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We study the actions of discrete amenable groups on factor
von Neumann algebras. We give the classification up to outer
conjugacy of the actions of amenable groups on the type Il hyper-
finite factors. The main result is the unicity up to outer conjugacy of

the free action of an amenable group on the hyperfinite type 11 factor.



INTRODUCTION

In this paper we study automorphic actions of discrete groups on von

Neumann algebras. The main result is the following.

THECREM
Let G be a countable discrete amenable group and let R be the
hyperfinite type 11" factor. Any two free actions of G on R are outer

conjugate.

An action a of G on a factor Misa homomorphism of G into
Aut M, the group of automorphisms of M ; a is called free if is
not inner for any gc G, gi 1. Two actions a, aG + Aut M are called
outer conjugate if there exists a unitary cocycle u for a . i.e. unitaries

eM, gc G, with
ugh [ ugagglu .h)
and o ¢ Aut M such that

g = o Ad UgOgO-1 gt G.

The amenability restriction is essential: for any nonamenable group G,
the above Theorem does not hold [26]. Actions of general amenable groups arise

naturally in connection with hyperfinite factors [27 , Theorem 3.1 ].

We actually work with more general factors and actions. W only require
the factor M to be isomorphic to MOR and to have separable predual. For
such a factor, we prove the outer conjugacy for actions which are centrally

free (i.e. each « , g/ 1 , acts non-trivially on central sequences) and



approximately inner (i.e. each is a limit of inner automorphisms).

For a (not necessarily free) action a of a discrete amenable group
G on R, we show that the characteristic invariant A(a) , introduced
in [21], is complete for outer conjugacy. On the hyperfinite 11 factor
Rq i the system of invariants (A(a), mod(u)) is complete for outer

conjugacy, where mod:Aut Rg i >]R+ is the module ([ Al).

It seems possible to go along the lines of [ 6 1 to obtain the classificatio

for type IIl factors as well.

We do a parallel study of G-kernels on factors,which are hoinomorphisms
of the group G into Out M= Aut M/Int M. Two G-kernels are conjugate if

there exists e c Out M with
bg m 0 egG1l ge G

We show that, if G is a discrete amenable group, and for a G-kernel
3
H on R, the Eilenberg-M*Lane H -obstruction Ob(p) is a complete conjugacy
invariant, and for a G-kernel 3 on RQ”, (Ob(3), mod(0)) is a complete

system of invariants to conjugacy.

A result of independent interest obtained is the vanishing of the 2-
dimensional unitary valued cohomology for centrally free actions (the
1-cohomology does not vanish for infinite groups: there are many examples

of outer conjugate but not conjugate actions).

Involutory automorphisms of factors have been studied by Davies [8 ],
but the major breakthrough was done by Connes in T3 ], where he classified

the actions of on R, and in [4 ]» where he classified actions of



(iii)

Z up to outer conjugacy. A study of the cohomological invariants for group
actions was done by Jonesin [21] where he extended the characteristic
invariant of [ 3] to group actions. In [231 Jones classified the actions
of finite groups on R, up to conjugacy. Product type actions of TL

of UWH algebras were classified by Fack and Mardchal [11], and Kishimoto
[27], and finite group actions on C*-algebras were studied by Rieffel [30],

Classification results for finite group actions on AF-algebras were obtained

in [17], [Ib] by Herman and Jones.

This paper is an extension of [4 ], and also generalizes the outer

conjugacy part of T23].

In the first chapter we state the main results in their general setting,
and in the second chapter we use them to obtain, in the presence of invariants,
classification results on the hyperfinite typo Il factors. The proofs of the

main results are done in the remaining part of the paper.

The first problem is to reduce the study of the group G to the one of
its finite subsets. An approximate substitute for a finite G-space is an
almost invariant finite subset of G, obtained from amenability by means
of the Ftflner Theorem. A link between such subsets is yielded by the Ornstein
and Weiss Paving Theorem. We obtain, by means of a repeated use of these
procedures, a Paving Structure for G, which is a projective system of finite
subsets of G, endowed with an approximate G-action. W use this structure
to construct a faithful representation of G on the hyperfinite 11* factor,

well provided with approximations on finite dimensional subfactors.



The main ingredients of the construction are the Mean Ergodic Theorem
applied on the lim it space of the Paving Structure, together with a
combinatorial construction of multiplicity sets. We call the inner action
yielded by this representation the submodel action. A tensor product of
countably many copies of the submodel action is used as model of free action

of G . This model is different, for G=2 , of the one used in [4 ].

An essential feature of Connes' approach is the study of automorphisms
in the framework of the centralizing ultraproduct algebra Mu> , introduced
by Dixmier and McDuff. In the fifth chapter we make a systematic study of
these techniques and also introduce the normalizing algebra , as a
device for working with both the algebra M and the centralizing algebra
NLI)'

We continue with the main technical result of the paper, the Rohlin
Theorem, which yields, for centrally free actions of amenable groups, an
equivariant partition of the unity into projections. In the first part of
the proof we obtain some, possibly small, equivariant system of projection.
The approach is based on the study of the geometry of the crossed product,
and makes use of a result of S. Popa on conditional expectations in finite
factors [d?]. In the second part we put together such systems of projections
to obtain a partition of the unity. W use a procedure in which at each-step,
the construction done in the previous steps is slightly perturbed. These
methods yield new proofs of the Rohlin Theorem both for amenable group
actions on measure spaces and for centrally free actions of 2 on von

Neumann algebras.
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As a consequence of the Rohlin Theorem, we obtain in the seventh
chapter stability properties for centrally free actions of amenable groups.
We first prove an approximate vanishing of the 1- and 2- dimensional
cohomology. The main stability result is the exact vanishing of the
2-cohomology. The proof is based on the fact that in any cohomology class
there is a cocycle with an approximate periodicity property with respect
to the previously introduced Paving Structure. The techniques used here
yield an alternative approach for the study of the 2-cohomology on measure
spaces. The usual way is to reduce the problem, by means of the hyperfinitenes

to the case of a single automorphism, where the 2-cohomology is always trivial.

The final part of the paper deals with the recovery of the model inside
given actions. We first show that there are many systems of matrix units
approximately fixed by the action. From such a system, together with an
approximately equivariant system of projections given by the Rohlin Theorem,
we obtain an approximately equivariant system of matrix units; this is
precisely how a finite dimensional approximation of the submodel looks like.
Repeating the procedure we obtain an infinite number of copies of the sub-
model, and thus a copy of the model. At each of the steps of this construction
there appear unitary perturbations. The vanishing of the 2-cohoinology permits

the reduction of those perturbations to arbitrarily close to 1 cocycles.

The corresponding results for G-kernels are obtained by removing from

the proofs the parts connected to the 2-cohomology vanishing.

The last chapter contains the proof of the Isomorphism Theorem. Under
the supplementary assumption that the action is approximately inner we infer

that on the relative commutant of the copy of the model that we construct,



the action is trivial; i.e. the model contains the whole action. We

begin by obtaining, from the elementwise definition of approximate innerness,
a global form. Approximately inner automorphisms are induced by unitaries

in the ultraproduct algebra M . W use a technique of V. Jones to work,
by means of an action of Gx G, simultaneously with these unitaries and
with the action itself. After constructing, the same way as in the preceding
chapter, an approximately equivariant system of matrix units, we make it
contain the unitaries that approximate the action. We obtain a copy of the
submodel which contains a large part of the action, in the sense that for
many normal states on M, the restriction to the relative commutant of

the copy of the submodel is almost fixed by the action. This way of dealing
with states of the algebra, in view of obtaining tensor product splitting of
the copy of the model, is different from the one in [4 1, and avoids the

use of spectral techniques.

A characteristic of the framework of this paper is the superposition,
at each step, of technical difficulties coming from the structure of general
amenable groups, and from the absence of a trace on the factor. Nevertheless,
in a technically simple context like e.g. ZT acting on R, all the main

arguments are still needed.

With techniques based on the Takesaki duality, V. Jones [241 obtained
from the above results the classification of a large class of actions of
compact abelian groups (the duals of which are discrete abelian, hence

amenable, groups).

A similar approach towards classifying actions of compact nonabelian

groups would first require a study of the actions of their duals, which
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are precisely the discrete symmetrical Kac algebras. A natural framework
for this extension is the one of discrete amenable Kac algebras, which
includes botl» the duals of compact groups and the discrete amenable groups.
It appears [351 that such an approach can be done along lines similar to the
ones in this paper. A first step is to provide, in the group case, proofs
which are of a global nature, i.e. deal with subsets rather than with
elements of the group; the proof of the Rohlin Theorem given in this paper
is such an instance. Apart from that, the subsequent extension to the non-
groupal case needs, in general, techniques having no equivalent in the group

case.

Here are some basic conventional notations. If M is a von Neumann
algebra, M1, M+ and denotes its selfadjoint part, positive part
and unit ball respectively, M and M- the predual and its positive
part, and ZM) its center. If x eM and $c M, we let |[x|* = &(x])

11x| |~ = b(x*x)-  and | [x] 20 = *( J(X*X+XxX*))'



CHAPTER 1.

MAIN RESULTS

This chapter contains an outline of the results of independent interest

obtained in the main body of the paper.

11

Let M be a von Neumann algebra. An automorphism o of M is called
centrally trivial, et GM , if for any centralizing sequence (x(J)c M,
i.e. which is norm boundsd and satisfies 11m |[<Mnll | 30 tor any $e M ,
one has e(xn) - xp =0 -strongly, o isnz\:\IIed properly centrally non-
trivial if O|pM is not centrally trivial for any nonzero o-invariant
projection'in  Z(M) . A discrete group action aG < Aut M is called

centrally free if for any g e G\{1) , is properly centrally nontrivial.

The group G dealt with in this section will always be assumed countable

and discrete.

A cocycle crossed action of the Group G on M is a pair (u,u) , where

aG AutM and uGxG mUWM) satisfy for g,h,k EG

V h " Adug,hagh
ug,h Jghk * I,g"uh,k”ug,hk
ui,g " ug.i 1 -

(u,u) is called centrally free if u is so with the obvious adaptation of
the definition. The cocycle u is the coboundary of v, u=av , if

v.G  UM) satisfies
it
Ug’h « Sg(VH'V’g Vgh



In this case, (a,u) mey be viewed as a perturbation of the action
(Ad vgasgr. We shall prove in the Chapter 7 the following vanishing result

for the 2-cohomology.

THECREM

Let 6 be an amenable group, let H be a von Neumann algebra with
separable predual and let t t be faithful. [If (a,u) is a centrally
free cocycle crossed action of G on M, such that ulZ(M) preserves

bjz(M) , then wu is a coboundary.

Moreover, given any e >0 and any finite FCG , there exists 5 >0

and a finite KCG such that if

"g.h'1IU <6 9*h £ K

then u = ov with
gcF

The similar result for the 1-cohomology holds only if G is finite, in

which case it permits us to carry on the classification up to conjugacy f23].

A factor M is called McDuff if it is isomorphic to RO M, where R

is the hyperfinite IlI-j factor. Several equivalent properties, due to McDuff

and Connes are given in 5.2 below.

We shall obtain in 8.5 the following result.



THECREM
Let G be an amenable group and let M be a McDuff factor with
separable predual. If aG -» Aut M is a centrally free action then a is

outer conjugate to idRO a .

Moreover, given any ¢ >0 , any finite KCG , and any $ e ,
there exists an (u~J-cocycle (vg) such that (Ad vgUg) is conjugate to

idp 0a and

Actual” the central freedom of a is basically used only to obtain

cocycles. An alternative approach based on the Lenme 2.4 would not need this

assumption.
1.3
In Chapter 4 we construct a model of free action u”:G ¢ Aut R
for an amenable group G . In 8.6 we show that this model action is contained

Lt any centrally free action.

THECREM
Let G be an amenable group and let M be a McDuff factor with separable

predual. Any centrally free action aG -+ Aut M is outer conjugate to

Moreover, as in the preceding Theorem, the cocycle that appears can be

chosen arbitrarily close to 1.

1.4

Under the supplementary assumption that each is approximately inner,



the action is shown in 9.3 to be uniquely determined up to outer conjugacy.

THEOREM
Let G be an amenable group and let M be a McDuff factor with
separable predual. Any centrally free approximately inner action uG Aut M

is outer conjugate to 0 idM .

Bounds on the cocycle may also be obtained.

QORCOLLARY
Any two free actions of the amenable group of G on R are outer

conjugate.

Proof

By results of Connes [3], CiR = Int R and Int R=Aut R.

15

The study of actions of groups is closely connected to the study of
G-kernels, which are homomorphisms G Out M= Aut M/Int M . Since inner
automorphisms are centrally trivial, central freedom can be defined for
G-kernels. In 8.8 we obtain from the proof of the Theorem 1.2, the analogoi*

result for G-kernels.

THECREM
Let Gbe an amenable group and M a McDuff factor with separable

predual. Any centrally free G-kernel (2G + Out Mis conjugate to idf) O (i .

16

The same way we obtain in 8.9 the following analogue of the Theorem 1.3.



THECREM
Let G be an amenable group and M a McDuff factor with separable
predual. Any centrally free G-kernel 3:G Out M is conjugate to

n(.<°>) 0 S .

Here a”:G ¢ Aut R is the model action and n:Aut M= Out M the

canonical projection.



CHAPTER 2.

INVARIANTS AND CLASSIFICATION

We obtain from the results in the preceding chapter, the outer
conjugacy classification of amenable group actions on the type 1~ and

11~ hyperfinite factors.

2.1

When an action has an inner part, there appears a cohomological
invariant coming from the uni<£*r.ty, ' wujUlo a scalar of the unitaries
implementing it. This invariant, called the characteristic invariant,
introduced by Connes for actions of jfn 13 ] , was defined for general

discrete groups by Jones [21]. W shall briefly describe it in what follows.

Let a be an action of a discrete group G on a factor M. A first
conjugacy invariant is the normal subgroup N(u) - a '(Int M of G . For
each (t N=N(a) , we choose a unitary ¢ N such that a( * Ad vf) ,

and take v] =1 . For hk e N, both vh vk and vhk implement

uhak =ahk ' thus there ex’sts uh k E~ = Izl =~ suctl that

vh vk s “h.k vhk

Similarily, for ge G and hc¢ N, since aa w a , «ah,

oog h
we infer
a(V , )«X uV
9 g*v 9h h
for some he?7.

N



The pair (X,ii) of magps X:Gx N=>I , y:N x NmT satisfies the

following relations for h,k,i ¢ N, c G

Ahk yhk4 ' ykJt uh ki

A Sl NN 8

Xg.hk Xg,h gk =V k p
xg,] =xl,h =uh,] =ul,h =1
where denotes the complex conjugation. This follows by easy computations

from the definitions of X and y . We let Z(G,N) be the abelian group
consisting of all the pairs of functions (x,u) satisfying the above

relations.

To get rid of the dependence of (X,u) on the choice of (v() , we
let C(N) be the set of all maps nN T with nf =1 and, for ne CN)

we let 3n 3 (x,u) where

Mk © nhk nh "k geG, hkcH
It is easy to see that B(G,N) « 3C(N) is a subgroup of Z(G,N) ;

we denote by A(G,N) the quotient Z(G,N)/B(G,N) . For an action a , the

image A(a) * [X,a] of (X,u) in A(GN) does no longer depend on the

choice of the unitaries (v*) and hence is a conjugacy invariant. If



(Wg) is an (<Xg)-cocycle and ug = Ad whug , then for hc N,
vh = vh implements ah , and it is easy to compute that these
unitaries yield the same pair (Aw) for a . Thus A(a) is an outer

conjugacy invariant, called the characteristic invariant of the action.

When N is abelian, then [A,p] depends only on A and no quotient

has to be taken.

The characteristic invariant can also be defined in terms of group
extensions. Let aG % Aut M with N=« ~(Int M and let
N = {(h,u) ¢ Nx UM)la( = Adu) . Then ft is a subgroup of N x UM)
and the magps T N, t e (1,t) and N-» N: (h,u) =h yield an exact

sequence

1aTT>»N»>N»1

where the induced action of N on U by conjugation is trivial. Moreover
ge G acts on N by conjugation : h-»ghg ~, and if we let it act on
I trivially and on ft by (h,u) (ghg \a (u)) , the above sequence

becomes an exact sequence of G-modules.

Ore can show that the classes of extensions of N by H (trivial action)
in the category of G-modules is a group with the Braucr product arid that

this group is naturally isomorphic to A(G,N)

2.2
Cohomological invariants for the conjugacy of G-kernels were
defined in an algebraic context by Eilenborg and I'luLano and adapted to von

Neumann algebras by Nakamura and Takeda [32] and Sutherland f4TI*



Let 0:G % Out M be a G-kernel on a factor and let a:G Aut M

be a section of it, with =1 . For each g,h e G, there are unitaries
w £ H with
g.h

agaH = Ad Wg,hagh

which may be assumed to satisfy w, =1 . Fom the associativity

i Wy»'-
relation (0~ ) 0 = <*(0~0l*) one obtains

wg,hwgh,k = 5g,h,kag(wh,k)wg,hk

for some 6 ~~cT . The function 5:G3 *| satisfies a normalized
3-cocycle relation, and its class Ob(0) in H3(G,T) , called the

obstruction, is a conjugacy invariant for the G-kernel ft

Jones has shown that if G is a countable, discrete group and if R
is the hyperfinite 11" factor, then for any normal subgroup N of G and
any [X,p] e AG,N) there exists an action a:G - Aut R with N(a) =N and
A(a) = [X.p], and for each [6] e H3(G) there exists a free G-kernel

b:G » Out R with Ob(s) 3 Ci] .

Let N be a normal subgroup of G and let Q= GH . One can define
natural connecting maps to extend the Hochshild-Serre exact sequence to an

eight term exact sequence

1 - HL(Q->HL(G ) 1(N)GH2(Q ) 2(G) (G ,N)-ti3(Q)-H3(G) .

For details see [19], [22], [361.

2.3

The following Lenma describes actions with trivial characteristic

invariant.
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Lemma
Let G be a countable discrete amenable group and let M be a
factor with separable predual. Let aG # Aut M be an action with
allnt M =alct M =N. Let p.G®mQ =GN be the canonical projection.
If A(a) is trivial then there exist an a-cocycle u and an action

a:Q % Aut M such that

Ad U X =«
gg

<Q

plg)

Proof
By the triviality of A(@ , we may choose amgp Vv:N »UM) , vli=1

such that for gc G, hjk ¢ N we have

ah = Ad vh

vhvk - Whk
° - " vh e
g(vg Rg) v

Let s:Q »G be a section of p with s(I) *1, and let < * u' (q)

for qeQ. If q,r e Q, define t(q,r) ¢ N by
s(a) s(r) = t(q.r) s(ar)

and let qul, Wigy,y - W have for q,r,s e Q

t(q.nt(qr,s) =Ad(s(q))(t(r,s))t(q.rs)

hence ((OH(W H')) is a cocycle crossed section of Q on M, which is
»
by the hypothesis of the Lemma centrally free. The 2-cohomology vanishing

(Theorem 1.1) yields amp zQ UM), z1 =1, with

2qaq(2} a'}, qu » 1 qg.rcQ.



-11 -

Let aq =Ad zqaq . Then a is an action of Q on R. For geG

*

with p(g) =p and g =hm, heH, in=s(p) , welet ug=2z"vl) . W

have

Ad ugag = Ad(zpvh)Ad Vh:p = ap

and all that remains to be show is that (u®) is an «-cocycle.

Let g.fcG;p=p(@), g=p(f) eQ; m=s(p) , n=s(q) ,

r=s(pq) cs(Q)CG; h=gnnr, k=fn ~,i =9gfr ' eN. W have
t(p,g) =mnr A = nin f = nk il = Ad(s(p))(k Mh \
so that
vi‘—)yq. = CTJ‘(V'R')VhVi

and we obtain

*

ug“g<uf’ uof 2pvh V_p <Vk>V I2p<1 -V ‘p<V"p,q2p<t w1
The Lemmm is proved.

2.4

The Lemma that follows is a device to obtain cocycles.

Lenma
Let MNP be factors and let a:G « Aut M, p:G @mAut N be actions
of a discrete group G . Let y:G Aut P and v:G+ UM) be maps such

that

a is conjugate to e 6 s

(Ad v(Xxg) is conjugate to e Oy



Then there exists an a cocycle u such that

(Ad Ligdg) is conjugate to b 9 B

Proof.

Since (Ad vgug) is conjugate to nOY andto b 93 0Y, there
exists an isomorphism eN 9 M#%* M such that
Advg =00g0advgl®l .
Let vg =o(IN9 v¥Vvg ; then
Ad Vg =e(6g Ov 6_1 *
The right member is an action, hence
— — *
g § Vornlg -
is a scalar for g,h ¢ G.

Once again, since s is conjugate to b 9 u, there exists an

isomorphism 0":N 0 M-» M such that

AyYg a?0g0Advg)r =
VW let W me(l 9 vg)vg and Infer
Ad ugag - »(»g 0 ag>""'

Vg<*h>> 1 «(HN)(M*gag)(H*J) V 9 <’I>)V"(,i7gh)

m 29,h»('0(*I (M Vs)(~)val)) mi5>hijih m1

The Lemma is proved.



2.5

The preceding chapter contained classification results in the invariantles

case. In many situations, we can reduci*this case by tensorizing with model

actions having opposite invariants. The formal setting is the following.

Lemma

Let r be a discrete group.

a) Let r be a unital semigroup and let - r be a surjective

homomorphism with  ~ (1) ={1} . Then $ is bijective.

b) Let a be a (left) r-space and let $:a -»r be a homomorphism

of r-spaces with card #7(1) =1 . Then is bijective.

Proof
a) For x,y ¢ 1 with ip(x) = ij/(y) = gwe find z t r. with

t(i) ¢ 97« Then |i(xz) =ip(zy) m1 and so xz =zy = 1 , hence
X =x.I =xzy =1y -y.

b) Let r xa < A, (g,x) % gx be theaction of ' on A , and
let e m$\1) e A Forany x cl we have <t>($(x)'*x) = 1,

SO $(x) “x = e and

X = 1.x = <i>(X)Mx) ~x = 4>(><)e

Hence g < ge:ir A is the inverse mgp of ¢.

2.6

W begin by classifying actions on the hyperfinite [1I. factor R
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THECREM
Let G be a countable discrete amenable group. Two actions
a,0:G  Aut R are outer conjugate if and only if N(a) = N(p) and

A(0) - A(e)

Proof

We keep a normal subgroup N of Cfixed; let r be the group A(G,N)
and let | be the set of outerconjugacy classes [a] of actions
a:G < Aut ft , with IT isomorphic to R and N@) =N. W let ipEmr
be the characteristic invariant, which is well defined on outer conjugacy
classes. £ is a semigroup with tensor product multiplication, which
preserves classes, and ”~ isa semigroup inorphisin; by the results of Jones
ii is surjective. To apply thelenina 2.5(a) it remains to show that E s
unital and *(1) = {1} . By the Lenina 2.3, in the class of any action
aG Aut R with ip([a]) =1 there is an action U induced by a free
action o of the quotient Q>GH . Since Q is amenable, any two such
actions of Q are outer conjugate by the Corollary 1.4, and the cocycle
lifts to a cocycle of « . Hence the preimage of 1 c r consists of a

single class.

Let aQ Aut R be the model of free action and let u:G = Aut R be
the induced G-action. Let 0:G Aut R with [0] e £; then 3 induces
a Q-kernel isl:G»0ut R. If n: Aut R »Out R is the projection, then by
the Theorem 1.6 the Q-kernels 0' and n(a) 0 o' are conjugate. There exist
thus unitarios vg,g ¢ G such that (Ad vgBy)g is conjugate to (ug 0 Og)g .
Since a is conjugate to a 0 a , the Lemma 2.4 shows that 6 is outer

conjugate to a 00, and hence [uJ is aunit in £ . The Theorem is prove



2.7

The above result extends to the following framework.

Theorem

Let G be acountable discrete amenable group and let M be a McDuff
factor with separable predual. Two approximately inner actions u,0:G » Aut M
with a**(Int M =a ~Ct M =S*(Int M = P~~Ct M) =N are outer conjugate

if and only if A(a) = A0) .

Proof

We let again r = A(GN) and let A be the set of outer conjugacy
classes [u] of actions aG » Aut R, with H isomorphic to M,
>(G)C.TntM and o (Int M = u~'(CtM =N . Wlet "iA- r be the mep
[a] » A(u) . For each 5cr, let ul:G Aut Rbe an actionwith

N@) =N and A@ul) =C. Wlet 1 acton A by

U M) - l«* 8«]

This map is well defined and we have

$(1&" 0 a]) =U([a])

To apply the Lenina 2.5(b) we have to show that A is a r-module and
that 4>"7(1) has a single element. This last fact is established like in the
proof of the preceding Theorem,using the Theorem 1.4 instead of itsCorollary.
The same way we obtainthat multiplication with the action of Gon R coming
from the free action of G/IN on R preserves the class. The fact that for

Cnhcr and IS] e A
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[aC0 an 0 B] = [a*n 0 B]

follows from the proceditig Theorem, since
A(uf 0a") = - A(@Cn) .

