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In this work we do not introduce any new notation. We have not 

tried particularly to follow the conventions in the literature, 
although our notation for the derivation of the full-potential 

scattered-wave (FP-SU) secular equations owes much to Johnson 
(1973) and Natoli et al. (1986). 3earing in mind the large number 

of equations presented here, and the means at our disposal, we 
have decided to write them by hand. The mathematical notation th­

at we used is standard, although several particular conventions 
should be noted. An integration in which the region is not speci­

fied should be taken over the whole region of the variable invol­
ved. For a vector f~ vie denote its magnitude by •” H  IM and the 
corresponding unit vector by r =  (V1") •" . A matrix (finite or

infinite) is denoted by M  . The use of set theory notation, i.e. 

set inclusion C.1 , membership 6- , union U  , intersection H  , 
boundary 3 , complementation , and the empty set ^  ; is int­

ended as no more than a convenience for the compact specification 
of the various regions of the molecular partition.

The physical units used herein are the theoretical "atomic 

units", in which the electron mass, the Bohr radius, the positron 
charge and Planck's (reduced) constant all have unit magnitude. 
Only two units in this system have special names; these being the 

Bohr of length and the Hartree of energy. Any other unit is deno­

ted simply by "au"; although occasionally, to avoid ambiguity, we 
also indicate its composition in terms of the fundamental quanti­

ties of mass (M), length (L), time (T) and electric charge (C).

In conformity with the literature of this branch of physics howe­
ver, we use also several non-standard units. Instead of the Hart­
ree, our fundamental unit of energy is the Rydberg (or half a

VI. NOTATION, UNITS AND ABBREVIATIONS.

xi



Hartree). In addition, but mainly in connection with experimental 

spectra or molecular structures, we use the electron-volt (eV),
O Othe megabarn (Mb) and the Angstrom (A). V/e list below the values 

(taken from Cohen and Taylor (1987)) of some fundamental constan­
ts and conversion factors, in SI and atomic units. As usual, the 

numbers in brackets within a value refer to the estimated (one 
standard deviation) uncertainty in the last digits of the mantis­
sa. If no uncertainty is quoted, then the value is to be interpr­

eted as being exact by definition.
Electron mass, mg = 9.1093897(5l+)x10” 3 "1 kg = 1 au(M).

— 1 oBohr radius, a^ = oC= 0.5291772if-9(2i+)x10 m
= 1 Bohr (au(L)).

Atomic time unit, a02me/ii = a^/c oC = 2.itl888It33( 22)x10 s

= 1 au(T).
Positron charge, e - 1,60217733(i*9)x10 ^  C = 1 au(C).

_ -Zk
Planck's (reduced) constant, IS = 1 .05^57266(63)x10 J s

= 1 au(ML2T"’"') .
8 ■■ 1Speed of light in vacuum, c = 2.99792l+58x10 m s

= 137.0359895(61) au(LT_1).
—7 —1Permeability of vacuum, = k'tr x10 H m

= 6.69176350(60)x10_if au(MLC-2).

Permittivity of vacuum, = 1/y4,Qc2 = 8.85^1 8 7 8 1 7...x10 12F m 1

= e2/ %  lie« = 1 /kVT au(M"1L~3T2C2). 

Fine-structure constant, oL = 1/137.0359895(61).
—11 3 —1 -2Newton's gravitational constant, G = 6.67259(85)x10 m kg s

= 2.l+0000(32)x10'Jf3au(M_1L3T-2). 

Rydberg energy, mec2 ot2/2 = 2.17987^1(13)x10 J
= 1/2 Hartree (auiML2!-2)) » 1 3 .6056981(^1) eV. 

Megabarn, 1 Mb = 10-2 2 m2 = 3.57106431(33)x10- 2  Bohr2.
Several standard and non-standard abbreviations are used in

xii



this work and we give a glossary of them below

ASR Atomic sphere region (of molecular partition).

EMR Extra-molecular region (of molecular partition).

(E)XAFS (Extended) X-ray absorption fine structure.

FP Full potential.

FWHM Full width at half maximum.

IR Interstitial region (of molecular partition).

Xrrep Irreducible representation (of a group).

LHS Left-hand side (of an equation).

LRO Long-range order (theory of XAFS).

(M)SW (Multiple) scattered-wave (method/theory)•

MT Muffin-tin (potential approximation).

OS Outer sphere (enclosing a molecule).

RHF Restricted Hartree-Fock (hamiltonian/method).

RHS Right-hand side (of an equation).

SCF Self-consistent field.

SHX Spherical harmonic expansion.

SRO Short-range order (theory of XAFS).

SSR Spherically symmetric region (= an ASR or the EMR)

XANES X-ray absorption near-edge structure.

XAS X-ray absorption spectrum/spectroscopy.
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VII. SUMMARY

In this work we describe the effects of the relaxation of the 
muffin-tin (MT) potential approximation (and the consequent use 
of full potentials (FPs)) in the ab initio calculation of X-ray- 
absorption near-edge structure (XANES) by the multiple-scattered- 
wave (MSW) Xod method. In doing so we demonstrate the validity 
and computational feasibility of the extended FP-HSW theory due 
to Natoli et al. (1986). Vie describe certain refinements to this 
theory and the development of a practicable computational approa­
ch for its realization. With the results of the newly-developed 
computer programs for certain model systems we show that the FP- 
MSW method leads to much higher accuracies in both bound-state 
energy eigenvalues and in photoionization cross-sections near the 
threshold. Our FP-MSW XANES calculations for the chromium hexa- 
carbonyl (Cr(CO)g) system therefore demonstrate, because the res­
ults are still significantly different from the experimental spe­
ctrum (although closer than the MT case), that there remain other 
deficiencies in the physical model. Although beyond the scope of 
this work, we strongly suspect that the bulk of the remaining 
error would be accounted for by a better treatment of inelastic 
loss and (to a lesser extent) exchange-correlation. Our final 
conclusion is that the use of FPs is necessary (and now feasible) 
for the accurate calculation of XANES.

We begin with an introduction to X-ray absorption spectroscopy 
(XAS) and then concentrate on XANES giving the motivation in ter­
ms of its structural significance and describing the necessity 
and difficulty of accurate ab initio calculations. The central 
part of XANES calculations is the solution of Schrodinger's equa­
tion for the initial and final molecular states in the absorption 
process, and we summarize the approximations to the full many- 
body equation that make it tractable. This leads to a discussion 
of the MT approximation and an illustration of its deficiences.
We review various remedies that have been proposed and concentra­
te on the FP-MSW theory of Natoli et al. (1986). We then give a 
detailed presentation of the theory and develop the necessary 
representation of the potential in terms of spherical harmonic 
expansions (SHXs). It is shown that, for symmetric molecules with 
up to two coordinating shells of atoms, five to ten partial waves 
per prototype atom serve to make the SHX representation from one 
to three orders of magnitude more accurate than the MT case.

The development of the FP-SW bound-state eigenvalue program 
ENESHX is described and the program tested with the hydrogen mol­
ecular ion (H_ ). By comparison with the MT results we find that 
the error is reduced to less than '\2% in the worst case (the gro­
und state) and less than 0.2% for the highest levels. Calculatio­
ns for the Cr(CO)g system do show changes of as much as -O.k Ryd. 
for the valence levels (stemming mostly from the better treatment 
of the interstitial region). The successfully-tested ENESHX is 
then adapted to produce the FP-SW continuum photoionization2+ 
cross-section program CNTSHX which is then tested with a Li ion 
pseudo-cluster whose exact analytic cross-sections are known. 
Above about 1 Ryd. from threshold, the CNTSHX cross-sections are 
within 1& of the exact values, compared to 7% for the MT case. 
Below 1 Ryd. the CNTSHX error remains less than 59?. CNTSHX is 
then run for Cr(CO)g with the results described above.

xiv



Chapter 1. INTRODUCTION.

Section 1.1: X-Ray Absorption Spectroscopy and XANES.

This thesis is concerned with the relaxation of the "muffin- 
tin" (MT) approximation in the ab initio calculation of X-ray- 

absorption near-edge structure (XANES). While treating the theor­
etical foundations in detail, and including some further elabora­

tions, our main emphasis is on the development of the computatio­

nal approach and the results obtained for model systems.

Consider X-ray absorption spectroscopy (XAS) in its simplest 
form as follows. Fig. 1.1 gives a schematic representation of the 

experimental situation. A monochromatic beam of X-rays of initial 

intensity I0 traverses a material sample of thickness t , emerg­

ing with an intensity I given by Beer's law:

from absorption and scatter. In practice, the detectors of the 

transmitted beam usually have a wide enough angle of acceptance 

that the small-angle scatter (which dominates the scattering pro­
cess) is captured. The scatter not detected is then negligible

where C- is the total cross-section for a given type of absorber

function of energy. The particular energy range we consider is in
the X-ray region with photon wavelengths from about 10 A to 0.1

( 1 . 1),

in which consists of contributions

and yu. is identified with photoelectric absorption. This absorpt­
ion coefficient is a function of the photon energy £", and may be 

expressed as

l , and H.* is the number density of that absorbing species with­

in the sample.
The main business of experimental XAS is to measure it as a

O

1

>
0



XAS - Schematic transmission experiment:
— 7— 7—7"7"~7 7— 7I------ >  ■ - ■ -----------

T ^xo
v, ¿ Z Z Z t Z Z .

*  I=Ioe

W Z ^ T z ? ,

h—  t — *

Figure 1.1: A schematic XAS transmission experiment. A collimated 
monochromatic beam of X-rays, entering from the left, travers­
es a homogeneous slab of material at right angles to its unif­
orm, parallel, plane surfaces» The beam enters with intensity 
IQ and emerges with diminished intensity I, the losses being 
due to absorption within the material.

