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Abstract

This paper considers a real options model with incomplete information in a duopoly setting. I

show that even in the presence of a first-mover advantage, there are circumstances in which the

preemption region is eroded entirely and the only equilibrium strategy is of simultaneous-type: both

players should exercise together or not at all. This outcome arises if the price paid by a player from

exercising the option simultaneously with his competitor (over exercising alone as a Stackelberg

leader) is low. Such an outcome has not been previously recognised in the literature. The underlying

information structure has been applied in a one-firm setting to a range of different contexts of late,

all of which have competitive pressures in practice. As such, the existence of this equilibrium under

certain conditions ought to be recognised.

Keywords: Timing games; Real options; Preemption; Incomplete information.

JEL Classification Numbers: C61; C73; D43; D81.

1 Introduction

This paper applies the Thijssen et al. [11] stochastic environment and complete information extension of

Fudenberg and Tirole [6] rent equalisation method for preemption games to a stochastic environment with

incomplete information. Much of the real options literature considers decision problems with complete

information in the sense that the stochastic processes in these models have stationary increments that

are independent of the past. As such, the Thijssen et al. [11] extension is based on the assumption that

the uncertainty in the model is driven by a Levy process. In this paper, I consider a real options model

with incomplete information in that the increments of the stochastic process are not stationary and

path dependent because nature determines the state of the world only at the beginning and information

arrives stochastically over time to resolve uncertainty.

I derive a preemptive equilibrium strategy for two-player symmetric games in which the uncertainty

is resolved over time via the arrival of imperfect signals at irregular intervals. The novel result is that in

such a set-up, even when there is a first-mover advantage, the preemption region may be eroded entirely

in equilibrium and the outcome is such that it will be optimal for the two players to exercise the option

simultaneously or not at all. This outcome arises in situations in which the price paid by a player from

investing simultaneously with his competitor (over investing alone as leader) is low. Note that Riedel

and Steg [7] also extend the Fudenberg and Tirole [6] method to a stochastic environment with complete

∗I thank Jacco Thijssen and Saqib Jafarey for their much appreciated comments and suggestions.
†Department of Economics, City University, Northampton Square, London, EC1V 0HB, UK. Email:

laura.delaney.1@city.ac.uk Tel.:+44-(0)207-040-4129.
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information. However, their definition of strategies differs from Thijssen et al. [11] in that they are

conditional on move history. While I adopt the unconditional definition of strategies, this result would

still apply if my strategies were conditional as in Riedel and Steg [7].

From a methodological perspective, this paper is most closely related to earlier work by Thijssen

et al. [10], who consider the same type of incomplete information structure in a duopoly setting. Their

equilibrium results are derived on the basis that the sample path of the underlying stochastic process is

continuous; in other words, the equilibrium is defined in terms of beliefs (i.e., probabilities). However,

the beliefs are driven by the net number of positive signals about the potential profitability (of the

investment) which do not follow continuous sample paths. Therefore, since the net number of signals

cannot take any real value, neither can the associated beliefs. As such, the equilibrium is defined in

this paper in terms of the net number of positive signals and this gives the equilibrium result described

above. It is not, however, a subgame-perfect equilibrium, but even when the equilibrium strategy is of

the Stackelberg-type, it is only subgame-perfect subject to a condition which is explained later in the

paper. The result that subgame-perfection is satisfied conditionally under such an information structure

has not been previously recognised in the literature either.

In recent years, the information structure underpinning the model of this paper has been applied

in a one-firm setting to a range of different contexts (see, for example, Thijssen et al. [9] (corporate

investment); Delaney and Thijssen [3] (corporate disclosure), Delaney and Kovaleva [2] (market mi-

crostructure), Elsner et al. [5] (migration), Compernolle et al. [1] (environmental), and Takizawa [8]

(private monitoring and punishment), to name but a few). However, in each of those contexts, competi-

tive pressures are a real factor and the applicability of my new result and the importance of recognising

the existence of such an equilibrium is important in real options models with incomplete information.

