)

. (8.156)

In the next five averages that we have to calculate, before we find our final result
for the ϕ1-propagator, also w’s occur. These w’s have to be taken into account in the
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w-path integral that we perform first in all our calculations. Fortunately we know the
w-propagator already, so that this result can be used in these calculations. We get:

−1

2
〈r(x)r(y)w2(x)〉 = −1

2

h̄

2mv2
〈r(x)r(y)〉. (8.157)

Now we can substitute our result (8.156) up to order h̄ in here and find:

−1

2
〈r(x)r(y)w2(x)〉 =

h̄

m

(

− 1

4

)

+
h̄2

v2m2

(

− 1

4
+

3

8
√

2
− 1

8
√

2
e−µ|x−y|

)

. (8.158)

In the same way we find:

−1

2
〈r(x)r(y)w2(y)〉 =

h̄

m

(

− 1

4

)

+
h̄2

v2m2

(

− 1

4
+

3

8
√

2
− 1

8
√

2
e−µ|x−y|

)

. (8.159)

In the next three averages products of four w’s occur. Because the w-path integral is
Gaussian we can write this into a sum of products of averages of two w’s:

〈w4(x)〉w = 3〈w2(x)〉w〈w2(x)〉w =
3h̄2

4m2v4

〈w4(y)〉w = 3〈w2(y)〉w〈w2(y)〉w =
3h̄2

4m2v4

〈w2(x)w2(y)〉w = 2〈w(x)w(y)〉w〈w(x)w(y)〉w + 〈w2(x)〉w〈w2(y)〉w

=
h̄2

2m2v4
e
−2mv2|

∫ y

x
dx′ 1

r2(x′)
|
+

h̄2

4m2v4
. (8.160)

For our last three averages we get:

1

24
〈r(x)r(y)w4(x)〉 =

h̄2

32m2v4
〈r(x)r(y)〉 =

h̄2

v2m2

1

32
1

24
〈r(x)r(y)w4(y)〉 =

h̄2

32m2v4
〈r(x)r(y)〉 =

h̄2

v2m2

1

32
(8.161)

1

4
〈r(x)r(y)w2(x)w2(y)〉 =

h̄2

16m2v4
〈r(x)r(y)〉 +

h̄2

8m2v4
〈r(x)r(y)e−2mv2|

∫ y

x
dx′ 1

r2(x′)
|〉

=
h̄2

m2v2

1

16
+

h̄2

8m2v4
〈r2
me

−2mv2|
∫ y

x
dx′ 1

r2
m

|〉

=
h̄2

m2v2

1

16
+

h̄2

m2v2

1

8
e−2m|x−y|. (8.162)

Finally we get for the ϕ1-propagator:

〈ϕ1(x)ϕ1(y)〉 = v2 +
h̄

m

(1

2
− 3

2
√

2
+

1

2
√

2
e−µ|x−y|

)

+

h̄2

v2m2

(

− 55

16
+

9√
2

+
1

4
e−µ|x−y| − 1√

2
e−µ|x−y| +

1

16
e−2µ|x−y| +

1

8
e−2m|x−y| − 3

4
m|x− y|e−µ|x−y| + 3

4
√

2
m|x− y|e−µ|x−y|

)

. (8.163)

And again this matches the result we find in section 8.4.1, specified to d = 1. (To calculate
the standard integrals use appendix A again.)



Chapter 9

The N = 2 LSM: The Path-Integral
Approach II

The action of the Euclidean N = 2 linear sigma model is given by:

S =

∫

ddx

(

1

2
(∇ϕ1(x))

2 +
1

2
(∇ϕ2(x))

2 +
µ

4v2

(

ϕ2
1(x) + ϕ2

2(x) − v2
)2
)

. (9.1)

In chapter 7 we already calculated the Green’s functions of this model by naively
calculating Green’s functions around each of the minima and then integrating over all
minima. It was not at all clear that this was the correct thing to do, especially because in
this approach one has to do perturbation theory around each of the minima. Each time we
expand around one of these minima we pretend the ring of minima is actually an infinite
line. So in this way we ignore the damping in the η2-direction (i.e. tangential direction),
which is there because of the η4

2-term. This damping effect is lost in perturbation theory
because the exponential of η4

2 is expanded and not all terms are kept.

Also, by integrating over all minima we implicitly assume that the minima do not
communicate, which is not true at all.

In this chapter we will calculate the same Green’s functions via the path integral in
polar field variables. These polar variables are the natural variables for a model with
O(2)-symmetry. The action in terms of polar field variables will not depend on the
angular field w, but only on ∇w. Therefore we have that:

w = O(1)

∇w = O(
√
h̄) (9.2)

The first relation merely states that all points on the ring of minima have an equal weight
in the path integral. This means it is also incorrect to expand around w = 0, for which
we would have to assume that w is small. This expansion is what we did in chapter 7.
From the second relation we see that it is correct to expand in ∇w, because ∇w is small.

Because the action in terms of polar fields does not depend on w there is also no need
to expand around w = 0 in the formalism in terms of polar fields. In this way we avoid
doing perturbation theory in w, which was the big problem of chapter 7.

In this chapter also the effective potential of the N = 2 linear sigma model will be
calculated via the path integral in terms of polar fields.

139
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9.1 Green’s Functions

According to the conjecture from the previous chapter the path integral in terms of polar
field variables for this model is given by

〈ϕ1(x1) · · ·ϕ1(xm)ϕ2(y1) · · ·ϕ2(yn)〉 =

1

Z(0)

∫ ∞

−∞
Dr
∫ ∞

−∞
Dθ exp

(

−1

h̄
I

∫

ddx (−h̄ ln r(x))

)

·

r(x1) cos(θ(x1)) · · · r(xm) cos(θ(xm)) ·

r(y1) sin(θ(y1)) · · · r(yn) sin(θ(yn)) ·

exp

(

−1

h̄
S(r, θ)

)

, (9.3)

provided we perform the calculation in a d-dimensional way. Here Z(0) given by

Z(0) =

∫ ∞

−∞
Dr
∫ ∞

−∞
Dθ exp

(

−1

h̄
I

∫

ddx (−h̄ ln r(x))

)

exp

(

−1

h̄
S(r, θ)

)

, (9.4)

and S(r, θ) given by

S(r, θ) =

∫

ddx

(

1

2
(∇r(x))2 +

1

2
r2(x) (∇θ(x))2 +

µ

4v2

(

r2(x) − v2
)2
)

. (9.5)

Because we are dealing with a d-dimensional model divergences will arise and we must
renormalize the fields, masses and coupling constants. First we rewrite the action in the
form

S(r, θ) =

∫

ddx

(

1

2
(∇r(x))2 +

1

2
r2(x) (∇θ(x))2 − 1

2
µr2(x) +

λ

24
r4(x)

)

, (9.6)

where

λ =
6µ

v2
, (9.7)

as in the rest of this thesis. The fields, masses and coupling constants are renormalized
in the same way as in chapter 6 and 7:

ϕRi =
1√
Z
ϕi (i = 1, 2)

µR = µZ − δµ

λR = λZ2 − δλ (9.8)

In terms of polar variables the field renormalization means:

rR =
1√
Z
r , (9.9)

the θ-field is not renormalized. We also define a new angular field as

w(x) ≡ vRθ(x) , (9.10)
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where

vR =

√

6µR

λR
. (9.11)

Making these substitutions in the action (9.1) we get (also defining δZ ≡ Z − 1):

S =

∫

ddx

(

1

2

(

∇rR
)2

+
1

2

(

rR
)2

(vR)2 (∇w)2 +

(

µR
)2

4 (vR)2

(

(

rR
)2 −

(

vR
)2
)2

+

1

2
δZ
(

∇rR
)2

+
1

2
δZ

(

rR
)2

(vR)2 (∇w)2 − 1

2
δµ
(

rR
)2

+
1

24
δλ
(

rR
)4

)

.(9.12)

From here on we shall suppress the R-superscripts, understanding that we always
work with renormalized fields, masses and coupling constants.

Notice that the counter terms have nothing to do with the transformation to polar
fields, both in a Cartesian and polar formulation we have the same counter terms.