(corresponding to photon energies roughly from 1.2 to 120 keV).
In this range the cross-sections in (1.2) are dominated by the 
photoelectric effect for excitation of inner-shell electrons. The 
most marked feature of p  as it varies with energy is the appear­
ance of absorption edges - step-like jumps in ^  as the photon 
energy becomes sufficient to eject an electron from an inner she­
ll (K, L, M etc.) of an atom in the sample.

On the high-energy side of an absorption edge the absorption 
coefficient resumes a slow decline with increasing energy. It 
quite often happens, in the region of an edge, that there are 
extra oscillations in the absorption coefficient. These are known 
as the X-ray absorption fine structure (XAFS) and may occur from 
about 10 eV below the edge up to several hundred eV above the 
edge. Their amplitude is typically 10 to 20 percent of the edge 
jump within 100 eV of the edge, diminishing to indetectability by 
the time we reach about 1500 eV above the edge. (This limit depe­

2



nds on the atoms surrounding the absorbing atom and the temperat­

ure of the specimen.) Within a few eV of the edge the absorption 

coefficient may oscillate by more than 100?£ of the edge jump, 
giving rise for example to so-called "white lines".

A schematic representation of a typical absorption edge is 
shown in Fig. 1.2. Note the arbitrary division of the edge spect-

Schematic absorption edge

Figure 1.2: Typical features of an absorption edge. At an energy 
characteristic of one particular type of absorber in the samp­

le, the cross-section (see (1 .2)) makes a step-like jump when 
the photon has sufficient energy to excite a core electron 

into the continuum. In the pre-edge region one sometimes sees 
peaks corresponding to transitions to bound final states. Abo­

ve the edge the structure, arising from modifications of the 
final state due to the presence of neighbouring atoms, is div­
ided into the XANES which extends to about 50 eV and the EXAFS 
which continues from there. To extract a particular edge one 
must remove the continuous background, due to other atoms or

3



other edges on the same atom, by extrapolating upwards in ene­
rgy some asymptotic form fitted to a smooth region below the 

edge.
rum into various regions; the pre-edge region, the XANES and the 

extended X-ray absorption fine structure (EXAFS). Although there 
is no exact boundary between the XANES and the EXAFS, the two are 

commonly divided at about 50 eV above the edge, for reasons we 

now discuss.
The first publication of a measured X-ray absorption spectrum 

vías that of M. de Broglie (1913) and the first published observa­

tions of fine structure above an edge were those of H. Fricke 

(1920). Following the advent of modern wave mechanics it was fai­

rly quickly realized that the fine structure resulted from the 
modification of the electron's final state by the presence of 

neighbouring atoms; and soon after Kronig (1931,1932a,1932b) laid 

the foundations of the present theoretical understanding of XAFS. 

In the ensuing *tO years the development of the theory was pursued 
along two separate lines; the long-range order (LRO) theory based 

on the attribution of the fine structure to variations in the 

electron's density of states due to allowed and forbidden bands 
in a crystal; and the short-range order (SRO) theory based on 

scattering of electron waves by neighbouring atoms. In this time 
many necessary further elements were included in the theoretical 

treatment and by the mid-1970s the SRO theory was found to be the 

more appropriate, since the fine structure is determined by near 
neighbours of the photoionized atom rather than all atoms in the 
solid. It is on the basis of the SRO theory that most modern tre­

atments of XAFS are based. One should see Azaroff's (1963) review 
for an account of the earlier history of the field, together v/ith 
the more recent reviews (for example that of Hayes and Boyce

k



(1982)). The detailed theory is given by Lee and Pendry (1975) 

and Ashley and Doniach (1975). and most later treatments are bas­
ed on their work. (Note however, that Muller and co-workers have 
developed a successful LEO theory for periodic systems (see e.g. 

Muller and Wilkins (198^)).)
It is from a consideration of the theory that the division 

between XANES and EXAFS arises. This theory is formulated in ter­

ms of scattering of the photoelectron wave by various neighbours 
before returning to its source at the excited atom to cause inte­

rference leading to the observed variations in cross-section. In 
the EXAFS region, in which the photoelectron energy is above 50 
eV, the scattering from individual atoms tends to be concentrated 

in the forward and backward directions. Furthermore, the mean 
free path of the excited electron is reduced because of inelastic 

losses such as coupling to plasmons or electron-hole pairs. Both 
of these effects mean that EXAFS is dominated by events in which 
the photoelectron is scattered only once and then returns to the 

source (or, in some cases, by a limited number of multiple-scatt­
ering paths). Because of this, the theoretical description of 

EXAFS has been much more successful than that of XANES.

In the XANES region the scattering of electrons away from the 
forward and backward directions is much stronger, and this is 

coupled with the fact that the mean free path is much greater 
since the inelastic losses are weaker. This all means that the 

XANES is dominated by multiple scattering and its theoretical 
description is correspondingly more difficult. Also the energy of 

the excited electron becomes comparable to the fluctuations of 
the crystal or molecular potential (arising from covalent bonds 
for example) in the XANES region; thus complicating the descript­

ion in terms of individual scattering events.

5



Because of its dependence on the coordination geometry of the 
excited atom and the atomic selectivity inherent in an X-ray abs­

orption edge, XAFS is potentially a highly flexible, structural 
probe for all kinds of materials. This potential has in fact been 

partially realized, primarily for the EXAFS region (see Hayes and 
Boyce (1982) for further references) by virtue of its treatment 

in terms of single scattering events. A concomitant limitation 

however, is that the analysis of SXAFS (by empirical means or the 
fitting of first-principles calculations) has mainly provided on­
ly radial distances of neighbouring atoms and sometimes their id­

entities. (Although note for example recent results of Pettifer 

et al. (1986) giving orientational information from a multiple­
scattering analysis of EXAFS.)

XANES, on the other hand, should provide information about the 
detailed local geometry around the absorbing site; particularly 

relative orientations and bond angles. Analysis of XANES is attr­
active also for practical reasons. Primarily this is because the 
amplitude of the XANES is usually greater than for EXAFS and thus 

easier to measure. This is partly because the existence of disor­

der (either thermal or static) tends to wash out EXAFS at higher 

photoelectron momenta, but also because the backscattering from 
atoms diminishes as well.

The main drawback involved in the analysis of XANES is its 
considerable complication. The only approach possible in this 
region is the use of first-principles (ab initio) calculations of 
the cross-sections and subsequent comparison with experiment. It 

is in the general area of accurate ab initio calculations of 
XANES that this thesis is intended as a contribution. In particu­

lar, we consider calculations within the framework of the so- 
called multiple-scattered-wave (MSW) method and show what happens
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•■/hen the MT approximation to the one-electron potential is dropp­
ed. Although v/e only treat the MSW theory, the MT approximation 

is widely used in other theoretical approaches to XANES and cons­

equently our results have much wider implications.

Section 1.2; Scope and Plan of Thesis.

The main scope of the thesis is the implementation of a non-MT 

extension to the scattered-wave (SVJ) method for the calculation 
of XANES, with the purpose of answering questions about the size 

and importance of non-MT corrections and the feasibility of the 
computations. Even this seemingly direct task turned out to be 
much larger and more complicated than it appeared at first sight. 

V/e found, at each stage of the work, that there were many more 

ramifications and important new questions than could be treated 

within the framework of a thesis. Therefore we have presented the 

work as a direct logical progression that v/e summarize in this 
section. The detailed developments given are only those sufficie­

nt to support the final conclusions, while other important points 
are just outlined or mentioned in passing.

In Chapter 2, we summarize the main approximations to the full 
many-body Schrodinger equation that bring it into a more tractab­

le form. The muffin-tin approximation is then introduced and v/e 
briefly review the present state of XANES calculations that make 

use of it. We then restrict ourselves to considering the SW meth­
od as the one most amenable to the incorporation of non-MT poten­
tials (and the only one for which such an extension was available 

in the literature). At this point we introduce our model compound 

chromium hexacarbonyl (Cr(CO)g) and present some MT-based SW cal­
culations of its XANES at the chromium K-edge. This is done to 
illustrate the problems arising from the deficiencies of the MT

7



approximation and the inadequacy of the usual ad hoc schemes that 
are used to try to ameliorate them. 'While we have sufficient ext­

ra material to present a full-scale survey of all aspects of MT 
deficiencies in the SW method, the volume of this material is 

prohibitive. We nevertheless discuss these deficiencies and revi­
ew the literature of serious means that have been proposed for 

going beyond the MT approximation. This leads up to the introduc­
tion of the Natoli et al. (1986) paper as our theoretical founda­

tion.
In Chapter 3 we develop the full-potential scattered-wave (FP- 

SY/) theory. The derivation of the (unpublished) bound-state equa­
tions is given in detail, while the continuum case from Natoli et 

al. (1986) is merely sketched. The programs that we have develop­
ed to apply the theory,rely heavily on the use of molecular point 

symmetry and group theory to reduce the size of the secular matr­

ices and consequently the computational effort involved. Vie have 
only outlined the associated theory and there is a considerable 

amount of further detail that would be needed to make it a rigor­

ous treatment. In fact, the full details are not yet completely 
worked out for the FP case. Even for the MT case (as described by 

Diamond (1973)) there are some deficiencies, and we intend to 

present a full treatment, in the framework of the FP-SW method, 

at a later date.
The greater part of the work reported in this thesis was the 

development of the computer programs that realise the theory of 

Chapter 3» hut this has not been reflected in our presentation of 

it. Vie describe only the main computational means whereby the 
particularly new features of the FP-SW method are incorporated. 
The first of the programs, MLPSHX, is described in Chapter if. He­
re we are concerned with the central problem of modelling the
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potential accurately, in a form that is usable by the main FP-SW 
programs. Ultimately we should test in detail the sensitivity of 

the results from the later programs to the accuracy with which 
the potential is modelled. For the purposes of this thesis we 

content ourselves with the demonstration that the resulting pote­
ntial model is a much closer representation of the real case than 
the MT approximation. Presumably therefore, the greater part of 
any benefits that may come from the use of a FP at all will resu­

lt from our model without further adjustment of parameters.
In Chapter 5 v/e describe the development of the main FP-SU 

programs and the results that they give for some model systems. 