2 The Model

I present a model of incomplete information which has already been applied in a monopoly setting in

Thijssen et al. [9], Delaney and Thijssen [3], and Delaney and Kovaleva [2], for different contexts. It has

also been applied in a duopoly setting in Thijssen et al. [10], but the simultaneous equilibrium, which is

only subgame-perfect subject to a condition I explain later, is not recognised in that paper.

2.1 Set-up

Two identical firms i = 1, 2 both have the opportunity to irreversibly invest in some opportunity for

which the payoff from investment is uncertain. Time is continuous and the horizon is infinite. The firms

are risk neutral and their objectives are to maximise their wealth from investing at discount rate r > 0.

The payoff can be high or low. A high payoff implies an increase in the investor i’s’ wealth by an amount

V P
i > 0, whereas a low payoff implies a drop in wealth by an amount V N

i < 0. V j
i for j = {P,N} can

be seen as an infinite stream of payoffs discounted at rate r > 0; i.e., V j
i =

∫
∞

0 e−rt
(
πj
i − rI

)
dt, where

I > 0 is the sunk cost of investing. Once the investment option has been exercised by at least one of the

firms, the state of the payoff becomes known to both firms instantaneously; i.e., whether it yields a high

or low payoff.

At the time the investment opportunity becomes available, both firms have an identical prior belief

in the payoff being high, denoted by p0 ∈ (0, 1). Over time, the firms receive a stream of information

signals pertaining to the likely payoff from the investment. The arrival of these signals follow a Poisson

process with parameter µ > 0 and are correct with probability θ ∈ (1/2, 1]. A signal is correct if it

indicates a high payoff and the true payoff that is achieved when investment is undertaken is indeed

high. A correct signal is a binomially distributed random variable with parameters θ and nt, where nt
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denotes the number of signals received by the firm by time t > 0. In my set up, the net number of

positive over negative signals is a sufficient statistic to derive the firms’ investment policies. The net

number of signals at time t is denoted by st.

Each time a signal is observed, the firms update their prior beliefs of achieving a high investment

payoff in Bayesian way. It is shown in Thijssen et al. [9] that, in such a setting, the probability of

obtaining a high payoff, conditional on st, is given by

pt := p(st) = P (H |st) =
θst

θst + ζ(1 − θ)st
, (1)

where ζ := (1 − p0)/p0 is the prior odds ratio and pt increases monotonically in st.

2.2 Strategies and Payoff Functions

From a strategic perspective, there are three possible scenarios: (i) If i is the first to invest, he becomes

the Leader and receives V P
L > 0 in the case of a high payoff and V N

L < 0 if the payoff is low. (ii) If the

other firm has invested, then i is the Follower and knows the state of the payoff. He will invest if, and

only if, the payoff is high i.e., iff the other firm received V P
L . In this case, the Follower will get V P

F , where

0 < V P
F < V P

L . (iii) A third possibility is that both firms invest simultaneously at some time τS > 0

and each get V P
S > 0 in the case of a high payoff and V N

S < 0 otherwise. The ranking of the payoffs is

V P
L > V P

S > V P
F > 0 and V N

S < V N
L as illustrated by the example provided in Appendix A.

Let pS denote the belief such that the ex ante expected payoff for the Follower is exactly equal to

the ex ante expected payoff from simultaneous investment.1

If the Leader invests at a time t ≥ 0 where the belief in a high payoff is pt (where pt is given by Eq.

(1)), the Leader’s ex ante expected payoff can be written as

L(pt) =

{
ptV

P
L + (1 − pt)V

N
L if pt < pS

ptV
P
S + (1 − pt)V

N
S if pt ≥ pS .

(2)

The Follower only invests in the case of a high payoff to the Leader. Hence, the ex ante expected payoff

for the Follower, if the Leader invests when the belief in a high payoff is pt, is given by

F (pt) =

{
ptV

P
F if pt < pS

ptV
P
S + (1− pt)V

N
S if pt ≥ pS .