To do perturbation theory we expand around the minimum of the first line (i.e. the
classical part) of the renormalized action:

r(x) = v + η(x) . (9.13)

Remember that we also have to include the Feynman rules from the Jacobian. The
procedure of renormalization does not change these rules.

The Feynman rules (in momentum space) up to order h̄5/2 are:

↔ h̄

k2 +m2

↔ h̄

k2

q

p
↔ 2

h̄v
p · q

q

p
↔ 2

h̄v2
p · q

↔ −3m2

h̄v

↔ −3m2

h̄v2

↔ v

h̄
δµ −

1

6

v3

h̄
δλ

↔ −1

h̄
p2 δZ +

1

h̄
δµ −

1

2

v2

h̄
δλ



142 CHAPTER 9. THE N = 2 LSM: THE PATH-INTEGRAL APPROACH II

↔ −1

h̄
p2 δZ

q

p
↔ 2

h̄v
p · q δZ

q

p
↔ 2

h̄v2
p · q δZ

↔ −v
h̄
δλ

↔ −1

h̄
δλ

↔ 1

v
I

↔ − 1

v2
I

↔ 2

v3
I (9.14)

Here we have defined µ = 1
2
m2 as in chapters 6 and 7. Also all indicated momenta flow

into the vertex. The counter-term vertices have been indicated by a big dot in the vertex,
the vertices from the Jacobian have been indicated by a small dot.

9.1.1 η- And w-Green’s-Functions

Now we can compute all the η- and w-Green’s-functions.

〈η̃〉|h̄ = + + +

= −3

2

h̄

v
I(0,m) +

v

m2
δµ|h̄ −

1

6

v3

m2
δλ|h̄ (9.15)

〈η̃(p)η̃(q)〉c|h̄2 = + + +
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+ + +

= − h̄
2

v2

p2

(p2 +m2)2
I(0, 0) +

1

2

h̄2

v2

(p2)2

(p2 +m2)2
I(0, 0, p, 0)

+3
h̄2m2

v2

1

(p2 +m2)2
I(0,m) +

9

2

h̄2m4

v2

1

(p2 +m2)2
I(0,m, p,m)

−h̄ p2

(p2 +m2)2
δZ |h̄ − 2h̄

1

(p2 +m2)2
δµ|h̄ (9.16)

〈w̃(p)w̃(q)〉c|h̄2 = + + +

= − h̄
2

v2

p2 +m2

(p2)2
I(0, 0) +

h̄2

v2

5p2 +m2

(p2)2
I(0,m)

+
h̄2

v2

(p2 +m2)2

(p2)2
I(0, 0, p,m)

−h̄ 1

p2
δZ |h̄ − 2

h̄

m2

1

p2
δµ|h̄ +

1

3

h̄v2

m2

1

p2
δλ|h̄ (9.17)

〈η̃〉|h̄2 = + + +

+ + +

+ + +

+ +
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= −1

4

h̄2

v3
I(0, 0)2 +

1

2

h̄2

v3
I(0, 0)I(0,m) − 3

2

h̄2m2

v3
I(0, 0)I(0,m, 0,m)

+
h̄2m2

v3
D00m +

3

2

h̄2m2

v3
Dmmm − 3

4

h̄2m4

v3
Bm00 −

27

4

h̄2m4

v3
Bmmm

−9

2

h̄2m2

v3
I(0,m)I(0,m, 0,m) − 9

8

h̄2

v3
I(0,m)2

+
3

2

h̄

v
I(0,m) δZ |h̄ +

3

2

h̄

m2v
I(0,m) δµ|h̄ −

1

4

h̄v

m2
I(0,m) δλ|h̄

−3

2

h̄m2

v
I(0,m, 0,m) δZ |h̄ + 3

h̄

v
I(0,m, 0,m) δµ|h̄

−1

2

v

m4
(δµ|h̄)2 +

1

24

v5

m4
(δλ|h̄)2 − 1

6

v3

m4
δµ|h̄δλ|h̄ +

v

m2
δµ|h̄2 − 1

6

v3

m2
δλ|h̄2

(9.18)

〈η̃(p)w̃(q1)w̃(q2)〉c|h̄2 =

= 2
h̄2

v

1

p2 +m2

1

q2
1

1

q2
2

q1 · q2 (2π)dδd(p+ q1 + q2) (9.19)

9.1.2 The ϕ-Green’s-Functions

The path integral for the ϕ1-vacuum-expectation value is given by:

〈ϕ1(x)〉 =
1

Z(0)

∫ ∞

−∞
Dr
∫ ∞

−∞
Dw exp

(

−1

h̄
I

∫

ddx (−h̄ ln r(x))

)

·

r(x) cos(w(x)/v) exp

(

−1

h̄
S(r, w)

)

, (9.20)

where S is given by (9.12). This action only depends on ∇w, which reflects the O(2)-
invariance of the N = 2 linear sigma model. This means that if we shift all w-fields (i.e.
the w-fields at all space-time points) by the same amount the action does not change.
Also the path-integral measure does not change. So we can show:

〈r(x) cos(w(x)/v)〉 = 〈r(x) cos(w(x)/v + π)〉 = −〈r(x) cos(w(x)/v)〉 , (9.21)

such that

〈ϕ1(x)〉 = 0 . (9.22)

For the same reason we have that

〈ϕ2(x)〉 = 0 . (9.23)

Notice that we have been able to show this through a non-perturbative argument. This
is the great merit of a calculation via the path integral in terms of polar fields.



9.1. GREEN’S FUNCTIONS 145

The ϕ1- and ϕ2-propagator can be calculated in a similar way:

〈ϕ1(0)ϕ1(x)〉 =
1

Z(0)

∫ ∞

−∞
Dr
∫ ∞

−∞
Dw exp

(

−1

h̄
I

∫

ddx (−h̄ ln r(x))

)

·

r(0)r(x) cos(w(0)/v) cos(w(x)/v) ·

exp

(

−1

h̄
S(r, w)

)

=
1

Z(0)

∫ ∞

−∞
Dr
∫ ∞

−∞
Dw exp

(

−1

h̄
I

∫

ddx (−h̄ ln r(x))

)

r(0)r(x) ·
(

1

2
cos

(

w(0) − w(x)

v

)

+

1

2
cos

(

w(0) + w(x)

v

)

)

·

exp

(

−1

h̄
S(r, w)

)

=
1

2

1

Z(0)

∫ ∞

−∞
Dr
∫ ∞

−∞
Dw exp

(

−1

h̄
I

∫

ddx (−h̄ ln r(x))

)

·

r(0)r(x) cos

(

w(0) − w(x)

v

)

·

exp

(

−1

h̄
S(r, w)

)

=
1

2

〈

r(0)r(x) cos

(

w(0) − w(x)

v

)〉

〈ϕ2(0)ϕ2(x)〉 = 〈ϕ1(0)ϕ1(x)〉
〈ϕ1(0)ϕ2(x)〉 = 0 (9.24)

Here we could discard the cosine of the sum w(0) + w(x) because this cosine is not
invariant under a global shift of the w-field, i.e. this cosine is not O(2)-invariant.

The cosine of the difference of two w-fields can now be expanded, because a difference
of two w’s can always be written as an integral over ∇w, which is small. (Remember
∇w = O(

√
h̄).)

