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Abstract

Major (2018) discusses Euler/Aumann-Shapley allocations for non-linear portfo-

lios. He argues convincingly that many (re)insurance portfolios, while non-linear, are

nevertheless positively homogeneous, owing to the way that deductibles and limits are

typically set. For such non-linear but homogeneous portfolio structures, he proceeds

with defining and studying a particular type of capital allocation. In this comment,

we build on Major’s (2018) insights but take a slightly different direction, to consider

Euler capital allocations for distortion risk measures applied to homogeneous portfo-

lios. Thus, the important problem of capital allocation in portfolios with non-linear

reinsurance is solved.

Keywords Distortion risk measures, capital allocation, Euler allocation, Aumann-

Shapley, reinsurance, aggregation.

1 Preliminaries

We use notation slightly different to Major (2018), which is better suited to the exposition

of the ideas in this note. Consider a probability space (Ω,A,P) and let X and (for a

positive integer n) X n be, respectively, the sets of random variables and n-dimensional

random vectors on that space, which are bounded from below. Positive outcomes of

random variables in X represent financial losses. For any Y ∈ X , denote its distribution

by FY , its (left-)quantile function by F−1Y , and by UY a uniform random variable on (0, 1)

comonotonic to Y , such that Y = F−1Y (UY ) almost surely. A distortion risk measure

∗This is the pre-peer reviewed version of this article, to be published in final form in Insurance:
Mathematics and Economics.
†Corresponding author. Email: Silvana.Pesenti@cass.city.ac.uk
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ρζ : X → R ∪ {∞} can be defined as (Wang et al., 1997; Acerbi, 2002)

ρζ(Y ) :=

∫ 1

0
F−1Y (u)ζ(u)du = E(Y ζ(UY )),

where ζ is a density on (0, 1). The risk measure ρζ is positively homogeneous, that is,

ρζ(βY ) = βρζ(Y ) for any Y ∈ X , β ≥ 0.

Consider a linear portfolio Y w =
∑n

j=1wjXj , where w = (w1, . . . , wn) ∈ Rn+ and

X = (X1, . . . , Xn) ∈ X n are vectors of exposures and losses respectively, for the n lines

of business that an insurance portfolio is made of. Let the capital requirement for Y w

be calculated as ρζ(Y
w) for a distortion risk measure ρζ . The Euler capital allocation for

the portfolio Y := Y 1 with unit exposures is given by the functional (Tasche, 2004):

d(X) : X n → Rn, di(X) :=
∂

∂wi
ρζ(Y

w)

∣∣∣∣
w=1

.

By the positive homogeneity of ρζ and Euler’s theorem for homogeneous functions, we have

that
∑n

j=1 dj(X) = ρζ(Y ). In particular, subject to differentiability, we have (Tsanakas,

2004)

di(X) = E(Xiζ(UY )), i = 1, . . . , n.

2 Major’s contribution

Insurance portfolios are often non-linear, typically due to the presence of non-proportional

reinsurance contracts. This makes Euler allocations as discussed above not obviously

applicable, particularly when reinsurance contracts cover more than one line of business;

equivalently when reinsurance recoveries cannot be easily attributed to individual lines of

business. A non-linear portfolio can be formalised by an operator F : X n → X . Assume

that, for the purposes of the capital allocation exercise, the random vector X is fixed so

that the portfolio loss is F(w∗X), where ‘∗’ stands for the Hadamard (elementwise) vector

product. One can then represent the portfolio structure via a function h : Rn ×X n → R,

such that h(w,X) := F(w ∗X), where the possible dependence of h on the distribution

of X is suppressed. We denote the portfolio with unit weights as Y = F(X) ≡ F(1∗X).

Let hi(z) = ∂h(w,z)
∂wi

∣∣∣
w=1

. If h is positively homogeneous in the first argument, that is

h(βw, z) = βh(w, z) for any β ≥ 0 and z, w ∈ Rn, then the following decompositions

hold:

h(1, z) =

n∑
j=1

hi(z) =⇒ F(X) =

n∑
j=1

hi(X).