(3)

Finally, in the case of simultaneous investment (i.e., before the true payoff state is known to both firms)

at a point in time when the belief in a high payoff is p, each firm has an ex ante expected payoff given

by

S(pt) = ptV
P
S + (1− pt)V

N
S . (4)

2.3 Rent Equalisation

Say that one of the firms is preassigned the Leader role and the other firm is, therefore, the Follower.

The Follower must wait until after the Leader has invested before he does so. In this case, the Leader’s

decision has no effect on the optimal response of the Follower. Thus, the Leader acts as if there is no

follower; in other words, as if he were a monopolist. From Delaney and Thijssen [3], it is optimal for a

monopolist to exercise a standalone investment option with the characteristics described in Section 2.1

1Letting pS > pF , where pF denotes the follower’s belief in a high payoff, makes no difference to the equilibrium

strategies considered in this paper.
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for pt ≥ pL, where

pL =

[
1−

V P
L

V N
L

Ψ

]−1

, (5)

for

Ψ :=
(r + µ(1 − θ)) [β1(r + µ)− µθ(1− θ)]− µ2β1θ(1− θ)

(r + µθ) [β1(r + µ)− µθ(1 − θ)]− µ2β1θ(1 − θ)
> 0 (6)

and β1 > θ the larger root of the quadratic equation

Q(β) = β2 −

(
r

µ
+ 1

)
β + θ(1− θ) = 0.

It is easily verified that L(pL) > S(pL) and, hence, there is an advantage to being the first and only

mover. This implies that by relaxing the assumption that the Leader and Follower roles are preassigned,

each firm will try to be the only one to invest at τL, where τL := inf{t ≥ 0|pt = pL}. To do so, a firm will

try to preempt its competitor by investing just before him but, in turn, the other firm will try to preempt

him by investing just before that. By the principle of rent equalisation for preemption games, formalised

by Fudenberg and Tirole [6], this process stops at time τP , where τP := inf{t ≥ 0|L(pt) = F (pt)}, or

equivalently, τP := inf{t ≥ 0|pt = pP }, where

pP =
V N
L

V P
F − V P

L + V N
L

<
V N
S

V P
F − V P

S + V N
S

=pS .

(7)

Note that pP < pL iff V P
F < (1 − Ψ)V P

L , which I assume to be true. In other words, I only consider

this scenario in which the leader advantage outweighs the information spillover in the remainder of the

paper. I do so because the main point I make needs only be explained by examining one scenario, since

it pertains in the same way to the war of attrition (i.e., pL < pP ) scenario also.

3 Equilibria of the Game

The equilibrium concepts for timing games in a continuous time framework are outlined in detail in

Thijssen et al. [11], so in this section I adopt their notation and point out that the proof of my result

uses their definitions of simple strategies, first sequence of atoms, α-consistency, and subgame-perfect

equilibrium.

Given the extended mixed strategy (G0
i , α

0
i )i=1,2 for the subgame starting at t = 0, the ex ante

expected present value to firm i (conditional on F0), denoted by W 0
i (st), is given by

W 0
i (st) =

∫ τ0

0

L(pt)(1−G0
j (t))dG

0
i (t) +

∫ τ0

0

F (pt)(1 −G0
i (t))dG

0
j (t) +

∑

t∈[0,τ0)

∆G0
i (t)∆G0

j (t)S(pt)

+ (1−G0
i (τ

0−))(1−G0
j (τ

0−))
[ α0

i (τ
0)(1 − α0

j(τ
0))

α0
i (τ

0) + α0
j (τ

0)− α0
i (τ

0)α0
j (τ

0)
L(pτ0)

+
α0
j(τ

0)(1− α0
i (τ

0))

α0
i (τ

0) + α0
j (τ

0)− α0
i (τ

0)α0
j (τ

0)
F (pτ0) +

α0
i (τ

0)α0
j (τ

0)

α0
i (τ

0) + α0
j(τ

0)− α0
i (τ

0)α0
j (τ

0)
S(pτ0)

