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Abstract: Motivated by a highly dynamic hydrological high-frequency time se-
ries, we propose time-varying Functional Principal Component Analysis (FPCA)
as a novel approach for the analysis of non-stationary Functional Time Series
(FTS) in the frequency domain. Traditional FPCA does not take into account
(i) the temporal dependence between the functional observations and (ii) the
changes in the covariance/variability structure over time, which could result in
inadequate dimension reduction. The novel time-varying FPCA proposed adapts
to the changes in the auto-covariance structure and varies smoothly over fre-
quency and time to allow investigation of whether and how the variability struc-
ture in an FTS changes over time. Based on the (smooth) time-varying dynamic
FPCs, a bootstrap inference procedure is proposed to detect significant changes
in the covariance structure over time. Although this time-varying dynamic FPCA
can be applied to any dynamic FTS, it has been applied here to study the daily
processes of partial pressure of CO2 in a small river catchment in Scotland.

Keywords: Functional Time Series; Frequency Domain; Smoothing; Principal
Components; Non-stationarity; Functional spectral density

1 Introduction

Recent advances in sensor technology allow environmental monitoring pro-
grams to record measurements at high-temporal resolutions over long time
periods, for processes which are in reality continuous in time. These High-
Frequency Data (HFD) pose several challenges in terms of statistical mod-
eling and analysis due to the complexity of such large volumes of data
stemming from the persistent and dynamic dependence structure over the
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different timescales (Elayouty et al. 2016). Functional Time Series (FTS)
analysis and its recent developments (Hörmann et al. 2015) provide an
appropriate framework for analyzing such HFD, taking into consideration
these technical challenges.
This paper introduces a novel approach that identifies and accounts for
volatility in FTS. This approach involves the development of frequency do-
main Functional Principal Components (FPCs) that vary smoothly over
time, taking into account both temporal correlation and non-stationarity
in the series. Using bootstrap procedures, these time-varying FPCs are em-
ployed to statistically assess changes over time in the covariance structure
and variability modes of the underlying FTS process.
This work is motivated by highly dynamic HFD of excess partial pressure
of carbon dioxide (EpCO2) measured every 15 minutes over 3 years at a
small catchment of the River Dee, Scotland. The long sequence of 15-minute
measurements is segmented into daily intervals, which are then smoothed
using B-splines to form a sequence of daily EpCO2 functions. The data
thus form a FTS and are viewed as realizations of a functional stochastic
process {Xk(t) : k ∈ Z, t ∈ T } valued in the Hilbert space L2(T ), with k
denoting the day as a discrete time parameter and t being the intra-day
time defined continuously on T .

2 Methodology

The proposed methodology relies on evaluating the Spectral Density (SD)
of the FTS process {Xk} at each time point k and obtaining the dynamic
FPCs (Hörmann et al. 2015) via the eigen-decomposition of the SD at each
time point k, assuming that the process varies smoothly over time. Because
the SD contains information on the whole family of lag-h covariances, the
novel FPCs accommodate the varying serial correlation. Due to the limited
number of replicates at each time point k, the local lag-h covariances and
spectral densities are computed by smoothing the sample lag-h covariances
over time using a weight kernel ws(.) with smoothing parameter s,

V̂k,h =
1∑

k′∈Z ws(|k − k′|)
∑
k∈Z

ws(|k − k′|)Xk′ ⊗Xk′+h. (1)

ws(.) is a monotonically decreasing weight function of the distance |k− k′|
regardless of the lag h, ensuring that the highest weights are assigned to the
pairs (Xk′ , Xk′+h) near the target point k. The neighborhood contributing
to the covariance estimation is determined by the choice of the kernel and
smoothing parameter. The choice of weight kernel is based on the nature
of the variable of interest; a common choice is the Gaussian density. The
smoothing parameter is chosen so that the process within each neighbor-
hood is stationary without over-fitting the original process.
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After computing V̂k,h, the local SD is estimated at each time point k by:

F̂k,θ =
1

2π

∑
h∈Z

V̂k,hexp(−ihθ), θ ∈ [−π, π], (2)

and the local eigenvalues λ̂k,m(θ) and eigenvectors ϕ̂k,m(θ) of F̂k,θ are cal-

culated. The local functional filters {φ̂kml(t) : l ∈ Z} are estimated, via the
inverse Fourier transform of ϕ̂k,m(θ), and subsequently used to filter the
original FTS across a number of lags and leads l to obtain the mth local

dynamic FPC scores at k as: Ŷ
(k)
m,k =

∑L
l=−L

∫
t∈T Xk−l(t)φ̂kml(t)dt.

The original curves can thus be approximately reconstructed, based on
these scores, using q-term (smooth) time-varying dynamic FPCs, q < ∞,
as follows:

X̂k(t) ≈
q∑

m=1

L∑
l=−L

Ŷ
(k)
m,k+lφ̂kml(t), ∀k. (3)

Based on the frequency domain local eigenvalues corresponding to the lead-
ing smooth dynamic FPCs, we propose a covariance stationarity test of
FTS. The null hypothesis of the test, that the SD of the FTS does not
vary throughout time, is investigated by evaluating whether the changes
over time in the eigenvalues of the process SD are consistent with sampling
variation. Following Miller and Bowman (2012), we propose a test statistic

based on comparing the mth eigenvalue of the local SD λ̂k,m(θ) and the

corresponding eigenvalue of the global SD obtained for the full FTS λ̂m(θ),
both averaged over all frequencies θ, at each time point. Using the paramet-
ric bootstrap, the null distribution of the test statistic is constructed which
is then used to produce a point-wise reference band highlighting where in
time there are significant deviations from the null hypothesis.

