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Abstract

A family of multivariate distributions, based on asymmetric nor-
mal mixtures, is introduced in order to model the dependence among
insurance and financial risks. The model allows for straight-forward
parameterisation via a correlation matrix and enables the modelling
of radially asymmetric dependence structures, which are often of in-
terest in risk management applications. Dependence is characterised
by showing that increases in correlation values produce models which
are ordered in the supermodular order sense. Explicit expressions for
the Spearman and Kendall rank correlation coefficients are derived
to enable calibration in a copula framework. The model is adapted
to simulation in very high dimensions by using Kronecker products,
enabling specification of a correlation matrix and an increase in com-
putational speed.
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1 Introduction

The importance for risk management of modelling the dependence between
multivariate insurance or financial risks has been well established. The ef-
fect of dependence on aggregate risk positions is discussed in Dhaene and
Goovaerts (1996), Müller and Stoyan (2002), while model choices diverging
from the multivariate normal paradigm are extensively discussed by Frees
and Valdez (1998), Embrechts et al (2002), who propose the use of copula
functions for modelling dependencies between risks. Extensive reviews of de-
pendence models for insurance and financial risk management purposes can
be found in McNeil et al (2005), Denuit et al (2005).

Copulas form a tool for constructing joint probability distributions, by
separating the dependence structure from the marginal distributions of multi-
variate models. By a result known as Sklar’s Theorem (e.g. Nelsen, 1999), for
every n-dimensional random vector X with joint distribution function FX and
marginal distributions Fi, i = 1, . . . , n, there is a function C : [0, 1]n 7→ [0, 1],
called the copula of X such that

FX(x1, . . . , xn) = C (F1(x1), . . . , Fn(xn)) (1)

One way of constructing copulas is by considering a tractable family of mul-
tivariate distributions, such as the multivariate normal or t, and then ob-
taining the corresponding copula by transforming the marginal distributions
to uniforms in [0, 1], i.e. by:

C(u1, . . . , un) = FX(F−1
1 (u1), . . . , F

−1
n (un)), (2)

where F−1
1 , . . . , F−1

n are the (generalised) inverses of F1, . . . , Fn. This tech-
nique is of particular interest when the random vector X is easy to simulate
from; then simulation from an arbitrary random vector Y with marginal dis-

tributions G1, . . . , Gn and copula C is easily performed by Y1
d
= G−1

1 (F1(X1)) , . . . , Yn
d
=

G−1
n (Fn(Xn)).

Through their shared copula, random vector Y thus inherits the depen-
dence properties of X. Hence it is important to specify what a desirable set
of properties for X are. One possible list is:

1. Ability to simulate from X efficiently, potentially in high dimensions.

2. Specification via a correlation matrix, since pairwise correlations form
one of the most popular (and interpretable) characterisations of depen-
dence.

3. Flexibility to allow for asymmetry and/or tail dependence, as these are
frequent features of insurance/financial data.

4. Characterisation of the resulting dependence structure via stochastic
order relations, as this enables better understanding of the model and
facilitates practical sensitivity testing (this point is discussed further in
Section 3.1.
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In this contribution a multivariate probability distribution is constructed
that satisfies the properties listed above. The model emerges as an asymmet-
ric (mean-variance) mixture of multivariate normal distributions. Mixtures
of normal distributions, resulting from a randomisation of the covariance
matrix, form a subcase of the more general class or elliptical distributions
(Fang et al, 1987). Such distributions are easy to simulate and specify via
a correlation matrix (or a generalisation thereof when second moments do
not exist), as well as potentially displaying asymptotic tail dependence, as
shown by Hult and Lindskog (2002). These models are however still radially
symmetric, hence dependence for the left tails is the same as for the right
ones. This can be addressed by considering normal mixtures where the mean
is randomised as well as the covariance, as in Barndorff-Nielsen (1978), De-
marta and McNeil (2005). However in these models the resulting correlation
matrix is not easily specified from input parameters, which complicates pa-
rameterisation. The construction of asymmetric normal mixtures presented
here addresses this problem.

The models discussed above all rely on the definition of a dispersion (cor-
relation) matrix. Defining such a matrix can however become problematic
in very high dimensions, e.g. of the order of 1000. For such cases the con-
struction of correlation matrices via Kronecker products is proposed, and it
is demonstrated how such a construction also improves computational effi-
ciency.

Section 2 introduces the asymmetric mixed normal model proposed, along
with its basic properties. In Section 3 the dependence properties are more
closely examined, in particular with respect to stochastic orders, and formulas
for rank correlations are derived. In Section 4, parameterisation issues are
further discussed. Finally, in Section 5 the use of Kronecker products for the
construction of very high dimensional dependence models is proposed.