]
,

(8)

where τ0i := inf{t ≥ 0
∣∣∣α0

i (t, ω) > 0} for i = 1, 2. τ0 := τ01 ∧ τ02 , but only symmetric strategies are

considered so τ0 = τ01 = τ02 . Furthermore,
α0

i (τ
0)(1−α0

j (τ
0))

α0

i
(τ0)+α0

j
(τ0)−α0

i
(τ0)α0

j
(τ0)

is the probability that only firm i
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invests first in the interval [t, t + dt), while
α0

i (τ
0)α0

j (τ
0)

α0

i
(τ0)+α0

j
(τ0)−α0

i
(τ0)α0

j
(τ0)

is the probability that both firms

invest together, and ∆G0
i (t) := G0

i (t)−G0
i (t−).

The underlying state variable pt is driven by the net number of positive signals which cannot take

any real value and, as such, the levels of pt are such that pt := p(st) for st ∈ Z. However, if we consider

that the preemption and simultaneous investment beliefs, both defined in Eq. (7), do not depend on the

net number of signals, and that the inverse function of pt is given by

st =
log

(
1−pt

pt

)
− log ζ

log
(
1−θ
θ

) , (9)

it is clear that the ex ante expected payoff levels associated with the levels of pP and pS will not be

realisable if the levels of sP and sS associated with these respective beliefs are not integers. Therefore,

for z = {P, S}, and sz ∈ R, I let ⌈sz⌉ := min{st ∈ Z|st ≥ sz}. Moreover, TP := inf{t ≥ 0|st ≥ ⌈sP ⌉}

and TS := inf{t ≥ 0|st ≥ ⌈sS⌉}.

Now, since st is monotonic and increasing in pt (cf. Eq. (9)), pP < pS =⇒ sP < sS . However, if

sP /∈ Z and ⌈sP ⌉− 1 < sP < sS ≤ ⌈sP ⌉, then ⌈sP ⌉ ≡ ⌈sS⌉. In the following proposition I show that this

implies that even when there is a first-mover advantage, the preemption region may be eroded entirely

yielding an equilibrium outcome in which both players invest simultaneously or not at all.

Theorem 1. In a signalling model played in continuous time, the tuple of closed-loop strategies
(
(G0

i , α
0
i )
)

for i = 1, 2 given by

1. If ⌈sP ⌉ < ⌈sS⌉

G0
i (st) =





0 if t < TP

L(pTP
)−S(pTP

)

L(pTP
)+F (pTP

)−2S(pTP
) if TP ≤ t < TS

1 if t ≥ TS,

(10)

and

α0
i (st) =





0 if t < TP

L(pt)−F (pTP
)

L(pTP
)−S(pTP

) if TP ≤ t < TS

1 if t ≥ TS.

(11)

2. If ⌈sP ⌉ = ⌈sS⌉

G0
i (st) =

{
0 if t < TS

1 if t ≥ TS,
(12)

and

α0
i (st) =

{
0 if t < TS

1 if t ≥ TS

(13)

are symmetric α-consistent equilibria for the subgame starting at t = 0.

In both cases, the resulting payoffs for all t ≥ 0 are given by W 0
i (st) = F (pτ0), where pt is given by

Eq. (1).

Furthermore, these equilibria will be subgame-perfect if, and only if, s(pP ) = ⌈sP ⌉ ∈ Z.

Proof. See Appendix B.

The first case in this proposition mirrors that in Thijssen et al. [10] in which a signalling model with

an identical information structure to the one in this paper is considered in a duopoly setting. However,

what is not considered in Thijssen et al. [10] (or indeed would be covered by the more recent subgame-

perfect equilibrium methods for dynamic games proposed by Thijssen et al. [11] and Riedel and Steg [7],

whose equilibrium results also mirror the first case in Theorem 1 even though the uncertainty in those
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models is driven by stationary and path-dependent Levy processes), is the second case in which it may

be that ⌈sP ⌉ ≡ ⌈sS⌉ and the resulting equilibrium is of simultaneous-type with no preemption region.