Although our interest is in XANES calculations, we wrote first 

the program ENESHX that applies the FP-SU theory for bound stat­

es. This was because the theory is simpler for bound states and, 
with the hydrogen molecular ion results, we have an absolute test 

of both the program and the theory. The XANES program CNTSHX, 
that applies the continuum wavefunction theory, is sufficiently 

similar that the well tested parts of ENESHX may be taken over 
almost directly. The main thing lacking from our treatment of the 

program results is an analysis of their sensitivity to various 
parameters used in the potential model and the wavefunction expa­

nsions. There are also many different numerical integration, int­

erpolation and special function routines used in the programs, 
and a detailed mathematical error analysis of them all is beyond 

the scope of this thesis. Our approach to such questions is to 
create a sufficient margin of accuracy, by taking various expans­
ion parameters and integration meshes well beyond the usual val­
ues, so that any remaining inaccuracies are dominated by those 

stemming from the physical model itself.
In Chapter 6 we conclude that the results in the previous cha­
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pter are sufficient for us to be able to answer the limited main 

questions posed; namely those about the extent of the changes in 

going from MT to FP, the correctness of our theoretical approach 
and the feasibility of the calculations themselves at least for a 

limited class of systems with modest computational resources.
With the most serious approximation disposed of we then comment 
on the future steps that need to be taken towards accurate XANES 

calculations.
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Chanter 2. MUFFIN-TIN 3ASED CALCULATIONS OF XANES

Section 2.1: General Approximations to the Schrodinger Equation.

The main part of all XANES calculations is the solution of the 
appropriate dynamical equations for the interacting assembly of 

nuclei and electrons that comprises a molecule. At the energies 
that we consider in XAS the inner structure of the nuclei is qui­

te irrelevant and all particles may be considered as point-like 
masses with a given intrinsic spin. Also the possibility of anni­

hilation and creation of even the electrons does not arise. Ther­

efore, since our most ambitious requirements for accuracy would 

be, say, one percent in the cross-sections, the whole apparatus 
of quantum field theory (in particular QED) may be safely ignor­

ed*

The first non-trivial question to arise is whether a relativi­
stic treatment is necessary. Certainly, the electrons can have 

speeds which are a significant fraction of the speed of light, 
especially for the core electrons in heavy atoms. The nuclei, 

being several thousand times more massive than the electrons, 
tend to move much more slowly and a non-relativistic treatment of 
them would be adequate. In fact it is usual to make the so-called 

Born-Oppenheimer approximation in which the nuclei are taken to 

be stationary (see e.g. Schiff (1968) p.^?)* The dynamical prob­
lem for the electrons is then solved separately in what is thus 

the fixed, external field of the nuclei. If desired the behavio­
ur of the nuclei, under the influence of the cloud of electrons, 

may be treated as a perturbation. Under certain circumstances the 
Born-Oppenheimer approximation does break down with the excitati­

on of rotational and vibrational modes, at high momenta. This is 
not expected to be a problem for us since XANES is known to be
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temperature independent provided no phase transition occurs.

Vie are still left with the problem of whether to treat the 
electron motion relativistically or not. There is in fact a large 

body of evidence to show that the neglect of relativistic effects 

can lead to significant errors. For example, Loucks (196?) shows 
that the inclusion of relativistic effects is necessary in the 
calculation of band-structures for solids containing heavy atoms. 

A review of this general question is given by Desclaux (1980).

For our purposes, considering the degree of accuracy in XANES 
calculations, we can reasonably neglect relativistic effects as 

long as we restrict our attention to low-Z atoms (i.e. the 3d 
transition elements or lower). Since relativistic effects will 

be serious only for the deep-lying core levels and not so much 
for the slowly propagating states near the ionization threshold, 
their main result in X-ray absorption will be to change the ioni­

zation threshold position rather than the details of the XAFS. 
(See also Kutzler et al. (1980))

(We note here in passing that there has been developed a rela­

tivistic version of the scattered-wave (SW) method for molecules. 

This is given in Yang and Rabii (1975) and Yang (1978), and a 
calculation for uranium hexafluoride (UFg) presented by Case and 

Yang (1980) (ground state only). More interesting from our point 

of view are the calculations of Arratia-Perez and Yang (1985) for 
the ground states of certain metal hexacarbonyls, including our 
model compound Cr(CO)g. They indicate that, even in W(CO)g, rela­

tivistic effects are qualitatively unimportant for the valence 

levels. While a full treatment of the electron dynamics requires 
the inclusion of relativistic effects, their importance in our 
systems is expected to be small and we do not consider them furt­

her.)
12



'¡e must now use the many-body Schrodinger e~uaticn for M  ele­

ctrons in the Coulomb fields of the N  nuclei. The wavefunction 
then satisfies the time-independant equation at energy £:

i pd " i j. m i -i j .
‘ j*' k ; - | r ;-r | J

•.-.’here the electron positions are r̂  and the fixed nuclear posit- 
ions and charges are R- and 2- respectively. Note that the wav— 

efunction is a function also of the spins S- of the electrons; 
i.e. 4̂  (T. S r S ... r S ), and must be anti-symmetric under 

the exchange of any tv/o electron indices. The hamiltonian in 
(2.1) has no terms involving spin and in fact we ignore all spin 

effects except those arising from the Pauli exclusion principle.
Since there can be several hundred electrons even for quite 

small molecules, the solution of (2.1) is quite intractable with 
any known analytic or numerical method presently available. The 

crucial approximation that we make now is the so-called one- 
electron approximation in which each electron is treated as movi­
ng in an average field due to the nuclei and the probability den­

sity of the other electrons. The usual way this approximation is 

implemented is the self-consistent-field Hartree-Fock method (see 
for example McWeeny and Sutcliffe (198*0 and references therein). 

It may be developed by assuming that the wavefunction is an anti- 
symmetrized product (a Slater determinant) of one-electron orbit­

als and then using the variational principle to optimize them. In 

other words we assume that M
t  r f .  ? ■ ) =  ( M i )  2T xh » n (fK ).n  U . ( V ( i ) )  ( 2 . 2 ) ;

1 , 1  I f  U  ( S I

where the individual spin-orbitals

Ui(j) s  4 i (rj ) X i(*j) (2.3 )
are mutually orthogonal and normalized. We further restrict the 
form of the wavefunction (2.2) by assigning the electrons two at 
a time to a given space part of a spin-orbital, but giving them
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orthogonal spin parts
The use of the hamiltonian of (2.1) with the variational cons­

traints (2.2,3) leads to the restricted Hartree-Fock (RHF) equat­

ions for the orbitals

[-7 *+  VN (r )  + Vc ( r ) ]<pjr )  + fVf (r,s)4>Js)M,s - £m<l>n( r )  ( z . k ) ;

which has the form of a one-electron equation for each orbital 
with a potential made up of the nuclear Coulomb field

III (2.5)
the electrons' Coulomb term

V ( O  = ¿ 2 '  j
C J <P* (s) 4> (i).^

*1 -V I »—  v J (2.6)
and the non-local exchange

V ^ r J )  = -

term

1
(2.7)

While (2.4) has in fact been used successfully (see McWeeny and 

Sutcliffe (198*0 again), the non-local term makes it very unwiel­
dy for anything other than atoms. A further approximation is then 

made to replace (2.7) by a simpler, local potential. The most 
common one is that derived from the theory of the free-electron 
gas, and introduced by J.C. Slater (see especially his review - 

Slater (1972)) under the name "Xei.". For the local electron dens-

p ( f )  = i j ?  4> y>  * J r >  (2 .8 ) ,

this potential is

vxx (r) =  - 6 *  [ O A n O p t f f ) ] 0  (2.9)
where OL is a parameter chosen (for free atoms at least) so that 
the total energy matches that of the full RHF method (Schwarz 

(1972)). The X OC method has been fairly successful in several 

calculational schemes for the ground states of various solid-state 
and molecular systems. Its validity for excited or ionized states 

is rather questionable (see for example Pettifer and Cox (1983)) 
however, as indeed is that of the whole variational scheme and



the RHF method itself. A general review of the X oC method in var­
ious calcuiational schemes is given by Gadiyak et al. (1982)0

In making the one-electron approximation we do in fact ignore 
several non-trivial many-body aspects of the photoionization pro­

cess. The existence of many other excitation channels than the 
promotion of a core electron to a continuum final state, often 
modifies substantially the photoabsorption cross-section. The 

dynamical effects of the core hole, the possibility of "shake up" 

or "shake off" effects (in which additional electrons are excited 
to bound or continuum states respectively), and inelastic effects 

which shorten the outgoing electron's lifetime (such as the exci­

tation of plasmons or electron-hole pairs), should all be includ­

ed in a proper treatment. (See discussions in Hayes and Boyce 
(1982) and Pendry (1983) for example.) Much effort has been made 
to incorporate a description of these effects into the one-elect­
ron scheme in an approximate way by, for example, the use of com­
plex potentials. Questions then arise about which are the correct 

one-electron states to use (Stern and Rehr (1983)). It is clear 
that much work remains to be done in this area before a satisfac­
tory general approach is developed. (The recent work of Bardysze- 

wski and Hedin (198?) seems to be an important step in the right 
direction.)