2 The asymmetric mixed normal model

2.1 Definition and basic properties

The asymmetric mixed normal model proposed in this contribution was orig-
inally introduced by Smith (2002).

Definition 1. An n-dimensional random vector X is defined as having a
multivariate asymmetric mixed normal distribution, denoted by X ∼ ANMn(G,Σ,u)
whenever it satisfies

X
d
= γ−1 · (H − 1) · u +

√
H · L · Z, (3)

where,

• Z is an n-vector of independent standard normal variables.
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• H is a non-negative random variable, independent of Z, following cu-
mulative distribution G with mean 1 and standard deviation γ.

• Σ ∈ R
n×n is a symmetric positive definite matrix and L ∈ R

n×n is such
that L · LT = Σ − u · uT .

• u ∈ R
n is a ‘non-centrality vector’ such that uT · Σ−1 · u ≤ 1.

Note that when u = 0, X reduces to a normal mixture, which is known
to represent a large subclass of elliptical distributions (Fang et al., 1987).
Conditional upon H, (3) represents a multivariate normal with mean vector
γ−1 ·(H−1)·u and covariance matrix H ·Σ. Intuitively, the effect of (positive)
non-centralities is that, conditional upon H, a high mean vector corresponds
to high covariance and this is where the asymmetry originates.

The next few lemmas present stylised facts regarding the elementary prop-
erties of the multivariate asymmetric mixed normal distribution. The first
two moments of X are given below1.

Lemma 1. Consider X ∼ ANMn(G,Σ,u). It is:

E(Xi) = 0, i = 1, 2, . . . , n. (4)

V ar(Xi) = σii, i = 1, 2, . . . , n. (5)

Cov(X) = Σ. (6)

Proof. To begin with, denote

L =











L1

L2
...

Ln











(7)

with Li ∈ R
1×n. From LLT = Σ − uuT it follows that LT

i Li =
∑n

j=1 l2ij =

σii − u2
i and that LT

i Lj = σij − uiuj. It now is

E(Xi) = E
[

E
(

γ−1(H − 1)ui +
√

HLiZ |H
)]

= E
[

γ−1(H − 1)ui +
√

HE
(

∑n
j=1 lijZj |H

)]

= γ−1E(H − 1)ui + E
[√

H
∑n

j=1 lijE (Zj)
]

= 0

(8)

1It is noted that for heavy tailed H the moments of X may not exist. However, similarly
to the case of elliptical distributions, the discussion still holds, with the matrix Σ itself
being finite.

4



For the variances it is

V ar(Xi) = E [E (X2
i |H )]

= E
[

E
(

γ−2(H − 1)2u2
i + H(LiZ)2 + 2γ−1(H − 1))ui

√
HLiZ |H

)]

= γ−2E[(H − 1)2]u2
i + E

[

HE

(

(

∑n
j=1 lijZj

)2
)]

+E
[

2γ−1(H − 1))ui

√
HE

(

∑n
j=1 lijZj

)]

= u2
i + E (H)

∑n
j=1 l2ij + 0

= u2
i + σii − u2

i = σii

(9)
Finally, for the covariance matrix of X we find

Cov(X) = E
[

E
(

XXT |H
)]

= E
{

E
[(

γ−1(H − 1)u +
√

HLZ
)

·
(

γ−1(H − 1)uT +
√

HZTLT
)

|H
]}

= γ−2E [(H − 1)2]uuT + E [HCov (LZ)] + 2γ−1uE
[

(H − 1)
√

HE (LZ)T
]

= uuT + E
[

H
(

Σ − uuT
)]

+ 0 = Σ

(10)

Hence, the asymmetric mixed normal distribution as defined in (3) has
zero mean and covariance matrix equal to the specified Σ. A non-zero mean
vector could of course be added, but this is not further considered here. More-
over, as it is the copula of X that is primarily of interest, we will sometimes
consider standardised versions of X, where Σ is a correlation matrix. In the
next lemma it is shown that linear transformations of asymmetric normal
mixtures are themselves asymmetric normal mixtures.

Lemma 2. Consider X ∼ ANMn(G,Σ,u) and A is a m × n dimensional
matrix of rank m ≤ n. Then AX ∼ ANMm(G,AΣAT ,Au).

Proof. Consider:

AX = γ−1(H − 1)Au +
√

HALZ (11)

It is sufficient that (AL) (AL)T = ALLTAT = AΣAT − (Au) (Au)T .