The preemption region will be eroded entirely if pP is not significantly lower than pS or, equivalently,

if V P
L − V P

S is not much larger (or indeed, less than) than V N
L − V N

S . In other words, if the relative

price that the investor pays for investing simultaneously with his competitor (over investing alone as the

leader) in the case of a profitable project is not much larger (or even lower) than it would be in the case

of a loss on the investment. This will be true if such costs are very low. The following example highlights

one of the many contexts in which this result could apply.

Example 1. Elsner et al. [5] use the information structure to model the decision problem of one potential

migrant facing uncertainty about her job prospects abroad. An earlier version of that paper (Elsner et al.

[4]) describes the model and information structure in detail. They assume that the potential migrant

has an initial prior belief p0 that she gets a good job abroad. This could, for example, be the fraction of

previous migrants that get a good job. A good job increases her earnings relative to what she would earn if

she stayed by an amount wG > 0 (equivalent to V P
L in this paper). A bad job reduces her earnings by an

amount wB < 0 (equivalent to V N
L ). Note that they also assume there is a fixed cost to move M , which

is an unncessary assumption that I ignore since the payoff from a bad outcome is lower than the status

quo. Over time, she receives information from the diaspora network in the form of signals which update

her belief about her job prospects in the receiving country. kt denotes the net number of positive signals

at time t and is equivalent to st in my paper. The quality of the signal is dependent on the degree of

integration between the host and diaspora networks. A more integrated network implies a more accurate

signal. This parameter, denoted by them as λ, is represented by θ in my paper. Thus, they show that

her expected payoff from migrating is given by p(k)wG +(1− p(k))wB (for p(k) ≥ pL) which corresponds

directly with the expected payoff from exercising in the monopoly case (or preassigned leader case) in this

paper since their p(k) and pL are given by the above Eqs. (1) and (5), respectively.

Extending this example to two potential migrants: If, say, the first to migrate were to have an advan-

tage in that there is greater earnings potential in the host network available to her as she can pick the best

paid job without competition; i.e., V P
L > V P

S > V F and V N
S < V N

L . Consider the following parameter

values (which correspond closely with those chosen for the numerical example provided by Elsner et al.

[4]): V P
L = 20; V N

L = −20, V P
S = 12; V N

S = −25; V P
F = 8; θ = 0.75 and p0 = 0.5 which give pP = 0.625;

sP = 0.465 (⌈sP ⌉ = 1); pS = 0.862 and sS = 1.667 (or ⌈sS⌉ = 2). Hence sP < ⌈sP ⌉ < sS < ⌈sS⌉. These

results correspond with the first (preemption) case in Theorem 1 and is depicted in Fig. 1 where pt, st

and ⌈st⌉ are plotted against the payoff functions for the Leader, Follower, and Simultaneous cases, given

by Eqs. (2), (3) and (4), respectively.

However, if there are plenty of job opportunities available in the host network, and if two migrants were

migrate and enter that network at the same time, their potential earnings would not be significantly lower

than the first mover’s. For example, let V P
S = 18 (keeping all other values as previously defined). In this

case, the cost from not being the first and only migrant is lower than in the previous case (V P
L −V P

S = 2

versus 8) and the simultaneous equilibrium described above emerges; i.e., pS = 0.714; sS = 0.834 and

⌈sS⌉ = 1. Thus, sP < sS < ⌈sP ⌉ = ⌈sS⌉, which is depicted in Fig. 2.

Moreover, the condition that the equilibria will be subgame-perfect if, and only if, sP ≡ ⌈sP ⌉ arises

because of the nature of the information structure and, in particular, because pP ≤ pTP
= p(⌈sP ⌉). The

region for which subgame-perfection may not hold would be for some u ∈ (t0, TP ] in which su /∈ Z.

While such a scenario cannot be realised in this model, it is also not possible to claim that the ex ante

expected payoff to player i is less than it would be if he played the equilibrium strategy for every t < TP

when time is continuous.

Therefore, Theorem 1 provides a complete description of the equilibrium outcomes for continuous-

6
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time real option games in a stochastic environment, but with incomplete information driven by the

signalling model described in Section 2.