Major (2018) argues convincingly that, when the non-linearity of F arises from rein-

surance, the portfolio may still be considered positively homogeneous, as in practice rein-

surance deductibles and limits are set (typically implicitly) as positively homogeneous
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functionals of the loss variables. For example, he considers the reinsurance portfolio:

F(X) = min
{(
X1 +X2 − F−1X1+X2

(p)
)
+
, F−1X1+X2

(q)− F−1X1+X2
(p)
}
, (1)

h(w, z) = min
{(
w1z1 + w2z2 − F−1w1X1+w2X2

(p)
)
+
, F−1w1X1+w2X2

(q)− F−1w1X1+w2X2
(p)
}

for 0 < p < q < 1 and FX1+X2 is the distribution of X1 + X2. It is straightforward to

check that the function h is positively homogeneous in w and remains so if the percentiles

are replaced by e.g. multiples of means or standard deviations.

Major (2018) proceeds by considering the positively homogeneous (in the loss variable

X) functional

ψζ(X,F) := E
(
F(X)ζ

(
U∑n

j=1Xj

))
.

This functional can be understood as an expectation of the portfolio loss subject to a

probability distortion derived from the ‘underlying’ or ‘gross of reinsurance’ loss
∑n

j=1Xj ,

which operates as a benchmark with respect to which the risk of any non-linear portfolio

F(X) is evaluated.

The resulting capital allocation is defined via the partial derivatives of ψζ(w ∗X,F),

which are shown to be equal to (Major, 2018, Th. 3),

cFi (X) :=
∂

∂wi
ψζ(w ∗X,F)

∣∣∣∣
w=1

= E
(
hi(X)ζ

(
U∑n

j=1Xj

))
+ E2. (2)

The term E2 is quite involved and vanishes for example if F is a function of
∑n

j=1Xj

alone (Major, 2018, Th. 5).

3 Euler allocations for reinsurance portfolios

The allocation proposed by Major (2018) makes the implicit assumption that portfolio risk

is evaluated with respect to
∑n

j=1Xj , which can be interpreted as an insurance portfolio

gross of reinsurance. However, actual economic capital is calculated by the risk measure

of the non-linear (e.g. net of reinsurance) portfolio, F(X). In other words, in many

capital allocation applications, the amount that needs to be allocated is ρζ(F(X)) rather

than ψζ(X,F). Fortunately, building on Major’s (2018) insights and previous work on

risk measure sensitivity (Hong, 2009; Hong and Liu, 2009; Tsanakas and Millossovich,

2016), such a capital allocation is easily obtained.

Assume that, as before, Y = F(X), h(w,X) = F(w ∗X), and h is homogeneous in

w. Then ρζ(F(w ∗X)) is also homogeneous in w. Consequently, we can define the Euler

allocation for a non-linear portfolio F :

dF (X) : X n → Rn, dFi (X) :=
∂

∂wi
ρζ(F(w ∗X))

∣∣∣∣
w=1

,
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where it holds that
∑n

j=1 d
F
j (X) = ρζ(F(X)) = ρζ(Y ).

The explicit calculation of the allocation dF (X) for distortion risk measures follows

from Hong (2009); Hong and Liu (2009) or, alternatively, Tsanakas and Millossovich

(2016). Subject to differentiability conditions stated in those papers, we have the alloca-

tion

dFi (X) = E(hi(X)ζ(UY )), i = 1, . . . , n, (3)

which obviously subsumes the linear case. This allocation satisfies a version of the well

studied core property (Tsanakas, 2004; Kalkbrener, 2005), that is, if ζ is non-decreasing

or equivalently if ρζ is subadditive, we have that

dFi (X) ≤ ρζ(hi(X)),

often interpreted as a requirement that the allocation does not produce incentives for

portfolio fragmentation. The following two examples illustrate how the capital allocation

dF differs from that of Major (2018).

Example. First consider the portfolio structure given in (1). As Major (2018) notes, by

positive homogeneity we can write F(X) =
∑2

j=1 hi(X), where

hi(X) = I{X1+X2∈[F−1
X1+X2

(p),F−1
X1+X2

(q)]}

(
Xi − E

(
Xi|X1 +X2 = F−1X1+X2

(p)
))

+ I{X1+X2>F
−1
X1+X2

(q)}

(
E
(
Xi|X1 +X2 = F−1X1+X2

(q)
)
− E

(
Xi|X1 +X2 = F−1X1+X2

(p)
))
.