So far nothing has been said about how the interaction with 
the radiation field is to be treated. There has been no indicati­

ons that the usual time-dependant perturbation theory approach is 
inadequate for XANES calculations. The use of the dipole approxi­

mation (see e.g. Schiff (1968) p.^O^f) is usually sufficient, alt­
hough Hahn et al. (1982) have reported the detection of non-triv­
ial features in the pre-edge region arising from quadrupole tran­
sitions.
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It will be clear from the foregoing that there are various 

possible sources of inaccuracy in the approximations that v/e have 
already made. In this work v/e do not consider them in any detail, 

but take them as something to be held constant while v/e dispose 
of the most serious approximation that we introduce in the next 
section. Nevertheless they should be eventually considered and v/e 

make some comments about this in Chap. 6.

Section 2.2; The "Muffin-Tin" Approximation.

We are now left with solving an effective one-electron Schrod- 
inger equation for the orbitals, with a potential which is the 

sum of (2.5,6 and 9). (The last two involve the orbitals •themsel­
ves so that the equation is really a set of non-linear, coupled 

equations. However, it is usual to take an iterative approach so 
that the potentials are derived from a previous set of approxima­

te orbitals and the solution of the equations gives a more accur­
ate set of orbitals. It is then hoped that this process will con­
verge quickly to a self-consistent-field (SCF) solution to the 

original equations. The original approximate potentials are usua­

lly derived from an electron density of a superposition of free- 

atom densities.)
Wherever it comes from the one-electron potential is complica­

ted function of position and the solution of the associated Schr- 

odinger equation is still very difficult. In general however, the 
potential tends to have certain characteristics. Near an atomic 
nucleus it is dominated by the Coulomb singularity and, within a 

distance of the order of one Bohr, it does not depart very much 
from spherical symmetry about the nucleus. Furthermore, in the 

region between the atoms, the potential is not very deep and var­
ies quite slowly. With these characteristics in mind, and for the
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sake of mathematical tractability, it is common tc make the so- 

called ’’muffin-tin" (MT) approximation for the functional form 

of the potential. In this approximation the atomic nuclei are 
enclosed by non-overlapping MT spheres and the potential is taken 
to be spherically symmetric inside them. The mathematical separa­

tion of the Schrodinger equation in a central field can then be 

made and the remaining difficult part is the solution of the rad­
ial equation. In the interstitial region between the spheres the 

potential is taken to be flat so that the electron motion is gov­
erned by the free-particle equation whose solutions are well kno­

wn. The main problem is now the matching of the solutions in the 
various regions according to the relevant boundary conditions.

Since its introduction by Slater (1937) (in the context of the 

augmented plane-wave method) the MT approximation has been used 

with varying degrees of success in a wide range of calculations 

of things such as band structures, molecular electronic structur­
es and photoabsorption cross-sections. It tends to be more accur­

ate for close-packed systems such as metals and less so for open, 

covalently bonded systems where the concentration of electron 
density along the bonds is badly modelled by spherically symmetr­
ic atoms and a flat interstitial region.

A typical prescription for the construction of an initial MT 
potential is that of Mattheiss (196*0 in which we use free-atom 

electron densities (from Clementi and Roetti (197*0 or Herman and 
Skillman (1963)) superimposed at the appropriate positions. For 

each atom we first solve Poisson's equation for the Coulomb part 
of the potential. This is quite easy since each atomic density is 
spherically symmetric. Using the formalism of Lowdin (1956), the 

overlapping part of the neighbouring atom potentials is spheric­
ally symmetrized and added to the atom's own potential. In the
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interstitial region the sum of all the atomic Coulomb potentials 

is volume e.veraged to give a constant potential. A similar proce­
dure is then followed with the electron density and (2 .9) used to 

give the Xet part of the MT potential.

Section 2.3: Survey of Ab Initio XANES Calculations.
The use of the MT approximation underlies virtually all of the 

current types of calculations of XANES. V.'e briefly review the 
most successful, general methods that are now in use. These meth­

ods fall into two categories i.e. band-structure based methods 

and multiple-scattering methods.

The band-structure methods are exemplified by the results of 
Muller and co-workers (see Muller and Wilkins (198*0 and further 

references therein). Their approach is based on the use of the 

linear augmented plane-wave method of Andersen (1975) and has 
given very impressive results for 3d and *td transition metals. 
Because of its restriction to periodic systems and the calculati­

on of the final states in the ground-state potential with no core 

hole, the applicability of this method seems rather limited. Also 
its successes are associated only with metals for which the MT 

approximation is not so bad. There appears to be no immediate 
prospect that the formalism can be easily generalized to accomod­

ate non-MT potentials.

A more general approach is provided by the multiple-scattering 
methods of which there are two main types. These are not restric­

ted to periodic systems and, indeed, are most frequently applied 

to molecules or clusters of atoms taken from crystalline or amor­

phous solids (wherein lies their great utility).
The first of these methods is due to Durham and co-workers 

(see the recent review by Durham (1988) for further references).
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This method is an extension of the usual single—scattering EXAFS 

theory (e.g. that of Lee and Penary (1975)) to she near-edge reg­

ion. It takes into account explicitly the details of the scatter­
ing of the excited electron by the atoms of the cluster and has 

been reasonably successful at reproducing qualitatively features 
of the HANES of a variety of systems, nevertheless it is tied to 

the MT approximation for the potential and is still less than 

satisfactory for open, covalently bonded clusters.
The other multiple-scattering method is an adaptation of the 

band-structure formalism of Korringa (19*0), Kohn and Rostoker 

(195*0, to clusters. Under the name "multiple-scattered-wave Xot 

method" it v/as developed by Johnson and co-workers (see Johnson 
(1966), Smith and Johnson (1969), Slater and Johnson (1972), 

Johnson and Smith (1972), Johnson (1973) (a review of the theory 
and main applications) and Johnson (1975) (a complete review of 

applications) for bound states, and by Dill and Dehmer (197*0 for 
continuum states and photoionization. Applications to XANES were 
made by Natoli et al. (1980) and by Kutzler et al. (1980), with 

similar results to those of Durham and co-workers. It is somewhat 

more cumbersome than their method and uses likewise the MT appro­
ximation. However, as we describe later, its greater generality 

allows it to be adapted for more realistic, non-MT potentials; 

and it is for this reason that we restrict our attention from now 

on to this method.
It may turn out to be possible to incorporate non-MT potentia­

ls into the other XANES methods, but this has not been demonstra­
ted and we do not consider them further. A general overview of 

the problems of XANES may be seen in Pendry (1983) and Doniach et 

al. (198*0 .
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Section Z.'-ri Calculations for Chromium .-'exacarbonyl.

To get an idea of the kind ox results that the MT-based scatt­
ered-wave (SW) method gives, we performed some calculations for a 

model compound chromium hexacarbonyl CriCO)^. This molecule was 
chosen because (a) it has high symmetry reducing the computation­

al effort; (b) many of its electrons are involved in bonds, part­
icularly in the CO ligands; and (c) it has been extensively stud­

ied (see Arratia-Ferez and Yang (1985) and references therein) by 
different methods as a prototype for CO bonding to metals» It 
consists of a central chromium atom coordinated by six carbonyl 
ligands in an octahedral configuration such that the carbon atoms

are adjacent to the chromium atom. The point group is thus 0, forh
which there are ten irreducible representations (irrsps) denoted

A 1g* A1 u ’ A2g’ A2u> V  V  T1g’ T1u’ T2g and T2 u  accordinS to 
the Mulliken (1955) scheme. Chromium hexacarbonyl is a white,

_3crystalline solid at room temperature of density 1.77 g cm . It 
crystallizes according to the Pnma space group with four molecul­

es per unit cell and cell dimensions: a = 11.769(12) A, b = 

11.092(11) A and c = 6.332(6) A (V/hitaker and Jeffery (1967)).
The mean bonding distances (uncorrected for thermal vibration) 

are 1.909(3) A (3*6075(57) Bohr) for chromium-carbon and 1.137(^) 
A (2.1^86(75) Bohr) for carbon-oxygen.

There have been many electronic structure calculations perfor­

med for this molecule, particularly the SW-Xot ones of Johnson 

and Klemperer (1977) and the relativistic SW ones of Arratia- 
Perez and Yang (1985). These are of course only bound-state calc­
ulations and there seems to have been no previous application of 
the S'./ method to the XANES of chromium hexacarbonyl.

Our SV/ calculations for Cr(C0)g follow the general scheme giv­
en in Natoli et al. (1980) and Kutzler et al. (1980), and we use
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the sane programs, given to us by CRN, as viere mentioned above.
In brief, the program suite operates as follows. Given the struc­
ture of some molecule the program MOLPOT uses superinnosed free- 

atom charge densities to generate an initial approximation to the 
one-electron molecular potential. For molecules with point symme­
try, the program MOLSYM generates the linear combinations of sph­
erical harmonics at the atomic sites which transform according to 

the irreps of the point group. (The use of these linear combinat­

ions reduces the size of the secular matrices arising in the SVJ 

formalism. Although point symmetry is not a necessity, this part­
icular group of programs is optimized to use them.) The initial 
potential is passed to the program ENERGY which searches for the 
bound-state eigen-energies. Having found these energies the prog­

ram SCF iterates on the successive densities arising from the 

one-electron bound-states in the successive potentials until it 

reaches self-consistency. The self-consistent final potential nay 
be the ground state, a bound excited state or an ionized state, 

depending upon the previously specified occupation numbers of the 
one-electron states found by ENERGY. The program CONTTJM then cal­

culates the photoionization cross-sections from a core level in 
the SCF ground state to either discrete, bound final states or to 

the continuum of the ionized state.
The form of the potential used by these programs is of course 

restricted to the MT form, and one must decide upon the various 

parameters of the approximation beforehand. Firstly, we choose 
the Oi values in the Xoi potential for each atom in the molecule 

