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Abstract 

We studied contestant accuracy and error in a popular television quiz show, Jeopardy!. 

Using vector-based knowledge representations obtained from distributional models of semantic 

memory, we computed the strength of association between clues and responses in over 5,000 

televised games. Such representations have been shown to play a key role in memory and 

judgment, and consistent with this work, we find that contestants are more likely to provide 

correct responses when these responses are strongly associated with their clues, and more likely 

to provide incorrect responses when correct responses are weakly or negatively associated with 

their clues. This effect is stronger for easier questions with low monetary values, and for 

questions in which contestants compete to respond quickly.  Our results show how distributional 

models of semantic memory can be used to predict human behavior in naturalistic high-level 

judgment tasks with skilled participants and significant monetary and social incentives.  

 

Keywords: distributional semantics, associative judgment, response accuracy, big data, field data 
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Introduction 

Distributional models of semantic memory provide a powerful computational approach to 

understanding how people represent knowledge about real-world objects, individuals, and 

events. These models describe knowledge representations using high dimensional vectors, 

trained on natural language word-co-occurrence data, and subsequently specify the association 

between any two words using the distance between their corresponding vectors (Dhillon, Foster 

& Ungar, 2011; Griffiths, Steyvers, & Tenenbaum, 2007; Jones & Mewhort, 2007; Landaur & 

Dumais, 1997; Mikolov et al., 2013; Pennington, Socher & Manning, 2014). 

The idea that knowledge representations are derived from the distribution of words in 

natural language has a long history in psychology, linguistics, and other areas of cognitive 

science (Firth, 1957; Harris, 1954). However, with advances in computer technology, as well as 

the availability of large online datasets of natural language corpora, this insight has been 

translated into the development of tools and techniques for uncovering the actual knowledge 

representations possessed by individuals. Such representations have been shown to successfully 

predict behavior in a wide range of cognitive tasks, including similarity judgment, 

categorization, cued recall, and free association (see Bullinaria & Levy, 2007 or Jones, Willits & 

Dennis, 2015 for a review).  These representations are also highly successful at modelling 

language use in humans, and for this reason, are also commonly applied to problems involving 

the automated understanding of language in computational linguistics (Turney & Pantel, 2010).  

 Although most of the above work is focused on relatively low-level cognition, recently 

Bhatia (2017) has shown how this approach can be extended to model high-level judgment. 

Many such judgments are associative (Kahneman, 2003; Sloman, 1996), and distributional 

models can provide a quantitative measure of the strength of association between questions and 



ASSOCIATION AND RESPONSE ACCURACY IN THE WILD  4 
 

feasible responses. For example, Bhatia (2017) finds that measures of association derived from 

distributional semantic models accurately predict participant responses to probability judgment 

and factual judgment questions, with participants being most likely to select responses that are 

highly associated with the content of the question. This relationship holds both when the 

associative response is correct and when it is incorrect, showing that distributional semantic 

models accurately describe both adaptive and fallacious judgment.  

 All of the results discussed above have been documented in a controlled lab setting. 

However, the recent computational and societal developments that have made large natural 

language datasets available for model training, have also made similarly large datasets of human 

behavior available for model testing (see Griffiths, 2015 or Jones, 2017 for a discussion of such 

datasets and the need to use these datasets in cognitive research). Thus it is now possible to apply 

distributional models of semantic memory to predict high-level cognitive phenomena observed 

in a variety of real-world circumstances.  

In this paper, we attempt such a test, using a dataset of questions from the Jeopardy! 

game show. We apply existing distributional models to obtain vector-based knowledge 

representations for each of the words in the questions in our dataset. Subsequently, we are able to 

compute a measure of the associative strength between the clue in each question and the correct 

response to the question. We use this measure to predict whether contestants are able to 

successfully provide the correct response. If associations are at play in high-level judgment, and 

if distributional models accurately quantify these associations, we should expect higher 

contestant accuracy in questions where correct responses are strongly associated with their clues. 

This would be the case despite the fact that the Jeopardy! game show involves highly skilled 

contestants in real-world environments with complex stimuli and large monetary and social 
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incentives. Thus our goal is not to build a question-answering system capable of providing 

correct responses (e.g. Ferrucci, 2012), but rather study contestant accuracy and error in the wild, 

using a theoretically grounded model of knowledge and association.   