The above calculation utilises quantile derivatives, see Tasche (2004). Notice that, since

the portfolio defined in (1) is a non-decreasing function of X1 + X2, the E2 term in (2)

vanishes. Moreover, the random variables F(X) and X1 + X2 are comonotonic. Hence,

we can choose UF(X) = UX1+X2 almost surely and therefore ρζ(F(X)) = ψζ(X,F). This

implies that the Euler allocation we propose coincides with Major’s allocation. Indeed

dFi (X) = E(hi(X)ζ(UY )) = E (hi(X)ζ (UX1+X2)) = cFi (X)

by comparing equations (2) and (3).

Thus, in the case when the portfolio F(X) is comonotonic to
∑n

i=1Xi, the Euler

allocation and the allocation proposed by Major are equivalent. In general however, the

two allocations differ, even if the E2 term in (2) vanishes, for example if the portfolio

F(X) is a function of
∑n

i=1Xi that is not non-decreasing. The probability distortions

derived with reference to F(X) (approach taken in this note) and
∑n

i=1Xi (approach

taken by Major) are in general different. This is demonstrated in the following example.

Example. Consider now a different portfolio structure, where for some λ ≥ 1, p ∈ (0, 1),

we have

F(X) = min
{(
X1 − λE(X1)

)
+

+
(
X2 − λE(X2)

)
+
, F−1X1+X2

(p)− λE(X1 +X2)
}
.
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Table 1: Comparison of risk measures ψζ , ρζ and respective allocations cF ,dF , with
standard errors for a simulated sample of size 106.

λ = 1 λ = 1.8

ψζ(X,F)
3.902 0.563

(0.004) (0.004)

cF (X)

ψζ(X,F)

36.4%, 63.6% 62.7%, 37.3%
(0.1%, 0.1%) (0.6%, 0.6%)

ρζ(F(X))
3.956 0.691

(0.004) (0.005)

dF (X)

ρζ(F(X))

36.9%, 63.1% 54.2%, 45.8%
(0.1%, 0.1%) (0.6%, 0.6%)

In this case, it is seen that F(X) is not comonotonic with X1 + X2 and thus E2 6= 0.

Hence, ρζ(F(X)) 6= ψζ(X,F) and the Euler allocation dFi (X) does not coincide with the

allocation cFi (X) of Major.

We demonstrate this by a numerical example. First note that for the given portfolio,

h(w, z) = min{
(
w1z1 − λE(w1X1)

)
+

+
(
w2z2 − λE(w2X2)

)
+
,

F−1w1X1+w2X2
(p)− λE(w1X1 + w2X2)

}
,

hi(X) = IAI{Xi>λE(Xi)}
(
Xi − λE(Xi)

)
+ IAc

(
E
(
Xi|X1 +X2 = F−1X1+X2

(p)
)
− λE(Xi)

)
,

where A =
{(
X1 − λE(X1)

)
+

+
(
X2 − λE(X2)

)
+
≤ F−1X1+X2

(p)− λE(X1 +X2)
}

.

Let X1 ∼ Γ(4, 1), X2 ∼ Γ(8, 1) be independent, such that X1 has a lower standard

deviation, but higher skewness coefficient, than X2. Same as Major (2018), we consider a

distortion risk measure with ζ(u) = 1
2(1−u)−1/2, 0 < u < 1. For the portfolio parameters,

we fix p = 0.999 and let λ ∈ {1, 1.8}.
In Table 1, values for the risk measures ψζ(X,F) and ρζ(F(X)) are reported, as well

as the corresponding Euler capital allocations cF and dF , normalised to add up to 1.

The results were derived from 500 sets of simulated samples, each of size 106. On each of

the 500 samples, the risk measures and capital allocations were calculated. The reported

values are the average risk measures and allocations across the 500 samples. In addition,

we report estimated standard errors (pertaining to a sample size of 106), calculated as

standard deviations of the risk measure and allocation estimates across the 500 samples.

As λ increases in value from 1 to 1.8, dependence between X1 +X2 and F(X) weak-

ens, such that the two random variables attain extreme values for different states. This

implies that the differences between ρζ(F(X)) and ψζ(X,F), as well as the respective

allocations, become more pronounced, as can be seen in the table. In particular, the rel-

ative allocations are nearly identical for λ = 1, with X2 being allocated almost twice the
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amount of capital than X1. For λ = 1.8, emphasis is placed on the tails of the variables

X1, X2, as is apparent from the form of F . As a result, for both allocations, the picture

is reversed, with X1 allocated a larger percentage of the risk; this may be explained by

the higher skewness of X1. This change in allocations appears to be more pronounced in

the allocation cF compared to dF .
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