Note that by letting each row of A contain at most one element equal
to 1 and all other elements equal to 0, it follows from Lemma 2 that the
marginals of an asymmetric mixed normal vector are themselves asymmetric
mixed normal.

Lemma 3. Consider X ∼ ANMn(G,Σ,u). The joint distribution of X is
given by

P(X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn) = E [Φn (a1, a2, . . . , an;R)] , (12)
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where Φn(;R) is an n-dimensional standard normal joint cdf with correlation
matrix R = {rij} and

ai = xi−γ−1(H−1)ui√
H
√

σii−u2

i

rij =
σij−uiuj√

(σii−u2

i )(σjj−u2

j )

(13)

Proof. For simplicity the proof is carried out for n = 2, proof for n > 2 being
identical. It is:

P(X1 ≤ x1, X2 ≤ x2)

= P(γ−1(H − 1)u1 +
√

H
∑2

j=1 l1jZj ≤ x1, γ
−1(H − 1)u2 +

√
H
∑2

j=1 l2jZj ≤ x2

= E
[

P

(

∑2
j=1 l1jZj ≤ x1−γ−1(H−1)u1√

H
,
∑2

j=1 l2jZj ≤ x2−γ−1(H−1)u2√
H

|H
)]

(14)
We know that

E[
∑2

j=1 lijZj] = 0

V ar(
∑2

j=1 lijZj) =
∑2

j=1 l2ij = σii − u2
i

Cov(
∑2

j=1 l1jZj),
∑2

k=1 l2kZk)) =
∑2

j=1

∑2
k=1 l1jl2kCov(Zj, Zk)

=
∑2

j=1 l1jl2j = σ12 − u1u2

(15)

Consequently, since H is independent of Z,

P(X1 ≤ x1, X2 ≤ x2)

= E

[

Φ2

(

x1−γ−1(H−1)u1√
H
√

σ11−u2

1

, x2−γ−1(H−1)u2√
H
√

σ22−u2

2

; σ12−u1u2√
(σ11−u2

1
)(σ22−u2

2
)

)]

(16)

Finally the restriction on the non-centrality vector is justified.

Lemma 4. The condition uT ·Σ−1 ·u ≤ 1 is sufficient for the decomposition
L · LT = Σ − u · uT to exist.

Proof. Let Σ = D · DT , for D ∈ R
n×n. Such D will always exist because Σ

is positive definite and symmetric. Now consider matrix

L = D − uuT (D−1)T

1 +
√

1 − uTΣ−1u
(17)

It can be checked by direct calculation that LLT = Σ− uuT . The existence
of L is guaranteed by uTΣ−1u ≤ 1.

2.2 Numerical illustration

In figures 1.-3. the dependence patterns induced by asymmetric normal mix-
tures are demonstrated. In figure 1. a scatter plot of 5000 samples from
a standard bivariate normally distributed vector with σ12 = 0.5 is shown.
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The corresponding sample ranks with could be viewed as a sample from the
underlying copula are also shown.

In figure 2. the corresponding plots are given for a standard bivariate
t distribution, with σ12 = 0.5 d = 5 degrees of freedom. This distribution
can be constructed as an asymmetric normal mixture with u = 0 and in-
verse Gamma distributed mixing variable H ∼ 1/Gamma

(

d
2
, 2

d−2

)

. For this

distribution it is γ = σ(H) = 1√
2d−2

. It can seen how the normal mixture
introduces a higher dependence in the tails, while maintaining the radial
symmetry of the normal distribution.

In figure 3. samples from an asymmetric generalisation of the t dis-
tribution are plotted. This is effected by taking H as before and letting
u1 = u2 = 0.7. The effect of the non centrality vector u on the dependence
structure is clearly seen, as positive dependence becomes concentrated in the
top-right area of the distribution.

3 Dependence properties

3.1 Stochastic orders

Here the dependence properties of asymmetric normal mixtures are studied in
some more depth. We start with the definition of the stochastic concordance
and supermodular orders, which provides a much stronger characterisation
of dependence than correlation. The presentation of standard results (with
no regard to full generality of those results) is based upon Müller and Stoyan
(2002).

Definition 2. Consider random vectors (X1, X2) and (Y1, Y2), such that

X1
d
= Y1, X2

d
= Y2. Then we say that X precedes Y in the concordance

order and write X �c Y, if either of the following two equivalent conditions
holds:

i) P(X1 ≤ x1, X2 ≤ x2) ≤ P(Y1 ≤ x1, Y2 ≤ x2) for all x1, x2.

ii) Cov(g(X1), h(X2)) ≤ Cov(g(Y1), h(Y2)) for all increasing functions g, h
such that the covariance exists.

