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THE IMPACT OF LONGEVITY AND INVESTMENT
RISK ON A PORTFOLIO OF LIFE INSURANCE

LIABILITIES

ANNA RITA BACINELLO∗, PIETRO MILLOSSOVICH∗,‡, AND AN CHEN†

Abstract. In this paper we assess the joint impact of biometric
and financial risk on the market valuation of life insurance liabili-
ties. We consider a stylized, contingent claim based model of a life
insurance company issuing participating contracts and subject to
default risk, as pioneered by Briys and de Varenne (1994, 1997),
and build on their model by explicitly introducing biometric risk
and its components, namely diversifiable and systematic risk. The
contracts considered include pure endowments, deferred whole life
annuities and guaranteed annuity options. Our results stress the
predominance of systematic over diversifiable risk in determining
fair participation rates. We investigate the interaction of contract
design, market regimes and mortality assumptions, and show that,
particularly for lifelong benefits, the choice of the participation rate
must be very conservative if longevity improvements are foresee-
able.

1. Introduction

In the last decades, increasing volatility in investment returns cou-
pled with low interest rates regimes and increased expectation of life

Date: October 5, 2018. Earlier versions of the paper have been presented, under
different titles, at the 5th Conference in Actuarial Science and Finance in Samos, a
PRIN Research Group Meeting in Moncalieri, the AFMathConf 2009 in Brussels,
the First Florence-Ritsumeikan Workshop on Finance and Risk Theory in Florence,
the 13th Conference in Insurance: Mathematics and Economics in Istanbul, the 40th
AMASES Conference in Catania, the Conference on Actuarial Risks in the Solvency
II Era in Bologna, and at the University of Calabria. We thank the participants
in those conferences and seminars for helpful comments and suggestions. We are
solely responsible for all remaining errors. Support from the Italian MIUR and the
University of Trieste is gratefully acknowledged.
∗Department of Economics, Business, Mathematics and Statistics ‘B. de Finetti’,
University of Trieste, Via dell’Università 1, 34100 Trieste, Italy.
†Faculty of Mathematics and Economics, University of Ulm, Helmholtzstrasse 20,
89069 Ulm, Germany.
‡Faculty of Actuarial Science and Insurance, Cass Business School, City, University
of London, 106 Bunhill Row, London EC1Y 8TZ, UK.

Key words and phrases. Solvency, Longevity risk, Investment risk, Fair valua-
tion, Participating life insurance.

1



2

across all developed countries have impacted on life insurance and pen-
sion markets, resulting in potential distress for some annuity providers.

The adoption of fair value based accounting standards for insurers,
e.g. the full implementation of the Solvency II framework in the Eu-
ropean Union in 2016, has enhanced the transparency of their balance
sheets by tying assets and liabilities values to the actual (or hypotheti-
cal) price they could be exchanged for in a liquid market. On the other
hand, the application of these accounting standards has stressed the
exposure of life insurers’ balance sheets to a variety of financial and bio-
metric factors, with a consequent effect on capital requirements. This is
particularly relevant for providers of long-term investment guarantees
or lifelong benefits. Traditional life insurance products offering fixed
life contingencies have been replaced long ago by more competitive
contract structures, with-profits in the UK and participating policies
in Europe and the US, where insurers share part of their returns with
policyholders. Usually, the policyholder is promised to receive a min-
imum return even when market performance is poor. This minimum
rate of return is set at issuance on a very conservative basis, so that
the implicit value of such a guarantee is small. However, given the
long-term nature of the contract, guarantees that are initially far out
of the money may become highly valuable due to adverse movements
in market rates of return and unexpected rise in the length of life. The
increasing cost of these guarantees could become unsustainable and
eventually compromise the financial stability of their provider. A no-
table example is given by Equitable Life, the world’s oldest life insurer,
see ? and Briys and de Varenne (1994), Grosen and Jørgensen (2002)
for other examples of insolvencies in the life insurance industry. There-
fore, an accurate contract design and careful assessment of all the risks
involved, along with the interaction between them, are crucial.

The aim of this paper is to assess the joint impact of biometric and
financial risk on the market valuation of life insurance liabilities. We
explicitly incorporate longevity risk on a portfolio level in the stylized,
contingent claim model of a life insurance company issuing partici-
pating contracts and subject to default risk pioneered by Briys and
de Varenne (1994, 1997) and extended, e.g., by Grosen and Jørgensen
(2002), Bernard et al. (2005), Chen and Suchanecki (2007), Ballotta
et al. (2006a,b), Ballotta (2005). This stream of literature focuses on
financial risks only, as it is implicitly assumed that diversifiable biomet-
ric risk can be completely eliminated by pooling a large portfolio and
systematic biometric risk, that is longevity risk, is absent. Beyond pure
endowments, the participating contracts we consider are deferred whole
life annuities and guaranteed annuity options. Longevity risk has been
emphasized as a main factor affecting life insurance portfolios only in
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relatively recent years. Stochastic mortality models have been devel-
oped to explicitly allow for the uncertainty surrounding future survival
rates, see Barrieu et al. (2012) for an overview. The pioneering model
of Lee and Carter (1992) has been successfully applied to forecast mor-
tality of different populations and has been extended and improved
in several ways, see e.g. Cairns et al. (2008) and references therein.
In our stylized framework we follow a slightly different approach and
introduce a stochastic force of mortality obtained by randomly rescal-
ing a deterministic intensity. This relatively simple formulation allows
to clearly separate process risk, represented by the randomness in the
times of death of policyholders, from the systematic risk captured by
the random rescaling factor.

We conduct a thorough analysis of contract components and fair par-
ticipation rates, exploring in detail the interplay of guarantees, market
regimes, mortality assumptions and portfolio sizes. The main results of
the paper can be summarized as follows: first, idiosyncratic biometric
risk vanishes even in small portfolios. In other words, when homoge-
neous contracts are pooled together, diversification becomes fully ef-
fective with relatively small portfolio sizes. Further, longevity risk has
a very substantial impact on the market value of the participating life
insurance liabilities. We show that the relative size of this impact on
the fair participation coefficients is particularly relevant when system-
atic biometric risk is paired with a low interest rate environment, and
is preserved when the solvency capital or the pricing rule is adjusted to
reflect the portfolio size. This effect has been pointed out by a number
of studies: e.g. ?, and ? for pension annuities; Ballotta and Haberman
(2006), and ? for pension plans and annuities including guaranteed
annuity conversion options; ? and ? in the context of traditional/fixed
life insurance and annuities products, and ? for variable annuities with
lifetime withdrawal guarantees. Finally, our detailed analysis provides
some useful guidance on the possible actions a life insurer could take
in order to mitigate the effect of longevity risk.

The remainder of this article is structured as follows. Section 2 sets
up the contract structure, the modelling of insurance and financial risk
and the extension to a large portfolio. Section 3 focuses on the market
valuation of the outstanding liabilities, unbundling them into different
components. Section 4 shows how ruin-probability-based capital re-
quirements can be set under our framework. Section 5 is devoted to
the numerical analysis and addresses the issue of fair pricing. Section 6
provides some concluding remarks and a short outlook on possible ex-
tensions. Proofs and technical results are collected in the Appendices.
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2. Model setup

At time t = 0 the life insurance company’s capital structure can be
synthesized through the following simplified balance sheet:

Assets Liabilities
W0 E0 = (1− α)W0

L0 = αW0

W0 W0

Hence, the initial assets W0 of the firm are financed by two groups
of stakeholders. A share α of the assets (with 0 < α < 1) is con-
tributed by N0 policyholders that are homogeneous, with the same age
x at inception, and are entitled to the same benefits. Therefore, each
policyholder pays a single premium L0/N0 = αW0/N0, where L0 is the
overall premium contribution. The remaining fraction 1−α is provided
by equityholders, whose total contribution is (1−α)W0 = E0. Clearly,
initial assets W0 and premium income L0 are related to the portfolio
size N0.

Since we explicitly allow for insurance risk, the outstanding liability
at any given time will depend, among other factors, on the demographic
evolution of the population of policyholders. However, if all insurance
risk can be diversified, for instance when the portfolio is large and there
is no systematic risk, then the pool of homogeneous contracts could be
treated as a purely financial contract with initial contribution L0. This
point will be picked up again later.

2.1. Contract Structure. Through their initial investment in the
company, policyholders alive at the maturity T of the contract have
a claim on the firm’s assets. Moreover, we assume that the insurance
company issues no further debt, raises no capital and pays no divi-
dends to equityholders before the contract’s maturity. Since profits
distribution is a common feature of many life insurance contracts, we
consider the following version of a participating policy. As we will
see, this apparently simple specification encompasses different types of
guarantees.

