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Abstract

This thesis investigates collaborative coding multiple access (C C M A ) channel 
communication schemes. The C C M A  schemes potentially permit e ffic ien t simultaneous 
transmission by  several users sharing a common channel, without subdivision in time, 
frequency or orthogonal codes. The main areas o f  investigation include the information 
transmission capacity for single and multiple access channels, coding/decoding 
techniques and practical system design for C C M A  schemes.

The information transmission capacity o f  a sampled and quantised single access 
A W G N  channel is developed. It is determined and optimised when the channel input 
and output are lim ited by certain practical constraints. These investigations have led to 
the development and determination o f  the information transmission capacity o f  multiple 
access channels. The capacity o f  a multiple access channel is studied fo r  tw o different 
classes o f  T-user channel models from  both theoretical and practical points o f  view. It 
is shown, in principle, that higher transmission rates or, equivalently, more reliable 
communication than with time sharing is achievable employing the same signalling 
alphabet

The C C M A  schemes, in addition to providing the multiple access function, can 
also incorporate a certain degree o f  error control capability. T w o  main decoding 
techniques, hard decision and maximum likelihood soft decision, are presented with 
uniquely decodable C C M A  schemes. A  new low  complexity maximum likelihood 
decoding technique is described and analysed. Reliability performance o f  various 
collaborative codes is studied b y  simulation employing these decoding techniques. It is 
shown that uniquely decodable schemes permit the multiple access function to be 
combined w ith forward error correction. It is also found that soft decision decoding can 
provide an energy gain over hard decision decoding.

The final area o f  investigation is a practical C C M A  modem system design to 
combine collaborative coding and modulation. An  M -ary frequency shift keying based 
modulation scheme is described fo r the T-user C C M A  schemes. Three particular types 
o f demodulation techniques, square-law, zerocrossing counting, and quadrature receiver, 
are described. These techniques are developed in software, tested and evaluated over 
noiseless and noisy channels.

x i x



Chapter .!

Introduction

The purpose o f  m odem  communication theory is to enable the design o f  systems 

which facilitate rapid, reliable, and effic ient transfer o f  information through a medium 

which is called a communication channel. A  telephone wire transmission line, or radio 

frequency electromagnetic propagation system are two very com mon examples o f  

communication channels. Intuitively, a communication channel is any medium which 

supports the propagation o f  energy from  a source to  a destination with sufficient control 

to allow movement o f  some data.

The classical m odel o f  a communication system has a single transmitter sending 

information to a receiver through a channel which in some way corrupts the transmitted 

information. This is a single access communication channel (SA C ). Developments in 

satellite communication systems, computer communication networks, mobile radio 

systems, and other communication systems involving multi-user have led  communica

tion systems designers to investigate the simultaneous transmission o f  information from 

several terminals over a common communication channel. A n  important m odel o f  multi

user communication is the multiple access communication channel (M A C ).

The information theory o f  S A C  [Shannon 1948] has shown that, noise and other 

disturbances on the channel do not lim it the reliability by which d igita l data can be 

transmitted but rather on ly  limits the rate at which data o f  arbitrarily h igh reliability can 

be transmitted. The highest rate at which such reliable data can be transmitted over a

1



channel is known as the capacity o f  the channel. The information theory o f  M A C  has 

shown that, multiple users can communicate data with arbitrarily small probability o f 

error over a common channel provided that the rates o f  the individual data streams lie 

within the capacity region fo r  the channel. The set o f  rates at which simultaneous 

reliable transmission is possible is called the capacity region o f  M A C . Shannons 

capacity theorem gives us a theoretical value fo r  the error free capacity o f  a channel, 

g iven that the time taken to evaluate the data is infinite. However, in most practical 

circumstances, this is o f  little use as any practical demodulation/decoding scheme must 

g ive  a result in a finite period o f  time. Therefore, the practical system designer must 

keep in mind the theoretical channel capacity, and probably more importantly, certain 

practical restrictions which must also be satisfied.

One o f  the basic ways o f  increasing the throughput o f  a communications resource 

is to make the allocation o f  the communications resource more efficient. Th is approach 

is the domain o f  multiple access communications. The problem is to e ffic ien tly  allocate 

portions o f  the fixed communications resource to a large number o f  users w h o  seek to 

communicate digital information to each other. There are many ways o f  distributing the 

communications resource among the active users. However, the purposes here are to 

rule out conventional channel sharing techniques such as T D M A , F D M A  and C D M A. 

M ore intuitively, the rationale behind this is to investigate collaborative cod ing multiple 

access (C C M A ) techniques by which a single transmission medium can b e  shared 

effic iently and in a distributed fashion among many users.

Collaborative coding constructions have found short codes which are easy to 

decode such that, the active users which transmit independently (i.e., w ithout prior 

reservations and without feedback during transmission) through the same channel can
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be decoded uniquely at the receiver. In particular, there exist collaborative codes which 

allow  tw o or more users to share the same transmission bandwidth and able to 

communicate at a combined information rate which is greater than unity. That is, the 

summary rate o f  the users is greater than the ideal rate (unity) which can be achieved 

by means o f  time sharing or T D M A . Since the transmission channel is always 

susceptible to  external noise, a collaborative coding design needs, not on ly  to  be 

uniquely decodable but also must be able to correct transmission errors.

In practical systems, the transfer o f  collaborative coded messages invo lves  the 

utilisation o f  various modules, i.e. modulator, demodulator and the communication 

medium. The modulator, which is employed at the transmitter side, translates the coded 

message stream into a suitable format fo r  transmission over the multiple access 

communication medium. On the other hand, the demodulator, is situated at the receiver 

and performs the reverse operation to that o f  the modulator. The demodulation process 

involves the detection o f  the received composite signal and the subsequent mapping o f 

these signals into the format o f  the original message stream.

Investigations o f  information transmission capacity o f  both SAC  and M A C , 

coding/decoding, and practical system design fo r  theses C C M A  schemes are o f  

considerable importance to  provide the overall effic ient multiple access system. The 

work o f  this thesis is a contribution towards these objectives.

Th e  second Chapter o f  this thesis reviews the principles and various techniques 

o f  multiple access communications. A  perspective, classification and discussion o f 

multiple access communications are given. Follow ing this, the most common techniques 

o f  M A C  are discussed. A  description o f  C C M A  schemes is also presented in the same 

section. Th e  M A C  models describing the form o f  a signals interaction over a channel
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are presented w ith some examples. The main achievements o f  the information theory 

and coding/decoding approaches to the M A C  are also briefly  reviewed and discussed 

in this Chapter.

In Chapter three, the information transmission capacity o f  a sampled and 

digitised single access A W G N  channel lim ited by input and output practical constraints 

is described. T h e  channel input is characterised by the input signal amplitude and 

average power, and the channel output is characterised by the output signal c lipping due 

to quantisation applied at the receiver. The input signal amplitude/output signal clipping 

(ISA/OSC) constrained capacity, and the input signal amplitude and average 

power/output signal clipping (ISAP/OSC) constrained capacity are determined and 

optimised separately. The optimum input signal amplitude distributions and the optimum 

output signal c lipping that maximises the capacity are also determined. These two 

capacities are developed by software and simulation results and discussions are 

presented at the end o f  this Chapter. The work described in Chapter three g a ve  insight 

and more understanding to the more complicated case o f  M A C  capacity which is the 

subject o f  investigation in Chapter four.

Chapter four is concerned with theoretical investigations o f  the information 

transmission capacity o f  M ACs. T w o  particular types o f  T-user M-ary M A C  models, 

interesting from  their theoretical and practical applications, are introduced and 

described. The T-user M-ary frequency M A C  is presented in tw o forms, w ith  and 

without intensity information o f  the received signal energy level. The information 

transmission capacity is developed, theoretically, in bits per channel use, fo r  these 

models in noiseless and noisy channel conditions. This capacity is simulated in software 

fo r  various transmission systems em ploying coherent and noncoherent combining o f
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signals at the channel and for various number o f users, T , and input signal levels. M . 

The practical implications o f  the M A C  capacity is also discussed.

Chapter f iv e  investigates the capability o f  C C M A  schemes to provide the 

multiple access function as w ell as the channel error control. Uniquely decodable coding 

schemes are given to  provide these functions. Hard decision C C M A  (H D _C C M A ) and 

maximum likelihood soft decision C C M A  (M LS D _C C M A ) decoding techniques are 

presented. These techniques are described together with symbol-by-symbol H D  

(SBS_H D ) decoding. A  new  low  complexity maximum likelihood decoding technique 

is presented to utilise the error control capability. The decoding procedure and algorithm 

fo r this technique are given. A  particular 2-user uniquely decodable scheme is analysed 

with this new technique. The error probability is derived for the T-user binary channel 

model employing H D _C C M A  and M L S D _C C M A  decoding techniques. The theoretical 

calculations are presented fo r a particular 2-user uniquely decodable case. Finally this 

Chapter ends with simulation o f  various 2-user uniquely decodable schemes. The 

reliability performance o f  these codes employing H D _C C M A  and M L S D _C C M A  is 

evaluated in the presence o f  A W G N  conditions. The results are presented in the form  

o f  symbol and codeword error rates as a function o f  signal to noise ratios.

Practical design o f  C C M A  modem is investigated in Chapter six. The design o f  

C C M A  modulation scheme based on the M-ary frequency shift keying (M F S K ) 

modulation scheme is described. Three particular types o f  demodulation techniques are 

investigated with combined collaborative coding and modulation signals. These 

techniques are square-law, zerocrossing counting, and quadrature demodulators. The 

quadrature demodulator is presented and described fo r two models, with and without 

intensity information. The overall designed C C M A  systems are developed in software,
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and verified  in a noiseless channel. An assessment and comparison o f  the relative 

reliability performance o f  these schemes is carried out by simulation over A W G N  

channel. The relative merits o f  the schemes are discussed, particularly with respect to 

their implementation complexity.

T h e  thesis ends with a conclusions and further future works on each Chapter o f  

this thesis.
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Chapter 2

Introduction to Multiple Access Communications

2.1 Introduction

In this chapter, w e  briefly  review the principles and techniques o f  multiple access 

communications. Since a general introductions to the multiple access communications 

channel have been g iven  in details elsewhere e.g. [Meulen 1977, Meulen 1986, El 

Gamal and C over 1980, Farrell 1981, W o lf 1981, and Gallager 1985], the reader is 

referred to these works fo r  more thorough treatment o f  the introductory material. W e 

shall point out these works whenever is required throughout this chapter.

2.2 M u lt ip le  A ccess  C h an n e l

Competition fo r  the use o f  existing communications resource leads to the 

question o f  simultaneous channel usage by  more than one user. This kind o f  

communication situation is known as M A C  and illustrated in Figure 2.1, in which there 

are several users communicating with one receiver over a common channel. Examples 

o f  multiple access communications include several mini-computers sending data 

simultaneously to a large computer [Abramson 1970, and Schwartz 1977], several 

ground stations accessing a satellite repeater [Stiglitz 1973, Ince 1978, Nirenberg and 

Rubin 1978, and Sommer 1968], several m obile radio to base station [Steele 1988, 

Farrell 1985, and Farrell, et al., 1986], etc. or simply several students questioning a

8



professor at the same time.

In the M A C  communication situation, each transmitter is fed by an information 

source, and each information source generates a sequence o f  messages. Th e  generated 

successive messages arrive at random instants o f  time to  be transmitted. The received 

signal is corrupted by noise and mutual interference between the transmitters during 

transmission over the channel. Therefore, the main issues in multiple access 

communication systems are interference between users, noise, and the random, ex' 

"bursty", arrivals o f  messages. Classification o f  the main research work on multiple 

access communication according to Gallager [Gallager 1985] is shown in Figure 2.2.

Multiple Access Communication

Information Theory  Collision  Resolution Spread Spectrum

Figure 2.2
Classification of Multiple Access Communication
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This classification shows that there have been mainly three bodies o f  research on 

multiple access communications, each using totally different models. These main areas 

are multiple access information theory, collision resolution and spread spectrum.

Th e  multiple access information theoretic approach was initiated in 1961 by 

Shannon in his fundamental paper [Shannon 1961], and established in 1971 with a 

coding theorem developed by  [Ahlswede 1971, and L iao 1972]. This approach 

appropriately models the noise and interference o f  the M A C  but ignores the random 

arrival o f  messages. It is tacitly assumed by information theoretics that the sources have 

a reservoir o f  data to send which is never empty. Thus the theoretical results in this area 

do not address the question o f  the delay that arises in multiple access systems because 

o f  the random arrival times o f  data to be transmitted. This assumption is adequate from  

the theoretical point o f  v iew , since the random arrivals o f  messages can be smoothed 

out by  appropriate source cod ing [Gallager 1985]. From a more practical point o f  v iew  

this m odel is not adequate because the long tim e intervals required for the source 

arrivals to  be smoothed out are typically far greater than the tolerable delays. For more 

information refer to  [M eulen 1977, Meulen 1986, W yner 1974, and El Gamal and 

Cover 1980].

Th e  collision resolution approach [Massey 1985, Massey and Mathys 1985, 

Abramson 1985, and Massey 1986], has always concentrated on the random arrival o f  

messages and on the transmission delays which are due to the interference between 

users, but has generally ignored all other aspects o f  the underlying communication 

process (e.g. noise). This approach to the multiple access communication came in 1970 

with Abramson’s A L O H A  network [Abramson 1970]. The basic idea o f  this system was 

that whenever a message (o r  packet) arrived at a transmitter, it would simply be
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transmitted, ignoring all other transmitters in the network. I f another transmitter was 

transmitting in an overlapping interval, interference would prevent the message from 

being correctly received, no acknowledgment would be sent, and the transmitter would 

try again later. The later time would be pseudorandomly chosen to avoid the certainty 

o f  another collision i f  both transmitters waited the same time. O ver the years, this basic 

strategy has been improved, generalised, and analysed in many ways. For a more 

detailed exposition o f  the collision resolution approach refer to the special issue on 

random access which consist o f  many papers [Massey 1985, Massey and Mathys 1985, 

Abramson 1985, and Massey 1986].

Spread spectrum [Cook, et al., 1982, Scholtz 1982, and Pickholtz, et al., 1982], 

is a mode o f  communication originally developed to protect against jamming in a 

military environment. For multiple access communication using spread spectrum several 

sources can transmit at once using d ifferent modulating sequences, and each w ill look 

like broadband noise to the others. Therefore, in the multiple access spread spectrum 

approach the interference from  other users is treated as additional, potentially intelligent, 

noise. For more detailed discussions and work carried in this area refer to the special 

issue on spread spectrum which consist o f  many papers [Cook, et al., 1982, Scholtz 

1982, and Pickholtz, et al., 1982].

2.3 Multiple Access Techniques

In multi user systems, there are many ways o f  sharing the communications 

resource among the active users [Sklar 1988 pp476-531]. The main objective o f  all 

these multiple access techniques is that various signals share a communications resource
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without creating unmanageable interference to each other in the detection process. The 

allowable lim it o f  such interference is that signals on one communications resource 

channel should not significantly increase the probability o f  error in another channel. 

Classification o f  the most common multiple access techniques together w ith the C C M A  

under investigation is g iven in Figure 2.3.

Multiple Access Methods

/
Frequency D ivision Time D ivision Code Div ision  Collaborative Coding

Multiple A c ce s s  Multiple A c ce ss  Multiple A c ce ss  Multiple A c ce ss

Figure 2.3
Classification of Multiple A ccess Methods

A  brief description o f  these techniques is g iven here.

2.3.1 F requency Division M u ltip le  Access (F D M A )

In this technique [Sklar 1988 pp476-491], the communications resource sharing 

is accomplished by allocating certain frequency bands as shown in Figure 2.4, in which 

each user is assigned one o f  these bands to communicate. The assignment o f  a user to 

a frequency band is long term or permanent, the communications resource can 

simultaneously contain several spectrally separate signals. In its simplest form, each 

subscriber operates within a separate operating frequency band. Mutual interference 

between subscribers is kept to a minimum by using nonoverlapping frequency bands. 

For example, the first frequency band contains signals that operate between frequencies,
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f0 and f „  the second between frequencies f 2 and f 3, and so on. The spectral regions 

between assignments, called guard bands, act as buffer zones to reduce interference 

between adjacent frequency channels.

Frequency

Figure 2.4
Frequency Division Multiple Access

The F D M  A  channels require no synchronisation or central timing, in which each 

channel is almost independent o f  all other channels. T h e  main advantages o f  F D M A  is 

its simplicity and the low  cost o f  the equipment required. However, one o f  the problems 

with F D M A  is the cross talk between different channels that can result in some 

performance degradation [N irenberg and Rubin 1978, and Sklar 1988 pp476-491].

?,?.2 Time Division Multiple Agyess (TPMA)

M ultip le access by time division  [Sklar 1988 pp476-491] is accomplished by 

assigning each o f  the users the fu ll spectral occupancy o f  the system fo r  a short 

duration called a time slot, selected to eliminate signal overlap at the intended 

receiver(s) as shown in Figure 2.5. The unused tim e regions between slot assignments, 

called the guard time, allow  for som e time uncertainty between signals in adjacent time
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slots, and thus act as buffer zones to reduce interference.

Tim* »lot 1 T l«« Slot 3

Figure 2.5
Time Division Multiple A ccess

In T D M A , time is segmented into intervals called frames. Each frame is further 

partitioned into assignable user time slots. The frame structure repeats, so that a fixed 

T D M A  assignment constitutes one or more slots that periodically appear during each 

frame time. Each station transmits its data in bursts, timed so as to arrive coincident 

with its designated time slot(s). When the bursts are received, they are retransmitted 

together w ith the bursts from  other stations. A  receiving station detects and 

demultiplexes the appropriate bursts and feeds the information to the intended user.

T D M A  has found w ide application because o f  its ability to permit many 

subscribers to  access a common channel without causing mutual interference. T D M A  

systems may suffer from other problems. Predominant among these are. strict inter-user 

synchronisation or the extra channel time required to  ensure the T D M A  channel 

allocations, excess hardware required to participate in a structured T D M A  network, and 

the delay in accessing the channel [D ill 1977, Rubin 1979, Nirenberg and Rubin 1978, 

Stiglitz 1973, and Sklar 1988 pp476-491].
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2.3.3 Code Division Multiple Access (CDMA)

Figure 2.6, illustrates the communications resource being partitioned by the use 

o f  a hybrid combination o f  F D M A  and T D M A  known as C D M A .

Frequency

Signal 3 : Signal 1 Signal 3

Signal 2 Signal 3 Signal 2

Signal 1 I Signal 2 Signal 1

*  SM i s  T im e

Figure 2.6
Code Division Multiple Access

C D M A  is an application o f  spread spectrum techniques [Cook, et al., Scholtz 

1982, Pickholtz, et al., 1982, and Sklar 1988 pp491-493]. A  spread spectrum 

communication system can be defined as one in which: (a) the transmitted signal 

bandwidth is much greater than the minimum bandwidth necessary to send the message 

information, (b) all users have access to the whole time frequency space o f  the channel, 

(c ) some function other than the message is used to determine the bandwidth o f  the 

transmitted signal, and (d) the signals, codes, o f  each user are all mutually orthogonal 

in some sense so that the signals, codes, may be unscrambled at the receiver by 

correlation [Ince 1978].

Spread-spectrum techniques can be classified into tw o m ajor categories: direct- 

sequence and frequency hopping. In direct-sequence schemes, the data signal is 

modulated onto a digital, pseudo-random code sequence which has a digit rate much
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higher than that o f  the data. Each o f  the user groups is g iven its ow n code. The user 

codes are approximately orthogonal, so that the cross-correlation o f  tw o different codes 

is nearly zero. The signals to be transmitted are modulated by these nearly orthogonal 

sequences over much broader frequency band than necessary. B y  using appropriate 

sequences, each transmitted signal w ill look like broadband noise to the others. The 

receiver can use the same sequence to despread the received signal to recover the 

transmitted messages. Frequency hopping schemes, can be easily v iew ed  as the short

term assignment o f  a frequency band to  various signal sources. The data signal is 

modulated onto a sinusoidal carrier, the frequency o f  which is caused to change in 

discrete increments, according to a pattern determined by a pseudo-random code 

sequence. Each user is g iven a set o f  hopping patterns such that each pattern o f  a g iven 

set is nearly orthogonal to all patterns o f  other sets.

Th e  most important advantage o f  C D M A  schemes, compared to T D M A , is that 

all the participants can share the full spectrum o f the resource asynchronously. There 

is no need to precise tim e coordination among the various simultaneous transmitters, 

i.e., the transmission times o f  the different users’ symbols do not have to coincide. The 

orthogonality between user transmissions on different codes is not affected by 

transmission time variations. This w ill become clear upon closer examination o f  the 

auto-correlation and cross-correlation properties o f  the codes. These schemes are 

advantageous under certain circumstances in that they permit flex ib ility  as to the 

number and activity o f  the users, they degrade gracefully as the number o f  users 

increases, and there is an automatic trade-off between the number o f  users and the 

degree o f  error protection.

The T D M A , F D M A , and C D M A  techniques m ay also be used in either fixed or
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demand assigned multiple access modes. In the fixed assigned multiple access mode the 

transmission formats o f  the techniques does not change, even though the traffic load 

varies from  tim e to time. In the demand assigned multiple access mode, the formats o f 

transmission o f  the techniques are changed as needed, depending on the traffic demand. 

Consequently, the demand assigned mode is more efficient, but it usually costs more 

to implement and maintain [Sklar 1988 pp476-497].

2.3.4 Collaborative Coding Multiple Access (CCMA)

In situations where the bandwidth is a very restricted resource, conservation o f 

the spectrum, which is a valuable and finite resource, is very important. For example, 

the radio frequency bands represent an inflexible resource and it is unlikely that 

significantly larger frequency bands w ill become available. Therefore, it is necessary 

to investigate efficient ways o f  sharing the available spectrum channels between as 

many users as possible. It is also o f  considerable importance to use a simple and 

effective  multiple access coding technique capable o f error control as well as the 

multiple access function. The C C M A  schemes permits potentially efficient simultaneous 

communications by two or more users in the same bandwidth without subdivision in 

time, frequency or orthogonal code, though this scheme may be used in a mixed format 

with T D M A , FD M A , C D M A . It allows a substantial increase in the number o f  users 

that can access the system simulateneously, leading to a higher combined information 

rate and hence a potentially more efficient system. In addition to providing the multiple 

access function these schemes can incorporate certain degree o f  error protection against 

noise [Farrell 1981].

In collaborative coding, digital modulation and coding are intimately related, and 

the simultaneous signals from  various users are demodulated together, as a combined
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multi-level signal. This permits the use o f  rela tively short and simple codes in contrast 

to the spread spectrum case. It can also be used with the single access modulation 

techniques (e.g. amplitude shift keying, phase shift keying and frequency shift keying), 

and applies to binary as w ell as multi-level signals, though at the cost o f  an increase 

in complexity.

These techniques exist which lie between the two extreme cases o f  TDMA and 

C D M A , and offer in certain circumstances the possibility o f  rate sums higher than unity 

with modest synchronisation requirements [Farrell 1981]. In TDMA, either strict inter

user synchronisation, or potentially wasteful time slot allocation is required. W here in 

C D M A , simultaneous transmission without inter-user synchronisation can be achieved, 

but this can be wasteful o f  bandwidth because o f  the relatively low  number o f  users that 

can operate simultaneously.

Collaborative codes exists fo r  M A C  and broadcast channel (B C ) [Farrell, et al., 

1986]. In the M A C  case, each user is provided w ith a code which enables the receiver 

to decode the individual information streams, by  detecting the resulting combined 

signal. In the BC case, a combined coded signal is transmitted, and each receiver is able 

to detect and decode the information destined fo r  it. The BC is the inverse o f  the M A C ; 

the sources and their common encoder are all at the same locations, whereas the 

decoders and associated sinks are in different locations. The information broadcast may 

be private to each sink, or may have common elements.

These techniques have many applications, fo r  example, digital m obile radio 

communication systems [Farrell 1983, Farrell 1985, and Farrell, et al., 1986], in which 

they can be applied to both mobile-to-base and base-to-mobile transmission. These 

techniques have also been proposed fo r optical fibre communication systems [Bridge
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1986] and types o f  random access M A C , such as a satellite asynchronous multiple 

access system [W o lf  1978, and W eldon  1978].

2.4 Multiple Access Channel Models

The purpose o f  M A C  models is to describe how  the input signals interact in the 

channel to produce the channel output. Many M A C  models have been proposed and 

used by various researchers. Classification o f  the discrete memoryless M A C  models 

according to the input combining function in the noiseless case, is shown in Figure 2.7.

Discrete Input/Output 
Multiple Access Channels

Real Adder O R  XO R
Channel Channel Channel

A N D  Sw itch ing Colliaion
Channel Channel Channel

Figure 2.7
Classification of Discrete Input M ACs

Each model is  described very brie fly  here.