It is apparent from Definition 2 that concordance order is a property of
the copulas of the random vectors X and Y and does not depend on the
marginal distributions. The importance of concordance order in risk man-
agement is related to a result by Dhaene and Goovaerts (1996), which shows
that among portfolios whose respective elements are equal in distribution,
the more concordant portfolio is also the riskiest one in the stop-loss and
convex order senses. It is a desirable property for a multivariate model that
an increase in correlation makes the random vector more concordant, as this
ensures the intuitively appealing property that higher correlations produce
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higher aggregate risk holds true. This is also practically relevant when sensi-
tivity testing the implementation of a dependence model. If aggregate risk,
defined as the sum of increasing functions of the elements of random vector
X, is measured by a risk measure that is consistent with the stop-loss order
(see e.g. Denuit et al (2005) for a discussion of the relation between risk
measures and stochastic orders), then an increase in input correlation should
also yield a increase in the aggregate risk.

The above discussion generalises to the case of dimensions higher than 2,
via the concept of supermodular order:

Definition 3. Consider random n-vectors X and Y, Then we say that X

precedes Y in the supermodular order and write X �sm Y, if

E[f(X)] ≤ E[f(Y)], (18)

for all supermodular functions f such that the expectations exist.

We need not assume assume equality of marginal distributions in the def-
inition above, as such equality is actually a consequence of the supermodular
order. Moreover it can be shown that the supermodular order generalises the
concordance one, as formally stated in the next lemma (Müller and Stoyann,
2002, Th. 3.9.5).

Lemma 5. Let X �sm Y. Then

• Xi
d
= Yi, i = 1, . . . , n

• (Xi, Xj) �c (Yi, Yj), ∀i, j.

The relationship between the supermodular order on random vectors and
the stop-loss order on the sum of their elements is given by Theorem 8.3.3
in Müller and Stoyan (2002), essentially generalising Dhaene and Goovaerts
(1996).

Is is now seen that an increase in the correlations between elements of an
asymmetric mixed normal vector, makes the vector more dependent in the
supermodular order sense.

Lemma 6. Consider X ∼ ANMn(G,Σ,u) and X′ ∼ ANMn(G,Σ′,u), such
that σii = σ′

ii, σij ≤ σ′
ij∀i, j. Then X �sm X′.

Proof. We need to show that for all supermodular functions E[f(X)] ≤
E[f(X′)] holds. For H,H ′ ∼ G the mixing variables corresponding to X,X′,
it then enough to show that E[f(X)|H = h] ≤ E[f(X′)|H ′ = h]. We observe
that X|H = h, X′|H = h′ are multivariate normal vectors with the identi-
cal marginal distributions and off-diagonal elements of the covariance matrix
given by cij = h(σij − uiuj), c′ij = h(σ′

ij − uiuj). Since cij ≤ c′ij the Lemma
is proved by Theorem 3.13.5 in Müller and Stoyan (2002).
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3.2 Rank correlations

While the asymmetric mixed normal model can be used to model quantities
of interest in risk management, e.g. asset log-returns, it can also be used
to model risk with arbitrary marginal distributions, by considering only the
copula of an asymmetric mixed normal vector X. Hence, beyond the Pearson
correlation coefficient (and its generalisation via the matrix Σ), expressions
for the rank correlation coefficients by Spearman and Kendall are necessary.
Rank correlations are of interest in the copula context because they are in-
variant to monotone transformations of the elements of X.

Consider X ∼ ANM2(G,Σ,u) and X′,X′′ independent copies of X. The
Spearman and Kendall rank correlation coefficients can then be defined via
the equations (e.g. Nelsen, 1999):

ρs(X1, X2) = 12P (X1 ≤ X ′
1, X2 ≤ X ′′

2 ) − 3 (19)

and
ρτ (X1, X2) = 4P(X1 ≤ X ′

1, X2 ≤ X ′
2) − 1 (20)

respectively.
Expressions for the rank correlation coefficients are given below.

Lemma 7. For X ∼ ANM2(G,Σ,u) Spearman’s rank correlation coefficient
is given by

ρs(X1, X2) =

12E

[

Φ2

(

γ−1u1(H−H′)√
(σ11−u2

1
)(H+H′)

, γ−1u2(H−H′′)√
(σ22−u2

2
)(H+H′′)

; (σ12−u1u2)H√
(σ11−u2

1
)(σ22−u2

2
)(H+H′)(H+H′′)

)]

− 4,

(21)
where H,H ′, H ′′ ∼ G are independent copies of the mixing variable.