The proof is thus finished.

2.8

For infinite factors we need first the following result.

Lemma
Let uw:G <« Aut M be an action of a discrete group on an infinite factor.

Then a is outer conjugate to idf 0a where F is a type | factor.

Proof

W let N be a type Ilw subfactor of M. It is well known that
M* NO (NT\M) and that there exists for each g c G a unitary v9 c M
such that Ad vgag|N 3 id® (the proof of the Lenina 8.4 Step A extends

immediately to infinite dimensional subfactors).

The Lenma 2.4 concludes the proof, since 1L is isomorphic to NO N.



Let us describe now the classification of actions on the hyperfinite
Il ~ factor Rg A . There exists a homomorphism mod:Aut Rg ~ 1R such
that for 0 e Aut g~ and t a semifinite trace on Rg *, too 1 mod(o)t

[7]. It was shown by Connes [41 that CtRg i = IntRg ~ and Tht Rg j = ker nx

For an action a:G # Aut Rg ~ the homomorphism inod(a):G IRf yields a
conjugacy invariant; since inner «uttE>*orplus*nhave module 1 this is an outer

conjugacy invariant.

Theorem
Let G be a countable discrete amenable group. Two actions
a,0:G = Aut g ~ are outer conjugate if and only if (N(<i),A(a),mod(u)) 3

= (N(s),A(tJ),mod(s)) .

Proof

We keep a normal subgroup N of G fixed and let rQ be the group of
all homomorphisms v:G »K+ with NC ker v . We let r be the product of
the groups A(G,N) and rQ, and let T be the set of all outer conjugacy
classes [a] of actions aG =>Aut M with M isomorphic to Rgj , and
with N@) « N. Since rgi “ RR1QR 1 U is easy to see that } is
a semigroup with multiplication given by the tensor product. The mep

t:[a] -m(A(u) ,mod(u)) yields a homomorphism of i into r . For f,cA(G,N)



let </' be an action G e Aut R with A(c/') - r. . By results of Takesaki
[42] there exists an action 0JR+ WAutRQ 1 with mod(0t) =t. For
vely we define an action 0V:G -*-AutF%b’1 by O\éz Qv(g) . Then the
action y =a" 0Bv of Gon RORQL =RQ”" satisfies N(y) =N,

Aly) =5 and mod(y) =v , hence Il is surjective.

If |([a]) =1, then a is approximately inner and hence by the
Theorem 2.7 a is uniquely determined. Let a:G Aut RQ1 with a e T
and let 0:G Aut R come from a free action of GN on R. Fromthe
Theoreml1.6 applied to the G/N-kernelinduced by a , we obtain asin the
proof of 2.6 the fact that a is outer conjugate to u 0 a . n the other
hand, by the Lenina 2.8 a is outer conjugate to idp O a where F is a
type Ito factor. The class of the action a 0 idp:G -+ Aut(R 0 F) « Aut Ry »

acts thus as a unit in z . By the Lenina 2.5(a), the Theorem is proved.

210

The classification of G-kernels on factors can be done by the same
methods, using the Theorems 1.5 and 1.6 instead of their analogues 1.2 and
1.3 for actions. The key remark is that the Isomorphism Theorem 1.4 works
for centrally free approximately inner G-kernels p:G % Out M with trivial
obstruction. By the definition of the obstruction, in this case there exists
a cocycle crossed action (a,u) of G on M such that (eg) = (n(a®))
where II:Aut M Out M is the projection. Since G is amenable, u is a
coboundary by the Theorem 1.1, and one can suppose that a is an action;
the Theorem 1.4 can be now applied to conclude that the conjugacy class of
6 is uniquely determined. The existence of free G-kerncls on R having

arbitrary obstructions yields the same way as in 2.6 the following result.



THECREM
Let G be a countable discrete amenable group. Two free G-kernels

3,y:G ®Out R are conjugate if and only if Ob(3) 3 Ob(y) .

211

The result analogous to 2.7 is the following.

THECREM
Let G be as above and let M be a McDuff factor with separable
predual. Two centrally free approximately inner G-kernels p,y:G -+ Out M

are conjugate if and only if Ob(0) = Ob(y) .

2.12
Since inner automorphisms of RQ 1 have module 1, for a G-kernel
e:G w Out Rg »# the invariant mod(f) : G 1R can bo defined. The same

way as in 2.10 one can prove the result that follows.

THECREM
Lot G be a countable discrete amenable group. Two free G-kernels

S,y:GaOut Ry ! are conjugate if and only if (Ob(e) ,mod(b)) a (Ob(y) ,mod(Y)).
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CHAPTER 3.

AVENABLE GROUPS

W associate to an amenable group G a paving system, which is a

system of finite sets which approximate the behaviour of left G-spaces.

3.1

The group G dealt with in the sequel will be discrete, at most
countable and nontrivial. G is called amenable if it has a left invariant
mean, which is a positive linear mgp m: ¢NG) C, with m(l) =1 and
nr*g =m for gc G where is the left g translation on t£(G) ,
i.e. a "finitely additive finite Haar measure". n finite groups, m is
the Haar measure, but on infinite groups, such a mean, if it exists, is
never unique. Abelian groups are amenable, since the invariant mean can
be chosen by means of the Markov-Kakutani fixed point theorem. An ascending
union of amenable groups is amenable, hence locally finite groups are
amenable. Subgroups and quotient groups of amenable groups are amenable,
and an extension of an amenable group with an amenable quotient is again
amenable, hence solvable groups are amenable. The free group with 2
generators is not amenable. For a survey of amenability see 115]. If
the group G is written as F/R with F a free group and R the relation

subgroup, the amenability of G is connected to the "growth ratio" of Rin F

({16,

In what follows, for a set K we shall denote by |K| its cardinality,

and we shall write KccL if Kc L and |K| <« .
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3.2
Let G be agroup. If Fcc.G and e >0 we say that a nonvoid
subset S of G is (e,F)-(left) invariant if it is finite and
ISn HFgSI > (1-c)|S| . The following intrinsic characterisation of
ge

amenable groups was given in 112] by FOlnor. For a short proof, due to

Namioka and Day, see [15].

Theorem (FOlner)

A group G is amenable if and only if it has arbitrarily (left)
invariant subsets, i.e. if forany ¢ >0 and FccG one can find

an (e,F)-invariant subset S of G.

3.3

An impediment towards more elaborate constructions was the absence of
a link between several approximately invariant subsets of G . A result
in this direction was announced in [36]. W need that result in a slightly

more precise form, which for convenience we prove in the sequel.

Let us consider, for instance, the case G =22 . A large rectangle,
which is approximately invariant to given translations has moreover the
property that one can cover the group with translates of it, without gaps
or overlappings. Ore cannot do the same thing with an arbitrarily shaped
almost invariant subset, e.g. a "disc". Nevertheless it is possible to
cover G, within a given accuracy e , by using translates of a finite
number N of "discs", provided each is very large with respect to the

preceding onel moreover N depends only on c .
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W say that a system (S.)..A of finite sets are e-disjoint,
e >0, if there are subsets Slc S , i el , such that |S|| > (1-e) iS]
and (Si). are disjoint. W say that the system K*,...,KN of finite
subsets of the group G e-pave the finite subset S of G if there are
subsets L~,...,LN of G, called paving centers, such that

U KL;c. S, (K.L)._-, ., are disjoint and c-cover S, i.e.
|S\UK.iLt.| <c|S| , and moreover for each i , (Ki.l). . are

c-disjoint. If there are 6 >0 and KccG such that K~,...,KN
c-pave ary (4,K)-invariant Sc G we call Kj,...,K* an e-paving system

of sets.

Theorem (Ornstein and Weiss)

Let G be an amenable group. For any t >0 there is N>0 , such
that for any y >0 and FccG , there is an t-paving system K~#,...,K"
of subsets of G, with each being (v,F)-lnvariant.

More precisely, for any 0 <e < 1/2 let N>"-log- and 6 = ;
let G be such that is (¢ iKJI*L.ifl)-invariant, where

7 . UK and n- 1,...,N-1 . Then any Sc. G which is (4,U Kn)-invarlant
n p>n”? n

is e-paved by K ,..,KN

Remark

The essential fact is that N does not depend on the invariance
degree (y,F) imposed the sets (K~

The proof that follows is based on their ideas.
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The following Lenina shows that if S is invariant enough with
respect to K then it can swallow enough right translates of K
moreover, from the approximate invariance of S and K follows the
approximate invariance of the remaining part, provided that this part is

not too small.

Lenina

Let 0 <e < 1/2 . Suppose SccG is (I/2,K)-invariant and let

LcG be maximal such that KLc S and are c-disjoint. Then
KLY

Suppose moreover that for some 6 >0 and Fee G, S is (6,F)-
invariant and K is (6]F] \ €2 )-invariant. If for p >0 , |S\KL| >p|S

then S\WKL is (3p "5,F)-invariant.

Proof

Let S =So ; we have |S11> 1/2 S . From the maximal ity
keK

of L it follows that for any | ¢ S , |Ki. r\ KL >c|K|] . In terms of

characteristic functions this yields
XK 1* Xkl > e|K]|xs,

Integrating we get
[KIIKL] >c|K[|S|

hence
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IKL| > e[S’ >|[IS|
and the first part of the Lemma is proved.
Suppose now that the supplementary assumptions are fulfilled, and

let S" =So fU-'s and KL =Kn HkK ; from the hypothesis
kcF keF

[S"] > (1-6)|S|] and |K*| > (1-ilFfl)|K] . Let § - ML and
s; =S, r\ C\k"1S, . Then
1 1 kcF 1

SASJ ¢ (S\S") u (F_IKLKL)

£ (S\S")u £V nHL

ISAS'1 < |SSS"| + |[K\K'| |F| L]

<6|S| + 6|K| |L|
From the e-disjointness ot (KI)" it follows that
KL] > (1-01*1 |L]
hence
K| IL] < (l-c)'V I <2[KL <219
With the last hypothesis

isrsjl < 3as| < Jplisll

and the Lemma is proved.



Proof of the Theorem

Let N> 7-logj-, which implies (1 - <e. Let 6 =(@3)

and fip=("™)n, n=1.... N. Let SN=S and for n* N, N-1,.,.,1

supposing Sp is defined, let Lp be maximal such that and
(M), ,1 are ~-disjoint; define S } =SniKnLp
n
If for some n>1 , |[Sn-i| £ e|Sj , then
ISVWIK L | =|S | <e|SN| =c|S| and the proof is ready. We therefore
PPP

continue under the hypothesis tS~l > Elsnl * n=1..... N and we show

inductively for n=N, N-1,.,.,1 that

() sn is (6n/Kn)-invariant

2 isn.,i <n-f)|snl =
by means of the Lemma, (2) results from (1) since Sp is(*.K”™-invariant.
For nm N, (1) is a hypothesis. For n < N, since Kp+* is
(in+ljlw  "1I,W )" 1nvarlant and ISn' > £,Sn+Il ' we infer that
S is  (3c™i
n

) = (6 15 )-invariant. An iteration of (2) shows that
ntl n nn

ISI < (I-f)N|SM < «1*1

The Theorem is proved.

Corollary

Suppose that the group G is infinite and ...are an c-paving
system of sets, t >0 . There is a finite subset K of G, K/ $ .
which may be chosen arbitrarily invariant such that there exist subsets

L,,...,LnccG with
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N
(1) Kl = E|K.] |L |
=l 1 1
(2) for any i e TIN the sets

'Ki ={g ¢ K' | there are unique (T.k.t) e JL Kr x It . with
Td 1
g = kt, and for these T =i}

satisfy |KL| > (I-4¢c)|K. | |Li |

Proof

Let ¢ <1/4 . Suppose that Rnc.G is t-paved by Kp... I*
with paving centers Lp...,I" . W may take K arbitrarily invariant

and |[fc] arbitrarily large.

From the definition of e-paving we easily infer
(FSKICL <P 1 (-errdal .

W can find K'cG , with |K' A <e|K | and for each i c T'Ti ,
J

L.c G with |L. A tl|] <2617| such that EKM|IL.| = |[K'| . Since

|ft] was large as desired, there are no restrictions on the invariance
degree of K . One can still keep the assumption that (K.L")j are

mutually disjoint, and (K.i) for n e Lf are e-disjoint; we obtain
(3) (K.LAK* | < 261~ ||L11

For ge G let ~(g) * |{(k«) c K x L"g aki}| . The

c-disjointness condition yields

Q£ KLL | IBj(g) < 1) > (I-2¢) |KL]|L |
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With (3) we infer

11w |{g e K'17(g) = 1y > (1-deyk e

3.4

For an amenable group G, a repeated use of the Paving Theorem
yields a sequence of "levels", each level consisting of a paving system
of subsets of G which pave each of the sets appearing at the higher
level. This structure contains all the information we need about the group G,
and about the ways of approximating it with finite subsets. Therefore such
a structure (fixed once for all) will be the basis of all the constructions
done further on. The Proposition that follows is an immediate consequence of

die Theorem and Corollary 3.3; the verifications are left to the reader.

Proposition (Paving Structure)

Let G be an amenable group. Let o >0 and GnccG be given,
for n*0,1,2,... . Then there are en*paving systems (K?). , 1e In,
with each KUl being (cn,Gn)-invariant and with (K?). mutually disjoint,

and finite sets (L? ) ., (1,j) c In « I]i+j such that

and for any (i,j) el * Intl , the sets

K’.17+x!] <{g ¢ Kn+* | there are unique (T,k,t) eAi- Kj x L-r-j
>
with g mkt , and for these T * 1}

satisfy
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Let Kn -J‘]I.K:rl; since (K?). are supposed disjoint, we shall often

identify Kn with 1/K"e.G
il

For any n let F{ X LP . »liK? 1~ = Knt* be a bijection
joil jiJ
. ) _ R .
such that for any j e In+I , I<n(|j—|.K|1 X |1179].) KJn+ , and if

{i,k,£E) c_LLKi‘ X Lan. with ki e L then RO(i,k,A) * kE
N > *

For any ge G and ne N let us choose "approximate .left

translations"” with g on Kn , i.e. bisections : Kn Kn with
teKY =K i e I, such that if k e KI with gk e K2, then ia(k) =gk .
W call Il = (tn'G»(K")i*(L?5) j)j" n*(liDlI)n a paving Structure

for G; the notation that appears in the statement of the Proposition

will be frequently used in the rest of the paper.

Corollary
In the conditions of the Proposition, for any g € &) and
*n" Jntl
3) [{(k,t)eKfxLjfjlirn(td(k),A)*JI+l(en(k,1)))| < 3en|Ky||Ly>J]|
that is, on most of the Kn+* , for a given g and for n large enough

the left g translation almost coincides with the left g translation on the

plagues K? product with the identity on the set of paving centers L? m



Proof

Let A DB the set in the left member OF (3). 1f (ki) & KuX L2 .
are such that gk € K]li , and ki.gkt e 1<1?+3' then
iINKk) = gk , Icrfgkl) = gkf, ~(kt) =kt and Jqi+ (k1) “ gkn and so

A . W infer

4 £ (KIVO" KJ) « Lf,j'J (fn) " (K'L'I>S\Aj)U ...

UL/« 5 ("), (KjLjin A T)

The fact that K is (c(),Gn)-invariant together with (2) yields

M i tnlKgl I * 2 cnlK LG 1 3 onlKILY ]

and the Corollary is proved.

Rxample

Let us consider for instance the case G - TLN .

Let Kn « (I-(3n-"1)/2,(3n-1)/2])Nc ZN and let Ln = {-3n, 0, 3n}N .
Then Kn x Ln = Kn¥\ so k" are rectangles paving each other with
paving centers Ln and [M is simply the product. The invariance degree
of each Kn increases as much as desired with n . The approximate left
G translations i” on Kn can be taken, for instance, to be the
translations modulo (37)” . In the general case, since G may have no
analogue of rectangles we have to use several K? at each level and take

M and to be bijections behaving well on most of the points.



3.5
For later use, we are going to meke now some assumptions on the
elements of the Paving Structure, possible by the freedom of choice

that we had at each step of its construction.

For a finite group G we let for each n , Ip {l> and take

=ql =G, i =01 « In what follows we assume that G is infinite.

For each n , we choose Q@+l C G after (k') were chosen. We

may thus assume that

( Lf jM U ,UKP(KP)‘le’(KP)‘l)CGml
p<ni.j 11 J n+l

U Vj
p<n i ]

and also that

UGn « G
n
Since for each j e In+] » |K'ﬁll| « z|K" 11~ j|  we mey assume, by
taking all |k"| large, that
- il
Since we may also suppose that [Gn+i|] < J cn|K” We may assume
that
Y]
After the choice of (Kj4 )j and of (L?+)" j we may, without

interfering with the previous assumptions, replace them with (KJn+"gJ,)j



respectively ((gJ.) _J.) for some arbitrary elements gJ. t G
*i
G being assumed infinite, we may use this device to assume that for

each n , (KJ").J are mutually disjoint and moreover that

For each n , en >0 could be chosen arbitrarily small. W use this
to simplify the constants appearing in the computations. To avoid a long

and irrelevant list of assumptions of the form

en+l < f(n' el*el ... en*

with f >0 , we leave to the reader to check the fact that for each n ,

a finite number of such assumptions are done in the rest of the paper.

A last problem. The final choice of the Paving Structure will be done
in the next chapter, by possibly taking only a subsequence (Kn." of
the levels. It is easy to see, due to the finite number of possible
refinements of a finite number of levels, that assumptions can be done

in such a form that the assumptions appearing above are true for any such

refinement.



CHAPTER 4.

THE MCDEL ACTION*

For a given amenable group G we construct, based on the paving
structure previously displayed, a faithful representation of G into
the weak closure of an UHF-algebra, the representation being well-
provided with finite dimensional approximations. We obtain from it a

model of free action of G on the hyperfinite 11 factor.

For finite G, the model reduces essentially to the equivariant
matrix units model of Jones (C23J) while for G=2Z it is different of
the one used by Connes in [4 ] and could be viewed as a noncommutative

version of the odometer model used in ergodic theory.

4.1

Let G be an amenable group and let K be a paving structure of G,
constructed as shown in the previous chapter, and fixed in all what follows.
We define the limit space K of K to be the inductive limlit of the

system (Kn) ~ with maps Ki-tl » Kn given by

Kitl .>1UU; «L" . +JJK? - Kn
i U1 13 |1
where the first map is the inverse of the bijection , and the second
one is the natural projection. Thus the elements of K are fibers

fk ) £n Ko which satisfy for each n i k¢ K? and
ni n " n



‘liw-wV Wy,

Let Pn : K - Kn be the canonical projection. With the inductive
n *
limit of the discrete topologies on each K , K becomes a compact
space and the Borel algebra of Borel measurable subsets is generated

by U 8 , with Bn:{p“l(S)|S£Kn} . For nc N, let rj consist
n

of those permutations yn of Kn which are direct sums of permutations

of each K' , i eln . Any yn c r" uniquely determines a

ywl « i**' b, 1<V+V ,,» m(in.¥Yn(kn).«<n) if 17(kn+1) .
This way we obtain a homomorphism from rdJ into the automorphism group

of K* ; we denote by rnc Aut K its range and let r =U r1 .
n

Being an ascending union of finite groups, r is amenable.

4.2
We choose an extermal measure v in the set of all r-invariant
probability Borel measures on K* ; this set is nonempty by the amenability

of r . Being extremal, ij is r-ergodic.

Let x" be ttle characteristic function of Pn'(k.")c K , and let

X" du .

For Bn-measurable functions f : K e C, which take the value f*

on Ppl((k)),k c Kn the operators

f > |rn|"1z f'i
yurn
f t iKjri trf
1 k«K"



are both conditional expectations on the Borel algebra generated by
(x”™ i, as one can easily check; hence they are equal. Since vy is

a
r-invariant, this shows that y is well determined by (u*)n ~

For i eln and j c 17 , x" xtl is the characteristic
function of p~1]-1j*I"j) . Fromthe equality of the
conditional expectations for applied to f =x" w0 infer

o lielp Ry w gL PRI il gyl
n+lo 1 i J 1 J j 1,0 J
YeF
where mK?2LIN 2~
For n<m, inciIn , 1" clp , let
Xxn,m j- xn xn+l ml
In*Im in+l..... imtl In*InH "n+1'W ‘m-r'm
so that, for instance, . m\n ... In asimilar way to the one in
J *J
the case m=ntl , for any m>n one infers

AU ¢ o B n_ _ E .n,m_in
a r | L X;Y- x4
veim 1 gem 39
The subsets r™ of the amenable group r have arbitrarily large
invariance degree when m grows. The Mean Ergodic Theorem in |.1-norm

applied to the r-ergodic measure y gives

il*ln|j|r inl—E )Pj‘Y * jxR ds
mH'
Ycr



Hence from (1)

“m E |){1,m - ﬂvﬁ": 4}
ﬁh*«\] I‘[m 1 13
e

and so, for any ne N

.n,m n, n
(2)

T, Jm "1.J " oen
lei” Jcl

for all large enough m

The measure p being chosen once for all, we make a last assumption
on the paving system K . By refining its levels, i.e. replacing (Kn)n

n
by (K p)Hp for some subsequence (nP)P of IN , we may suppose that

(2) holds for any n amd m>n+l . This can be done without renouncing
at any of the conditions imposed on the Paving Structure, in view of our

assumptions 35 .

Remark

The above inequality states that the proportion A?»J of right
translates of k' in almost doesn't depend on j . This might be
quite surprising since . are in fact arbitrary. What actually happens
is that the ergodic measure p and the level refinement "choose" a part
of the system (K?), . for which X' , is almost independent of j ;
on the rest of the diagram pjl being small, the contribution of the

corresponding terms in the sum (2) is neglectible.
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4.3

We want to give each a multiplicity, represented by a set
S" , such that the relative size of k" * $" in XJ K' * S is V"
This may not be possible because of the irrationality of u" . W avoid
this by choosing rational numbers iV, ne N, i e In , which satisfy

W o>0 for any n, i

lij "1
and in view of 4.2.(2) and the assumption following it, also
in iin Jtr 1 J J .
! ,

We can now find sets sj ; neN, ic I() such that if

Z" =JJ.K' x Sj , then
IKJIIsj| -S?|5n]| .

We still have the freedom of a simultaneous multiplication of the sizes

of all Sj . We shall use this to assume that
Im M m-
Pk
We may suppose that for | e i . j c I[)tl . the3e exists a set
. with
m.J

1Sf'1 1 0



Let us fix bijections sV . :ij , x s? >5m+|

We may also suppose that for each j r Intl there is a set M
such that with M = JJ_ ,
jcIn+l

|5+l |Sn[Mn|
and

i"3i

LTt *i S0, i . =

N -n+l.-iw-l [Uh
m\ o j-j (“il

Hence
LT .jiiN,ji - i«3n m«?>"

It is possible to choose subsets PL jS Ly * and

" .CM1] such that
T»J J

K .ji m K .ji """ (1iJjiK j I.ihdd

and a bijection j TR j * W have

JIL kI x 8" x R? LiliK" xs? x OLh") =-8n x M
lj 1 1 1,J i 1 J J



and

1K n»P.! X S iLKnxtn .,Th «S? 11U C KT'+ S"1

1*J 1>J J
where the last mep is lit" x1? , , B! being defined in 2.5. and

i3 1,J

s? , above. As [Sn+ll» [Sn|iMn| and Ip] 3 - ||Q?>JA there is
a bijection

m:Sn*vh = ciiKPxS?) * (IK') - Bn+l =il~ +1 x S"H

i1 i J i J J

satisfying forany i eIn, j clI[lt{ , keK , scs", rc

>

Ak.s.r) = (M Jik.pj .(r).s)

The inequality (1) shows that the cardinality of the elements in

the argument or range of rn not appearing in the above equality is small,

i.e.

4.4

We use the sets constructed in the previous chapter to index the

matrix units of an UHF-algebra. Let E° be a finite dimensional factor



of dimension [5°] =1 and for n >0 let Fn be a factor of dimension
[Mh| and let Entl =En9Fn . Let L be the finite factor obtained as

weak closure of the UHF-algebra U En  on the G\S representation
n

associated to its canonical trace.