Then the η- and w-Green’s-functions we have calculated in the previous section can
be used to find:

〈ϕ1(0)ϕ1(x)〉 =
1

2
v2 − 1

2
〈w2〉 +

1

2
〈w(0)w(x)〉 +

1

24v2
〈w4〉 +

3

24v2
〈w2(0)w2(x)〉 +

− 1

12v2
〈w3(0)w(x)〉 − 1

12v2
〈w(0)w3(x)〉 + v〈η〉 − 1

2v
〈ηw2〉 +

− 1

4v
〈η(0)w2(x)〉 − 1

4v
〈η(x)w2(0)〉 +

1

2v
〈η(0)w(0)w(x)〉 +

1

2v
〈η(x)w(0)w(x)〉 +

1

2
〈η(0)η(x)〉 − 1

4v2
〈η(0)η(x)w2(0)〉 +

− 1

4v2
〈η(0)η(x)w2(x)〉 +

1

2v2
〈η(0)η(x)w(0)w(x)〉 + O

(

h̄3
)

= +
1

2
v2
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−1

2
h̄ I(0, 0) +

1

2
h̄ A0(x) −

3

2
h̄ I(0,m) +

1

2
h̄ Am(x)

+
v2

m2
δµ|h̄ −

1

6

v4

m2
δλ|h̄

+
1

2

h̄2m2

v2
I(0, 0)I(0, 0, 0, 0) − 1

2

h̄2m2

v2
I(0,m)I(0, 0, 0, 0)

−3

2

h̄2m2

v2
I(0, 0)I(0,m, 0,m) − 9

2

h̄2m2

v2
I(0,m)I(0,m, 0,m)

+
1

2

h̄2m2

v2
D00m +

3

2

h̄2m2

v2
Dmmm − 1

2

h̄2m4

v2
B00m − 3

4

h̄2m4

v2
Bm00

−27

4

h̄2m4

v2
Bmmm

−1

2

h̄2m2

v2
I(0, 0)C00(x) +

1

2

h̄2m2

v2
I(0,m)C00(x)

+
1

2

h̄2m2

v2
I(0, 0)Cmm(x) +

3

2

h̄2m2

v2
I(0,m)Cmm(x)

+
1

2

h̄2m4

v2
B00m(x) +

1

4

h̄2m4

v2
Bm00(x) +

9

4

h̄2m4

v2
Bmmm(x)

+
1

2
h̄ I(0, 0) δZ |h̄ −

1

2
h̄ A0(x) δZ |h̄ +

3

2
h̄ I(0,m) δZ |h̄ −

1

2
h̄ Am(x) δZ |h̄

−3

2
h̄m2 I(0,m, 0,m) δZ |h̄ + 3h̄ I(0,m, 0,m) δµ|h̄

+
1

2
h̄m2 Cmm(x) δZ |h̄ − h̄ Cmm(x) δµ|h̄

+
1

18

v6

m4
(δλ|h̄)2 − 1

3

v4

m4
δµ|h̄ δλ|h̄ +

v2

m2
δµ|h̄2 − 1

6

v4

m2
δλ|h̄2

+O
(

h̄3
)

(9.25)

If we compare this result to the result for the ϕ1- and ϕ2-propagator (7.13), obtained
in chapter 7, we find that both results agree. So, although it was far from obvious that
the simple calculation done in chapter 7 was correct, the result agrees with the proper
calculation done in this chapter.

9.1.3 Schwinger-Dyson Check

We can check the result (9.25) by substituting it in the Schwinger-Dyson equations of
the N = 2 linear sigma model. This check is most conveniently done on the level of the
unrenormalized action.

The Schwinger-Dyson equations for the propagator can be derived through the Schwinger-
Symanzik equations:

[

∂S

∂ϕ1(x)
|ϕi=h̄

∂
∂Ji

− J1(x)

]

Z (J1, J2) = 0

[

∂S

∂ϕ2(x)
|ϕi=h̄

∂
∂Ji

− J2(x)

]

Z (J1, J2) = 0 (9.26)

Substituting the unrenormalized action of our N = 2 linear sigma model, operating on
both sides of the first Schwinger-Symanzik equation with ∂

∂J1(0)
and finally putting all
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sources to zero we find the Schwinger-Dyson equation for the propagator:

(

∇2 +
1

2
m2

)

〈ϕ1(0)ϕ1(x)〉−
m2

2v2
〈ϕ1(0)ϕ3

1(x)〉−
m2

2v2
〈ϕ1(0)ϕ1(x)ϕ

2
2(x)〉 = −h̄δd(x) (9.27)

Now we will check the result (9.25). First we have to know the 4-points Green’s
functions however (not including counter terms).

〈ϕ1(0)ϕ3
1(x)〉 + 〈ϕ1(0)ϕ1(x)ϕ

2
2(x)〉 =

〈(v + η(0))(v + η(x))3 cosw(0)/v cosw(x)/v〉 =
1

2
〈(v + η(0))(v + η(x))3 cos ((w(0) − w(x))/v)〉 =

1

2
v4 + 2v3〈η〉 − 1

2
v2〈w2〉 +

1

2
v2〈w(0)w(x)〉 +

3

2
v2〈η2〉 +

3

2
v2〈η(0)η(x)〉 +

1

2
v〈η3〉 +

3

2
v〈η(0)η2(x)〉 − 3

4
v〈η(x)w2(0)〉 +

3

2
v〈η(x)w(0)w(x)〉 − v〈ηw2〉 +

1

2
v〈η(0)w(0)w(x)〉 − 1

4
v〈η(0)w2(x)〉 +

1

24
〈w4〉 − 1

12
〈w3(0)w(x)〉 +

1

8
〈w2(0)w2(x)〉 − 1

12
〈w(0)w3(x)〉 − 3

4
〈η2(x)w2(0)〉 +

3

2
〈η2(x)w(0)w(x)〉

−3

4
〈η2w2〉 − 3

4
〈η(0)η(x)w2(0)〉 +

3

2
〈η(0)η(x)w(0)w(x)〉 − 3

4
〈η(0)η(x)w2(x)〉 +

1

2
〈η(0)η3(x)〉 + O(h̄3) (9.28)

Substituting the results from section 9.1.1 gives:

〈ϕ1(0)ϕ3
1(x)〉 + 〈ϕ1(0)ϕ1(x)ϕ

2
2(x)〉 =

+
1

2
v4

−3

2
h̄v2 I(0,m) +

3

2
h̄v2 Am(x) − 1

2
h̄v2 I(0, 0) +

1

2
h̄v2 A0(x)

−h̄2 I(0,m)A0(x) − 3h̄2 I(0,m)Am(x) + h̄2 I(0, 0)A0(x) − h̄2 I(0, 0)Am(x)

+
9

2
h̄2m2 I(0,m)Cmm(x) − 9

2
h̄2m2 I(0,m)I(0,m, 0,m) +

1

2
h̄2m2 I(0,m)C00(x)

−3

2
h̄2m2 I(0, 0)I(0,m, 0,m) +

1

2
h̄2m2 I(0, 0)I(0, 0, 0, 0)

−1

2
h̄2m2 I(0,m)I(0, 0, 0, 0) − 1

2
h̄2m2 I(0, 0)C00(x) +

3

2
h̄2m2 I(0, 0)Cmm(x)

+
1

2
h̄2m2 D00m − 3

4
h̄2m4 Bm00 −

27

4
h̄2m4 Bmmm +

3

2
h̄2m2 Dmmm

−1

2
h̄2m4 B00m − h̄2m2 D00m(x) +

1

2
h̄2m4 B00m(x) − 1

2
h̄2m2 Dm00(x)

+
3

4
h̄2m4 Bm00(x) +

27

4
h̄2m4 Bmmm(x) − 9

2
h̄2m2 Dmmm(x) (9.29)

Now, substituting this and the propagator (9.25) with all the counter terms set to
zero in the Schwinger-Dyson equation (9.27) we find that the equation is satisfied.
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9.1.4 The Canonical ϕ1-Propagator

From our path integral in terms of polar field variables we can also recover the ϕ1-
propagator one would find in the canonical approach. To this end we have to ignore the
fact that

〈

cos

(

w(x) + w(y)

v

)〉

= 0 . (9.30)

Instead we have to expand both cosines around w = 0, although this is actually incorrect
in the path-integral approach. Expanding the cosines around w = 0 here corresponds to
doing perturbation theory around one minimum, where we also ignore the damping in
the η2-direction and replace the ring by an infinite line. In this case we obtain:

〈ϕ1(0)ϕ1(x)〉c = 〈ϕ1(0)ϕ1(x)〉 − 〈ϕ1〉2

= 〈η(0)η(x)〉c −
1

v
〈η(0)w2(x)〉c +

1

4v2
〈w(0)w(x)〉2

− 1

v2
〈η(0)η(x)〉〈w2〉 + O

(

h̄3
)

= +h̄ Am(x)

+
h̄2m2

v2
I(0, 0)Cmm(x) + 3

h̄2m2

v2
I(0,m)Cmm(x) +

1

2

h̄2m4

v2
Bm00(x)

+
9

2

h̄2m4

v2
Bmmm(x)

−h̄ Am(x) δZ |h̄ + h̄m2 Cmm(x) δZ |h̄ − 2h̄ Cmm(x) δµ|h̄
+O

(

h̄3
)

(9.31)

This propagator agrees with the η1-propagator we found in the canonical approach (6.10).