Proof. Denote by H,H ′, H ′′ and Z,Z′,Z′′ the mixing and normal variable
corresponding to the independent pairs X,X′,X′′ ∼ ANM2(G,Σ,u). Then
we have:

P (X1 ≤ X ′
1, X2 ≤ X ′′

2 ) = EP (X1 ≤ X ′
1, X2 ≤ X ′′

2 |H,H ′, H ′′) =

EP









γ−1(H − 1)u1 +
√

H(l11Z1 + l12Z2) ≤
γ−1(H ′ − 1)u1 +

√
H ′(l11Z

′
1 + l12Z

′
2),

γ−1(H − 1)u2 +
√

H(l21Z1 + l22Z2) ≤
γ−1(H ′′ − 1)u2 +

√
H ′′(l21Z

′′
1 + l22Z

′′
2 )

∣

∣

∣

∣

∣

∣

∣

∣

H,H ′, H ′′









=

EP









√
H(l11Z1 + l12Z2) −

√
H ′(l11Z

′
1 + l12Z

′
2) ≤

γ−1(H ′ − H)u1,√
H(l21Z1 + l22Z2) −

√
H ′′(l21Z

′′
1 + l22Z

′′
2 ) ≤

γ−1(H ′′ − H)u2

∣

∣

∣

∣

∣

∣

∣

∣

H,H ′, H ′′









(22)

For fixed H,H ′, H ′′, the joint distribution of

Y1 =
√

H(l11Z1 + l12Z2) −
√

H ′(l11Z
′
1 + l12Z

′
2)

Y2 =
√

H(l21Z1 + l22Z2) −
√

H ′′(l21Z
′′
1 + l22Z

′′
2 )

(23)
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is bivariate normal with mean vector [0 0]T and covariance matrix:
(

(σ11 − u2
1)(H + H ′) (σ12 − u1u2)H

(σ12 − u1u2)H (σ22 − u2
2)(H + H ′′)

)

(24)

Hence

P (X1 ≤ X ′
1, X2 ≤ X ′′

2 |H,H ′, H ′′) =

Φ2

(

γ−1u1(H−H′)√
(σ11−u2

1
)(H+H′)

, γ−1u2(H−H′′)√
(σ22−u2

2
)(H+H′′)

; (σ12−u1u2)H√
(σ11−u2

1
)(σ22−u2

2
)(H+H′)(H+H′′)

)

,

(25)
which by equation (19) completes the proof.

Lemma 8. For X ∼ ANM2(G,Σ,u) Kendall’s rank correlation coefficient
is given by

ρτ (X1, X2) =

4E

[

Φ2

(

γ−1u1(H−H′)√
(σ11−u2

1
)(H+H′)

, γ−1u2(H−H′)√
(σ22−u2

2
)(H+H′)

; (σ12−u1u2)√
(σ11−u2

1
)(σ22−u2

2
)

)]

− 1,
(26)

where H,H ′ ∼ G are independent copies of the mixing variable.

Proof. The proof is near identical to that of the previous lemma. Denote
by H,H ′ and Z,Z′ the mixing and normal variable corresponding to the
independent pairs X,X′ ∼ ANM2(G,Σ,u). Then we have:

P (X1 ≤ X ′
1, X2 ≤ X ′

2) = EP (X1 ≤ X ′
1, X2 ≤ X ′

2|H,H ′) =

EP









γ−1(H − 1)u1 +
√

H(l11Z1 + l12Z2) ≤
γ−1(H ′ − 1)u1 +

√
H ′(l11Z

′
1 + l12Z

′
2),

γ−1(H − 1)u2 +
√

H(l21Z1 + l22Z2) ≤
γ−1(H ′ − 1)u2 +

√
H ′(l21Z

′
1 + l22Z

′
2)

∣

∣

∣

∣

∣

∣

∣

∣

H,H ′









=

EP









√
H(l11Z1 + l12Z2) −

√
H ′(l11Z

′
1 + l12Z

′
2) ≤

γ−1(H ′ − H)u1,√
H(l21Z1 + l22Z2) −

√
H ′(l21Z

′
1 + l22Z

′
2) ≤

γ−1(H ′ − H)u2

∣

∣

∣

∣

∣

∣

∣

∣

H,H ′









(27)

For fixed H,H ′, the joint distribution of

Y1 =
√

H(l11Z1 + l12Z2) −
√

H ′(l11Z
′
1 + l12Z

′
2)