. . I * p Ei+| {
Modulo obvious identifications we may suppose that c. £.1 .
Since ,in : Un x Mh «Sul , ncIN, are bijections, we can choose

systems (G4 )« sinsd ¢ A of matrix units in E nriN
51,52
which are connected via e. such that

F =YE- -
sr s2 m S1,S2

with He H , ] s un(s",m) , s" =

Forany gc G and n > 1, the "approximate left g translation"”

N . Kn eKn defined in 3.4. yields a unitary u" c En , given by
9 J

uh =2 Z P o

9 i (k,s) (kT s).(k.s)
where 1cl, , (k.s) c k] *S? and k, =*J(k) . One can view as
the image of g in an "approximate left regular representation"” of G.
This is justified by the following Proposition, which is the goal of all

the constructions done before.

Proposition

Let T be the canonical trace on E and I the corresponding

L~-norm. Then the limits



U =1lmWh, gcéb
9 n* 9

exist in |. |*-norm and yield a faithful unitary representation of G

into E. Forany n>1 and ge GhCCG (see 3.4.) we have
: 1
0) KSMig e

Proof

It is enough in view of the fact that G/G to prove the following

inequalities
(2 H;"UHHU 5.7*n for 9C @
(3)  1ww-whu <2t, for g.h ecn with gh Can

4 Il i for 91 G, g/i -

Statement (1) in the Lemma is easy to obtain from (2), since in view

of 3.5. we have 7En+|+7 cn2+ ™ <cn e

Let us prove (4) For ge G
T("g) Isn| 1& isilltk c Kjl (k) * «{ -

i g/l and ke

9¢ o «.)ng'lm . then tj(k) «gk / K

Since K is (crj g (invariant

i onf' | ]sjl«nlk'l *
)i | d n” n cn e



Let us prove now (3). Let g.h.gh c & . If ke K' with
hk,ghk ¢ K then i[j*(k) = (k) =ghk . So front the (cn»t)

invariance of , it follows that

B5) |k e Kjl Ijt5(k) M ; h(k)}| <cn|Kj|

n. n . i pn pn
V V V t=2?I(ks)E(K2.s).{k1.s)t(k1l.s).(k.srt(k3.s)i(kiS]

~ i (k;s) (K,s)'(k;s) ("3*s)*("*s)

where i c¢c In, (k,s) c K? x S? , k] = f"(k) , kp = ¢g(kl) and

k3 = £gh”k”~ ' moreover* 'n the last meill,er we sum only for those Kk

for which kp / k™ . Hence (5) yields

(6) IWBLh “ Whu i ISLI"1 * £niki'ISIl " 2 En

We shall now use the results in 4.3 to prove (2).

Let gc G . From the definitions

U3 lfkls EK*)*(k*s) ' ij kis./V " EL+H

where i e In, (k,s) ty S" , k] >*g(k), J* l,+]* neM ,

s mitn(k,s,m), 71 » nn(kl,s,m) ; in appear those terms for which

nt Rl?t and in those for which mt M|\ R'" . . W infer
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i T i |
1£21T1 s innisjldal - IRy Bls

From the assumption 4.3.(2) on the bijection r we infer

I 1%'r,
E Uj k,itt,sI'(;r s',<r,!"

i )
where (k,i,t,s) c K|7 X L1>J.

It =1t0 (k,j.) , ="(¢g(k).t) . s=s"j(t,s)

X Tv”.J X Sy satisfy  (jt.t) e R s . and

On the other hand

M
913k kdrs'lfe 8 RS 3H 4

where (k,i,t,s) e Kj x X Tj xS, , and 7 =Kl(k,t) ,

F{ = t-’y?,+/\(kn(kti))# s * T’[)*J'(t‘s) . In ) we sum for (t,t]

and in e for (*,t) CLlIlJ.J xT’g»J.\ pv . . Therefore
niirn+li-1

n=iiT < N i«c?i(iL; . JiiTi. Ji - ipi,ji)isiils
and from 4.3.(3) we infer
it2i, * irjiTi tnisn*liisnt'r 1 m<r
With the Corollary 3.4 we obtain
i, - tji, i
<21 [« M) c Xj-LAjIflijlk).«) t .9*,H"(k..)))|||iij||s;

iij
n,irn+Ili-I » 6 C.



Finally

and (2) is proved.

Let An be the m.a.s.a. of En generated by (E j),se” < Then

AnC A+l  and if we let A denote the weak closure of in E
n

then A is a m.a.s.a. in E . The following result is a consequence

of the proof of the Proposition.

Corollary
Forany n>1 and gc , there exists a projection pj e A such

that T(pJ) <8tn and (I-pJ)Ug ¢ (I-pJ)ud -

Proof

Let g c Gr and consider the projection in A
n v pcnH
V.L'W
% S
LJh h.ls.-S 1|t]]U] Pijliul*> =

Then (I-qjj)uj = (I-q]))Ugt! and a careful inspection of the proof

of the Proposition reveals that in view of (2) we have actually showmn

that
|a] ijg s "* 1!

h
Hence t(qj) i and if ],8 ,8t pg "kvh qg hen

ii - Pgug m s+ G



and
t(p) i £ T(QJ) < £ 7t <8t
9 k>n 9 k>n K

The Corollary is proved.
Remark

Sore words about the ideas that lie behind the proof.
Let n,1 = £ EI for i el() and kMK c K

M2 scSM »)»(*2,s)
Let (E"*L¢ ). . . be matrix units for an AF-algebra B =

**2 'k j**z n

which has as Bratel 1i diagram the Paving Structure
(K"l . (actually the numbers (|k!?|) .) , and for which II" |

gives the multiplicity of the arrow K? + Kk'+! . Let hfi be the
) . N J
homomorphism E1_|l* E which maps FK] . onto Eki - Then hn+li®n

is approximately equal to h , with even better approximation as n
grows. What we did in 4.3 was an "ergodic" almost embedding of this
AF-algebra into the UHF-algebra E , motivated by the fact that it is
much easier to reconstruct UHF-algebras inside a given W-algebra, than

AF-algebras.

The Corollary shows that on K | aJIJ_IIQ* L1 we have y « t)l/ * id
J

and so we obtain at the lim it a representation of G in the weak closure
of A. If |1 ] =1 for all n, then B would be an UHF-algebra and

taking all multiplicities |S?| to be 1, we were done. If the



proportion of K? 1? . in would not depend on j , we still

could take the same multiplicities for all KL and again we were done.

In the general case, in 4.2 the ergodic measure u on the topological
dynamical system (Kt,r) yields a tracial factorial state on B by the
construction of Krieger, S tritili and Voiculescu [M . This way we obtain
a finite hyperfinite factor and the combinatorics in 4.3 can be viewed as
an explicit form of the classical proof of Murray and von Neumann f "}!]

that such a factor is generated by an UHF-algebra.



‘-strongly was shown to exist and yield a faithful representation of
G in E. Foreach n, E=E10 ((Cn)'ft Ef and (En)'nE is a
Ilj  hyperfinite subfactor of E on which Ad acts almost trivially.

We call (E,(li*)) the submodel and (Ad U) the submodel action.

We let R be a countably infinite tensor product of copies of the
submodel factor E , taken with respect to the normalized'trace,and for
each gc G, we let bo the corresponding tensor product of copies
of the submodel action Ad U Then R is the hyperfinite 11 factor
and (a,is an action G->Aut R which by the Lemma 1.3.8. [3 ] of Connes

is free Wecall R the model and a”:G »Aut R the model action.



proportion of K? 1" . in K™ would not depend on j , we still

could take the same multiplicities for all KL and again we were done.

In the general case, in 4.2 the ergodic measure p on the topological
dynamical system (K ,r) vyields a tracial factorial state on 8 by the
construction of Krieger, Strati 13rand Voiculescu [M L This way we obtain
a finite hyper-finite factor and the combinatorics in 4.3 can be viewed as
an explicit form of the classical proof of Murray and von Neumann [

that such a factor is generated by an UHF-algebra.

4.5
Let us recall some notation and results in this chapter which are

needed further on in the paper.

We have started with a discrete countable amenable group G, for
which a Paving Structure was introduced in 4.3. For nc N, with
(K").1 ¢ In the Qlpaving subsets of G on the n-th level of the Paving
Structure, we have constructed finite sets (sl'),i L Ip and have set
*VIK? «s" . W have considered a factor fon with a matrix units
basis Es>lf indexed by 5n and have constructed unitaries LB in tn .

associated to the approximate left g-translation ErJ:I_an -U K|1 in the
P

Paving Structure. W have denoted by An the ilia.s.a. of BEn generated

by (E"s) . Wecall ((Ej>t),(uJ)) the n-th finite dimensional submodel.

We have assumed that EnC in a way in which AnC ALl , nt N,
and have let f be the weak closure with respect to the trace of tn
n
and A be the "diagonal" m.-».«.a. of C generated by LJA . Since

n

|5f1| ®#» , E is a ll, hyperfinite factor. For each geG, U «lint "
1 9 n-»9



*-$trongly was shown to exist and yield a faithful representation of
G in E. Foreach n, E=[n8 (En)'n E) and (En)lr>E is a
117 hyperfinite subfactor of E on which Ad W acts almost trivially.

We call (E.(Ug)) the submodel and (Ad W) the submodel action.

We let R be a countably infinite tensor product of copies of the
submodel factor E , taken with respect to the normalized"trace,and for
each gc G, we let ag0® be the corresponding tensor product of copies
of the submodel action Ad Ug . Then R is the hyperfinite 17 factor
and (ag°’})is an action G->Aut R which by the Lemma 1.3.8. [3 ) of Connes

is free. Wecall R the model and a”~:G * Aut R the model action.
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CHAPTER 5.

ULTRAPRCDUCT ALGEBRAS

We study specifics! properties of ultraproduct algebras and use the

machinery thus developed to study ultraproduct type automorphisms.

51

In what follows Mwill be a W-algebra with separable predual.
We denote by U(M) its unitary group and by Proj M its projections;
M will be the hermitean part of M and Hl its unit ball. W choose

once for all a free ultrafilter u on IN.

Let us consider the following C -subalgebras of 1@(\N,M):M , con-
sisting of the constant sequences; M , the “-centralizing sequences
(i.e. sequences (xv) with lim]|[xv,jJ]] = 0 for any |
the sequence w-converging °‘-strongly to 0 ; bt , the normalizing
algebra of 1"|. Both M and MU normalize lm, hence are C*-subalgebras
of ft

Let 4> be a nonnal faithful state of M . A sequence (xv) c¢ 1(N.M

is in M iff for any E>0 there is 5 >0 and a neighbourhood W of

u in N such that for y t M with |jy|] <1 and []y||® <5 we have

IM*wl||* + [JyxVII* <» ¢« vcw.

We consider the quotient C -algebras M *= M*/! and * M./,
a 9 g ™ %M

and identify M with (M+I(]l)“l>' This way M and I\/b are C*-subalgebras



of M1l and Hf\ML) =ZM . Aly $eM gives a form on M1 by

XI((xv) ) = lint 4(xv) ¢ its restriction to M will be denoted by $
v VHY) W a

For simplicity of notation, we write IMIj, and IM I* for the norms

N*Nu and eIl u .
* $

Lemma

Let y e M be faithful and y ¢ Ml Then ( ~ is complete in the

topology given by the seminorm x “m []x[|* + ||xy]|] *

Proof

The above topology being metrizable, it is enough to prove sequential

completeness. Let (xn)ne bo a sequence such that

Hxn+r xJ 1* + [Kxn+r xn)y|l*<2'n *

Let (xn)v»(yV)v be representing seugnces for xn and y , with all
X c . For each n we can modify x* for v outside a neighbourhood

of u such that

iK +r2*H *+ H(xn+rxmyVIU <2'n

holds for all n and v . Then, ¢ being faithful, for each fixed v

(x*) is s -fundamental hence s -converges to some xv ¢ H , and

(x>v)n s -converges to xwv ; so for all n,

IK-*vv  11(r-xvy[id < 2



and it remains to show that (xv)* is w-normalising. But this is true,

since for (tv)v c 1W with all tv Cm{?, when v »w we infer

H*vtv||# < \\?2\\"N o

,-n+|
for any n .
We are now in a position to prove the following extension of
Proposition
* #

M is a W-algebra and M and H are W-subalgebras of it. For

any faithful $ in M, is in (Nb)* and is faithful.

Proof

Let $ be a faithful normal state on M. Let x>0 in (Mi)+ be
represented by (xv) ¢ Mr. If $°(x x) =0 then (xv)» ¢l and x =0 ,
SO is faithful. By means of the O\S ?ons__truction associated to the
faithful ¢w , ve may suppose that M1 is a C”-subalgebra of some B(H)

having a separating cyclic vector (, ¢« W show that is so-closed.

Let (xi)ic (M) be an so-fundamental net; for any y EMD
xi is fundamental in the topology in the Lenma before, and so there is
xy e (M)" with x.c xyc , x.ye wxyy? . As £ is separating, xy
does not depend on y , and so x. converges on the dense subset of

H to some x E (MW)"; therefore M is a W=*-algebra. Being 11. lcomplete



*
M is so-closed in I\p , and hence a W-subalgebra.

For any x e (MO¥ we have

lNtx,«“ DIl 1 2||x|

nexybl ™ <2||x[|™ |yl + Uxyd™ + [[xy*||* for y EM

The left members are thus so-continuous seminorms on (MJ))h . Since
. *
they vanish precisely for x e (Md)hme have proved that M ds a W-

subalgebra of M

Problem

Is it always true that H'n H » N, ?

d
For x ¢ Ml we can define tw(x) =m - 11m Xv ¢ M, where (xv)
vhii %
is a representing sequence for x . Its restriction tm to M is a
u
faithful normal trace with values in Z(M) . For + ¢ M the restriction
of to depends only on the restriction of $ to 2Z(M) ,

since 4TJ(X) =$(t0(x)) , X e Nb

5.2

¢ shall deal further on with certain automorphisms of M and MU
constructed from the automorphisms of M. Suppose we are given a sequence
(av)v fi of automorphisms of M such that e * 1im av exists in the

u-topology. This yields an automorphism of V'(IN,M) sending (xv) into

(av(xv))v . Since



L.V IE*i 11V = »t]] Ixv] 2 M(*-8)(xvV) |

this automorphism leaves !~ invariant, and hence gives an automorphism

a of Mv. As

Q0. av(xv)]| | = [I[*-a\x V]| |<| [r*-S xv]|[+2 ||*-aV 8| 1L|xV]|
a leaves invariant. We call semiliftable such automorphisms of
Mior M ; if av =8 for all v we call the automorphism a = (av)

of M respectively M, liftable and denote it by 8U respectively 8Id .

For a semiliftable a = (av)V e Aut Mu , with s = %av , if

pPcM and x = (xv)» eM , then

*(TU(a(x))) « lirn®(ov(xv)) = lim *(8(xv)) = *(b(tw(x)))
W \H)

therefore iu.a = 6-tu ; in particular, semiliftable automorphisms of

Nlld fixing the center of M are t preserving.
u

Recall (141) that an automorphism o of M is called properly outer
if none of its restrictions under a nonzero invariant central projection of
M is inner. We let CM denote the centrally trivial automorphisms of
M, i.e. those e e Aut M with eId =1d e Aut l\/IId ,and call oe Aut M

properly centrally nontrivial if none of its restrictions under an invariant

central projection of M is centrally trivial.

For a discrete group G, a mp uG Aut Mis called free
(respectively centrally free) if all ug for g/ | are properly outer

(respectively properly centrally nontrivial).



If Ue UMY) , then Ad Ue Aut M0 is semilif table. A broader
class of semiliftable automorphisms is obtained from the approximately
inner automorphisms of M. Let 0 c Int M and let (Uv)v be a sequence

of unitaries of Mwith Ilim Ad W =e . It is easy to see that (Uv)v

represents a unitary U in M1 , and Ad Ue Aut Mi is semiliftable.
Moreover 6 = Ad UM , but, of course, Ad U is not uniquely determined

by e .

In his paper [4 ], A Connes establishes connections between the
automorphism group of a factor, the richness of its centralizing algebra
and its property of being McDuff, these properties being essential for the

constructions that follow.

Theorem (A. Connes)

Let M be a factor with separable predual. The following are

equivalent:
1) M is McDuff, i.e. M» MO R, with R the hyperfinite
11~ factor.
(2) Tn't W/Int M is not abelian.

3) TroAICt M.

) M1 is not abelian.
(5) Mi is type II,.
5.3
W formalize below some useful tricks in Mi , coming from techniques

of von Neumann, Dixmier, McDuff and Connes.



The idea of the first one is to reindexate representing sequences
of a part of MJ fast enough to meke another part of M behave like

constant sequences with respect to it.

Lemma  (Fast Reindexation Trick)

Let M be a W-algebra with separable predual and u e &NWN .
*

Let N and F be countably generated sub U -algebras of M , and

8 a countable family of liftable automorphisms, leaving N invariant.

There is a normal injective ‘-homomorphism 4N % Mi with
() $ is the identity on NAH

2) (N M'it)c_F'n M

@ wai(x) = Xe N, aeF

(4) ew(*(X)) - cown xeN, 8.

Proof

W nay suppose that He NO F . For natural n, we take finite

subsets Nn(_:. N

- of N with ft=Url]\| a unital ‘-algebra over Qtitt) ,

n
s-dense in N and globally fixed by 8 , such that ftn M is w-dense

in M and NnM is w-dense in Nn Mj ; finite subsets Ffc Fnt]

no. \
of F with | ~-UF w-dense in F, Fn M w-dense in M and yFa H
nn

w-dense in Fa H ; finite subsets M” M#! of M with union norm

dense in M ; finite subsets of 8 with union 8

For each x e N we choose a representing sequence (xv)v such that

for any veN |[xv] <|[Ix|] , (x Jtm(xv) , Xx)v - XXJ for Xc(L ,



and xv =x for xeM.

Let $ be a faithful normal state on M. For each x e M1 and
nclN find 5 > 6n+\(x) >0 and a neighbourhood VVI(X)A Wi+ (x)  of
in [N such that

+ NyxVII*\ 1/n for v eV\r/](x)

For n>1 choose p(n) e(N such that P(n) >n and

®) P(n) £ Wi(x) xcN

(6) Hixp « yp<> -<xp)p(n, 112 <N xy .\p

@) [MIxp(n),a"]||*<./n XENnn de ac,

8) [* (A p(n)) - i['@t" (x))] <lin xe Nn v @ o Fn’ * EM
(9) ile(xp("™) - @ (*))p(n,lij <l/m xc Nn* g © AutM with 8W

Ve define ~ on N letting, for x = {x")n *(x) be represented by
(xp(n))n * by 65) $(X) ¢ v , and from (6) and (8) t is a + and
hence || ||, preserving homomorphism, so it extends to a normal injective
*-homomorphism of N into M. The statements of the Lenina are now

straightforward to obtain.

6.4
W can reindex sequences of a part of M slow enough to make them
behave like constants with respect to another part of M and to a family

of seinil if table automorphisms.



Lemma  (Slow Reindexation Trick)

Let Mbe a W-algebra with separable predual and u e[Nn (N .
Let N and F be countably generated sub W-algebras of Mv and A a
countable family of semiliftable automorphisms of M, such that if

(u ;va A and e =Ilima , then 6 ¢ A, and such that A leaves N
% v
invariant.
There is a normal injective ='-homomorphism >N @M satisfying
(1) # is the identity on Nrv M
(2) *(NflH jcKu
?3) 4>(N)d (Fr>MJ' HMW
(4) T™Wa*(x)) = Tw(a)tw(x) xcN,ackF

(5) 0(*(x)) =0(«(X)) - ¢B(X)) xeN, a = (a) cA 0 -lim ay
VAw

Proof

W may again suppose that M6 Nr\F . Choose Nv Fn, Mhte and
the representing sequences for the elements of N as in the Lemma before.
Moreover take finite subsets An”™A ||[+1fiA with union A, and represent-
ing sequences  (aV)y for any A CA with all uv =6 if Q= for
sore 8 e Aut M . Take the same way as there 6n(x) and W)(x) for xc N,

and choose for any natural n , p(n) ep such that
P(n) € WA(X) x e N
| XP(n)yP(n).(xy)P(n)||*'< 1/n X,y E N

Il *P(n).a |fj* < 1/n ae FNA M, Xxe Non M



[*(Tu(@)xp(N)H (TWa)TUx))lI £ /n xeNn, acFn, *dvh

[[O(xp(n))-(SU(X))p(n)[|* £ 1/n xeNn,BcAut M with Bwve An

There are neighbourhoods VAC Vji+* of u in G with =IN,
n V =0 and such that for any vt »
n
1 *p(n)..u 11* < 1/n xENn , »eFnn M
li>@avxp”)-<'(tu(a)xp™n™)| < I/n  xtNr> aeFr> “cMn
[lav(xp(n))-B(xp(n))| < 1/n u=(@n) e A andB=Ilim uh
\Y n+o
W define kiN*IN by k(v) =p(n) if Vew\Vvnti , and for
Xx cUN , we let *(x) be represented by (xk™ )v . The remaining

n
part of the proof is similar to the one of the preceding Lemmea

55
In M we can put together parts of several representing sequences

to obtain a new representing sequence.

Lenina (Index Selection Trick)

Let M be a W-algebra with separable predual and u € 6 W/ IN .
Let C be a separable sub C -algebra of 1 (NMJ) and A a countable
set of semiliftable automorphisms of M , which acting term by term on

C leave it globally invariant. Then there is a C -homomorphism

t:C % M1 such that for any x “ (xn)nc C

1) w(y(x)) * w-11m Tw(xn)
o
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(2) Y(x) =x if xn=x for all n
3) *(x) ¢ Mi if xng Mv for all n

4) Y(y) =a(y(x)) for aeA and y = (a(xn))n

Remark

. . + . Jh
From (1), if for some faithful $€ M, lim ||x ||, =0
v n n ’
then V(x) =0

Proof

Let Cpc.Cnfl , ngIN be finite subsets of C with union

%

0 =UOn a unital dense sub ‘-algebra of C over O + id} , kept
n

globally invariant by A , and such that g r\ 1m(\NM) is norm-dense
in CH1 ((N,MN) . Let Ahc 'Ah+l’ be finite subsets of A with union
A and MnCMnﬁCM, be finite sets with union norm dense in M

Let & be a faitliful normal state on M. Choose for each ac A a
representing sequence (“V)v ¢ For all * EM’ take representing
sequences ( x ~, real ¢n(x) >0 and neighbourhoods W](x) of u in

IN as in the Lemmes above.

For any n>1 we choose p(n) cIN, p(n) >n, such that

(5) I* (tw(xp(11))) " Lim 1V, En e Fn
Let V) , nr fi be neighbourhoods of w in IN, W2 Vn+ 3

AV *0 be such that for n> 1.
n n

*

IN ,



(6) Vn— WWxp(n)»  ~ “ <mme Cn

(7) [*(fO(x (n))* "™ <(em(x*))] <1ln x- (x) cC , ec M
r' ' rotw

(8> HxXiWw p (nf(Cly)p(n)Il?il/n * = <m>, my | <*> « C,

91 H.ov(xJd,,j-(«(xX));w ITil/n >e(«,).. C,
<"» IMXp(n)*P]I i Si- («,).« c,r> ]."(H,H,,) , * «H,

W let KkIN »IN be defined by k(v) =p(n) for v e VAM nt|
For x=(x ) eC let Y(x) e Mi be represented by the sequence
(xk(v))y * ~hat indeed in MJ is shown by (6). W have
(k)] < |Ixj| for all xc? , and so we nmey extend y to all of

C by continuity. The Lenina follows now easily.

5.6
In what follows, we often have to work in the relative coimiutant in

of some already done construction. Wb therefore need the following

property.

Definition

We call o c Aut strongly outer if the restriction of o to the
relative commutant of any countable O-invariant subset of M; is properly

outer. A discrete group action a of G on M is strongly free if all

a , gt !l are strongly outer.
Problem
Is any properly outer semiliftable automorphism of strongly outer?

Partial affirmative answers are given in the sequel, extending results

of A. Connes.



Lenima
Let M be a W-algebra with separable predual and u e riNIN .
Let a = (av)v be a semiliftable automorphism of M and R =liin av .

v-kj
If 0 is properly centrally nontrivial, then a is strongly outer.

Proof

Suppose that the restriction of a to S n M , is not properly
outer for some countable a-invariant Sc MW, and thus there is a non-

zero acS'nMU wi th
a(y) a- ay yeSn M

Let p be the central support of « (]a]®*) in M, and q = V B¥(p)

Since 0 is properly centrally nontrivial and 0(q) =q , there is
some zc” with gz =z and 07°(z)-z t O . But q|0w(z)-z|*/ 0 ,
so there is k e Z with (P)IPA(z)-z|* 1 O . Let x =(0 )'k(2) ;
then p|0~(x)-x|ji 0

W use now the Slow Reindexation Trick. Let A m {a,nlW} t AutiM“)
N the smallest W-subalgebra of that A leaves invariant and which
contains x , and let F be the sub V\I*-algebra of M generated by a , p
and the countable subset S . W send x into y 3 *(x) e M/ such that

y e S'n , ya»ay, o(y) mOu(y) and
t (1% *1i 1. (y)-y |*)-Tu(].*|2)t(]».(x)-X|2) .