Denote by L andW = W0eR the total liability, respectively the assets
value, at time T , where R is the assets log-return over the period [0, T ].
At maturity, the total outstanding liability the insurance company has
to meet depends on the number of alive policyholders N :

L =

{
Ψ if N > 0

0 if N = 0
= Ψ1{N>0},

where 1E is the indicator of the event E . Then, in the very unlikely
case in which no policyholder survives the maturity T , i.e. N = 0,1 the

1The probability that a portfolio be completely extinct at maturity is negligible
for usual ages and maturities and reasonable portfolio sizes. For instance, with a
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company has no liability outstanding. Otherwise, if N > 0, the liability
depends on the assets value W and the global payoff G guaranteed
to surviving policyholders, and is defined as in Briys and de Varenne
(1994, 1997) by

Ψ =


W if W < G

G if G ≤ W ≤ G
α

G+ δ (αW −G) if G
α
< W

,

or, more compactly, by

Ψ = G+ δα

[
W − G

α

]+

− [G−W ]+, (2.1)

where δ ∈ [0, 1] denotes the participation coefficient. Note that the
global payoffG guaranteed to surviving policyholders is stochastic since
it is proportional to N , that is

G = NB,

where the individual guaranteed benefit B may depend on other finan-
cial or demographic factors and therefore may be random as well. By
suitably specifying G (i.e. B) we will obtain different types of provisions
payable in case of survival.

In (2.1) three components can be identified: the stochastic guarantee
G, the payoff of a call option and that of a shorted put option. Both
options are written on the assets of the firm and have a stochastic ex-
ercise price depending on G. The call option corresponds to a terminal
bonus payment and is usually referred to as the bonus option. The
participation coefficient δ is the share of the surpluses the policyhold-
ers are entitled to as bonus. The shorted put option results from the
fact that equityholders have limited liability and is usually known as
the default option. Unlike the existing literature, this payoff not only
depends on the value of financial assets but also on the evolution of the
cohort of policyholders under scrutiny and possibly on the realization
of demographic risk factors that drive future survival probabilities. The
assets W , if insufficient, i.e. W < G, will be shared among surviving
policyholders. If G ≤ W , each surviving policyholder will be entitled
to the guaranteed amount B and to an additional lump sum bonus if
further αW > G.

Note that the equityholders’ payoff at maturity is residually given
by

W − L = W1{N=0} + [W −G]+1{N>0} − δα
[
W − G

α

]+

1{N>0}. (2.2)

survival probability of 95% (which may be common for a 40-years old policyholder
and a 20 years horizon), the probability of extinction is less than 10−6 for a group of
5 individuals. When the survival probability is only 50%, the extinction probability
is less than 10−6 for a group of 20 individuals.
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In the present paper we discuss the following alternative specifications
for the individual guaranteed benefit B:

(a) B = b;
(b) B = ρ aT ;
(c) B = b+ [b ρg aT − b]+ = b max {1, ρg aT}.

Case (a) characterizes pure endowments, where the guarantee is fixed
and the individual benefit B is therefore deterministic. We could al-
ternatively consider a stochastic benefit depending on the assets values
or some other market related variable.

In case (b) the contracts sold are deferred whole life annuities guaran-
teeing each survivor the continuous payment at rate ρ per year, starting
at time T . The quantity aT is the market value at time T of an imme-
diate whole life annuity making continuous payments at unitary rate
to a life then aged x + T . If the market rate aT were deterministic,
from the valuation point of view the contract would be equivalent to
that described in case (a). However, the interesting case is when aT is
stochastic as it depends on market conditions prevailing at time T , see
Appendix 7.2 where an expression for aT is worked out. Note that B
is then the amount the insurer would need at time T to purchase, on
the open market, an immediate annuity matching the future payments
guaranteed to each policyholder.

Case (c) describes pure endowments with attached a guaranteed an-
nuity option. These are contracts which provide policyholders with the
right to convert, at maturity, a survival benefit into an annuity at a
fixed conversion rate ρg. Conditional on survival, the option is exer-
cised if the benefit b (specified as in case (a)) is less than the market
value b ρg aT of the guaranteed annuity. Indeed, in case the option is
exercised, the policyholder will receive an immediate whole life annuity
making continuous payments at rate b ρg per year. Alternatively, the
individual benefit can be decomposed into a deferred whole life annu-
ity, as in case (b), making continuous payments at rate b ρg per year
and, in addition, the option to surrender the contract at time T . To
see this, the individual benefit can be rewritten as follows:

B = b ρg aT + [b− b ρg aT ]+ .

If the surrender option is exercised, the policyholder receives a cash
amount equal to b (surrender value).

Although in cases (b) and (c) payments can occur after T , sol-
vency and profit distribution are only assessed at the maturity date
by comparing the market values of assets and liabilities, as in Briys
and de Varenne (1994, 1997).

It is convenient, especially when analysing (infinitely) large port-
folios, to consider quantities at individual, rather than global, level.
As policyholders are homogeneous in terms of benefits, the individual
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liability at maturity T attributed to policyholder i is defined by

`i =
L

N
1{τ i>T} =

Ψ

N
1{τ i>T} = ψ1{τ i>T}, i = 1, . . . , N0, (2.3)

where τ i denotes her residual lifetime.2 In particular, the liability at-
tributed to each policyholder surviving at time T is then equal to

ψ = B + δα

[
w − B

α

]+

− [B − w]+ ,

with w = W
N
, on the set {N > 0}. The interpretation of the three lia-

bility components remains unchanged upon considering as underlying
of the options the individual share w of the total assets pertaining to
each surviving policyholder and, in the exercise price, the individual
benefit B instead of the global payoff G. Of course, adding up the
individual liabilities recovers the total liability: L =

∑N0

i=1 `
i.

2.2. Modelling Insurance Risk. We start this section by observing
that the insurance risk affecting our portfolio of homogeneous poli-
cyholders arises from the possibility of deviations between actual and
expected mortality (survival) rates. As it happens in the case of invest-
ment portfolios, this risk can be split into two components. The first
component is given by the unsystematic risk, that can be diversified
away through pooling. In other words, this risk component tends to
disappear for large enough portfolios. The second component is instead
given by a systematic part that hits all policies in the same direction.
In our case, this second component can be identified in the so called
longevity risk, that is the risk of an overall unanticipated decline in
mortality rates, see Pitacco et al. (2009), Barrieu et al. (2012). When
it is present, even with a large portfolio there is a residual part of risk
that cannot be eliminated.

To model insurance risk, we consider the portfolio ofN0 homogeneous
policyholders (each aged x at time 0) introduced in the previous section.
The insurer chooses, for pricing purposes, a risk neutral probability Q
among the infinitely many equivalent martingale measures existing in
incomplete arbitrage-free markets. The probability Q then accounts
for both diversifiable and systematic risk inherent to this portfolio,
and, in particular, can depend on its size N0. Recall that τ i is the
residual lifetime of the i-th policyholder in the portfolio. The number
of individuals alive in the group at time T is then given by

N =

N0∑
i=1

1{τ i>T}. (2.4)

2Note that the indicator of the event {N > 0} can be omitted in presence of the
indicator of the event {τ i > T}.
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Assumption 1. Conditionally on a positive random variable ∆, the
residual lifetimes τ i, i = 1, . . . , N0, are independent, and

Q(τ 1 > t1, . . . , τ
N0 > tN0|∆) =

N0∏
i=1

Q(τ i > ti|∆) =

N0∏
i=1

e−∆
∫ ti
0 m(v)dv

for any ti ≥ 0, i = 1, . . . , N0, where m is a deterministic force of
mortality.3

In other words, conditionally on ∆, the residual lifetimes τ i, i =
1, . . . , N0, are the first jump times of independent inhomogeneous Pois-
son processes with common stochastic intensity µt = ∆m(t), t > 0.
This framework goes under the name of Cox (or doubly-stochastic)
model, see Biffis et al. (2010), Brémaud (1981). The positive random
variable ∆ is a common factor affecting all lifetimes at once and can
therefore be interpreted as systematic risk. Its effect is to rescale by a
random percentage the deterministic force of mortality m relative to a
life aged x at time 0.

