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32 Abstract— A novel miniature Wilkinson power divider (WPD) design is presented. This is 

33 achieved by substituting the quarter-wavelength transmission-lines constituting the WPD 
34 
35 with an equivalent pair of parallel transmission-lines (PPTLs) that effectively reduce the 
36 

37 circuit size of the WPD by 43% compared with a conventional design whose ground-plane is 

38 defected. Particle swarm optimization (PSO) technique is used to achieve size reduction. 

40 Meandering the transmission-lines further reduce the WPD size by 22%. The proposed WPD 
41 
42 has overall dimensions of 9.38 × 11.51 mm2 or 0.11 λg × 0.14 λg, which is compatible with 
43 

44 the requirements imposed by portable personal wireless systems. Coupling between the 

45 parallel transmission-lines is shown to extend the operational bandwidth of the power divider 

47 to 3.2 GHz (0.8-4 GHz) for a return-loss better than 10 dB. 
48 

49 

50 
Index Terms— Wilkinson power divider (WPD), pair of parallel transmission-lines (PPTLs) 

52 miniaturization, particle swarm optimization (PSO), defected ground structure (DGS). 
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1 

2 
3 1. INTRODUCTION 
4 
5 The Wilkinson power divider (WPD) is an essential component for power division or 
6 

7 combination,  which  is  necessary in  wireless  communication  systems  due  to  the isolation 

8 between  its  output  ports  [1].  These  devices  also  find  applications  in  mixers,  balanced 

10 amplifiers, and antenna arrays. The main challenge facing conventional WPDs is its large 
11 

12 circuit size, especially at low microwave frequencies, and limited bandwidth due to the use of 

13 a pair of quarter-wavelength transmission-lines in its design [2]. With the advent of multi- 
15 band wireless communication systems, a lot of studies have been done over the recent years 
16 
17 for designing multi-band or wideband WPD [3-10]. In [3], a dual-band WPD is proposed 
18 

19 using a two-section transmission-line transformer with its output ports connected through a 

20 parallel RLC circuit for improving its isolation at the two bands. At its two operating 

22 frequencies however the power selectivity of the device is low. This deficiency can improved 
23 

24 by adding a resonant open or short-circuited stub at the junction of the two output ports. In 
25 

26 [5], a novel dual-band WPD is presented using the model of π-transmission-line in place of 

27 the common quarter-wavelength transmission-line. In [6], isolation between two output ports 

29 is improved by adding a complex isolation component between two 90 transmission-lines at 
30 

31 an arbitrary phase angle from the input terminal; however, the design is band limited. Three- 

32 section transmission-line transformer is used to design a tri-band WPD in [7]. In [8] a quad- 
34 band WPD consists of three transmission-lines and two loaded shorted-stubs. Although the 
35 
36 above designs have good isolation between their output ports, however their dimensions are 
37 

38 relatively large for today’s communication systems. In [10], we have presented a novel 

39 wideband triple lines WPD using PSO technique which operates from 0.5 to 4.5 GHz for 

41 application in several wireless communication standards. 
42 

43 More recently, the design of WPDs have become more compact [11-17]. For example, 
44 

45 in [11] the WPD is proposed using two section asymmetrical T-structures to achieve a 

46 significant size reduction. The asymmetrical T-structure is realized by two series high- 
47 
48 impedance lines with unequal electrical lengths and a shunt low-impedance line. Although 
49 

50 these designs are compact in size however their bandwidth is limited. 

51 In this paper, a novel WPD is presented that operates over a wideband and is highly 
53 compact in size. The power divider is composed of a pair of parallel transmission-lines 
54 
55 (PPTLs) whose ground-plane is defected. Particle swarm optimization (PSO) algorithm is 
56 

57 used to achieve size reduction for predetermined conditions such as width of lines and 

58 reflection-coefficient. The proposed structure of the WPD is shown in Figure 1. Measured 

60 results confirm the power divider operates over a frequency range of 0.8–4 GHz, which 
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1 

2 
3 includes the following bands: GSM 850 (824–894 MHz), GSM 900 (890–960 MHz), GPS 
4 
5 (1565–1585  MHz),  GSM  1800  (1710–1885  MHz),  GSM  1900  (1850–1990  MHz), DCS 
6 

7 (1.71–1.85  GHz), PCS (1.85–1.99  GHz), UMTS (1.92–2.17  GHz),  WLAN+Blutooth  (2.4, 
8 

2.48 GHz), WiMAX (2.5–2.69 GHz), WiMAX (3.3–3.5 GHz), and WLAN (3.65–3.7 GHz). 

10 It should be noted that the authors of this paper, in [10], also presented a very small and high 
11 

12 performance wideband WPD. But to the authors’ knowledge, the proposed wideband WPD in 

13 this article is one of the smallest structures presented to date. 