From our choice of x

peal | bu(x)*x12) " TU,iPIOW<X)' x*2) 0



As p is the central support of TY(lal2) KTu(la*|2) > we obtain
Tu(l(3u(y)-y)al2) - tu(la* |21 (y)-y[2) =T (Ja*[2)t((IBw(x)-x]|2),i

Hence (8w(y)-y)a / 0 , in contradiction with the fact that

(6jy)-y)a = a(y)a-ya =a(y)a-ay =0

5.7
Another case in which a semiliftable automorphism of is strongly

outer is treated in the following Lemma

Lemma
Suppose M is a factor and let a = (av)® be 3 semiliftable auto-
morphism of M , such that av is properly centrally nontrivial for all

v . Then « is strongly outer.

Proof
Since M is a factor, e takes scalar values; let r mey and

let |x] =+t(|x]) for xe

Claim
Let 3 c Aut be properly outer and let g c Proj be maximal

such that t(q3(q)) <1 t(q) . Then qVil(gVe ~(q) 3 1

Indeed, if not, by [ 4], Theorem 1.2.1. (or, alternatively, by
reasoning the same way as in the proof of the Lemma 6.3 below) we get
a projection gl / 0 with gl <1- (qve(q)Vvs 1(gq)) and

T(q'S(q")) t(q") . But then (q'Vs(ql))(gVs(g)) 3 0 and thus the



maximality of g is contradicted by replacing it with g +qg . The
claim is thus proved, and from it we infer x(gq) =r(B(q)) >~ and so

T((6(a)-a)2) * 2T(a)-2x(aB(q)) > 2.J.(H) =» -

To prove the Lemmm let S = (sn)n be a countable a-invariant ‘-subset
of and suppose that a|S‘o is not properly outer, that is, there
exists a e Sn , aM , such that

a(x)a = ax for xe S'n MUJ

Let t be a normal faithful state on M and let Un?1 be a total
subset of M . Let (aV)v and (s")v be representing sequences for a
and s( respectively; n>1,2,... . Let us keep v c N fixed.

The hypothesis yields by means of the preceding Lenma that 3 = (civ)* € Aut
is properly outer, and thus by the Claim there exists a projection qe M

2
with t((3(g)-q) ) >J . Remark that in the algebra M! we have

XW(|6 (g)av-avq|2) - Tu(|(3(a)-q)av|2) -
= Tw(lav|2)x((6(q)-a))2 > $ tu(lav|2)

Hence we can pick out of a representing sequence for g an element

gv ¢ M such that ||qv]] £ 1 and

lv(qV- «VII#>III«\(I#

HIqV.AK]|] £ Ko» o1
[I[gv.skR][fj< 1l Kw- l.... v

Then the sequence (qv)v represents an element g e S'H M1 satisfying
llo(a)a - aqll2 > J]lal|2 / 0

and the contradiction thus obtained shows that a is strongly outer.



5.8
The following result appears, with a slightly different proof, in

[ 13 ( Lenime B.5].

Lemma
Let M be a factor and let EC M be a finite dimensional subfactor,
1cE. Let ut (INMN. Then the inclusion E'A M- M induces an

isomorphism (E'raM) w Mu

Corollary
(1) If M is McDuff then E'AH is McDuff.
2 If 0t AuuM OM and o(E) = E, then

(o]E'a M) ¢ Aut (E‘'f\ M SCt(E'n M .

Proof of Lemma

Let (e. ) ij c | be asmu. generating E. Forany yr M

N»d

with  !Hyll <1 we have

= Z e. .YVY.
Y= af G X

With iy f ck.(ycj,ke B ° " 1Hiijii i
If ¢dcM and xc E'A H, then
C*x1(y) m z e. i)
i
hence

MU . xill < 11r I|r.(«|E'r»M),xi||
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and thus the inclusion E'a M->» M induces an inclusion

Let P:Mr\E‘' »M be the conditional expectation

- p(x). nrl t e >tK
"5

If xc M, then

P(x)-x » I Ifl r ei.6[x-0.i]

Hence, if (xv)v e , then

lim (P(xv)-xv) =0 ‘ -strongly
WU

and so (P(xv))v « (xv)v . Thus P induces a mep

inverse to the one induced by the inclusion.

The Lemma is proved.

(E'n M »



CHAPTER 6.
THE ROHLIN THECREM

In this chapter we prove a Rohlin type theorem for a discrete
amenable group G acting centrally free on a von Neumann algebra.
As a consequence, we show that if H is a normal subgroup of G, the
Rohlin theorem holds for the action of the quotient GH on the almost

fixed points for H.

6.1

Some of the basic tools in the modern developments of the ergodic
theory in both measure spaces and von Neumann algebras are the various
extensions of the Rohlin Tower Theorem. The one proved in the sequel
essentially states that for a free enough action of a discrete amenable
group G on a von Neurenn algebra M, one can find a partition of the
unity in projections indexed by finite subsets (K. of G, such that
G acts on it approximately the same way in which it acts on i°(L_J K.) by
means of the left regular action. The equivariant partition of ulnity thus

obtained is the starting point of most of the constructive proofs that

follow.

This theorem extends, on the one hand Ornstein and Weiss's Rohlin
Theorem for discrete amenable groups acting freely on a measure space
([36]) and on the other hand the Rohlin Theorem of Connes for single
automorphisms of von Neumann algebras ([4 1). For (not necessarily
centrally-) free actions the Theorem of Connes was extended in [33] to

abelian groups, but for amenable groups this problem is still open.



If t is a trace on the von Neumann algebra we let |x|* = +(|x]) ,

x ¢ M. For the sake of simplicity, we write |x]|t for |x] if xeM

Recall that a crossed action of G on M is amp aG mAut M with

=1 and “gahngh ¢~ M, g«hc G.

Theorem (Nonabelian Rohlin Theorem)

Let G be a discrete countable amenable group, let M be a von
Neumann algebra with separable predual, and let wt .TNAIN . Let
a:G » Aut 'Vb be a crossed action which is semiliftable and strongly free.
Let $ be a faithful normal state on M such that al|Z(M) leaves $|Z(M)

invariant.

Let e>0 and let K7,...,KM be an L-paving family of subsets of

Then there is a partition of unity (E. k)<=l N k. K in

such that

0 * K1 £ a JE. ) - g < 5el
) 1 k.th"I kt ( -*) g'<Il>-

rEi,k,ag(Ej,£)] ' 0 for all g,i,j,k,t

ugnh (E1.k} " agh(El,k) for 3l g.M .k

Moreover, can be chosen in the relative commutant in I\ﬂ)

E k1K

of any given countable subset of M



The estimate (1) above is an average estimate. We give below other

types of estimates that can be derived from it.

Corollary

In the conditions of the Theorem we have for any g e G

"IN

<4 " IVE.K,*E.gkhil0l -1 ... Nkt N9t

For any 5 >0 and any subsets K( with JA.| <ilK. 1.1 =1.......
we have

(5) T iiE. .i < 6+5e* . i » l...N ; k t A

i k 1K * 1

Proof

For any i = 1...... N,keKAg'lK and t ¢ K

I“g(Et,k) * Ei.gki* -

* 'm “«.*l - fu VvV

Summing for all  k,n as above, we infer
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where kcin g~K. , and tm e K . Hence (4) follows from (1).
Let us now prove (5). For any i « ,ncA and kc K
. LiJ$ ~ B kD> + B.iJ$

Sunning for all such mk we get

IM *m [*ilAlIfIHA +

+ £ _I(E ,) *E Kl
K,i kt™1 11 1K

and thus

£* {[JEl A * [K>1" kA 1Ukt-11Eit> « £1 A

where mc Al , k,i. ¢ K . Thus (5) is obtained from (1).

Here there are some circumstances under which the hypothesis of the

Theorem is fulfilled.

If the algebra M is a factor, no assumption on the state $ is
needed, since < is the canonical trace on M , and is preserved by

semiliftab!e automorphisms.

In the case when a:G % Aut M is induced by a centrally free crossed
action G Aut M then by the Lemma 5.7 u is a strongly free action;
for instance if M ls the hyperfinite [Ilj of I~ factor, then any free

action G@mAut M is centrally free.



For an abelian algebra M= L“(X,8,jj) , with y a probability
measure, if a is induced by a measure preserving free action of G on

X, then is strongly free and one gets the Ornstein and Weiss Theorem.

6.2

The proof of the Theorem consists of two parts. In the first part
we use a global and geometric approach based on a Lenma of Sorin Popa to
obtain a basis for some (possibly small) Rohlin Tower in Ml) . In the
second part of the proof we put together such towers in order to get a
Rohlin tower filling almost all the space. A difference between this part
of the proof and the ones in [4] and [33! is that each time a new tower

is added, one destroys a part of the old one, taking care that the procedure

converges.

Let us first state the following result (137, Lemm 1.3 1) of Sorin
Popa.

Let A be a finite von Neumann algebra, with a finite normal faithful
track t , and let B be a von Neumann subalgebra of A . Then
there is a unique t-preserving conditional expectation of A onto B.
One calls x e A orthogonal on B if Pg(x) =0 (or equivalently if

t(xy) =0 for any y e B) .

Lemma  (S. Popa)

Let A be a finite von Neumann algebra, t a normal faithful trace on

it, and B a von Neumann subalgebra of A . Suppose that the relative



commutant condition B'n A¢B holds. If e>0 and x!l... xme A
are orthogonal to B, then there exists a partition of unity

(e.) ._i in B such that

@) N.~exigllTi cll*illT for 1=1....n

Let us briefly sketch his proof, since in our context it will yield

a geometrical insight into the structure of discrete crossed products.

One begins by proving an elementary Hilbert space Lemma, asserting
that if (Ug) is a unitary representation of a discrete group r on the
Hilbert space H , v/hich has no nontrivial fixed points in H, then for
any eeH and 6 >0 thereexists g c rsuch that Lée is
6-orthogonal to £, i.e. such that ||Ugr,-5]|] > (/2-6)]]c|] . If not,
one shows that for z/ O the minimal norm point in cow{Ugc|lg e r) is

nonzero and is fixed by (Ug) .

Let p:A-> B(LZ(A,t)) be the QG\S representation and let U be the
representation of the unitary group of B induced by p on the space
H= L2 (A, t)o LZ(B,t) . The absence of nontrivial fixed points for U
follows from the relative commutant condition B'n A£ B . The Hilbert
space Lemmm yields for any x c A orthogonal on B (viewed as a vector
in H) a unitary uc B with]|luxu - x||*" ||x||]t .Spectral pro-
jections of u yield a firstversionof thelooked for e”... encB ,

with n=1 and ¢ =/J in (I and ari inductive refinement of the procedure

yields the result in the Lemma



Let us consider now the case when B is a finite von Neumann algebra
with normalized trace t© , and {a ) is a free t-preserving action of

a discrete group G on B .

Let A be the crossed product B Xa G and let Xg e A denote the
unitary corresponding to the left g translation in L(G) . W identify
B with Bx* and extend t to trace on A letting for x i. A ,
X =Zxg\g , with Xgc B, t(x) =t(Xj) . Then x -»x* is a t-preserving
conditional expectation of A onto B, and all Xg for gt 1 are

orthogonal on B .

Let a=Za9X9cB'fiA. Then for any x e B and g e G wehave
g

9 4§
hence B'AACB . This yields the following.

au_(x)( =xa, . Since a was assumed free, a =0 for g/ | , and
(S g

Coro! lary

Let B, t and aG & Aut B be as above. Let 6 >0 and let K be
a finite subset of G, with W K. Then there exists a partition of

unity (e jdn , ., in B such that |e | <6 and

[°jCy(ej) IT<6'G*T i “ 1. n; 9eKkK

Proof

In view of the preceding discussion we mey apply Popa's Lema to the



B-orthogonal family {Xg|g e K} , to get a partition of unity

in B with
211V gfilu * 9 e K

Thus for g e K we have

o £iif,x.f,ut «c?iicr’
i \

and by the Cauchy-Schwartz inequality

Let | = Hell I"a (f*Ir »«(f,) for sol* 9 ¢ K)

We infer

a t(fj)< t E Ul«g(fi)IT< IkU2IN | = ez
i,i0 oK id 0

and so, if eQ= E fl . then t(eQ) <e .
ielo

For any 1c |\ IQ we have

Iflag<f1>>T " elflU e gcK

and all that remains to be done is to relabel (f, G\



6.3

This section contains the first part of the proof of the Rohlin
Theorem. We show that almost all the space can be almost filled up with
mutually orthogonal projections, each of them suitable to become a tower

basis for a Rohlin tower.

Let us come back to the notation used in the statement of the Theorem
6.1. \We shall work in the relative conmutant in MU of a countably
generated u-invariant sub W-algebra N of M . For each g, he G
o
mey assume that N contains all ug,h , and thus that ahN f\ MW is an

there exists a unltarg u e MW such that agah =Ad ug,h agh .o
action. Since a is strongly free, u!N'r\M is free; moreover
is finite and the trace "  (which depends only on ¢|Z(M)) is

u-invariant.

Lennia

Let fi >0 and let K be a finite nonempty subset of G, 11 K

Then there exists a partition of unity (e.), n in N'AH, such
that
0) 1e0I$ - 5

(2) ea (e?) «0 for 1<i £q,gcK

Proof
Step A
Let y >0 and f c Proj (NPVM?) , f / O

W show that there exists fl e Proj(N'P\MJ , 0t f' <f , such that



[fag(f,)If @~ 1, gcK

Let IT be the smallest a-invariant subalgebra of , containing

both- N and f . Then a is free on |'f\H . and by the Corollary 6.2

we may choose a partition of unity (fi » m in A MY such that

®(RW V/\Wl.lll""”I

Let 7. =f.f e Proj(N'n M) and suppose that for each i =1,...,m

gK
Then the assumed commutativity relations together with (3) would yield

m m

lif g.K ¢ w

m
L61 £ £iWMMfu (f)]) »
9

“i=l geK 19 I
in m

3 £ £ dlfyarD)!* i 2y 1 jriL °
i-1 grk 19 1 e -1 1 *

27°W(0 -fo)f) > 2r(|f|#|f01#) > t|fl4

On the other hand, from (4)
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The contradiction thus obtained shows that for sonic i ¢ ......... »)

7 KW i< 21'T>i,
and thus we may take f*' =T.

Step B
% show that for any f e Proj(N'r\ M) and any v >0 there
exists e ¢ Proj(NT\ K ) with
5) ex<f
(G) Je ag(e)|~ ifle|4 ycK
@ lel < @K Kl
The family of projections e e N*t\Hl satisfying (5) and (G is

nonvoid and well-ordered, so let e be maximal with these properties. W

show that e satisfies also

(8) ev(V ul(e) V(-f) =1
gcK 8

If not, let e be a nonzero projection in orthogonal to

the left member of (8). By the Step A there exists a nonzero projection
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e" in N'f\Mu, e" <e' , with |e" ag(e")|+ <" l«" |+ . 9e K-

Wk have e" <f and e" o (e) -0 for gcK, hence c+e" satisfies

(5) and (6). The assumed maximality of e is contradicted, and thus {mm)

is proved.

From (8) we get

1 = ]le V(V, ou(e))V(-f)] <
yeK'y

< e ¢ 1 la(e) +[I-fl. e I-[fL + (M*l)|e]
gek 9

and (7) is proved.

Step C
Let < i; N be such that (1-(1-*|K]) X <
% prove now a weaker version of the Lenina, showing that for any i >0

there exists a partition of unity ., in N~ Mv <&Uch that

i<
legg <O
(9) lol ag(ei)I® < Tleml» 1r 1. * 9 EK
Let us take f] m1 and construct successively for k m1.... q .
according to the Step B, projections ck and fk+] in such

that ek <fk , fkt| aV ek « and
ek ug(ek)|~< v]ek|® gcK

ioki ,i o*wr’'i\i, o
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V€ have Ifk+l U - (L"(1+IKD) ") If[cl+ for all k, thus

|[fg+ll i (M1 +IM) V i and letting eo =f~ , the Step C is
proved.
Step D

Since y can be taken arbitrarily small, and q does not
depend on it, we may apply the Index Selection Trick 5.5 to the projections
€o,...,eq obtained above, to meke y =0 in (9) and thus prove the

Lenina. Let us describe this procedure in detail.

For any natural n > 1, let us choose a family (e”) , k 0,

of projections in N'n M1 with

E e(n) 1
"|£0)|l < 6

(n), :
lek"- “gl'K £ I kml,...,q ; gc K
Let (U ) N be unitaries generating N, and let
A ={u |[gcGW {Ad uJmcN) C Aut M . Let =(e”™) ¢ (NM ,
(o)
k m0,...,q , and let C be a separable sub C -algebra of i (INM() ,
which contains all the projections €k , and which is kept globally

invariant by the automorphisms in A (acting term by term on t JNM ))

Let ViC Nb be the homomorphism yielded by the Index Selection Trick.

If €y =v(e.K) e MW, k «0,...,q then ek are projections of sum 1, and



satisfy
leoU =W = Hﬂ]

and similarly

*limlerh (eEnhl. BO k=l . get

lek W
no

W also have for all me N

Ad um(ek> = Ad umxy <@k>i =

»((Ad uin(€l8)))n) = Y(ek) =ek , k - 0........q

and thus ek e N'r\ M . The Lenina is proved.

W shall apply several times, in the following, the Index Selection
Trick in the same manner as above, in order to get genuine equalities in

M1 or out of approximate ones.

6.4

V% begin the second part of the proof of the Rollin Theorem by
associating to a family E = (E. ,1 of mutually orthogonal projections in
Ml) , indexed by i el * (1,...,N and k e K1(K|”"' ’K1I being the
e-paving subsets of G in the statement of 6.1) the following numbers

)



V  =u klt"°s(Ei'k) '

Recall that N is countably generated sub W-algebra of M

a-invariant and such that alNT\ l\/llJ is an action.

Lemma
Let E=(E. ,) be a family of mutually orthogonal projections in
N'rj NfO . Let 6 >0 and Acc G be given, and suppose that

0 < e < 1/16.

If Bb- < I-i*" then there is a family E = (Ej k) of mutually

orthogonal projections in N'A sucli that

L <. (KIELKkE.khiV

(@ g - @ <3di(bE, - bE)

() vV « e cg E<36C'1(bE, - bE) for ge A

Proof

The idea of the proof of (1) and (2) is the following. If all E.»
are 0, then a tower (Ei k) is supplied by the previous Lenina.
If not, we choose anmong the projections yielded by that Lenina a tower base
and then construct a tower (f.”")

, such that all f1k comnute with all

E. k; thenwith f » Z fAk we take E " =i. >k(I-f)+f<>k . In (D)

it is required that E be significantly larger than E , i.e. that



El*Klf\ be small with respect to ?[ ; this is achieved by an adequate
choice of the tower basis. mIn view of (2) we should care that a" ,
which measures the failure of (Eu% to be equivariant, does not

increase too much. The only problem is the fact that we alter the old

tower.

If f was «-invariant then cutting with 1-f would not affect
% approximate this by taking a tower indexed by a very large subset K
of G ; such a tower has a very good global invariance, and subsequently

we regroup its projections to get the tower (f. k) indexed by

For G=2 , | ={1} and ={l,2,...,p)C | , a typical picture

would be the following:
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In the figure, E , the new tower basis is drawn black, and is obtained
from the old one , by taking out E~ and adding the basis of f
rearranged as a tower, i.e. the dark parts of f . The projection

f has a very large invariance degree to u .

Let us begin the proof. Since we have assumed 0 <c < 1/16 , there

exists el ,0 < < c , such that

4 bE<(L - c>)(l-cl)
(5)  2cl+cO-cMKcei-efl< 3

W ney suppose that $ < (E[K.KA[)"! and that ADUK.I'

Step A
Let K be a (5,A)-invariant subset of ti , which is t—paved

by Kj,...,Kn . Choose, according to the Lemma 6.3 (with (K')"IK' ~0)

standing for K) a partition of unity (e”)" in NT* M with
(S L
ttg(ej)ah(ej) 30 o j " l.eeecd « ghCK , g/ h
lej ,ug(E,k)] * 0 for a1 j,i,k,g
Letting

x = IK'I*l S «:"( 2 Ei k)
geK 9 ik



we have
M* 3 &,w B«T(iLgKE,k) abE -

and moreover x conmutes with all e .

There exists j e {l,...,ql such that
If not, adding the opposite inequalities for | =1,....,0 we infer
bel |X|, i 1Cl-e0)xIt > (I-ei)(1-I«Ol

and thus contradict the hypothesis (4).
Wlet f=e ,f » | a(f) and p m|f . Then
J gcK' 9
|[fx]. < (I-c*)IfL and so

6 fPEE .| “ | Kk(f)E E KL !
) TR Bl g d i B

= £ lkpg\ .E E fo), WiK'lfxl,, i
geK' 9 i.k I,K)' v

| (HIIKIL 5 Ok

W assumed that (KA , i e 1, c-pave K . Hence there are subsets

(L) ,iel of G ad ACK , el . te

such that if K-U KILi , then



IKAJ > (I-e)1n!

(N
[K'x K <e|K'|
Let us define now for i e |l , kit K
Stk . <ki | icL, . k; k)
S =u Si
Accordingly, let us take for i el , ke
f;ikt » E «, (0
gtsi.k
f<*.V
E
f r f
f i1
Then f = £ u (f) <_f = £ « (f), and (7) we have
gtk gcK'
[fi# - iIKim# > n-o0iK'iif|» - o-0ir
that is

©  [f[*>0-0p

let K » U V,J (K*AKkE-1K') . Since for each i , K s
A id k.lcKj
(c IK.kT11*1, K~kTl)-1nvariant, we infer |K&| < 2c”|K'| and thus

if we let



then
(9)

We are now in a position to define the family E = (E!(k)

taking

- i i I,k K
(I-fOE>] +f e e

i.k k

The amount of modifications from E to E' is estimated by

A0 g kB A P [fi** JJfIA m[fv 'V -+

This gives in view of (8) and (6)

] IV
"E' N KEL-KF'L A

>bp + (l-e)p - (I-e*)p t tp + (e'-t)b > bp + 2cp

and thus (10) yields

-bE>er |EL.
1 "k 1Kk E<A

W have proved the statement (1) in the conclusion of the Lemma.



Step B

Let us now prove the second part of the Lenina, concerning

the equivariance of the Rohlin towers.

If i cl and kme we infer
021
<l@a JE. )E .)(-a ,(f))L +
“ km! 1B 1k kn -
km
10™" g.m>a 9l .kI*fU
For each i c | we have
r RCEE si kI i
k.mcK. ’
R>m K.
B2i1K| E |(k_1S K)AL | =
1 keKi 1K |
m2|K.| | |{tcL. Kl * k}| =
1 keKi 1 1,1
- 2K | E [{keK.k i KL > <
1 itL » 1
< 2¢|L1||Ki |2 <2c(l-e)-1|Ki| E N\J -

- 2C(1-«) _1|KL|IKIL1]



If we take this into (11) and sum up, we obtain

iE' :}?iKli ;,ng«laﬁifal,jm - 1,EL*i

<EKI"l EJa (E )-E | +
i kin km ' 1,k *

+\ft\} + 2e(1-c)_1|K'||f

-aE+ KJt+2¢(l-e) Ip

In view of (9), (11) and our assumption (5) on e , this yields

aE —af + “clp + 2c(l-e) P<
£ aE + (i+2c(1-c) 1)(* )-1(bp,-bE)

<a + BB -bp)

and the proof of (2) is finished.

Step C
W prove now the third statement of the Lemma, concerning the

mutual approximate commutation of projections of the form ag(Eiik) .

Since the tower (f. ,) conmutes with all a (E. J , the only
problem remains (f.I J itself. The projections f.l . are sunrs of
mutually orthogonal projections of the tower (um(f))meln . Since K

is almost invariant to gc A, a (f* k) will approximately be equal to
a part of this tower too; but the projections (am(f))mtKi mutually

commute.



For gcA, i el and ke K we have

where h e (gS. k)n K

Hence

ik 3 i »k

1 gk \ K I|f 10 < BK-I]f1 = D

since K was assumed (5,A) invariant.

We also infer

1)K
< J«g(f') - f* I1# < IIKAK* | |[f[# < 26p -«

Since E‘IjK * E1 h(1-1‘) + f,> k we obtain

)

Uj!*'W-Wr

] \' HVEkK>"-fn»d(fl K)f'".Ej..n-n*,,,)
1>K J»x

< 2(Sp + 26p) =66p
Since ag(f.i R]fl and f,J » are sums of mutually orthogonal
» »
projections from the tower («h(0 )hcK- * they conmute with each other,

and with the tower E . W have thus
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Cg < 65p +V£ Et |[a9(E D, EJ»*](I-f')|’<

n
E Ik j

< 6fip + cg>E < Cg>E + 3Se_1(bEl - bE)

and the proof of (3) is also finished. The Lemma is proved.