Assumption 2. The random variable ∆ is part of the information
available at the maturity date T .4

While the random rescaling amount is unknown at the valuation date
(time 0), it is revealed to market participants at time T . In other words,
information on demographic risk accumulated by observing mortality
experience in this and similar portfolios and/or at national population
level allows insurers to resolve the uncertainty related to the system-
atic risk relative to this specific cohort of individuals. This static and
relatively simple parametrization could be extended to a dynamic sto-
chastic mortality model which is updated as new information becomes
available.

We remark that a similar multiplicative framework for the force of
mortality is sometimes used, although in a different context, in frailty
models in order to describe the heterogeneity among individuals in a life
insurance portfolio, see for instance Haberman and Olivieri (2008). Our
problem, instead, involves completely homogeneous individuals whose
lifetime is subject to two layers of uncertainty: a common one due to
the randomness of the force of mortality and a specific one resulting
from the policyholder’s own Poisson process.

From Assumption 1, the t-years survival probability for each indi-
vidual is

tpx = Q(τ i > t) = E
[
e−∆

∫ t
0 m(v)dv

]
3The function m is nonnegative, continuous, and satisfies

∫ +∞
0

m(u)du = +∞.
4Formally, the random variable ∆ is measurable with respect to the σ-algebra

containing the information available to market participants at time T .



9

for t ≥ 0 and i = 1, . . . , N0. In the following we define, for y ≥ x and
u ≥ 0,

up
∗
y = e−

∫ u+y−x
y−x m(v)dv

so that in particular, for 0 ≤ t ≤ s, we have s−tp
∗
x+t = e−

∫ s
t m(v)dv. The

latter quantity can be thought as the conditional survival probability of
a fictitious lifetime τ ∗ of an individual aged x at 0 having deterministic
force of mortality m. More precisely, it is the probability that such
individual is still alive at time s conditional on survival at t. When
E[∆] < 1 we have E[µt] < m(t) and, by Jensen inequality, tpx > tp

∗
x.

Further, each lifetime τ i is greater than τ ∗ in the hazard rate order, see
Denuit et al. (2006). This and other properties are proved in Appendix
7.1.

To shorten notation, in the following we let π = Tp
∗
x, so that, condi-

tional on ∆, N ∼ Binomial(N0, π
∆), while the actual T -years survival

probability is Q(τ i > T ) = E[π∆].
The following figures exemplify the versatility of the model in char-

acterizing, despite its simplicity, longevity risk. Figure 1 displays the
survival probability tp40, as a function of t, for different choices of the
moments of the distribution of ∆. The exact details on the law of
∆ and the deterministic force of mortality m employed are provided
in Section 5. Note that an increase in var[∆] has the same effect (at
least in the case E[∆] < 1) as a decrease in E[∆], although survival
probabilities are affected mostly at old ages.
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Figure 1. Survival probability tp
∗
40 (continuous line) and tp40

(other lines). The baseline case includes E[∆] = 0.8
and var[∆] = 0.1 .

Figure 2 displays the percentage change in the expected residual
lifetime, E[τ i], of a 40-year policyholder with respect to the expecta-
tion of the fictitious lifetime τ ∗ (equal to 41.73 under the same as-
sumptions previously used to construct Figure 1). Note that when
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E[∆] = 0.8, 0.4, the expected lifetime increases by approximately 3
and 13 years respectively. Conversely, when E[∆] = 1.2, the expected
residual lifetime decreases by approximately 1 year. Moreover, the ef-
fect of var[∆] on the expected residual lifetime is almost linear.
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Figure 2. Percentage change in E[τ i] with respect to E[τ∗] =
41.73 as E[∆] and var[∆] varies. The baseline case
includes E[∆] = 0.8 and var[∆] = 0.1 .

Finally, in Figure 3 we display the density of π∆ = exp(−∆
∫ 25

0
m(v)dv),

that can be interpreted as the 25 years stochastic survival probability
for an individual aged 40 at time 0. Although the dependence of this
probability on the stochastic reduction factor ∆ is not linear, a change
in E[∆] seems to correspond to a shift in the distribution of π∆, ex-
cept when E[∆] is small, in which case the distribution is compressed
towards its upper bound.

2.3. Modelling Large Portfolios Risk. To represent a portfolio with
a large number of homogeneous policyholders, we consider the insur-
ance risk model introduced in the previous section as the portfolio size
diverges. More precisely, we assume there are now infinitely many poli-
cyholders and, consistently with the previous notation, we denote by τ i
the residual lifetime of the ith policyholder. The risk neutral measure
Q now contains an adjustment for systematic risk only, as the portfolio
size is large and unsystematic mortality risk has been diversified away.

For each finite sub-portfolio of size N0, we assume the same contract
and capital structure introduced in Section 2.1. In particular, initial
assets W0 and premium income L0 depend on N0. It follows that all
quantities derived from assets and premiums such as individual and
global liabilities, leverage ratio and assets value at time T depend on
the sub-portfolio size as well.

The definition of N is still given by (2.4) and now provides the num-
ber of survivors at time T within the sub-portfolio of policyholders with
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Figure 3. Density of π∆ = exp(−∆
∫ 25

0
m(v)dv), the 25 years

stochastic survival probability at age 40. The verti-
cal line represents the deterministic survival probabil-
ity 25p

∗
40. The baseline case includes E[∆] = 0.8 and

var[∆] = 0.1 .

index i = 1, . . . , N0. For each N0 we keep Assumptions 1-2 under Q, so
that the infinitely many random times τ i, i = 1, 2, . . ., are independent
conditionally on ∆. It follows that

N

N0

→ π∆ as N0 → +∞

almost surely under Q, see Schervish (1995).5
Note that the pricing measure Q, deterministic force of mortality

m and random rescaling factor ∆ could differ from those introduced
in Section 2.2, relative to a finite portfolio. However, in this section
and whenever there is no risk of misunderstanding, we stick to this
notation. Instead, in Section 5, we will stress the dependence of these
quantities and of the corresponding symbols on the portfolio size.

With an infinite portfolio, it only makes sense to consider quantities
at individual level. The individual liability for the large portfolio can
then be defined by taking the limit in (2.3) as N0 → +∞. In order to
do so, an assumption on how capital requirements and premium ratings
behave as the portfolio size grows is needed. Let then w0 = W0

N0
and

`0 = L0

N0
be the individual assets per contract, respectively individual

single premium.

5This result also holds under any probability measure equivalent to Q, in par-
ticular under the physical measure.
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Assumption 3. As N0 → +∞,

w0 → w0(∞) positive and finite (2.5)
`0 → `0(∞) ≤ w0(∞). (2.6)

It is natural to expect that, in a finite portfolio, the initial assets per
contract w0 decrease with N0, since they must cover not only the ex-
pected individual liability but also its fluctuations. Then, Assumption
3 means that, once the portfolio is large enough for pooling to be fully
effective, the assets per contract and the individual single premium sta-
bilize around asymptotic values representing the individual assets and
individual premium required in a large portfolio.

The inequality `0(∞) ≤ w0(∞) will be strict whenever, as in our case,
there is systematic risk. The extra capital w0(∞)−`0(∞) provides then
a buffer to cover the impact of such risk.

Property (2.5) is satisfied if the initial assets W0 are set according
to a capital requirement criterion guaranteeing a given ruin probabil-
ity, see Section 4. Property (2.6) holds for many premium calculation
principles where the safety loading decreases with the portfolio size.
In particular, it is automatically satisfied if one sets premiums using
a portfolio based ruin criterion with a higher ruin probability than
that used to compute the assets, see Section 4. Of course, the case
`0(∞) < w0(∞) might occur in a large portfolio without systematic
insurance risk because of systematic financial risk. It also follows from
(2.5) and (2.6) that α = L0

W0
→ α(∞) = `0(∞)

w0(∞)
≤ 1. The fraction α(∞)

represents the leverage ratio for an insurer supporting a large portfolio.
Under Assumption 3, the individual liability in the large portfolio

case for the generic policyholder i is given, on the set {τ i > T}, by
`i(∞) = lim

N0→+∞
`i

=B + δα(∞)

[
w0(∞)eR

π∆
− B

α(∞)

]+

−
[
B − w0(∞)eR

π∆

]+

, i = 1, 2, . . . .

(2.7)

We conclude this section by observing that, if no systematic insur-
ance risk affects our portfolio so that ∆ is certain, then, by the law of
large numbers,

N

N0

→ Tpx as N0 → +∞

almost surely. As all the insurance risk has been diversified away, there
is no reason to allow for it when adjusting the physical measure in
order to obtain the risk-neutral measure. Therefore, in the absence of
both systematic and diversifiable insurance risk, these measures would
coincide on events involving insurance risk only, while they may differ
on financial related events. Furthermore, if the individual benefit is
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deterministic, as in case (a), our model could be framed within the
original one by Briys and de Varenne (1994, 1997).