15 
16 

17 2. EQIVALENT MODEL REPRESENTING A QUARTER-WAVELENGTH 

18 TRANSMISSION-LINE 

20 The size of a quarter-wavelength transmission-line of given impedance Z is reduced by 
21 

22 replacing it with a pair of parallel transmission-lines of impedance Z1 and Z2 of electrical 
23 

24 lengths 1 and 2, respectively, as illustrated in Figure 2. The proposed reduction technique 

25 provides a wideband structure as discussed in [10]. 

27 The admittance matrix for a transmission-line with characteristic admittance Y and electrical 
28 
29 length  is represented by [2]: 
30 

31 

32 

33 
34 Therefore, the admittance matrix of a quarter-wavelength transmission-line with electrical 
35 
36 length  = ° is given by: 
37 

38 

39 

40 
41 The admittance matrix for a pair of transmission-lines is given by: 
42 
43 

44 

45 

46 

47 

48 
49 

50 In relations (3) and (4), the electrical lengths are 2 < 90° < 1. In the proposed structure in 
51 

52 Figure 2, the admittance matrix of the quarter-wavelength transmission-line is equivalent to 

53 the total of admittance matrix of the two parallel transmission-lines, i.e.: 

55 

56 

57 

58 

59 
Simplification of (5) reduces to: 

Y11 Y12     
=  

− jY cot jY csc  
,
 


Y Y  

  
jY csc − jY  cot 


 

 21 22    

(1) 

 

Y11 Y12   = 
0 jY  

,
 


Y Y  

  
jY 0 


 

 21 22  /4   

(2) 

 

Y11 Y12  
=  

− jY1 cot1 jY1 csc1  
,
 


Y Y  

  
jY csc −  jY cot 


 

 21 22 Line 1    1 1 1 1   

(3) 

Y11 Y12  − jY2 cot2 jY2 csc2  
  =   

csc − jY  cot  
 ,

 
Y21 Y22 Line 2  jY2 2 2 2  

(4) 

 

0 jY  
= 

− jY1 cot1 jY1 csc1  
+ 

− jY2 cot2 jY2 csc2  
,
 

 
jY 0 

     
jY csc − jY cot  

     
jY csc −  jY  cot 


 

       1 1 1 1      2 2 2 2   

(5) 

 



8 

27 

32 

 

41 

46 

59 

IETE Journal of Research Page 4 of 29 

4 

 

1 

2 

3 

4 

5 

6 

7 
Where 

9 

10 

11 

12 

13 

14 

15 Or 
16 

17 
 

18 

19 

20 
 

21 
22 

23 Where impedance Z = 70.71 Ω [2]. The four unknown parameters (1, 2, Z1, and Z2) in (10) 
24 

25 and (11) need to be optimized in order to miniaturize the WPD design. The PSO technique is 

26 used here to provide the optimum solution. On the other hand, each pair of transmission-lines 

28 in the proposed PPTLs needs to exhibit an analogous performance as a conventional quarter- 
29 

30 wavelength  transmission-line  resonator.  The  pair  of  TLs  in  PPTLs  generates  a  pair  of 

31 resonating frequencies. Coupling between these two resonating structures is exploited here to 

33 significantly enhance the overall bandwidth of the WPD. The resonating frequencies can be 
34 
35 controlled by adjusting lengths 1 and 2. The PPTL structure was designed on a RO4003 
36 

37 substrate with relative permittivity of 3.55, thickness of 1.524 mm, and tan δ = 0.0027. The 
38 

39 center frequency of the proposed structure is 2.4 GHz. If, for example, 1 and 2 are 78.03° 

40 and 103.69°, respectively, the corresponding frequency response of the PPTLs is shown in 

42 Figure 3 along with the response of a conventional quarter-wavelength transmission-line. The 
43 

44 PPTL excites two resonant frequencies at 2.2 GHz and 2.6 GHz. The PPTL structure was 

45 simulated and optimized using CST Design Studio 2016. The results confirm a wideband 
47 WPD can be realized using PPTL with good return-loss across its passband. 
48 
49 
50 

51 3. OPTIMIZATION OF WPD PARAMETERS 
52 
53 3.1 PSO Algorithm Process 
54 
55 PSO is a powerful algorithm which lies within the swarm intelligence field introduced by 
56 

57 Kennedy and Eberhart [18]. PSO has recently gained popularity because of its simplicity and 

58 functionality [19-21]. The technique draws inspiration from social behavior of the living 

60 animals such as birds that live together in small and large groups. The technique assumes all 

Y1 cot1 + Y2 cot2 = 0, (6) 

Y1 csc1 + Y2 csc2 = 0, (7) 

 

Y = Y. 
sin1 cos2 ,

 
1 

cos  − cos 
2 1 

(8) 

Y = −Y. 
cos1 sin2 ,

 
2 

cos  − cos 
2 1 

(9) 

 

Z = Z. 
cos2 − cos1 ,

 
1 

sin cos 
1 2 

(10) 

Z = −Z. 
cos2 − cos1 .