from Schwarz's (1972) paper. This means oC(Cr) = 0.71352, oi(C) = 

0.75928 and flt(O) = 0,7^^7. For the volume outside the atoms we 
take a -weighted average of these as C.71+892. The more important 
decision is hov; to choose the radii of the atonic spheres and the
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outer sphere enclosing the molecule. There is a certain degree of 
arbitrariness in this choice, but often it is chosen tc minimize 

the potential discontinuities at the sphere boundaries. For 
Cr(CO)g we chose the C and 0 spheres so that they touched and so 

that the potential was matched at the contact point. The Cr sphe­

re was then increased tc touch the C spheres and the outer sphere 
(OS) brought in to be tangent to the 0 spheres. This meant that 

the sphere radii were: b(OS) = 6.315 Bohr, b(Cr) = 2.5177 Bohr, 
b(C) = 1.0397 Bohr and b(0) = 1.0588 Bohr. For each sphere we had 

also to decide on the maximum / for the partial waves in the 
wavefunction expansion. For the bound-state part of the calculat­

ions (ENERGY and SCF) these were i (max) = 5(0S), S(Cr), 3(C) and 
3(0); somewhat more than would usually be taken. For the XANES 

calculations vie took £ (max) = 9(0S), 9(Cr), 5(C) and 5(0). These 
choices stem from earlier experience with the programs, for a wi­

de variety of systems, of the appropriate /-truncations at which 

the expansions tend to be well converged.
The usual way of calculating XANES with CONTNM is to take the 

dipole matrix element between the core wavefunction in the self- 

consistent ground state and the continuum wavefunction in the 
self-consistent ionized state. However, vie shall consider two 

further cases. The first uses the initial overlapped free-atom 
potential from MOLPOT for the initial and final states. The seco­

nd uses this potential for the initial state, but a variety of 
"Z+1" potential (see e.g. Pendry (1981)), constructed by MOLPOT, 
for the final state. In our version of the Z+1 potential, we use 

the wavefunctions of manganese for the excited chromium, with a 
1s electron removed to model the core hole.

A plot of the three different final-state potentials may be 

seen in Fig. 2.1. Note particularly the large discontinuities, in
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Figure 2.2: Comparison of experimental XANES (dotted line) of
chromium hexacarbonyl with the theoretical values (solid line) 
from CONTNM. The broken vertical line shows the continuum thr­
eshold. The peak at 6031 eV goes up to 0.208 Mb.
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all three cases, at the C and 0 sphere boundaries. Here the pote­
ntial jumps suddenly by 3 to  ̂Ryd., comparable with the range of 

photoelectron energies in XANES. These extreme values stem from 
the short length of the C-0 triple bond, combined with the large 

volume of the interstitial region making the average potential 
high relative to the potentials at the edges of the atomic spher­

es.
In Fig. 2.2 we see the comparison between theory and experime­

nt for the Cr K-edge XANES of chromium hexacarbonyl. The theoret­

ical curve results from the use of CONTNM with self-consistent 
ground-state and ionized potentials. It has been convoluted with 

a Lorentzian of 1.5 eV full width at half maximum (FWHM) to model 

the effects of core-hole lifetime and instrumental resolution (as 

in Natoli et al. (1980)). The position of the ionization thresho­

ld should, in principle, be obtained from the difference between 
the total energies of the ground and ionized states given by SCF. 
The resulting value in this case is about ^39 Ryd. (= 5973 eV), 

but this is not a good enough estimate because the fundamental 
approximation to the hamiltonian is not sufficiently accurate. 
Therefore we shift the theoretical curve so that the first conti­

nuum peak is aligned with the corresponding experimental one.

The experimental curve was from a crystalline powder sample at 
room temperature (prepared by RFP) and was measured by J . Röhler 
and his group (Köln University) on the Kiel EXAFS beam-line in 

HASYLAB (DESY, Hamburg) in April 1985» The energy resolution of 
the experiment was about 1 eV. Since absolute cross-sections are 

not normally available for experimental curves, we have (followi­
ng a suggestion of RFP) normalized it to the edge jump of **2.03 

kb for chromium from the tables of McMaster et al. (1969)* to get 
an approximate idea of how good the theoretical values v/ere.
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In fact the averr.se magnitude oi the chooreeica.l curve is abo­

ut right. The size ox' the oscillations is too large, particularly 
the main continuum peak just above the threshold. The shape of 

the broader, second peak is also quits distorted. lelov/ the edge 
■;e do indeed find the two bound-state peaks that appear in the 
experimental curve, but they are of the wrong strength and separ­
ation.

In Fig. 2.3 v.’e see a comparison that includes the other two 
choices for the initial and final states. These curves are of the 

same poor quality as the SCF case. (If anything the "ITJIT" case 
appears to be closest to experiment and, surprisingly, the SCF 

case the worst.) Clearly the poor approximation that the MT gives 

for the potential of chromium hexacarbonyl is having a very dele­
terious effect on the quality of the theoretical XANES calculati­

ons.
Several ad hoc schemes to ameliorate the bad effects of the MT 

approximation for open, covalently bonded systems, have been pro­

posed in the literature. \le tried the two most promising of these 
schemes for chromium hexacarbonyl and we show the results below. 

The first of these allows the MT spheres to overlap each other, 
partly so that the volume of the interstitial region is reduced 
(and also the potential discontinuities at the sphere boundaries) 

and partly to model in a crude way the build up of charge between 
atoms that is associated with a covalent bond. This scheme is 

discussed in Rosch et al. (1973) and, with an example, in Herman 
et al. (197*0« The second scheme, suggested by Keller (1971)* 
tries to partition as much of the interstitial volume as possible 
into empty interstitial spheres which are then treated in a scat­
tering sense as pseudo-atoms. In Fig. 2,k the MT potentials that 
we used to test these schemes are shown.
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COMPARISON (THEQR./EXP.J, Cr K-«dg«f Cr ICO)6.

ENERGY l«V)

Figure 2.3: Chromium hexacarbonyl Cr K-edge XANES comparison bet­

ween experiment and theory for 3 final states in the case of 

touching spheres. The peak heights at 6031 eV are 0.208 Mb for 

SCF and 0.16^ Mb for Z+1. The broken lines for each theoretic­
al curve mark the continuum threshold. No bound-state transit­
ions have been included in the theoretical curves.

The choice of sphere radii for the MT potentials in these cal­
culations follows the criteria of Norman (1976) in an attempt to 

reduce the inherent arbitrariness of the whole MT approximation.
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M-T POT'LS, Cr ICO) 6, Cr-C-O-O. S. , IONIZED ST. (SCF (CN) , Z1, IN).

M-T POT'LS, Cr ICO) 6, Cr-C-O-O. S., IONIZED ST. (SCF (CN) , Z1, IN).

Figure 2,kz MT potentials of the three final states used, in the 

overlapping-sphere and empty-interstitial-sphere cases (top 
and bottom respectively), for CONTNM. The empty-spheres poten­

tial is that of the overlapping-spheres case with eight empty 
spheres included and the traverse shown being diverted between 
C and O to the centre of an empty sphere.
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These new radii, 30" overlapped from touching C ana 0 spheres, 

are: b(OS) = 6.3305 Bohr, b(Cr) = 1.3199 Bohr, b(C) = 1.39°5 Bohr 
and b(0) = 1.3967 Bohr. Bight spheres, with ’o(ES) = 2.3053 3ohr, 
with centres on the corners of a cube (maintaining 0^ symmetry), 

touching the Cr and outer spheres, are then introduced to give 
the empty-sphere potential. In Figs. 2.5 and 2.6 we see the resu-

COMPARISON (TH. / E X .  ) , C r I C O ) 6 f C r  K - e d g s j  no b. s.

ENERGY (eV)

Figure 2.5: Cr(CO)g Cr K-edge XANES comparison between experiment 
and theory for 3 final states in the overlapping spheres case. 

The 6031 eV peak heights are 0.156 Mb (SCF) and 0.167 Mb(Z+l).
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COMPARISON (TH. /EX. ) r Cr ICO) 6, Cr K-edgs, no b. s.

ENERGY (aV)
Figure 2.6: Cr(CO)g Cr K-edge XANES comparison between experiment 

and theory for 3 final states in the empty-interstitial-sphere 

case. The 6031 eV peak heights are 0.165 Mb (SCF) and 0.177 Mb 
(Z+1).

Its of CONTNM for the two new MT potentials. It is clear that 

they do not give any great improvement over Fig. 2.3» the use of 
empty interstitial spheres in particular hardly having any effect 
at all. We note in general that the form of the theoretical curv­

es is o.uite sensitive to the choice of final state, which is its­
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elf a non-trivial Question of the physics of the pnotoicnization 

process. On the other hand it is also sensitive to the unphysic­
al parameters of the MT partition of space, .hat is surprising to 

us is that the use of self-consistency brings no improvement and 

it may be that the MT constraint, since it is reimposed at each 
iteration, may "sabotage” the ’..'hole SCF process.

Further ad hoc schemes may be devised to ameliorate the probl­

ems of the MT approximation while remaining ’within it. (For exam­

ple one might simply remove any discontinuities by resetting the 
atomic potentials upwards.) Such schemes however, are devoid of 

any physical content since they are merely responding to the arb­
itrary parts of the MT approximation rather than making any cont­

act with the original full potential.

Section 2,5: Discussion and Review.