2.4. Modelling Financial Risk. Since we are primarily concerned
with demographic and asset risk, we disregard stochasticity in interest
rates and assume that the market short rate is a constant, denoted
by r. Then, the financial uncertainty in our model is only due to
assets randomness. Beyond the natural requirement that financial and
demographic related variables are independent, we do not make any
specific assumption on the distribution of the assets value of the firm
W under the pricing measure Q.

Assumption 4. The assets valueW is independent of ∆ and the resid-
ual lifetimes τ i, i = 1, . . . , N0.

In the large portfolio case, Assumption 4 holds for each sub-portfolio
size N0.

3. Valuation

3.1. Finite portfolio case. Since all policyholders are homogeneous
both in terms of benefits and survival probabilities, we consider now
the individual liability of the generic policyholder and denote by V `

0 its
(initial) market value, given by:

V `
0 =E

[
e−rT `i

]
=E[e−rTB1{τ i>T}]

+ δαE

[
e−rT

[
w − B

α

]+

1{τ i>T}

]
− E

[
e−rT [B − w]+ 1{τ i>T}

]
=V g

0 + δαV b
0 − V d

0 , i = 1, . . . , N0.

(3.1)

The three components, V g
0 , V b

0 and V d
0 , correspond to the values of the

guaranteed amount, bonus option and default option, respectively. We
derive the above expectations in Appendix 7.3. The value of the total
liability is

V L
0 = E

[
e−rTL

]
= E

[
e−rT

N0∑
i=1

`i

]
= N0V

`
0 ,

hence V `
0 =

V L0
N0

.
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A manipulation of the formulae in (3.1), see Appendix 7.3, shows
that the values of the liability components can be expressed in an al-
ternative, yet meaningful, way:

V g
0 = E

[
e−

∫ T
0 r̂(v) dvB

]
,

V b
0 = E

[
e−

∫ T
0 r̂(v) dv

[
W

N (i)
− B

α

]+
]
,

V d
0 = E

[
e−

∫ T
0 r̂(v) dv

[
B − W

N (i)

]+
]
,

(3.2)

where r̂(v) = r + ∆m(v) can be interpreted as the mortality adjusted
discount rate while N (i) = 1 +

∑
h6=i 1{τh>T} is the number of survivors

at time T on the set {τ i > T}. Here W
N(i) represents the fraction of

assets pertaining to the i-th policyholder, assumed to be alive at time
T . The value of each liability component is obtained as an expectation,
under the risk-neutral measure Q, of its adjusted final payoff discounted
at the rate r̂, see also Biffis (2005), Biffis et al. (2010).

A contract is fair for the policyholders if the initial market value
of the outstanding liabilities equates their initial investment. Alterna-
tively, the contract is fair whenever the equity issuing price is equal to
its market value. Fair contracts are then those for which

V L
0 = αW0 or, equivalently, V `

0 = αw0,

i.e., using (3.1), V g
0 + δαV b

0 − V d
0 = αw0. Fairness can therefore be

defined at global or individual level.
It is particularly relevant to analyse the trade-off between contract

parameters that implicitly define a fair policy. These parameters in-
clude the participation coefficient and, depending on the type of con-
tract, the survival benefit, the annuity rate and the guaranteed annuity
rate. Note that we can explicitly display the participation coefficient δ
associated with a fair contract as

δ =
αw0 − V g

0 + V d
0

αV b
0

, (3.3)

while other fair parameters have to be searched for numerically. The
fair participation coefficient δ attains its maximum value Q(N > 0)−1

when the individual guaranteed benefit B is 0, see Equation (7.2).
Then, in principle, the participation coefficient given by (3.3) could
exceed 100%, in order to compensate for the low benefit and for the
fact that, in the unlikely event that no policyholder survives maturity,
the whole assets are passed to the equityholders, see (2.2). On the
other hand, if the individual benefit is too high, the default option may
be insufficient to compensate the high value of the guarantee and the
right hand side of (3.3) could return a negative coefficient. However,
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we only consider fair contracts for which the participation coefficient δ
lies within the interval [0, 1].

3.2. Large Portfolio Case. Recalling from (2.7) the expression of the
individual liability for the generic policyholder in an infinite portfolio,
its value is given by

V `
0 (∞) =E[e−rT `i(∞)]

=E[e−rTB1{τ i>T}]

+ δα(∞)E

[
e−rT

[
w0(∞)eR

π∆
− B

α(∞)

]+

1{τ i>T}

]

− E

[
e−rT

[
B − w0(∞)eR

π∆

]+

1{τ i>T}

]
=V g

0 (∞) + δα(∞)V b
0 (∞)− V d

0 (∞).

The three liability components are computed in Appendix 7.4. Again,
it is possible to express them in an alternative way:

V g
0 (∞) = E

[
e−

∫ T
0 r̂(v) dvB

]
,

V b
0 (∞) = E

[
e−

∫ T
0 r̂(v) dv

[
w0(∞)eR

π∆
− B

α(∞)

]+
]
,

V d
0 (∞) = E

[
e−

∫ T
0 r̂(v) dv

[
B − w0(∞)eR

π∆

]+
]
.

We remark that fairness of a contract in an infinitely large portfolio
can only be defined at individual level. Fair contracts are then those
for which

V `
0 (∞) = α(∞)w0(∞).

The fair participation coefficient has a similar expression to that in
(3.3), namely

δ(∞) =
α(∞)w0(∞)− V g

0 (∞) + V d
0 (∞)

α(∞)V b
0 (∞)

. (3.4)

Once again, δ(∞) reaches its maximum when B = 0. However, this
maximum is now equal to 1 as the extinction probability is 0. Then,
if the guaranteed benefit is 0, policyholders and equityholders have
proportional claims on the firm’s assets according to their initial con-
tribution.

4. Ruin Probability Capital Requirements

In this section we show how capital requirements and premiums can
be calculated, under the physical measure, using a criterion based on
the probability of ruin, and discuss their behaviour as the portfolio size
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diverges. To this end, denote by Q̃ the physical probability measure and
recall that Q̃ and the pricing measure Q are equivalent. We suppose
that Assumptions 1, 2, 4 now hold under Q̃, with the deterministic
force of mortalitym replaced by m̃. We have therefore assumed that the
stochastic force of mortality multiplicative structure is preserved under
the change of measure, so that µ̃t = ∆m̃(t) for t > 0. Although, in
principle, we may have allowed both the deterministic force of mortality
and the rescaling factor under Q to be different than those under Q̃,
here, for simplicity, we have maintained the same rescaling factor ∆
and modified the deterministic force of mortality only. For a general
discussion of change of measure and intensities in Cox processes, see
Brémaud (1981) and, in the context of stochastic mortality, see Biffis
et al. (2010).

Assume that the initial assets W0 are set according to the following
ruin probability criterion (see e.g. Pitacco et al. (2009)):

Q̃(W < G) = ε, (4.1)

where ε is the ruin probability. We recall that G = NB is the global
benefit and W = W0eR, with R the assets log-return over the period
[0, T ]. Hence initial assets are set by forcing the default event — the
guaranteed global payoff cannot be covered by the final assets — to
have a given confidence level.

Denote now by F̃R and Ẽ the cumulative distribution function of
R, respectively the expectation operator, under Q̃, and assume that
R has a continuous distribution with support the real line. The ruin
probability Equation (4.1) can be rewritten, upon conditioning on ∆
and N , as

Ẽ

[
F̃R

(
log

NB

W0

)]
= ε. (4.2)

It is immediate to check that for each 0 < ε < 1 there exists a unique
positive solution of (4.1), denoted W ε

0 . The following proposition es-
tablishes some properties of W ε

0 as a function of the portfolio size N0.

Theorem 1. The solution W ε
0 of (4.1) satisfies the properties:

(1) W ε
0 is an increasing function of N0, limN0→+∞W

ε
0 = +∞,

(2) limN0→+∞
W ε

0

N0
= w0(∞), with 0 < w0(∞) <∞.

The proof of Theorem 1 is reported in Appendix 7.5.1.
In the infinite portfolio case, the individual asset allocation can be

computed by solving with respect to w0(∞) the equation obtained by
taking the limit in (4.2), namely

Ẽ

[
F̃R

(
log

π̃∆B

w0(∞)

)]
= ε, (4.3)

with π̃ = e−
∫ T
0 m̃(v)dv.