3 Simulation Study

To assess the performance of our proposed time-varying dynamic FPCs
versus the stationary dynamic FPCs proposed by Hörmann et al. (2015)
in approximating the original process, a simulation study for a variety of
non-stationary data-generating processes was conducted. The simulation
study was designed to mimic the EpCO2 data presented in this paper.
Firstly, a FTS {Xk} of 400 observations is generated from a functional auto-
regressive of order 1, FAR(1). This simulation, in practice, is performed
in a finite dimension p, using the basis expansion representation of the
functions. The coefficients for the p basis functions zk = (zk1, . . . , zkp)

>

associated with the functions Xk(t) : k = 1, ..., 400 are simulated according
to the vector auto-regressive of order 1: zk+1 = Rzk+ε∗k+1; where R is the
matrix of auto-regressive parameters whose norm defines the level of time
dependence in the data and ε∗k+1 are i.i.d normally distributed noise with
mean 0 and variance-covariance matrix Σ. This simulation is performed



4 Functional PCA for non-stationary dynamic TS

based on the estimates of R and Σ obtained for the EpCO2 data, assuming
that the covariance structure does not vary with time.
To construct a non-stationary FTS with a covariance structure that changes
over time, an ordinary FPCA is performed on the FTS simulated above
from the FAR(1) to obtain the eigenvalues (λ1, . . . , λp) and corresponding
eigenfunctions (E1(t), . . . , Ep(t)). These eigenvalues are then used to pro-
duce a p-dimensional vector of eigenvalues λb such that both absolute and
relative variance of the FPCs vary smoothly over a grid of B time blocks.
By naturally extending the work of Mardia et al. (1979) to a functional
context, a functional process {Xk} can be constructed by using:

Xk(t) = X̄(t) +

p∑
m=1

SmkEm(t), t ∈ T , k = 1, . . . , N (4)

where X̄(t) is the functional mean, Smk is the score of the mth FPC for the
kth observation and Em(t) is the mth eigenfunction. Based on this result,
a sequence of locally stationary functions is generated by simulating at b =
1, . . . , B, blocks of N/B p-dimensional vectors of PC scores from a VAR(1)
with a pre-specified level of dependence ρ and normally distributed noise
with mean 0 and variance-covariance matrix diag(λb). This provides N =
400 functions, where N/B functions share the same covariance structure.
The above simulation procedure is repeated 200 times for different choices
of ρ, reflecting weak to strong levels of dependence in the data. For each
simulated non-stationary FTS {Xk}, we compute the stationary dynamic
FPCs and the novel time-varying dynamic FPCs using the values s =
10, 20, 40 and 100 for the smoothing parameter and estimate the corre-
sponding scores, as per the methodology described in Section 2. These
quantities are then used to recover the approximating series {X̂k(t)} using
q = 1, 2 and 3 components. The performances of these approximations are
then measured in terms of the normalized mean squared errors, NMSE,
computed as: ∑

k

‖Xk(t)− X̂k(t)‖2. (5)

Due to space limitations, we only present here the simulation results for
ρ = 0.1 and 0.9. It is evident from Fig 1 that the (smooth) time-varying dy-
namic FPCs outperform the stationary dynamic FPCs in terms of NMSE.
The performance of both methods improves as the dependence level in the
data increases. This is a result of both methodologies accounting for the
correlation structure in the data. However, as we may expect, the differ-
ences become more striking as the dependence level in the data decreases
and the series becomes more dynamic. It is also noticed that the differences
become negligible as the number of components q used in the reconstruc-
tion increases and that using a smaller value for the smoothing parameter
s provides better approximations which deteriorate as q increases. This
justifies the trade-off between the smoothness of the FPCs over time and
over-fitting.
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FIGURE 1. Box-plots of the NMSE between the simulated curves and their re-
constructed versions using q = 1, 2 and 3 (from left to right) dynamic (red) and
smooth time-varying dynamic FPCs with s = 100 (olive), 40 (green), 20 (blue)
and 10 (purple), computed for 200 non-stationary simulation runs with ρ = 0.1
(top) and 0.9 (bottom).

4 Results and Discussion

The simulation results indicated that the novel non-stationary FPCs out-
perform their stationary counterparts in approximating the original pro-
cess curves and simplifying the complexity of data in almost all settings
and that improvements are more obvious as temporal dependence between
curves weakens and the system becomes more dynamic.
The time-varying dynamic FPCs are used to investigate and assess the
dynamics and variability structure in the daily smooth profiles of EpCO2

over time. The novel FPCs better approximate the original pattern as well
as the within-day variability (Fig 2); the first time-varying dynamic FPC
captured 94% of the variability. The proposed stationarity test identified
significant changes in the covariance structure over frequency and time.
The EpCO2 system appears to involve high correlation throughout summer
and winter, when the EpCO2 daily pattern is ruled by biological activity.
In transitional periods between summer and winter, the system is mostly
determined by hydrological activity and therefore exhibits more variability
responding to hydrological events like heavy storms or rainfall.
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FIGURE 2. (a) 10 successive daily curves of de-trended EpCO2 and the corre-
sponding reconstructions based on (b) the first dynamic FPC and (c) the first
time-varying dynamic FPC using s = 20 (chosen based on a sensitivity analysis)

5 Conclusion

Time-varying (smooth) FPCA proved to be an appropriate tool for re-
ducing dimensionality, extracting the most important characteristics and
simplifying the complexity in the variability structure of high-dimensional
non-stationary time series. Traditional methods of FPCA may ignore the
time dependence and non-stationarity in FTS and hence the variability
modes identified may be biased.
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