Methods 

Overview of Data 

The Jeopardy! game show presents contestants with clue-based questions. Contestants 

must respond to these questions with the correct response (typically a single word or phrase) to 

the clue. The questions have varying monetary values, and contestants earn money or lose money 

based on the accuracy of their responses. There are three contestants in each game show, and 

these contestants typically compete to respond to the clue as quickly as possible after it has been 

read. Thus responses are made under considerable time pressure. 

 The clues, as well as the correct responses to the clues, have been compiled by Jeopardy 

fans on www.j-archive.com. This website contains transcripts for the game shows from 1984 to 

the present time, and we scraped this website to obtain 298,820 questions, across 5,082 different 

games. For each of these questions we had both the clue text as well as the correct response text. 

We also had various question and game-level data, including the monetary value of the question, 

whether the question was in the first round (Jeopardy!), second round (Double Jeopardy!), or the 

third round (Final Jeopardy!), whether the question was a Daily Double question, and when the 

game was played. Importantly, we also obtained data on whether contestants were able to 

respond to the question correctly. Note that there are some differences between the structure of 

regular questions in the first two rounds, Daily Double questions in the first two rounds, and 

Final Jeopardy! questions, and so we analyzed each of these three sets separately. The 

supplemental materials describe the Jeopardy! game structure and our dataset in detail.  
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Overview of Analysis 

We used a prominent prebuilt set of vector representations in order to examine the 

relationship between contestant accuracy and the association between the words in the questions’ 

clues and the words in the corresponding responses. The representations we used were generated 

by the Global Vectors for Word Representation (GloVe) model (Pennington et al., 2014), which 

performs a dimensionality reduction on word co-occurrence matrices, emphasizing the use of the 

ratios of word-word co-occurrence probabilities. We obtained publically available GloVe vectors 

from Pennington et al.’s online repository (http://nlp.stanford.edu/projects/glove/). These vectors 

were trained on a 6 billion word corpus combining English language Wikipedia with the English 

Gigaword corpus, and have a vocabulary of 400,000 words. Bhatia (2017) found that these 

vectors described participant responses in high-level judgment tasks with considerable accuracy, 

and so we restrict the main text of this paper to only the analysis of the GloVe vectors. In the 

supplemental materials we replicate the results of our analysis using the Word2Vec and 

Eigenwords vector representations (Dhillon et al., 2011; Mikolov et al., 2013), also considered in 

Bhatia (2017).  

We computed the association between each clue and response in our dataset, as assessed 

by the vector representations. These representations specify a word as a 300-dimensional vector 

wi. For a given question, we first generated an aggregate representation of the question clue by 

taking the average of its words’ vectors, weighted by the frequency of the words in the clue 

(excluding highly common “stop words” and words that were not present in GloVe’s 

vocabulary). The vector for a clue, c, can be written as 𝒄 = 	 ∑ %&∙𝒘𝒊&
∑ %&&

, where ni is the number of 

times word i occurs in the clue. We can use the same method to build a vector representation of 

the correct response r, and in turn specify the association between the clue and the response 
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based on the distance between c and r. As in prior work, we used cosine similarity to specify 

distance, so that the association between c and r is A(c,r) = c·r/(||c||·||r||). A(c,r) ranges between -1 

and +1, with higher values corresponding to clues and responses that are more closely associated.  

The supplemental materials in Bhatia (2017) provide additional details about the computational 

techniques used in our analysis.  

Results 

Summary Statistics  

Table 1 presents the summary statistics for the first round (Jeopardy!) and second round 

(Double Jeopardy!) questions in our dataset, separated by the question value. For each type of 

question, it presents the total number of such questions in the dataset, and the mean and standard 

deviation of contestant accuracy on these questions. This table also presents the total number of 

such questions in the dataset for which we were able to compute the association between the 

question clue and the correct response with the GloVe representations, as well as the mean and 

standard deviation of these association scores. Here contestant accuracy is a binary variable 

which, for each question, calculates whether or not at least one of the contestants managed to 

provide the correct response. Association, in contrast, is a continuous variable ranging from -1 to 

+1, and is calculated by measuring the cosine similarity between the question clue and its 

corresponding correct response. The reason why we are unable to calculate associations for some 

questions is because either their clues or their responses are composed entirely of words absent 

from the GloVe vocabulary.  

 Table 1 illustrates a number of regularities in our data. Firstly, contestant accuracy is 

fairly high, averaging between 66% and 97% based on the type of question in consideration. 