It is instructive to try to relate deficiencies in theoretical 
XAFS with particular features of the MT approximation. Such a 

relationship may be seen even at the higher energies characteris­
tic of EXAFS. In single-scattering expressions for the EXAFS (see 

e.g. Lee and Pendry (1975)) one finds that the amplitude of the 
EXAFS is proportional to the sum of terms for each scattering 
atom with, as coefficient, the back-scattering amplitude of that 

atom. Fig. 2.7 shows theoretical back-scattering amplitudes (act­

ually their moduli) for an oxygen atom in which the MT radius is 
varied. One can see that there are spurious oscillations in the 

curves whose wavelength and phase depend on the (unphysical) MT 
radius. Since EXAFS is an oscillatory phenomenon, any spurious 

oscillations arising from the theory must be entirely unwelcome. 
Mote that the size of these oscillations increases as we go down 

in energy to the XANES region.
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Modulus of back-scattering amplitude from oxygen

Figure 2.7: Effects of HT sphere potential discontinuities on 

back-scattering amplitudes. These amplitudes were calculated 
with the phase-shift program MTAHARA. Normally such amplitudes 

may be used in ab initio EXAFS fitting programs (like EXAFSFT 

described by Pettifer and Cox (1983)) to extract structural 
information from experimental spectra by, say, a least-squares 
procedure. One suspects that any spurious oscillations arising 

from the MT approximation would tend to distort the results.
It is clear that, at least for a certain class of systems for 

which the MT approximation is bad, the attainment of greater acc­
uracy in ab initio XANES calculations requires a more serious 
attempt to go beyond that approximation. We now turn to a consid­
eration of schemes that have appeared in the literature.

There have been several groups who, while not presenting any 
generally applicable method for incorporating non-MT corrections,
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have i*arfarmed detailed calculations to investigate their nature 

ana extent. l.'jcese and co—-’oricerc (see Dsnese (197***1977) and 
Danese and Connolly (197*0) use a. Monte Carlo integration method 
to estimate MT errors in ground-state total energy calculations 
by the 5'..' method for some diatomic systems. In particular, they 
founc that the non-MT corrections result in cualitative and quan­

titative improvements in the potential curves (as a function of 

nuclear separation) of these two systems. (MT calculations failed 
even to give binding, whereas the inclusion of non-MT corrections 

gave binding energies and equilibrium nuclear separations within 
101( of their experimental values.)

tumble and Truhlar (1930) have investigated the c.eficler.cies 
of the MT approximation in the S'! calculation of the total cross- 

section for electron-Ng scattering at 5 to 30 eV. They found err­
ors of up tc 30% in the cross-sections when compared v/ith those 

from reasonably v/ell-converged close coupling calculations (that 
do not use the MT approximation).

More general approaches seem to begin v/ith the work of 3elezn- 
ay and Lawrence (1968) who relax the restriction of constancy on 

the interstitial region potential and derive the resulting modif­
ications to the KKR secular determinants in band-structure calcu­

lations. Evans and Keller (1971) remove the restriction on spher­
ical symmetry of the potential in the atomic spheres and show how 

to solve the resulting coupled radial ea_uations. A large review 
by Lloyd and Smith (1972) brought together in one consistent tre­
atment the available material on multiple-scattering theory that 
includes non-MT developments.

A major idea was the extension by '.'illiams and Morgan (197*0 
of S'.,' theory to band-structure calculations based on atom-centred 
space-filling polyhedral cells. There have been many re-workings
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of this idea, ..lost importantly those of Faulkner (1979*1535» 1936) 

and Brown and Giftan (1983* 1935» 1936). Other variants have been 

given by Keister (1983)» Gonis (1986), Zeller (1987), Badralex 
(1987,1938) and Molenaar (1988), numerical tests have been made 
.’ith several systems, e.g. the empty lattice (Faulkner (1985)),
3i (Williams and Morgan (197*0), Cu and graphite (Altmann et al, 

(1978). But the results, -..'bile generally indicating a great impr­
ovement over the MT case, :.re unclear and inconclusive, and a 

controversy has arisen in the literature over convergence proble­
ms in certain mathematical expansions, that stem from the non­

sphericity of the atomic cells.
.ith special reference to molecular clusters Sohers (.1972) 

adds a spherically symmetric part to the interstitial-region pot­

ential, while Ziesche (197*0 introduces a scheme similar to that 

of Williams and Morgan (197*0 above (describing similar problems 
of convergence), Siegel et al. (1976) relax the spherical symmet­
ry restriction in the atomic spheres, but their formalism is unn­

ecessarily cumbersome. A better version of the same thing was 
given by Volkov and Poluyanov (1980).

The clearest treatment of the non-MT SW formalism was that of 
Natoli et al. (1986), deriving in many respects from the work of 

Lloyd and Smith (1972). This treatment allows the generalization 
of the potential both in the atomic spheres and in the interstit­

ial region and the remainder of this thesis is based upon it.
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Chapter 3. EXTENDED SCATTERED-WAVE THEORY

Section 3.1: The Partition of Molecular Space.
Having chosen an appropriate one-electron potential Vtr), the 

main task is to solve the Schroedinger equation for an electron 
in that potential. This is the case whether we are looking for 

bound states or calculating photoionization cross-sections. The 
essence of the scattered-wave (SW) method lies in the division of 

three-dimensional space ( |R ) and the subsequent separate treatm­
ent of the solution in each region.

In particular, we have a molecule (or finite cluster of atoms) 
whose atomic nuclei have position vectors referred to the

origin of coordinates 0 ; where i = 1 ,2 , ...,N runs through all the 

atoms. These nuclear positions are thus the locations of the Cou­
lomb singularities in V(r). We now partition the molecular space 

as follows. Each atomic centre is enclosed in a spherical region 
'T’l of radius ;

s  [ r e  IR*: j r -  Ri J < b- J  (3 .1 ) .

These "atomic spherical regions" (ASRs) are taken to be mutually 
disjoint (non-overlapping) so that

( i  i j )  =» ( T ;  n Tj ® 0  , bi +bj < /£. -  R j l  )  (3 .2 ) .

The whole molecule is then enclosed in an "outer sphere" (OS) (or 

molecular sphere) *1̂  of radius ba centred on , which contains 
all the ASRs. Thus

X . = [ r e lR * :  / r -  t f . |  «  b0 }  (3 .3 )

with T- C  and | R; - f?0| ■+■ tj ̂  b# for ( (3 .^).

We denote the surfaces of all these spheres by
9 t j  s  { r e  IRJ : | r  -/? ; I = bt- f  for i  = ( 3 . 5) .

The "extra-molecular region" (EMR) is that outside the OS, i.e.
X. (the complement of T # ). The "interstitial region" (IR), den-



oted I , is that within the OS but outside the ASRs; so that

I  = T e n  ( U  T .  ) ( 3 . 6 ) .> S I
The ASRs and the EMR together will be collectively called the 
"spherically symmetric regions" (SSRs). Here the radial Schrodin- 

ger equation is solved explicitly, whilst in the IR an indirect 
approach is used. Thus we have our complete partition of space,

IR3 = I v u ( U  T ,) (3.7).
It will usually be the case that Ko = 0 and that the photo- 

absorbing atom will be i - 1 with • Vie define the rela­
tive position vectors, between sphere centres, to be

«i j S  ^  (3*8)*
For some general position vector P we denote the position vector

relative to sphere centre as

r .  =t
(3.9).

Section 3.2: Secular Equation in the Bound-State Case.
We seek a bound-state solution n n  to the Schrodinger equa­

tion with potential V(f) such that V ( r ) — ^ 0 as P — * 00 , and 
V(p) has poles at R- ( t = 1 ,2,...,N). To do this we use the 

integral version of the equation;

V ( r ) =  / (3.10),
where is the appropriate free-particle Green function. The
following development is an adaptation of the continuum case of 

Natoli et al. (1986) made by us to be similar to the MT bound- 

state algebra of Johnson (1973) in certain (particularly notatio- 

nal) respects.
To reduce the effect of the non-constant IR potential, v/e res­

et the zero of the potential to and we choose this to be the

average of the potential in the IR. Thus V(l~ )—*■ Ve and

V 0 =  Vj s  J V i s a ' s  /  J (3.1D.
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If the energy of the bound state is E: t then we must therefore 
consider the two energy ranges t K VQ and V < if < 0 differe­
ntly.

Our first step is to split up the integration in (3.10) accor­
ding to the partition of (3.7). Thus

‘W ®  (Jr +  +  .I, V(s)^(t)d}S <3.12).
V.'e then use Green's Theorem to convert the volume integrals over 

the 3SRs into surface integrals over their spherical boundaries. 

The theorem is used in the form

/ f P ( V 2+ B ) Q  - <5 (VL+E)V]d3s s  f l?VQ-QVP]-liUcr (3.13),
v.'here H is the outward pointing normal to the surface oV . Mak­

ing the correspondances P i O — and Q ( ? ) — +• ¥(*) ,
and noting (A32) and that

( v V  £ ) * ( $ )  =  vet) V i f )  (3.1*0,
we get, for any volume T , that

-  /T U t )  t ) d \

* 4 t  i ^ o ^ ^ v n s ;  -  $+(?,?)]'-Ado- (3.15).
From (3*12,15) we then obtain

W ) S I (r)^ SjO^V't' -t (f + ) [ & ? ? * - W G l i - n d f  (3.16),
where we have defined 1

ST (r) =  fr  (3.17)
and used the resulting properties

S„ < «  + &,(?.) = +  (3.18).
The next step is to use explicit forms for Ç *  and to take 

advantage of the spherical nature of the surface integrals in 
(3.16), to expand them out in a more convenient form. Before we 

do this v/e need expressions for inside the SSRs from which
we can obtain the values and gradients on their boundaries. In 
Natoli et al. (1986) it is shown that we must first expand the 
potential in a S3R in spherical harmonics about its centre;
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V(r*) * 27 y ‘í'rj Y ( r ;) [i* •■>N ’> L 3 (/,**,*)) (3.19).
-lie v/ave function in the 333 is th-lie wave function in the 333 is then written

•/here the C ‘ ore as yet undetermined coefficients and the

satisfy the coupled radial Schrödinger equations

(3.21)
with (using (A30) from App. A)

(3 .22).
At this stage we must consider the two energy ranges separate-

’.'e now use the negative energy Green function of (A33) and the 

wavefunctions of (3.20) to expand (3.16). The precise way these 

may be used depends upon which regions of the partition the vari­

able T and the dummy variable S lie in; the relation betv/een 

the two determining how the re-expansion formulae (A*f0-*t*O are 
applied. The possible relations are shov/n in Fig. 3.1 and we ref­
er to them individually as v/e proceed.