 
2 

cos sin 
1 2 

(11) 
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1 

2 
3 members or particles of the group are connected with one another, where they interact and 
4 
5 interchange information with each other. These particles are spread within a function search 
6 

7 space, where the location of each particle is calculated using the objective function. By 

8 composing information about each particles present location and the best place it has been 

10 before, a direction for movement is determined. These steps are repeated until reaching the 
11 

12 favorite or optimized solution. PSO, just like other evolutionary algorithms, begins with an 

13 initial random population. The initial population comprises a number of N particles which are 
15 randomly given an initial quantity. Each particle has a location vector and velocity vector. 
16 
17 These particles start moving in the search space and find better locations by calculating the 
18 

19 objective function value. Each particle needs two memories for search; a memory is allocated 

20 to store the best location present among all particles. Using the information taken from these 

22 memories, the particles decide how to move in the next stage. In each repetition of the 
23 

24 process, all particles update their velocity and location according to the best absolute and 
25 

26 local answers [22]. The location of each particle in population is calculated by adding the 

27 velocity of the particle to its present location based on following relationship: 

29 

30 
31 Where Xj (i) shows the location of the jth particle, and Vj (i) shows the velocity, and i shows 
32 

33 iterance of the velocity variable. The velocity is calculated using the relation: 
34 

35 
36 

37 In (13), Vj (i) is the ith component of the jth particle velocity; r1 and r2 are two random 

38 
numbers with uniform distribution in (0,1); c1 and c2 parameters are the individual and group 

40 learning factors based on experimental results [22]; Pbest,j and Gbest are, respectively, the best 
41 

42 local location the particle has ever met and the best overall location that all particles have so 
43 

44 far reached; and θi 

45 θ is given by [23]: 
46 
47 

48 

49 

is inertia weight to control the particles velocity in laboratory repetitions. 

50 
Where θmin and θmax are, respectively, the initial values and the final inertia weight; and imax is 

52 the maximum iterance number in algorithm. For θmin and θmax it has been experimentally 
53 

54 proved that if the values are as θmin = 0.4 and θmax = 0.7, the results are usually the best [10]. 
55 

56 

57 
3.2 PSO Optimization of the WPD 

59 

60 

X j (i) = X j (i −1) +Vj (i), (12) 

 

Vj (i) =  (i)Vj (i −1) + c1r1[Pbest , j − X j (i −1)]+ c2r2[Gbest − X j (i −1)], (13) 

 

 (i) =  − 
 

max  
−

min 
 

i, 
max  

i 
 

 max  

(14) 
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1 

2 
3 PSO algorithm is used to optimize the electrical lengths of the PPTLs and their corresponding 
4 
5 characteristic impedances centered at 2.4 GHz. Impedances of the microstrip transmission- 

6 lines where limited to maximum of 150 Ω (Y = 6.67×10-3 mho) as it was not possible to 

8 
fabricate them. The PSO algorithm parameters are set to reaching the favorite miniaturization 

10 size based on practical fabrication conditions. The parameters used in the PSO algorithm are 
11 

12 given in Table 1. 
13 

14 
15 The functions to achieve the desired objectives are: 
16 
17 

18 

19 

20 

21 

22 
23 

24 The objective function can be defined as: 
25 

26 

27 
28 

29 The PSO algorithm is written in MATLAB. The code very quickly performs analysis. A 

30 sample convergence performance of the PSO algorithm can be shown in Figure 4. 
32 According to Figure 4, in 200 iterations algorithm converges to a good approximate answer 
33 
34 and within 82 iterations the answer can be found. Different runs were done and the sample 
35 

36 results algorithm for the optimized electrical lengths θ1 and θ2 are shown in Table 2. 
37 

38 
39 Based on Table 2, to choose optimized θ1 and θ2, trial 86 will be chosen. Hence, in continue, 
40 

41 these results will be used. The final results from the PSO algorithm are shown in Table 3. 
42 

43 

44 
4. DESIGN AND CONFIGURATION OF THE PROPOSED WPD 

46 CST Microwave Studio 2016 was used to simulate the PSO Wilkinson power divider 
47 

48 structure centered at 2.4 GHz from the results in Section 3. The insertion-loss and return-loss 

49 response of the proposed WPD is shown in Figure 5. The parallel transmission-lines in the 

51 WPD structure, inset in Figure 5, are folded to make the device compact. However, meander- 
52 
53 line technique was used to compensate this defect and further compress the circuit size by 
54 

55 22%. The WPD operates over 0.8–4 GHz for S11 < -10 dB. 