17

To fix the initial overall contribution L0 (or `0(∞)), one can choose
a ruin probability ε′ > ε and let L0 = W ε′

0 . Hence, the capital provided
by equityholders allows to lower the ruin probability from the level ε′
to ε.

Expressions for the expectations in (4.2) and (4.3) are provided in
Appendix 7.5.1.

5. Numerical analysis

This section carries out a sensitivity analysis of the various contract
components’ values as well as of the fair participation rates δ and δ(∞)
computed according to (3.3) and (3.4). The different contract features
introduced in Section 2.1 are considered and compared.

5.1. Sensitivity analysis - Large portfolio case. We begin our
analysis with the large portfolio case. In particular, we are working
under the pricing measure Q ≡ Q(∞). We assume a deterministic
Gompertz law of mortality m ≡ m(∞),

m(t) = λcx+t, t ≥ 0,

from which

s−tp
∗
x+t = e−λc

x(cs−ct)/ log c, 0 ≤ t ≤ s.

We set
x = 40, λ = 2.6743 · 10−5, c = 1.098 .

The values of λ and c were obtained by fitting the survival probabili-
ties tp∗40 to the corresponding probabilities implied by the projected life
table IPS55 in use in the Italian annuity market. The random variable
∆ ≡ ∆(∞) is assumed to be Gamma distributed with var[∆] = 0.1
while E[∆] ∈ {0.4, 0.8, 1.2}, corresponding to different mortality pric-
ing assumptions relative to various degrees of conservativeness.

We assume that R, the assets log-return over the interval [0, T ], is
normally distributed with mean (r − σ2/2)T and standard deviation
σ
√
T , so that σ is the assets volatility. Unless otherwise mentioned, we

fix the following parameter values, which we refer to as baseline case,
and, for ease of notation, we suppress all dependencies on ∞:

• maturity T = 25;
• initial individual assets per contract w0 = 100;
• initial contribution ratio α = 0.7;
• riskless rate r = 0.03;
• assets volatility σ = 0.15;
• in cases (a) and (c), individual survival benefit b = 150;
• in case (b), instantaneous annuity amount ρ = 10;
• in case (c), guaranteed annuity rate ag .

= 1/ρg = 15.
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5.1.1. Deferred annuities. Tables 1-3 report the sensitivity of case (b)
(deferred annuity) with respect to the parameters ρ, r and σ and show
how the different contract components are affected by systematic mor-
tality changes. As expected mortality rates shift downward, both the
value of the guaranteed amount and the default option increase, while
a reversed impact is observed on the value of the bonus option. In-
deed, the insurance company is expected to pay a higher guaranteed
amount because both survival probabilities and the annuity value aT
are higher. This in turn implies a lower bonus payment. Overall, for
the chosen parameters, the effect of a decrease in E[∆] on the value
of the guaranteed payment V g

0 dominates the other components ap-
pearing in (3.4), resulting in a lower participation rate. Furthermore,
the impact of such a change becomes much more evident when com-
bined with high annuity payments (see Table 1). When conservative
pricing assumptions are adopted, too generous annuity rates are only
compatible with less appealing participation coefficients, outside the
range 80%− 100% often practised in the past.6 Fair contracts may not
even exist as, no matter how low is the participation rate, the value
of the liabilities cannot match the initial policyholders’ contribution.
The right hand side of Equation (3.4) produces then a negative value,
implying that policyholders should actually transfer part of their assets
to the equityholders to compensate for the increased risk. When this
happens, the value of the fair participation coefficient δ in the tables is
not displayed.

E[∆] = 0.4 E[∆] = 0.8 E[∆] = 1.2
ρ δ% V g

0 V b
0 V d

0 δ% V g
0 V b

0 V d
0 δ% V g

0 V b
0 V d

0

5.0 90.28 43 48 3 95.69 33 57 1 97.65 28 63 1
7.5 69.16 65 33 11 85.11 50 42 5 91.33 42 49 3

10.0 32.76 87 23 22 66.14 67 31 11 79.64 56 38 7
12.5 — 108 17 36 37.33 84 24 20 61.63 70 30 13
15.0 — 130 12 52 — 100 18 30 36.41 84 24 20

Table 1. Case (b) for a large portfolio, different annuity rates ρ
and values of E[∆].

The higher the annuity payment ρ, the lower is the fair participation
coefficient δ, as the insurance company is forced to compensate for the
increasing cost of the deferred annuity V g

0 , which is proportional to
ρ. The extent of this variation prevails on the increased value of the
default option V d

0 and the decreased bonus option value V b
0 . For con-

servative annuity rates, the bonus portion αδV b
0 overweighs the other

components and constitutes the most sizeable part of the total liability
αw0.

When analysing the dependence on the market interest rate (see
Table 2) similar patterns arise, although the effect of r on the different

6See for instance Briys and de Varenne (1994, 1997)
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E[∆] = 0.4 E[∆] = 0.8 E[∆] = 1.2
r% δ% V g

0 V b
0 V d

0 δ% V g
0 V b

0 V d
0 δ% V g

0 V b
0 V d

0

1 — 196 6 108 — 140 10 59 — 113 15 39
2 — 129 13 52 8.17 97 19 28 45.47 79 25 17
3 32.76 87 23 22 66.14 67 31 11 79.64 56 38 7
4 76.54 59 36 8 87.93 47 45 4 92.75 40 51 2
5 92.21 40 50 3 95.96 33 57 1 97.60 28 62 1

Table 2. Case (b) for a large portfolio, different risk free rates r
and values of E[∆].

contract components is reversed. The value of the deferred annuity
V g

0 and that of the default option V d
0 are depressed by an increase in

the risk free rate, while the bonus (call) option value V b
0 increases.

Once again, the guaranteed benefit outweighs the other components,
resulting in more attractive participation coefficients. On the other
hand, under low interest rate regimes comparable to those currently
observed in many markets, the insurance company should apply rather
uncompetitive participation rates, or may even be unable to offer fair
contracts.

E[∆] = 0.4, E[∆] = 0.8 E[∆] = 1.2
σ δ% V b

0 V d
0 δ% V b

0 V d
0 δ% V b

0 V d
0

0.100 — 14 14 53.37 22 5 78.76 30 2
0.125 9.36 18 18 60.23 27 8 78.58 34 5
0.150 32.76 23 22 66.14 31 11 79.64 38 7
0.175 48.01 28 26 71.08 36 15 81.21 42 10
0.200 58.61 33 30 75.19 40 18 82.93 46 12

Table 3. Case (b) for a large portfolio, different volatilities σ and
values of E[∆]. The values of the guaranteed amount
are V g

0 = 87 for E[∆] = 0.4, V g
0 = 67 for E[∆] = 0.8,

V g
0 = 56 for E[∆] = 1.2.

A change in the assets volatility only affects the optional contract
components, both increasing with σ (see Table 3). However, in most
instances, the increase in the default option overshadows that in the
bonus option, resulting in richer fair participation coefficients. The op-
posite only occurs when no longevity improvements are expected and
σ is extremely low, as default turns out to be very unlikely (under
the risk neutral measure). Nonetheless, the participation coefficients
remain in line with those commonly offered by insurance companies.
When instead conservative mortality assumptions are in place, the in-
surer may be tempted to seek highly volatile investment opportunities
in order to keep the participation rates within reasonable bounds.

5.1.2. Pure endowments and guaranteed annuity options. Tables 4-7
report sensitivities in cases (a) and (c) with respect to the parameters
b, ag, r and σ. In case (a) we only display the fair participation rate
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and the value of the guaranteed individual benefit. Recall that the
individual benefit in case (c) can be decomposed into two parts: a pure
endowment benefit as in case (a), and a guaranteed annuity option, see
Section 2.1. The values of these liabilities are called V g1

0 , respectively
V g2

0 .
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The results reported in Tables 4-7 help understanding the difference
between cases (a) and (c). In general, the cost of adding a guaranteed
annuity option to a pure endowment contract translates into lower
participation coefficients, and the spread δ(a) − δ(c) measures the extra
‘premium’ required to purchase such option. The values of the different
liability components and the fair participation coefficients qualitatively
share the same comparative statics observed in case (b) with respect to
the mortality assumption. In particular, the guaranteed annuity option
value V g2

0 is negligible unless some substantial longevity improvements
are foreseeable. Exceptions hold when exceedingly generous annuity
conversion rates are offered or, more notably, under low interest rate
regimes. When the guaranteed annuity option is valueless, there is
practically no difference between cases (a) and (c) and the gap between
the corresponding fair participation coefficients vanishes.