Y2 =
√

H(l21Z1 + l22Z2) −
√

H ′(l21Z
′
1 + l22Z

′
2)

(28)

is bivariate normal with mean vector [0 0]T and covariance matrix:
(

(σ11 − u2
1)(H + H ′) (σ12 − u1u2)(H + H ′)

(σ12 − u1u2)(H + H ′) (σ22 − u2
2)(H + H ′)

)

(29)

Hence

P (X1 ≤ X ′
1, X2 ≤ X ′

2|H,H ′) =

Φ2

(

γ−1u1(H−H′)√
(σ11−u2

1
)(H+H′)

, γ−1u2(H−H′)√
(σ22−u2

2
)(H+H′)

; (σ12−u1u2)√
(σ11−u2

1
)(σ22−u2

2
)

)

,
(30)

which by equation (20) completes the proof.
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4 Parameterisation issues

4.1 Rank correlations

One can calculate Spearman’s and Kendall’s rank correlation for a particu-
lar choice of G,Σ,u by equations (21) and (26) respectively, by numerical
integration. There are however two practical issues that such a process will
not address:

• A closed form formula for rank correlations may be more useful, e.g.
for reasons of computational speed.

• When choosing parameters for a model where only the copula of an
asymmetric normal mixture is of interest, one needs to work backwards
from a specified set of rank correlation coefficients to the matrix Σ (say
for a fixed non-centrality vector u).

The approach taken here is to resolve these issues by deriving approximate
formulas for the rank correlation coefficients. The approximation carried out
by considering a discrete distribution G for the mixing variable H, defined
on a finite number of points. This could be derived as an approximation
to the generally continuous distribution G used in reality. The method is
presented here only for the case of the Spearman rank correlation coefficient;
the calculation for Kendall’s rank correlation is very similar. Without loss of
generality we assume that Σ is a correlation, rather then a covariance matrix.

Lemma 9. Let X ∼ ANM2(G,Σ,u), with H ∼ G such that P(Hi = hi) =
pi,

∑d
j=1 pj = 1 for h1 < · · · < hd and σ11 = σ22 = 1. Then Spearman’s rank

correlation is given by:

ρs(X1, X2) = 12

[

β0 +
∞
∑

m=1

βm(σ12 − u1u2)
m)

]

− 3. (31)

The coefficients βm are given by

β0 =
∑d

i=1

∑d
j=1

∑d
k=1 pipjpkΦ(a1(hi, hj))Φ(a1(hi, hk))

βm =
∑d

i=1

∑d
j=1

∑d
k=1 {pipjpkφ(a1(hi, hj))φ(a1(hi, hk))

Hem−1(a1(hi, hj))Hem−1(a2(hi, hk))b(hi, hj, hk)
m} ,

(32)

where:

• ai(x, y) = γ−1ui(x−y)√
(1−u2

i )(x+y)
, i = 1, 2.

• b(x, y, z) = x√
(1−u2

1
)(1−u2

2
)(x+y)(x+z)

• Hek(x) =
∑[k/2]

i=0
k!

i!(k−2i)!
(−1)i2−ixk−2i are the Hermitian polynomials.
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• Φ and φ are the standard normal cumulative distribution and density
respectively.

Proof. First note that for mixing variable H of the form considered here,
equation (21) becomes

ρs(X1, X2) =

12
∑d

i=1

∑d
j=1

∑d
k=1 pipjpk Φ2 (a1(hi, hj), a2(hi, hk); (σ12 − u1u2)b(hi, hj, hk)) − 4.

(33)
Moreover, the bivariate standard normal distribution can be written as (Gupta,
1963)

Φ2(a1, a2; b) = Φ(a1)Φ(a2) + φ(a1)φ(a2)
∞
∑

m=1

1

(m + 1)!
Hem(a1)Hem(a2)b

m+1

(34)
The result follows directly from these two equations.

Given Lemma 9, it is now possible to approximately calculate σ12 from
ρs = ρs(X1, X2) by performing a series reversion. In particular we can write:

σ12
∼= u1u2 +

7
∑

m=1

δm

(

ρs + 3

12
− β0

)m

, (35)

where the coefficients δm of the reversed series can be calculated from those
of the original series βm by Abramowitz and Stegun (1972, p.16).

4.2 Choice of non-centrality vector

As discussed in Section 2, the non-centrality vector u is used in order to skew
the dependence structure of a normal mixture. So choosing high elements of
u will yield a very skew copula. The extent to which this can be carried out
is nonetheless limited as very high values of in u would violate the constraint
uT · Σ−1 · u < 1.