(i) Adder Channel: This is the most popular M A C  m odel and has been considered for 

the information theory and coding aspects by various authors [Kasami, et al., 1975, 

Kasami and L in  1976, Kasami, et al., 1983, W eldon 1978, Deatt and W o lf 1978, Chang 

and W eldon 1979, Ferguson 1982, Chang 1984, Braak and T ilb org  1985, Khachatrian
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1982, Khachatrian 1984, and Wilson 1988]. The channel output symbol value is the 

arithmetic sum o f the input symbol values, in the absence o f  noise. The T-user noiseless 

adder M A C  is defined as a channel with T-input, and one output g iven  by;

where X, is the i-th channel input, Y  is the channel output and the sign denotes real 

addition. For example, consider the 2-user noiseless binary adder M A C  shown in 

Figure 2.8.

0  1 ------------------- -

1 1 ------------------------------*-----------------------  2

Figure 2.8
2-user Noiseless Binary Adder MAC Model

It has tw o inputs, X , and X ^ iO . l },  and one output Y , which is the ordinary arithmetic 

sum o f the inputs, Y = X ,+ X 2, Y e {0 , l ,2 }.  The arrowed lines represent the channel 

conditional probabilities p (Y  | X ,,X 2). The adder channel is also known as the binary 

input erasure M A C  [W o lf  1975], because the output symbol "1" cannot be 

unambiguously decoded, even in the noiseless case.
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(ii) O R  Channel: This model is used by various researchers in different communication 

situations [Sommer 1968, Cohen, et a l„  1971, V iterbi 1978, G yor fi and Kerekes 1981, 

and W o lf  1981]. The output o f  the channel can be written fo r  the T-user noiseless 

channel as;

X, ( 2 . 2 )
i -1

where the "V " sign is logical O R  and X|S{0 1 }. That is, i f  X f denotes the binary input 

o f  the i-th user, then the output o f  the channel is zero i f  and on ly  i f  X ,= X 2=...XT=0. 

For example, the 2-user noiseless binary O R  M A C  is shown in Figure 2.9, where the 

channel output is "0" i f  X ,= X 2=0  and "1 " other wise.

X, X2 Y

Figure 2.9
2-user Noiseless Binary O R  MAC Model

(iii) Exclusive-OR (M odulo-2) Channel: This channel [W o lf 1975, and Farrell 1981), 

output is modulo-2 sum (exclusive-OR function) o f  tw o cm- more input values. Thus all 

inputs and the output have the same alphabet (0 ,1 ). This channel is also known as 

modulo-2 addition channel. The T-user noiseless channel output can be written as;
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(2.3)

where the summation sign "2 "  is o ve r  G F (2) and X ,e {0 , l } .  For example, the 2-user 

noiseless binary exclusive-OR M A C  is shown in Figure 2.10, where the channel output 

is the modulo-2 sum o f  two binary inputs.

X, X 2 Y

Figure 2.10
2-user Noiseless Binary Exclusive-OR MAC Model

(iv ) A N D  Channel: This channel is also called binary multiplying channel as mentioned 

in [Meulen 1977]. Th e  capacity region and coding strategy for this channel model is 

considered by [Schalkwijk 1982, and Schalkwijk 1983]. The noiseless T-user channel 

output can be written as;

K-n*, ,2-4>
i-i

where the multiplying sign "11" is over G F (2 ) and X ^elO .l}. For example, the 2-user 

binary m ultiplying M A C  is shown in Figure 2.11. The inputs and output are binary, and
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the channel operation is defined by Y = X ,X 2.

Xi x2 Y
0  o

1 0 0

0 1

1 1 1

Figure 2.11
2-user Noiseless Binary AND MAC Model

(v ) Switching Channel: The switching channel model was originally introduced because 

it is in some sense similar to  the binary input real adder channel but exhibits quite a 

different behaviour in terms o f  its capacity region [Vanroose and Meulen 1987, and 

Vanroose 1988]. For example, the 2-user noiseless binary switching M A C  is shown 

in Figure 2.12. Th e  channel accepts tw o binary inputs and outputs a ternary symbols 

according to the bit wise deterministic transitions. Therefore, the channel output fo r  the 

2-user noiseless case can be written as;

where the X,/0 is infinity and X ,e {0 , l } .  This is similar to the 2-user binary adder 

channel which has tw o binary input and ternary output.

(2.5)
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0  1 -------------------------- »--------------------- o

1 1 -------------------------->--------------------- 1

Figure 2.12
2-user Noiseless Binary Switching MAC Model

(v i) Collision Channel: This channel model [Gallager 1985, Massey 1985, Massey and 

Mathys 1985, and Massey 1986], is related to  the collision resolution approach 

discussed in section 2.2. It is based on the assumption that whenever tw o or more users 

transmit simultaneously, the receiver can only detect that a collision took place. This 

is can be written as follows;

Y  =  Xj; i f  on ly  user i transmits

=  C  (collision ); i f  two or more users transmits (2.6)

2.5 Multiple Access Information Theory

The information theory o f  M A C  is fundamentally concerned with the simulta

neous information transmission o f  several users through a common channel, as 

e ffectively  as possible, in the presence o f  arbitrary interference and noise. The main 

objective o f  this information theory is to characterise the capacity region o f  M A C  for
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certain communication situations. That is, the determination o f  a set o f  simultaneously 

achievable rates which a llow  each user to communicate with the receiver w ith arbitrarily

small error probability in the decoder output sequences. A  rate point R = (R „R 2.....R j),

fo r  a T-user M A C , is said to be achievable i f  and on ly  i f  there exist encoders and 

decoder such that the probability o f  error in the information streams supplied to the 

sinks can be made as small as possible [W o lf 1978]. The information rate o f  the i-th 

user (R,) can be described as a point in an T-dimensional rate space denoted by the

coordinates (R „R 2.....R j).  The set o f  achievable coordinates fo r  a particular channel is

known as the channel capacity, C ,*^ . One aspect o f  this capacity region is that the sum 

o f  the rates, R___ is upper bounded by the joint mutual information [W o lf  1981];

R__ s maximum I(XlJC2,...tXT -tY) -  CMAC <2*7)

where the maximum is taken over all product distributions on the input random

variables X ,,X 2.....X ,. The information theory o f  various multiple access communication

situations have been investigated over many years by many researchers. Here, w e 

briefly  review  the most important results achieved fo r  the capacity region o f  M A C , for 

more details refer to [Meulen 1977, Meulen 1986, E l Gamal and C over 1980, W o lf 

1980, W o lf 1981, GaUager 1985, and W yner 1974].

The information theory o f  M A C  communication was first mentioned in the 

basic paper o f  Shannon [Shannon 1961] in connection with his study o f  two-way 

communication channels. The capacity regions fo r  the 2-user and 3-user discrete 

memoryless (D M ) M A C  with independent sources have been determined by [Ahlswede 

1971]. Meulen [Meulen 1971] put forward a lim iting expression and simple inner and
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outer bounds on the sets o f  simultaneously achievable rates. L iao [L iao  1972] studied 

the general T-user D M -M A C  with independent sources. H e  determined a set o f  rates 

which a llow  each transmitter to communicate with the receiver with an arbitrarily small 

probability o f  error. H e also showed that fo r  any set o f  rates outside the capacity region, 

the probability o f  error cannot be made arbitrarily small. The capacity region fo r the 

2-user adder M A C  with binary input is shown in Figure 2.13, as derived by [Ahlswede 

1971, and L iao  1972].

(blt*/ehann«l u m )

Figure 2.13
Capacity Region of 2-user MAC

The basic assumption is that the encoders are to operate independently o f  each 

other. Y et in the first derivation o f  the capacity region fo r this channel, it was assumed 

that the encoders utilised block codes and that the encoders produced codewords that 

were in block and bit synchronism. Furthermore it was assumed that the decoder was 

in block and bit synchronism with the encoders. Ah lsw ede [Ahlswede 1974] extended 

the two-input one-output multiple access case to two-input and two-output. Ulrey
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[U lrey 1975], generalised the multiple access case with two-input and two-output results 

by Ahlswede to arbitrary-input and arbitrary-output. The information capacity o f  

Gaussian M A C  have been determined by [W yner 1974, and C over 1975], fo r  two 

independent users and also fo r  various channel models [El Gamal and C over 1980].

For the single access channel, it is known that feedback w ill not increase the 

capacity, but [Gaarder and W o lf 1975] have proved that the capacity o f  the 2-user 

binary adder M A C  increases when adding noiseless feedback links from  the output o f 

the channel to the encoders. The capacity o f  an additive white Gaussian noise M AC  

with feedback link is also determined by [Thomas 1987] and shown that feedback can 

at most double the capacity. He also showed that fo r  any T-user M A C , feedback cannot 

increase the total capacity by more that a factor o f  T . It is also noted in [Farrell 1981], 

that the occurrence o f  errors reduces the size o f  capacity region o f  the binary adder 

M A C , so  that it lies within the capacity region shown in Figure 2.13.

A l l  the aforementioned work was done under the assumption o f  block 

synchronism. The synchronisation techniques may take many forms [Meulen 1986, 

Kasami, et al., 1983, and McEliece and Posner 1977]. A  M A C  is said to be 

synchronous, i f  the encoders and the decoder are in block synchronism. I f  no block 

synchronism exists between the encoders and decoder, then the M A C  is said to be 

asynchronous. However, it is quasi-synchronous, i f  the encoders are not in block 

synchronism with each other, but the decoder knows the block position o f  each encoder 

in the received sequence o f  symbols, and bit synchronism is maintained amongst the 

encoders and decoder. Various communication situations o f  asynchronous M A C  and the 

problems arising when there is no time synchronisation have been investigated and 

discussed by number o f  authors [Meulen 1986, Cohen, et al., 1971, McEliece and
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Posner 1977, Deatt and W o lf 1978, G rigor'ev  1979, Cover, et aL, 1981, G yorfi and 

Kerekes 1981, Poltyrev 1983, Kasami, et al., 1983, and Hui and Humblet 1985]. It is 

shown that the capacity o f  the quasi-synchronous M A C  is the same as that o f  its 

synchronous counterpart It has also been proved that the capacity o f  the binary adder 

M A C  without b lock synchronisation but with symbol synchronisation is the same as for 

the fu lly  (block and sym bol) synchronised M A C  [M cE liece and Rubin 1976, and 

M cEliece and Posner 1977].

2.6 Multiple Access Coding/Decoding Techniques

Various block and convolutional codes have been constructed over the years for 

synchronous and asynchronous M ACs. These codes guarantee unique decipherability 

and can also incorporate a certain degree o f  error correction. Generally, block codes 

appear to perform better than convolutional codes [Farrell 1981]. Convolutional codes 

are not capable o f  achieving a rate sum greater than unity. In addition, block codes have 

the advantage that in a multi-user scenario various ways o f  simplifying the decoding 

process can be found, this does not seem to be true fo r  convolutional codes. In this brief 

review, we mainly concentrate on the block coding techniques, however, many other 

convolutional and trellis codes exist [Chevillat 1981, Peterson and Costello 1979, 

Ohkubo 1977, Cohen, et al., 1971, Raychaudhuri and Rappaport 1979, and L in  and W ei 

1986]. Block coding techniques have been constructed fo r  noiseless and noisy channels. 

These codes provide the unscrambling function fo r  the noiseless channels and the 

unscrambling and error control functions fo r the noisy channels.
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2.6.1 Code Constructions for Noiseless Channel

The code constructions fo r noiseless synchronous M A C  model have followed 

two main approaches [Mathys 1988]. The first one focused on achieving the bounds 

promised by multiple access information theory fo r  the 2-user binary input adder M AC . 

Code constructions which belong to this class are the ones g iven  in [Kasami. et al., 

1975, Kasami and L in  1976, Kasami, et al., 1983, W eldon 1978, Khachatrian 1982, 

Khachatrian 1983, Braak and T ilb org  1985, and L in  and W ei 1986]. The second 

approach with the same philosophy is to construct codes for the T-user noiseless binary 

input adder M A C  shown in Figure 2.14, with the goal o f  achieving channel capacity 

asymptotically as T  goes to infinity. Code constructions for this class o f  codes are the 

ones g iven in [Chang and W eldon 1979, Ferguson 1982, Chang 1984, and Wilson 

1988].

* 1
0
1

0

Y
0

1

1 1 T

Figure 2.14
T -user Noiseless Binary Adder MAC Model

Uniquely decodable coding schemes have been extensively studied by [Kasami 

and Lin 1976, Kasami, et al., 1978a, and Kasami, et al., 1983] fo r  the 2-user adder 

M AC . A  code is said to be uniquely decodable if and only if all the received composite
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codewords, which result from  the users’ codewords transmission, are distinct A  simple 

coding scheme for a 2-user uniquely decodable block code o f  length N =2, is constructed 

by [Kasami, et al., 1975, and Kasami and Lin 1976], That is, user 1 has the codewords 

C|=(00,11) and user 2 the codewords 0^(00,01 ,10 ). Then (C „C 2) is a uniquely 

decodable code pair, in which all the received composite codewords all unique. 

Therefore, the decoder can unscramble the two messages without ambiguity. The overall

rate sum achieved by this scheme is R___=R ,+R ,=1.292 bits per channel use, which is

higher than time-sharing. The capacity o f  the 2-user binary adder M A C  is shown in

Figure 2.13, from which it is seen that the maximum value o f  R__ is 1.5 bits per

channel use.

This simple coding scheme is extended by the same author [Kasami, et al., 1975, 

and Kasami and Lin 1976] to block length N. The rates are (R „R 2)= (l/ N ,{lo g2(2N- 

1)/N)}), and the rate sum decreases w ith  increase in N , tending to unity. Thus N =2  is 

both the simplest and the most efficient cases. Uniquely decodable code pairs have also 

been constructed by [Braak and T ilborg  1985], with higher rate pair using a computer 

search. It is noted by [Farrell 1981] that if each user is allowed three binary 2-tuples, 

and the channel is, in effect, capable o f  mapping the nine distinct pairs o f  binary 2- 

tuples presented to it into the nine distinct ternary 2-tuples, then the rate sum achieved 

is RM.= log2(3 )=  1.585. This is the highest rate sum that can be achieved with ternary 

channel symbols [Meulen 1977]. Other class o f 2-user adder coding schemes and 

extension to them are also considered by  the same authors [Kasami, et al.. 1975, and 

Kasami and Lin  1976].

W eldon [Weldon 1978] point out that additional rate pairs can be achieved by 

using the time-sharing technique. That is, the users agree to use codes C, and C 2 fo r
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certain tim e t „  and then C , ’ and C2’ few a certain time t2, and so on repeatedly. For 

example, i f  C ,=C 2’ =(00,11), C , ’ =C2=(00,01,10), and t , ^ ,  then R ,=R 2=0.645 and

R__-1 .29 , which is the best equal rate pair found [W eldon 1978]. W o lf [W o lf 1978]

has shown that, with number o f  users greater than two, the capacity is approximately, 

0.51og2(3teT/2), and T-user binary codes with tw o codewords per user m ay be found 

with rate sums asymptotically close to  capacity. Class o f  T-user uniquely decipherable 

codes fo r  the noiseless binary M A C , with rates asymptotically equal to  the maximal 

achievable value are also constructed by [Chang and Weldon 1979]. In this coding 

scheme each user code C, i= l,2 ,...,T , is given tw o codewords o f  length N . The overall 

rate achieved by this coding is thus T/N. Generalisation to these T-user codes for 

binary adder M A C  is given in [Ferguson 1982]. A  class o f  uniquely decodable codes 

o f  arbitrary length and asymptotically achieving the maximal capacity sum is given by 

[Chang 1984]. Uniquely decodable coding technique is also constructed fo r  a T-active 

users ou t o f  T ’ (where T ’> T ) by  [Mathys 1987, and Mathys 1988]. A  set o f  T ’ codes 

have been constructed such that any T  codes which are used at the same time yield a 

uniquely decodable code combination.

A  simple block coding scheme has been constructed fo r the asynchronous 2-user 

binary adder M A C  by [W o lf 1978]. This coding scheme does not require block 

synchronisation, though symbol synchronisation is still required. That is, user one uses 

the tw o  codewords (00,11) and user two uses a code such that in any concatenation o f  

the codewords tw o successive O N E S  never occur. For example, with N ,=2  and N2=3, 

C ,= (00 ,11) and C2=(000,001,010) g ives R ^ ,=1.028. The decoder can synchronise with 

encoder one because the pattern ..00110.. could on ly  have been caused by  encoder one. 

By making the block length o f  C 2 longer and increasing the number o f  codewords, the
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rate sum can be made to approach 1.169 asymptotically. B y  using a variable rate code 

fo r  C j with the codewords (0,01), a rate sum o f  1.167 may be achieved [W o lf 1978].

These schemes are extended in [Deaett and W o lf 1978] by permitting C, to 

consist o f  tw o codewords with K  consecutive ZERO S or ONES. The results show that 

the best rate sum o f  1.21 is obtained when K =3. Low er bounds on the achievable rates 

o f  uniquely decodable codes fo r  the asynchronous adder channel have been derived in 

[Kasami, et al., 1983]. The asynchronous binary adder M A C  can be reduced to the 

quasi-synchronous binary adder M A C  by a scheme g iven in [Kasami, et al., 1976, and 

Kasami, et al., 1983]. That is, at the beginning o f  data transmission, each encoder sends 

a synchronising sequence to the decoder. Th e  synchronising sequence has the property 

that, upon reception o f  a synchronising sequence from  one encoder, the decoder can 

establish block synchronism with it, regardless o f  what codeword the other encoder is 

transmitting during the same period. A fte r  the reception o f  synchronising sequences 

from  both encoders, the decoder has established synchronism with each individual 

encoder and the asynchronous binary adder M A C  is reduced to the quasi-synchronous 

binary adder M A C .

In principle, all the T-user uniquely decodable coding schemes can be decoded 

with a look-up table using an exhaustive searching nearest-neighbour decoding scheme, 

since there is a one-to-one correspondence between each received N-tuple and the only 

possible set o f  T  transmitted codewords. Therefore, in noiseless conditions the decoder 

is capable o f  decoding every possible received vector, without ambiguity, into the T  

codewords that were transmitted by the T  encoders. A n  iterative decoding procedure 

has been constructed for the noiseless T-user uniquely decodable codes [Chang and 

W eldon 1979], which is simpler than look-up table fo r  large T  and N.
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2.6.2 Code Constructions for Noisy Channel

Codes designed fo r  noisy M A C  not only must be uniquely decipherable but also 

must b e  able to correct transmission errors. B lock  codes which both unscramble 

sym bols and correct errors exist for this channel. Th e  general T-user noisy M A C  model 

is show n in Figure 2.15.

X i  X 2 
0  0 

1 o  

o  1

Figure 2.15
T-user Noisy Binary Adder MAC Model

Coding scheme known as 6-decodable code has been derived by [Kasami, et al., 

1975, Kasami and Lin  1976, Kasami and Lin 1978a, and Kasami and Lin  1978b, and 

T ilb org  1978] for the noisy 2-user adder M A C , capable o f  correcting t=i(6-l)/2J or 

few er errors, where LxJ is the largest integer less than or equal to x. For example, a 

2-user code (C „C 2> is said to be 6-decodable (6>0 ) i f  and only if, fo r  any tw o distinct 

pairs (u ,v ) and (u’ ,v ’ > in (C ,,C2), the distance between the vector (u +v) and (u’+ v ’ ) is 

greater o r  equal to 6. It has been proved that the constituent codes o f  a 6-decodable 

code pa ir have minimum distance at least 6 [Kasam i and L in  1976]. I f  a code has 

m inimum distance d.,., and distance is a metric, its error correcting capability is 

L(d-è,-l)/2J, [Peterson and W eldon 1972].
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A  m ethod o f  error correction is reported in [W o lf 1975] for the tw o  user case, 

C, is binary t-error-correction code w ith  every d igit repeated to bring the b lock length 

up to N , C 2 is a ternary t-error-correcting code with one ternary to tw o  binary 

translation wh ich again increases the block length to N . Decoding consists o f  a first 

stage w h ich creates erasures when ambiguous pairs o f  digits are received, fo llow ed  by 

separate b inary  and ternary error-and-erasure decoders for  each user. A  cod ing scheme 

for the n o isy  T-user adder M A C  is  constructed by [Chang and Weldon 1979]. Code 

construction which allows error correction for the T-user binary adder channel with two 

codewords per user is also given in  [W ilson 1988]. Concatenated coding schemes are 

described b y  [Weldon 1978, and Ohkubo 1980] fo r  the 2-user case. A lso, concatenated 

code construction for a noisy binary adder M A C  is g iven in [Mathys 1989] for  only T- 

active users out o f  T ’ at a given time.

In n o isy  channel, the N-tuple which is received may d iffer from the transmitted 

codeword. In  this case, the decoder must ask fo r  a re-transmission o f the message or 

a choice as which codeword was most probable sent has to be made. Th is kind o f 

decoding w here the received vector r is decoded into vector closest to r, guarantees 

correct decod ing in the noiseless synchronous uniquely decodable coding scheme case. 

A  decoding procedure for 2-user 6-decodable codes, that can correctly decode 

L(6-1)/2J o r  few er transmission errors is also given in [Kasami and Lin  1978b]. The 

decoding procedures utilise the structure o f the codes to reduce the number of 

computations and the storage s ize  fo r  the tw o user case. However, the decoding 

com plexity o f  this scheme still grow s exponentially in both computation time and 

storage s ize  as the code length increases fo r  fixed  rates. A s  in the single access 

communication situation the decoding table becomes unmanageably large as N  and T
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increases. Therefore, what is needed is a simple and systematic means o f  calculating the 

transmitted vectors from the received vector.
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Chapter 3

Information Transmission Capacity o f Single Access Channel

3.1 In trod u c tio n

The channel capacity  is a fundamental concept in the mathematical theory o f 

communications. It w a s  introduced by Shannon [Shannon 1948] to specify the 

asymptotic lim it on the maximum rate at which information can be conveyed reliably 

over a channel. The in form ation theory o f  S A C  has been concerned with the reliable 

transmission o f  inform ation from  a single information source to a single information 

sink. Shannon showed that, there exists a capacity, C , fo r  a g iven  channel, and that 

communication can b e  achieved with an arbitrarily small probability o f  error fo r  any 

rate R, smaller than C . The basic principles and concepts o f  constrained and 

unconstrained channel capacity can be found in [Gallager 1968, Blahut 1972, and 

Blahut 1987].

This theory g iv e s  the theoretical channel capacity value fo r  maximum amount o f 

information o f  a channel, given that the time taken to evaluate the data is infinite. In 

most practical situations the demodulation/decoding must g ive  a result in a finite period 

o f  time. For example, in  practical systems which uses digital signal processing (DSP) 

integrated circuitry, an analogue signal com ing over a channel is sampled and digitised 

by means o f  an analogue-to-digital convertor (A D C ) before any information can be 

extracted. The sam pled signal must then be processed by  the D SP in real time in order 

to recover the transmitted data. There are a number o f  parameters involved in this
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process which influence the possible throughput and reliability o f  the data delivered to 

the final user (e.g. the number o f  quantisation steps in the A D C , the degree o f  signal 

clipping at the A D C  input etc.)

The determination and optimisation o f  sampled and d igitised S A C  capacity under 

channel input and output practical constraints are considered in this chapter. The 

channel input constraints are those o f  signal amplitude, or signal amplitude and average 

power. The channel output constraint is that o f  signal clipping (S C ) due to quantisation 

applied at the receiver. Th e  input signal amplitude/output signal clipping (ISA/OSC) 

constrained capacity, and the input signal amplitude and average power/output signal 

clipping (ISAP/OSC) constrained capacity o f  an A W G N  channel are determined 

separately.

3.2 T h to r t t ic a l  B asis a n d  D eve lo p m en t o f  C h a n nel C a p a c ity

In the general m odel o f  a digital communication system i f  we assume that the 

modulator and demodulator are considered to be parts o f  the channel, then we have a 

composite channel which can be characterised [Gallager 1968 pp71-72] by; (i) a set o f  

possible inputs available at th e input terminal, (ii) a set o f  possible outputs available at 

the output terminal, (iii) a set o f  conditional (transition) probabilities relating the 

possible outputs to  the possib le inputs. Therefore, a SA C  consists o f  tw o sets X  and Y , 

and a collection o f  conditional probabilities, p (Y  | X ). Th e  set X  is called the "input 

alphabet" and the set Y  is ca lled  the "output alphabet".