56 Further size reduction of the proposed WPD was achieved by implementing DGS in the 

58 ground-plane under the PPTLs to disturb the current distribution over it in order to increase 
59 

60 the structures effective capacitance and inductance [24]. The DGS pattern etched on the 

0 Y  6.67 10−3
 

F =  
1 , 1 

1 others 

(15) 

0 Y  6.67 10−3
 

F =  
2 , 2 

1 others 

(16) 

 

 2  
F = min   Fi  , i = 1, 2. 

 i=1  

(17) 
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1 

2 
3 ground-plane is shown in Figure 6. The effect of various DGS parameters, tabulated in Table 
4 
5 4, on the power divider’s S11 response is shown in Figure 7. The results show the center 
6 

7 frequency of the device can be tuned from 2.4 to 1.9 GHz by simply modifying the DGS 

8 parameter Lg2. This parameter increases the capacitance of transmission-lines, thus effectively 

10 increasing their electrical lengths without any physical change. 
11 

12 DGS parameters given in case 4 of Table 4 were employed to reduce the physical size of the 

13 WPD. Figure 8 shows the structure of the PPTLs in microstrip form used in the WPD. The 
15 upper transmission-line has impedance and electrical length Z1 and θ1, respectively; and the 
16 
17 lower transmission-line has impedance and electrical length Z2 and θ2, respectively. These 
18 

19 parameters were obtained using PSO. The dimensions of these structures are (all in 
20 

millimeters): W1 = 0.34, W2 = 0.24, L1 = 4, L2 = 1, L3 = 2.445, L4 = 3, L5 = 0.76, L6 = 0.48,  L7 

22 = 1.76, L8 = 2.02, L9 = 0.24, L10 = 6.68, and L11 = 4.26. So, the proposed WPD effectively 
23 

24 reduce the circuit size of the WPD by 43% compared with a conventional design [15]. 
25 

26 The final configurations of the proposed WPD and the conventional WPD are shown in 

27 Figures 9(a) and 9(b), respectively. It can be seen that the proposed WPD is significantly 

29 smaller than the conventional one. The 50 Ω input and output ports are attached to SMA 
30 

31 connectors. Figure 10 shows the insertion-loss, return-loss, and isolation performance of the 

32 proposed WPD and the conventional WPD at the center frequency of 2.4 GHz. According to 
34 Figure 10, the proposed WPD covers a wideband from 0.8–4 GHz for S11 < -10 dB. This is 
35 
36 achieved by replacing the quarter-wavelength sections of transmission-lines with an 
37 

38 equivalent PPTLs with two closely spaced resonance frequencies. This is while the 

39 bandwidth of the conventional WPD is 400 MHz (1.8–3.2 GHz). 

41 
42 

43 4. EXPERIMENTAL RESULTS 
44 

45 The proposed WPD was fabricated to determine the accuracy of the design and simulated 

46 results. A photograph of the fabricated WPD is shown in Figure 11. The dimensions of the 
47 
48 power divider are 9.38 × 11.51 = 107.96 mm2 or 0.11 λg × 0.14 λg, where λg is the guide 
49 

50 wavelength at the center frequency of 2.4 GHz. The measurements on the device were 

51 conducted using Agilent network analyzer HP8722ES. 
53 Figure 12 shows the measured and simulated insertion-loss, return-loss, and isolation 
54 
55 parameter of the device. An ideal WPD splits the input power equally between its output 
56 

57 ports, i.e. S21 = -3 dB. The simulated and measured value of parameter S21 at the center 

58 frequency of 2.4 GHz is -3.06 dB and -3.2 dB, respectively. The additional loss incurred is 

60 due to conductor and dielectric substrate. The power divider has a bandwidth of 3.2 GHz for 
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1 

2 
3 S11  <  -10  dB.  The  discrepancy  between  the  simulated  and  measured  results  of  4.2% is 
4 
5 attributed to the manufacturing tolerance. The isolation S23 in a WPD is achieved with a 100 
6 