In this ϕ1-propagator we can substitute the counter terms (6.24) that we found in
chapter 6. Then this result will satisfy the renormalization conditions from chapter 6.

Also this propagator can be substituted in the Schwinger-Dyson equation, together
with the result for 〈ϕ1(0)ϕ3

1(x)〉 + 〈ϕ1(0)ϕ1(x)ϕ
2
2(x)〉 in this approach, where we expand

around w = 0. These results also satisfy the Schwinger-Dyson equation. This demon-
strates that both the canonical and path-integral approach give proper solutions to the
Schwinger-Dyson equations of the N = 2 linear sigma model.

Now we can also clearly see the difference between results from the canonical and
path-integral approach. (Compare (9.31) to (9.25).)

9.2 1-Dimensional Calculation

In this section we shall calculate 〈r(x)〉 and the ϕ1-propagator for the 1-dimensional
N = 2 linear sigma model using the 1-dimensional path integral in terms of polar fields
(8.106). In section 8.7 we already used this formula to compute some Green’s functions
for the arctangent toy model. We saw there that to compute Green’s functions we first
have to know Zw(0) and we calculated Zw(0) for the case of the arctangent toy model.
From this result we can easily get Zw(0) for the N = 2 linear sigma model. By looking
at the definition of Zw(0) we see that we can get Zw(0) for the sigma model by putting
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m = 0 in the Zw(0) for the arctangent toy model. So we find the simple result:

Zw(0) ∼
N−1
∏

i=0

1

r2
i

. (9.32)

In this strictly 1-dimensional calculation we shall not renormalize.

9.2.1 〈r(x)〉
For 〈r(x)〉 we thus find:

〈r(x)〉 =
1

Z(0)

∫ ∞

−∞
dr0 . . . drN−1

exp

(

−1

h̄
∆

N−1
∑

i=0

(

1

2

(ri+1 − ri)
2

∆2
− h̄2

8r2
i

+
µ

4v2
(r2
i − v2)2

)

)

rj . (9.33)

This is a normal one-dimensional path integral that we can calculate in the continuum.
The minimum of the action is at rm, where rm is defined by:

h̄2

4r3
m

+
µ

v2
(r2
m − v2)rm = 0. (9.34)

We can calculate rm up to a certain order in h̄. We want our final answer of the expec-
tation value of r(x) up to order h̄2. Then we should also know rm up to this order. This
is readily calculated:

rm = v − 1

8µv3
h̄2 + O(h̄3). (9.35)

Now we use the saddle-point method and expand the action in (9.33) around r = rm:

r(x) = rm + η(x). (9.36)

In the action we can discard terms of order h̄3 or higher. In the continuum limit the
action becomes:

S(η) =

∫

dx

(

1

2
(η′)2 + µη2 +

µ

v
η3 +

µ

4v2
η4 − h̄2

8v2
+ O(h̄3)

)

. (9.37)

Notice that the term of order h̄2 1
2 (h̄2η) exactly drops out of the action.

Finally we get for 〈r(x)〉:

〈r(x)〉 = v − h̄2

8µv3
+ 〈η(x)〉 + O(h̄3) (9.38)

The last term gives the following contributions (We define again µ ≡ 1
2
m2.):

= −3

4

h̄

vm
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= −27

32

h̄2

v3m2

= −27

32

h̄2

v3m2

= −3

8

h̄2

v3m2

=
9

32

h̄2

v3m2

=
9

16

h̄2

v3m2

=
1

8

h̄2

v3m2
(9.39)

Summing everything we get for 〈r(x)〉:

〈r(x)〉 = v − 3

4

h̄

vm
− 43

32

h̄2

v3m2
+ O(h̄3) . (9.40)

Does this agree with the d-dimensional continuum calculation? In this d-dimensional
calculation 〈r(x)〉 is given by:

〈r(x)〉 = v + 〈η(x)〉 . (9.41)

We have computed the d-dimensional result for 〈η(x)〉 in section 9.1.1. To compare
we first have to set all counter terms in the d-dimensional result from section 9.1.1 to
zero, because we did not renormalize in the 1-dimensional case. Also we have to realize
that the d-dimensional result contains infrared divergent loop integrals. These infrared
divergences have to be regularized. The most straightforward way to regularize them is
to introduce a mass ε for the w-field. However then we would have to do the computation
of 〈η〉 in section 9.1.1 all over again. In 〈η〉 from section 9.1.1 all terms of order ε are
absent, we need those terms now. For example a term

ε I(0, ε) (9.42)

will give a finite contribution in d = 1, it gives 1/2 plus terms of order ε.
A more convenient way to regularize the infrared divergences is to use dimensional

regularization. In this scheme we have, for d = 1:

I(0, 0) = 0

D00m =
1

2m4

Bm00 =
1

m6
(9.43)
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Substituting these results and the results for the other standard integrals for d = 1 (see
appendix A) in 〈η〉 from section 9.1.1 we find indeed the same result as (9.40).

The results of the standard integrals above can be found conveniently by the Mellin-
Barnes technique. This technique is studied extensively in the literature, see the book
by Smirnov [36] and articles by Bollini et al. [37], Smirnov [38], Tausk [39], Czakon [40]
and Anastasiou et al. [41].

9.2.2 The ϕ1-Propagator

Now we wish to calculate the ϕ1-propagator. For this we need to know 〈coswj1 coswj2〉w.
We shall use the following formula:

coswj1 coswj2 =
1

2

(

cos(wj1 − wj2) + cos(wj1 + wj2)
)

. (9.44)

Now when we take the average over w the last term will give zero since it is not invariant
under a global shift of the w’s. We get:

〈coswj1 coswj2〉w =
1

2
〈cos(wj1 − wj2)〉w

=
1

2

∞
∑

n=0

1

(2n)!
(−1)n〈(wj1 − wj2)

2n〉w. (9.45)

We should calculate the quantities 〈(wj1 − wj2)
2n〉w. Now, as can easily be seen from

the path integral the variables wi+1 − wi have a Gaussian distribution. So the variables
wj1 − wj2 , which are sums of these variables, also have a Gaussian distribution. So we
can use the Wick expansion for the averages 〈(wj1 − wj2)

2n〉w:

〈(wj1 − wj2)
2n〉w = (2n− 1)!!〈(wj1 − wj2)

2〉nw
=

(2n− 1)!

2n−1(n− 1)!
〈(wj1 − wj2)

2〉nw. (9.46)

Now we know 〈(wj1 − wj2)
2〉w:

〈(wj1 − wj2)
2〉w = ∆2

j2−1
∑

k=j1

j2−1
∑

l=j1

〈w′
lw

′
k〉w

=

j2−1
∑

k=j1

j2−1
∑

l=j1

h̄∆
1

r2
l+1

δlk

=

j2
∑

k=j1+1

h̄∆
1

r2
k

. (9.47)
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Here the prime denotes the discrete derivative again, as defined in (8.128). Now we finally
get:

〈coswj1 coswj2〉w =
1

2

∞
∑

n=0

1

(2n)!
(−1)n

(2n− 1)!

2n−1(n− 1)!

(

j2
∑

k=j1+1

h̄∆

r2
k

)n

=
1

2

∞
∑

n=0

1

n!

(

−1

2

j2
∑

k=j1+1

h̄∆

r2
k

)n

=
1

2
exp

(

−
j2
∑

k=j1+1

h̄∆

2r2
k

)

. (9.48)

Now the complete propagator becomes:

〈ϕ1(x1)ϕ1(x2)〉 =
1

2

1

Z(0)

∫ ∞

−∞
dr0 . . . drN−1 rj1rj2

exp

(

−1

h̄
∆

N−1
∑

i=0

(

1

2

(ri+1 − ri)
2

∆2
− h̄2

8r2
i

+
µ

4v2
(r2
i − v2)2

)

)

exp

(

−
j2
∑

i=j1+1

h̄∆

2r2
i

)

. (9.49)

We expand again around r = rm. Also the last exponent in (9.49) should be expanded:

exp

(

−
j2
∑

i=j1+1

h̄∆

2r2
i

)

= exp

(

−
j2
∑

i=j1+1

h̄∆

2

1

r2
m + 2rmηi + η2

i

)

= exp

(

− h̄∆
2

j2
∑

i=j1+1

(

1

r2
m

− 1

r3
m

2ηi +
1

r4
m

3η2
i + . . .