Appendix

A Example of the Framework

Two firms have the opportunity to invest in a homogeneous good whose payoff can be High or Low. Let

the inverse demand function be given by

P (Q) =

{
Y −Q if payoff is High
1
2Y −Q if payoff is Low,

(A.1)

for Y > 0.

If the firms engage in quantity competition, in the case of a High payoff, standard computations for

a Stackelberg game give qPL = Y
2 and qPF = Y

4 . If the firms invest simultaneously, the Cournot outcome

gives qPS = Y
3 . Therefore, if V j

i =
∫
∞

0
e−rtπj

i dt − I, for j = {P,N} and πj
i = qijp

i
j , and where I is the

cost of investing, we get that V P
L > V P

S > V P
F > 0.

In the case of a low payoff, the follower never invests so V N
F = 0, but V N

L = Y 2

16r − I < 0 and

V N
S = Y 2

36r − I < 0. Hence, V N
S < V N

L < 0.

B Proof of Theorem 1

1. ⌈sP ⌉ ≤ ⌈sS⌉

(a) If st < ⌈sP ⌉, then since p(⌈sP ⌉ − 1) < pP ≤ p(⌈sP ⌉), (i) if pt ≤ p(⌈sP ⌉ − 1), then pt < pP ,

clearly. However, it cannot be that pt ∈ (p(⌈sP ⌉ − 1), p(⌈sP ⌉)) since pt = p(st) for st ∈ Z.

Then, st < ⌈sP ⌉ =⇒ pt < pP and t < τ0 ≤ TP . Therefore, G0
i (t) = 0 for i = 1, 2 because

L(pt) < F (pt) for pt < pP and, by the definition of α-consistency in Thijssen et al. [11],

α0
i (t) = 0 also. Hence

W 0
i (st) =

α0
i (τ

0)(1− α0
j (τ

0))

α0
i (τ

0) + α0
j(τ

0)− α0
i (τ

0)α0
j (τ

0)
L(pτ0) +

α0
j(τ

0)(1 − α0
i (τ

0))

α0
i (τ

0) + α0
j (τ

0)− α0
i (τ

0)α0
j (τ

0)
F (pτ0)

+
α0
i (τ

0)α0
j (τ

0)

α0
i (τ

0) + α0
j (τ

0)− α0
i (τ

0)α0
j (τ

0)
S(pτ0),

(B.1)

where α0(τ0) ∈ [0, 1]. Maximising this equation with respect to α0
i (τ

0), we get ∂W 0
i (st)/∂α

0
i (τ

0) =

0 for α0
j (τ

0) = (L(pτ0)− F (pτ0)) / (L(pτ0)− S(pτ0)). But in this region τ0 = inf{t′ > t|pτ ′ =

pP }. Therefore, pτ0 = pP =⇒ L(pτ0) = F (pτ0). Hence, the expected value for player i is

maximised for α0
j(τ

0) = 0 giving W 0
i (st) = L(pτ0) ≡ F (pτ0).

(b) If st ≥ ⌈sS⌉, then pt ≥ pS and it is optimal for player i to stop at time t = τ0 = TS = TP since

L(pt) = F (pt) = S(pt) for pt ≥ pS . Therefore, G0
i (t) = 1 implying α0

i (t) = 1 (α-consistency)

and by Eq. (8)

W 0
i (st) =(1− α0

j (τ
0))L(pτ0) + α0

j (τ
0)S(pτ0)

=L(pτ0) = F (pτ0).

8



2. ⌈sP ⌉ < ⌈sS⌉:

(a) If ⌈sP ⌉ ≤ st < ⌈sS⌉, then we have that pP ≤ p(⌈sP ⌉) ≤ pt < pS < p(⌈sS⌉). Note that by the

same reasoning as above, pt /∈ (pS , p(⌈ss⌉)) for st ∈ Z. Moreover, t = τ0 = TP < TS so that

G0(u) = α0(u) = 0 for all u < t = τ0. Thus, W 0
i (st) is given by Eq. (B.1) and maximised for

α0
j (τ

0) =
L(p

τ0)−F (p
τ0 )

L(p
τ0)−S(p

τ0 )
. However, the strategies are symmetric so α0

j (τ
0) = α0

i (τ
0) and, by

substitution into (B.1), we get W 0
i (st) = F (pτ0).