6.5
The Rolllin Theorem is obtained now from the preceding Lemma by a

maximality argument. Let us keep ACC6 and 6 >0 fixed. Let

E be the set of families E = (E'l,K)IEITKC—i\jK of mutually orthogonal
projections in N P\ (see 6.3 and 6.4) satisfying

1) aE < 3 e* bE

(2) cPE <_3U'] bE gcA

E is nonvoid since it contains the null family. W order E by
letting E < E' if either E =FE or the conclusion of the Lenina 6.4
holds for E and E . For any totally ordered subset of E , the mep
E » bE is by 6.4(1) an order isomorphism with a subset of the interval
(0,11 CP , and for any increasing net in a totally ordered subset of E ,
again by 6.4(1), the projections E. k will converge in the s*-topology
to the components of an element of E ; hence E is inductively ordered,
and by the Zorn Lennia, has a maximal element E° . The Lemma 6.4 shows
that E° satisfies b . > 1-t* , where (1) and (2) above come from
6.4(2) and 6.4(3) respI(:_ectively and so, letting E° =1- E PB.. , we

n 1 ° 1k 1IK
have 1E8|9<_



To got rid of E* , we choose some arbitrary T c | and tf e Kt

and define (i.k) t (T,F) and

Ei.k - B2,k " ET,F = ET,F +
This way, Eu is a partition of unity and it satisfies
(3) aE . ¢
(4) SE <*9.¢ ::95c"1 geA

since for ge A, the new terms in CSIE are estimated by

j-[;”:“go* E 11 = Tlll_llkag(}z’l},k)“ e5 A + cgE

and similarily i |[a (B° ), E°]] <c¢
i £ yi** u f o y*u
For any given 5 >0 and ACCG we nmay thus find a partition of

unity E = (E in N'O I\/b satisfying (3) and (4) . W may apply

1jK1j K
the Index SelectionTrick the same wayas we did in C.3, Step D, for
6 '*0 and A/I G, inorderto obtain (4) with d=0 and A- G

The Theorem 6.1 is proved.

6.6

Suppose that a discrete amenable group G acts on M like in the
statement of the Theorem 6.1, and let H be a normal subgroup of G .
Then the Rohlin Theorem holds for the action that the quotient GH
induces on the fixed point algebra (M) . To avoid technical com
plication we prove the result only in the case when the subgroup is a direct
summand, which s what we need in the sequel, but the proof extends along
the same lines to the general case. For simplicity we also assume that the

algebra M is a factor, and we denote by +t the canonical trace tw on



Theorem (Relative Rohlin Theorem)

Let 6 and G be discrete countable amenable groups, and let M
be a factor with separable predual. Let 0:Gx G@®Aut M/ be a crossed
action, which is semiliftable and strongly free. Let e >0 and let

(KMA"cj be an e-paving family of subsets of G.

Then there exists a partition of unity (E. k) , i c | ; ke K in

Mv such that if «g =6(gJ) and Bg =o(1>g) then

<> eg<E.k) *Ei.k |1 t*te k'Kl
(3) IE,k»ug(g,t* =0 for all g.i.k.j,*
W 8(9,h)0(i,n,)(Ei.k> "V , M (£i,k) for *” .

Moreover (Ei k)

of any given countable subset of M

can be chosen in the relative comnutant in MW

Remark
The estimate (1) above improves (1) in 6.1 (if we take G trivial),

being linear in e .

Proof
The idea of the proof is to take Rohlin towers indexed by products of

(very large) sets in Gx G, and then sum after the G coordinate.



Step A

W assume 0 < ¢ < 1/16 arid choose ftCC £ . W prove first

that the Theorem holds with (1) and (2) replaced by

(1) EIM'1ET
i 1 k,itoki

(E1J - E | <16c
1 1,4 1K T

12) 4,k V E.k, ' B.klt i34c* + 3t,r °

Let be an e-paving family of subsets of £ , all of them
(e,ft)-invariant. It is easy to see that the family (K.. X KJ.)..»* of
subsets of G 2c-paves any subset of G * E of the foom S kE if
Sec G and See G are invariant enough. This doesn't imply that (K" x
is a 2c-paving family for G» E, but in the proof of the Rohlin Theorem
we needed only the fact that for any invariance degree, the given family of
subsets of the group t-paved some subset (and not necessarily all sub-
sets) of the group having that invariance degree. W may thus apply the
Rohlin Theorem to obtain a partition of unity (F in M,

with  (i,T) e« I xT and (k,F) e K x K , such that

< 5x(2c)*< 8tJ

(6) lag8g(F(@1.T).(k,F)>*F(J3,J),(i.T)1 a0 for 311 9.9.1.T.k.F.jJ.t.I

(7) ag8ghe® F(1J).(k,IT)) = aghe® (K(i ,T),(k,IT)) foral' 9.9.h,Fi,i T,kk



Torany i cl and k<2 e K we infer

= Optylo%t ! bmCin am v (>,2)) =

TR T)L(E1)) +

Hence from (5)

tIKjl'l iJa ,(E ) - E k| <2,8* m16cs
i kJt ki

and (1') ls proved,

For ge A we have

(K - EBk> - T *V '*L*£3

where

Plo=id v F(Lth)i(k»10 * " £(i,T),(k,gtf)’

2303 kj F(L1,T),(M)

and the sunms were done for iel, TcT, k e K



ITcA ng'\ ,ieA=Ry\ g! Ry and mc gAy

From the assumed (c,ft)-invariance of Ry , we infer
Jaj| < c|Ry| for all T, hence with the global estimates in the

Corollary 6.1 corresponding to (4) above we infer

1] 1T 2 x 8c' = 16¢"
[c21T i e + 8c* < 9F*

IEgl. < e + 8c* < Q9e*

and thus for any gcb5

and (2') is proved too.

Step B
We want to obtain the estimate (2') with an arbitrarily small
constant. W do this by starting with better paving subsets (Kj)j of G

and then come back, by means of the Paving Theorem, from (Kj) towers to

(K.) towers.

Recall that we are given e >0 and the c-paving family (K.).”
of subsets of G. Let 5>0 and ftcc'C . Let us use the Corollary 3.3
the same way as in the construction of the Paving Structure 3.4, to obtain
a system (Kj)j j of finite subsets of G, 6-paving G, and finite

subsets (Litj)lclJed of G with



B

and such that the subsets

8 K. . = {hcKt | there are unique (i',k,t) e X % .
& g - ey e (Ll ey X1
with  h =kt and for these i* mi}
satisfy
IKCijl >(1-4c) | K(]ILF I |
Let 7 :i_|I K * L .-»ILK', be a bijection with
ij | L3 j
'I'I'fILK.l x L. IJ.) =rJ forall j , andif (M)e Kl* L. with

kt c K*)j then TT(k,z) = k4

W apply now the Step Awith 6 and (Kj). standing for r and

(Ki)i , to get a partition of unity (H,k)jtl’ k. K3 in M such that

91,1
and moreover analogues of the conmutativity relations (6) and (7) hold.

¢ obtainfrom  the (K}) indexed partition of unity (B= J a (K.)

indexed one (E* k) by letting for ie |l andk eK
A ‘1A
d, ] g«

where j ¢cJ *4c j and m«K(k,4)



For g e A we have from (10)

& KVE>-BA o

Let i el and Kk',k? e .We infer

o l_.a<E|k2 s & FQ =

= EIKT-LE wieaij-ikjkl - B.Ki
i1tk J J B.ki
° ‘1l E . ARN_|AKAK* _ i
JEIquI LK kAkA-1MKAK Ei.4
silkI- L E (« ci(e; k) wEj ki) -
P3Ok i ® = E

- EIKi|-l E a i@ g ke i
j|J| o ki e Bk - e 4>

where jeJd , tr L.,k eK ,ki =k(kji) k2 =k(kg,

Summing up we get

EIKI'l'S Ja  _i(Elk)-E k| <21, +2
i kr k2 KM2T11k2 Lkt 1 1

where

B BjI§1 li-|k-1kik’"I(Ej'k,) * F*Ki

with j eJ*kl , k ek , ad



L

12*1 t la k.
Lo KT

) - A
k, J

,_.
=~
=
=

P
A=

where 1cl . keK ,j e.J,leL.l>J. and k' =TT(k, a)

W\ have from (9) " < 166
On the other hand, from the definition (8) of K . we remark that

if in ° we have k' e K.1>J , then kt =k* and the corresponding

term in z2 vanishes. Hence

where j eJ and k!l ¢ Kix(vjK- )
J § '
We have for each j e J, |Kj\yK” j| <4c|Kj| and hence the

global estimates 6.1(5), with the constants corresponding to (9) above yield
E? < 2(4c + 16«") < 8c + 326*

Hence

(12) E Zla .i(E. )-E. k| < 2el + 2e2 < 16r. + 966'
ikt kil 1,1 1K T 1

Given any S >0 and any finite AcG , there exists a partition
of unity (E. k)irl krK in such that (11), (12) and also (3) and (4)
above hold.

We may now apply the Index Selection Trick the same way as we did in
6.3, Step D, to meke in (11) and (12) i w0 and A =G, and obtain thus
(1) and (2). The whole construction above could have been done in the
relative commutant of any given countable subset of M . The Theorem

is proved.



CHAPTER 7.

QCHOMOLOGY  VANISHING

In what follows we study the low dimensional unitary valued
cohomology for an action a of an amenable group G on a von Neumann
algebra M. We show that if a is centrally free the 1 and 2-dimensional
cohomology vanishes for the action induced on the centralizing algebra,
and obtain, in the 2-dimensional case, bounds on the solution in terms
of the cocycle. The main result is that if a is centrally free, then

the 2-cohomology vanishes on M itself (Theorem 1.1).

7.1
Let us begin by some technical preliminaries. The result that follows
was proved in L* , Proposition 1.1.3] for M , but the proofs remain

valid for M too.

Proposi tion (A. Connes)
Let M be a W-algebra with separable predual and o e ifl AIN

(1) Any projection in Mv has a representing sequence consisting

of projections in M.

(2) Any partition of unity in projections in M can be represented

by a sequence of partitions of unity in projections in M.

(3) If v is a partial isometry in M' with v*v *e , w* * f |
and let (ev)v,(fv)v be representing sequences for e and f , consisting
of projections in M such that ev v fv for all v, then there exists

a representing sequence (vv)v for v such that v: vv »e; and
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(4) Any unitary in Mv has a representing sequence consisting of

unitaries in M.

(5) Any system of matrix units in M can be represented by a

sequence of matrix units in M.

The rest of this section deals with several inequalities extending
to infinite factors properties of the trace norms. Let 4 be a faithful
normal state on the W-algebra M, and ue H\(N . W define for
X c M, |x]® =A M ) e« This is not necessarily a norm, not being
subadditive, but its restriction to l\/b is a trace norm. More generally

the following result holds.

Lemma

For any Xjo N e Mv and yl,...,yﬁch, we have

N

Proof

For any a., b.eM, 1*1I,...,n , consider the polar decompositions

£ ab(. ulE
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W infer

*(|JE a.b.|]) =z e(u*aiv.|b.|)
1 i

< i[*(|b,[»u*a(yi [bli)| * [||» (]| bLllL|t+.tbi[i]]l

itila , [M[bfl) * t{a, b, [[T[I[*.[b,[!]]]
i i
If we apply this to representing sequences for x., Y
obtain (6).

This result is very useful for estimates concerning partitions of
unity 'y j .,y in . For the rest, we work with the norms
[Ix]1C* AI'I(x*x+xx*))i , x e Ml , connected to the preceding ones

by means of the inequalities

) X 1% (1t * [x"],)1» 1)
®) Ix],i(2]e], ) x][I*i20 1] x]||*

where e is the left support of x .

li
Although IHI, T not unitarily invariant, it satisfies the

following inequality:
9) [fu»-I[[IE2i ([|u-I]]*+ ||v-Ilify
for any unitaries u,v ¢ M1 . This is immediate from the identity

Huv-nfj2 + llvu-1 1112 « 2[|Ju-v*|{*2 ®m 4-uv-vu-u*v*-v*u*



together with the inequality

11- - V*||*< IM Ilf« |[v-nif

This yields inductively estimates for longer products of unitaries

as well; we shall use for instance the fact that for u”.ut.u”r.u® t UMO) ,

4

(10) o 1 2ill IIUI--|II* ,

7.2.

In what follows G will be a discrete group, always assumed countable,
and Mwill be a von Neumann algebra with separable predual. Recall that
a l-cocycle for a is amp uG s UM with v =1 and such that

its coboundary 3u is trivial, i.e.

(au)g,h BV g (uh)ugh sl I 9hc G -

The perturbation of (uy) by v e NM is the cocycle (uy) with

iL =w a,(v*) geG
9 99
and we call (u ) the coboundary of v if (ug) =1

Proposition

Let G be a discrete amenable group, let M be a von Neumann algebra
with separable predual, and let (a"*) be an action of G on M , strongly
free (see 5.6) and semillftable. Assume that there exists a faithful normal

state « on H such that i|Z(M) is preserved by al|Z(M) . Then any



100 -

cocycle (vM)c. M for (ug) 1S a coboundary. Moreover if N is any
given countable subset of M_, which commutes with (vg) , then v =aw
with  w in the relative commutant of N in l\{l)
Proof

To give the idea of the proof suppose first that a would contain a
copy of the left regular action AdX : G+ Aut(e°(G)) , commuting with
(v?) , i.e. there would exist a partition of unity (E 17° in
{v*|gcG}'n M such that (E()) = Kjh , g,h e G. Then we could define

w="! vE and thus we would get a unitary satisfying
9 99

i, v.E.u (v)E =B, *)\E
wo L VIR gMRE g = P VRE g Yo

This is a form of the Shapiro Lenina in cohomological algebra.

In our actual framework, the Rohlin Theorem is an approximate form of
the left regular action containment, and analogous formulae given an
approximate vanishing of the cohomology in Nb . By means of the Index

Selection Trick we obtain eventually exact vanishing .i{]o IYI .

Let us begin the proof. Let 0<r <1 and let afinite subset F
of G be given. Let he an e-paving family of subsets of G
which are (e,F) invariant. W are under the hypothesisof the Rohlin

Theorem 6.1 and so we can find a partition of unity (E. kf(, In

Nb such that for any i,j el, k,t e KI" me KJ g,h e G we have



s|Kr
V h (Ei,k* =*“ghni.k?
IV El.k>* §,J -0

teg(Ei,k*vhd =0 o

W define the unitary w e by

Let Vg =w \g cig(w*) be the perturbed cocycle. Let us keep g e F

fixed. Ve infer

VoL om,|j K[t'ViV 9 (ve)',) EtW W  mEL* £2* 3

where i,j C1,kckK , i Ck adin B vesimfor ilj ,
i ckKNgrkj , k=gi; in we sum for 1mj , i cKjft g’"Kj ,

ktgi. adin B f°r 4c¢c \ 9 Kj
From the cocycle identity we get E* =0 . Trace norm inequalities
yield
[13'"%i2 jV'i.*« Jc'sl'™kis g kj =

Since we have assumed iK'\ g 'k.| <.|K.| , from the global

estimates 6.1.(5) we infer



(1) U3U - 2(e+5ed) + 12ei

(n the other hand

where 1,j el ; keK ;I tK.ftgV and either i i j or

k / gii « W obtain

2> U i 2 ¢ 1-B 90N (B, *)1*

for j ¢l ad i ¢cM g K . The estimates 6.1.(4) yield
|z2] < 2.10c* » 20c¢*

Summing up, we infer for gt F

[vg-" U - * rzl* * |r31* - 3Ztl
Let us now take em J and F* FAcc 6 , where Fnx 6 ; nelN .
¢ obtain for each n a perturbation w” such that the corresponding
perturbed cocycles (v”) satisfy for any g e G

lin |vjn) - L]. -0
nw J
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The Index Selection Trick, applied the same way as in the proof of the
Lenina 6.3, Step D, yields a unitary w such that the perturbed cocycle is

trivial.

% could do the whole proof above in the relative comnutant of a
countable subset of M, and thus obtain the supplementary assertion of

the Proposition. The proof is finished.

7.3
Let again G be a discrete countable group, and M a von Neumann
algebra with separable predual. Recall that a cocycle crossed action

((a™),(tig h)) of G on M is a pair of megps u:G » Aut M and

u:G*G # U(M) such that =1,
agah = Ad Ug‘h agh g,h uG

and u is normalized by u. *u . ml , geG and satisfies
“g,ﬁ“gh,k N TR T ghk G

A perturbation of ((ug),(ug h)) is a family (vg) of unitaries in M,

gc G, with Vj =1 ; the corresponding perturbed cocycle crossed action

((i»gMUg.h» is 3iven by

Ug,H s Vgng(vn?ug,hvzjlw .
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W oinit the simple verification that this is a cocycle crossed

action indeed. W say that (ug is the coboundary of (vg) if

A simple but very useful remark is that the effect of two consecutive
perturbations of (u,u) first with v and then with v is the sare as

the one of the perturbation with w . Also, if v perturbs (a,u) to

(a,u) and usus! , then v is an a-cocycle.

We next show that we can perturb any cocycle (ug with some
(Vg) to (T such that (ii h) is approximately periodic in h with
respect to the plaques of the Paving Structure, i.e. for any pelN,

according to the approximate decomposition of the plaques

kGl -uOK* , ici ,tclj we have u ,. mJ . for most

Floyou ‘ by g.hi " “gh

hckP and | ¢ LP . . Moreover v -1 is kept under control. This way
1> U

if u_ .-l is small for th/Kr then ugh-l is small for most

h c G. W use the notation in 3.4 for the Paving Structure,

Lemma  (Almost Periodization Lenina)

Let ((ag),(u grl;])) be a cocycle crossed action of the amenable group G
on the von Neumann algebra M . Assume that a choice of a Paving Structure
is mede for G and use the notations in 3.4 for its elements. Then
there exists a perturbation (vg) of ((*gM uglh)) such that the perturbed
cocycle crossed action ((ug),(ug>h)) satisfies for any n>1 , j c Ifl#

and g e G

(1) [(hcKj+l Jugsh / ugek for  An(h)*(k,1),i.eUIPj }| <6cn|K]+1]
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Moreover, (v*) and (ug h) have the following property. If for

some neN, s> 0 and normal state $ on M

Ilugh « "11* i 6 9*h*9h c G+

then
llvg - 1110 <8n6 g c &+l
H“g,h - i 8n5 geG& ; hghco+
Proof
Let ncIN and let Hntl = ( Gn+l A M Li,j> o
This set is contained in V~Ir+! | the subset of VJ which
i.j 1,9 jJ

behaves well with respect to the approximate decomposition in plaques

KHAVIKI? . (see 3.4).
J f »J

Let gc Htl and let i € In>j e Intl with gc

From the definition of iwf < and j are uniquely determined and

there exist unique (k,i) e K X2 s with g = kt .

Let ((&g).(Ug h)) a (("'(j)»(u9 h)) and define inductively the perturbations

(2) if gt Hl+l and g * kE as above
for the other g ¢ G\Hn+l

and let ((a” ),(u"+)) be the cocycle crossed action obtained by
perturbing ((FgMug h)) with (vA) ; do this successively for
n*1,2,3,... . W shall show that ua.n is approximately periodic at

the level n , that this property is not destroyed by the next perturbations

and that the product of the perturbations v£ is stationary for each g c G
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Step A
W show that if g e H®#1> anil if id n, jeln+ are such

B . . ntlo
that 2 =kt with (k,i) e|2‘|x|:|n’j | then u

,nNoIn
Indeed, we have kJt c N " Lu £ GHn+l

n_.n . n n .
= = : we infer
Vi Vj 1 ; since we have vg " UM W
ntl " _
uk .t Ui ¢ va* =1 .
Step B

We prove now the approximate periodicity. If g e G, h,gh ¢ H+
and h =la with kc K§ , 1 cC Li*J , and if moreover gk e Kf , then
since gh = (gk)fc , from the Step A we have Uul+ = =1 . Since

u is a cocycle,

nt1 nt1 n+L n+l,* ntl ntl . n+

ug,h mVk< * “S [|"k,»> V V .» \Y
hence the approximate periodicity relation holds for (g,h) . W evaluate,
for given j cl j and g c Q) the cardinality of the subset
A@J*l of K‘,]ul , consisting of those h for which (g,h) does not satisfy

the conditions above. W have

dntl £ n.g"l) (Kntl \ Hn+1) \J (K g 1K+1) u

vi (U K2\ g'l L))

NN
Ve have shown in 3.4 that |kJj | s (I-cn)|K'I [L"jj|, hence

?Kl ".’[.jl * EnlKJI+1l



In 3.5 we have assumed that for each j e I)i+"

LN+l
Antlu Y L"*jl ~cnlfijH

PN K ATz Lk ™

From the left invariance properties of K2 , J to

9 e ME Gntl  we have

ik; +\ i ‘nil@*1i

1
I\ g lnjli enji<i

so that
E ™ \ gl KIIL"jl - cnJd IKIILi | srnlKtl
and finally
%A | * Ui “nFT
AL G, * W, > [Tl
Since K'j“l £ Qf2C6nt3  .... for any gc G there is at
most one n for which vgi | ; hence the product
v vt
g g9 9

is well defined. Again by the assumptions 2.5, G(u R?+I)c Qi+?
and so if gt G and hcUKj+*, then g,h,gh ¢ G+2 and
u§+fl13 = ug’:ﬁ for any p2>1 .

Since ((ag),(u h))~*th e perturbed of ((«gM “g,h)) by (vg)

is also equal to the pointwise limit of ((ug)*(ug,h)) wben n

the conclusion (1) is proved.
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Step C.
We prove the estimates. Let L= U L? * « W have
P<n i, j
assumed in 3.5 that LcG||t] . Let us define

A = {(g,h) e & x h+1| gh e Ch+1l

B » C(g.h) e &+] x L | gh c +1)
We prove inductively for p =1,2....... ml  that
(3.p) (gh) e Au B

(4.P) 9 e tl

From the definition of vp , (4,p) follows from (3,p) . By the hypothesis,

(3,1) is true, since AuBcfAxG ”™i . Suppose that (3,p) and (4,p)
are true for some p, 1<p<n, and let us prove (3,p+l) . Let
(g,h) e AuB
Suppose first that =1 . Then
Pk
v
g

and since g, gh e @+ , we may use (3,p) and (4,p) to conclude

with the inequality 7.1.(10)

PALL LT 2(11vg ! P -l ft

ig,h” "It (11vg- 'g.h "vgh’
6.8P-1« < 876

Let now i 1.

Since (g,h) i AUB, we have h 1 (] . From the definition of

VP we infer p<n . Since hc (UKP+)s(G
i J
ht VvJLY ("G , . From the assumptions 3.5,
o<Pi.j 1,3

P+iu Vv ,Li.j) * we have
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(UKP+L) A (U 13 ] 0.
i J g--pH 1,3

Hence hi L and so (g,h) ¢ A lhere exist i ¢ In ,

j cint®, keKp, i elpj such that h =kt . Then the cocycle

identity yields

P WP
Vg Jg{\h) Ly, k,A gh
PP P
Vg ug.l‘( uglk,t

We use again the assumptions 3.5 on the Paving Structure.
We have g,gh e " since (g,h) e A. Since k e kPc &+ and
gk c kPc @G+l , we infer (gk) eA. As i cIP mc L, gk c Qi+l
and gki = ghc Qg+ we have (gk,e) e B. The induction

hypothesis yields

SO QU PSR S TG g
<2«4><8Pl, g
and thus we have finished the proof of (3,p+l). Hence (3,p) and (4,p)

hold for all 1 <p <ml . W have shown in the Step B that for g c Qi+ ,

we have vg =VB for sooe p <ml , and for g,h,gh e Cﬁ we have

. o+ The estimates in the conclusion of the Lenma are thus
ug,h * ug,h
proved.
Remark

If $ is atrace on M, we nay work in the Step Cwith |.|*
instead of ||.||, and use a trace norm inequality instead of 7.1.(10)

to prove the following assertion.
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If for somoe 5>0 and n >1 ,

BV 9.ngh ¢ oy
then

"V o' h <4n6 9 E (!

lughl | %] <"* 9 e @ * h,gh e ®+1
7.4

We prove now a vanishing result for M -valued 2-cohomology;
by means of the Almost Periodization Lemma, we are able to obtain

bounds for the solution.