E[∆] = 0.4 E[∆] = 0.8 E[∆] = 1.2

ag δ(c)% V g2
0 V b

0 V d
0 δ(c)% V g2

0 V b
0 V d

0 δ(c)% V g2
0 V b

0 V d
0

10.0 — 62 12 52 — 36 18 30 36.41 22 24 20
12.5 — 36 18 33 43.72 16 25 18 64.88 6 31 12
15.0 31.28 19 23 22 62.89 4 30 12 72.04 0 34 9
17.5 50.86 9 27 16 67.97 0 32 10 72.39 0 34 9
20.0 59.64 3 29 13 68.56 0 32 10 72.40 0 34 9

Table 5. Cases (a) and (c) for a large portfolio, different guaran-
teed conversion rates ag and values of E[∆]. In case (c),
δ(c), V g2

0 , V b
0 and V d

0 are respectively the fair partici-
pation rate and the values of the guaranteed annuity
option, bonus and default option. The fair participa-
tion rate in case (a) and the value of the guaranteed
survival benefit in cases (a) and (c) are δ(a) = 64.29 and
V g1

0 = 68 for E[∆] = 0.4; δ(a) = 68.59 and V g1
0 = 65 for

E[∆] = 0.8; δ(a) = 72.40 and V g1
0 = 62 for E[∆] = 1.2.

We note that the guarantee components V g1
0 and V g2

0 are propor-
tional to the lump sum b. When expected longevity improvements are
important, the participation coefficient spread widens as the lump sum
benefit grows, see Table 4. Unlike case (a), fairness is not achievable in
case (c) when a huge lump sum benefit is offered, as the default option
value cannot compensate for the guaranteed annuity option cost.

A similar, more striking situation arises when too generous conver-
sion conditions are used (low levels of ag = 1/ρg, see Table 5). It should
be noted how the participation coefficient spread reacts to changes in
the conversion rate. As soon as the annuity conversion option becomes
valuable, the premium required to purchase such option takes off and
may be unsustainable. Further, when conservative mortality assump-
tions are used, even offering very low conversion rates still incurs a
cost.
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The market interest rate affects directly annuity prices and there-
fore is the most important factor when discussing guaranteed annuity
options. Table 6 is particularly interesting as it helps to single out
the pricing scenarios under which the effect of interest rates is most
relevant. First, when the market interest rate is 1% (or lower), fair-
ness of the contract cannot be achieved for both the pure endowment
and the guaranteed annuity option no matter how low is the share of
profits which is released to policyholders, regardless of the mortality
assumption. When longevity improvements are anticipated and low to
moderate interest rate regimes operate, then the ‘perfect storm’ sce-
nario is created as fairness can only be obtained at a huge cost in terms
of lost share of profits passed back to policyholders, and this is much
more the case when the conversion option is present. Both guarantee
components strongly react to changes in r, and so do the option compo-
nents. When instead interest rates are higher, the guaranteed annuity
option becomes valueless and the different contract components are
insensitive to further interest rate rises.

E[∆] = 0.4 E[∆] = 0.8 E[∆] = 1.2
σ δ(a)% δ(c)% V b

0 V d
0 δ(a)% δ(c)% V b

0 V d
0 δ(a)% δ(c)% V b

0 V d
0

0.100 49.43 — 13 14 58.63 46.37 21 6 66.21 65.51 25 4
0.125 57.57 6.80 18 18 63.72 55.55 25 9 69.02 68.53 29 6
0.150 64.29 31.28 23 22 68.59 62.89 30 12 72.40 72.04 34 9
0.175 69.75 47.07 28 26 72.87 68.74 35 16 75.67 75.41 38 12
0.200 74.21 57.98 32 30 76.53 73.46 39 19 78.65 78.45 42 15

Table 7. Cases (a) and (c) for a large portfolio, different volatil-
ities σ and values of E[∆]. δ(a) and δ(c) are the fair
participation rates for cases (a) and (c). V b

0 and V d
0 are

the values of the bonus and default option in case (c).
The values of the guaranteed survival benefit in cases
(a) and (c) and of the guaranteed annuity option in case
(c) are V g1

0 = 68 and V g2
0 = 19 for E[∆] = 0.4; V g1

0 =

65 and V g2
0 = 4 for E[∆] = 0.8; V g1

0 = 62 and V g2
0 = 0

for E[∆] = 1.2.

Both option components of the liability V b
0 and V d

0 increase when
the assets volatility does, see Table 7. As in (b), the major effect in
both cases (a) and (c) comes from the default option. Overall, the
fair participation coefficient increases with the assets volatility, at least
for the set of parameters considered here. For the pure endowment,
the portion of extra profits transferred to policyholders always stays at
reasonable levels. When the guaranteed annuity option is added to the
contract and no longevity improvements are expected, the participation
spread turns out to be very small and insensitive to volatility changes.
If instead moderate to conservative mortality assumptions are in force,
the corresponding cost in terms of missed participation to profits can
be substantial and even prevent the contract to attain fairness.
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5.1.3. Role of the initial contribution ratio. Figure 4 displays the sen-
sitivity of the fair participation rate δ with respect to the initial con-
tribution ratio α for the three contracts. We recall that case (c) differs
from (a) due to the presence of the guaranteed annuity option, while
(c) differs from (b) due to the surrender option. Then the spreads
δ(a) − δ(c) and δ(b) − δ(c) give the extra cost, in terms of missed return
of profits, required to add the corresponding option to the contract.
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Figure 4. Fair participation coefficient δ in cases (a), (b) and (c)
for different values of α and E[∆].

In all cases (a)-(c), the participation rate increases with the leverage
ratio. Indeed, equityholders not only are entitled to a full participation
on their quota 1−α of the assets, but also to an extra participation, at
rate 1−δ, of the share of assets α held by policyholders. Therefore, the
higher the leverage ratio, the smaller is the extra surplus participation
rate yield by them in order to maintain fairness. In the limiting case
of α = 1 (a mutual company) then δ = 1 as policyholders are entitled
to share all profits after benefits have been paid.
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Under conservative mortality assumptions, there is practically no dif-
ference between cases (b) and (c), as keeping the guaranteed annuity
provides a higher value compared to swapping for a lump sum pay-
ment. The surrender option is therefore negligible. On the other hand,
the possibility of converting a lump sum into an annuity at a guar-
anteed rate is greatly valuable. This situation is completely reversed
when mortality is expected to worsen slightly, and cases (a) and (c)
practically coincide, so that the guaranteed annuity option is almost
valueless, as previously pointed out. The surrender option instead is
sizeable as, at maturity, it may be convenient to give up the annuity
and obtain a cash payment. There are no fair contracts for low levels of
α, meaning that, as the guaranteed benefit is fixed, there is no way to
compensate the low policyholders’ contribution by reducing their share
of profits. When α increases, the implied cost of the annuity conversion
and surrender options decrease as a greater part of the benefits comes
from participation to profits.

5.2. Sensitivity analysis - finite portfolio case. We move now to
the case of finite portfolios. As the qualitative behaviour of the lia-
bility components with respect to contractual and market parameters
follows the same pattern observed for large portfolios, we limit our-
selves to report the fair participation coefficient for different portfolio
sizes and longevity assumptions in the baseline case (unless otherwise
mentioned).

In Table 8, fair participation coefficients are calculated assuming
that the pricing measure Q and the leverage ratio α are independent
of N0, that is Q ≡ Q(N0) = Q(∞). We notice that diversifiable risk

E[∆] = 0.4 E[∆] = 0.8 E[∆] = 1.2
N0 δ(a)% δ(b)% δ(c)% δ(a)% δ(b)% δ(c)% δ(a)% δ(b)% δ(c)%

1 75.20 44.04 42.68 91.91 89.58 86.92 — — —
2 65.49 35.21 33.86 71.18 68.82 65.87 76.81 83.27 76.49
5 64.56 33.56 32.13 69.00 66.58 63.46 72.84 79.77 72.50

10 64.43 33.16 31.70 68.80 66.37 63.18 72.63 79.71 72.28
100 64.30 32.80 31.32 68.61 66.17 62.92 72.42 79.65 72.07
∞ 64.29 32.76 31.28 68.59 66.14 62.89 72.40 79.64 72.04

Table 8. Cases (a), (b) and (c) for a finite portfolio, different
portfolio sizes and values of E[∆]. δ(a), δ(b) and δ(c) are
the fair participation rates for cases (a), (b) and (c).

can be eliminated even by pooling relatively small groups of policy-
holders, as large portfolios’ fair participation rates are achieved very
soon. Although the portfolio sizes considered here may appear, at
first sight, much lower than actual book dimensions, they are in line
with the sizes of completely homogeneous sub-portfolios. The fair par-
ticipation coefficients decrease with N0 for all types of benefits, with
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sizeable change when passing from N0 = 1 to N0 = 2. In fact, if all
policyholders die before maturity, the assets are entirely transferred to
equityholders, see Equation (2.2). In a small portfolio, the likelihood of
such event is not completely negligible and, to achieve fairness, equity-
holders must agree to release a larger share of profits to policyholders.
In particular, in the limiting case of a single policyholder’s pool and
slight mortality worsening, fairness cannot be achieved as, no matter
how high the participation rate is, the initial contribution exceeds the
market value of liabilities. The right hand side of (3.3) then produces
a value greater than 100%. As the portfolio size grows, the extinction
probability decreases and, therefore, fairness can be obtained through
lower participation rates.