Finally, by the definition of α-consistency in Thijssen et al. [11],

G0
i (t) =

1

2− α0
i (τ

0)
=

L(pτ0)− S(pτ0)

L(pτ0) + F (pτ0)− 2S(pτ0)
.

3. ⌈sP ⌉ = ⌈sS⌉, then p(⌈sP ⌉ − 1) < pP < pS ≤ p(⌈sP ⌉) and the only possible equilibria are those

described in 1(a) and 1(b), respectively because pt /∈ (p(⌈sP ⌉ − 1), p(⌈sP ⌉)) for st ∈ Z.

Next we need to check whether these equilibria are subgame-perfect. Let player i deviate from the

equilibrium strategy defined above, but let player j abide by it. Thus τ0j = τ0, but τ0i 6= τ0. Then for

st < sP ≤ ⌈sP ⌉, G
0
j(t) = 0 for all t < τ0 and

W̃ 0
i (st) =

∫ τ0

0

L(pt)dG
0
i (t) + (1 −G0

i (τ
0−))

[ α0
i (τ

0)(1 − α0
j (τ

0))

α0
i (τ

0) + α0
j (τ

0)− α0
i (τ

0)α0
j (τ

0)
L(pτ0)

+
α0
j (τ

0)(1 − α0
i (τ

0))

α0
i (τ

0) + α0
j (τ

0)− α0
i (τ

0)α0
j(τ

0)
F (pτ0) +

α0
i (τ

0)α0
j (τ

0)

α0
i (τ

0) + α0
j (τ

0)− α0
i (τ

0)α0
j (τ

0)
S(pτ0)

] (B.2)

(cf. Eq. (8)).

Now consider the following cases

1. If τ0i < τ0j , then G0
i (u) = 0 for all u < τ0i . Moreover, τ0 in Eq. (8) is defined as τ0 = τ0i ∧τ0j . Thus,

in this case τ0 = τ0i in Eq. (B.2) and, hence, α0
j (τ

0
i ) = 0 according to his equilibrium strategy in

this region. This gives W̃ 0
i (st) = L(pτ0

i
). However, the equilibrium strategy defined above describes

stopping at τ0 = τ0j , and F (pu) > L(pu) for all u < τ0. Therefore,

W̃ 0
i (st) = L(pτ0

i
) < F (pτ0) = W 0

i (st).

2. If τ0i > τ0j = τ0, then α0
j(τ

0) = 0 from Point 1(a) above, and

W̃ 0
i (st) =

∫ τ0

0

L(pt)dG
0
i (t) + (1−G0

i (τ
0−))L(pτ0)

≤F (pτ0

i
) = W 0

i (st)

because L(pu) < F (pu) for all u < τ0 and L(pτ0) = F (pτ0).

3. If τ0i = τ0j = τ0, but α0
i (τ

0) 6= α0
j(τ

0)(= 0), then

W̃ 0
i (st) =

∫ τ0

0

L(pt)dG
0
i (t) + (1 −G0

i (τ
0−))L(pτ0) ≤ W 0

i (st).

Thus, in all cases W̃ 0
i (st) ≤ W 0

i (st) which is the condition for subgame-perfection defined by Thijssen

et al. [11].

Now, for st < ⌈sP ⌉, it is argued in 1(a) that t < τ0 since st ∈ Z, but τ0 ≤ TP . If sP = ⌈sP ⌉, then

τ0 = TP , and the equilibrium is subgame-perfect. However, if t0 < TP , then one cannot argue that

9



unilateral deviations from the equilibrium strategy would not make the player better off in terms of his

expected value for all u ∈ (τ0, TP ] because in this region L(pu) > F (pu).
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