)

)

= e
− h̄

2r2
m

|x1−x2|
(

1 +
h̄∆

2

j2
∑

i=j1+1

( 1

r3
m

2ηi −
1

r4
m

3η2
i + . . .

)

+ . . .

)

. (9.50)

Remember that we only wish to calculate everything up to order h̄2, so the terms which
are indicated by the dots in (9.50) are unimportant to us. For the ϕ1-propagator we get:

〈ϕ1(x1)ϕ1(x2)〉 =

1

2
e
− h̄

2r2
m

|x1−x2| ·
∫

Dη (rm + η(x1))(rm + η(x2))
(

1 + h̄
2

∫ x2

x1
dx
(

2
r3m
η(x) − 3

r4m
η2(x)

)

)

e−
1
h̄
S

∫

Dη e− 1
h̄
S

+O(h̄3) (9.51)

with

S =

∫

dx

(

1

2
(η′(x))2 + µη2(x) +

µ

v
η3(x) +

µ

4v2
η4(x) − h̄2

8v2

)

. (9.52)
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The fraction in this expression can be computed in the ordinary way by using Feynman
diagrams. In all rm’s occurring in (9.51) there are h̄’s. We should also expand all of these
around h̄ = 0.

e
− h̄

2r2
m

|x1−x2|
= e−

h̄

2v2 |x1−x2|(1 + O(h̄3)
)

(9.53)

We will not expand the exponential on the right-hand side around h̄ = 0 but leave it as an
overall factor. If we would expand this exponential as well it would no longer be directly
apparent that the propagator goes to zero if the distance between x1 and x2 becomes
large. All the rest we will expand up to order h̄2.

∫

Dη (rm + η(x1))(rm + η(x2))
(

1 + h̄
2

∫ x2

x1
dx
(

2
r3m
η(x) − 3

r4m
η2(x)

)

)

e−
1
h̄
S

∫

Dη e− 1
h̄
S

= r2
m + r2

m

h̄

2

∫ x2

x1

dx

∫

Dη
(

2
r3m
η(x) − 3

r4m
η2(x)

)

e−
1
h̄
S

∫

Dη e− 1
h̄
S

+

rm

∫

Dη (η(x1) + η(x2))
(

1 + h̄
2

∫ x2

x1
dx
(

2
r3m
η(x) − 3

r4m
η2(x)

)

)

e−
1
h̄
S

∫

Dη e− 1
h̄
S

+

∫

Dη η(x1)η(x2)
(

1 + h̄
2

∫ x2

x1
dx
(

2
r3m
η(x) − 3

r4m
η2(x)

)

)

e−
1
h̄
S

∫

Dη e− 1
h̄
S

+ O(h̄3) (9.54)

= v2 − h̄2

4µv2
+
h̄

v

∫ x2

x1

dx
x − 3h̄

2v2

∫ x2

x1

dx
x x

+

v

(

x1
+

x2
+

h̄

2

∫ x2

x1

dx
2

v3

x1 x
+
h̄

2

∫ x2

x1

dx
2

v3

x2 x
)

+

x1 x2
+ O(h̄3)

= v2 + h̄

(

− 3

2m
+

1

2m
e−m|x1−x2|

)

+

h̄2

(

− 9

8m2v2
− 1

2m2v2
e−m|x1−x2| +

1

8m2v2
e−2m|x1−x2| +

3

4mv2
|x1 − x2|e−m|x1−x2| − 3

2mv2
|x1 − x2|

)

+ O(h̄3) (9.55)
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Finally we get for the complete ϕ1-propagator:

〈ϕ1(x1)ϕ1(x2)〉 =
1

2
e−

h̄

2v2 |x1−x2|
(

v2 + h̄

(

− 3

2m
+

1

2m
e−m|x1−x2|

)

+

h̄2

(

− 9

8m2v2
− 1

2m2v2
e−m|x1−x2| +

1

8m2v2
e−2m|x1−x2| +

3

4mv2
|x1 − x2|e−m|x1−x2| − 3

2mv2
|x1 − x2|

)

+ O(h̄3)

)

.

(9.56)

Does this result agree with the d-dimensional continuum calculation? It does, however
first we have to expand the exponential

e−
h̄

2v2 |x1−x2| , (9.57)

because the d-dimensional result (9.25) is a perturbative series in h̄, whereas the expo-
nential above is not. Secondly we have to set all counter terms in (9.25) to zero. Thirdly
we have to realize that (9.25) contains infrared divergences. These are most conveniently
regularized again in the dimensional regularization scheme. In this scheme we have:

I(0, 0) = 0

A0(x) = −1

2
|x|

I(0, 0, 0, 0) = 0

D00m =
1

2m4

B00m = − 1

m6

Bm00 =
1

m6

C00(x) =
1

12
|x|3

B00m(x) =
1

24m6

(

−m3|x|3 − 6m|x|e−m|x| − 24e−m|x| − 18m|x|
)

Bm00(x) =
1

8m6

(

2m2|x|2 + 8
)

(9.58)

These integrals can again easily be calculated with the Mellin-Barnes technique. Substi-
tuting these results in (9.25) gives indeed the result (9.56).

There is a difference between (9.56) and (9.25) however. In (9.56) we see that the
propagator goes to zero for large |x1 − x2|. Only when we expand the exponential that
causes this behavior we recover the result (9.25) we get from the d-dimensional continuum
calculation specified to d = 1. How do we recover the exponential from the d-dimensional
continuum calculation?

9.2.3 Recovering (9.56)

To recover the 1-dimensional result (9.56) completely from the d-dimensional continuum
result (9.25) we actually also need (parts of) higher order terms in (9.25). It will appear
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that the momentum-space version of (9.25) has terms like:

h̄

p2
,
h̄3

p4
,
h̄5

p6
, etc. , (9.59)

when these higher order terms are included. (Here we have calculated in the dimensional
regularization scheme.) For d = 1 these terms are exactly what we get when transforming
the exponential

e−
h̄

2v2 |x1−x2| , (9.60)

to momentum space (in the dimensional regularization scheme). In this way we can
in principle recover the result (9.56) from the d-dimensional result (9.25), although in
practice we can never compute the terms of arbitrarily high order.

Considering the one-dimensional result, and knowing that we have to re-sum part of
it to obtain the true propagator, which drops to zero nicely for large distances, a good
question would be: Should we also re-sum in d dimensions? If this were the case, then
our result (9.25) would still be incomplete, in the sense that we also need higher order
terms to see the true physics. Fortunately this is not the case. The reason is as follows.

In one dimension the terms (9.59) all come from the ψ2-propagator. (Here we mean
the ψ2-propagator from chapter 7.) These terms generate a mass for the ψ2-particle. In
configuration space this is mirrored by the exponential (9.60), from which we can read
off a mass

h̄

2v2
. (9.61)

Now the Goldstone theorem tells us that if we have spontaneous symmetry breaking, the
Goldstone boson is massless, and stays massless at all orders in perturbation theory. In
our case ψ2 is the Goldstone boson in the canonical approach. For d = 1 we do not have
SSB (see [31, 32]), so the Goldstone theorem does not forbid that a mass is generated
for the ψ2-particle. In fact, we have seen that a mass is generated. For d > 2 we do
have SSB in the canonical approach, and the Goldstone theorem forbids that a mass is
generated. As a consequence the terms

h̄3

p4
,
h̄5

p6
, etc. (9.62)

do not occur in the ψ2-propagator. And thus there is nothing to re-sum, and the result
(9.25) can be considered complete in the sense that higher order terms will not cause
the propagator to drop to zero for large distances. This means we are not missing any
important physics by only having the ϕ1- and ϕ2-propagator up to order h̄2.

The case d = 2 is a special case, see also [31, 32].