Consider discrete m em oryless channel (D M C ) [G allager 1968 pp73-74] with 

finite input and output alphabets. Each output letter depends probabilistically only on
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the corresponding input and this probabilistic dependence is independent o f  time. A  

single user consist o f  a source producing symbols from a finite alphabet according to 

a stationary probability, and an encoder mapping source symbol sequences to channel 

symbol sequences. The source produces a symbol every T , seconds, and the channel 

transmits a symbol every T ,  seconds. Therefore, the number o f  source sequences o f 

length, k, fo r  an alphabet o f  M  elements is (M k), and the information (I )  contained in 

one such sequence is,

I =  log jfM “); bits (3.1)

Since k source symbol intervals translate into N  channel symbol intervals, the condition 

kT ,=N T, is imposed. Therefore, the information transmission rate, R, in bits per second 

is,

R  =  log2(M k)/NT<

=  lo g j iM )^ , ;  bits per second (3.2)

or

R =  k log2(M )/N; bits per channel use (3.3)

where the limiting value to  this maximum rate is the channel capacity.

3.2.1 Unconstrained Channel

The capacity o f unconstrained channel can be written in terms o f  the average 

mutual information, I (X ;Y ),  between channel input alphabet o f  M  elements and output
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alphabet o f  J elements [Gallager 1968 pp74] as follows;

M  J
I (X ;Y )  =  2  2  p (i) p (j | i)  log (p (j | i)/p<j)) (3.4)

» j

where p (i) is the probability o f  input sym bol i,

M
2  p (i) =  1 (3.5)
i

p (j) is the probability o f  receiving the output symbol j, which can be written as;

M
p (j) =  2  p (i) p (j | i )  (3.6)

i= l

and p (j | i) is the transition probability. The i  and j  can take values between 1 and M, 

and p (j | i )  values w ill be a function o f  M . The largest average mutual information that 

can be transmitted ove r  the channel in one use, maximised over all input probability 

assignments, is called the capacity o f  the channel and is denoted by C. That is,

C  =  max I (X ;Y ) ;  ¡=1,2.....M  (3.7)
p (i)

The units o f  C are bits per input symbol into the channel (bits per channel use) when 

the logarithm is base 2. I f  a sym bol enters the channel every  T , seconds then the 

channel capacity in bits per second is CYT,.
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In the noiseless channel, the capacity is reduced to being the entropy o f  the

channel output i.e.,

M
C  =  - Z  p (j) lo & (p (j)) (3.8)

j = l

I f  all the source symbol probabilities are assumed to  be equal,

p (i) =  1/M; fo r  all i  (3.9)

then the unconstrained S A C  capacity can be written as;

C  =  log2(M ); bits per channel use (3.10)

The assumption o f  equiprobable occurrence o f  symbols is not always true fo r  certain 

channel constraints, as w ill be seen later.

3.2.2 Constrained Channel

In practical systems, the information transmission capacity o f  a S A C  is limited 

by channel input and output constraints, which is termed here as "practical" constraints 

[Gallager 1968, Smith 1971, Blahut 1987, and Honary, A li and Darnell 1990]. The 

channel input is characterised by the input signal amplitude. A , and average signal 

power, o s2, whilst the channel output is characterised by  the number and separation o f 

quantisation levels, Q L , at the receiver. The input signal amplitude and average power
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constraints are defined by restricting the channel input to have values within finite 

interval [-A ,+ A ] and also to have average pow er equal to som e specified value.

The channel output takes discrete values in the range [-SC .+SC ], where SC is the 

signal clipping level at the receiver. The SC at the channel output is defined here as the 

output signal amplitude level beyond wh ich the signal w ill be clipped, that is the 

maximum allowed output signal level. This signal level w ill e ffect the determination o f  

quantiser step size. The range [-SC .+SC ] is  segmented according to the value o f  Q L  

specified by the number o f  bits, b, at the output o f  the AD C . Since a word o f  length b 

can only represent 2b distinct signal levels, i.e.,

Q L  =  2" (3.11)

then each sample o f  the signal output is quantised to one o f  2* signal levels. In the 

present case, the output signal is sampled by an 8-bit A D C , i.e. 256 distinct signal 

levels, and the step size o f  the quantiser is taken to be,

Sq =  2SC/(2b- l )  (3.12)

Hence, the constrained SA C  capacity is defined as the maximum mutual information 

between input and output over a certain range o f  channel input probability distribution 

and certain range o f  signal clipping at the output.

Consider, a scalar A W G N  channel characterised [Smith 1971, and Proakis 1989 

ppl28] by the expression.

42



Y  = X  + N (3.13)

where Y , X. and N  are all real-valued scalars; N  is  an additive Gaussian noise random 

variable with zero mean and variance o N 2; X  is the channel input random variable 

assumed to take only values within a finite interval [-A .+ A ], where A  is an arbitrary 

positive number; and Y  is the channel output random variable, with different sample 

value each time it is received. In practice Y  and N  are samples o f  continuous random 

processes. Since the amplitude probability density function (PD F) o f  a Gaussian variable 

z  is g iven by;

where m and o N2 are the mean and variance respectively, then it fo llo w s  that, fo r  a 

g iven  sample value o f  X=Xj, the channel output Y  is Gaussian w ith  mean x< and 

variance o N 2. That is,

The average mutual information I (X ;Y )  fo r  S A C  has been shown to  be [Proakis 

1989 ppl32, and Blahut 1987 pp273];

p (z )=  exp(-(z-m )2 ¡2 o N 2 )/V(2at )o N (3.14)

p(Y| X=Xj)= exp(-(Y-Xi)2/2oN2W(2ji)oN (3.15)

J U ;  Y) - g  J p ( r | x j ) p ( x i ) l o g ,  ( p ( r | x , )  / p ( r ) ) dr
(3.16)

where p (Y ) is the probability density function o f  the output given by;
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(3.17)
M

p (Y ) =  Z  p (Y  | Xj) piXj) 
i= l

and p(x,) is the probability o f  occurrence o f  the input level x,. Equation (3.16), 

modified in response to the quantisation process described by the output constraint, 

becomes;

M  SC M
I (X ;Y ) =  Z  Z  p (Y  | x) p(xj) lo & (p (Y  | x) / Z  p (x ,) p (Y  | x,)) (3.18)

i= l  -SC j= l

Since the channel output is quantised, the conditional probability function p (Y  | x,) can 

be written fo r the A W G N  as in Appendix A ;

p (Y  | Xj) =  E rf( (y-X j+6q/2)/oN )  - E rf( (y-xr 6q/2)/oN ) ,  where -SC<y<SC

=  E rf( (y-xi+6q/2)/oN ), where y=-SC  (3.19)

=  E rfc ( (y-xi-6q/2)/oN ), where y=+SC

where Erf(x ) and E rfc (x ) are the error function and the complementary error function 

o f  x  respectively, g iven  in Appendix A  [Stremler 1982].

Example: Consider a binary input A W G N  channel w ith  tw o possible inputs X = {A ,-  

A } .  Assume that the average mutual information is  maximised when the input 

probabilities are p (A )= p (A )= l/ 2 , i.e. the input sym bols are equiprobable and SC=8. 

Hence, from equation (3.18), the capacity o f  the channel, in bits per channel use, can 

be written as;
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(3.20)

SC SC
C  =  1/2 1  p (Y  I A )  log2(p (Y  I A )/p (Y )) +  1/2 X p (Y  | - A )  log2(p (Y  | -A )/p(Y ))

-SC -SC

where p (Y  | A ) and p (Y  | -A ) are defined by equation (3 .19). Hence,

p (Y )  =  0 .5 (p (Y  | A )+ p (Y  | -A )) (3.21)

Th is capacity, C , is computed and presented graphically in Figure 3.1 as a function o f  

signal to noise ratio, SN R , which is equal to A 2/2oN2. I t  can be seen that C increases 

monotonically from  0 to 1 bit per channel use as the S N R  increases. In this example, 

the capacity o f  the channel is obtained when the input symbols are equiprobable. 

H ow ever, the choice o f  equi probable input symbols to  maximise the average mutual 

information is not always the optimum solution [Proak is 1989 ppl27-136] fo r  the 

capacity formula g iven by expression (3.18). In general, a set o f  necessary and 

sufficient conditions on an input probability, p(x,), to  maxim ise I (X ;Y ), and thus to 

achieve the capacity o f  the A W G N  memoryless channel with transition probabilities 

p (Y  | Xj), is g iven in [Gallager 1968 pp91, and Proakis 1989 ppl33] as;

I(x ,;Y ) =  C  fo r all i with p(x*) >  0 (3.22a)

I(x ,;Y ) < =  C  fo r all i with p(x^) =  0 (3.22b)

in which I(x ,;Y ) is the mutual information fo r input x, averaged over the outputs.
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Figure 3.1 Channel Capacity versus SNR 
for Binary Input AWGN Channel 

(with Two Equiprobable Mass Points)
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(3.23)
SC M

I (x , ;Y )=  X p (Y  | Xj) log2(p (Y  | x) / X  p(x,) p (Y  | x,))
-SC j= l

It is possible to check i f  the equiprobable set o f  input sym bols satisfies the conditions 

in (3.22a) and (3.22b). I f  not. then the set o f  unequal probabilities. p(x,), that satisfy 

expressions (3.22a) and (3.22b) must be determined.

Therefore, for  a g iven  signal input and output signal clipping, the calculation 

o f  the capacity o f  an A W G N  channel involves maximising a nonlinear function I (X ;Y ) 

o f  m any variables, M , with both the inequality and equality constraints [G allager 1968 

pp82-97],

M
p (x j) > =  0 and X pOq) =  1 (3.24)

i= l

3.3 1SA/OSC Constrained Capacity

For an arbitrary fixed , but positive, finite real number A , let FA denote the 

corresponding class o f  all distribution functions F  having all the mass points positions 

on [-A ,+ A ].  The mass points positions represent here the channel input amplitude levels 

which lie  between -A  and + A . Also, fo r  certain fixed  values o f  SC, let the output 

random variable Y  take values between -SC, +SC, in steps o f  6q=2SC/(2b- l ) ,  assuming 

an b-bit quantiser. Therefore, for  a particular SC value, the average mutual information 

I (X ;Y )  can be treated as a functional in the space FA, o f  probability distributions F  o f  

the input random variable X , and written as;
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(3.25)
M  SC

I (F ;S C )=  Z  Z  p(Xj) p (Y  | x) log2(p (Y  | xJ/p^Y )) 
i = l  -SC

where

M
Pp( Y ) =  Z  p (Y  | Xj) p ix j (3.26)

i= l

Hence the capacity o f  the ISA/OSC constrained channel [Sm ith 1971] can be written 

as;

N ow  the capacity limits, fo r  a fixed  A  and SC, can be defined as the maximum o f  a 

function o f  a finite dimensional vector, the components o f  w h ich are the mass point 

positions (input amplitude levels) and the mass points values (the probability o f  

occurrence o f  each level).

Suppose the correct number o f  mass points is known (say n) fo r  particular values 

o f  A  and SC ; let ( x , ^ . . . . ^ )  denote the mass point positions o f  an arbitrary input

distribution F, and let (q , .^ .....q j  denote the corresponding mass point values. Then the

cumulative distribution function F (x ) can be written as;

C (A ;S C )=  max I(F;SC ) 
F e F A

(3.27)

n
F (x )=  Z  qj u(x-Xj) (3.28)

i= l

where u (x-x,) denotes the unit step function at x,.
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Let Z=(Z ,....Z2J  be a vector comprising the components.

Z ,=  q, fo r  all i=l,2,...,n (3.29a)

and

Z ^ =  x, fo r  all i=l,2,...,n (3.29b)

Then the output probability density function can be defined as;

n
Pz<Y)=X ZiP (Y|Z,J (3.30)

i= l

Hence the average mutual information can be treated as a function o f  the vector Z , and 

written as;

L et G , denote the region o f  n-dimensional Euclidean space in which the vector Z  must 

lie; let the fo llo w in g  restrictions be imposed on the region G;

( i )  all mass poin t values are non-negative,

( i i )  all mass poin t positions lie in [-A .+ A ],

(ii i )  the sum o f  a ll the mass point values is unity.

Thus, G  is the intersection o f  all the restriction sets within which the constraints are 

satisfied. Then, the ISA/OSC constrained capacity, C (A ;S C ), can be defined as;

n SC
I(Z ;S C )=  X  X  Z, p (Y  I log2(p (Y  | Z ,J/Pz(Y ) )  

i = l  -SC
(3.31)
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C (A ;S C )=  max I (Z ;S C ) 
Z  in G

(3.32)

A n  optimisation algorithm  from the N A G  computer library routines [N A G  1984] has 

been used to solve the problem o f maximising a known function I (Z ;S C ) over all

vectors Z = (Z , .....w h ich  lie in a well defined restriction region G. The optimisation

theorem used guarantees the existence o f  a unique maximising input distribution and 

provides necessary and sufficient conditions fo r achieving the maximum [G allager 1968 

PP82-97].

For a particular va lu e  o f  SC, and any arbitrary value o f  amplitude lim it A , let 

n denote the number o f  elements in the vector Z . I f  n is known, then the determination 

o f  the capacity C (A ;S C ) is the well defined optimisation problem as discussed above. 

In general, i f  n is not known, the fo llow ing steps are necessary:

( i) Start w ith a very  sm a ll value o f  A , assuming the optimum number o f  mass points 

M  is two, and then find  the optimum capacity.

(ii) Increment A  by a sm all amount, check as A  increases whether the number o f  mass 

points M  already used is  sufficient or not. I f  not, increment M  by one and apply the 

optimisation algorithm.

The programming procedure used to test whether M  is sufficient or not is based on 

whether the optim isation program output forces the extraneous mass point values ( i f  a 

larger value o f  M  is used ) to  zero or no t

Since the Gaussian noise has a symmetric probability density function, the set o f 

mass points is also sym m etric i.e. and xi=x_i. W ith this result, the optimisation 

problems can be form ulated as the determination o f  the optimal pairs o f  mass points.
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Hence, the optim al set o f  mass point pairs is characterised by some (q,.....q„, x ,,...,x j,

where n now  denotes the number o f  mass point pairs (a mass point at the orig in  is also 

treated as a pair) and restricted by;

0 £  q, £  1/2, (3.33a)

n
£  qi =  1/2 ,
i= l

(3.33b)

and

-A  £  Xj £  0 fo r  all i=l,2,...,n (3.33c)

Since £  qi=l/2, then the number o f  independent variables is further reduced as follows:

(i) i f  n is odd (mass point pairs at the origin), then the optimal set o f  mass point pairs

is characterised as (q , .....q ^ „  x , , . . .^ , ) .  where q .= l-2 £  qj fo r  i= l,...,n -l and xB=0;

(i i )  i f  n is even, then the optimal set o f  mass point pairs is characterised as

(q ,.....q » „  x „ . . .^ 0  where q,=0.5-£ q; fo r  i= l,...,n -l.

The analysis program  employs the above arrangement, which simplifies the problem 

further, and reduces the number o f  variables over which the function must be optimised. 

Consequently, the computation time to find the optimum input distribution and the 

capacity fo r  each fix e d  amplitude limit is reduced. For a particular value o f  amplitude 

lim it. A , the optim isation program is tested with different values o f  SC. The values o f 

the SC that g ives  the largest information capacity value, and hence the optimum input 

distribution, is chosen to represent the optimum level o f  signal clipping.
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The ISAP/OSC constrained capacity problem is similar to the ISA/OSC shown 

above, with the added constraint o f  the average signal power, o s2, being chosen to g ive  

the fixed  ratio A 2 /os 2 =2. For any A  with a fixed  o s2 and SC limit, the ISAP/OSC 

capacity can be defined as;

C (A ,o s 2;SC )=  max I (F ;S C ) (3.34)

3.4 1SAP/OSC Constrained Capacity

where F *. is the class o f  all distribution functions, F, with the extra constraint that;

and o s2 is defined to be equal to  the ratio A 2/2. Thus, the capacity o f  an ISAP/OSC 

constrained channel can sim ilarly b e  formulated as the maximum o f a function o f  finite 

dimensional vectors. The com ponents and restrictions are the same as before, except for  

an added restriction to include the variance constraint defined above.

The simulation procedure fo r  the ISAP/OSC constrained channel is a lso similar 

to the ISA/OSC, with the fo llo w in g  extra restriction imposed on the region G;

F  in FAo 
o f2£ os2

o f 2=  E  q ^ 2, fo r  all i (3.35)

n
o f * = E  q * 2 £ o s 

i= l
(3.36)
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Then the ISAP/OSC constrained capacity is defined as;

C (A ,o s2;SC )= max I(Z ;SC ) (3.37)
Z  in G

The same optimisation routines from  the N A G  computer library [N A G  1984] were then 

used to solve this problem.

3.5 Simulation Results and Discussions

The simulation analyses are carried out with the fo llow ing assumptions;

(i) The input to the channel is lim ited b y  the input signal amplitude A ; i.e. it is allowed 

to take values between -A  and +A .

(ii) The channel is A W G N  with zero mean and unit variance.

(iii) The normalised SN R  is 101og,0(o s 2) dB.

(iv ) The quantisation level Q L  is 256.

(v ) The optimisation routine used is "E 0 4 U A F " from the N A G  computer library routines 

and described in detail in [N A G  1984 pp l-23 ].

(v i) The ISAP/OSC constrained capacity is obtained with the extra assumption o f 

A  2/os2 is equal to 2.

The optimum capacity o f  ISA/O SC  and ISAP/OSC constrained channels are 

shown in Figures 3.2 and 3.3 as functions o f  the input signal amplitude A  and 

normalised SNR, respectively. These capacities are achieved by unique and discrete 

input distributions taking a finite number o f  values. The optimum mass points
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distributions are shown in Figures 3.4a-3.4h and 3.5a-3.5h, for the tw o cases 

respectively, at selected values o f  A . It can be seen from  Figure 3.2, that the capacity 

o f  ISAP/OSC is less than the ISA/OSC, due to the extra constraint imposed. However, 

as A  increases, the peak power A 2 o f  the ISA/OSC case becomes closer to  2 os 2, and 

hence the tw o capacity curves close together. The lim iting  theoretical curve o f  the 

A W G N  channel capacity 0.51og2(l+ S N R ), is also calculated and included in Figure 3.3. 

This lim iting curve represents the capacity as the ra tio  A 2/os2 tends to infinity. 

Comparing this limiting curve with the ISAP/OSC case, w e  can see that there is a loss 

in capacity, fo r  example, about 6.5% at about lOdB  normalised SNR which is the 

penalty fo r  the peak power limitation o f  2os2. A lso, it is  found that there is a loss o f 

about 11% in the ISA/OSC capacity at the same point o f  SN R  and with peak power 

limitation o f  1.6os2.

How ever, the ISA/OSC capacity curve closes to  ISAP/O SC  at higher S N R  as the 

ratio A 2/os 2 tends to 2. It is also found that any ratio o f  A 2/os 2 greater than 2 would 

yield capacity curves between the ISAP/OSC and the lim iting  curve in Figure 3.3. For 

example, fo r  A=1.0, QL=256, and A 2/os 2=4, the fo llo w in g  is found;

(a) the capacity with ISAP/OSC constraints is between th e tw o curve values on Figure

3.3.

(b ) four mass points are needed rather than three fo r  the input distribution,

(c ) the optimum output signal clipping is found to be o f  the same value as when using 

the ratio A 2 /os 2 =2.
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The optimum output signal clippings that g ive  the optimum capacity few the two 

cases are shown in Figure 3.6 as a function o f  the normalised SN R . The optim um  PDF 

o f  the channel output, before the quantiser, are also calculated using the corresponding 

input distributions. T h e  results o f  these calculations are shown in Figures 3.7a-3.7h, and 

3.8a-3.8h fo r the tw o  cases respectively, at selected values o f  A . It can be seen from 

Figure 3.6, that higher values o f  SC, are needed to compensate fo r  the extra f ix e d  ratio 

imposed fo r the ISAP/OSC case. It is also found that, as the O SC  level increases 

(quantisation levels spacing increases), the capacity increases and then decreases as the 

O SC  gets very large (due to very  large quantisation level spacing). Therefore, the 

optimum OSC fo r  large values o f  signal amplitude is greater than the O SC  fo r  those 

with smaller amplitude. This suggests that the quantiser should have m ore closely 

spaced levels at the lo w  signal amplitudes and more w idely  spaced levels at the large 

signal amplitudes, as is the case with companding systems.

Arising from  the constraints imposed on the input and output o f  the channel, the 

results obtained can be used to determine the number o f  amplitude levels at the input 

needed to maximise the capacity at different SNRs. For example, for the ISA/OSC 

constrained channel it is found by simulation that at SN R  o f  about lOdB, w e  need four 

amplitude levels to  achieve ISA/OSC capacity, whereas fiv e  levels are required to 

achieve ISAP/OSC capacity. Hence, these results can be used in signal design. Also, 

the very  wide range o f  signal levels which may be input to, say, a radio communication 

receiver makes it essential that some form o f  automatic gain control or amplitude signal 

clipping system, should be incorporated. Therefore, the optimum OSC achieved also 

becomes o f  interest in such applications employing digital signal processing systems.
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Chapter 4

Information Transmission Capacity o f Multiple Access Channels

4.1 Introduction

Th e  information theory study o f  M AC s [W yner 1974, M eulen 1977, El Gamal 

and C over 1980, Meulen 1986 and Gallager 1985] showed that the capacity region o f  

a T-user M A C , allows the T  users to communicate using a single receiver with an 

arbitrarily small probability o f  error. The maximum achievable rate sum o f all the T  

users is called the T-user M A C  capacity (C ^ c ).  This chapter is m ainly concerned with 

the theoretical calculation o f  the information transmission capacity o f  certain M A C  

models. These channel models have theoretical and practical applications; these are 

described and developed fo r  the capacity calculations in d ifferent communication 

conditions.

4.2 T-user Multiple Access Communication System

The general M A C  communication system is depicted in Figure 4.1. There are T  

independent sources transmitting data to T  separate destinations over a common discrete 

channel with one decoder serving T  sinks. The inputs and their associated sources and 

encoders may be in d ifferent physical locations; fo r  example d ifferent rooms in a 

building or different mobiles in an area. The signals over the channel w ill interfere, 

superimpose or combine in som e way. The single decoder at the receiver is required to
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unscramble and deliver the messages to their corresponding sinks, and i f  possible, 

without errors. The T  messages generated from the T  sources are encoded 

independently, and transmitted simultaneously over the common channel. Such that, 

each user is provided w ith a code which enables the receiver to unscramble the 

individual information streams, from  the received combined composite signal.

Figure 4.1
Block Diagram of T-user Multiple Access 

Communication System

( i) Information Sources: There are T  independent active user's source information. The 

i-th user source output a symbol, U, i= l,2 ,...,T , which is chosen from a fin ite alphabet. 

The symbols chosen from the respective alphabets are assumed to be équiprobable, and 

the d ifferent user’s symbols are assumed to  be statistically independent. Th e  sources are 

in tim e synchronous, in which each source always sends a symbol to its encoder at the 

same instant o f  time.

(ii) Encoders: The function o f  the encoders is to map the source symbols U ,,U 2,...,UT

into transmitting sequences X ,.X 2.....X f  each with block length, N. The encoders are
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independent, i.e. the output sequence X i=(x,^c2,...^cN) from the i-th encoder is a function 

o f  U, only. Each symbol o f  the sequence X 1 takes values from a finite alphabet The 

encoders are in time synchronous, in which each encoder sends one symbol each unit 

o f  time. Thus, i f  the i-th user’ s encoder has a code book containing CW< codewords o f  

length N  and each codeword is equally likely, the transmission rate, in bits per channel 

use, o f  the i-th user is,

R* =  log2(CW ,)/N (4.1)

and the rate sum, R „ , ,  o f  all the users is g iven  by;

=  R ,+ R 2+  ... +R,.

T
=  Z  log^CW J/N  (4.2)

i= l

(iii) Discrete Memorvless Channel: Discrete memoryless M A C  (D M -M A C ) is a channel 

which operates in a discrete time. The T-input takes values from finite alphabets, and 

the output depends on the T-input which also takes values from a finite alphabet The 

output sym bol depends only on the corresponding T-input and not on preceding or 

fo llow ing inputs. The D M -M A C  can be characterised by (a) T-input, X ,,X 2,...,XT, (b)

single output, Y ,  and (c ) transition probabilities, p (Y  | X p X j.... X,-), o f  an output Y  g iven

the T-input The channel operates synchronously, in which during each unit o f  time 

there are T-input sent to the channel and one output received from  the channel.

( iv ) Decoder: A fter the sequence Y  is received, the decoder attempts to reliably
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reproduce the users data streams in order to supply this information to the 

corresponding sinks. I f  we assume maximum likelihood decoding is used, the decoder 

would decode the sequence Y  into Ù ,.Ù2.....ÜT estimated symbols.