—* __
V.'e consider three general cases with r € T; t r G X c and 

r é I . For each case we treat the individual terms on the BHS 

of (3 .16) separately as sub-cases, bringing them all together at 
the end.

Case 1: f £ T; for some i = 1,2,...,/V s- 

3ub-case (i): S 6 I :- This term is left in the form

Sub-case (ii): £ £ :- From Fig. 3.1(a) it may be easily

seen that t" — S = f*. — and that /"j < S'- .  The Green func­
tion (A33) may be therefore expressed as

(3.2*0.
Using (3.20,2*0 we have
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(a) (b)

S -  S

r -  s
. S:

(c) ( d )

(e) < f )

r - s

( g )

r - s .

l̂ r-s

Figure 5.1 î Various relevant relations between vectors involved 
in the evaluation of the surface integral terms arising in the 
solution of the Schrodinger equation.

- -xfc-12? ifi) { 2  ̂

X - Ktftxb:) R lu„L, (b-)]}
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^--Kb'zc-o'uxr.fyit)?: , c ,  0 .2 5),1 u t ' t- ‘ L.' LU L
where, in the last step, v/e have used the orthonorcality of the

//
spherical harmonics to get rid of the summation over L and v/e
have defined the matrix '..'rcnskian 

.0) „in __ tl>). 1
IV M ,J, £ 1 Ju / = (hi) -  X ( b;) (3.2S).

Sub-case (iii)s S* g 3Ty for J 9* i S- From Fig. 3.1(b) v:e 
see that r - S = r*. - ( Sj — _) , | Sy — | >  IT- and

/<jy > Sy , since the atomic spheres are assumed to be non-overl­
apping. ’..'e may thus express (A33) as

(x-r.j^%|r- r ..I)y (r.)y (3 .2 7).
At this point v/e must use the re-expansion formula (A*f1) in the 
form

4?(*l*j-*ljl)X(*j-Kj) - ^  i-'/y (*5,0 y^iSy) (3.28),
v/here v/e have defined the energy-dependant structure factors

H i i ' =  4 w  5  A r  (* ‘j > <3-29>-
Putting (3.27) and (3.28) together and following through the alg­
ebra as in (3.25) we find

0 , j )  = /*.. l a U ? ,* ) ? '« * )  -  v c* )? , J-

=  - x b / Z C - i / i i K r , » (3.30),
,/l « *■ l/ LL if' 7 IL L

with the further definition

W  i s  * J7U / = it (xb;)^', (bj) -  * R u' (bj) (3.31).
Sub-case (iv): ^  :- Fig. 3.1(c) shov/s that I”- ?  =

S  -  ( $ „ -  ^ (o)  w it h  l S .  ” K t- c l > r i and So >

A

V/e

must again use the re-expansion formula (Al+1) in the Green funct­

ion expansion (A33) to get
= ('Oiii(yri)yjri) ^ t h ",C-0 ¿ ^ ( xs.)Y^(s.) (3.32),

where H " , £  4tr ^  h / I  iS S  O  (k ^ J  J  (3.33).
This gives
T L r  [at(f,t)v'r& - n * ) v ,

=  - £ - * 0
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the extra minus sign coming from the fact that the outward point­
ing normal of %  is - 5g and the Wronskian is defined similarly 
to (3 .2 6).
Case 2: T £ 'T”

Sub-case (i): 5 6 1 :- As before v/e leave it as

“CW i« , iJ  5 fr G o ( r , s ) V ( t ) iVC*k) d is (3.35).
Sub-case (ii): S 6 3f# Fig. 3.1(d) shows that T - s' =
—* —» .
te - Sc and t~Q > S0 . The Green function (A33) is now

G t O v )  *  " K ^  i-')i^ % r . ) i /(xs,)yir#)y (sj (3.36).
V.'e then get

Co,o; = [ G U ? , * ) V n t ) -  <rc?)Vt G U ? ,

--(-KO?(-./^;v.jy(r.)2kf.,«-ju/ c*, <5 .3 7 )

with the Vironskian defined like (3.31).

Sub-case (iii): ST £ 9tt- for i = 1,2,...,/V Fig. 3.1(e)
shows that T - S = (T, - f?t*#) - 5*. with / r# - > S{.

and r„ >  . Hence, with the use of (A4-1) and the definition

h ;|, =  \.(& u ) (3 .3 8),
the Green function (A33) becomes

0 V )  = ' ^ 2  ('•)/J*,(xrt) y(re) T  in? )/,({■) (3.39).1* * *•  ̂ •
The result is then
T S m  (0,0 s- t6,*(r,i)Vnt) - G U ? ,  SJ]. S; .

=r -xl1-? (-0 ̂ ( y r j Y j v Z H “ Cy 3mk0).

Case 3s t' £ I s —
—A T

Sub-case (i): S B 1 s- The integral is unaltered as

i i , u  « /x (3 .4 1).
Sub-case (ii): S £ >T; for i = 1,2,...,N  :- From Fig.3.1(f)

.—A -«A ■ A ^
v/e see that T - S = r; —  with r; > S; , so that

= -  x f  <3 . 42)

and
( r , D  = E G U r , t ) v n ? )  - n t ) v s $,(?,?)]. fc-"¿a
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=  - vfc/r(-<)U¡,J(*r.)yjrt) r  ivf», c lL, (3 .4 3).

Sub-case (iii): S £ 9Te From Fig. 3.1(g) we see that i~ ~ S
= rc- S0 v/ith S„ > r and so

G U K s )  = - * 2 (-Oi it( * r . ) J (fo% o)yt' ( r . ) y i' ( i ' )  ( 3 . 44) ,

giving

91 o

= -C -K k :)2 ( - o \ ( * r . ) Y i ( n ? , W t f 0! t t]u , C l ,  (3 .4 5 ).

At this point v/e have completed the evaluation of the terms in 
(3.16).

Before collecting up the widely scattered parts of (3.16) v/e 
make some simplifying definitions. Firstly,

K '  O.V6)
and 6* = Kfc,1 (-./r . C* (3A7)i*• t / it *.
which (assuming invertibility of the '..'ronskian matrices) imply

J't

and x ‘.‘ c; = 2. K f * w, * ' C ,  i-./'e;,

(J.V8)

(3 .V9 ) .
Secondly, we define the t-matrices for the SSRs by 

— ' i W i i ' i  , . r . -  o i l - '  ,
(+•)„'5 ? » <-oj 

“ d (**£, i S  v [ * M tl. w « T tv  /-•/'

(3.50) 

(3.5D.
Collecting up (3.23,25,30,34,35,37,40,41,43,45) and using (3.46- 

51), we find that (3 .16) becomes, in the three cases for £ K Vg ,

+ &  z  h ‘{ , 8 ', ]
(for r i f .  and t = 1,2,...,N) (3.52),

0 = /, +  £ C-'M^r.)V(t,j{Z  (f)-^ B[,

(for C £ T, ) ( 3 . 53)
and
W(r) =  /x

^ 2i|frr.)y^,6t* (for r £ J ) (3.54).
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If we complete the definition of the coefficients W.*// by

H u , =  0 (for (= 0,1,...,A/) (3.55),
then v;e find, using (3.29,33,38,55) together with (A20,28) and 
the properties of the I in App. A, that they have the
symmetry

lW  -  u Jl
H u' ' (3.56).

In fact the atomic t-matrices defined in (3.50,51) are also 
symmetric. In Natoli et al. (1986) it is shown that the analogous 

quantities (for positive energies) are indeed closely related to 
the usual atomic t-matrices from scattering theory for the atomic 

sphere potentials. Since the potential is real we have time—reve­
rsal invariance (see e.g. Taylor (1972)) and in the angular mome­

ntum representation the matrices are symmetric. Looking at (3.50) 
for example, this symmetry is not obvious, but is demonstrated in 

our following, new result.
For a given atomic sphere T- we define matrices M, , l.

R , S', X and I , by*** ** /v **

(r) = (t) X ( r ) * r R M  lu ,* S j 3.57).
These matrices satisfy the following relations (with i> 5 )

((»r'urom (3.50» (3.58),
i (r) A (f) - i'(r) i <-r) - i'Xr‘) s (from (A12)) (3.59)

and X * ( r )  - G (>") X ( r )  (3«6o);<V «v
where, from (3.21), £) is the symmetric matrix defined by

s C (r) ♦  ^  V  - f (3-61)
and, for small K t X  i3 given by

X u' (r) ~  r V ' (3.62).
We wish to show that U is symmetric, i.e. U = . Multiply-

ing both sides of (3.58) on the left by (i R — i and on the■v ^ e.

right by S (  t  K — i R) ,  and using = I ,  gives usA» ^ > M Al



( =  ii«,- ‘/«)r s'r ( < $ /- rf'«) (3.63),
in which the dropping of the radial dependence of the matrices is 

intended to imply that P = b . If v/e consider the LHS of (3.63), 
v/e see that its symmetry is equivalent to that of W . So our eff­

ort v/ill go into proving the symmetry of the P.HS of (3.63), i.e.