9.3 The Effective Potential

We can also calculate the effective potential via the path integral in terms of polar fields.
To this end we introduce source terms in the renormalized action:

S =

∫

ddx

(

1

2
(∇ϕ1)

2 +
1

2
(∇ϕ2)

2 − 1

2
µ
(

ϕ2
1 + ϕ2

2

)

+
λ

24

(

ϕ2
1 + ϕ2

2

)2 − J1ϕ1 − J2ϕ2 +

1

2
δZ (∇ϕ1)

2 +
1

2
δZ (∇ϕ2)

2 − 1

2
δµ
(

ϕ2
1 + ϕ2

2

)

+
δλ
24

(

ϕ2
1 + ϕ2

2

)2
)

. (9.63)
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In chapter 7 we already computed the effective potential for the N = 2 linear sigma
model. However there we had to discard the term (7.24) to avoid ending up with an
expression that contained infrared divergences at order h̄. Also we could not find the
interpolation of the effective potential between small J (order h̄) and J of order 1 (h̄0).
In this section we shall see if we can do a better job by calculating in terms of polar fields.

According to the conjecture the action in terms of polar fields is

S =

∫

ddx

(

1

2
(∇r)2 +

1

2

r2

v2
(∇w)2 − 1

2
µr2 +

λ

24
r4 − J1r cos

w

v
− J2 sin

w

v
+

1

2
δZ (∇ϕ1)

2 +
1

2
δZ (∇ϕ2)

2 − 1

2
δµr

2 +
δλ
24
r4

)

, (9.64)

provided we calculate in a d-dimensional way in the continuum.
Introducing

J1 ≡ J cos β

J2 ≡ J sin β (9.65)

the minimum of the first line of the action, i.e. the classical action, is given by:

r =
2v√

3
sin
(

α+
π

3

)

, w = vβ , (9.66)

with
2µv

3
√

3
sin 3α = J . (9.67)

Expanding the action around the minimum,

r(x) = v̄ + η(x) , v̄ ≡ 2v√
3

sin
(

α+
π

3

)

w(x) = vβ + w̄ , (9.68)

we find:

S =

∫

ddx

(

1

2
(∇η)2 +

(

−1

2
µ+

3

2

µv̄2

v2

)

η2 +
1

2

v̄2

v2
(∇w̄)2 +

v̄

v2
η (∇w̄)2 +

1

2

1

v2
η2 (∇w̄)2 +

µv̄

v2
η3 +

µ

4v2
η4 +

− Jv̄ cos
w̄

v
+ Jη

(

1 − cos
w̄

v

)

− 1

2
µv̄2 +

1

4

µv̄4

v2
+

1

2
δZ (∇η)2 +

1

2
δZ
v̄2

v2
(∇w̄)2 + δZ

v̄

v2
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1

2
δZ

1

v2
η2 (∇w̄)2 +
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24
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(
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6
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η +

(
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1

4
v̄2δλ

)

η2 +
1

6
v̄δλη

3 +
1

24
δλη

4

)

.

(9.69)

According to the conjecture the generating functional is now given by:

Z(J1, J2) =

∫

Dη
∫

Dw̄ exp

(

−1

h̄
I

∫

ddx (−h̄ ln (v̄ + η))

)

e−
1
h̄
S (9.70)
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As can easily be seen from the action we have one minimum for J 6= 0, whereas we
have a ring of minima for J = 0. This means that for J of order 1 it is correct to expand
the cosine of w̄/v. In that case we recover the effective potential from the canonical
approach. This is expected because for large J it is correct to take into account only one
minimum. For small J , i.e. J of order h̄ things are a bit more difficult. For such small
J there is strictly speaking still one minimum, but the ring is so flat that it is incorrect
to ignore the other points. We know this because when J becomes really zero the other
points in the ring start to play an important role. What we can do is the following. We
write the generating functional as:

Z(J1, J2) =

∫

Dη
∫

Dw̄ exp

(

−1

h̄
I

∫

ddx (−h̄ ln (v̄ + η))

)

exp

(

1

h̄

∫

ddx J (v̄ + η) cos
w̄

v

)

e−
1
h̄
S′

(9.71)

with S ′ given by:

S ′ =

∫

ddx
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24
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(9.72)

Note that in the new action S ′ only ∇w̄ occurs. Now focus on the part that we pulled
out of the action:

exp

(

1

h̄

∫

ddx J (v̄ + η(x)) cos
w̄(x)

v

)

= exp

(

1

h̄

∫

ddx Jr(x) cos
w̄(x)

v

)

=
∞
∑

n=0

1

n!

(

1

h̄

∫

ddx Jr(x) cos
w̄(x)

v

)n

=
∞
∑

n=0

1

n!

Jn

h̄n

∫

ddx1 · · · ddxn r(x1) · · · r(xn) cos
w̄(x1)

v
· · · cos

w̄(xn)

v
(9.73)

We are going to combine the cosines into a sum of single cosines. Because the action
S ′ only depends on ∇w̄ only the O(2)-invariant cosines are going to survive in the path
integral. This means, when combining the cosines, all cosines with an unequal number
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of +w̄’s and −w̄’s are going to vanish under the path integral.

exp

(

1

h̄

∫

ddx J (v̄ + η(x)) cos
w̄(x)

v

)

=
∞
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(9.74)

Now we can expand the cosine, because it contains only differences of two w̄’s. Such
differences can be written as an integral over ∇w̄. From the path integral it can be
seen that ∇w̄ is small (of order

√
h̄), such that it is indeed correct to expand the cosine.

Keeping the first and second term from the expansion of the cosine we find:
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=
∞
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+
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ddx
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(9.75)

Here In(x) is a modified Bessel function of the first kind.
We can see clearly here that, if J is of order 1, the first and second term are of the

same magnitude (both order 1). This means that when J is of order 1 we need all terms
of the expansion of the cosine. This mirrors the fact that for J of order 1 there is one
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clear minimum and the cosine plays a crucial role in determining where this minimum is
located. Keeping all the terms of the expansion of the cosine is very hard in an actual
computation, so the formula above is not very convenient to find the generating functional
for J of order 1.

It is convenient for J of order h̄ however, in this case we see that the first term above
is of order 1, while the second term is of order h̄. This means discarding the higher order
term seems to be a good approximation. Discarding these terms means the generating
functional is correct up to order h̄. Also discarding other terms of higher order than h̄
we find for the generating functional:

Z(J1, J2) =

∫

Dη
∫

Dw̄ exp

(
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+

(
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(
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(9.76)

Here we have also expanded v̄,

v̄ = v +
J

2µ
+ O(h̄2) , (9.77)

and Ω denotes the space-time volume. Also in the action S ′ terms of higher order than h̄2

should be discarded. (There is a 1/h̄ in front of the action.) In the Jacobian we should
discard all terms of order higher than h̄.

From the formula above one could in principle calculate the generating functional,
and from it the ϕ1- and ϕ2-expectation-value, all up to order h̄. The expectation values
are given by:

〈ϕ1〉(J1, J2) =
h̄

Ω

∂

∂J1

lnZ(J1, J2)

=
h̄

Ω
cos β

∂

∂J
lnZ(J1, J2)

〈ϕ2〉(J1, J2) =
h̄

Ω

∂

∂J2

lnZ(J1, J2)

=
h̄

Ω
sin β

∂

∂J
lnZ(J1, J2) (9.78)
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Notice that the generating functional does not depend on the direction of the source β.
From these expectation values one can then find the effective potential.

However, when calculating the generating functional one encounters infrared diver-
gences again. The reason is the same as in chapter 7. The formula above is only valid
for small J , whereas we saw already in the canonical approach that to avoid the infrared
singularities we need all n-points Green’s functions. So we also need to know Z(J1, J2)
for all J , which is very hard, as we saw above. In chapter 7 we could find a result (up
to order h̄) without infrared divergences by discarding the term (7.24), which caused the
infrared divergences at order h̄. In the formula above it is not clear what we can do to
avoid the infrared divergences.