It is therefore of interest to ask: “given a correlation matrix Σ, what is
the largest u that one could use?”. Answering this is our aim in this section.
We note that using “the largest possible u” is a decision by the modeler as to
how the dependence structure should look like and has nothing to do in this
context with statistical estimation of the u parameter vector. The respective
choice of non-centrality vector is given in the following result:

Lemma 10. The vector u for which the sum
∑n

j=1 u2
j is largest and uT ·

Σ−1 · u < 1, is proportional to the eigenvector of Σ corresponding to its
largest eigenvalue.

Proof. Let S = Σ−1. As S is the inverse of a symmetric matrix, it is itself
symmetric. Hence uT · S · u < 1 =

∑n
i=1

∑n
j=1 sijuiuj.
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Consider now the following optimisation problem:

max
u1,...,un

n
∑

i=1

u2
i , such that:

n
∑

i=1

n
∑

j=1

sijuiuj = a, (36)

where a < 1, e.g. a = 0.99. The corresponding Lagrangian is

L(u, λ) =
n
∑

i=1

u2
i + λ

(

a −
n
∑

i=1

n
∑

j=1

sijuiuj

)

(37)

It then is:

∂L(u,λ)
∂uk

= 2uk − ∂
∂uk

λ
(

u1

∑n
j=1 s1juj + · · · + un

∑n
j=1 snjuj

)

= 2uk − λ
(

u1
∂

∂uk

∑n
j=1 s1juj + · · · +∑n

j=1 skjuj + uk
∂

∂uk

∑n
j=1 skjuj

+ . . . ∂
∂uk

un

∑n
j=1 snjuj

)

= 2uk − λ
(

∑n
j=1 skjuj + u1s1k + · · · + unskn

)

= 2uk − 2λ
∑n

j=1 skj

(38)

Setting ∂L(u,λ)
∂uk

= 0 yields:

uk = λ
n
∑

j=1

skj =⇒ u = λ · S · u (39)

Hence the reciprocal of the Lagrange multiplier λ is an eigenvalue of S and
the non-centrality vector u is the corresponding eigenvector. Consequently,
λ is an eigenvalue of Σ = S−1 with corresponding eigenvector u.

Now, to determine which exactly of Σ’s eigenvectors u corresponds to,
consider

uk = λ
n
∑

j=1

skj =⇒
n
∑

i=1

u2
i =

n
∑

i=1







λ2

(

n
∑

j=1

sij

)2






(40)

It is
(

∑n
j=1 sij

)2

=
∑n

j=1

∑n
r=1(sirur)(sijuj)

(39)
=

∑n
j=1(sijuj) · 1

λ
ui

(41)

Thus
∑n

i=1 u2
i =

∑n
i=1 λ2 ·∑n

j=1(sijuj) · 1
λ
ui

= λ ·
∑n

i=1

∑n
j=1 sijujui

= λ · a
(42)

Therefore the largest value of the sum
∑n

i=1 = u2
i is achieved when u is an

eigenvector of Σ corresponding to its largest eigenvalue.
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5 Kronecker products in high-dimensional sim-

ulation

5.1 Properties of the Kronecker product

Simulation algorithms based on the multivariate normal distribution, such
as the asymmetric mixed normal model (3) are well suited for simulation
in high dimensions, e.g. n = 50. However, a portfolio of insurance risks
will sometimes be of much higher dimension. Consider for example the case
of a large insurance company exposed to 50 lines of business, underwritten
in 15 years over 3 territories. This immediately produces 2250 potentially
dependent random variables. At such high dimension a number of problems
occur:

• It becomes very difficult to specify a positive definite correlation matrix
Σ.

• The Cholesky decomposition algorithm used to factorise the matrix
Σ − u · uT may fail because of numerical errors.

• Runtimes may become impracticably long, particularly for the matrix
multiplication L · Z.

A means to addressing these problems is to construct the matrix Σ using
Kronecker products. Consider square matrices A = {aij} ∈ R

m×m,B =
{bij} ∈ R

n×n. Then their Kronecker product A ⊗ B is a mn × mn matrix
such that

A ⊗ B =











a11B a12B · · · a1mB

a21B a22B · · · a2mB
...

...
. . .

...
am1B am2B · · · ammB











(43)

Kronecker products have a number of useful properties (e.g. Van Loan,
2000) of which we note here:

1. (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD)

2. (A ⊗ B)T = AT ⊗ BT

3. (A ⊗ B)−1 = A−1 ⊗ B−1

4. If A,B are positive definite matrices, then A ⊗ B is positive definite.

5. If A = M ·MT and B = N ·NT , then A⊗B = (M⊗N) · (M⊗N)T .

Property 4. ensures that a positive definite correlation (covariance) ma-
trix Σ can be constructed as the Kronecker product of 2 (or more) smaller
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correlation (covariance) matrices A,B. Property 5. breaks down the prob-
lem of decomposing a large correlation matrix to that of decomposing two
smaller ones, thus reducing the potential for numerical error.