4.3 Modelling o f T-user M-arv Adder Channel

The T-user M -ary adder M A C  model has been used by many researchers to 

characterise it ’s capacity region and construct a coding schemes to achieve this capacity 

[L iao 1972, Kasam i and Lin 1976, Meulen 1977, Meulen 1986, El Gamal and Cover

1980, and Farrell 1981]. This channel has T-input, X , i= l,2 .... T , and one output, Y .

The channel output is given by the sum o f the T-input symbols i.e.,

T
Y = X X ,  (4.3)

i= l

Where the "2 "  s ign denotes real addition. Since the channel superposes the T-input 

signals in additive fashion, the T-user M A C  is called T-user multiple access adder

channel. In each symbol time interval, a combination o f  T-input symbols (X p X j.....Xy)

is mapped into one o f  the output symbols, Y .

For the binary channel model where M =2, each user’ s input symbol is integer 

from the set {0 ,1 }  and the channel output symbol is integer from the set {0,1,...,'T }.  

However, fo r  the general case o f  M >=2, each user’ s input symbol is integer from  the

set {0,1.....M - l ) ,  and the channel output symbol is integer from the set {0,1,...,L-1},

where L  is g iven  by;

L  =  T (M -1 )+1  (4.4)
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Therefore, the corresponding T-user M-ary adder channel maps K -size input alphabet, 

into L-size output alphabet, where K  is given by;

K  =  M T (4.5)

For example, fo r  binary channel w e have K=2T and L=T+1 . Examples o f  the noiseless 

T-input M -ary adder M A C  model are shown in Figures 4.2 and 4.3, fo r  the binary and 

the general M -ary channels. The number o f output signal levels is calculated as a 

function o f  M  and T , and shown in Figure 4.4.

1 1 1 -------------------------------------- * T

Figure 4.2
Noiseless T -user Binary Adder MAC Model

* 1 x 2  .  . -  * T Y

1 0 0 ---------------------- 1
- - - -

- - - -

(M-1) (M-1) (M -1) ---------------------- --------------------------------  T (M -1 )

Figure 4.3
N oise less T -user M -ary Adder MAC  Model
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Figure 4.4 Number of O/P Signal Levels 
versus l/P Signal Levels for 
T-user M-ary Adder MAC

Number of Output Signal Levels (L)

Number of Input Signal Levels (M)



(i) Noiseless Channel: Consider the noiseless T-user binary adder M A C . I f  we assume 

that the inputs o f  the channel X jE fO .l} are statistically independent and identically 

distributed random variables i.e.,

p (l)= p = 0 .5  and p (0 )=q= l-p=0.5  (4.6)

The probability distribution o f  Y  can be found as follows; from equation (4.3) the range 

o f  Y  is the set o f  integers from  0 to T. The probability that Y = 0  is simply the 

probability that all the Xj=0. Since the X j are statistically independent, thus;

p (Y = 0 ) =  qT (4.7)

The probability that Y=1 is the probability that one X ,= l and the rest o f  the, X^=0. 

Since this event can occur in T  different ways;

p (Y = l )  =  TpqT ' (4.8)

In general, the probability that Y = j is the probability that j  o f  the X, are equal to one 

and T-j are equal to zero. Since there are,

d (j) =  T !/ ]! (T - j)! (4.9)

different combinations which result in the event Y = j, it follows that;
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p (Y = j )  =  d(j)p*qT-i (4.10)

Substituting fo r  p=q=0.5 w e  get;

p (Y = j) =  d(j)/2T; j= 0 ,l,...,T (4.11)

Therefore, substituting for  d (j), the channel output probability distribution fo r the 

noiseless T-user binary adder M A C  model can be derived as;

In general fo r  the case o f  M >=2, i f  the number o f  combinations that the M -ary input

symbols superpose to one o f  the output sym bols is d (j) j= 0 , l .....L - l ,  i.e. the number o f

ways which result in the event Y = j. Then it fo llow s  that, the probability o f  Y = j is  given 

by;

Th is is the generalised equation fo r the output probability distribution o f  noiseless T- 

user M-ary adder channel, where d (j) is g iven  in equation (4.9) fo r  the binary case. 

H ow ever, fo r  M >2 , d (j) is calculated using a computer search program. That is, fo r  a 

g iven  M  and T , a ll the possible inputs (M 1)  are generated, then d (j) is calculated by 

searching and counting the number o f  possible inputs which result in the j-th  output 

symbol.

p (j) =  T !/ j!(T - j)!2 T; j=0.1,...,T (4.12)

p (j) =  dOVlVT; j= 0 , l .....L - l (4.13)
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(ii) Noisy Channel: The noisy T-user M-ary adder M A C  model is shown in Figure 4.5. 

It shows that there is a transition from any o f  the K =M T inputs to any o f  the

L=T (M -1 )+1  outputs. The transition probabilities p (Y  | X „ X 2.... Xp) are defined by the

channel noise, which represent the probability that the output symbol Y  is received, 

g iven that the input sym bols X „ X 2.....X f  are transmitted.

For the purposes o f  theoretical investigations o f  M A C  in a noisy environment, 

a more appropriate noisy channel model is introduced [W yner 1974, Chevillat 1981, 

Gallager 1985, and Honary, A li and Darnell 1989]. Th is model consist o f  a cascade o f 

tw o stages. The channel is considered equivalently as a noiseless adder M A C , adding 

all the inputs, in tandem with a single input noisy channel, as shown in Figure 4.6. 

Therefore, the noisy T-user M -ary adder M A C  is characterised as a noiseless T-input 

M A C  fo llow ed  by a noisy L-input L-output single access channel. The inputs to the 

noisy single access channel are defined by the sym bol S, ¡=0,1.....L - l .
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X l  x 2 ---- x x  S i  Y

Figure 4.6
Equivalent Noisy T -u se r M-ary Adder M A C  Model

Examples for  the probability distribution fo r the noiseless T-user binary adder 

channel are shown in Figures 4.7a-d fo r  various values o f  T . T h e  PDFs at the noisy 

channel output are also calculated and shown in Figures 4.8a-d. fo r  various values of 

channel signal to noise ratios (SN R ). The SN R  values are g iven  b y  the ratio o f  average 

signal power per user to noise power fo r  the binary transmission system.

4.4 Modelling of T-user M-ary frequency Channel

The T-user M -ary frequency model (Omura 1979, and Chang and W o lf 1981] is 

mainly motivated by its practical application. The T-user have available M-sinusoidal 

carriers, each at a different frequency ( f „ f 2,...,fM). Every T ,  seconds, each user selects 

one o f these common frequencies to  transmit. The receiver observe the composite signal 

and decide which frequencies have been transmitted during each period o f  T . seconds. 

A  receiver using M  signal energy detectors tuned to the M  signalling frequencies then
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obtains M  samples whose values are proportional to the number o f  users transmitting 

at frequency f*. The channel output, at each symbol interval T ,, can generally be 

represented by a vector Z;

where z, is the measured energy at the frequency f, during the T ,  interval Since the 

tones are assumed to be orthogonal, then w e assume there is no energy component in 

Zj due to tones o f  frequency fj where j+ i .  T w o  channel models are considered here.

( i) Without Intensity Information: During each symbol interval the i-th energy detector 

measure the presence o f  the frequency regardless o f  the number o f  tones at each 

frequency. That is;

where " 1 " and "0" indicates the presence or absence o f  the i-th frequency f,, 
respectively. That is, the presence o f a frequency is always indicated by "1" without its 

intensity information.

The number o f  possible channel input fo r  this model is g iven  by K =M T and the 

number o f  possible channel output is g iven by;

Z  =  (z ,^ 2,...^M) (4.14)

z, e (0 ,1 ); i= l,2 ,...,M (4.15)

Q
L  =  Z  d (j)

j= l

(4.16)
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where £2=min(T,M ) and d (j) is g iven by;

d (j) =  M !^ !(M - j)!  (4.17)

Examples o f  this type o f  channel model, fo r  various values o f  T  and M , are shown in 

Figure 4.9. It can be seen that when T =M =2 , this channel model is equivalent to the 2- 

user binary adder M A C . The number o f  output signal levels is calculated as a function 

o f  T  and M , and shown in Figure 4.10. The output probability distribution o f  these 

output signals can be written as;

p(j) = dgi/M7; j= 0 ,l....L -l (4.18)

Substituting fo r  d (j) w e  get;

p(j) = j= 0 ,l L -l (4.19)

(ii) W ith Intensity Information: Here, during each symbol interval the i-th energy 

detector measure the presence o f  the frequency and its intensity information, i.e., an 

indication o f  how many tones o f  the same frequency are received. That is;

z, e {0.1.....T}; ....M (4.20)

and

Z.+ZJ+ ... + z *  =  T  (4.2 1 )
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Figure 4.9 T-user M -a ry  Frequency MAC 
Without Intensity Information
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Figure 4.10 Number of O/P Signal Levels 
vs l/P Signal Levels for T-user M-ary 

Freq. MAC Without Intensity Information

Number of Output Signal Levels (L)



The number o f  possible channel inputs fo r  this model is also given by K = M T and the 

number o f  possible channel output, L , is calculated by computer search. A n  examples 

o f  this channel model are shown in Figure 4.11, fo r  various values o f  T  and M . It can 

also be seen that when T=M =2, this channel model is equivalent to the 2-user binary 

adder M A C . The number o f  output signal levels is also shown in Figure 4.12, for 

various numbers o f  T  and M. The output probability distribution, p<j), o f  this model 

is similarly given as in equation (4.18). However, d (j) in this case is calculated using 

computer search, i.e., fo r  a g iven  values o f  T  and M , all the possible inputs are 

generated and then d (j) is calculated by counting the number o f  possible inputs which 

result in the j-th output symbol.

4.5 Multiple Access Capacity

The information capacity o f  M A C , can be written in terms o f  the average 

mutual information I (X ;Y )  between the input and output maximised over all possible 

input probabilities, p (i), that is;

C ^  =  max I (X ;Y ) (4.22)
p (i), ¡=1,2.....T

where, as indicated, the maximum is taken over all p (i )  which describe statistically 

independent random variables.
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Figure 4.12 Number of 0 /P  Signal Levels 
vs l/P Signal Levels for T-user M-ary 

Frequency MAC With Intensity Information

2 3 4 5 6 7 8 9  10
Number of Input Signal Levels (M)



4.5.1 Noiseless Channel

Generally, the average mutual information between the input and output alphabets 

can be  written [Gallager 1968 pp74], in bits per channel use, as follows;

K  L
I (X ;Y )  =  2  2  p (i )  p (j | i)  log2(p (j | i)/p(j)) (4.23)

i= l  j = l

where i  and j  are the i-th input and the j-th  output, p (i) is the i-th input probability, 

p(j | i )  is the conditional probability, and p (j) is the channel output distribution, which 

is g iven  by;

p ( j )  =  2  p (i) p (j | i )  (4.24)

For the noiseless M A C , the average mutual information o f  M A C , reduces to the channel 

output entropy and can be written as;

L
I (X ;Y )  =  - 2  p (j) log2(p (j)) (4.25)

j= l

I f  w e  assume that the channel outputs are equiprobable, then the channel output 

probability can be written as;

p ( j )  =  1/L; for j= l ,2 .....L  (4.26)

87



Thus equation (4.25) is reduced to

I (X ;Y )  =  log2(L ); bits/channel use (4.27)

This M A C  capacity with the assumption o f  uniform distribution o f  the output signals 

is called the unconstrained capacity. However, the assumption o f  uniform distribution 

o f  output signals is quite general and dose not exhibit the actual distribution o f  output 

signals fo r  this channel models. Consider the M A C  capacity using the actual output 

probability distributions calculated previously for each channel model. I f  it is assumed 

that during each symbol interval, each user transmit statistically independent symbols 

with equal probability. Then, substituting for the actual output distribution p (j), into 

equation (4 .25 ), the maximum average mutual information fo r  the noiseless channel 

models can be written as;

L - l
I (X ;Y )  =  -l/M 7 2  d (j) lo g jfo g V M 1) (4.28)

j =0

where d (j )  is  the probability distribution for the j-th output symbol given previously fo r  

each channel model. This is the noiseless M A C  capacity constrained by the actual 

output distribution o f  signals and w ill be referred to, some times, as the constrained 

capacity.

4.5.2 N oisy  C han nd

Consider more practical situation where, a number o f  transmitters attempting to
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communication w ith a single receiver in the presence o f  A W G N  [W yner 1974, El 

Gamal and Cover 1980, Chevillat 1981, Gallager 1985, and Honary, A li and Darnell 

1989]. The channel output can be written as;

T
Y  = L X j  +  N  (4.29)

i= l

where N  is Gaussian noise random variable with zero mean and variance o N2, 

independent o f  the inputs X i. In the calculation o f  this noisy channel capacity, we use 

the cascaded noisy channel model, in which the noisy M A C  can be characterised as, a 

noiseless T-user M -a ry  adder M A C  follow ed  b y  an L-input, L-output noisy single user 

channel. The noisy stage channel input sym bols are, Sit where i= 0 ,l,...,L -l. Therefore, 

the average mutual information is, at most, the capacity o f  single input channel with it’s 

input constrained to  th e average power level. Th e  capacity o f  T-user adder M A C  over 

A W G N  channel is com puted as the average mutual information between the input and 

output o f  the noisy s ing le  user channel with the input symbols, St. That is,

J ( S j r ) - g  f p l s 1) p U \ s 1) l o g ^ p { r \ s i ) / p {Y ) )d Y  (430)

where p (Y  | Sj) is th e channel transition probability, p(S,) is the i-th input symbol 

probability, and p (Y )  is  the probability density function o f  the output Y , which can be 

written as;

L - l
p (Y ) =  Z  p(St) p ( Y  | S) (4.31)

i=0
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For practical system, the signals which can be distinguished by the receiver is 

limited by the number o f  quantisation levels at the receiver [Honary, A li and Darnell 

1989, and Honary, A li and Darnell 1990]. Therefore, i f  w e assume that the channel

output Y  takes values betw een  -SC and +SC  in steps o f  6q g iven  by;

6q  =  2SC/(QL-1) (4.32)

where SC and Q L  are the signal clipping and quantisation levels at the receiver, 

respectively. The quantisation levels can be written in terms o f  the number o f  bits, b, 

in the quantiser as Q L=2b. Therefore, the channel output is quantised and equation 

(4.30) can be m odified in response to this as;

Lr\ SC
I (S ;Y )  =  2 2 p(S) p (Y  | S.) log2(Y  | S^/p (Y )) (4.33)

i=0 -SC

p (Y  | S,) is the conditional probability g iven fo r  Gaussian distribution as;

p(Y | S,) = exp(-(y-Sj) 2/2aN2)/V(2x)oN (4.34)

and since the channel output is quantised, the p (Y  | S) can be written as shown in 

Appendix A ;

p (Y  | S,) =  Erf((Y-S,+6q/2)/oN) - Erf((Y-S,-6q/2)/oN); fo r  -SC <Y<SC , (4.35a) 

=  Erf( (Y -Si+6q/2)/oN); fo r  Y= -SC , (4.35b)

= Erfc((Y-S,-6q/2)/oN); for Y=+SC, (4.35c)
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4.6 Simulation Results and Discussions

Three T-nser transmission systems are considered here and simulated for the 

calculation o f  the information capacity o f  M A C  models.

(i) Binary Signalling: In this transmission scheme, the binary "0 " and "1" are 

transmitted directly as signal levels  "0 " and "A " , respectively, where A  is the signal 

amplitude. The signals from  the T-user are assumed to be superposed coherently by 

amplitude, giving composite signal sym bols S, at the noiseless M A C  output Therefore, 

Sj fo r  M =2 can be written as;

S, =  W (2E ); i = 0 , U . . i - l  (4.36)

where E = A 2/2 is the average signal energy per user. For example, fo r  T=M =2, 

S ,e {0 ,A ,2A } as shown in Tab le 4.1 below ;

X, X2 X , '  X 2'  S i

0  0 ------- >  0
1 0  > A

0 1 ------- >  0
1 1  > A

Table 41  Composite Signal Symbols for  Binary Signalling (T=M =2 )

where X/ is the i-th user transmitted signal.

(ii) Antipodal Signalling: In the b inary antipodal signalling scheme, the binary "0" and 

"1 " are transmitted as signal levels  " -A "  and "A " , respectively. The signals from the T-
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users are assumed to be superposed by amplitude at the channel. The composite signal 

symbols S, fo r  M =2 can be written as;

S, *  (2 i-TW E; i=0 ,l,...,L -l (4.37)

where E = A 2 is the average signal energy  per user. For example, fo r  T=M =2 , 

S iE {-2A ,0 ,2A } as shown in Table 4.2 be low ;

x, X2 X ,' X2'  s t

0 0 ----> -A -A  ---------------------> -2A

0 1 ---- > -A A -------------
1 1 ---- > A A ----------------------> 2A

Tab»? 4.2 C<?mp9?ite $ignal Sym bols for Antipodal Signalling (T=M =2 )

(iii) O n-O ff Kevina: In this case, the b inary "0" and "1" are transmitted as signals "0" 

and "A s in (w t)" respectively. The signals from  the T-users are assumed to be superposed 

noncoherently by power at the channel. T h e  composite signal symbols S, fo r  the T-user 

binary channel can be written as;

S, =  (2iE ); i= 0 ,l.....L - l  (4.38)

where E = A 2/4 is the average signal energy per user. For example, fo r  T=M=2, 

Sie{0,A2/2,A2 }  as shown in Table 4.3 below;
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X, x 2 x , ' x 2' S i

0 p 0
A * /2

n _
0 Q

|—— — > A */ 2

? 1 -----> A V 2 A 2/ 2  ------ ------------------- > A 2

Table 4.3 Composite S ignal Symbols fo r  O n-O ff Keying (T=M =2)

4.6.1 C apacity  o f  T-uaer M -a rv  A d d e r  Channel

The unconstrained and constrained capacities are computed and shown 

graphically in Figures 4.13 and 4.14 respectively, as a function o f  M  and T . It can be 

seen from these Figures that there is a reduction in the channel capacity when the actual 

output signal distribution is imposed. For exam ple, the channel capacity decreases from  

1.584 to 1.5 bit/channel use, fo r  T=M =2. Th is reduction increases as T  and M  increases, 

fo r  example, the capacity decreases from  3.7 to  3.2 bits/channel use fo r  T=M =4.

The capacity o f  the noisy T-user M -ary  adder A W G N  channel is calculated as 

a function o f  E/N„ and shown in Figures 4.15-4.20, for various values o f  T  and M , and 

various transmission systems. The signals are assumed to be superposed either by 

amplitude or by power over the channel g iv in g  the composite signal symbols Sjt as 

indicated above in section 4.6. The E/N0, is the ratio o f  average signal energy per user 

(E) to the noise power spectral density (N 0=2o n 2). The number o f  bits in the quantiser 

is assumed to  be equal to 8, and hence the quantisation levels QL=256. The SC values 

are chosen sufficiently large without causing any reduction in the capacity [Honary, A li,  

and Darnell 1989, and Honary and A li 1990].
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Figure 4.13 Capacity of T-user M-ary 
Adder MAC with Uniform O/P Distribution

-----T-1 — T-2 T-3 T-4 T-6 T-6

Figure 4.14 Capacity of T-user M-ary 
Adder MAC with Actual O/P Distribution

-----T-1 — T-2 T -3  - a -  T-4
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Figure 4.15 Capacity of T-user M-ary 
Adder MAC versus E/No (dB)

(M-2, Antipodal Signalling Schem e)

-2 4  -2 0  -16 -12 -8  -4  0 4  8  12 16 20
E/No (dB)

----  T-1 T*2 T*3 T*4

T-S T-S T-7 T-8

Figure 4.16 Capacity of T-user M-ary 
Adder MAC versus E/No (dB)

(M-2. On-O ff Keying Schem e)

■ 24 -2 0  -16 -12 -8  -4  0  4  8  12 16 20
E/No (dB)
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Figure 4.17 Capacity of T-user M-ary  
Adder MAC versus E/No (dB)
(M*2, B inary Signalling Scham a)

-2 4  -2 0  -16 -12 -8  -4  0  4  8 12 16 20
E/No (dB)

—  T*1 —' T«2 T-3 - ® -  T-4

—  T-6 T-S T-7 T-S

Figure 4.18 Capacity of T-user M-ary  
Adder MAC versus E/No (dB)

(M-4)

-2 4  -2 0  -16 -12 -8  -4  0  4 8  12 16 2 0  24  28  32
E/No (dB)

| -----T»1 T»2 T»3 T »4~|
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Figure 4.19 Capacity of T-user M-ary 
Adder MAC versus E/No (dB)

(M -6)

Figure 4.20 Capacity of T-user M-ary 
Adder MAC versus E/No (dB) 

(M-8)

- 2 4  - 2 0  -16 -12 -8  -4  0  4  8  12 16 20  24 28  3 2  38  40
E/No (dB)
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The curve o f  T = l ,  in Figures 4.15-4.20, corresponds to T-time sharing fo r any 

number o f  users, T > = 1 . It can be seen that the capacity o f  T-user M-ary adder M A C  

exceeds that o f  tim e sharing substantially without increase in the size o f  the M-ary 

signalling alphabets, i.e. employing the same number o f  input signal levels. That is, for 

time sharing to achieve the same rates, a higher number o f  M-ary levels must be used.

For exam ple, in Figure 4.15 where coherent combining o f  signals are used, for a 

rate o f  1 bits/channel use, the E/Nc is about 9dB fo r T = l,  and about - ld B  fo r T=2. 

A lso, fo r  a rate o f  0.5 bits/channel use, the E/N„ is about -3dB for T = l,  and about -6dB 

fo r T=2. This suggests that gains o f  about lOdB and 3dB may be achieved by  T-user 

M A C  schemes o v e r  uncoded and coded time sharing T = l ,  respectively. H igher gains 

appear to be achievable for T>2. For noncoherent combining o f  signals. F igure 4.16 

shows that fo r  a rate o f  1 bits/channel use, the E/N0 is about 15dB for T = l ,  and about 

5dB for T=2. A lso , fo r  a rate o f  0.5 bits/channel use, the E/N0 is about 3dB fo r  T=1 and 

about OdB fo r  T —2. This suggests that at high E/N0, noncoherenet superposition o f 

signals g ives the same gain as the coherent case. However, only coherent combining 

promises substantial coding gain at low  E/N0.

It can also be seen from Figure 4.17-4.20, that a higher transmission rate, and 

hence higher gain , is possible to  achieve employing M-ary signalling w ith in  a given 

bandwidth. H ow ever, this increase in information rate comes at the expense o f  added 

transmitter power. For example, fo r  T=2, the capacities are equal to 1.5, 2.655, and 3.7 

bits/channel use, fo r  M = 2 ,4, and 8, respectively. However, the E/N0 needed to achieve 

this increase in capacity are about 12dB, 2OdB, and 28dB, respectively, fo r  binary 

transmission system  and coherent combining o f  signals.
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4.t.2 Capacity of T-uaw M-ary Frequency Channel

The capacities o f  constrained and unconstrained channel models are calculated 

and shown in Figures 4.21-4.24, as a function o f  M  and T. It can be seen from  these 

figures that there is a reduction in the channel capacity when the actual output signal 

distribution is imposed. It can also be seen from Figure 4.22, that fo r  a fixed  number 

o f  M , the capacity o f  the T-user M-ary frequency without intensity information does not 

always increase as T  increases. For example, the capacity values fo r  M =2 are 1.5,1.06, 

and 0.66 for T =2 , 3, and 4 respectively. This suggests that the number o f  frequencies 

M , should be chosen such as to optimise the capacity fo r  a given number o f  users, T.

Generally, the capacity o f  T-user M A C  with intensity information is higher than 

that without intensity information. This is due to the extra information gained from  the 

intensity information o f  the received signal energy level, which results in a higher 

number o f  output signal levels to accommodate this extra information. It should also 

be noted here that, generally, the number o f  output signal levels at the receiver 

increases rapidly as M  and T  increases, as shown in Figures 4.4, 4.10, and 4.12. 

However, this increase in the number o f  output signal levels, from  a practical point o f  

v iew , may lim it the number o f  active users, due to practical constraints that m ay be 

imposed at the receiver.
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Figure 4.21 Capacity of T-user M-ary 
Freq. MAC Without Intensity Information 

(with Uniform O/P Distribution)

Capaoity (Blta/Channal Uaa)

----- T-1 — T -2  T -3  - a -  T -4  T -6  T-6

Figure 4.22 Capacity of T-user M-ary 
Freq. MAC Without Intensity Information 

(with Actual O/P Distribution)

Capacity (Blta/Channal Uaa)

----- T-1 T -2  T -3  - a -  T-4
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Figure 4.23 Capacity of T-uaer M-ary 
Frequency MAC With Intensity Information 

(with Uniform O/P Distribution)

Capacity (Blta/Channal Uaa)

— —  T-1 — T-2  T -3  - a -  T -4  T-6 T-6

Figure 4.24 Capacity of T-user M-ary 
Frequency MAC With Intensity Information 

(with Actual O/P Distribution)

Capacity (Blta/Channal Uaa>

-----T-1 T-2 T -3  - a -  T-4
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Chapter 5

Collaborative Coding/Decoding Multiple Access Techniques

5.1 In tro d u c tio n

It is highly desirable to  use simple and effective multiple access coding/decoding 

techniques which are capable o f  multiple access function and error control. The 

collaborative coding schemes are constructed to allow  the simultaneous transmission by 

several users over a com mon channel and can also be extended to incorporate a certain 

degree o f  error protection capability. In this chapter, the multiple access 

coding/decoding schemes fo r  the T-user binary adder M A C s are investigated to utilise 

these above functions.