It is however easy to find the ϕ1- and ϕ2-expectation-values at lowest order from the
formula for Z above. We find:

〈ϕ1〉(J1, J2) = v cos β
I1
(

JvΩ
h̄

)

I0
(

JvΩ
h̄

)

〈ϕ2〉(J1, J2) = v sin β
I1
(

JvΩ
h̄

)

I0
(

JvΩ
h̄

) , (9.79)

and
√

〈ϕ1〉2 + 〈ϕ2〉2 = v
I1
(

ΩvJ
h̄

)

I0
(

ΩvJ
h̄

) , (9.80)

which agrees with the results from chapter 7.
The important thing however, even though we have not been able to explicitly calcu-

late the effective potential up to order h̄ in this approach, or find the interpolating form
of the effective potential between the cases J = O(1) and J = O(h̄), is that the effective
potential we find is flat at the origin. This means we find the Maxwell construction of the
effective potential from the canonical approach. And we find a convex effective potential,
as it should be in the path-integral approach.

From the formula (9.80) one can also clearly see that it matters for the 1-point Green’s
function, or tadpole, in which order the limits J → 0 and Ω → ∞ are taken. If we first
take J → 0, and then Ω → ∞, then (9.80) becomes zero. This corresponds to the
path-integral approach.

If we first take Ω → ∞, and only then J → 0, then (9.80) becomes v, which corre-
sponds to the canonical approach.



Chapter 10

Conclusions

The most fundamental theory of nature known at present day is the ‘Standard Model’.
This theory agrees very well with experimental results. All particles that are predicted
in the Standard Model have also been detected in experiments, except for one: the Higgs
boson. The existence of this Higgs boson in the Standard Model is derived within this
model via what we call ‘the canonical approach’.

In the canonical approach one takes a classical field theory and quantizes it by im-
posing certain commutation or anti-commutation relations on the fields. The particle
content of the theory is found by solving the time independent Schrödinger equation.
One can find the vacuum state, i.e. the lowest energy state, via this equation, and one
can build a whole Fock space on this vacuum state. The time evolution of the states
is governed by the time evolution operator. Via this time evolution operator one can
derive the Schwinger-Dyson equations. These equations tell one about the probability
amplitudes for certain physical processes.

In the Higgs sector of the Standard Model the time independent Schrödinger equation
is too hard to actually solve. Therefore one postulates some properties of the vacuum
state, inspired by the classical lowest energy state. For example, one assumes that the
vacuum expectation value of the Higgs field is non-zero, after which one can construct the
Fock space. This assumption is also very important when solving the Schwinger-Dyson
equations. These Schwinger-Dyson equations can be solved iteratively. In this way one
obtains a perturbative series for the Green’s functions of the theory. Assuming that the
vacuum expectation value of the Higgs field is non-zero one finds the Green’s functions
of the canonical approach. This canonical approach is completely self-consistent.

Another formulation of quantum field theory is the so-called path-integral formula-
tion. The path integral is merely a solution to the Schwinger-Dyson equations, like the
perturbative series mentioned above. For ordinary theories the path-integral formulation
is just another formulation of the theory, it gives the same physical results. The Green’s
functions in both formulations come out to be the same.

However, in theories for which the canonical approach predicts spontaneous symmetry
breaking, it appears that both formulations of the same quantum field theory do not
yield identical results. This was the central topic of this thesis. We have calculated
Green’s functions for two such theories, for which the canonical approach predicts SSB.
Surprisingly it appeared that, indeed, the path-integral approach gives very different
Green’s functions than the canonical approach.

For example, the effective potential in the canonical approach is not convex, although
one can derive, via the path-integral formulation that an effective potential should always
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be convex. This is known as the convexity problem. However, it is not really a problem,
because the convexity is derived in the path-integral formulation of the theory. If we
accept that the canonical approach and the path-integral approach are different, then the
problem is resolved.

The first model we have studied is the Euclidean version of the N = 1 linear sigma
model. There we clearly saw that the Green’s functions from the canonical approach and
the path-integral approach are different. The canonical Green’s functions can be obtained
from the path integral by, for some reason, only taking into account one minimum. We
also saw that the divergences in both approaches are identical, meaning that one can use
the same counter terms in both approaches to make everything finite. We also calculated
the effective potential in the path-integral approach and found it to be well-defined and
convex, as it should be on grounds of general arguments.

We also studied the path-integral approach to this model where we now fix the paths
in the path integral at some point in time over all of space. In this case we saw that we
reproduce the canonical Green’s functions. Thus it is possible to get the physics from
the canonical approach from a path-integral approach, however in order to obtain this we
have to fix the paths. Also in this case the divergences are the same as in the canonical
approach. We also found the (alternative) effective potential, and found it to be convex.

The second model that we studied was the N = 2 Euclidean linear sigma model.
Here we saw again that the Green’s functions obtained in the canonical and path-integral
approach are very different. Divergences are identical in both approaches again. In
chapter 7 we first tried a naive approach, making some questionable steps, to take into
account all minima of the path integral. In chapter 9 we performed a more rigorous
calculation of the path integral, based on the path integral in terms of polar fields.
Results appeared to be the same. Also we obtained the effective potential of the N = 2
LSM within the path-integral approach and found it to be convex.

With all these calculations we have established that, in the case of a theory which
exhibits SSB in the canonical approach, the path-integral approach gives different Green’s
functions, which may indicate different physics. This brings up some interesting questions
related to the Higgs sector of the Standard Model. The prediction of the Higgs particle
and its interaction are all based on the canonical approach. What if we treat the Higgs
sector of the Standard Model not in the canonical way, but instead via the path integral?
What would the phenomenology of such an approach be? Could we build a theory
without a Higgs particle in this way, or could we explain why the Higgs particle has not
been found up to now?

The first step to answer these questions would be to look at the phenomenology of the
N = 1 LSM and the N = 2 LSM. This is still unknown territory, which marks the end
of this thesis, but hopefully also the beginning of a new quest to resolve the mysteries
surrounding ‘the holy grail of particle physics’.



Appendix A

Standard Integrals

Throughout this thesis we have introduced the following standard integrals:

I (q1,m1, q2,m2, . . . , qn,mn) ≡
1
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ddk
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(A.3)

Am(x) ≡ 1

(2π)d
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ddk eik·x
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k2 +m2
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Cm1m2(x) ≡ 1
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Bm1m2m3(x) ≡ 1
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∫

ddk ddl eik·x
1

(k2 +m2
1)

2

1

l2 +m2
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(A.7)

I ≡ 1

(2π)d

∫

ddk (A.8)

In this appendix we list several results for standard integrals, which are used in our
computations throughout this thesis.

A.1 d = 1

For d = 1 the standard integrals that we come across in calculations are not divergent.
Therefore it is not necessary to introduce a regularization scheme. The following results
are used in this thesis:

163



164 APPENDIX A. STANDARD INTEGRALS

I(0,m) =
1

2m
(A.9)

I(0,m1, 0,m2) =
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A.2 d = 4

For d = 4 some of the standard integrals that we encounter are divergent, and we have
to introduce a regularization scheme. We will calculate these integrals in the dimensional
regularization scheme. The following results are used in this thesis:
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I(0,m, 0,m, 0,m) =
1

(4π)2

1

2m2
(A.25)
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I(0,m, p,m) = − 1
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with

f(x) =
∞
∑

n=1

(−1)n
n!(n− 1)!

(1 + 2n)!
xn (A.28)
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Summary

A quantum field theory, like the Standard Model, can be set up in two ways. The first,
and mostly used, way is by canonical quantization. This means one takes a classical field
theory and imposes commutation or anti-commutation relations on the canonical fields
and their conjugated momenta. In this way one can eventually find the Feynman rules
of the theory and calculate probabilities for scattering processes.

The second way to set up a quantum field theory is by postulating a path integral. In
this case the path integral determines the Green’s functions, which give the probabilities
for actual (physical) scattering processes again.

In principle both ways of setting up the QFT give identical results. So both ways
are merely different formalisms: similarly, quantum mechanics can be formulated via the
Schrödinger equation and via the Feynman path integral.

For some theories however, the canonical approach and the path-integral approach do
not yield identical results. This is the case for theories that exhibit spontaneous symmetry
breaking in the canonical approach. In these models, although both approaches satisfy
the same fundamental Schwinger-Dyson equations, results are different. This difference
has been the main topic of this thesis, and has been investigated for two models: the
Euclidean N = 1 linear sigma model and the Euclidean N = 2 linear sigma model.