Proposition

Let G be a discrete countable amenable group, let M be a von
Neumann algebra with separable predual and let ((a”),(u” be a cocycle
crossed action of G on , semiliftable and strongly free. Let $ be
a faithful normal state on M, such that *|Z(M) is fixed by o|Z(M)

Then (u .) is a coboundary. Given nc N, n>2, if

IVh"I1* - en2? for 9e & * h*Oh E (nt!

then u &« av with

|y'|f| 8,12 for o tGZ

where o >0 and Gnc.e. G were defined in the Pavin% Structure 3.4.
If moreover (ug’”) c. N Nb for some countable NcHu. Ve mey take

(vglcN'hMu as well.

The proof will be done by perturbing successively (u9 J bya

»e



sequence of perturbations, the product of which converges, such that at

the limit we obtain the identity cocycle.

The Lemma that follows displays the result of an application of the
Rohlin Lemina-Shapiro Lemmg, followed by the Approximate Periodicity Lenina,

and provides the inductive step in the proof of the Proposition.

Lemma
In the conditions of the Proposition, let n >2 and suppose that the

cocycle crossed action ((a®)»(uy 7)) satisfies the following condition.

Forany gc @ 2 and j e In there exists a set Aj(g)<L k" ,

such that

) 7V 2Kil

and for any ge G 2 and h,gh C%J(Kg\."(g)) we have
]

) i V2 e

Then for each ge M~ and j c I(l{l there is a set Aj+\g)C

with
U091 i7en 1K)+

and there exists a perturbation (v ) of (fc»g),(Ug h)) such that the

perturbed cocycle crossed action ((cg),(ug;p) satisfies

Q) i*n-I



for gc@_l h,gh e ¢ and also for g e G " ;

h,gh cU(K'ul \ A'*t1(g)) . Moreover the perturbation satisfies
i

<ss 9 ¢c 2

Proof
Step A
We use again the Rohlin Theorem and a form of Shapiro's Lenmms,
the same way as for the |-cohomology, to obtain the approximate vanishing

of the cohomology.

Recall from the Paving Structure that (KI))

, . Was an e _-pavin
i/iein nP 9

family of sets and ig was the approximate left translation with g c G

on U K?

We perturb  ((ag),(ug>h)) by (vg) to ((ag).(ug>h)) such that

<« IV h-'l4i 3!'n 9.MhcG,

(5) |vg-1]4 <16mE.2 9t

Let us choose according to the Rohlin Theorem 6.1 a partition of

unity (B* k)i 1 e In, k e K' such that

£iKijrl £ I« .1(El t < 5¢c
U E R TE D 5 ke = %n
agiah(Ei,k» “ agh(El k*

cvV H,k>'

Eog(E k~ug,h3 " 0 for all ~.J,k,ah,g



Let us define for g e G the unitary

W = Wk H,h

where i e Ir , ke K and h = £g(k) Let us keep g,h e G with

gh ¢c & fixed and let for i e In

kJ » (kcK? | hkcKj , ghk ¢ kJ}

Since Kj is (en,Gn) invariant, |K?| > (I-en)|kj]|
We infer from the definition of vg and ugh

ug,h” = vg ag(vh>ug,h vgh_!

ij kV W'k09(Uh*i)U9*hUgh’mt 1)Ei

tl +r2 + el

where i,j cIn , k e K"

, ek, p»etk ,q«e[d()

mE P) ekK; in 22 wesumfor i =j and i *mc K?

in 2 we sum for me k" \ K! ard in 2z3 for the remaining indices.

In 22 we hae i ®j, i mm k=qg =hm

cocycle identity yields =0 .

, and the

W have

where 1clIn, mekj\ IO and p - *" (m

Since |kJ \k}| < dl KJI
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the estimates 6.1.(5) yield

For the third sum we infer

where i,j eln , qe ngVj ,pck" and (i,p) t (j,q) . W

have already estimated an analogous sum in 7.2.(2). W get the same way

e have thus obtained for g,h,gh e Qi

[*il* *

and thus we have proved (4).

Let us evaluate now the perturbation. Let gt G_;

& decompose
where j el , kcK , h=i"k) , in r, we sumfor kc KA ¢70)
n ] y * J J
arid in for k e £.j(g) * W infer from the hypothesis (1) of the Lemma

IELL - c¢n-2
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(n the other hand

where j el ,heOA”g)) . Since for each | ,

lig(ij(9))l 7c¢n_21K1 by hypothesis, the estimates 6.1.(5) of

the Rohlin Theorem yield

[E2 |*i2l7¢cn-2 4 5'S> s 16en-2

and thus using the assumptions 3.5 on (t ) we obtain

g1b<1be + 10ed <igc, , geg

— h-2' n-2
Step B
problem is that we have obtained in (4) |Ug (- 4
small for hc G , but in the statement of the Lenma we need it small

for h in a larger set, for induction reasons. The gap is filled by the

Almost Periodization Lemma 7.3.

Let us apply it to ((ag),(2fgjh))> to obtain (v ) perturbing it
to ((ag),(ugh)) . Using the estimates in the Remark 7.3, we infer from
(4) and (5) in the Step A

i 4n_1.32cJ <V | 9«VIh.gh e

9 « (M
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We use now the almost periodicity. Let gr and for h c Kj
let 17(j,h) = (j*.hj.kj) and Ic1-1( ) = (J2,h2,k2) , where
1K'+ - 1L K? x Ln . is the approximate decomposition defined
i J iJ

in the Paving Structure. Let

1

w.h * ug,h
1
W !*“g,h/ “gh

Since the cocycle (u h) satisfies the almost periodicity property

7.3.(1) we infer

14I"(3)1 if (IL2.jl6cnilKD « 6V ilK 11«
So if we take AJ"(g) lAJWg) + AJV(g) , then
*6cn,,KJ*11 '

For hc K?fl \ a5]+‘*(g) we have, with the notation above,

“g,h m“s.h2 « a,d h2* K''c «, =

i cn-l 9cGn-l * \ 4" (9)

and the statement (2) in the Lemma is proved.

Let us prove now (3). Let vy

is the perturbed of ((Ug)*(ug h)} by (v*) . From previous estimates

vL\J/ , such that ((ag),(ug*rq))

oll
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we infer

ly'l, s *v2*Vi1.,,IV2 «eGu

and the proof of the Lenina is finished.

L.5

Let us prove now the Proposition 7.4, by applying successively the

preceding Lemma for n,n+l,n+2,...

Let ((ag M ug,h)) = ((ag)*(ug,h)) and for P 3 n » suppose given

((Qg)»(Ug,h)) WhiCh SatiSfieS

(I-p) [u9.1>", [0 “I>2

for 9 e gp-2’ h,9h elL7(K*\ A”(g)) , with "(g)eKjj and

5 QL i 6cp-21K<9)le 9e @2 »de Jpo

Since U K c_ , A,n) is true. W use 7.5 to perturb
((*g)"™ug,h™ with (vg) to ((°g+l)e )) . satisfying (l,p+l) and
(2.P) i«p-2 f»r 9« Gp, .f'9h cGp
b* by p-2 for 9«G P2
Let v(p)ovP VvH,,; for p>n. |If geGlg.g, then

g 9 s - b2
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Hence for m>p >n-1 and ge @2

m
v(n_v(P) < z 170 9 < 18C
9m 9 k:p+|
where \fé”"')‘—‘Land the assumptions on (e ) = have been used,
Thus the sequence vg converges *-strongly to a unitary vg cMu

for any gcUG - =G moreover

IV 1,#il6en-2 gcGn-2 ¢

Since () ¢ (ua h)) is the Perturbed Of ((a_).(u__.)) by
» 9»n 9 9in
(viP ) » in view of (2,p) we infer u = Dv . This ends the proof

of the Proposition 7.4.

7.6

The same techniques which in the preceding sections yielded the
vanishing with bounds of the 2-cohomology on I\/b , also give the vanishing
of the 2-cohoinology with bounds on M. Some additional complication is

due to the absence of a trace on M.

Let us recall for convenience the Theorem 1.1, in a form in which the

Paving Structure appears explicitly in the estimates.

Theorem
Let G be a discrete amenable group, and let ((@ ),(u h)) be a
cocycle crossed action of G on M which is centrally free. Let $ be

a faithful normal state on M, such that <3ZM is kept fixed by alZ(M)






Hence for m>p >nl , and g e

(v, ). (P)

a"v-i

where vén""zl,and the assurr}ptions on (en)n have been used,

Thus the sequence v ~ converges ~-strongly to a unitary v* eM

for any geU G . =G ; moreover
P P

Ng"1l# - 16en-2 9cGn-2 *

Since  ((«P).(uP)h)) is the perturbed of ((ag).(ug>h)) by
(vg5") » in vew (2.p) we infer u =3v . This ends the proof

of the Proposition 7.4.

7.6

The same techniques which in the preceding sections yielded the
vanishing with bounds of the 2-cohomology on Mu , also give the vanishing
of the 2-cohoinology with bounds on M. Sone additional complication is

due to the absence of a trace on M.

Let us recall for convenience the Theorem 1.1, in a form in which the

Paving Structure appears explicitly in the estimates.

Theorem
Let G be a discrete amenable group, and let ((ag)i(ug IJ?)) be a
cocycle crossed action of G on M which is centrally free. Let 9 be

a faithful normal state on M, such that IZ(M) is kept fixed by u|Z(M)
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Then (ug is a coboundary.

Moreover, given n > 2 and a finite set Wc. UM) , if we have

where 4= {Ad wjiwcW} , then u = 3v with

In the proof of the Theorem, we use |. |V and the inequality 7.1.(6)

for estimates in connection with the partitions of unity in I\/!D yielded by

appears in connection with the estimates giving the convergence of infinite
products of perturbations, since |]|.||” is not unitarily invariant. W

use the inequality

(1

which is immediate from the identity

i*2
’n**<

We thus have to use an ever larger family of norms at each step, and what
allows us to do so is the fact that the estimates in the Rohlln Theorem and

the Shapiro Lenina depend only on $|Z(M) = (Adv")|Z(M)

LI
The inductive step of the proof of the Theorem 7.6 is provided by the

following Lenina, which is an analogue of the Lenina 7,4.
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Lemma
Let G,M,((0Og),(Ug *)),+ be as in the Theorem. Let n> 2 and
let *nc vn¥l be finite sets of normal states on M, which on 2Z(M)

coincide with $|Z(M) . Suppose that

llug,h 11C %= en-2 for 9 e Gn-2;h’gh UKKj NAj (9)); * E*n

where the sets A?(g)c. , g e ,j Cin , satisfy
i»;(9)i i? «n.2iKni
Then there exists a perturbation (v_) of ((a ),(u .)) such that
9 y y»n

V ]li 19¢cn-2 9 «bn2 . * * e

and the perturbed cocycle ((a”), (ug (i)) satisfies

V CHEIVE *cVi

for geGnj ; hjgh e Gh and also for ge &1 ;

h.gh e U(K(nt\ ¢ ~(g)) , where

i J J
VI "{MdV |9eGnl"*CW
and for j e Int", ge G”"j , the sets Aj+l(g)c satisfy
Ujw 1(9)I '
Proof

The proof will parallel the one of the Lemma 7.4.



Step A
Let ((0g)»(Ug>h)) . where 3g = (ag)w e Aut Mv be the
cocycle crossed action induced by ((Oy)’(uy*h)) on M1 . Since
_ . . hich h 6 i |
Ad Ug,HWu id (ngw) is an action, which by the Lemma 5.6 is strongly
free. The Rohlin Theorem yields a partition of the unity (E* k), i r In,

keK in Nb such that

0 (E. J.E. =0 for all i.j.M, g
[ g( x ”M] i g
V¢ define the perturbation (Vg)c M by

Vo "itk %k G

where i e lp, ke K2 and h =tg(k)
Let ((«g)’(ugﬁ]) be the cogycle crossed action obtained by
perturbing ((3 ),(U9 h)) with (Vg) . W need for further use estimates
g »N

of ANV -1

on estimates on the Rohlin partition (E.”*) and did not involve any

) . The estimates of ua*h-l in 7.4.2 were based merely

estimates on the cocycle (ug»h) which wes perturbed. Since in our
present context, any Wk conmutes with any E”h , the same estimates
work, letting the inequality 7.1.(6) replace the trace norm Inequality.
W infer this way

FV
iwvk V ,)I*i52c"
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and similarily

for k e G, g,h,gh e , *c Yml , where we also have used the fact

that for pe I'ml ijw* 4u, since il Z(M) = #Z(M)

This yields easily, via the inequality 7.1.(7)

() HAV VORDIF i (i (32i+32¢)).2)i

for k eG, g.h.gh e &, Ke . On the other hand we have the same

way as in 7.4(5)

VgL h < lbc,,

and hence

) *,-1]1t i (1('6°,,.256V2>-2)!i 6,n2
for ge G 2, * e *n

Step B
W apply the Almost Periodization Lennia to ((0g)»(Ug”)) and

perturb it with (7g) to get ((0g9).("g>,)) ¢ The estimates in the Lemma

7.3 yield from (1) above.
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3) JAd » Afg-1)11*i8"-".8t* = «\* keG, SOG,,

(4) mm 8" .»

keG , geGn_i ¢ h,ghcGn, <eYht

The sets Aj (g) are defined the same way as in 7.A, and as there,

because of the almost periodicity of 0" ~ , the inequality (4) above holds

for gc Goi ; h.gh e (Kjn+tl\ ¢J3+1(g)) as well.

W infer from (1) and (2) above, by means
Let vg =Vg '9eG

of 7.1.(9)
HVO- 1] fi2 '(I|Vs-T]If* 11V -11t)
< " 9in-2

for gc G2 and * c Yntl , where again the assumptions on (1J

have been used.

On the other hand, the estimates (1) and (2) yield, with 7.1.(10)

() i, 20- IKVKIK VWKW -7

i 22" 8n«, * 8n.'n) <en.,

for K £G.2, 4e Yntl and either ge G11, h.gh e G or g c

h.gh ¢ U C 1\ A1(9))
J J
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Let (Vg)v be representing sequences for , Wwith vy unitaries
in M, Vijl=1,6 VEIN. Let ()) be the perturbed of
by . Then h 'y represents 0" h , and so we

may choose v c IN such that if ag = ugl and ugth » oh
then

llvg-1[]I < 9«J.2 gcGur * edn
and also

HAd Vo kcGnl’*£ Vntl
where either gcoen.i , h,gheG or ge . h,gh e\J(Kj+*\ a?+"(g))

If ipc*ml , then ip=Ad vjp for sone k e G).i and ipe Ynl , and

SO

I“g.h-~C" HAV ~.h'MIf <V I

for g,h as before.

The Lenina is proved.

7.8

Let us prove now the Theorem 7.6. W successively perturb the given
cocycle with perturbations given by the Lenina 7.8 for n,n+l ,n+2,..., like
the proof in 7.5. Let ((a”).(uh)) = ((°gM ugfh® and *n " * '
Suppose for p > n that we are given for k = n,...,p a centrally free

cocycle crossed action ((ugMugfo)) * a ™ n'te set Jk

normal states on M and a perturbation (v ) of ((«g)»(ug (,)) taking



it into ((«g+1).(Ug”)) k =n-—- ,p-I . such that

(2.P) 1IiRph 11U ~ eP'2 for 9tGp-2 ; h,% ¢ (Kj N Aj(9))
where for gc G 2, je Ip,we have (g)e kJ and |Aj(fl)] < 6cp_2|KP|

For p =n,(l.n) holds by hypothesis since UK jc Gl .

W let (v(rH)) s 1 and for n<k<p we take v~k)=vg vg 1lel>yg

We apply the previous Lemma to ((ag M ug,h)) with n rePlaced by
p . defined inductively above, and = (Ad v*p 1"|geGp_2,"e>n)

W obtain a perturbation (vp) such that if ((«g )*(ug,h” denotes
the cocycle crossed action ((”),(uP>h)) perturbed by (vp) , if
v(p) =vp vJH) andif *ptl = (Ad vRj»* e fp+l. 9 e G_i} » then

(up+ﬁ) satisfies the condition (l.p+I) above, and also
v g.h'

(2.p) ii™N-nifiv! for gcG-i; h*ghcgp and M V |

3 CGp-2"*e *P'
W Infer for gc @.2 and * ¢ $n . using the inequality 7.6.(1)
II!(P)V(P-l)I I*-Il(\P',,,(H)I I*<

<21(I|v5-1][f* 11*5-111%)

where i>93Advgp"<b> . Butif p>n,
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*g =Ad vP-1(Ad vjp_2)*) ¢ Ad vH (tp)cd p
and so
IvA )-vAP ' )H *i 2i(9cU * 9ep-2>< 26''p-2

Hence for m>p>n, ipe$and gc G2 we have

||vgm,-ng)|!,(:k_'p+|ZGeR‘?f_ 27cpi 1
Since erjO and GP , the ‘-strong limit v§ = Ipim vép"

exists for each g c G and satisfies for gc G 2
Ilvg-1]|*<27e*_2 gt G2, * ¢ *n

and since ((ag)>(ug>h)) is the perturbed of ((<*g).(ug h)) by (v*p'")

1

and from (2,p) above

lim up h =1 *-strongly, gh eG
p—>>> o

we infer u - 3v

The Theorem is proved.



CHAPTER 8.
MODEL ACTION SPLITTING

In this chapter we prove the Theorems 1.2 and 1.3, which assert that
a centrally free action of an amenable group “contains", if perturbed by
an arbitrarily close to 1 cocycle, both the trivial action and the model
action. The proofs also yield the analogous results, the Theorems 1.5

and 1.6, for G-kernels.

8.1
We begin by some technical lemmas. The first result is due to Connes
(T4, Leria 1.1.41). The statement is here slightly stronger but is given

by the same proof.

Lemma 1

Let M be a countably decomposable W-algebra and let f be a finite

set of normal states of M. If e,f e Pro M and e v+ f then there exists
*

a partial isometry vc-H with vv=e, w =f and

IM 1 1* 161 M il

for any " ev .

A similar result holds for the L"-nortn.

Lemma 2
Let M be a finite W-algebra with a normal trace « . |If

e,f ¢ Proj M with e & f then there exists a partial isometry v c M
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with vv=e, w =f and
M |t< 3]e-fle

Proof

Let ¢ = |e-f|T . Let fe =wp be the polar decomposition of fe

and let ef =ww¢£ e, =w <f . W have

|w*f|T £ |w-fe|]t + |[fe-f|T = |w(e-P)|T + [f(e-f)|t

£ |le-p|T+ |e-f|[T= [e-PIT+c
i 2
Since p =efe <e ,
le-p|T < |e-p2|t = |e(e-f)e|r < |e-f|x =t

hence |w-f|x < ?2¢

Since M is finite, f-f- e-el . Let us choose ue M with
* * *
uu=ee* and w =f-f* | andlet v* uww. Then vv =e and
* 2
w =f . A p~ <6 <e, we have
Mt 3 luie-e,)|[x < |e-e] |t < |e-P |t <cC
hence

IV-fIT £ |w-f|T + |u|T £ 3¢

The Lemma is proved.



8.2
Let M be a von Neumann algebra and let e be a finite subfactor
of M, with normalized trace « . If M=e 0 (e'n M , we denote
by Pg, A the faithful normal conditional expectation of M onto e’'r»M ,

which extends the mep

X0y»tx)y , xce,yce'n M

The following result is an immediate extension of the Lenma 2.3.6|4 ]

of A. Connes, and is yielded by essentially the same proof.

Lemma
17 M .
Let M be a factor and let e",e’,...,e ... be mutually commuting
finite subfactcrs of M, such that M=el 0 ((en)'o M for each n >1.

Suppose that for each <« in a total subset 4 of M we have

2 1UoP n *$l | <“me

n>| (e )'rtM

Then if e denotes the weak closure of U en in M, e is a finite
n
subfactor of M and M=e 0 (eln M .

8.3

In all what follows, the group G dealt with will be assumed discrete
and at most countable and the factor M will be assumed to have a separable

predual; w will denote a free ultrafiltor on IN .

Lenmal

Let G be an amenable group and let M be a McDuff factor. Let
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a:G -» Aut l\/b be a semiliftable strongly free action. Then the fixed point

algebra (MMO is of the type 1n .

Proof

Since M is a McDuff factor, M is of the type 11 by the Theorem

5.2. Let | be a finite set, let Oc | and let (e. J.) , i,j el, be
a s.m.u. in Md . Then eo,d _V«g(eb,ol; so let \/(8 be a partial
isometry in MW with V9 9 :9a,,(eb‘o) , 99 :e&O ; for g=1 we
let =e0 o . Let us define the unitary

v9=j\ei 0 vg ag(eo,i’ gcG

and let ((dgMug h)) be the cocycle crossed action of G on

obtained by perturbing the action (a ) with (v*) . W infer for i,j el

“g(ei.j> * V9 (ei.Jrv9 ¢ ei.0i9"g*e0.tei.0C.0*\W co,j =el.j
hence
Adig,h(ci,j) “ V h > (ei,j} =°i,J

and u . ce'n M_, where e is the subfactor of M generated by
g.n w w
(e j) . We apply the Proposition 7.4 to perturb ((ag),(u( f))) with
(Vg)e e'r\ Mt to an action (u") . Since (v(@ * (v”~) perturbs the

action (ag) to the action (ug), (vg) is an (ug) cocycle. Moreover

vV eU ) ' Ad}g(*g(eid))-A l1}g(0i.d) ' eiJ



We apply the Proposition 7.2 to the (ag) cocycle (vg) and obtain

a unitary wt Mu such that

vg = wrag(w) gc G
Let us take f'1>ﬂ =Adw(e.1»J),i,j c |l . Then (f..*J) is a s.m.u.
in I\/b and
m “g(Ad " Ad(w,gl(“gtei,jl) * Ad "ofi,j

This ends the proof of the Lemma

8.4

By means of the Lemma that follows we can lift constructions from M

to M.

Lenina
Let a:G » Aut M be a centrally free action of the amenable group G

on the factor M. Let (Vg)e. Mi be a cocycle for (0 )wand let

(B j). 1% el , [I| <+ , bea smu. in M such that
AdV 9> (EU > - ELl,j 1.Jcli9c
sequences .,
M and for
9

. y-roevrle in M s@dh that

(Ad vg ug)(ei,j) " ei,j h el . ge& . vem
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Proof
Step A
Choose by the Lenina 7.1 representing sequences (eV>O)V for
».

E- . yielding for each m a s.m.u. in M. Let 0 be a distinguished

*»J
element of 1. Foreach gt G, let (Mg)v be a representing sequence

for Mg consisting of unitaries in M, with v =1, vc{N.

We have for all v and g

(bl vy 2g)iey o) @ %Yo

and the sequences ((Ad Vglag)'(eo,’(?')v and (eo,(‘)]'v both represent
(Ad VgOg)(Ec 0) = Bg 0o . By the Lenina 7.1 there exists a sequence (wW")

of partial isometries in M, representing GQ Q and satisfying

*(é] g_ (Adgag(eyg , Wg>g € o i W take W}(= 00 - If we

define unitaries e M by

then the sequence (wp v represents
E Ei 0 EQ’O(Ad Vga‘é])?(Eo,\]/ »1le M
and moreover, as in the previous Lemma, we infer
(Ad("g *g.°g)(ei,j) " el,j -

Hence (v*) « (w”vp represents and

(M V b«*.J> m*1.J



Step B
Lot VcIN and 1ot ev be the subfactor of M generated
by (eMj). m. Let ((£9),(uig,,)) he the rocycle crossed action obtained
by perturbing the action (ug) by (vg) . Since a”e =id , we infer
Whe (ev)'n M; gh € G, VN . and hence ((M(ev)'n M),(ug>h))
is a cocycle crossed action of G on (eJ)' r\ M » which by 5.8 is centrally
free. By the Theorem 7.4 , we can perturb ((a®) , ( h)) with
(w)c (ev)'n M to obtain an action (flg) . Since the sequence
(~,h) = (vg Jg(")VgJd)v represents Vg «g(Vh)V*h =1c M1, wo have

for each g,h ¢ G

. _ AL
\I/mL} ah = 1 strongly

and by the estimates in the Theorem, we may assume that (wg) also
satisfies
lim *1 »-strongly.
vu "
W let vg * vg . Since for each v, (vg) perturbs the action
(Ug) to an action (s]j) , (vg) is an (ag)-cocycle. For each g e G, (vj)

represents Vg , and for each i,j c |

<M mM Sg«Al159)1,1.J» ' Ad Sg<ei,J> * e?J
and the Lemma is proved.

8.5

The following result implies the Theorem 1.2.
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Theorem

Let u:G % Aut M be a centrally free action of the amenable group G
on the McDuff factor M. Let e>0, let v be a finite subset of
M and let F be a finite subset of G . There exists a cocycle (v")

for (ag) and a 11 hyperfinite subfactor Re M, such that

M=R9 (R'n M , (Ad Vgag)|R = and
ly "ii*<c¢ eef ,9gCF
I 1"0PRNM e kc¥.

In the Theorem 1.2 we moreover assert that (Ad vgagllR'n M s
conjugate to (<y , but this can easily be obtained from the Theorem

above, since idR is conjugate to idR O idR .