5.2 T -u s e r  E n cod in g  T e ch n iq u es

In the collaborative coding schemes, the T  messages generated from the T  

sources are encoded independently such that they are interference free during 

simultaneous transmission ove r  a common channel (refer to Figure 4.1). Each user is 

provided w ith a code w h ich enables the receiver to unscramble the individual 

information streams, by  detecting the resulting combined signal. The data from the i-th

source, Uit where i= l,2 .....T ,  is  encoded by the i-th encoder according to a uniquely

assigned block code C, o f  length N . The resulting codeword vector \ is then 

transmitted over the channel where it combines with the other (T - l )  codeword vectors
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to produce a composite codeword vector Y  o f  length N. The transmitters are assumed 

to operate in perfect symbol and block synchronisation over a common discrete T-user 

M A C . A t  the receiving end the single decoder decodes Y  into estimates o f  the original 

data streams U „U 2.....i f  possible without errors.

The T  codes C „C 2,...,CT together are called a "T-user collaborative code", where 

each component is termed a "constituent code". I f  all the constituent codes are binary 

b lock  codes then the codeword vector X j is  an N-symbol binary vector. The rate o f  the 

i-th constituent code C, containing C W S codewords each o f  length N  is given in equation 

(4 .1 ) and also the rate sum, R ^ ,  o f  all the T-user code is given in equation (4.2). 

Various collaborative codes have been constructed to allow  several users access to a 

com m on channel simultaneously and unscramble the individual users’ information 

without any ambiguity. Uniquely decodable coding schemes are the most common 

multiple access techniques [Kasami, et al., 1975, Kasami and Lin  1976, Kasami, et al., 

1978a, W eldon 1978, Chang and W eldon 1979, Khachatrian 1982, Ferguson 1982. 

Kasami, et al., 1983, Khachatrian 1983, Chang 1984, Braak and Tilborg 1985, and 

W ilson  1988].

Consider a T-user code (C i.Q .....C f) .  L et (Z „Z 2.....Z?) and (Z ’ „ Z 2, , . ..^ ,t ) be two

distinct sets o f  vectors with Z t and Z / eQ  fo r l< i<T . Then, the T-user code (C „

C 2.....C j) is said to be "uniquely decodable" i f  and only if, fo r  every such distinct pair

(Z ..Z ,.....Z ,)  and (Z , ’ ,Z2\...,Z’T).

Z ,+Z 2+ ...+Zr +  Z 1’ +Z2,+ ...+Zr* (5.1)

where, the plus sign denotes real addition and the addition operation is performed
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component wise.

A s  an example, a simple coding scheme fo r  a 2-user uniquely decodable code 

with b lock  length o f  N =2, is g iven here [Kasam i, et al., 1975, and Kasami and Lin 

1976]. T h e  codewords fo r user 1 and 2 are, C ,=(00 ,11 ) and C2=(00,01,10), respectively. 

This 2-user code (C ,,C j) is uniquely decodable because all the received composite 

codewords are distinct as shown in Table 5.1;

(C,)
c , + c 2 ( 0 0 ) ( 1  1 )

( 0  0 ) 0 0 1 1
( 0  1 ) 0 1 1 2
( 1  0 ) 1 0 2  1

Table 5.1 2-user Uniquely  Decodable Code

Therefore, the decoder can unscramble the tw o  messages without any ambiguity.

Un iquely decodable coding schemes can  also have some error protection 

capability [Rasami, et al., 1975, Rasami and L in  1976, Rasami and Lin  1978a, Weldon 

1978, Chang and W eldon 1979, Farrell 1981 and Wilson 1988]. In particular, it has 

been found codes fo r the 2-user binary adder M A C  with rates up to 1.292 bits per 

channel use which achieve the M A C  function and o ffe r  some error protection capability. 

The error protection degree depends on the distance o f  the code. The distance between

tw o codewords Z=zl,z2.....Zf, and Z ’i= z ’ „ z ,2,.*.«z ’N o f  the i-th user code C, is the number

o f  places where they d iffer and denoted by di(Z i,Z ’ i)- The minimum distance o f  the i-th 

user code  C, is given by;

d u i  =  tttin dj(Z|,Z| ); Z ieC i, Z ( eC,, Z ^ Z /  (5.2)
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I f  Z  and Z ’ are defined as N-symbol com posite codew ords g iven by;

Z  =  Z ,+Z 2+...+Z t , Z’-Z\+Z’2+...+Z\, and Z ^ Z (5.3)

Then, the L-distance between Z  and Z ’ can be defined as follows;

NWLZ') =  Z  | z,-z\ | «  | | Z-Z-1 | (5.4)

where, the minus sign denotes real subtraction, | Zj-z ’ i | denotes the absolute value o f 

Zj-Zj’ , and the sym bol | | Z -Z ’ | | means that the L-distance is a metric. The L-weight 

o f  Z  is simply the sum o f  the absolute values o f  its coordinates.

The m inimum L-distance, d ^ ,  o f  a T-user collaborative code is the smallest 

value o f  dj/Z.Z ’ )  over all Z + Z ’ [Chang and W eldon 1979]. This distance d «  can also 

be defined in terms o f  the minimum distances o f  the constituent codes as;

d*,* =  min (d lmto,d2mil,...,drei„) (5.5)

where dinih1 is the minimum distance o f  the i-th user constituent code. The number o f 

transmission errors is defined as the L-distance betw een  the transmitted composite 

codeword, say, Z  and a received codeword 2 , i.e..

e (Z .2 ) =  | | Z -21 (5.6)
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and the error vector is,

e(Zj2.) =  e,,«*,.....eN (5.7)

Consider the 2-user code given in Table 5.1, the sym bol by symbol error 

conditions can be defined as follows;

(a) S ingle error conditions occurs if,

( i )  user 1 and 2  transmits the symbols 0 and 0, or 1 and 1 , respectively, and the 

received symbol is 1 ,

(ii) user 1 and 2  transmits the symbols 0 and 1 , or 1 and 0 , respectively, and the 

received symbol is 0 or 2 .

(b ) Double error conditions occurs if,

( i )  user 1 and 2 transmits the symbols 0 and 0, respectively, and the received symbol 

is 2 ,

(ii) user 1 and 2  transmits the symbols 1 and 1 , respectively, and the received symbol 

is 0.

5.3 T-user Decoding Techniques

In the noiseless channel conditions, the decoder is capable o f  decoding every 

received composite codew ord  vector, without ambiguity, into T -c  ode word that were 

transmitted by the T-encoder. However, i f  the channel is noisy, the received composite 

codeword may d iffer from  the transmitted codeword. In this case, the decoder chooses 

the codeword which is closest to the received as measured by som e metric distance. The
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general decoding process involves searching amongst all the possible composite 

codewords and choosing the codew ord  that satisfies certain decoding strategy. The 

metric distance values are the decoding strategy measure o f  the received codeword with 

respect to all the codewords. The decoding o f  T-user collaborative coding schemes is 

based here on tw o techniques, hard and soft decision decoding. These tw o decoding 

techniques are employed to decode collaborative coding schemes [A l i  and Honary 

1992].

5.3.1 H ard  Decision (H D ) D ecod ing

In H D  decoding o f  C C M A  schemes, the demodulator set CT) decision thresholds 

to detect the (T + l )  possible signal levels  transmitted by the T-user. Here, each received 

symbol is detected independently over N  received symbols. This process is called 

symbol-by-symbol HD  (SB S_H D ) decoding technique [A l i  and Honary 1990]. However, 

this decoding technique cannot be used on its own to  perform fu ll decoding process to 

deliver the individual users information to their intended destinations. Th is is due to the 

fact that, som e times in noisy conditions, the SB S_H D  decoding w ill result in a 

codeword which is not admissible. In this case the decoder w ill fa il to deliver the 

individual users information. Therefore, L-distance H D  decoding is used in conjunction 

with SB S_H D  to complete the decoding process and resolve this ambiguity. This 

complete process is referred to  as H D _C C M A  decoding technique [A l i  and Honary 

1991a, and A l i  and Honary 1991b].

The H D _C C M A  decoder, calculates all the L-distances between the SBS_HD 

codeword and all the possible admissible codewords. Then, the codeword with least L- 

distance is chosen. This kind o f  decoding, guarantees correct decoding in the noiseless
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uniquely decodable coding scheme. H ow ever, in the noisy case, the number o f  errors 

which can be corrected under this decoding is t=i-(dmi.-l)/2 j ,  where LxJ means integer 

number less than or equal to x, [Peterson and W eldon 1972]. Th e  generalised 

H D _C C M A  decoding algorithm can be summarised in the fo llo w in g  steps:

Step 1: Perform  SB S_H D  decoding on  the received N-symbol codeword.

Step 2: Calculate the L-distance metric values between the S B S _H D  codeword and all 

the admissible codewords.

Step 3: Choose the codeword with the least L-distance metric value to represent the 

decoded codeword.

Step 4: A  look up table is used to decode the individual users’ codewords and hence 

their original sink information.

5.3.2 M aximum Likliehood Soft Decision (M LS D ) Decoding

It is seen in the previous section that the H D _C C M A  decoder operates on the 

demodulator hard symbol decisions. This, however, neglected the fact that there is an 

additional information in the received signal which can be made available by the 

demodulator and fed forward to the decoder. The technique which make use o f  this 

extra information in the received signal is called soft decision (S D ) decoding [Sklar 

1988 pp329-331, and Cattermole 1986 p p l80 ]. Therefore, when the demodulator sends 

a hard sym bol decision to  the decoder, it sends a single symbol. H ow ever, when the 

demodulator sends a soft symbol decision, it e ffective ly  sends a w ord  in place o f  a 

single sym bol which is equivalent to sending the decoder a measure o f  confidence along 

with the symbol. In such a case, the demodulator can be configured to have a number 

o f  quantisation levels greater than (T + 1). Optimum SD decoding is obtained by having
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infinite number o f  quantisation levels. The S D  decoding is most readily understood as 

a discrete approximation to maximum likelihood (M L ) detection.

The SD scheme is also used here in conjunction with SB S_H D  decoding as in 

the previous case o f  H D _C C M A  decoding. T h e  demodulator sets a number o f  decision 

thresholds to decide which o f  the possible signal levels have been transmitted. In 

addition, the demodulator assigns each sym bol a confidence level w h ich is extracted 

from  the received signal quantisation. The SD  distance between the SB S _H D  codeword 

with it ’ s symbols confidence level and all the admissible codewords is calculated. The 

admissible codewords are stored with the highest confidence level o f  each symbol. The 

codeword with least SD distance is chosen to represent the SD  decoding. This SD 

decoding technique can be summarised in the follow ing steps:

Step 1: Perform SB S_H D  decoding on the received N-symbol codeword.

Step 2: Calculate the SD metric values between the SBS_H D  codew ord  and all the 

admissible codewords.

Step 3: Choose the codeword with the least SD  metric value to  represent the SD 

decoding.

Step 4: A  look up table is used to decode the individual users’ codewords and hence 

their original sink data messages.

Consider a set o f  composite codewords each comprising N -sym bol. The received

signal is W = (w „w 2.....w N), where w- is the magnitude o f  the element representing the

i-th symbol. In principle, joint M L  decision carried out on the com plete word is a very 

powerful detection technique [Cattermole 1986 ppl80]. Therefore, i f  the actual signal 

magnitude o f  N-symbol codeword is made available to the decoder, then a M L  

decoding fo r C C M A  schemes can be performed. This is achieved b y  calculating the
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Euclidean distances between the received codeword and all the admissible codewords.

The codeword w ith minimum Euclidean distance (M E D ) is chosen to represent the 

M LS D  decoding codeword. Provided the codewords are all equally likely, th is strategy 

is optimum in the sense that it minimises the probability o f  error in the decoder. A  

generalised M L S D  decoding technique algorithm steps can be summarised here as 

follows:

Step 1: Calculate the Euclidean distances between the received soft information 

codeword and all the possible codewords.

Step 2: The codeword with the M ED is chosen to represent the M LS D  decoding.

Step 3: A  look up table is used to decode the individual users’ codewords and their 

original sink information.

However, this technique is difficult to implement in practice, because this would 

require the storage o f  the precise amplitudes o f  all symbols as received. In addition, the 

decoding table becomes unmanageably large as the length o f  the code and th e number 

o f  active users increases. Therefore, what is needed is a simple means o f  calculating 

the possible transmitted codewords from the received codeword with least number o f 

operations possible.

5.4 Low Complexity MLSD CCM A Decoding

This technique has the reliability o f  M L  decoding with less implementation 

complexity and also reduces the number o f  computations required to decode a given 

codeword [A li and Honary 1991a, and A li and Honary 1991b].
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5.4.1 Decoding Procedure Description

Th e  decoding problem at the receiver can be defined as fo llow s  "G iven

W=(w,,w2....wN), where w4 is real valued scalar, it is necessary to decode the

transmitted codeword in such a w ay that the total probability o f  codeword error is 

m inim ised". For a g iven T-user C C M A  code structure, tw o  sets o f  "adm issible" and 

"forbidden" codewords are defined. Assume A i=(ail,ai2,...,aiN)  is the i-th admissible 

codeword where i=l,2 ,...,N ,; N , is the number o f  admissible codewords g iven  by;

C W , is the number o f  codewords in the 1-th user, and a  ̂ is the j-th  symbol value o f  the

i-th admissible codeword where j= l , 2 .....N . A  set o f  forbidden codewords, fo r  certain

error conditions, is defined as, Fi= ( f i„ f i2,...,fiN), where i= l,2 ,...,N f; N f is the number o f 

forbidden codewords, and is the j-th  symbol value o f  the i-th forbidden codeword 

where j= l,2 ,...,N .

I f  w e assume the transmitted codeword is A k=(akl,ak2.....a ^ ),  and the received

codeword is W = (w ,,w 2.....w N). Then, in order to construct the decision decoding table

to decode the received codeword, the fo llow ing procedure is  required;

( i )  D efine the subset o f  admissible codewords nearest to each forbidden codew ord  for 

certain error conditions.

( i i )  Calculate all the Euclidean distances between the received codeword 

W = (w ,,w 2,...,wN) and all the codewords from the admissible codewords subset nearest 

to the i-th forbidden codeword.

(ii i )  Choose the codeword w ith the M ED . That is, i f  the generalised distance between

T

(5.8)
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W  and the admissible codeword, say, A^eiA j) is minimum, then A p=(apl,ap2.....a ^ ) is

accepted as the transmitted codeword.

(iv ) Comparison thresholds are then found fo r each forbidden codeword to form  the 

decoding table fo r  this decoding technique.

T h is  decoding technique is also used in conjunction w ith SB S_H D  decoding. 

This arrangement allows to correct some errors which can not be corrected under 

SB S_H D  and H D _C C M A  decoding techniques. In addition, this decoding scheme may 

perform both error detection and correction at the same time.

5.4.2 Decoding Algorithm

T h e  generalised decoding algorithm steps for this M L S D _C C M A  decoding 

technique can be summarised as follows:

Step 1: Perform  SBS_HD decoding on the received codeword W = (w ,,w 2,...,wN).

Step 2: "Error Detection": perform error detection by checking the SBS_HD decoded 

codeword, whether it is admissible or forbidden; if it is admissible goto step 4, else 

continue.

Step 3: "Error Correction": perform error correction by checking certain decision 

thresholds fo r  the current detected forbidden codeword (according to  decoding decision 

table);

Step 4: Individual users’ information is then decoded by using the normal decoding 

procedure used in the noiseless case.

It can be seen from  the above steps that, it is not required to calculate the 

Euclidean distances between the received codeword and all the admissible codewords 

every tim e a codeword is received. It is only needed to check certain conditions
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according to  a decision decoding table. Therefore, in addition to perform ing M LSD  

decoding, the total number o f  operations are reduced compared to  conventional 

techniques.

5.4.3 2-user M L S D  C C M A  Decoding Schem e

A s  an example and analysis o f  this M LS D _C C M  A  decoding technique, the 2-user 

code g iven  in  Table 5.1 is considered and referred to as code 1. That is, user one and 

tw o codewords are C,=(00,11), C 2=(00,01,10), respectively. The set o f  admissible 

composite codewords is (00,10,01,11,12,21). The single error conditions fo r  this coding 

scheme is defined previously in section (5.2). That is, i f  the transmitted symbols from 

each user are (0,0) or ( 1 ,1 ) and the received composite symbol is 1 ; and also i f  (0,1 ) 

or ( 1 ,0)  are transmitted and either 0 or 2  is received, then single error has occurred 

during transmission. Therefore, fo r  this single error conditions, the set o f  forbidden 

composite codewords is (02,20 ,22 ) and the subset o f  admissible composite codewords 

nearest to  each forbidden codeword are defined as shown in Tab le 5.2;

F o r b i d d e n  N e a r e s t  A d m i s s i b l e
C o d e w o r d s  C o d e w o r d s

02  ---------------------------------- > ( 1 2 , 0 1 )
20 ---------------------------------- > (2 1 , 10 )
22 ---------------------------------- > (2 1 , 12 )

1>ble 5.2 Forbidden and N^areyl Admissibly Codewords for 2-user Code 1

T h e  construction o f  decoding decision table can be obtained by calculating the 

Euclidean distances between the received codeword W = (w „w 2) o f  a forbidden codeword 

and the nearest admissible codewords, defined above in Table 5.2, as shown below.

114



( i) The Euclidean distances for  the forbidden codeword 02:

d ,2 = (w , - l )2 + ( w 2- 2 )  2; between W = (w „w 2)  and 12,

d j2 = (w , -0) 2 + (w 2- 1 )2; between W = (w „w 2) and 01,

d| * -da 2 =-2w ,-2w 2+4;

then

d ,2< d jJ i f  w ,+W2> 2 ; therefore d , 2 is the minimum distance.

(ii) The Euclidean distances fo r  the Forbidden codeword 20:

d 3 2 = (w ,-2 )2 + (w 2- l ) 2; between W = (w ,,w 2)  and 21,

d42 = (w ,- l) 2 + (w 2- 0 )2; between W = (w „w 2) and 10, 

d 3 2 -d4 2 = -2 w ,-2 w 2+ 4 ;

then

d42>d32 if w ,+W2>2 ; therefore d32 is the minimum distance.

(iii) The Euclidean distances fo r  the Forbidden codeword 22: 

d$2 =(W|-2)2 + ( w 2-2 )  2; between W = (w ,,w 2) and 21, 

d62= (w , - l) 2 + (w 2- 2 )2; between W = (w „w 2) and 12, 

d52-d62=*2w ,+ 2w 2;

then

d ,2« ^ 2; i f  w ,> w 2; therefore d, 2 is the minimum distance.

Therefore, a decision table is constructed based on these calculations to be used fo r  the 

decoding purposes as shown in Table 5.3;
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F o r b i d d e n
C o d e w o r d s

C o m p a r i s o n
T h r e s h o l d s

D e c o d i n g
D e c i s i o n

0 2 w ,+w 2> 2 12
w , + w 2< 2 01

2 0 w , + w 2> 2 21
w 1 + w 2< 2 10

2 2 w ,>w 2 21
w ,<w 2 12

Table 5.3 D ecoding Decision Table fo r  2-user Code 1

Example: say, the transmitted codeword is (10) and the received soft information 

codeword is W=(1.6,0.3). Then, performing SB S_H D  decoding, the decoded codeword 

w ill be (20), this means there is a single error from the transmitted composite 

codeword. Employing H D _C C M A  decoding technique, w ill result in two possible 

codewords ( 10 ) and (2 1 ) wh ich have the same minimum L-distance from the codeword 

(20). Therefore, the H D _C C M A  decoder chooses either codeword with equal 

probability. I f  (10) is chosen then a single error has been corrected, however, i f  the 

codeword (2 1 ) is chosen then a double error has been introduced.

N ow , employing M L S D _C C M A  decoding technique, since an error is detected 

by the forbidden codeword (20) and (w ,+w 2)< 2 , then the output o f  the decoder is the 

codeword (10) as can be seen from  Table 5.3. Thus, a single error has been corrected 

from  SBS_H D  decoder o r  corrected double error from  the H D _C C M A  decoder ( i f  the 

H D _C C M A  decoder had chosen the codeword (21)). Therefore, em ploying 

M L S D _C C M A  decoding improvement in the decoding is possible, which allows som e 

o f  the detected errors to  be corrected. This decoding technique w ill g ive  higher
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improvement gain if the code used has some error protection capability.

5.5 Error Probability Analysis

The theoretical performance o f  T-user C C M A  decoding schemes is evaluated here 

in terms o f  both the probability o f  com posite symbol and codeword error. The reliability 

o f  individual users’ sink information depends on how accurate the composite codeword 

is decoded. These analyses are carried out over A W G N  channel o f  zero mean and 

variance o N2.

5.5.1 Sym bol E rro r  Probab ility

The total probability o f  symbol error, P „(to ), or some times referred to as symbol 

error rate (SER ), for a g iven T-user C C M A  scheme can be written as;

P „(to ) =  1 - P j t o )  (5.9)

where PK(to ) is the total probability o f  correct symbol decision and can be written as;

L
P „ (to ) =  £  p (i) PK(i) (5.10)

i= l

where L  is the total number o f  output symbols and p (i) is the i-th symbol probability 

o f  occurrence.
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(5.11)
L
X p(i) = 1 

i= l

and P„.(i) is the i-th output symbol probability o f  correct decision which can be written

rjo -f f/M <tw 
10,1 (5.12)

where {G , } is the region o f  correct decision o f  the i-th symbol and f,(w ) is the PD F  o f 

the i-th symbol g iven  by;

1
W  (  * - >  « p ( — r~>2 aM (5.13)

where w  is real valued scalar in the region {G (}  and St is the i-th symbol real value. 

Therefore, the total probability o f  correct decision is,

* « ( » ) « £  ( / * 0 ( - — —— )  /  « P (  (W  f — )  ¿ "0
v/(2 w )o w ,o(, 2on (5.14)

Substituting in equation (5.9) w e get the total probability o f  symbol error,

- £(/K0( - )  f  exp( (W <*v)
V(2n)ow l0(| 2a M (5.15)
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This procedure is used to calculate the composite SE R  fo r the T-user C C M A  schemes 

and the derivation is shown in Appendix B. For the T-user binary schemes L=T+1  and 

the decoder set T  detection thresholds to detect the L  symbols at the receiver. I f  the 

admissible symbols fo r  this case are (So.SpS^ then the probability o f  error fo r  each 

symbol is calculated in Appendix B  and shown that;

P„(So) = Erfc<u.-V°N> (516)

P J S , )  =  Erf(u0-S 1/oN)+Erfc(u ,-S l/oN) (5.17)

P „ (S 2) =  E rf(u ,-S yoN)  (5.18)

The total probability o f  symbol error can be written as;

P „ (to ) =  p(S0)E rfc(u0-S0/oN)+p (S,)(E rf(u0-S,/oN)-t-Erfc(ul-S,/oN))

+p(S2)E rf(u ,-Sa/oN)  (5.19)

where Erf. Erfc are the normalised and complementary error functions respectively, 

g iven in Appendix A ; Uq, u ,  are the decision thresholds; o N is the standard deviation 

o f  the noise; p(S<) is the probability o f  occurrence o f  S,. Substituting fo r  So=0, S ,= l. 

S2=2, and chosen the decision thresholds to be ha lf way between any tw o given signal 

levels i.e., Uo=0.5 and u,=1.5 w e get;

P „ (to ) =  Erfc( 1/2on) (p (0 ) +2p( 1 )+p(2) ) (5.20)
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Similarly, the SER is derived for T>2  and a generalised form is found and can be 

written as follows;

P J to )  =  Erfc(l/2oN)(p (0 )+ 2 (p (l )+ .. .+ p (T - l) )+ p (T )) (5.21)

This equation is used to  evaluate the SER fo r any g iven  T-user binary C C M A  scheme. 

The channel output S ER  is shown graphically in Figure 5.1 as a function o f  T  and E/N0, 

employing binary signalling scheme, where E is the average signal energy per user and 

N „ is the noise spectral density.