For the next example, we choose, as before, a pricing measure Q
independent of the portfolio size N0, but we set the initial individual
assets w0 and liabilities `0 according to the ruin probability criterion
described in Section 4. To this end we assume that the deterministic
mortality intensity m̃ driving survival probabilities under the physical
measure Q̃ is such that m = γm̃, with γ = 0.9. The risk neutral force
of mortality m is then obtained through a proportional reduction of
m̃. Moreover, the systematic risk factor ∆ has a Gamma distribution
with variance ṽar[∆] = 0.1 and expectation Ẽ[∆] = 1. Therefore,
Ẽ[µ̃t] = m̃(t) and m̃ can be seen as a best estimate force of mortal-
ity. The instantaneous assets return is normally distributed with mean
5%, and standard deviation 15%. Finally, to compute the initial assets
per contract we fix a ruin probability, over the T = 25 years horizon,
of 12.5% and, for the initial premium, of 25%. Roughly, if solvency
were monitored on a yearly basis, these figures would correspond to
an annual ruin probability of 0.53% for the assets and 1.14% for the
initial contribution. In Table 9 we display the initial assets w0, contri-
butions `0, leverage ratios α = `0/w0 and fair participation coefficients
δ for different portfolio sizes N0. The latter are computed assuming
for the rescaling factor ∆, under the pricing measure Q, a Gamma dis-
tribution with mean E[∆] = 0.8 and variance var[∆] = 0.1 and same
assets volatility as under the physical measure Q̃. As expected, both
initial assets and contributions decrease with portfolio size, reflecting
the diversification benefit. The corresponding leverage ratio appears to
be remarkably stable, even for small portfolios. Adjusting capital and
premiums to the size of the pool implies smoother fair participation
rates as compared to those in Table 8. Again, in the limiting case of a
single policyholder’s pool, fair contracts cannot be achieved even under
moderate longevity improvement assumptions.

Finally, as a last example, we fix assets and liabilities as in the base-
line case, but adjust the pricing measure Q(N0) to reflect the portfolio
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Case (a) Case (b) Case (c)
N0 w0 `0 α% δ% w0 `0 α% δ% w0 `0 α% δ%

1 127 88 68.74 — 123 84 68.53 — 130 89 68.70 —
2 123 84 68.72 82.54 118 81 68.45 78.17 125 86 68.66 80.25
5 120 83 69.38 80.81 116 80 69.05 76.27 123 85 69.30 78.43

10 120 83 69.66 80.91 115 80 69.31 76.33 122 85 69.58 78.52
100 119 83 69.92 81.04 115 80 69.55 76.44 122 85 69.83 78.65
∞ 119 83 69.95 81.05 115 80 69.58 76.45 122 85 69.86 78.66

Table 9. Cases (a), (b) and (c) for different portfolio sizes, indi-
vidual assets w0 and liabilities `0 computed using a ruin
probability criterion, leverage ratio α = `0/w0 and fair
participation rate δ.

size. To keep things simple, we assume that under Q(N0) the stochas-
tic force of mortality is µ(N0)

t = m(t)∆(N0), so that we keep the same
deterministic intensity as in the large portfolio case and adjust the sys-
tematic rescaling factor ∆(N0). More precisely, under Q(N0), we take
for ∆(N0) a Gamma distribution with the same variance as in the base-
line case and expectation tied to the portfolio size according to the
following specification:

E(N0)[∆(N0)] = E(∞)[∆(∞)]φ(N0),

where φ(N0) = N0

N0+1
. This formulation allows for an adjustment of

the systematic risk factor that vanishes as the portfolio size increases.
The correction with respect to Q(∞) is stronger for small portfolios,
where diversifiable insurance risk weighs more. In the limiting case
of a single policyholder, the effect of the adjustment is to halve the
(expected) stochastic mortality, resulting in an extremely prudential
liabilities assessment. Then, as N0 (and E(N0)[∆(N0)]) increases, there
are, in all cases (a)-(c), two opposite effects on the fair participation
rate. On one hand, as the portfolio size grows the participation rate
is pushed down, as it happens in Table 8 when we move downward
along a given column. On the other hand, the increase in E(N0)[∆(N0)]
has a positive effect on δ, as it happens in Table 8 when we move
rightward along a given row. In particular, the single policyholder

N0 φ(N0)% δ(a)% δ(b)% δ(c)%
1 50 75.20 44.04 42.68
2 67 67.40 50.89 49.32
5 83 67.59 59.30 57.08

10 91 68.05 62.64 60.00
100 99 68.53 65.79 62.60
∞ 100 68.59 66.14 62.89

Table 10. Fair participation rates δ for cases (a), (b) and (c) with
different portfolio sizes and size-adjusted risk neutral
measures, E(∞)[∆(∞)] = 0.8.
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portfolio case in Table 10 corresponds to the leftmost columns, top
row, of Table 8. Conversely, the large portfolio case corresponds to the
central columns, bottom row, of Table 8. Looking at cases (b) and (c)
in Table 10, as the portfolio size grows the adjustment to the survival
rates prevails over the decrease in the extinction probability, resulting
in higher fair participation coefficients. The opposite pattern occurs
in case (a) for N0 ≤ 2, while, for larger pools, the gain in probability
extinction exhausts its effects and the fair participation rate remains
stable. This different behaviour of cases (b) and (c) with respect to
case (a) is due to the fact that individual benefits of the annuity-type
highly depend on the mortality assumption, unlike pure endowment-
type benefits. This is apparent from Table 8 when comparing the
results in cases E[∆] = 0.4 and E[∆] = 0.8. The percentage increase
in the fair participation coefficients in (b) and (c) is substantial and
remarkably stable for any portfolio size. In case (a) the corresponding
increase is moderate and comparatively low for N0 > 2.

6. Concluding remarks

This paper aims at shedding some light on the interplay between two
key risk factors affecting most life insurance products, namely biometric
and investment risk. We enhance the pioneering model by Briys and
de Varenne (1994, 1997), featuring a stylized participating life insurance
company by explicitly tying benefits to the survivorship of a cohort of
policyholders. In particular, we allow for the two main components
of biometric risk, that is systematic (longevity) risk and diversifiable
(process) risk. The former stems from the uncertainty surrounding
future survival rates affecting all policyholders at once, the latter is
due to the specific mortality risk associated with each policyholder and
can be eliminated after pooling together portfolios of homogeneous
contracts.

A first result of our analysis is that systematic risk overshadows
process risk even for small portfolios. This fact is not surprising since
longevity risk has been recognized as one of the most challenging factors
affecting the life insurance business. During the last few decades, de-
mographers and actuaries have made a great effort in trying to develop
sound stochastic mortality models that capture trend and variability
of survival rates over time. Our base mortality model could then be
enhanced by employing a more realistic, dynamic approach. However,
we feel that the qualitative nature of our findings will be preserved.

One of the main consequences of the credit crunch crisis has been
the transition to a long-lasting phase of extremely low interest rate
regimes in many developed countries. This has put some severe strain
on life insurers’ balance sheets by sensibly inflating the market value of
liabilities, even though interest rates are expected to rise again in the
near future. We have decided, mostly to preserve the simplicity of the
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model, to consider constant non-random interest rates. Nonetheless,
our results are quite worrying as they show that, under low interest
rate levels, yet not even close to those currently experienced, the cost
of guarantees offered may be hardly sustainable. A further dimen-
sion could then be added by allowing for fluctuations in interest rates
through one of the many stochastic term structure models available.