Proof
We apply inductively the Lemma before, to lift fixed point factors

from |\6 to M

Let (Fn)n , Fj * F, be an ascending sequence of finite subsets of

G, with U m=G, and let (tr)n , * v , be an ascending sequence
of finite subsets of M, with U 1 total in M . We construct

n
mutually commuting subfactors & ,éz .. ,<r,.. of M, of type ,

and cocycles (vj) for (a°) - (ag), (v|) for (aJ) - (Ad vj a®)....... (N +1)

for (“g * (Ad v N),... such that if we let ell be the subfactor of
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M generated by e'u...«?1, e" » C.l, we have for each n >1

Alar-1 — i _ R . .
agle 1 Idon' and v9 e (en_1)'O M, and letting

nggl"'vg’vgzi * w0 have

i mn n-1,4"  «-n

) yvgmg 1r7-2 ¢ 9 Fn ** cn

(2)  1k°p - *11 i 2 ne * e 4n e
(¢Vn m

Let n =1 and suppose, if n >1 k6 that and

.v""1l with the above properties have been already constructed. By 5.8
r;h_e factor N (en'V . n M is MeDuff and (pg) = (a%ll‘im) is a centrally
free action of G on N . By the Lemm 8.4 there exists a s.rn.u.
(E'l,J)’i’j t (0,1) in (Nu . By the Lemna 83 (im which we take
(VJ 31) , we may find representing sequences (em .) for E =,

consisting of matrix units in N, and for each v an («g ) cocycle

(Vg) in N such that

(3) eu
and
lim \ft » 1 ‘-strongly.
VU
For each m N . lim ||[eV.»J =0 . This also holds for
each ee*1 9 N «M . Let evC M be the subfactor generated by
eMj . W have

L
@v)vim <7 BT Ly > 7 X
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hence for f c M

lim *oP mUmi r DY RV =
V-~ (ev)'r>M vw o i, 0,1

mlim i r. 2ﬁJi 87,i* m*
vt

We may thus choose v elIN such that

11*$ vg 1 « »S*11ifi z'"c *efn « 9 e Fn

| UoP - iill<_2 ¢ * ¢ Yn
(ev)In M

If we take V& = V\g/ and let e° =& , then the induction hypothesis

is satisfied. From (1) we infer for m>=n >0

vijii < 2-n. e1W A F#l
Hence v = Ilim vm ~-strongly exists and yields an (a ) cocycle;
9 ivm
moreover
* = —
Vg Cole eV=Yi gEF=F,

We let R be the subfactor of M generated by U e
n
8.2 R is a hyperfinite 1In factor and splits M. W have

; by the Lemma

[I**pR'n M’ *11 - n>IlI"oP(en)'n M’

< 7 2ne »¢c
* n>|
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For m>n > 1 we have
(Ad vg «g)|en =aglen * id n 9eG,

thus at the limit when mm* and then n o« we infer

Ad vg ag|R - idR geG.
The Theorem is proved.

8.6

Let us recall the Theorem 1.3 under a slightly different form.

Theorem

Let aG Aut M be a centrally free action of the amenable group G
on the McDuff factor M. Let ¢ >0, lot v be a finite subset of M
and let F be a finite subset of G . There exists a cocycle (vg)
for ag and a 11" hyperfinite subfactor RCM , such that
M=RO (R'rs M , (Ad vgug)(R) « R, (Ad vgrg|R) is conjugate to the

model action (4.5) and

Mvg " 11U <c *6*e9cCF
Ik«pR'™n m* *11 * E * ¢ f°

From the above statement we may obtain the supplementary assertion
in the Theorem 1.3 that (Ad v « |R'r\ M is conjugated to («3) , since
yy

the model action (a”) is conjugate to (og0” 0 ag0”) by construction.
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The model action is an infinite tensor product of copies of the
submodel action. The proof of the Theorem will consist of an inductive
application of the Lemma that follows, which yields a copy of the sub-

model action.

Lenna

In the conditions of the Theorem, there exists a cocycle (vg) for
ag and a 11" hyperfinite subfactor e£ M, such that M =e 0(e'n M ,
(Ad '\g ag)(e) =e , (Ad ugle) is conjugate to the submodel action,

(Ad Vg“gle‘r\ M is outer conjugate to (ug) , and
llvg - 111" < e cV,gckF

[1+oPr' A M’ <c *eYe-

The proof of the Lenina will occupy the next section. We give first

the proof of the Theorem.

W may suppose that V consists of faithful states of M . Let
(vn)n>] be an ascending family of finite sets of normal states of M,
with «v and VAYn total in M, and let (pn)n> be an ascending

family of finite subsets of G, with P* *F and VF* =G .
n

We construct inductively mutually commuting hyperfinite 11 subfactors

e\e2,... of M, with M* enO((en)'n M for each n , and cocycles

(vi) for (*g) * (*g) . (vj) tor (ag) * (A VgoOg)......(V§+1) for
(aE]):I) * (Ad vgug_l),... such that if en is the subfactor of M generated

by e'u.,.Oen, e *£1 , and if vg* YgYg"”ee>g» v° * 1. then

(I,n) ttgi*1) aon , and (rigl”) is conjugate to the submodel action



- 139 -

(2») (*"|(en)~M ) is outer conjugate to (a
(3»n) wvjje (en')'n m 9eG
(4.n) "*'*Cg'nf<2'”c 9eFk.>cY

(5»n) ii* - xgp n Il <2'nc *Eyn
(e°)In M

hold, Let n>1 and suppose. 1f n> 1 , that el,...,e""
- satisfyin I,k - for k=1,...,n-
| T ying  (I,k) (5.K)

constructed. Let N = (e"-1)'n M

Let us choose for each i e vnh some ce*l and

e N* such that under the identification M=en » 0 N we have

1* - ¢ gAnm<2™?
Let ec N be the set of all those which appear in the
above decomposition for some e , and let 5 >0 be such that

«1lx, 1 IIf, ni2"'"" 2

for all $cy

The action (a® VI) is by the induction hypothesis outer conjugate
to (ug) . We apply to it the Lemm in this section to obtain a Ilj
hyperfinite subfactor €1 of N with N=en O ((e”JVI N) and a
cocycle (v*) for (“g") such that with e’ »en ' 0 e1C M and
(aj) - (A vjaj'l) we have a"(e”) * en Uglen) is conjugate to the

submodel action and (a®)(e*1)'ftN) is outer conjugated to (a® 1IN.
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[[vl - 111»«*'™'1*

I-rl
9

-1
for gcF ,* cv , where 4 =Advn Y , and also

[|[t - *oP n Il < «IMI se

(en)'n N

W infer via the inequality 7.7. (1 )

< zi-Z'0"1 e<2-nE

For iicfn , with Xi>emXpee*1l and ~,..., 4" £
chosen before, if we let o ‘| M j ¢ M » ttien
i 1
< 2.n_2E
1
H?2-*V )'rt«e "M IXtIZ Il,r*oP(.«)m«>
n-2
<6 CJ||XIHI TUill i 2 ‘
and hence

I|*-toP (EH)'HM” < U-2l +|I('t'-*)°p(en), HM

+]|*-?0P n | <3'2_n"2c < 2_ne
(en)'nM

N*



-4

The induction hypothesis is thus fulfilled.

From the conditions (4,n) , for m>n>0 we infer

9 Fm,
therefore the limit
v, = lim v" ‘-strongly
Jome A
exists and yields a unitary cocycle for o , which satisfies
[vg - 1lif<e gckF=F, ,»et

W let R be the subfactor of M generated by U en . The
n
conditions (5,n) show, in view of the Lenina 8.2, tliat R splits M

For each m> n > 1 the action

AdvéVglen»Ad Vé\\/g|e]l* | en

g

is conjugate to the submodel action, hence (Ad v | en) is conjugate
to the submodel action, and thus (Ad v*u”IR) is conjugate to the model

action.

We have, for et » ' i]

< E 2ne=e
n>|

The Theorem is proved.
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8.7
The proof of the Lemma 8.6, given in the sequel, is the crucial

point of this Chapter.

According to 4.4, the submodel can be approximated by a system of
almost equivariant matrix units, which form a finite dimensional submodel,
product with a hyperfinite 11" factor almost fixed by the action. In the
Step A, we construct an almost equivariant system of matrix units in M
In the Steps B and C, we perturb the action in order to meke the almost
equivariant s.m.u. become equivariant. In the Step Dwe lift the whole
construction from to M, and in the Step E we construct the

remaining almost invariant part of the submodel.

Throughout the proof we shall use the notations connected to the
Paving Structure for G (3.4) on which the construction of the model action
(4.4-5) was based. Recall that ¢ >0, Gcc.G , (Kr),i i | are the

cM-paving, (,:n>'n) invariant sets on the n-th level of the Paving

Structure, and U k" 'UK? are bijection approximating the left

9 i i
g-translations. The assumptions on (cn)n done in 3.5 and based upon
the fact that could be chosen very small with respect to >

are used without further mention. Also recall that the set S? is the
multiplicity with which K? enters in the construction of the submodel

(see 4.4) and 5n * lIJ 2 * S’f
Let us choose n >4 such that 30cl, <i and G p_F
Step A

The Rohlin Theorem provides an almost equivariant partition

of unity in M ; from this together with a fixed point s.m.u. in
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we obtain, by diagonal summation, an almost equivariant s.m.u. in M

The Lenina 5.6 shows that the action (ag)u-
is strongly free. For simplicity of notation, we shall denote
(@ )u by (a®) as well. Since M is McDuff, by the Lenina 8.3 the

fixed point algebra is of the type IlI. W choose a s.m.u.
(Fsr s2),sr s2 * 5" 1" [H>°

W apply the Rohlin Theorem 6.1 and get a partition of unity

(Fi,k') le In-l , ke Pﬁ?'l in Mu such that

1 £1* .1~ ) -~ KT <5ttl
I k,* kt T ni

1",k % ,s21 O

for i,j ¢ , kit ek~ , mc n_ll,SiStSn.
W define a s.m.u. (F$ s")»si*s2 c AL
(kN>si), (k2182) ®wA Y§A 228 A
for (kl»sl)a(k2Ss2) ¢ 5" mUKj *Sj, it lIns , hc k1l and
J
*iom¢nld(k % m¢nlj(k?)

)
1 h 1 £ h c

Since F. and F. . commute and t" are bijections, it
N1*52 1* 9

easy to see that

induced by (ag) on

is
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(r(kl,sl),(k2,s2) Fi,h:

form a s.m.u. under F.~ , for each fixed i,h ; hence (F$ $)

are a s.m.u.

Let us take

sh - i(k,s) er*|lel. kekjn 0 g'v, Scs?}
gEn

Since K? is (en»S) invariant, we have

(1) [Sn| > (I-e JI~]
Let us keep g c 7 (k],sl),(kj.s-) e sn fixed.
% have

9( (kl.s1),(k2,s2)) 1~hF(h-1KiiSi)>(h-1k2>8)Ug(ri,h)

", o+ 12
where i e In”® , hc L , in 2~ we sum for (i,h) with
h f ‘'n 5 *K?' andin 2 for the rest of (1,h) . Onthe other

hand we infer

(gkr sl),(gk2,s2) i|kF(k'lgki,sl),(k-1gk2,s2)ri*k

iy

where i ¢ In-j , k cij ' in 28 we sum for (l,k) with
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kegK? K{ A and in ef for the other (i,k) . Since is

(En-1 (i )-invariant, we have for each i e |l |

1< rw Kj*11 2- < *In-1>1KT , |

and so, by the estimates 6.1. (5) for the Rohlin Theorem, we infer

for ht kll'n g'lif ', and similarily

4 U 6i, 15T

If we let k=¢gh in B we obtain

Er"l\ - FH..-|,ki>5|£(/w-|kg,SA)(ag(ri,h) mrigh-

where i e and ht Kl'n g' kJ' . The estimates 6.1.(6) for

the Rohlin partition F. h yield

Summing up, for ge Grl and (kj,Sj),(k2,s2) t S c $n, we have
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2 lagn(k1,s1),(k2,s2)) * r(gki,s1),(gk2,s2)IT -

5 + 0z2iT+ ie2>t ¢ 22eJ-ii5flr 1 *

Step B
W perturb the action (u") with (U") to meke it coincide

on (£Ee. ¢ ) with a copy (Ad Ug) of the n-th finite dimensional submodel,

s]»52
For gt G, let U be the unitary associated to the s.m.u.

(Ec ¢ ),s,,s~ e$n in the sane way as in the n-th finite dimensional
I* £ A

submodel 4.4, i.e.

T = v r
9 k,s Etkg.s).(k.s)

where (k,s) e5n and ky =t~k) . Let (k0>s0) be some distinguished
element of S , and let us choose for every ge6 , a partial isometry
V\g such that

g "9 ' “g(r(k0.s0).(k,).s0))

“g“g * M WI(r([0.s0)-(ko-i0)) ' rl9gSe)*(W<e: o

A H(W-Vo)

According to the Lemma 8.1.2, from (2) above we may assume that for

gc G y we hae

(3)
"Vor@@gvy M9V.>I iM"'""-"I5r" .
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Let us define the unitary

iig* ~ Ad Dg(r(k,s).(k0.so))Wydg(r(ko,so),(k,s))

where (k,s) c¢5n . From the definition we infer

@ LAV .

for any g £ G, eb5" . W estimate for g e
V 1=k~ (Adgg(r(k»s),(ko,s0) W g (r(k0.s0).(k,s))-Addgtr (k,s),(k.s) )
=rl + e

where (k,s) ¢ ; in £ wesumfor (k,s) ¢S and in |2 tor

(k,s) cInN S" . In view of the estimate (1) on Sn , we have
It,| <2]5"ssn| |S»r"i2V ,
For (k,s) ¢ Sn, the norm of the corresponding term in is
i(gl<.s).(gko,so) vV g (E'(k0.s0),(k,s))
'r (gk,s),(gko,so)r (gko,so),(gko,so)r (gko,so0),(gk,s)IT 1

- |wg ' r(gk0*s0)'(9k0'so)IT +

+ '"“g(r(k0'so * (k,s)) " r(9k0*s0)»(9k's)'T 1
<66¢J.1|nr 1+22¢).1]50r 1 - BSe™I~rl
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where for the last inequality we have used (2) and (3). Hence

1] 1Ti 8BENn.] and thus f°r any 9 e Gn.|

Bh gt b il o (Rl Benp 26y < 90U,

Step C
W use stability results to further perturb (Ad Wa ) with

(Vg) , such that it continues to coincide on (ET 52) with  Ad Ug ,

but moreover (UWWgiig) is an (ag)-cocycle.

Let Fc. Mu be the subfactor generated by (F$ c ) . Let us

consider the cocycle crossed action ((ag),(Zgh)) of G on MW ,

obtained by perturbing the action (u®) with (IMi*) « We 1376 from (4)
Ad(~"Wy)ag | ~ “ idf

and since £F , we infer

. M 0> 9.h>
where g h 3 ~g ag(“h~gh ' For 3,h,9h £6n-1 we have from *

iW .-s-iV’'h* "W
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and since ((T ),(U )) is isomorphic to the n-th finite dimensional

sl ’s2 9
submodel, the inequality 4.4.(3) yields for g,h,gh e Qi_!

1Ugh ) Ug'hltl < 2e,
Hence for g,h,gh ¢ Gi.* we obtain

Vv "4 1 % s fldv Z.*-'>U

i 2c, * 270c*_, * cn-4 =m
Since ag[TT = idj' , we have

Ad 7g.hlr = (V h >}'r =idT

hence (7g c. I'r\'M . W apply the Proposition 7.4 to obtain
MWg)c. I'' n H perturbing the cocycle crossed action ((ag),(7gh))

an action (ag) such that
(6) IMg-1|T <I8cn. 4 for gcGn. 4
Since U_e T commutes with V\é , we define
9
W =WUIT * Uwff
9 999 999

and infer

(Ad Vgag)[r * (Ad Wora)[r = Ad V[T * id"

to
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Since (Wg) perturbs the action (u”) to the action (ag) , it

is an (ag)-cocycle. W have from (5) and (6) for gc G 4

IVg-1'x mlI“gV xi IV"''x ¢1V1 1 18V 4 *90"i!-l i 19',-4
and so

IVg-1 I, m1IVg-1 | igyg- I,Hyy ) (8xn4><Tchy

Step D

We lift the construction done before from Mu to H,

Let us apply the Lenina 8.4 to the action (Ad Wa which keeps

(*s s > fi xed. Let (ec ) be s.m.u. in M representing

sr §2 sr s2

(fs_s.) and let (wg)v be (Og) cocycles in M representing (W
sr §2

such that for each V c¢c N

Ad w’a, = id
( w9a9)|e i

where ev is the subfactor of M generated by (ev ) . We define

sl ,s?
9 k!'s e(kg»S)*(k*S)
where i e In, (k,s) c kK" ksjc”™ and kg »t"(k) , which compared
with the definition of shows that (u®) represents

For any | t we have



Lini | 14»0P - «ll
V-no e )lirv M
=lim 111~ rl 0 (év - 8v ? a)l!
WHi Sis2 sr*2 sl,s2 sl,s2 s2,sl
Elil» 1Mrl E ||[«,8 =0
Y

We may thus by choosing v ¢ @ in a suitable way

obtain a s.m.u. ( ).S,,S, C in M, generating a subfactor
é

esi%Z
i of M, a unitary cocycle (w(j) for (o ) and unitaries (4 ) in

e such that (e,ig) is a copy of the n-th finite dimensional submodel

and
A wa le = id~
99 e

* *
Ugig %« - Ten-a gcG . ittt

IUoPé&'rvM * -Sc

Step E
We complete the finite dimensional submodel & with a subfactor f

of M which is almost fixed by (0o ) , to obtain a copy of the submodel.

Let N« &lQ M. The restriction of the action (Adw<g to Nishy”
centrally free, and thus we may obtain, by the Theorem 1.2, a hyperfinite
Ilj subfactor f of N, with N*f O (ffH N and a cocycle (z )c N

for (Ad w-ig) such that
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Ad(z w)a, f =id
( g g) g f

(Ad(zgmg)ag | f'nN) is conjugate to id- O(Adwgag|N)=(Adwg«g)
9 Ed-4 *etIN

IU°PfinN - $11 igc  $ ¢ (* O BN

The subfactor e of M generated by e uf is isomorphic to the
factor on which the submodel action acts”and M=e 0(e' nH) , If we
choose an isomorphism between e and the submodel coinciding on e with

the one chosen in the previous Step, we get a unitary representation (ug)

of G into e , copy of the model representation and such that, from
4.4.(1)

lug - “gl? 18en 9¢c &
for $cv,J3 'AM * s’'nce 'S norma” zec* trace. This

yields for gc G

Yg'%
it
U,,U,,* . T [ PR .
Hgg Ulyi (Iy€ m'1jllyj [y1i**J
For any x e M and any normal states c M
I PEFi Hx [jf* 1ex-ill 1IxI12

hence
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(@) x| IfilI*nij* n

Letting x =ugug - 1, ~cV and § =*0Pe,” M> as we have

Ik " *11 0 1k * N+ A (UPfiAMAerr\ -

we infer

kgV 111* - Hug V 111* + iHug V 1M i 4tn +r

Since (ug) is a representation kept fixed by the action
(Ad(zgng)ag),(ug) is an (Ad(zgmg)ug)-cocycle. Therefore, if we let
v =uzw , then (vj is an (a ) cocycle. The action (Ad v a)
g g99g g 9 99
leaves e globally invariant and coincides on e with (Ad ug) , the
copy of the submodel action. Since zgce‘rvM and ug e e

V =u

ZUUw =u
9 9999

uzuw
9 9999

9

and hence, via the inequality 7.1.(10) we obtain

1UW-
99

*Jx*7cJd.4)<1l5e*.4 * J <.

for any g c FC Gk

The proof of the Lemma 8.6 is finished.

, we infer



8.8

It will be convenient for the proofs, instead of dealing with
G-kernels, which are honiomorphisms G-+ Out M= Aut M/Int M to work
with their sections, that we called crossed actions, and which are meps
aG mAut M, *id , with agaha”J c Int M for g,h e G. The

following Theorem implies the Theorem 1.5.

Theorem

Let a:G » Aut M be a centrally free crossed action of the amenable
group G on the McDuff factor M. Let it >0, let » be a finite
subset of M and let F be a finite subset of G. There exist

unitaries vjcG,gcG, with vl =1, and al”® hyperfinite sub-

factor Re M such that M=RO0 (R'O M),(Ad v*Ug)|R = idR and
Ivg - i|lt <c *cl, gCF
I140Pr,n M- «ll <e *EV.
Since idR is conjugate to idRO idR, one can actually assume
that moreover
(Ad vyoy|R'n M is conjugate to (ay)

Towards this result one first proves the following analogue of the

Lemma 8.4.

Lemma

Let a:G Aut M be a centrally free crossed action of the amenable



group G on the factor M. Let (Vg)c. mJ be unitaries, with =1

and let I. |1] <», bea smu. in M such that

.[Et,j>-m c

l« yp<E£i .o ijcl,%eG.

Then there exist representing sequences of s.m.u. (ei i)y for

nd repr ntin n f unitaries for Vg ,
R and representing sequences 0O (V@)v (s}

q mi such that

(Ad Vi)« jn gy i% el 9gcG.VEN
The proof of this Lemma consists of merely the Step A of the proof of the
Lemma 8.4 (actually the group property of G is not needed). The proof
of the Theorem is obtained from the one of the Theorem 8.5 by using the

above Lenina instead of the Lemma 8.4. Since a crossed action induces an

action on the centralizing algebra (because inner automorphisms are

centrally trivial), the Lemma 8.3 can still be used.

8.9

The Theorem 1.6 is implied by the following result.

Theorem
Let a:G » Aut M be a centrally free crossed action of the amenable
group G on the McDuff factor M. Let ¢ >0, let y be a finite

subset of M* and let F be a finite subset of G . There exists a
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family (vg) , ge G, of unitaries in M, =1, and a 11*
hyperfinite subfactor Rc. M, such that M=RO0 (R'nM) ,

(Ad vgag)(R) = R. (Ad vgag|R) is conjugate to the model action and

ljvg - 11 <e cy . gctF
II"R'n M' Ml <c *cy o

Once again, the supplementary assertion that (Ad vyay|R'n M be
conjugate to (u®) mey be obtained since the model action (a”) is

conjugate to (u” 0 a”)

The proof is similar to the one of the Theorem 8.6. Since (a?)
induces an action on Nb , the Steps A, B and C remain unchanged. In
the Step D the Lenma in the preceding section is used instead of the

Lerma 8.4 and in the Step E, the Theorem 8.5 is replaced by the Theorem §.8.
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CHAPTER 9.

MODE. ACTION  ISOMORPHISM

In this chapter we give the proof of the main result of this paper,
the Theorem 1.4, which characterizes the centrally free actions which are

approximately inner.

9.1
In this section we implement V. Jones' idea of dealing with approximately

inner actions of a group G by means of a G « G action.

Throughout this chapter, we again assume that the group G is discrete
at most countable and that the factor M has a separable predual; we let

u be a free ultrafilter on N .

Lemma
Let «G » Aut M be a centrally free approximately inner action of the
amenable group G on the factor M. Let for each ge G, (vp be a

sequence of unitaries in M such that n =1lim Ad V] , and let
9w 9

ng((v@velw ; Vl-l.

Let us take, for g,h,k,A e G

Ad V c Aut Mv
J9.h) gh
«V lauiv. = )V* c M

I, ... . —_—
(g.h).(k.iy  gh“l h kz'l" gkt h’
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Then (0|Mm,U) is a cocycle crossed action of G x G on Mk) ,

which is semiliftable and strongly free (see 5.2, 5.6 ).

Proof
The fact that each N is semiliftable is straightforward. We

see that (0,U) is the perturbation of the action (g,h) “m by

Vv .-D"g . hence it is a cocycle crossed action. Let us show that
u. .+ . ¢cM . Foreach $e M we have

lim <cod v" = (o gcG.

V) '

T (g.Rh, (k2 = Y- I<ROVKI-D YYki-iy g * then

Liri u, ut 6 *o(a  LILIL 1 it ) s %
VH ig.nMK.*) gh lIkilh!l gkt hiI
hence Un ., e M

Let us show that for (g,h) + (1,1) , 0(g,h)IM) is strongly outer.

If h/ 1, then for each v , Ad w .1«h is centrally nontrivial and
gh

thus by the Lemma 5.7, °(g h)IMu is strongly outer. If h =1 and

g/ 1, then Ilim Ad w ,ah * a which is centrally nontrivial, and the
V] gh't " g
Lemma 5.6 shows that e, .. is strongly outer. The Lenina is proved.
\9*1/
9.2

We show that the approximate innerness of a group action, defined
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pointwise, can be given a global form.