5.S.2 Symbol Error Probability Minimisation

The probability o f  error minimisation is initiated by the fact that the occurrence 

o f  the M A C  output signals is not equiprobable. The decision thresholds chosen half way 

between the above signal levels is not an optimum w ay  o f  detection [Schwartz 1990 

pp429-432, and Cattermole 1986 ppl68-177]. A n  optimum decision thresholds fo r  the 

T-user signals are derived using the knowledge o f  their probability o f  occurrence. 

Therefore, the total probability o f  error is differentiated with respect to all the decision 

thresholds associated with a particular T-user scheme to  find the optimum levels.

For example, consider the case o f  T=M =2, the total probability o f  symbol error 

given in equation (5.19), is differentiated with respect to  the decision thresholds Uq and 

u,, and found that;

uo = (2on * log(p(So)/p(S|) ) -S0 * +S, * ))/2(S,-So) (5.22)
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U, = (2oNslog<p<S|)^p<Sa))-S,, - »^ a»/2(SrS|) (5.23)

It is thus apparent that the optimum Uq and u, (in the sense o f  minimum error 

probability) depends on the signal amplitude, probability o f  occurrence, and noise 

variance. It is found as expected that the decision thresholds are biassed towards the 

least probable signal level. A lso, in the noiseless conditions, the optimum decision 

thresholds values, is very  near to the suboptimum case, due to  the actual probability 

distribution o f  output signal levels. However, the derived optimum decision levels are 

used to calculate the channel output SER and shown graphically in Figure 5.2, for 

various values o f  T  and E/No, employing binary signalling scheme. This suggests that 

there is no significant improvement in system performance by  varying the threshold 

levels.

5.5.j  W fw o rd  Error Probability

I f  the total number o f  admissible composite codewords fo r  a g iven T-user code 

is N „  then the total probability o f  correct decision can be written as;

N.
P„(to) = Z p(i) P j i ) (5.24)

where p (i) is the probability o f  the i-th admissible codeword.

N .
Z p(i) = 1 
i=l

(5.25)
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Figure  6.1 T-ueer C C M A  Channel O/P S E R  
(with midpoint Decision Threeholde)

| -----T»1 - * - T - 2  T»3 -Q -T »4  T»6 T«6

Figure 6.2 T-u#er C C M A  Channel O/P S E R  
(w ith Optimum Doololon Threshold«)

-----T-1 T-2 T»3 - a -  T-4 T-6 T-6
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and P^ü ) is the probability o f correct decision o f  the i-th admissible codeword,

PJf)mf [ ~ // < (« V 'v -» JV) d"r~d»MJ (0|) (5.26)

where {G j} is the region o f  correct decision o f  the i-th composite codeword, and 

ft(w ,w 2...wN) is the jo in t pdf o f  the i-th admissible codeword, which can be written for 

the A W G N  as;

where a  ̂ is the j-th symbol in the i-th admissible codeword, where j= l,2 ,...,N  and 

i= l,2 ,...,N t. Substituting back into eqtiation (5.26) and (5.24), the total probability o f  

correct decision is,

(5.27)

(5.28)

and the total probability o f  error can be written as;

y-t 2  aN

(5.29)
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For M L S D _C C M A  decoding, the region o f  correct decision {G , }  represent the set o f 

points for  which the Euclidean distance to the i-th admissible codeword is smaller than 

fo r  all other admissible codewords. That is;

N  N
{G , } =  {  {w ,w 2...wN)  }  : Z  (wj-a^ 2 <  Z  (wj-a^)2 (5.30)

j = l  j = l

where (w ,w 2...wN) is the set o f  points in {G , } ;  the colon sign (:) means defined as; Wj 

is real valued scalars, which represents the coordinates fo r  each point in the region 

{G , };  a  ̂ and a^ are the j-th symbols in the i-th and k-th admissible codewords 

respectively, where i= l,2 ,...,N „ j= l ,2 .....N , and i+k .

5.5.4 2-user CCMA Decoding Schemes Error Probability

The probability o f  error fo r  the 2-user binary C C M A  scheme is considered and 

analysed here. The 2-user binary collaborative code is g iven  in Table 5.1. The 

probability o f  receiving a given admissible codeword correctly, P^O, is derived in 

Appendix C , em ploying hard decision decoding. It is found that;

P^OO) =  E r f2 (0 .5 u/o n) (5 .3 1 )

Pee(01)=Pee(10) =  (Erf(0.5u/oN)) (2Erf(0.5u/oN) - l )  (5.32)

Pee(12 )=Pee(21) =  (2Erf(0.5u/oN) - l )  (Erf(0.5u/oN) )  (5.33)
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Pcc(ll) =  (2Erf(0.5u/oN)- l ) (5.34)

Substituting these probabilities in the total probability o f  correct decision w e get;

P« (to) = (Poc(0 0 )+2Pce(10)+2Pee(12)+Pce( l l »/ 6  (5.35)

and the total probability o f  error can be calculated by substituting in the follow ing 

equation,

P « (to )  =  1 - P J t o )  (5.36)

Sim ilarly, the derivation o f  the codeword error rate employing M L S D _C C M A  decoding 

is g iven  in Appendix D. Th e  probability o f  correct decision o f  each admissible 

codeword is,

PM(00) =  Erf 2 (0.5u/oN) (5.37)

oswo,

r,«(01MSrt0.5u/o„)-l)&/{0.5i</o„)* f  (5.38)

(exp(-rJ/2)/v®t) Erfi-t+u/o„ )  dr

J’. P l ) -  / ( exp(- t 2l2 )l j2 K )(.E r f (t+ u / o - Erf{-t-uJo (5  39)
-ruw..
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Pce( l l ) =  (2Erf(0.5u/oN)- l ) (5.40)

Then, equation (5.35) and (5.36) is used to get the total probability o f error.

5.6 Simulation Results and Discussions

The simulation is carried out to evaluate the reliability performance o f  C C M A  

schemes employing various coding and decoding schemes. Various 2-user C C M A  

schemes [Kasami, et al., 1975, and Kasami and Lin  1976] are introduced first and used 

throughout the simulation analysis. These collaborative codes are chosen to be simple 

short codes with summary rate, in most cases, higher than one bits/channel use. In 

addition, they are chosen to have different error protection capability o f  the overall 2- 

user code and it’s constituent codes. These codes are;

(a) C ode 1: C ,=(00,11), C^fOO.O l.lO ),

C W ,=2, N ,=2 , R,=0.5, d,_*=2,

CWj=3, Nj=2, R2=0.792, <1^=1,

Ri - =1.292. <U,=1.

(b ) C ode 2: ^= (000,111 ), ^(000,001.010,011,100,101.110). 

CW ,=2 , N ,=3, R ,=0.333, d l-ta=3,

C W j=7 , N j=3, Rj=0.935, <1^=1,

R ^ .=1.269, d ^ = l .
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(c ) C ode 3: C,=<0000,0011,1100,1111),

CaMOOOO,0001,0010,0100,0101,0110,1000,1001,1010),

CW ,=4 . N ,=4 . R,=0.5. d 1-to=2,

CW2=9, 1^=4, R2=0.792, <1^=1.

RMB= 1.292, dM = l .

(d) Code 4: C,=(0000,0001,0011,1100,1110,1111),

C2=(0000,0101,0110,1001.1010,1101),

C W ,=6 , N ,=4 , R ,=0.646, dimm=l,
C W 2=6 , N 2=4, R2=0.646, <1^=1 ,

R,^,=1.292, (1^=1.

(e ) C ode 5: C ,=(00.11). C2=(10,01),

CW ,=2 , N l= 2, R,=0.5, d late=2,

C W 2=2, N2=2, R2=0.5, d2- .= 2 ,

R »»= 1 .0 , cU = 2 .

It is assumed that the 2-user C C M A  communication system is in perfect 

synchronisation. In addition, the modulation and demodulation are assumed to be 

available for  these codes and considered to be part o f  the discrete channel. The 

simulation performance analysis results are presented graphically in terms o f  the 

probability o f  error. The composite codeword error rate (C ER ) and the constituent users 

sink SER are calculated for each 2-user collaborative code. The com posite CER is 

defined here as the total number o f  composite codewords in error over the total

127



transmitted. The individual constituent user’s sink SER is defined as the total number 

o f  user’ s sink symbols in error over the total transmitted. The channel is assumed to be 

A W G N  o f  zero mean and variance o N 2. The ratio E/N0, is also defined here as the 

average signal energy per user to noise power spectral density g iven  by aN 2 = N a/2.

Th e  composite C E R  versus E/N0, employing the H D _C C M A  decoding is shown 

in Figure 5.3, fo r  all the f iv e  codes. It can be seen from this figure that the reliability 

o f  these codes are very  similar, since their correction capability is the same under 

H D _C C M A  decoding. The small difference is due to the variation in the number o f  

admissible and forbidden codewords from  one code to another. The composite CER 

versus E/Nc, em ploying the M L S D _C C M A  decoding is also shown in Figure 5.4, for 

all the f iv e  codes. It can be seen clearly that code 5 g ives the best performance because 

its (1̂ = 2 , which means that under this decoding a single error can be corrected.

For comparison purposes and calculating the energy gain achieved by employing 

M L S D _C C M A  decoding, the CER fo r  each code is presented separately in Figures 

5.S-5.9, em ploying H D _C C M A  and M L S D _C C M A  decoding techniques. A lso  included 

with these Figures is the C E R  o f  each code when SBS_H D  decoding is employed. It 

can be seen fo r the first fou r codes. Figures 5.5-5.8, that the M L S D _C C M A  decoding 

gives the best performance with some detection gain. How ever, when the code 

employed has some error protection capability, as the case in Figure 5.9, this gain is 

much higher, as can be seen very  clearly at high E/N0. The gain achieved is more than 

2.5dB at an error probability o f  10"6.

The e ffect o f  em ploying these coding and decoding techniques is also 

investigated on the constituent codes and hence their user’ s sink data. The sink SER for 

each user is presented in Figures 5.10-5.14 for all codes. It can be seen, fo r  example,



Figur« 6.3 HD-CCMA Decoder CER

I —— Code 1 — Code 2 Code 3 Code 4 Code 8

Figure 6.4 MLSD-CCMA Decoder CER

—-  Code 1 — Code 2 Codo 3 -® - Cod« 4 Cod« 6
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F igure  6.6 COMA D ecoding Schemes CER
(C ode 1)

— — SBS-HD — HD.CCMA MLSD.CCMA

Figure 6.6 CCMA Decoding Schemee CER 
(Code 2)

—  SBS-HD — HD-CCMA MLSD.CCMA
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Figure 5.7 CCMA D ecoding Schemes CER
(Code 3)

----- SBS-HD —<I— HO.CCMA MLSD-CCMA

Figure 5.8 CCMA Decoding Schemes CER 
(Code 4)

— -  SBS-HD — HD-CCMA MLSD-CCMA
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Figur« 6.0 CCMA Decoding Scheme« CER
(Code 6)

— — SBS-HD — HO-CCMA MLSD.CCMA
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Figur« 6.10 CCMA Decoding Scheme« 
User* Sink SER 

(C od« 1)

—  U se r 1 HO.CCMA —  (lee r 2 HO.CCMA

User 1 ML80.CCMA » -  U se r 2 MLSO.CCMA

Figur« 6.11 CCMA D «coding Schemas 
U « «r «  Sink SER 

(C od « 2)

—— U s s r  1 HO.CCMA U s s r  2 HD.CCMA
U s s r  1 MLSO.CCMA U se r 2 MLSO.CCMA
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Figur* 6.12 CCMA Decoding Schern*« 
U **r*  Sink SER 

(Cod* 3)

------  U se r 1 HD-CCMA -  U s s r  2  HD.CCMA

U se r 1 MLSD-CCMA *■ U se r 2 ML8D.CCMA

Figur* 6.13 CCMA Decoding Schemas 
Users 8ink SER 

(Cod* 4)

—  U s s r  1 HD.CCMA — U se r 2 HO.CCMA

U s s r  1 MLSD-CCMA *■ U se r 2 MLSO.CCMA
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Figur« 6.14 CCMA Decoding Scheme« 
Users Sink SER 

(Code 6)

—  U se r 1 HO.CCMA —  U se r 2 HO.CCMA

U se r 1 ML30.CCMA * "  U se r 2 MLSD.CCMA
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in Figure 5.10, user 2 sink SER is very close fo r  both cases o f  M L S D _C C M A  and 

H D _C C M A  decoding techniques. However, user 1 reliability employing M L S D _C C M A  

decoding is better than H D _C C M A  decoding because d lmil=2. This gain is also shown 

in Figures 5.11 and 5.12 fo r user 1 o f  code 2 and code 3, respectively. Since code 4  is 

a balanced code, the reliability o f  each user is very  close as shown in Figure 5.13. Code 

5 is also balanced cod e  w ith d ._-=dT--=d__=2 . Therefore, the sink SER is the same for 

each user as shown in Figure 5.14. It can also be seen from  Figure 5.14 that a coding 

gain o f  more than 2.5dB at 10* error probability is achievable employing 

M L S D _C C M A  o v e r  the H D _C C M A  decoding technique.
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Chapter 6

Practical CCM A System Design

6.1 In trod u c tio n

Practical system design fo r C C M A  schemes is o f  considerable importance to 

maintain the effic ient simultaneous communication o f  several users sharing the same 

bandwidth allocation, w ith a combined throughput which is higher than that which can 

be achieved by other multiple access methods. In this chapter certain 

modulation/demodulation (m odem ) techniques to provide the practical combining and 

unscrambling o f  the users’ collaborative coded data signals are investigated. The 

performance analyses o f  these techniques are carried out in the noiseless and noisy 

channel conditions.

6.2 M o d em  T e ch n iq u es  C on s id e ra tion s

Generally, the data information to be transmitted can be sent over a 

communication channel by  varying the parameters o f  a sinusoidal carrier signal: 

amplitude, frequency, and phase in some recognisable form at Th is leads directly to the 

basic techniques o f  modulation which are amplitude shift keying (A S K ), frequency shift 

keying (FSK ), and phase shift keying (P S K ). In A S K  technique the amplitude o f  a fixed 

carrier is varied according to  the data to be transmitted. For the binary case, the carrier 

is switched on and o f f  fo r  1 ’ s and 0 ’s respectively. I f  w e wish to transmit more bits per
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symbol, w e  must use more levels, normally using a power o f  tw o so that there w ill be 

a whole number o f  bits per symbol. However, as the number o f  levels increases, the 

amplitude increment between adjacent carrier amplitudes decreases and so does 

immunity to noise. Since the amplitude is used to  convey the information, the decision 

boundaries in the receiver must be constantly varied and accurately tracked with 

changes in the received signal levels  fo r  reliable system performance. This problem is 

worsened in the case o f  multi-level A S K , since more boundaries exist which must be 

tracked with greater accuracies.

In the PS K  technique, the carrier phase is changed according to the data to be 

transmitted. The most simple exam ple o f  P S K  modulation is that o f  phase reversal 

keying (P R K ) [Stremler 1982 pp582] whereby the carrier or the inverse o f  the carrier 

is transmitted, depending on the data. More com plex systems switch the phase to one 

o f  a larger number o f  possible values, usually even ly  spaced between 0 and 2a. A s the 

number o f  phases increases, the distances between the constellation points decreases, 

which results in reduction in the immunity to noise. The demodulation o f  these signals 

becomes progressively more d ifficu lt as the number o f  phases is increased [Lindsey and 

Simon 1972]. A lso, one o f  the m ajor problems associated w ith PS K  systems is that high 

channel phase stability is required. Otherwise, these phase instabilities must be 

accurately tracked.

The principle o f  FSK  modulation technique is that, the carrier signal frequency 

is changed according to the data to be transmitted. For example, binary FSK  consists 

o f  simply transmitting one tone fo r 0 ’ s and another for  l ’s. In M -ary FSK (M FS K ) 

signalling format, the M  tones are usually even ly spaced through the signalling 

bandwidth. Unlike the other tw o modulation schemes, the distance between the
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constellation points can be kept constant as the number o f  levels or tones increases, by 

having orthogonal frequency spacing. Th is  may be achieved by making the symbols 

longer, since the frequency spacing fo r  orthogonality is equal to the reciprocal o f  the 

symbol period [Ralphs 1977, and Ralphs 1985]. It is suggested that M FS K  is a more 

realisable method o f  modulation fo r  tim e varying channels (e.g. H F  channel) due to its 

long symbol period [Ralphs 1977, Ralphs 1985, and Shaw 1989].

The task o f  the demodulator o r  detector is to retrieve the data symbol streams 

from the received composite waveform , as nearly error free as possible, in spite o f  the 

distortion to which the users’ signals m ay have been subjected. The detection process 

can be performed by using one o f  the tw o  basic techniques [Clark 1983 pp49-93], Le. 

coherent or noncoherent detection. In coherent detection, the receiver makes use o f  a 

prior knowledge o f  the phase o f  the signal carrier in an element detection process. 

Therefore, phase estimation at the rece iver is required. The noncoherent demodulation 

refers to systems employing demodulators that are designed to  operate without 

knowledge o f  the absolute value o f  the incoming signal’ s phase, therefore, phase 

estimation is not required. Generally, the advantage o f  noncoherent systems over 

coherent systems is reduced com plexity, and the price paid is increased probability o f  

error under A W G N  conditions [Arthurs and Dym 1962, Edwards 1973, Stremler 1982, 

and Clark 1983].

6.3 MFSK CCMA Modem Model

The modulation channel m odel considered here is M F S K _C C M A  which is a 

much more realistic form o f  M A C , interesting from both the theoretical and application
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point o f  v iew  [Honary and A li 1989, and A l i  1989]. In this M F S K _C C M A  signalling 

scheme, the T-user have available M  sinusoidal carriers, each at a different frequency

(F „F 2.....Fm). The general block diagram o f  the practical transmission system is shown

in Figure 6.1.

Figure 6.1
Block Diagram of M F S K .C C M A  Transmission System

During any symbol interval T ,, each user w ill selects one o f  these common 

frequencies to transmit, the receiver must then decide which frequencies have been 

transmitted during each period o f  T , seconds. The T-user are synchronised so that each 

user transmits a frequency at the same fixed  time T , seconds intervals. Each tone 

frequency would need to be separated from  the frequencies above and below  it by an 

amount sufficient to allow  the receiver to reject these frequencies. The minimum 

frequency separation, 6F, that would guarantee a fixed energy per received symbol is 

6F=1/T, [Ralphs 1985].

This frequency assignment scheme can be expressed mathematically as follows, 

the i-th user is assigned the carrier signal, f,(t), according to its data codeword
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symbols;

f,(t) =  AjSiniw^t+^i); i= l,2 ,...T , j=1 .2....M  (6.1)

where Wjj is the j-th frequency o f  the i-th user signal. \ is i-th user signal amplitude, 

and is the i-th user arbitrary phase angle. During any symbol interval T „  the i-th 

user transmits the M FSK  carrier signal according to its data symbols, where it combines 

with the other users’ carrier signals at the channel. The resulting channel output or 

demodulator input, r(t), assuming noiseless channel is;

T
r(t) =  Z  f,(t) 

i= l

T
= £  AiSinfWjjt-Ĥ j) (6.2)

i= l

Hence, the received signal at any instant o f  tim e is a composite o f  T  sinusoidal signals, 

from which the transmitted frequencies have to  be recovered. The users’ carrier have 

to be phase coherent at the receiver to provide the M A C  output, without carrier 

coherence, cancellation fading occurs. In M F S K  signalling scheme, the phase o f  the 

tones is presumed to carry no information and the magnitude o f  the signal at each 

frequency is only considered. In addition, fo r  coherent detection o f  these M FS K  signal, 

considerable equipment complexity is required fo r  the extraction o f  the reference carrier 

at the receiver [Clark 1983 pp79], where noncoherent demodulation provide less 

complexity. Three particular techniques o f  noncoherent demodulation are investigated 

with this M FS K  signalling scheme.
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6.4 Square-Law Demodulation Technique

The frequency assignment scheme used with this technique [Brine and Farrell 

1985] is somehow different from than the M FS K  s ignalling format described in the 

previous section. That is, during every symbol interval, each user w ill transmit on-off 

keyed carrier signal according to it ’s coded data symbols. A lso, the transmitted 

frequencies from  each user are orthogonal to each other. That is, the i-th user is 

assigned the carrier;

fi(t) =  XjAjSinKwo+ibwh-Hjii); i=0 ,l,...,T -l (6.3)

where w0 is the 0-th user carrier frequency, 6w  is f ix e d  frequency separation, chosen 

to be 8w=2x/Tf, to g ive  the minimum carrier frequency separation, and X jE {0,1 }  is the 

i-th user constituent codeword symbol. The resulting demodulator input r(t), assuming 

noiseless channel, is;

T - l
r(t) =  2  XjAiSiniiwo+idwJt-Hjii) (6.4)

i=0

From this equation (6.4), the collaborative constituent codeword symbols have to be 

recovered. The process used to recover these symbols is  called square-law demodulation 

technique and shown in Figure 6.2. That is the rece ived  signal r(t) is squared, integrated 

and dumped over the symbol interval T,. Consider the 2-user case, the resulting 

demodulator input is;
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r(t) = XoAflSintwot+^o) + X, A,sin((w0-fòw)t+4,) (6.5)

Substituting for 6w=2x/T, we get;

r(t) =  XoAflSin (w 0t-Hj> 0) +  X ,A 1sin ((w 0+(2x/T,))t+$1) (6.6)

r(t) I
----- “I Square-Law

Figure 6.2
Block Diagram of Square-Law Demodulator

The demodulation process to recover the 2-user symbols X<, and X, from equation (6.6) 

can be expressed mathematically as follows; the demodulator output is;

(6.7)

(X^AoSin ( w01+4>0) ♦X1A1s in (  (w0+ (2 n /T B) )  C + t i )  ) 2 dt (6.8)
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Z- (XqA0) 2J s in 2 (wjjC+^o) d t

(6.9)

0

0

B y virtue o f  the mutual orthognality o f  the users’ transmissions achieved by the 

specified carrier separation, all cross product resulting from  the squaring process 

integrate to zero. Hence, equation (6.9) can be closely approximated to;

The approximation accuracy increases as wT, increases, i.e. assuming w T , » l ,  that is 

many carrier cycles per symbol. Assuming A0=A ,=1 , equation (6.10) becomes;

Then since T , is constant for  a given system, sampling the integrator output after each 

symbol interval w ill provides us with the channel output sym bol required. Therefore, 

during each symbol interval T „  the output o f  the demodulator is represented by one 

dimensional vector Z  which is the measure o f  the received composite signal energy 

during the T , seconds interval. The channel input and output fo r  the 2-user square-law 

demodulation technique are shown in Table 6.1;

Z = O.ST.iXoAo)1*  O.ST.iX.A,)2 (6.10)

Z = O.ST/Xo+X,) (6.11)
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( X 0/ X , ) C h a n n e l  i n p u t  Z

( 0 , 0 )  — ------ > ( 0 , 0 )  --------- ■ ■ ■ -----> ( 0 )

A

i

( 1 )

( 1 , 1 )  — ------ > ( F 0 , F ,  ) ---------------------------------> ( 2 )

Table 6.1 2-user SquCT-L,w  Demodulator Qulput

I t  can be seen from  this table that all the possible transmission o f  the 2-user are 

recovered by the symbols (0,1,2). The ambiguity o f  the symbol "1 " is resolved by 

em ploying C C M A  uniquely decodable schemes to decode the individual users’ data 

symbols.

6.5 Zerocrossing Demodulation Technique

The method investigated here, uses the number o f  zerocrossing (ZC ) counts as 

a  means o f  demodulating the received composite signal. This investigation has been 

initiated as a result o f  studies carried out by [Nelson 1975, Kedem  1986a, Kedem 

1986b, He and Kedem 1989, and Shaw, Honary and Darnell 1989]. In these papers, 

they discusses and relates the counts o f  ZCs to the frequency components o f  a signal.

Consider the demodulator input signal r(t) which comprises T  sinusoids;

T
r(t) =  I  A,sin(2sF1jt+<J>1); j= l,2 .. .M  (6.12)

i= l

w here A, is the i-th user signal amplitude, is the j-th  frequency o f  the i-th user
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signal, and is the i-th user arbitrary phase. From this received signal, w e wish to 

predict the average number o f  ordinary ZCs (O ZC ) and higher ZCs (H ZC ) counts. The 

probability o f  a O ZC  o f  a sampled waveform  r(t), is defined  simply as the probability 

o f  tw o successive samples having opposite sign. The H Z C  are defined in a similar way, 

excep t that the original series is first differenced or summed before the crossings are 

counted [Kedem 1986a, Kedem 1986b, H e and Kedem  1989, and Shaw, Honary and 

Darnell 1989]. The e ffect that a differencing or summing procedure has on the series, 

is  to change the magnitudes o f the sinusoidal components. The differencing procedure 

is  essentially differentiating or high pass filtering, causing the number o f  Z C  to increase 

landing at or near the highest frequency. Summing is like integrating or low  pass 

filterin g and so causes the number o f  crossings to decrease landing at or near the lowest 

frequency.