Likewise, the association measure is also relatively high. Unsurprisingly the correct response for 
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a question is associated with the content of the question clue. More importantly, however, we see 

both contestant accuracy and association vary systematically with the value of the question in 

consideration. Question value depends on question difficulty, and we find that contestants tend to 

answer low-valued easy questions more accurately than high-valued difficult questions. The low-

valued questions are also the ones for which the association of the clue and correct response is 

particularly high. This suggests that there may be a systematic relationship between association 

and the ability of contestants to give correct responses.   

Contestant Accuracy in Regular Questions 

The goal of this section is to rigorously test this relationship. More specifically, we 

examine the correlation between the association of a question clue and its correct response, and 

contestant accuracy for the question (whether or not one of the contestants managed to provide 

the correct response). Overall we find a very strong positive relationship between association and 

contestant accuracy. This is illustrated in Figure 1, which plots the average contestant accuracy 

as a function of association, as assessed by the GloVe vectors. Here we have divided all our 

questions into ten equal portions based on the strength of the association measure for the 

questions, and pooled contestant accuracy for each of these portions. For the reasons discussed 

above we exclude Daily Double and Final Jeopardy! questions, as well as questions for which we 

were unable to compute association (those whose component words are not in the GloVe 

vocabulary). This leaves us with N = 272,412 regular questions for the analysis in this section. 

The histogram nested within Figure 1 shows the distribution of associations for all questions. As 

can be easily seen, these association scores are distributed normally. 

Figure 1 shows that contestant accuracy gets, on average, progressively higher as the 

association of the question clue and the correct response increases. Overall, contestant accuracy 
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is at its lowest (around 82%) for the questions whose correct responses are unassociated with the 

question clues (the first decile), and at its highest (around 87%) for the questions whose correct 

responses are highly associated with the clues (the ninth decile). It seems that contestant 

accuracy does drop for the last decile of questions. This could be due to a ceiling on the effect of 

associative strength on accuracy (as further increases to association after reaching a certain level 

no longer facilitate increased recall, and there is eventually a regression to the mean). 

Alternatively, this may capture the effect of questions with multiple highly compelling intuitive 

answers (out of which only one is correct).  In the supplemental materials we provide exploratory 

analysis suggesting that the latter explanation may be correct.  

We first examined this relationship statistically using a simple logistic regression. In this 

regression, our dependent variable was the contestant accuracy for a given question (1 if it was 

answered correctly by at least one of the three contestants; 0 otherwise), and our primary 

independent variable was the association between the question clue and correct response, as 

measured by cosine similarity on our GloVe vectors. This regression revealed a strong positive 

effect of association on contestant accuracy (β = 0.78, z = 23.46, p < 0.001, 95%CI = [0.72, 

0.85], OR = 2.18). We also ran a more rigorous variant of this analysis. This second regression 

had controls for the monetary value of the question (a dollar amount ranging from $100 to 

$2,000), in order to ensure the relationship observed in the regression and in Figure 1 is not 

confounded by question difficulty. This second regression also included controls for whether the 

question was part of the first round or second round (1 if in Double Jeopardy!; 0 otherwise), and 

the year in which the game was played (between 1984 and 2016). This regression also permitted 

random intercepts for the game in consideration, in order to accommodate game-level effects on 

contestant accuracy. Finally, as we suspected that the effect of association on contestant accuracy 
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varies across easy and difficult problems, we also included an interaction effect term between 

association and question value.  

Our second regression again found a strong positive relationship between association and 

contestant accuracy (β = 0.70, z = 10.66, p < 0.001, 95%CI = [0.57, 0.82], OR = 2.01). In 

addition to this, we also found a strong negative effect of question value, showing that contestant 

accuracy drops for harder questions (β = -0.14x10-2, z = -61.47, p < 0.001, 95%CI = [-0.15x10-2, 

-0.14x10-2], OR = 0.9986). Our analysis also revealed positive effects for both Double Jeopardy! 

(β = 0.38, z = 26.20, p < 0.001, 95%CI = [0.36, 0.42], OR = 1.46) and for year (β = 0.31x10-1, z = 

26.69, p < 0.001, 95%CI = [0.29x10-1,0.34x10-1], OR = 1.03), indicating that contestants are 

more accurate in the second round of the game show (once question value has been controlled 

for) and for more recent game shows. Finally, we noted a negative interaction effect between 

question value and association (β = -0.26x10-3, z = -4.29, p < 0.001, 95%CI = [-0.37x10-3, -0.14 

x10-3], OR = 1.0003) indicating that the positive effect of association on accuracy drops as the 

questions get harder.  