A manifestation of the difference between the canonical and path-integral approach
can also be found in the literature. For some theories exhibiting spontaneous symmetry
breaking it was known that the effective potential calculated in the canonical approach is
non-convex, whereas from the path integral one can prove that such an effective potential
is always convex1. This contradiction is known as the convexity problem. A soon as
one realizes that the canonical and path-integral results do not have to be the same this
convexity problem is resolved.

The convexity problem is discussed thoroughly, and also resolved, in the literature.
However a clear discussion of the difference between the canonical and path-integral
formalism does not exist. It is not clear whether the different results from both approaches
also indicate different physics, i.e. different probabilities for actual scattering processes.

In this thesis we have investigated both approaches for the case of two simple Eu-
clidean quantum field theories. In the case of the N = 1 linear sigma model we have
presented the canonical approach (chapter 3) and the path-integral approach (chapter 4).
Results for the Green’s functions and the effective potential are clearly different. The ef-
fective potential calculated from the path-integral approach is nicely convex, as it should
be, whereas the effective potential from the canonical approach is not. In the case of the
N = 1 linear sigma model we have also considered a path-integral formalism where we fix
the paths all over space to have a given value at some time (chapter 5). In this case the

1In this thesis we have only proven this for Euclidean theories, however in the literature one finds
proofs also for Minkowskian theories, see e.g. [13].
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Green’s functions came out to be the same as in the canonical approach. But to obtain
this we had to introduce the somewhat artificial path-fixing constraint.

In the case of the N = 2 linear sigma model we have also presented the canonical
(chapter 6) and the path-integral approach (chapters 7 and 9). Here the calculations in
the path-integral approach are more complicated than in the N = 1 linear sigma model,
because the minima of the bare potential form a continuous set. To this end we had to
investigate also how one can formulate a path integral in terms of polar field variables
(chapter 8). In the end we demonstrated again that the Green’s functions from the
canonical and path-integral approach are different.

Although we have established that, in general, canonical and path-integral results
(i.e. Green’s functions) differ, in the case of a theory that exhibits spontaneous symmetry
breaking, it is not yet clear what this means for the physics of both approaches. Of
course the physics of the canonical approach is known, but the physics of the path-integral
approach requires more research. Several exciting questions remain within this approach:
are the Green’s functions of a Minkowskian quantum field theory in the path-integral
approach also different than in the canonical approach? Are the Green’s functions for a
theory with local gauge invariance also different in both approaches? Is the physics of
the Standard Model different if we formulate this model via the path integral? Is there
something like the Higgs mechanism in this approach? Is there even a Higgs particle in
this approach? The present thesis can be considered a first step towards finding answers
to these fundamental questions.
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Samenvatting

Een quantumveldentheorie, zoals het Standaard Model, kan op twee manieren opgezet
worden. De eerste, en meest gebruikte, manier gaat via canonieke quantizatie. Dit
betekent dat men een klassieke veldentheorie neemt en commutatie- of anticommutatiere-
laties oplegt aan de canonieke velden en hun geconjugeerde momenta. Op deze manier
construeert men de Feynmanregels van de theorie en kan men waarschijnlijkheden voor
verstrooiingsprocessen berekenen.

De tweede manier om een quantumveldentheorie op te zetten is door het postuleren
van een padintegraal. In dit geval bepaalt de padintegraal de Greense functies, welke op
hun beurt de waarschijnlijkheden voor fysische verstrooiingsprocessen geven.

In principe geven beide manieren van het opzetten van een quantumveldentheorie
identieke resultaten. Beide manieren zijn slechts andere formalismen, net zoals quan-
tummechanica geformuleerd kan worden via de Schrödingervergelijking en de Feynman-
padintegraal.

Voor sommige theorieën geven het canonieke en padintegraalformalisme echter niet
dezelfde resultaten. Dit is het geval voor theorieën waarin spontane symmetriebreking
optreedt. In deze modellen, ondanks dat beide formalismen voldoen aan dezelfde fun-
damentele Schwinger-Dysonvergelijkingen, verschillen de resultaten. Dit verschil is het
hoofdonderwerp van dit proefschrift, en is onderzocht voor twee modellen: het Euclidische
N = 1 lineaire sigmamodel en het Euclidische N = 2 lineaire sigmamodel.

Een manifestatie van het verschil tussen het canonieke en het padintegraalformalisme
is al bekend in de literatuur. Voor sommige theorieën die spontane symmetriebreking
vertonen is het bekend dat de effectieve potentiaal berekend via het canonieke formal-
isme niet convex is, terwijl men via het padintegraalformalisme kan bewijzen dat deze
potentiaal altijd convex moet zijn2. In de literatuur staat deze tegenstelling bekend als
het convexiteitsprobleem. Echter wanneer men accepteert dat het canonieke en het pad-
integraalformalisme simpelweg niet hetzelfde zijn, dan verdwijnt ook deze tegenstelling.

Het convexiteitsprobleem wordt uitgebreid besproken, en opgelost, in de literatuur.
Een heldere discussie over het verschil tussen het canonieke en padintegraalformalisme
ontbreekt echter. Het is niet duidelijk of de verschillende resultaten uit beide formalismen
ook verschillende fysische overgangswaarschijnlijkheden als gevolg zullen hebben.

In dit proefschrift zijn de twee formalismen voor twee simpele Euclidische quan-
tumveldentheorieën onderzocht. In het geval van het N = 1 lineaire sigmamodel hebben
we het canonieke formalisme (hoofdstuk 3) en het padintegraalformalisme (hoofdstuk 4)
gepresenteerd. De resultaten voor de Greense functies en de effectieve potentiaal zijn
duidelijk verschillend. De effectieve potentiaal berekend vanuit het padintegraalformal-
isme is netjes convex, zoals het hoort, terwijl de effectieve potentiaal van het canonieke

2In dit proefschrift wordt dit slechts bewezen voor Euclidische theorieën, in de literatuur vindt men
ook bewijzen voor Minkowskitheorieën, zie bijv. [13].
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formalisme deze eigenschap niet heeft. In het geval van het N = 1 lineaire sigmamodel
hebben we ook een padintegraalformalisme beschouwd waarbij we de paden in de padin-
tegraal over de gehele ruimte vasthouden op een bepaalde waarde, op een bepaald tijdstip
(hoofdstuk 5). In dit geval zijn de Greense functies wel hetzelfde als in het canonieke
formalisme. Maar om dit te bereiken moeten we wel de zojuist genoemde kunstmatige
beperking van paden inbouwen.

In het geval van het N = 2 lineaire sigmamodel hebben we ook het canonieke (hoofd-
stuk 6) en het padintegraalformalisme (hoofdstukken 7 en 9) gepresenteerd. In dit geval
waren de berekeningen in het padintegraalformalisme gecompliceerder dan in het N = 1-
geval, omdat de minima van de naakte potentiaal een continue set vormen. Hiertoe
hebben we onderzocht hoe men een padintegraal in termen van polaire velden kan for-
muleren (hoofdstuk 8). Uiteindelijk kon ook voor dit N = 2 lineaire sigma model aange-
toond worden dat de Greense functies in beide formalismen anders zijn.

Ondanks dat we aangetoond hebben dat, in het algemeen, canonieke en padinte-
graalresultaten (i.e. Greense functies) niet gelijk zijn voor het geval van een theorie met
spontane symmetriebreking, is het onduidelijk wat dit betekent voor fysische resultaten
van beide formalismen. De fysische resulaten van het canonieke formalisme zijn natu-
urlijk bekend, maar verder onderzoek zal moeten uitwijzen wat de fysische resultaten van
het padintegraalformalisme zijn. Een aantal spannende vragen blijven bestaan binnen
dit formalisme: zijn ook de Greense functies van een Minkowskische quantumveldenthe-
orie anders in beide formalismen? Zijn de Greense functies van een theorie met lokale
ijkinvariantie anders in beide formalismen? Zijn de fysische resultaten van het Standaard
Model anders als we dit model via het padintegraalformalisme opzetten? Bestaat er zoiets
als het Higgsmechanisme in het padintegraalformalisme? En bestaat er een Higgsdeeltje
in dit formalisme? Dit proefschrift is bedoeld als een eerste stap op weg naar het vinden
van antwoorden op deze fundamentele vragen.
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