The average number o f  ZC  counts is denoted by, D,, where 1=0,1,... J, is the order 

o f  Z C , i.e. the number o f  times the differencing or summing operator applied to the 

orig inal series. Here, a useful normalization is used, that o f  scaling the tim e series such 

that the sampling interval becomes one second, and hence average Z C  per sample. This 

normalization is quite useful as it makes the calculation independent o f  the system 

under consideration and simplifies notation. The normalized average ZC , Pi, can be 

written as;

m =  xD, / (N ’ - l ) ;  1=0,1,...J (6.13)

w here N* is the number o f  samples taken per symbol.

Therefore, when a certain frequency band is dominant, it attracts m«  to admit
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values in this band, at or near this frequency. In other w ords, a dominant frequency 

when it  exists in the spectrum, can be quickly detected by th e O-th order o f  Z C  only. 

H ow ever, when a differencing or summing operator is applied to the original series, it 

m od ifies  the spectral weight emphasizing some bands w h ile  attenuating others. 

Consequently, when a discrete frequency exists in the spectrum it can be enhanced and 

then estimated by p,. This tendency o f  ZC  (after proper scaling) to admit values in a 

neighbourhood o f a significantly dominant frequency is ca lled  the dominant frequency 

principle [Nelson 1975, Kedem  1986a, and Kedem 1986b].

The demodulation process used here is shown in F igu re 6.3, which consist o f  

counting the number o f  ZCs D, and calculating the normalised average p, for  all orders 

o f  the received signal. Then p, is used to estimate the individual frequencies in the 

rece ived  composite signal. Therefore, during each symbol interval T,, the output o f  ZC  

demodulator can be represented by the vector Z;

w here zj is the measure o f  the normalised average o f  ZCs counts o f  frequency Fj during 

the T ,  second interval.

Z  =  ( z , ^ . . . . ^ ) (6.14)

ZC Counting

Figure 6.3
Block Diagram of Zerocroasing Counting Demodulator
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A s  an illustrative example, consider the 2-user case w ith  fo llow ing parameters; 

M =2, F,=1.25KHz. F2=2K H z, and T f=4msec. Since the number o f  cycles o f  F, and Fz 

is 5 and 8 , respectively, then the expected average number o f  Z C s  counts would be 10 

and 16, respectively. Therefore, during each symbol interval D, and p, are calculated to 

detect the presence o f  these tw o frequencies in the received com posite signal. Assume 

both frequencies are present in the received signal, then the fo llow ing results are 

obtained fo r  the original and differenced signals as shown in Tab le 6.2;

1 Di

0 15 1 .963
1 16 2.094
2 16 2.094

Table 6.2 Normalised ZC  Counts, with Difference Procedure

Since the highest frequency in the composite signal is F2, therefore it is estimated by 

D q. It can also be seen from Table 6.2 that D ,=D 2=16, which indicates that there is 

strong components at F2. This means that, when the highest frequency is dominant it 

can be detected by D0 and more accurately by D , and D2. The lowest frequency F, can 

be made dominant by applying the summing operator on the original signal and the 

fo llow in g  results are obtained as shown in Table 6.3;

1 Di Hi

0 15 1 .963
1 10 1.308
2 10 1.308

la b i?  6.3 Normalised ZC  Counts with Sum Procedure
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It can also be seen from  Table 6.3 that D 0 is too high an estimation o f  F, because F2 

is still the dominant frequency. Therefore, as the summing operator applied, F, is made 

more dominant and estimated more accurately by D, and D2. H ow ever, when 1>0, a 

technique is needed in order to decide which o f  the p, fo r  1=0,1 ,.. J, represent the true 

transmitted frequency. The periodogram estimation method [Kedem  1986a, Kedem 

1986b,and Oppenheim and Schafer 1975 pp541-548] is used here. T h e  periodogram is 

g iven by;

N ’- l
Kp,) =  2/N’ | 2  r(n) exp(-cp,n) | * (6.15)

n=0

where c=V -l. W hen p, is close to discrete frequency, the periodogram  w ill in general 

be inflated. In this way we can tell which o f  the p, landed at o r  near a discrete 

frequency. Actually, the normalised periodogram, I*(p ,), is used here and given by;

J
I* (m ) = I(p.) / 2  (p.) (6.16)

1=0

Therefore, the normalised relative periodograms are calculated fo r each order and the 

highest is chosen to indicate the transmitted frequency. For the above  example with 

T=M =2 , the resulting channel input and output fo r  this demodulation process are shown 

in Tab le 6.4;
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C h a n n e l  i n p u t Z

(F , , F , )
( F , , F 2)

( F 2, F , )
( F 2, F 2)

--------->  (1 . 3 0 8 ,0 .0 0 0 )

------- > (1 . 3 0 8 ,2 .0 9 4 )

--------->  ( 0 . 0 0 0 ,2 .0 9 4 )

Tab le 6.4 2-user 2FSK ZC  Demodulator Output

6.6 Quadrature Demodulation Technique

It is w e ll known that quadrature receiver is optimum method o f  orthogonal 

signals detection [Whalen 1971 pp200-201, and Clark 1983 pp65-67]. T h is  can be 

achieved by using a bank o f  noncoherent correlators matched uniquely to the M 

assigned tone frequencies. The noncoherent correlators operate by evaluating the 

inphase and quadrature components o f  the received incoming signal as shown in Figure 

6.4. These components are calculated by multiplying the incoming signal b y  sine and 

cosine functions generated locally at the M  possible tone frequencies. The output o f  the 

multipliers are then integrated over the preceding interval corresponding to  the symbol 

duration. The inphase and quadrature components obtained in this manner are squared, 

summed and fina lly  square-rooted to produce the desired output o f  the correlator. The 

maximum correlator output is obtained when the frequency o f  the input signal to the 

correlator is equal to the frequency o f  the correlator reference signal. Th is process can 

be expressed mathematically as follows; the output o f  the 1-th correlator, z,, where 

U1.2.....M. is;
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(a) General Block Diagram

•in(W't) (b) Correlators

- ! — - ........- [ -

§3>i
•ln(w Mt)

Figure 6.4
Block Diagram of Quadrature Demodulator

----------------------- r
Zj- ( /’r(t)s in (fcri t )d c )2+ (j ,r (c )cos (i/ i c)dc ) 2 (5 1 7 )

N o  0

where r(t) is the received composite signal and is given by;
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T
r(t) =  2  A isin(23iFijt-Hj)i); j= l,2 ,..,M  

i= l
(6.18)

where \ is the i-th user signal amplitude, Fy is the j-th frequency o f  the i-th user 

signal, and <j>j is the i-th user arbitrary phase. The inphase and the quadrature 

components o f  r(t), I, and Q, are obtained by the follow ing relationships, respectively;

where Bsin(2xF,t) and Bcos(2xF,t) are the inphase and quadrature correlating signals 

at the receiver, and B  are the received and correlating signals amplitudes, and F^ and 

F, are the received and correlating tone frequencies, respectively.

A s  an example, consider the noiseless 2-user case with M=2. Here, a ll the 

possible transmitted tone frequencies are (F „,F ,2,F21,F22) and the correlating tone 

frequencies are F, and F2. For this particular case the follow ing hypothesis can be 

defined;

(i) HypO: this corresponds to the condition when each user transmits the same frequency 

(F,j=Fg) and this frequency is equal to the correlator reference frequency signal (F^=F,).

(6 .19)

1» 1.2 M

(6.20)
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(ii) H yp l: this corresponds to the condition when each user transmits different 

frequencies and only F,, is equal to the correlator reference signal frequency (F,j=Fl).

(iii) Hyp2: this is the same as H y p l except that only F^=F,.

( iv ) Hyp3: this corresponds to  the condition when F, is not equal to Ftj or F  ̂(F,j+F, and 

F,+F^.

Evaluating the 1-th correlator inphase I, and quadrature Q, components with respect to 

these hypotheses, (assuming noiseless channel conditions and A ,= A j= A ), w e get the 

follow ing;

I, »  0.5ABT,(cos$,+cos4i2); F 1|r f , = F ,  (HypO True) (6.21a)

I, =  0.5ABT,(cos$,>; F„=F, (H yp l True) (6.21b)

I, =  0.5ABT.(cos6,); F ,=F , (Hyp2 True) (6.21c)

I, =  0; F „+F , and F ,+ F , (Hyp3 True) (6.21d)

aad

Q, =  0 .5 A B T ,(s in 6 ,«in 6 2); F ,~F ,=F , (HypO T itle ) (6.22a)

Q, »  0 .5ABT.(sin6,); F„=F, (H yp l T itle ) (6.22b)

Q, =  0 .5ABT,(sin*j); F ,=F , (Hyp2 True) (6.22c)

Q, =  0; F.I+F, and F ,+ F , (Hyp3 True) <6.22d>

The output o f  the correlator z,, is given by;

z, =  V(I,>+Q1' )  (6.23)

Substituting fo r  I, and Q,f w e  get;
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Zf =  V (0 .5 (A B T J ■ (l+ co s ($ ,-$ 2) ) ) ;  (HypO Trut) (6.24a)

z, =  0.5ABT,; (H yp l True) (6.24b)

z, =  0.5ABT,; (Hyp2 True) (6.24c)

z, =  0; (Hyp3 True) (6.24d)

The same results w ill hold fo r  all the remaining correlators, since the transmitted 

frequencies are all orthogonal. During each symbol interval T „  the output o f  all the

correlators can be represented b y  the vector Z = (z „Z j.....zM), where Zj is the measured

energy at the frequency Fj during the T , second interval. The correlators can be 

follow ed by quantisers to indicate the intensity information or confidence level o f  each 

received symbol.

( i) W ith Intensity Information: Here, the demodulator output at each instant o f  time, 

indicates which frequencies w ere transmitted at that instant and howmany o f  each 

frequency were transmitted. This assumes that the carriers are frequency and phase 

locked. In this case, z je {0 ,l,2 ,...,T } and z ,+ Z j+ . . .+ z m= T .  That is, each quantiser output 

indicates the number o f  signals received at that particular frequency. Examples o f  2-user 

M FS K  system with intensity information are shown in Table 6.5 and Table 6.6 fo r  M =2 

and 4;

C h a n n e l  i n p u t  Z

(F ,  , F , )  >  ( 2 , 0 )
(F ,, Fa) -----------------

-------->  ( 1 , 1 )
(F2,F ,) -----------------
( F j , F j )  ------------------------------ >  ( 0 , 2 )

Tgble 6.5 2-usff ?F?K  With Intensity Information Quadrature Demodulator Output
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C h a n n e l  i n p u t z

( 2 , 0 , 0 , 0 )

. . .  _  ,

( 0 , 2 , 0 , 0 )( f 2 , f 2)

>

( 0 , 0 , 2 , 0 )

.
( F 4 , F 4) ---------------------- ---------> ( 0 , 0 , 0 , 2 )

Table 6.6 2-user 4FSK With Intensity Information Quadrature Demodulalor Output

(ii) Without Intensity Information: The channel output at each instant o f  time is defined 

as a symbol which identifies which subset o f  frequencies occurred as inputs to the 

channel at that instant o f  time without the intensity o f  each frequency occurrence. This 

results in the demodulator that measure the presence o f  one or more tones at each 

frequency without regard fo r the number o f  tones at each frequency, i.e. z,e {0, l } .  

Examples o f  2-user M FS K  system without intensity information are shown in Table 6.7 

and Table 6.8 fo r  M =2 and 4;

C h a n n e l  i n p u t Z

( F , , F , )
( F , , F a)

( F 2, F , )
( F 2 , F 2)

---------> ( 1 . 0 )

------- > ( 1 . 1)

------------->  ( 0 , 1 )

Table 6.7 2-user 2FSK Without Intensity Information Quadrature Demodulator Output



C h a n n e l  I n p u t  Z

( F , , F , )  -------------------- > ( 1 , 0 , 0 , 0 )

3
( 0 , 1 , 0 , 0 )

—
#1 n , ni

‘

ln , , m3
( 0 , 0 , 1 , 0 )'

—
, .  Ä Ä „ %

'

—

(F « , F 4) -------------------- > ( 0 , 0 , 0 , 1 )

Table 6.82-usgr 4FSK Without Intensity Information Quadrature Demodulator Output

6.7 2-user MFSK CCMA System Development

A  complete practical C C M A  communication system has been developed and 

simulated in a software. This consisted o f  two main sections; the users’ 

encoders/decoder, and modulators/demodulator. The design procedure o f M FS K _CC M A 

system modulator is critical in terms o f  the choice o f  the frequency allocation. This 

choice is constrained by the follow ing considerations [Shaw 1989, and Zolghadr 1989]; 

(a) system bandwidth, (b) orthogonality, (c) bandwidth power containment, and (d) 

implementation limitations.

The tones frequency spacing is primarily specified by the system bandwidth 

available, which should be divided appropriately such that all the system requirements 

are satisfied. The frequency separation is chosen such that to satisfy the orthogonality 

constraint and to guarantee a fixed energy per received symbol. The frequency spacing
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and m ore importantly, the frequency guard spaces at the boundaries o f  the system 

bandwidth, specify the power containment within that bandwidth. A  frequency guard 

space o f  one tone spacing at each edge o f  the system passband is sufficient to meet 

99% pow er containment [Shaw 1989, and Zolghadr 1989]. The other limitations are 

specified by the practical implementation constraints. Since we are considering a 

sampled system, w e  must expect that the sampling frequency, FS, w ill have some effect 

also. Th e  value o f  FS should be set at the minimum value possible in « t i e r  to have the 

minimum amount o f  processing to do i.e. avoiding redundancy. In addition, to avoid 

phase discontinuity T , is taken to be an integer multiple o f  6t=l/FS and the tones must 

have an integer number o f  whole cycles. Therefore, a 2FSK/4FSK C C M A  modem is 

designed to satisfy these requirements. The designed tone frequencies are, F ,=l.25kHz, 

F2=  1.5kHz, F3=  1.75kHz, and F<=2.0kHz. These choices correspond to the follow ing 

parameters, T,=4msec, 6F=250Hz, and FS=6.25kHz.

The demodulation techniques described in this chapter are used and simulated in 

software. Generally, the demodulator output vector is compared with each o f  the stored 

reference vectors in turn and a measure o f  the distance between them is calculated. The 

distance is taken by finding the difference between the vector elements. The sum o f 

the squares o f  the differences is then taken as the distance measure from  the received 

vector to  the reference vector. The reference vector with the smallest distance from the 

received  vector is then selected to be the one demodulated. The 2-user encoders 

em ployed Code 1, given in chapter 5, where user one and tw o codewords are (00,11) 

and (00,01,10), respectively. The single decoder uses maximum likelihood decoding and 

a look-up table to decode the users’ constituent codewords and hence the original data 

symbols.

158



6.8 S im u la t io n  R esu lts  and M o d em s  T es t in g

Th e  simulations are carried out fo r  the fo llow ing synchronous C C M A  

communication systems;

System 1: 2-user 2-frequency square-law demodulator.

System 2: 2-user 2FSK  ZC  demodulator,

System 3a: 2-user 2FSK/4FSK quadrature demodulator with intensity information, 

System 3b: 2-user 2FSK/4FSK quadrature demodulator without intensity information.

A ls o  the fo llow ing tests are carried out fo r  these systems. The first test is to 

verify  the systems correct operation; secondly, tests are carried out by simulation 

techniques under A W G N  channel conditions.

6.8.1 M odem s O peration  V erification

Th is test is carried out to verify  the complete systems operation under noise free 

conditions. The operation o f  the modem is verified  by examining its time domain 

outputs. Figures 6.5-6.6, shows the overall modulator output, demodulator input, and 

demodulator output waveforms fo r system 1 and system  3, respectively. The system 2 

modulator is the same as in system 3, and the demodulation process is counting the 

number o f  ZCs.

6.8.2 A W G N  Channel Tests

Although many practical channels do not introduce significant levels o f  Gaussian 

noise, the relative tolerances o f  different data transmission systems to  A W G N  is a good 

measure o f  their relative tolerances to most practical types o f  additive noise [Clark 1983 

pp27]. Therefore, these systems are tested under A W G N  conditions. The noise level is
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(a) Transmitted Constituent Codeword Symbols

Xi 1 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0

Xa 1 0 0 0 0 1 1 0 0 1 1 0 0 1 0 0

Figure 6.5 System 1 Demodulator Input and Output Waveforms
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(a) Transmitted Constituent Codeword Symbols 

1 1 0 0 0 0 1 1 0 0 1 1 1  1 0 0

1 0 0 0 0 1  1 0 0 1  1 0 0  1 0 0

0 10 20 30 40 50 60 70

Time(msec)

Time <msec)

Figure 6.6 System 3 Demodulator Input and Output Waveforms
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specified by the ratio E/N0, where E  is the average signal energy per user and N 0 is the 

power spectral density. For the purpose o f  simulation, E/N0 is g iven  by;

E/N0=  101og10(PN72crN2)  (6.25)

where P  is the average signal power per user, o N2 is the noise variance, and N ’ is the 

number o f  samples per symbol. The simulation results are obtained and presented in 

terms o f  the demodulator output sym bol error rates versus E/N0, as shown in Figure 6.7. 

It is shows that system 3 with intensity information has the best reliability. However, 

these systems vary in terms o f  their complexity. A  comparison o f  quadrature receivers 

employing 2FSK and 4FSK  transmission systems is also shown in Figure 6.8. The 

2FSK signalling is seen to perform better than the 4FSK, due to the increase in the 

number o f  signals at the receiver.

6.9 D iscussions

Th e  principles o f  practical design and performance o f  C C M A  systems were 

described. It is shown that the square-law demodulation technique performs reliably 

in noise free  conditions, but it ’ s performance degrades in noisy conditions, in particular 

at low  E/Nc. However, its performance may be improved by proceeding the demodulator 

by a bandpass filter to lim it the amount o f  noise entering the demodulator. It is also 

seen that the ZC  demodulator reliability is worse than that o f  the quadrature receiver. 

However, the ZC  demodulator requires easily implementable functions fo r its operation. 

A lso, this technique may improve in wideband systems where the M  frequencies can
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F igu re  6.7  D em od u la to r 
S E R  v e r s u s  E / N o  (dB)

------ System 1 — Syst em 2

System 3b w ith  2FSK -® -  System 3s w ith  2FSK

Figure 6.8 System  3 Demodulator 
S E R  ve rsu s E/No (dB)

-*■- System 3b with 2F S K  System 3e w ith 2F S K

—  System 3b with 4F S K  ~+~  System 3e with 4F S K
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be separated as much as possible, resulting in a larger d ifference in the number o f  ZCs. 

The ZC  demodulation technique may also improve with som e form o f  adaptive filtering. 

In such a case, ( i) the highest frequency can be determined first by counting the number 

o f  Z C  o f  the received signal, (ii) filter out the highest frequency and count the number 

o f  ZC , and (iii) repeat ( i) and (ii) until M  frequencies are detected. It can be seen here 

that the cutoff frequency o f  the filter is adapted accordingly every time a certain 

frequency is detected.

The simulation results analyses have shown that the quadrature receiver model 

w ith intensity information g ives an energy gain over the model without intensity 

information. The model without the intensity information, is similar to a hard decision 

demodulator which decides on the received symbol without the indication o f  the 

decision confidence level. However, the demodulation technique which takes into 

account the intensity information or the confidence level o f  the received symbol, is 

comparable to soft decision demodulation. Therefore, this demodulation can be easily 

adjusted to take into account these different techniques. This may be achieved by 

employing a quantiser, after the energy detectors, o f  a specified number o f  quantisation 

levels. This technique has many other advantages and applications, such as (i) the 

demodulator output can be easily m odified to convey the hard or soft decision 

information and (ii) the ability to be adapted to extract the symbol synchronisation 

which is assumed in the present investigation.
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Chapter 7

Conclusions and Further Work

7.1 C on c lu s ion s

The major research reported in this thesis has been carried out in order to 

investigate various theoretical and practical aspects o f  C C M A  communication systems. 

These investigations involved the fo llow in g  main areas; the information transmission 

capacity, coding/decoding and practical design. The information capacity o f  S A C  when 

subjected to practical constraints has also been investigated as a first stage to the 

investigative study o f  C C M A  schemes. In the follow ing sections o f  this Chapter w e 

g ive  the conclusions and achievements obtained from this study. Extensions and 

suggestions fo r  further work are also given.

7.1.1 In form ation  C apacity  o f  Constrained S A C

In Chapter three, the principles, determination and optimisation o f  a sampled, and 

quantised SA C  information transmission capacity limited by practical constraints have 

been described. The ISA/OSC and ISAP/OSC constrained capacities o f  an A W G N  

channel have been determined separately. The capacity analysis has been carried out 

from  theoretical and simulation points o f  v iew . The results obtained verify  the 

theoretical results g iven  in [Smith 1971], when a sampled and quantised channel is 

employed.

It has been found that the constrained capacities can be achieved by unique and
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optimal input distributions and finite output signal clipping values. These optimal 

distributions have been found to be discrete, taking a finite number o f  values, with the 

quantisation levels being relatively closely spaced at the low  signal amplitudes and 

more w idely  spaced at the large signal amplitudes. In addition, the results obtained can 

be used to determine the number o f  input amplitude levels needed to maximise the 

capacity at different SNRs. Hence, these results may be used in signal design and 

channel evaluation as discussed further in section (7.2.1).

7.1.2 In form ation C apacity  o f  M A C s

The principles o f  M A C s information transmission capacity have been described 

in Chapter four. The capacity o f  T-user M-ary adder M A C  and T-user M-ary frequency 

M A C  with and without intensity information models have been described. The capacity 

calculation has been carried out theoretically and by  simulations in both noiseless and 

noisy channels. It has been shown that, in principle, T-user C C M A  permits higher 

transmission rates than T D M A  employing the same signal alphabet or, equivalently, 

achieve a coding gain over time sharing. Th is enables efficient simultaneous 

transmission by several users sharing the same channel, and provides a degree o f  error 

protection to protect the messages from  channel disturbances.

It has also been shown that T-user M-ary signalling models provide a means o f 

increasing the rate o f  information transmission within a g iven bandwidth, however, this 

increase was at the expense o f  an additional transmitter power. In addition, it has been 

shown that the practical model o f  T-user M -ary frequency M A C  with intensity 

information achieved higher capacity than that without intensity information. This is due 

to the extra information provided by this model to  indicate the intensity or confidence
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leve l o f  the received signal. These tw o models are comparable with soft and hard 

decision demodulation techniques, in which higher gain  is achievable employing a soft 

decision model.

7.1.3 Collaborative Coding/Dtcoding Multipit Access Technique;

Collaborative coding and decoding techniques to utilise the M A C  function and

error control capability o f  collaborative codes have been described in Chapter five. In 

particular, H D _C C M A  and M L S D _C C M A  decoding techniques were described in 

conjunction with SB S_H D  decoding. A  new low  com plexity M LS D  decoding technique 

has been described. This decoding algorithm is attractive because it can be very  easily 

realised. The reliability performance have been carried out with various collaborative 

codes.

It has been shown that uniquely decodable C C M A  schemes permit the multiple 

access function to be combined w ith that o f  forward error correction, provided the users 

maintain symbol and block synchronisations. The M L S D _C C M A  decoding technique 

decreases the overall probability o f  error with som e energy gain. The energy gain 

achieved is higher when the codes used have some error protection capability. A  coding 

gain o f  more than 2.5dB has been achieved employing M L S D _C C M A  over H D _C C M A  

decoding technique.

7.1.4 Practical CCMA modtm Design

In Chapter six, M FS K  modulation technique has been described w ith three 

particular demodulation techniques. A  combined collaborative coding and modulation 

system has been developed to provide a realistic and practical way o f  combining the
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users’ signals at the channel and data recovery at the receiver. These techniques have 

been developed and simulated few their reliability performance over A W G N  channels.

The M FS K  quadrature receiver provided the best reliability performance. The T - 

user M -ary frequency channel m odel with intensity information gave an energy gain 

over the model without intensity information. These models can be used to represent 

the soft and hard decision demodulation techniques with simple adjustment o f  the 

demodulator output. In addition, this demodulation technique has other advantages, for 

example symbol derived synchronisation m ay be extracted from  the received waveform  

out o f  the demodulation process, as described later in section (7.2.6).

7.2 F u r th e r  W o rk

The fo llow ing sections present extensions and suggestions fo r further work that 

have com e about during the course o f  this research. Some o f  these ideas stem from  my 

ow n research interests.