The effect of association on contestant accuracy for different types of questions is shown 

in Figure 2. As in Figure 1, questions are pooled based on association (this time using quartiles 

rather than deciles), and the average contestant accuracy for each set of questions is calculated 

and plotted separately based on the monetary value of the question and whether or not the 

question was in the first or second round of the game show. We repeat the analysis in this section 

with Word2Vec and Eigenwords representations in our supplemental materials. In the 

supplementary materials, we also repeat our analysis after excluding questions in which the 

correct answer is actually present in the clue text (to ensure that such questions are not driving 

our results).  



ASSOCIATION AND RESPONSE ACCURACY IN THE WILD  11 
 

Contestant Accuracy in Daily Double Questions  

We also tested the above effects for the Daily Double questions. Note again that these 

questions have a different format to the regular questions, in that contestants do not have to 

compete to provide the response first, and are additionally able to specify the amount of money 

they wish to wager on the question. For the Daily Double questions (N = 14,584) we again ran a 

logistic regression with contestant accuracy as the main dependent variable and the association 

between the clue and the correct response as the main independent variable. We found a 

significant positive relationship between these two variables, both with a simple logistic 

regression (β = 0.30, z = 2.88, p < 0.01, 95%CI = [0.10, 0.51], OR = 1.35) and with a more 

extensive regression with the multiple controls and random intercepts used in the prior section (β 

= 0.35, z = 2.03, p < 0.05, 95%CI = [0.01, 0.70], OR = 1.42). Unlike in our previous analysis, 

however, question value had a positive relationship with contestant accuracy (β = 0.12x10-3, z = 

4.58, p < 0.001, 95%CI = [0.07x10-3, 0.17x10-3], OR = 1.0001). This likely reflects the 

contestants’ confidence, which correlates positively with both wagered amounts and accuracy for 

Daily Double questions. For this reason, we also fail to find an interaction effect between 

question value and association (p > 0.10).  

It is useful to note that the magnitude of the effect of associative strength on contestant 

accuracy is much smaller for the Daily Double questions compared to the regular questions in 

the prior section. This may reflect the fact that contestants do not have to compete to provide 

responses, and thus need not rely as strongly on associative cues (which are likely to be 

disproportionately used when under time pressure). We tested this formally by combining our 

Daily Double questions with the regular questions from the previous section, and performing a 

logistic regression to predict contestant accuracy. This regression included main effects for 
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association and Daily Double, as well as an interaction between these two variables. Like our 

previous regressions it also had controls for the year and the value of the question, and random 

effects for the game. As expected, this regression showed a positive effect of association on 

accuracy (β = 0.61, z = 17.77, p < 0.001, 95%CI = [0.54, 0.67], OR = 1.84). More interestingly 

however we obtained a negative interaction effect between association and Daily Double, 

indicating that contestants are less likely to use association for such questions (β = -0.41, z = -

3.39, p < 0.001, 95%CI = [-0.65, -0.17], OR = 0.66).  

The supplemental materials report a similar analysis for Final Jeopardy! questions. This 

round is different from the others in that all three contestants must provide an answer to the 

question. Here we found no significant correlation between cue and response association and 

contestant accuracy. This could reflect the fact that Final Jeopardy! questions are some of the 

hardest questions in the game show and associations are less useful for these types of questions 

(as evidenced by the negative interaction effect between question value and association, shown 

previously). It could also be due to the fact that contestants do not have to compete to provide 

responses, and thus need not rely as strongly on associative cues. Indeed, this is the case for the 

Daily Double questions analysed above. Both these issues are likely compounded by the 

relatively small sample sizes in our dataset for Final Jeopardy! questions (there is only one such 

question per game). 

Discussion 

  We used distributional models of semantic memory to specify the strength of association 

between clues in the Jeopardy! game show and their corresponding correct responses. We found 

that contestants are more likely to provide the correct response if this response is strongly 

associated with the clue. This relationship weakens when questions increase in their difficulty (as 
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with high monetary value Jeopardy! questions) and when contestants are not under time pressure 

to respond first (as with Daily Double questions).  