Consider now the matrix multiplication (A⊗B)·Z, where A ∈ R
m×m,B ∈

R
n×n and Z ∈ R

mn×1. We can then write:

(A⊗B)·Z =











a11B a12B · · · a1mB

a21B a22B · · · a2mB
...

...
. . .

...
am1B am2B · · · ammB











·











Z1

Z2
...

Zm











=











∑m
j=1 a1jB·Zj

∑m
j=1 a2jB·Zj

...
∑m

j=1amjB·Zj











,

(44)
where Zj ∈ R

n×1, j = 1, . . . , n.. It is apparent that the matrix products
B · Zj are repeated in each block row of the matrix above. Hence they can
be calculated in advance and reused as appropriate. Multiplication of an
mn×mn matrix by an mn× 1 vector generally requires 2(mn)2 elementary
operations (additions and multiplications). However, if the mn×mn matrix
can be represented by a Kronecker product as above, the computational
workload drops to 2mn2 + 2m2n operations. If for example m = n = 50,
this implies approximately a 25-fold reduction in the number of elementary
operations required.

5.2 Kronecker products in the asymmetric mixed nor-

mal model

Here is shown how a high-dimensional version of the asymmetric mixed nor-
mal model can be constructed with the use of Kronecker products.

Lemma 11. Consider X ∼ ANMmn(G,Σ,u), such that

• Σ = A ⊗ B for A ∈ R
m×m,B ∈ R

n×n, with A = MMT , B = NNT

• u = v ⊗ w for v ∈ R
m×1,w ∈ R

n×1

Then X can be written as

X
d
= γ−1(H − 1)(v ⊗ w) +

√
H · (M ⊗ N) · Z−√

H

1+
√

1−(vT A−1v)⊗(wT B−1w)
·
(

(vvT (M−1)T ) ⊗ (wwT (N−1)T )
)

· Z,

(45)
where

• Z is an (mn)-vector of independent standard normal variables.

• H is a non-negative random variable, independent of Z, following cu-
mulative distribution G with mean 1 and standard deviation γ.

Proof. Follows directly from equations (3), (17) and the properties of the
Kronecker product discussed in the previous section.
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Hence by constructing Σ = A⊗B, the problems of specifying a large pos-
itive definite correlation matrix and decomposing that matrix are addressed.
Moreover, it can be seen from equation (45) that the matrix multiplication
L · Z is broken down to a difference of two matrix multiplications, in each
which the first factor can be expressed as a Kronecker product. Hence, the
computation of L ·Z can be substantially speeded up by using representation
(45). We note that the preceding discussion easily generalises to the case of
Σ expressed as a Kronecker product of more than two matrices.

Imposing a Kronecker-product structure on of Σ forms quite a strong
assumption, so it is fair to ask whether such a specification makes sense.
Consider the example of an insurance company that has exposures in m lines
of business, n years, and r territories. Specify correlation matrices A, B and
C, with dimensions m × m, n × n, r × r respectively. Interpret A as the
correlation matrix between lines written in the same year and in the same
territory, B as the correlation between the same line, written in the same ter-
ritory over different years etc. Defining Σ = A⊗B⊗C produces an overall
correlation matrix that is consistent with the above specification, with the
Kronecker structure producing the cross-correlations between risks in differ-
ent lines and different years or territories. As these cross-correlations emerge
as products of correlation coefficients with modulus < 1, it is ensured that
they are smaller than the corresponding correlations between lines within the
same year and territory - hence a first reasonableness check is passed. There
is of course no particular reason why the cross-correlations should have the
prescribed form. Nonetheless, given that it would be very unlikely that an in-
surance company has enough data to statistically estimate a, say, 2000x2000
correlation matrix, this choice of correlation matrix structure seems to be an
acceptable compromise.
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Figure 1: Samples and sample ranks from standard bivariate normal vector,
σ12 = 0.5.
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Figure 2: Samples and sample ranks from standard bivariate t vector, σ12 =
0.5, γ = 8−0.5(d = 5).
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Figure 3: Samples and sample ranks from standard bivariate asymmetric t
vector, σ12 = 0.5, γ = 8−0.5(d = 5), u1 = u2 = 0.7.
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