7.2.1 O ptim isation o f  Channel Capacity

It has been shown in Chapter three that the optimisation o f  channel capacity was 

achieved by the use o f  optimum input signal distributions. These optimum input signal 

distributions may be used in upgrading the signalling format fo r  certain channel 

conditions. A s far as the author is aware, a coding scheme that can make use o f  the 

uneven probabilities is not available. Therefore an area o f  considerable research would 

be the design o f  codes sequences with specified rates and optimum symbol probabilities.

In order to optimise the system performance adaptively in response to channel
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conditions, an estimate o f  the channel SNR  or the receiver’s error rate is required to 

initiate control action. Real time channel evaluation (R TC E ) techniques [Darnell 1978, 

1983] are useful tools for  obtaining on-line estimates o f  the channel state. Therefore, 

using some form  o f  channel evaluation technique, the designed signals can be used for 

transmission according to various channel states in a certain time. A  statistical RTCE 

technique [Zolghadr, et al., 1989] may be used which is based upon the statistical 

analysis o f  both the transmitted and the received data. The transmitter data model can 

be based on the signal levels and their distribution already found. The received stream 

o f  data can then be monitored and its statistical properties determined in order to 

formulate the receiver model. I f the channel is noiseless then the received data stream 

would have the same statistical structure as the transmitted data. However, when the 

channel is noisy, any variation in the received data statistical structure can potentially 

provide information on the channel state. Therefore, combining signal design and 

channel evaluation techniques can be viewed as a form  o f  multi-function coding design 

philosophy.

In the work o f  Chapter four, it has been assumed in the modelling and 

development o f  M A C  capacity that the capacity is optimised when the input signal 

probabilities are uniformly distributed. This assumption is not always true [Chang and 

W o lf 1981]. Therefore, analytical investigation o f  the capacity optimisation for a 

certain M A C  model, and given values o f  T  and M , is very important In addition, the 

optimisation o f  M A C  capacity under practical constraints also need investigation. For 

example, at the channel output the number o f  quantisation levels and signal clipping 

level may be imposed, while the mean signal power fo r  each user may be imposed at 

the channel input.
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7.2.2 Improved Collaborative Coding/Dfcoding Designs

In Chapter fiv e , it has been found that although, in some cases, the overall T-user 

code has no error protection capability, the constituent codes have some protection. 

Therefore, utilisation o f  the individual user’ s code protection capability may improve 

the reliability performance o f  each user. This may be view ed as some form o f  inner and 

outer decoding process. That is, inner decoding may be performed on the overall 

received composite codeword and outer decoding on the constituent codes. This process 

may be used with concatenated C C M A  coding scheme [W eldon  1978, Ohkubo 1980, 

and Mathys 1989], in which the transmitted block o f  data consist o f  inner and outer 

code. In this case, the inner code performs the multiple access function (possibly with 

some protection capability), and the outer code performs error correction where the 

existing single access coding schemes can be used. A ls o  o f  very considerable 

importance is to find simple and efficient decoding schemes; firstly to unscramble the 

received composite signal and secondly to perform  error correction i f  possible.

It has been found in the investigation o f  C C M A  schemes that, symbol and block 

synchronisation must be maintained for effic ient functioning o f  these schemes. 

Therefore, a reduction in the degree o f  synchronisation required is very important area 

o f  investigation. Ideally, the C C M A  system would be com pletely asynchronous. Some 

work in this area is under investigation [N i and Honary 1992], which is based on the 

information extracted from  the channel sensed signals and used fo r  both symbol and 

block synchronisation. That is, before transmission, every user senses the channel in 

advance. I f  the channel is idle, transmission w ill start immediately. Otherwise, i f  the 

channel is busy, the ready user try to synchronise its transmission with the existing 

transmission both in symbol and block.
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7.2.3 Adaptive CCM A Transmission System

From the investigation study o f  this thesis, there is a need fo r  more combined 

approach to  multiple access communication. One approach is an adaptive T-user C C M A  

M FS K  transmission system in  which the information throughput o f  the system can be 

optimised by  an appropriate choice o f  (i) T , the number o f  active users; (ii) M , the 

number o f  tones; (iii) R , the user’ s code rate. A lso  by using som e form o f  RTCE 

technique [Darnell 1978], an adaptive system may be investigated to match the 

transmission format to the state o f  the channel.

T w o  o f  the important parameters which need to be varied in the present coding 

schemes are the number o f  users accessing the channel and the code rate o f  the 

individual users so that users can have equal or different rates. M ost o f the work on 

M A C  has concerned the situation when all T  users in the system are simultaneously 

active. The area o f  T-active users out o f  N  was studied by [W o lf  1981, Mathys 1987, 

and Mathys 1988]. Ideally, an appropriate model fo r  multiple access communication is 

to incorporate a large community o f  users, some fraction (small or large) being active 

simultaneously. In these situations, there are also tw o fundamental tasks to be done 

by the receiver; ( i) identify the active users, and (ii) decode the messages o f  the active 

users without errors i f  possible.

Optimisation o f  the number o f  tones used in the T-user M FS K  transmission 

system also requires investigation. For example, it has been found in the work o f 

Chapter fou r that the capacity o f  the T-user M -ary frequency without intensity 

information decreases fo r  a certain fixed  value o f  M  and a certain increase in the 

number o f  users T. This suggests that the number o f  tones used with this particular 

number o f  users is not sufficient to achieve the capacity, hence, M  should be optimised
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with respect to the active number o f  users.

7.2.4 Multi-Functional Signal Design Format

Conventional communication systems design philosophy v iew  the design o f  the 

modem and the error control subsystems as tw o separate issues. This has lead to the 

division o f  these tw o fields. However, it is suggested that combining the various 

subsystems o f  a communication system can provide additional gain; this has been 

broadly referred to as multi-functional coding [Darnell and Honary 1986]. The potential 

o f  multi-functional cod ing may be used here, combining collaborative coding and 

modulation. A lso the integration o f  the demodulation and channel decoding processes 

together with symbol and block synchronisation may lead to more reliable system. One 

o f  these ideas is explained here.

Imperfect symbol synchronisation is one o f  the problems in the C C M A  schemes. 

Here, w e propose a scheme called modulation derived synchronisation (M D S) technique 

to be investigated fo r the C C M A . This is a symbol synchronisation method with a 

multi-functional capability fo r  synchronisation acquisition, demodulation and RTCE. It 

can be applied in modems that em ploy digital signal processing techniques to  operate 

on the received w aveform . This was originally developed fo r M FS K  transmission 

systems [Darnell and Honary 1988]. Th e  technique has the advantage that it requires 

no specific synchronisation "overhead" to be incorporated into the transmitted signal, 

but uses the normal tra ffic  signal formats.

This technique can be used with the noncoherent quadrature M FSK  transmission 

system already investigated as outlined very briefly  here. A t  the receiver, at any 

arbitrary sample time, T „, the summation o f  the product o f  the last n samples with (a)
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sine components and (b) cosine components o f  the M  tones (in sampled form) is 

computed. The number o f  samples, n, corresponds to a symbol interval for the 

transmission. Thus what is e ffective ly  being implemented is a matched filter for the 

system at each sampling instant The procedure y ields a vector with 2M  orthogonal 

components, i f  the tone frequencies are selected appropriately. Taking the modulus o f  

corresponding sine and cosine components g ives  an M-dimensional vector at each 

sampling instant. The magnitude o f  the vector associated with a particular tone w ill be 

a maximum when that tone has been transmitted and n samples correspond exactly to 

the sym bol interval [Shaw 1989]. The main problem with a digital demodulation 

process is to  derive the optimum time instant fo r  sampling the correlator outputs. It is 

evident from  the waveform  Figure 6.6 in Chapter six, that the sampling instant 

corresponds to the end o f  a g iven  symbol interval; however, in the presence o f  noise 

this position becomes less obvious.

In  addition to these investigations, i f  carrier phase coherence is not maintained 

the e ffects  o f  fading caused by  phase cancellation should be reduced to the minimum, 

ideally the system would be com pletely independent o f  these effects.
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Symbols and Abbreviations

A Input Signal Amplitude

A D C Analogue to D igital Convertor

A S K Amplitude Shift Keying

A W G N Additive White Gaussian Noise

B W Bandwidth

B E R Bit Error Rate

C Capacity

C&AC Capacity o f  Single Access Channel

M̂AC Capacity o f  Multiple Access Channel

C (x ) Capacity as a Function o f  x

C, Code o f  i-th User

C C M A Collaborative Coding M ultiple Access

C D M A Code D ivision Multiple Access

C E R Codeword Error Rate

cw, Number o f  Codewords o f  i-th User

d j(Z ,Z *) Distance Between the Vectors Z  and Z ’ in  the i-th User Code

L-distance

dr*.
c ,

Minimum Distance

Minimum distance o f  i-th User Code

dB Decibel

D M C Discrete Memoryless Channel
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d (i) Number o f  Combinations which result in the i-th event

E Energy per User

E/N„ Energy per User to  Noise Energy Ratio

EDO Error Detection and Correction

Erf Error Function

Erfc Complementary Error Function

F D M A Frequency D ivision Multiple Access

FS Sampling Frequency

f, .F , The i-th Frequency

f,(t) The i-th User Signal

f 4(w ) Probability Density Function o f  the i-th Sym bol

f,(w ,w 2...wN) Joint Probability Density Function o f  the i-th Adm issib le Codeword

FSK Frequency Shift Keying

G, Region o f  Correct Decision

H F High Frequency (2-30MHz)

H z Hertz, frequency in cycles per second

H D Hard Decision

H D .C C M A Hard Decision Collaborative Coding M ultiple Access

I (X ) Information Content o f  X

I (X ;Y ) Mutual Information Between X  and Y

ISA/OSC Input Signal Amplitude and Output Signal C lipp in g

ISAP/OSC Input Signal Amplitude, Average Signal P ow er and Output Signal 

Clipping

k Number o f  Information Digits
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K

L

M

M A C

M ED

M FS K

M L

M LS D .

N

N*

N .

Nf

N 0

osc
PD F

p(i)

P „(D

P J to )

Pc(i)

Pc(t0)

P«(i)

P ,(to )

Channel Input Alphabet Size 

Number o f  Channel Output Signal Levels 

Number o f  Channel Input Signal Levels 

Multiple Access Channel 

Minimum Euclidean Distance 

M-ary Frequency Shift Keying 

Maximum Likliehood

.C C M A  Maximum Likliehood Soft Decision 

Collaborative Coding Multiple Access 

B lock Length o f  a Code or a Vector; 

or Noise Power

Number o f  Samples per Symbol 

Number o f  Admissible Codewords 

Number o f  Forbidden Codewords 

Noise Power Spectral Density 

Output Signal Clipping 

Probability Density Function 

Probability o f  i-th Symbol 

Probability o f  Error o f  i-th Symbol 

Total Probability o f  Symbols Error 

Probability o f  Error o f i-th Codeword 

Tota l Probability o f  Codewords Error 

Probability o f  i-th Correct Symbol 

Total Probability o f  Correct Symbols
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Pec(»> Probability o f  i-th Correct Codeword

P «(to ) Total Probability o f  Correct Codewords

p (Y  | X ) Conditional or Transition Probability

PSK Phase Shift Keying

Q L Number o f  Quantisation Levels

R Rate o f  Information

Ri Rate o f  i-th User

R*— Rate Sum

Si The i-th Composite Symbol

SER Symbol Error Rate

SNR Signal to Noise Ratio

SA C Single Access Channel

SC Signal Clipping

SD Soft Decision

SB S .H D Symbol-by-Symbol Hard Decision

T Number o f  A ctive  Users

T D M A Tim e Division Multiple Access

T . Symbol Period

u, Source Symbol o f  the i-th User

0, Sink Symbol o f  the i-th User

u, i-th Decision Threshold

X Channel Input

X, Channel Input o f  the i-th User

Y Channel Output

199



ZC  Zerocrossing

6t Sampling Interval

6q Quantiser Step Size

o s2 S ignal Variance

o N2 N o ise  Variance

LxJ Integer Number Less Than or Equal to x
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Append« A

Conditional Probability Density Function for Quantised A W G N  
Channel Output

T h e  Gaussian probability density function with zero mean and unit variance is,

P (x )=  exp (-x i /2i/V(2a) ( A l l

T h e  normalised error function, E rf(x ), o f  zero mean and unit variance is defined as; 

£ r f (x ) - J  exp(-eV2)A/Z5"dt (A2)

T h e  Erf(0)=0.5 and Erf(<*>)=l. Then the complementary error function ErfcO  is defined 

as;

E r f c  (x ) *J  e x p (-C 2/2) /y /5ndt

T h e  conditional probability density function, for  i= l,...,M ,

p (Y  | x*)= E rf((y -xi+6q/2)2)/oN)-E rf((y -x4-6q/2)/oN), where -SC <y<SC

=  Erf((y-Xi+6q/2)2)/oN), where y=-SC  (A .4 )

=  Erfc((y-Xj-6q/2)/oN), where y=SC
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S y m b o l E r r o r  R a te  f o r  2 -u ser B in a ry  C C M A  Sch em e

Appendix B

The number o f  admissible sym bols at the channel output is g iven by  L=T+1 . 

Therefore, w e  have three admissible symbols given by So="0 ", S ,= " l" ,  and S2= "2 ’\ If 

w e assume that; (i) the channel is A W G N  erf zero mean and variance (o N2),  ( i i )  the 

decision thresholds are Uq,  u ,  between [Sq.S,] and [S „S J  respectively. Then  the 

probability o f  receiving a g iven symbol in error P „(S j), can be calculated as fo llow s ;

p~ l so>■/ exp( - (w-S0) */2a\) /VZW o„dw  
«0 (B.1)

Let t= (w -S0)/oN, then dt=dw/oN

P^(S0>- f  e x p l - t 2/ 2 )/ V Z *d t

This equation can be written in terms o f  the error function equations g iven in Appendix 

A ;

P»(So)= Erfciuo-So/o,,) (B .3)

Similarly the probability o f  Error o f  the second symbol (S ,) can be written as;
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P „ ( * ! > « /  e x p ( - ( u r - S 1 ) 2/ 2 o 2„> / y/Znasdw

+ e x p  ( -  (w-Sj 2/2o2k) / VTiTo„dw

Let t=(w-S,)/aN, then dt=dw/oN

/  e x p ( - t a/2) /y/Zndt 

+ /  e x p ( - t a/2) /J2n dt
(U1-S l )/«»ir

P „ (S , )=  Erf(uo-S,/oN) +  Erfc(u,-S,/oN)

Sim ilarly again the probability o f  error o f  the third symbol (S2) is given by; 

«1
PmiS,)-f oxp (-(»r-S ,)V 2o» ) / jnta, dw

Let t= (w -S2)/oN, then dt=dw/oN

( u x - S , ) / * ,

P-#(52) *  j* e x p ( - t a/2)/JZndt

Hence

P J S 2)=  E rf(u ,-S yoN)
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Then the total probability o f  symbol error rate fo r  the 2-user binary M A C  model can 

be written as;

P „(to )=  p(SD)P i.(S0)+ p (S I)P M(S 1)+p (S2)P - (S2)  (B.10)

where Uo, u, are the decision thresholds equal to 0.5 and 1.5 respectively for the binary 

case; o N is the standard deviation o f  the noise; p(Sj) is the probability o f  occurrence o f  

S,; Erf, Erfc are the normalised and complementary error functions respectively, g iven 

in Appendix A.
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A ppendix C

Codeword Error Rate Employing HD Decoding 
for 2-user Binary CCMA Scheme

The composite admissible codewords for the 2-user code 1 given in Table 5.1 are 

(00,01,10.12,21,11)- The total probability o f  error can be written as;

P c.(to )=  l- P . i t o )  (C.1)

and the total probability o f  correct decision is,

P oc(to )= (Pee(00)+2Pec(10)+2Pcc(2 1 )+P oe( l  l ))/6 (C.2)

w here Pcc(21)=Pec(12) and Pce(10 )=Pec(01). I f  w e assume that the channel is A W G N  o f 

zero mean and variance o N2, then the probability o f  correct decision for each admissible 

codeword can be found as fo llow s;

For the codeword ~00'

0.3U
P^tOO)« f exp(-(w i>a/2o2w) /}/SnaNdw1

O.Su

j*  e x p ( -  (w2)2/2o2n) /JZnolldw2 (C.3)

Take
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O.Su

J -  J exp (— (w2) i/2a2„) / JZWoHdw2 

Let t= w ^ o N, dt=dwa/oN

O.Su/«v

J - j* e x p ( - t a/2)A/2x" dt 

W rite in terms o f  the error function equations, w e get;

1= Erf(0.5u/oN) (C .6)

Substitute back in (C.3), w e  get;

Pee(00)= Erfa (0.5u/oN) (C.7)

In similar manner the probability o f  correct decision fo r the remaining admissible 

codewords can be found as shown below.

For the codeword "11"

l.SU

P ^ d l ) -  j exp (- ( ii'j- u ) a/2oaw) /J2na„dvi
O.Su 

1 .5u
j exp (- (w2-u) i/2a2N) /JZnoNdw2 (C.8)

O.Su

Take

(C.4)

(C .5)
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(C .9)X -  f e x p ( - ( * ' 1 - u ) 1 / 2 o 1, )  / d v ,
O.Su

Let t=w2-u/aN, dt=dWa/aN

(1 .5 II- I I> /•»

j -  j* e x p ( - t 2/ 2 )A / 2 iT  e ft
(0.5U-U) / «»

1= Erf(0.5u/oN) - Erf(-0.5u/oN)

Since E rf(-x )= l-E r f(x )

1= (2Erf(0.5u/oN) - 1)

Hence, substitute back in (C.8) w e get;

Pw( l l ) a  (2Erf(0.5u/oN) - l ) a

For the codeword w10" 

l . S u

P „ (1 0 )-  f  exp l-lV j-u tVZo1«) / ✓ 5*® » dv,
O.Su
O.SU
f exp (- (w2) 2/2o2w) /JZno„dw2

Take

1.5a

(C.10)

(C.11)

(C.12)

(C.13)

(C.14)
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(C.15)
X- J exp (- (w2)2/2o2k) / y/ZWa H dw2 

L e i t=w ^oN, dt=dWa/aN

(0.5u) / • ,

X« j exp (-C 2) /^2x dt 

1= Erf(0.5u/aN)

Take other integral in equation (C.14);

l.SU

I 7» J  exp(-(«r&-u ) s/20jr) / „ dwx
oTsu

Let t=w,-u/oN, dt=dw,/oN

( l .S ii-u )/ « (

X7« J  exp ( - 12) /V2n de 
(O.Su-u) / • „

I ’ =  (Erf(0.5u/oN) - Erf(-0.5u/oN))

I*=  (2Erf(0.5u/oN) - 1)

Hence, substituting back fo r I and I ’ , w e get; 

PK(10)= Erf(0.5u/oN) (2Erf(0.5u/oN)- l )

0.5U

(C.16)

(C.17)

(C.18)

(C.19)

(C.20)

(C.21)

(C.22)
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For the codeword "12r

1.911
( 12) *  f  e x p ( - iwx-u)*/2o2„) / JZWo„ dŵ

0 .5u

| exp ( - ( w2-2 u)*/ 2 oV) / VZnoh <3*2 <C.23)
iTsu

Take

j *  f  exp ( -  ( w2-2u) */2o2k) / y/̂WaN dw2 (C.24)
1.5U

Let t=w 2-2u/aN, dt=dw2/aN

J- J  e x p ( - t a)A/ZiTdt (c .25)
(1.SU-2U)/o„

1= E rf (0.5u/o n) (C 26 )

l.SU
j ' -  f  e x p ( - ( * i - u )a/2oa*) / „ dwx (c  2?)

O.SU

Let t=w,-u/oN> dt=dw,/oN

(1 .5 U-U) / • »

.Z7»  J  e x p ( - t 2)/V2iT d t  (C.28)
(O.Su-u)/ « ,

I '=  (Erf(0.5u/oN) - Erf(-0.5u/oN) )  <C-29)

I-=  (2Erf(0.5u/oN) * l )  <c : }0 )

Hence

P J 1 2 ) *  (2Erf(0.5u/oN) - l )  Erf(0.5u/oN)  (C.31)
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Substitute these probabilities o f  correct decision o f  each admissible codeword in to 

equation (C .2) and then use (C.1) to get the total probability o f  error.
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A ppendix D

Codeword Error Rate Employing M LSD Decoding 
for 2-user Binary CCM A Scheme

The same procedure can be carried out fo r  em ploying M LSD  decoding. The 

probability o f  correct decision o f  the codewords "00" and " 1 1 " are the same as in the 

hard decision case fo r  this particluar code structure. H ow ever, the probability o f  correct 

decision o f  the remaining codewords can be calculated as follows;

For the codeword "01"

P ^ i O l ) »  f  e x p ( - ( v x) a/2o*) / J Z x o  H dw2

(D . l)

o . su

Take

2u-wi

J - J  exp(-(KT2- u ) 2/2o2w) /y/7Wal t dw2 (D .2)

Let t=w2*u/°N* dt=dWa/oN

(au-i^-u) /•»
J -  f  e x p (- fc a/2)A/2jT d t

(0 .5  U-U) / • „
(D.3)

1= Erf((u-w ,)/oN) - Erf(-0.5u/oN)) 

Substitute back in equation (D . l) ;

(D.4)



(D.5)P ^ i O l ) «  f  e x p (- (a rx) a/2o \ )/ V Z * o *

( E r f  l  (u -w 2)/ a  K) - E z f ( - 0 . 5u/o „ ) )  dw1

Let t=w,/aN, dt=dw,/aN

O.Su/Vj,

P „ (0 1 ) »  f  e x p ( - £ , / 2 )/ ^ I* ' 

(£ r / ( (u / o » I - e ) - * E r i (0 .5 u / o II) - l )  d t

Hence

P ^ i O U - i E r f i O . S u / o * ) - ! )  ( F r f  ( 0 . 5 u / o w) )
0.5u/ov

♦ J  ( e x p ( - t a/2)A/ZiT) ( S r f  ( (u/ow) - t ) ) eft

In similar manner the probability o f  correct decision fo r the remaining 

codewords can be found as shown below.

For the codeword "21"

¿»„.(211- J  e x p (- (> r1-2 u )*/ 2 o 1, )  / du1
i T s u"i
[  exp  ( -  (w2-u )  a/ 2o #) / J Z x o K dw2

au-^i

Take

•i
J - J  exp ( -  (w2- u )  */ 2 o\ ) / VZW o„dw 2

Let t= (w 2-u)/oN, d t=dw ^oN

0.5U

(D .6)

(D.7)

admissible

(D.8)

(D.9)
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(D.10)J « f  e x p ( - t a/2) /V2iT d t
(u -^ )/o .

1= Erf((w ,-u)/oN) - Erf((u-w ,)/aN) (D . l l )

Substitute back in (D.8);

Pce(2 1 ) - J  •xp (-(iirx- 2 u )a/2 oaJf)A/2i ' 0 jr (D U)
( E r f  ( ( 'v “- u )  / o w) ( ( u - w x) / o w) ) dwr

Let t=w,-2u/oN> dt=dw,/oN,

(w j-u i/aN ^+u /aN , and (u -w ^ / a ^ -t-u / o N ,

Hence

P « . ( 2 1 ) «  f  ( e x p ( - t a/ 2 )/ V 2 n " ) (D.13)
-O.Su/Oj,

(E r f {  t + u / o  w) - £ r f  ( - t - u / o  w) )  d t

Substitute for these probabilities o f  correct decision o f  each admissible codeword into 

equation (C.2) and use (C . l )  to get the total probability o f  error employing 

M L S D _C C M A  decoding fo r this particular code structure.

213



T H E  B R IT IS H  LIB RA RY
BRITISH THESIS SERVICE

Collaborative Coding Multiple Access Communications
TITLE ..

AUTHOR
Falah Hjusan All,

DEGREE............................................................

AW ARD ING  BODY Univet3ity of 
DATE.................................................

THESIS
NUM BER............................................................

THIS THESIS HAS BEEN MICROFILMED EXACTLY AS RECEIVED

The quality of this reproduction is dependent upon the quality of the original thesis 
submitted for microfilming. Every effort has been made to ensure the highest quality of 
reproduction.

Some pages may have indistinct print, especially if the original papers were poorly 
produced or if the awarding body sent an inferior copy.

If pages are missing, please contact the awarding body which granted the degree.

Previously copyrighted materials (journal articles, published texts, etc.) are not 
filmed.

This copy o f the thesis has been supplied on condition that anyone who 
consults it is understood to recognise that its copyright rests with its author 
and that no information derived from it may be published without the 
author's prior written consent.

Reproduction of this thesis, other than as permitted under the United Kingdom 
Copyright Designs and Patents Act 1988. or under specific agreement with the 
copyright holder, is prohibited.

U,'| |J 1)1 I'«T i s I T R E D U C T IO N  X  3 . 0

C A M E R A

N o . o f pages