 Our results provide strong support for the predictive power of distributional models of 

semantic memory (Dhillon et al. 2011; Griffiths et al., 2007; Jones & Mewhort, 2007; Landaur & 

Dumais, 1997; Mikolov et al., 2013; Pennington et al., 2014), showing that such models can be 

successful even in the context of high-level associative judgment (Kahneman, 2003; Sloman, 

1996; also see Bhatia, 2017). In addition, they showcase a novel method for analyzing high-level 

cognition in the real-world. Such analyses ensure the robustness and generalizability of existing 

theories in settings with much more data, complexity, and realism than those achievable in the 

laboratory. They are also valuable for understanding the ways in which cognitive mechanisms 

(such as those involving associative judgment) manifest in everyday life, thereby facilitating the 

development of richer theories of human cognition and behavior (Griffiths, 2014; Jones, 2017).  

 Some readers may note a similarity between the dataset used in this paper and that used 

to train IBM Watson’s groundbreaking Jeopardy playing computer (see Ferrucci, 2012). Note 

however that, unlike IBM, our goals are not to answer Jeopardy questions accurately, but rather 

to study the psychological determinants of human Jeopardy responses (both responses that are 

correct and those that are incorrect). Of course, future work could adopt some of the 

computational advancements developed for question-answering systems such as Watson.  

Such work could also attempt to integrate the proposed approach with more sophisticated 

psychological theories of question-answering (e.g. Anderson et al., 2004; Reder, 1987) which are 

able to process complex relations between the clues and the responses, while also specifying 

metacognitive processes for controlling memory search and response generation. We look 
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forward to research that exploits these new and exciting data sources and techniques, to further 

integrate the analysis of large scale human data into the study of cognition and behavior.  
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Figure 1. Average contestant accuracy for questions with different strength of association 
between clues and correct responses. The x-axis indicates the association decile (ranging from 
weakest association to strongest association) for each group of questions, whereas the y-axis 
indicates the proportion of the questions that are answered correctly by some contestant. The 
nested histogram shows the distribution of associative strength across all our questions. Error 
bars indicate standard error.  
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Figure 2.  Average contestant accuracy for questions with different strength of association 
between clues and correct responses, for different question types (here “DJ” corresponds to the 
Double Jeopardy! round). The x-axis indicates the association quartile (ranging from weakest 
association to strongest association) for each group of questions, whereas the y-axis indicates 
proportion of the questions that are answered correctly by some contestant. Error bars indicate 
standard error. 
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Table 1. Summary statistics for different types of Jeopardy! questions. Here “Total # Quest.”, 
“Con. Acc. Mean”, and “Conc. Acc. Std.” describe the total number of each type of question, as 
well as the mean and standard deviation of contestant accuracy on the questions. “Assoc. # 
Quest.”, “Assoc. Mean” and “Assoc. Std.” describe the total number of each type of question for 
which we were able to compute associations, as well as the mean and standard deviation for the 
associations for the questions.  
 

First Round (Jeopardy!) 
Question 

Value 
Total  

# Quest. 
Con. Acc. 

Mean 
Con. Acc. 

Std. 
Assoc. 

# Quest. 
Assoc. 
Mean 

Assoc. 
Std. 

$100 11,172 0.97 0.17 10,730 0.34 0.16 

$200 29,953 0.95 0.21 28,892 0.33 0.16 

$300 10,647 0.90 0.30 10,255 0.32 0.17 

$400 28,936 0.90 0.30 27,946 0.32 0.17 

$500 10,097 0.78 0.41 9,748 0.30 0.17 

$600 18,066 0.89 0.31 17,461 0.31 0.17 

$800 17,601 0.85 0.35 16,999 0.30 0.17 

$1,000 17,578 0.76 0.43 17,006 0.29 0.17 
       

Second Round (Double Jeopardy!) 
Question 

Value 
Total # 
Quest. 

Con. Acc. 
Mean 

Con. Acc. 
Std. 

Assoc. # 
Quest 

Assoc. 
Mean. 

Assoc. 
Std. 

$200 10,987 0.96 0.20 10,704 0.35 0.16 

$400 29,433 0.93 0.25 28,605 0.33 0.16 

$600 9,871 0.86 0.35 9,638 0.32 0.17 

$800 27,415 0.86 0.35 26,704 0.31 0.16 

$1,000 9,614 0.69 0.46 9,398 0.30 0.17 

$1,200 16,930 0.84 0.37 16,424 0.30 0.16 

$1,600 16,080 0.77 0.42 15,626 0.29 0.17 

$2,000 16,803 0.66 0.47 16,275 0.28 0.17 
 
 

 