Lenina

Let aG » Aut M be a centrally free approximately inner action of

an amenable group on a factor. There exist unitarios e M1 represented
by sequences (vy)* of unitaries in M, with 1limAdv -a , Vj =1, and
such that
Vth = Vgh
hr G
“g(vh) " V 9
gvh) " Vg
This can be restated as the fact that (Vv _j)" is a cocycle
for and implies the fact that o, .. =AdV _ «" s
P lg.b) gh-1h
action.
Proof
Let , g ¢ G be unitaries in M , implementing (a®) as in the

previous Lemmp, and let (?,u) be the corresponding cocycle crossed action
of Gx G on . Since CelMW\.U) is a strongly free and Gx G is

amenable, we can apply the Proposition 7.4 to conclude that 1] is a

coboundary, i.e. there exists a perturbation (Wg such that
(e,U) perturbed with W yields an action. This way (W”" hj7 hj
perturbs the action (u”™g to an action, and hence is a cocycle for

it. We have thus, for g,h,k,Jt c G
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u , Vv W =wWhnVv
(hg” ,1) gh'l (9.9) (h,g) hg'l

and thus
v ,=2anv . V [Z*=2ZWh V W nz*
hg' (hg' ,1) hg'l (h.9) hg'l (9.9)
2Mh,g)7hg- 1" (Z )
In particular
V" 20.9Va(z*
hence
vg*l°g(vh) s zw(l.g)Vg-lag(Z zw(h ,I1)V
= zw(i .g)vg- 1g(w(H,1)vhz )

If in (1) we let I,g,h,l stand for g,h,k,t we get

RN (O Al (A

which yields in the preceding equality

V *"* " 1 g <h, «>V ' '<72» 0 v

Since (Mg) was shown to be a representation
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and the Lemma is proved.

9.3

Let us recall the Theorem 1.4 in a convenient form.
Theorem

Let uG Aut M be a centrally free and approximately inner action
of an amenable group G on a McDuff factor M. Let e>0, let F be

a finite subset of G and let ij**0 e M |

Then there exists a cocycle (v*) for (a*) and a 1™ hyperfinite-

subfactor RcM such that

M=RQ(R'H H)

(Ad vgeg)(R) * R and (Ad vgag|R) is conjugate to the model action

We can easily obtain from the above statement the Theorem 1.4.
Indeed, by the Theorem 1.2 the model action (u”) is outer conjugate
to (c/°b QidR ; from the above Theorem we infer that (u") is outer

conjugated to (uj*bo !dR,n M and hence
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moreover we have control over all cocycles that appear.

We obtain the copy of the model action in the Theorem by applying
successively the following Lemma, which yields a copy of the submodel.
Recall that en >0 and CC G are part of the Paving Structure 3.4.

The sets ) index the n-th finite dimensional submodel 4.5.

Lemma
In the conditions of the Theorem, let n >5, let p = |5n|] and

let Y, S and 9 be finite subsets of H, , y consisting of states.

There exists a 11" hyperfinite subfactor e of M, such that
M=e fl (¢AM) , and a cocycle (v ) for (ag) ,such that letting

(ttg) | (Ad vgcg) we have

ag(e) =e and ( |e) is conjugate to the submodel action

(7 |le'n M) is outer conjugate to (u )

1y nvg- 1Iffl v 5 *cTe9cGd »

2) IMelA M" *H - 2p SP 1NGCoa - ?11 .CcE
9cCn+l
(3) for each $ e 9 there exists ce*, |In-]] <1,
2
ANc(e!AM), , 0 *I1L,2,...,p such that

Ik « Enl 8 PjH < «

|k lo(agle'n M - ~11 <6 1m1l..... P2
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The proof of the Lemma, which puts to work the whole machinery

developed in this paper, will occupy the next section.

Remark that the conditions (3) above expresses the fact that
4" (>By » where = idy Q(aglev\' M , i.e. most of the action
iig is concentrated on e ; its form allows us to work further on in

e'r\ M. n the other hand, if for some $ e M we would have

% e0R-Iny | ' then’ since “y y %na *«Je is inger and Bn'd -

we could infer

*0“g % eoPe,rkH°“g * *oPe'"M oPg * *opg % &

and henceforth the form of the condition (2) above.

Proof of the Theorem

Let n >5 be large enough to provide 3e-.j <t and 3 F.

Welet p m | ,nc N. Let (¥n) , n>n - 1 be an ascending family

of finite sets of states in M, with =0 . and Tn total in
M . We construct inductively for n«n , n+ 1, n+2,... mutually
commuting hyperfinite subfactors en , ? 14l of M, and

cocycles  (vi) for («g'1l) m (afl) , (Vi) for («s)-(pdvﬂgb«g'l' (Vi
for (u") * (Ad vjog 1),.. such that if en is the subfactor of M

generated by e e ..e with en N « C.l, and if

n_-n-n-1 h
LV

Y = Vg Vg with  Vg"™ « 1 , then for each n >n we have

v h
9
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M=i* 6 ((ell)1f\ M)

a”el) =en and (a”|len) is conjugate to the submodel action

(tig (en)<nM) is outer conjugate to (o")

vj e (e )VV M

(M)
(5,n)  1UoP A 4E YV 4
(en)'ON
(6,n) there exists ¢ N such that for any 4 e Yn there
" ' * k =1,...,rn such
are ke (e"). . llck]]| £ 1, 5ke ((en)'H M)* ,

that

II*-?k “ktOEKI T VO

iiek=(<;i(en)riH) - tkn ip-,V;'cnt). ).trt

Let n>n and suppose, if n>n, that en,....efl 1 and

Vg' 1) satisfying the above conditions have been constructed.

Let N = (e0*1)' , Let g eIN be chosen such that the following

condition holds

(N for any 4»e ¥, there are e(en 1)* ,IIx*11 £1

and kcNg; i *1,..1,g with
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11 J Xi 9 & 11 <i cntl

We assume that in  (6,n-1) and (7) above, a choice is

made and kept fixed in all what follows for each ~ involved.

The action (a”-1IN) is by the induction hypothesis outer conjugate
to (ag) , and hence is centrally free and approximately inner, and N is

a McDuff factor.

Let us apply the Lenina in this section in order to
obtain a cocycle (v*)CN for (a” ”) and a subfactor €1 of N such

that letting ag * Ad vgoé‘“'* the following assertions hold

N*ell N)
aj(en) =en and (a”le0) is conjugate to the submodel action

('»gK~”VftN) is outer conjugate to

o |[M'[ITo<v:

for gc G4, with g »*0 o Ad va'l

for any #c» , , if ckc (en” and
©)
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£EKEN, k=1,...,r|i_L1 were chosen in (6,n-1), then for k=1,...,rn_1
we have
U k<P NK'L-2pn s I1fko(ag*1'N)‘ 5kll
E (e")r>N k pn gggnﬂ ( 8 )
(10) for any c Yn

chosen in (7) , there exist nitj e (in), , Ini(jl! =1 and

£. . e ((en)‘r\ N),

=, , ) =1... P, with

LIV * "i,j0 i.jlli en.2

A Pnllrnleml ' 9 e °n*2 '

From (8) we infer, in view of the inequality 7.7.(1), if 9* Gn4

and dg = t/QAd v[j 1

9 mll(»g - )»;m'liio<
« z'iiit; -in ** l7; -in*)« *« ,.5
and hence (4,n) is proved.
W have assumed that *0 .

hence the statement (5,n) is void
for n* n. Suppose n>n and for * e let ;ke (e

.,rn ™ be chosen in (6,n-1).

tk e N* ; k*1I,.. With (9) we infer for
each k

, with e (eM™)* arxd c N »i =1...

|
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- dkn o< 2pn [ S T B
(O'nN geGn+
S Rk fn T 2 "l
hence if =Eck 9 c M, then
UP 0 1 (UL 2] + [P
(en)r»M (en)'f\M

< 2en + Z||ck|]] M"oP
K'(i")'nH  r«

2r'I c_ =de
n n

<2e +r
- n -1°n

n-1
and this way (5,n) is proved.

Let ¢c vn and let e (en M)* | t N, i =1,...,q9 be chosen
in (7). Let further on n< <e (e)* , L J( c (en) AN, 1*1,...,q ,
o»J 1»

2
j *1,...,pn be chosen in (10). Wé let

C?I'J' ° XJ hi.j (enl O0e"). («'

and infer for any i,j

M.J1 i <i

X, * (L%, 00 1TV i g ajl
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i i cml o+ 1l = B

1 -1
IUi|j°(agl(en) A N)-eiij|| < Pni*n~nfl *9 e G2

and thus, if we relnde>;ate (;.1jJ),(Cl*J) i =1, —.,q9 ;] = 1""’P1'|
with k = 1,.«.rn = gpn , we obtain (6,n) and end the proof of the
induction step.
From (4,n) we infer, since I 2c £ < 31- £ <e and U G, =G
- n- n- n

n>n h
that

Vv \4

= lim ‘-strongly
* flko J

exists for any g e G and yields an (a") cocycle which satisfies

llvg - % g Kc 31FCGn4 -

VW let R be the weak closure of Uen in M. The conditions
n
(5,n) show, in view of the Lenina 8.2, that R is a 11 hyperflnite factor

and M=R9 (Rn M .

Let (6”) be the action of G on M given by

eg a iden 8 (a5l(e"mM) 9EG -

For * ¢cYn and ;k ¢ (en), , &k e ((en)TiM)* , k - 1.... rn chosen

in (6,n), we let * »£ " 0 & and infer
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[ i 2 | + IUoHg-~11

- 2cn#l + EMckH 1UK°(«gl (en)**M)-Ckl |

i 2end *VnVaiad'vi®3MI

for g c Gi+2 . Since is total in M and t/>n =G, we obtain
n n
lim j|T - =0 eG, if e M
lim il 083 g

Let x¢c RYWM . Forany nelM, gc G

(Ad vjag)(x) =al(x) " 8g(x)
hence
(Ad vgag)(x) = w-1lim(Ad vgag)(x)
= w-lim 6a(x) =X
Nk«
and thus Ad vgug|RV\M =i ~ . This ends the proof of the Theorem.
9.4

In this last section we give the proof of the Lemna stated in 9.3.
The first part of the proof will be similar to the one of the main lemma
of the preceding chapter. In the second part we make use of the fact that
the action is approximately inner, and hence implemented by unitaries in

Mv . W let the copy of the submodel that we construct almost contain
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these unitaries, and this way concentrate on this copy most of the action.

To simplify the notation, in what follows we denote the extension

ug ag to nU by “g' W recall ttiat en >0 * CGicCG » tlie

e’paving subsets (K?)*cj of G and the approximate left g trans-
n _ n

lations £ :yK/ i are Part the Paving Structure 3.4. The n-th
9i 1 i1

finite dimensional submodel 4.5 had a s.m.u. indexed by 5° =U K?xS? .

i 11
In view of the assumptions 3.5 we meke use without further mention of the

fact that J.+" is very small with respect to ek , for any k >0 .

Step A
W construct a s.m.u. (E .),s,t t 5n, replique of the n-th
finite dimensional submodel in M , which is approximately equivariant
for (ag) and is fixed by (Ad V;ag) where Vg e M are unitaries

implementing

Let us begin by choosing, according to the Lemma 9.2, unitaries Vg e Mv

ge G, Vi =1, which implement ug on M, and such that

Vh mV
* <V *W s'h*5

The action (Ad Va) : G+ Aut M will be denoted by Ad Va and

99

the action (Ad V “(AddV AV™) : G*GeAut M will be
gh B

denoted by Ad Vx Ad Vu . By the Lemma 9.1, the restriction of this last

action to is strongly free, and the Lenina 8.3 shows that the fixed point
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algebra (MjAdVXAdV a the “Pe |||. W choose a S.m.u.

(Fs t), S,t e Fn in (myAdWAdV a

We now apply the Relative Rohlin Theorem 6.6 to obtain a partition

of unity (F. k), i ¢ , ke K™ in 1, which is

approximately equivariant for (agl(M\b)'Adv tt) = (Advg|\$VM AV *) :  the
estimates in 6.6 being better, for small e , than those in the Rohlin
Theorem 6.1 we may suppose that (F. ,) satisfies the sanme requirements

as its homonimous in the Step A of 8.7.

We proceed defining the almost equivariant s.m.u. (F f),s,t c

out of (F and (F by the same formulae as in 8.7, Step A

S*f') 1,K)

The s.m.u. (F thus defined will satisfy

S>L)

. \ <22
lag(r(k, »A)>(kms2) A (98]»id (kg h) ¢ T 22 1m0

for gc G . %(ki »si )y(k2»sr) ¢ S i, where Snc. 5" , with
n
IS'] > (Le£~)IFIl wes defined there.

Moreover, in this case, we have

jAdv+a
>C(Mu

Step B

This step parallel*s the Step Bin 8.7. W construct a unitary

perturbation (i? )c (MJAdV “ for (ag) such that if (ffg) are the
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approximate left g-translation unitaries associated to (F f)

gg = * k*s E(kg,s).(k,s)

with i cl , (ks) eKR*s", k =tnk) , and FcM is the

subfactor generated by (F then

S)t') '
Adia IF=Ail IF
gg 1 g

and

Iffg - 11T < 90e g

Step C
With the Relative Rohlin Theorem instead of the Rohlin Theorem,
one can repeat the proof of the Proposition 7.A to obtain the vanishing
of the 2-cohomology of (ag) in (M‘)A* ‘ , instead of . Ve mey
proceed as in the S*tep C of 8.7 and construct a unitary perturbation

W)C P A(MM)AV “ . such that if

% o
wy 1 M T Kﬁgxg

K
then (Wg)c (MJADV ° is an (a ) cocycle and

Ad Wa. | F » idr
949 e

0) Hiig Wy * 7 Cn-d 9 cGn-d
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Step D
The aim of this Step is to replace the copy ((FS,L 9 NL,
of the n-th finite dimensional submodel with a copy (( .),(Ug))q ,
v
such that the unitaries Ug are very close to the unitaries V(j

implementing o , i.e. such that E "contains" the action «g .

The unitaries (Wg) t M1 defined in the Step C, formed an (ag)

cocycle fixed by (Advict®) , hence they form an (Ad Vg) cocycle as well.
k

Thus (WOVg) is a representation of G into (M°)AdV " and

AdWOMVg) |[F = idr gcG.
k
Wlet V. =U W V. e (Mv)* a , and obtain
g 9 9 g9

Ad V |F - AdIT |F
g g

V¢ replace the partial isometries F31‘1 in F by some partial

isometries ES v built from V9 as follows. W begin by making a choice
of an element i ¢ K? for each i e In . Foreach i e In ,
(k,s) e x Sf and h = ki »~ we have in view of the fact that i c k"

and hj =k e Kj , i"(i) «k and so

Ad vh(r<T.s).(T.s)> ' Ad Irh‘r (i.S).(i,s)) mr(k.,),(k.«)

Therefore the formulae

E(k,s),(m,t)  ~hor(i,s),(j,t)"
%Ak Ak
A(k,s),(K,S)VAVA = V i ~(m,t),(m,t)



where (k,s) g K? x S? , (m¢t) g Kex SP, h=* ki ' ,i >m ~, define
J J

AHV
a s.m.u. in ((«f0) a with the same diagonal m.a.s.a. as F , i.e.

BEs®"Fs st M Sao

Let U3 be the left g-translation unitary associated to (E511)
“ 1kis E(V S),(1,'S) 3CG
with i el (k.s) ¢ Kj «Sj, k9 m «jj(k)

Since  (Ugvg) = (WVg) 1S a representation

Uahvgh = F:JVguII'th g,h e G

and in view of the fact that
Ad(Fg\Vg) | F =Ad(\NgV8)|F = idr

and U9 g I we infer

V.MV =F (FVYF..(VF .F, =F .F.F
&) ghhY = FonlFg §F nlVe g Fy = Fghinlg

Let us keep g s G fixed. W have

g » VAV
uvV -1

ot T Eust ke, 8) k1, ByM g «EqtE.

2

where i e In, (k,s) G K? x s" , k1 * tg(k) , h » k?"1 , h1 * k~"'1
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in we sum those terms in which gk € k" and in r2 those in which

ke /0 1R
Let ot H* be a state. W have

A
ViV -
M ir(kr * ,>|kr s>1* "V "'9

i2 {k'li|[Fkv*M kr s>1

» 2 |[K"sg-LKj[|S?]|]|?n]|"!
1

<2cnilk|]sd|I5T" . 2c

where it In, ke K"\g , si sj and we have used for the estimates

the Lenina 7.1 and the fact that K]? is (en,Gn) invariant.

On the other hand for a term in  zj we have k* Blg(k) m gk ,

h = kt"r and h * gkt"l so that with (2) we infer

, U V& * *
L(kl,s),(kl,s) Ww/h Wy = ~(gk,s),(gk,s) gk|-r*-rg

*

=t(gk.s).(t,srkr-rg " r(gk,s).(k.s)W * Frgk.s).(gk,s)

and thus 28 =0

In conclusion, for any state i e M and gc G

%
Vs «'I*ji Irll* =
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Analogue estimates yield

hence with the inequality 7.1(7) we infer
HU Voo 111* <23 .
99 - n

From this together with (1) we obtain for ge6 4

(3) HV*-1]|»)
=Ail5g/iiid* iiy Suif>
< * 6cJ.,,) <10ei 4

for any state e

Step E

We lift the whole construction done before from Mv to M.

For g,h ¢ G we have

yg<v*WO LY

hence VI is an j cocycle; moreover Jc AN ° e W
(9 i (U9J y Vv (Es»1 (ly,U)

*

apply the Lemma 8.4 and obtain representing sequences (esll)v consisting
\ if
of s.m.u.'s in M for (Es t) and representing sequences (v" )
consisting of (a ) cocycles in M for (V) such that if ev is the
y y

subfactor of M generated by (eg»ﬂ then
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Ad Vg «glev = id gcG,velN.

For g e G, we define with the usual formulae the unitary uv e M
associated to (e .) such that ((e’5\ I)'(QIH) is a copy of the n-th
finite dimensional submodel. Then (U”M)v will represent Ug ¢ Mv

W let “g = vg™ e Aut M . From (3) we have, for any state e M

(6) 1im[lug vj K K9cn-4 " Th4

and also, since Ei‘S g = TSS t Iiu

-1
7 .. (j ).*X ,S = <SS C 15 cs

We study now the decomposition of M* with respect to

M=ev G ((ev)'fN M . Let 51-{ e (ev)* be the basis dual to

L s,t t 5fl . For &0 M let
r-'w 0
Sit " ex ety
with Sjt ] (e*S“t<f>)|(eV)'n M e We have c)5|ev =id hence for any

xc(ev)'n M and s.t c5"

[~ t(M(x)-x)| 3 k((«g(x)-x)ert)] =

ilkoS-ill INI

Since Ad v:ct) ®a, when v u we have »id and so

9



Let
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For s,t ¢5" , let ge )t besuch that Est Vg e e as
yielded by the previous discussion and let (xv)*» = (e® ~ ) be the

corresponding w-centralizing sequence. We infer

limllre® t,C3]|| lim|[xVc - r.xV]|
V>U) V Hi) A *

N

lim(flc-CoAd vijl| + [I[xv,tl]])
VHI J

MC- foog||

In conclusion, for any { e H, we obtain

(9) 11mj|coP -C|| < I*"] sup [le - eoo ||
V->* (")'AM guGn+1 9

Ai appropriate choice of v yields in view of (6)-(9) above, a
s.m.u. (est), s,t e5° in M and a cocycle (v*) for («g) such that

if e is the subfactor of M generated by (es»t] and if ay « Ad Volg

then there are unitaries ee , gcG such that

((e,s tJ,(uig)) is a copy of the n-th finite dimensional

submodel 4.5

«gle «id gc G

(10) Ilty | m I|IfilO «J.4 9 -4 . x e,

O d €*¥** *)i('+0)i'5r 1 st5n e *t
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12) UCoPe'nM " til <] [i"|sup I|COUg-i511/
G+

1I*"k S
(13)  jks,t°*g" esAl1-16 *eqa”>>*c

the basis

. \ n .
where £ g V.t 8 niitt with e

>t*)|le'n M.

(es,t) and es.t m (cs, )|
Step F

Me complete the copy e of the finite dimensional submodel

with a subfactor f , almost fixed by (S ) and obtain thus a copy of

the submodel.

Let N=e'r»M . Then by 5.8 N 1s McDuff and (agIN) is centrally
free. We apply the Theorem 8.5 to construct a 11" hyperfinite subfactor

fc N with N=f 0 (ff\N) and a cocycle (zq) for (ug) such that

(Ad zgaq|f)= idf
Adz U.|f'nN) is outer conjugate to id® 9u |f'r\N) = (!
(Adz, yI ) jug R g| ) (g)

(14) llzg - 1|3 <e, 9c@.4 . *cf

(15) Ill(c|N)oPf,nN - C|N|| <sup 1U°°g - ill/- «2

and with $s t a (es”i|/)IN , ipc M*, s,t c St

(») 11*$,soPf'A N' ~s.sN - en/N'*A"



(17) 1I*SltoPrnN e ~s.tH *c*.s.tcon

We extend the isomorphism between e and the finite dimensional
submodel to an isomorphism between e =e O f and the submodel. Let
t be the normalized trace on e and let (u )c e be the copy of the
submodel representation. Let a be the m.a.s.a. of e which is the
copy of the diagonal m.a.s.a. of the submodel. Then a is generated by
(e ).scb5° and by a m.a.s.a. of the subfactor f . It is now that
we use the estimates in the Corollary 4.4 instead of the Lemm 4.4, the
reason being that only the diagonal m.a.s.a. of e comes from M

and thus behaves well with respect to M .

For each gt there exists a projection p e a , with +t(pg) <8cn ,

such that

0-p,)"“9 m<h v U9

Let Pg*ies,Pgr , s eb®° with pgs projections in f Then
(g = EX(BQ,%.E(.ngg.) =1~ 1 1eT(pg>s)

For gcV,seb and ge G we have in view of (11) and (17)

N, spg,s> " Ms,s(pg,s>

- .s,s(Pf'n N*g.s™ + I~s,soPg'nN " *s sl |

3*"s,s)T<pg,s) + ‘nirl'1

< (1+en) I~ r 1T(Pg|S) + '



- 183 -

Hence

*(Pg) - S *(eS|SPg,s) < (I*«n)|5Br 1;T{Pg,s) + en

= (I+enMPg) + cn £ (I+c,) 8,n + en < 10cn

We infer

<19) Mug” - H If1l I|Pg(ugag ' 1>Pgl~”

i llugu* - I|k(Pg)Ji2.(10cn)J < 7cd

We have Ad vgJgle =id , zgcJ'AH and Ad(zyvg)ag|f

Ad(z v Jule =id
99 9

Since (Ug) is a representation of G in e , (ug) is a cocycle

for Ad(ZgVg)e»g , thus if we let

then (v ) is a cocycle for (ag), and Ad vg«gle <Ad ugle , i.e.

(Ad VgUg|e) is conjugate to the submodel action.
As u ce and z9 e e C\M, we have via 7.1.(10)

Hy'in*-1lywsy1 f13mvVv 1| v **ﬁ, :

<2(7cd * #10J4><m.5

id hence
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for ge®”™ , ~ c Y, where we have used (19), (14) and (10) before.

The estimate (1) in the Lemmma 9.3 is proved.

For 5 eb5 we have from (12) and (15)

IlUoPe,nM-e|| < llcoPe,nM-c|| + IKe|N)oPf.0 N-(c|N)||

< (I 1+1) sup ||Coa-c]|
9

which proves the statement (2) in the Lemma

Let o be the normalized trace of f . For $ e $ with

i
=

. Sftns>t Q*S|t e (e QN)*
ns in (13) and (17);we let

"5t " \,t 8* 9 f> " ex

*».t' e..tle'nM .

¢s.toPFn K" 00 *s,t »« hence

* * 1 - " * ™ o
SYl L8« tl | ”S]'t s,t8(*s.t'*s,t"Pf AN)
—S’J.*EII’\S,t“"s.ton‘ONI |

<jil"i2 i?v2i
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Since

«gleV\ M= Ad(UgZzgV agle'n M= Ad(Zg\g)agle,n M
and
Ad(29v9'age =id

we infer

“ IKO 0 Ps,t"0"MAd*zgvg’ugl®1A H) " 0 9 es.tH
- 2ll*s,t Pf'n N*Ts,tll + H*s,toAdzg " *s,tll +

+ HAtAAV g A A M * *s tH

<2.-3|S"r2« +di tjiii

where we have used (17), (18) and (19).

The last estimate in the Lemma is thus obtained by reindex ing

n_ f,%

cf ,s,t c|”| with asingle index k =1,2....... IN12 =p2
SeL'"S)t

Which brings us to the end.
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