Finally, to keep the transparency of our model to a reasonable level,
we have focused on a static, one period approach involving a closed
cohort of policyholders and a terminal bonus rate which is decided at
the onset. Clearly, a deeper analysis would result from considering the
life insurance company as a going concern, including features such as
writing new business, setting reversionary bonuses, checking dynam-
ically solvency and updating pricing rules and capital requirements.
However, all these aspects could be introduced at the cost of missing
some clarity in the results and are left for future research.

7. Appendix

7.1. Properties of τi and N .

7.1.1. Law of τi. The survival probability of a policyholder is given by

tpx = Q(τ i > t) = E
[
e−∆

∫ t
0 m(v)dv

]
= L∆ (log tp

∗
x) ,

where L∆ is the moment-generating function of ∆, i.e. L∆(y) = E[e∆y].

7.1.2. Ordering between τi and τ ∗.

Proposition 1. If E[∆] ≤ 1 then τi is greater than τ ∗ in the hazard
rate order.

Proof. We need to show that the ratio tpx/tp
∗
x is nondecreasing with t.

For t < s, we have

spx

sp∗x
− tpx

tp∗x
=M(sp

∗
x)−M(tp

∗
x) ≥ 0,

since the function M(z) = L∆(log z)/z, 0 < z ≤ 1, is nonincreasing
when E[∆] ≤ 1 as can be seen by inspecting its derivative:

z2M′(z) = E[z∆(∆− 1)] = Cov
(
z∆,∆

)
+ E[z∆]E[∆− 1] ≤ 0.

�

7.1.3. Law of N . The number of survivors N has, conditionally on ∆,
a binomial distribution:

N ∼ Binomial
(
N0, e

−∆
∫ T
0 m(v)dv

)
.
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Consequently, the unconditional law of N is a mixture of binomial
distributions. Denoting by F∆ the cumulative distribution function of
∆, we have, for j = 0, 1, . . . , N0,

Q(N = j) = E
[
bin
(
j;N0, π

∆
)]

=

∫ ∞
0

bin
(
j;N0, π

l
)
F∆(dl),

where bin(j;M, p) =
(
M
j

)
pj(1−p)M−j is the mass function of a Binomial

random variable with parameters M ≥ 1 and 0 < p < 1.

7.2. Market value of the unitary annuity. Under Assumptions 1
and 2, the market value of the unitary annuity aT is

aT = E

[∫ ∞
T

e−r(s−T )1{τ i>s}ds
∣∣∣τ i > T, ∆

]
=

∫ ∞
T

e−r(s−T )Q
(
τ i > s

∣∣∣τ i > T, ∆
)

ds

=

∫ ∞
T

e−r(s−T )e−∆
∫ s
T m(v)dvds

= a(∆),

where the function a is given by:

a(l) =

∫ ∞
T

e−r(s−T )
(
s−Tp

∗
x+T

)l
ds.

Note that a(l) is the value of a continuous annuity with force of mor-
tality l m.

7.3. Valuation Formulae in the Finite Portfolio Case. We de-
note by C(A, r, T,K) and P (A, r, T,K) the values at time 0 of a Eu-
ropean call, respectively put, option written on the assets of the firm,
when time to maturity is T , initial assets value is A, (fixed) interest
rate is r and strike is K.

Note that the individual benefit B is a function of ∆, say B = β(∆),
where

β(l) =


b in case (a)
ρ a(l) in case (b)
bmax{1, ρga(l)} in case (c)

.

7.3.1. Market value of the guaranteed amount. Conditioning on ∆, it
follows that

V g
0 = E[e−rTB1{τ i>T}]

= e−rTE
[
Bπ∆

]
= e−rT

∫ ∞
0

β(l)πlF∆(dl).

(7.1)
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7.3.2. Market value of the bonus option. Recalling that N (i) = 1 +∑
h6=i 1{τh>T} is independent of τ i conditionally on ∆ and that W is

independent of all biometric related factors, we have

V b
0 = E

[
e−rT

[
w − B

α

]+

1{τ i>T}

]

= E

[
π∆E

[
e−rT

[
W

N (i)
− B

α

]+ ∣∣∆]] .
By further conditioning on N (i) the inner expectation and exploiting
again Assumption 4,

V b
0 = E

[
π∆E

[
C

(
W0

N (i)
, r, T,

B

α

)
|∆
]]

=

∫ ∞
0

πl
N0∑
j=1

C

(
W0

j
, r, T,

β(l)

α

)
bin
(
j − 1;N0 − 1, πl

)
F∆(dl).

=
1

N0

∫ ∞
0

N0∑
j=1

C

(
W0, r, T,

jβ(l)

α

)
bin
(
j;N0, π

l
)
F∆(dl),

(7.2)

where the last equation is obtained after multiplying and dividing by
j
N0

.
Note that Equation (7.2) immediately highlights the valuation for-

mula for the aggregate bonus option N0V
b

0 .

7.3.3. Market value of the default option. Manipulations similar to those
in Section 7.3.2 can be used to obtain the following expression for the
default option value:

V d
0 = E

[
e−rT [B − w]+ 1{τ i>T}

]
=

1

N0

∫ ∞
0

N0∑
j=1

P (W0, r, T, jβ(l)) bin
(
j;N0, π

l
)
F∆(dl).

7.4. Valuation Formulae in the Large Portfolio Case. Recall
that now F∆ and E refer to the cumulative distribution function, re-
spectively expectation operator, under the probability Q = Q∞.

7.4.1. Market value of the guaranteed amount. This is formally the
same expression as in the case of a finite portfolio, Equation (7.1):

V g
0 (∞) =E[e−rTB1{τ i>T}]

=e−rT
∫ ∞

0

β(l)πlF∆(dl).
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7.4.2. Market value of the bonus option. Conditioning on ∆ and ex-
ploiting the independence between financial and demographic factors,
we obtain

V b
0 (∞) = E

[
e−rT

[
w0(∞)eR

π∆
− B

α(∞)

]+

1{τ i>T}

]

= E

[
C

(
w0(∞)

π∆
, r, T,

B

α(∞)

)
π∆

]
=

∫ ∞
0

C

(
w0(∞), r, T,

β(l)πl

α(∞)

)
F∆(dl).

7.4.3. Market value of the default option. Similarly as in Section 7.4.2,
we have:

V d
0 (∞) = E

[
e−rT

[
B − w0(∞)eR

π∆

]+

1{τ i>T}

]

=

∫ ∞
0

P
(
w0(∞), r, T, β(l)πl

)
F∆(dl).

7.5. Results relative to Section 4.

7.5.1. Proof of Theorem 1.
(1) Write N (N0) to stress the dependence of N on N0. Note that

N (N0+1) ≥ N (N0) almost surely and Q̃
(
N (N0+1) > N (N0)

)
> 0.

It follows that W ε
0 increases with N0. If the limit of W ε

0 as
N0 → +∞ were finite, then, as N (N0) → +∞ a.s., we would
have

Ẽ

[
F̃R

(
log

NB

W0

)]
→ 1,

contradicting (4.2).
(2) Recall first that N (N0)/N0 → π̃∆ > 0 and note that B > 0. If

W ε
0/N0 → w0(∞) then the expectation in (4.2) converges to

Ẽ

[
F̃R

(
log

π̃∆B

w0(∞)

)]
.

As this limit is also equal to ε ∈ (0, 1), it follows that 0 <
w0(∞) < +∞.

Denote explicitly W ε
0(N0) the solution of (4.2) with respect

to N0. To prove that the limit of W ε
0(N0)/N0 exists, suppose

there are two subsequences (N ′0) and (N ′′0 ) such that

W ε
0(N ′0)

N ′0
→ w′0(∞),

W ε
0(N ′′0 )

N ′′0
→ w′′0(∞)

with 0 < w′0(∞) < w′′0(∞) <∞. Taking the limit in the expec-
tation (4.2) under the two subsequences leads to two different
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limits while (4.2) states that both limits should coincide with
ε.

7.5.2. Calculation ofW ε
0 . For a finite portfolio, the expectation in (4.2)

can be computed by

Ẽ

[
F̃R

(
log

NB

W0

)]
=

∫ ∞
0

N0∑
j=0

F̃R

(
log

jβ(l)

W0

)
bin(j;N0, π̃

l)F̃∆(dl).

In the infinite portfolio case, the expectation in (4.3) can be calcu-
lated by

Ẽ

[
F̃R

(
log

π̃∆B

w0(∞)

)]
=

∫ ∞
0

F̃R

(
log

π̃lβ(l)

w0(∞)

)
F̃∆(dl).
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