7 Ω resistor placed between the output ports. At the center frequency the simulated isolation is 

8 -43 dB and the measured isolation of -45 dB is recorded at 2.2 GHz. Also, magnitude and 

10 phase difference have been shown in Figures 13(a) and 13(b), respectively. The in-band 
11 

12 amplitude imbalance is less than 0.022 dB. In addition, the measured phase difference is 

13 about ±0.1º. It indicates a very good in-phase performance. Table 5 shows the proposed WPD 
15 in comparison with prior dividers. It shows the proposed wideband WPD is one of the 
16 
17 smallest structures presented to date. 
18 

19 

20 
5. CONCLUSION 

22 A highly compact wideband WPD is presented. This was achieved by substituting the 
23 

24 quarter-wavelength transmission-line with an equivalent parallel transmission-line structure 
25 

26 with DSG etched under it. The parameters of the structure were optimized using PSO 

27 technique. The simulation and measured results confirm the device exhibits excellent 

29 insertion-loss, return-loss, and isolation characteristics. The wideband device covers 
30 

31 frequency bands of GSM 850, GSM 900, GPS, GSM 1800, GSM 1900, DCS/PCS/UMTS, 

32 WLAN, and WiMAX. 

34 

35 

36 
37 
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3 Table 1: Elective parameters of PSO for optimization of the WPD 
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11 Table 2: Designing parameters of PSO from several trials 
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32 Table 3: PSO design parameters 
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43 Table 4: Dimensions of the DGS parameters in several cases 
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54 
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 Case1 Case2 Case3 Case4 

Lg1 (mm) - 10.80 10.80 10.80 

Lg2 (mm) 3.36 2.38 4.78 4.78 

Lg3 (mm) - 7.70 7.70 7.70 

Lg4 (mm) - - - 6.20 

Wg1 (mm) - 1.39 1.39 1.39 

Wg2 (mm) 3.26 3.26 3.26 3.26 

Wg3 (mm) - - - 1.05 

Wg4 (mm) - - - 0.34 

g (mm) 2 2 2 2 

 

N ϴmax ϴmin imax c1 c1 

20 0.7 0.4 200 2 2 

 

Trials Target function values θ1 θ2 

18 0.99300 89.13 115.01 

26 
   

0.78000 88.77 121.44 

35 0.75300 88.09 109.58 

57 0.50200 86.86 96.30 

79 0.11900 85.97 95.75 

86 0.00034 85.57 94.12 

158 
   0.00026 85.64 94.34 

186 0.00098 85.07 95.06 

 

Y1 

(mho) 

Y2 

(mho) 

Z1 

(Ω) 

Z2 

(Ω) 

1 

(deg.) 

 2 

(deg.) 

7.3×10-3 6.83×10-3 136.88 146.39 85.57 94.12 
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55 
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57 
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59 
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Ref. Frequency 

(GHz) 

Structure 

topology 

S11 

(dB) 

S23 

(dB) 

FBW 

(%) 

Circuit size 

(mm2) 

Circuit size 

(λg× λg) 

[10] 0.5-4.5 Triple-lines <-10 <-13 166 195.05 0.23×0.08 

[12] 3.1-10.6 Microstrip <-10 <-11 117 517.5 0.56×1.19 

[13] 2-5 Microstrip/slotline <-10 <-13 69 900 0.52×0.52 

[14] 9.6-14.8 SIW <-10 <-10 42 2450 2.99×1.49 

[16] 1-7 Microstrip/slotline <-10 <-15 141 2200 0.72×1.08 

This work 0.8-4 Dual-lines <-10 <-10 133 107.96 0.11×0.14 
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Figure 6: The DGS pattern etched on the ground-plane of the proposed WPD 
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Figure 8: Structure of the parallel transmission-lines in microstrip form. (a) Layout of the pair of parallel 

transmission-lines; (b) Parameters defining the dimensions of the upper transmission-line; (c) Parameters 
defining the dimensions of the lower transmission-line 
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Figure 10: The insertion-loss, return-loss and isolation performance of the proposed WPD with DGS and the 
conventional WPD 
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Figure 11: Photograph of the fabricated WPD. (a) Top layer; (b) Bottom layer 
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Figure 12: Measured S-parameters of the proposed WPD 
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Figure 13: Simulated and measured performance of the proposed WPD. (a) magnitude difference; 

IETE Journal of Research Page 28 of 29 
 

 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 
23 

361x159mm (96 x 96 DPI) 

24 

25 
 



 

For 

Peer 
Figure 13: Simulated and measured performance of the proposed WPD. (b) phase difference 
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