V  =  (i/f- ife )rsT ( ^ ' -  J (3.6*0.
This is done by first expanding it out and using the diagonality 
of i t À and S , so that

IT = (l'T i - £ i-é ( f -  )

~  C*'Ti i i*'J-+  C $ Ti £ fi? 3 -  * /ri ii'Z -

where, in the last step, v/e have used (3.59). Now each of the 
terms in square brackets on the RHS of (3.65) is manifestly symm­

etric, so our task is reduced to showing the symmetry of the term 
R . This is best done by considering instead the combination 

X ^ r) X V j  • From (3.57) this is just
X V )  x'cn =  r R T(r) RCr) +  r xR r(r)R'(r) (3 .66),

and its symmetry is thus equivalent to that of R T (l~) R  (P). Now 
consider its derivative
( * V )  X  = X T V ) ) < /(»-)+ X T(r; X /7( 0

=  x ' V )  X'(r)+ yT(t) G(r) X(t) (from (3 .60)) (3 .6 7)./v ^ ^ ^
This is obviously symmetric because of the symmetry of 5 (r). 
Therefore, since its derivative is symmetric for all P, and sin­

ce it is diagonal at P = 0 (by (3 .62)), then X (r) %  ir) itself 
is symmetric for all P . So our result is obtained and v/e have

u = U T  (3.68)./v /w
At this stage we have, as unknov/ns in (3.52-5*0, the coeffici­

ents B* and the wavefunction n r )  for P é l .  If, as in the 

MT case, the potential v/ere zero in the IS, then the integrals

would disappear and v/e could use (3*52,53) to determine the 0,
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and then via (3.5*0 the for P B 1 . In the general potenti­

al case ilatoli at al. (1935) point out that (3.5*0 is the Lippma- 

nn-Schwinger equation relative to a potential which is the real 
potential in the IR and zero outside, with an inhomogeneous part 

corresponding to the second and third terms on the RHS. They then 
introduce a T-matrix relative to this potential which transforms 

(3.5*0 into a closed expression for *(?) in the IR. This is then 
used to evaluate the remaining integrals in (3.52,53). The diffi­

cult part now comes in evaluating this T-matrix and, at present, 
we have not found a practicable and accurate method of doing this 
evaluation.

Our approach has been to use the Born approximation for the 
interstitial T-matrix, i.e. we approximate it v/ith the potential 

operator. This will be reasonable provided that the reset IR pot­

ential is weak; in other words, the true IR potential does not 
vary too much from its average over too large a volume. (In actu­
al fact, because of our resetting of the reference zero of the 

potential to the value in (3.11), this is a variety of distorted- 

wave Born approximation.) The approximation is equivalent to ign­
oring the integral on the RHS of (3.5*0 and using the resulting
expression for ^  in the integrals of (3.52,53).

—*
So, for P B T t- , v/e take

Jr C, l Cr , s ) V( t )  l̂ [ s )d is

+ (**.)%, it.) b ; , } S s

(3.69),
where we have defined

T i i ' 5  ' K (<"(«(>



( 3 . 71)and T^°/ =■ ~K iT4<l,(**i)Yl'lK)V(t)
For r € T„ '..re obtain, in a like manner,

z  (-ity’txrjV (re) ( ¿ 2  r cJ B J f (3.72), 
1 *■ * *■ ty*» i.' u  t 1

where

T 2 ' s  ( j ,  ( 3#73)

T tT' 3 ' x // i j lx t ' iV t i )  V ( ? ) i t,(Kia)yu, ( ' , ) * U (3.7k).and

It may be easily seen from these definitions that
T*> = T ' *it' i'l

The equations (3.52,53) may now be written
(3.75).

0 (reT »= n ) (3.76)

0 [re T.) (3.77),
and the secular matrix $ is defined by -

K i -  • ( * ‘ C  % “" 1  ♦ r ‘i , ( (3.78)
(or, in matrix form, by

S = t‘V  H  + T (3.79)).
Considering the orthonormality of the spherical harmonics, the 
equations (3.76,77) imply the "secular equation"

%  2  B J. =  O (3.80).y-o L' Ll~ L
This has non-zero solution vectors B^ only when the determinant 

of the secular matrix is zero. Thus a search for bound states 
involves looking for those energies at which the secular determi­

nant is zero and then using (3 .8 0) to find the B* , and (3.*t8,k9) 
to get the coefficients C^ of the wavefunction expansions inside 

the SSHs. Me do not treat the normalization of the wavefunction 
since it is not necessary for the purposes of this thesis. An 

efficient method of normalization has been under investigation by 
CRN (pers. com.), within the framework of the FP-SV7 method, and 
is of course essential for the further development of the method.

For the energy range Vg < if <  0 an almost identical procedu-
there is followed. In this case we define k = J  E - and use

J*5



standing-wave Green function (A3*0 with the re-expansion formula
(Al+3)» V.'e obtain

=  o  (3.8n,

and ^(kr)Y(r0) i S ° J,B J,~o (? e X )  (3.32).
 ̂ *  I- j : o  i-

The secular equation (3.80) still holds, with the definition in 

(3.78), but the individual parts of the secular matrix are given 
by the following formulae

3  2? W f y, (3.83)

2T W  [j ,R Jtt, C^/ (3.85)

8 :  -  c°
L •* * (3.86);

o

4,r £  ( 0 * i * J  * o )

and

and

4 * 2  ¡ ^ - ‘ i («¡,1 (<*• j * « )
/.* Z A

A i r Z i i* - i i 0 . M j r lk^)Y.(jlJ.)  ( i*o  j  t o )

(3.87);
and finally

i-l.'

r k f  -*t (ks¿)yt ( v  V l i ^ W Y ^ i j ) d \  ( i t o  ¡ t o )

klI +i(ist)\(*i)V(f)JiflktJ \ ' & ) * i* (-ii0 J9°) 

k \t j t Ck s.)Ŷ s.) Vi*) * t iiS0 J * o) 

kfj j ^ *  V *  U 90 j9°)
\  (3.88) .

The equation corresponding to (3.5^) for 1 is
W * )  = /r  6U *.* )V(i> 'r ( t )d ,s + i ' 2 ' * t (kri ) Y j r i) 8 lL

+ ^  jtlkr')\(r.)6l (3.89).
It is not difficult to show that the separate parts of the secul-



?.r matrix for Vg K £ K 0 have the same symmetry properties as 

those referred to in (3*56,63,75)•

Section 3.5s Secular Equation in the Continuum Case and the 

Calculation of Photoionization Cross-Sections.

For 0 < £ v/e have a continuum of states and, having chosen a 
particular energy, v/e find the wavefunction for that energy. Usi­

ng this wavefunction v/e then evaluate the photoionization cross- 

section. In this situation v/e must use the Green function (A35) 
in the Lippmann-Schv/inger equation

W(r) *  <t>c(r) +  f  ̂ ^(r,s)V(s) (3.90)
in which <PC(r)-+*f(ik-r) (with k s / F )  is included to impose 
the correct boundary conditions at infinity, i.e. those of an 

asymptotically free electron ejected by the absorbed photon. This 
case is treated in detail in Natoli et al. (1986) for the situat­

ion in which there is no OS and the IR extends to infinity. In 
this work we have an OS and can thus drop the inhomogeneous term 

from (3 .90) since v/e can impose the appropriate boundary 
conditions directly on the radial solution of the coupled Schrod- 

inger equations in the EMR. Furthermore, we again reset the zero

of the potential energy to as in (3.11) so that k s V f - K *
Inside an ASR the wavefunction is given, as before, by (3.20)# 

However, in the EMR we must write the wavefunction as

n ? >  = +  (3 .9 1),
where A  and C° are constants, and Q^L/ and are separately
solutions of the radial equations, normalized to one state per 
Ryd., with the asymptotic behaviour

Q u , (r) A  (kr - { I *  +  io£) (r-*oo) (3 .92)

and (k")'/l'r (3.93).
The extra phase-shift (jl>̂ is introduced to deal with long-range



(e.g. Coulombic) potentials, and depends on r. ( Schiff (f168) p. / + 2 )

With the application of the partition and the use of the re­

expansion formula (A*f4), (3.90) may be rewritten similarly to the 
V0 ^ ^ 0 case* One finds, for r € 1 $ the equation

W * ) -  w W t + i  2  -«t f o v Y A r f l + Z j J k m n ) 3" (3.94).I 1*1 L * L *- L 7 u L
Here we have defined

8 ; s H / S W O ' , « ‘W  <3.,5,

and 8“ ♦ W  t " $ \ L, ̂ L-) (3.96).
As usual, ignoring the first term in the RHS of (3.9*0 and using 
the remaining expression to dispose of the integrals over the IR 

(in the Born approximation) for the other regions of the partiti­

on, we get a h .

“ 0 S * B i , - 2 D U , A , }  ( W S . W .

The secular matrix is defined as in (3*78), but the individual 
parts are now given by

and
Ci‘C  *  ?„

<*•& * 5  * r / , « v

(3 .99)

(3 .100);

r

M-7

4r 2? i ^   ̂ )(~i4.J(kRjj))y (̂#ij )  ( ,  +o* j+o)
¿(f0 Jso)

4« 2 i i* r U h & t)jt. ( U j . ) y ' , l * j . )  0 *° j * ° )

V (3.101);
and

r * ' =

' fc f , )VLt)M "¿MvJrf ' * ¿V/o Jto)
1 4  M J ' i M v t f )  jv (ks») \ tlu) (i*o j*o )  

*  = ) *4 VCt) (-'ty ito jflY 'frtj)*'* Li*o j * 0 )

1 4  Vt i 0  vtf; y <**•• >=0>>
(3 . 102).
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The inhomogeneous term is

3 r z  } (3 .103).
This expression may be considerably simplified with a recent res­
ult of C.R. Ilatoli (pers. com.). In matrix notation

^ - ( w C j , R * h * K T ' ) » l - u ^ a ]

= * ° r ' r  i  W r - . / ' > * j Tw a « j ] -  w [ j , n  T N { .  U*> a 1 ]

s IV i-irj r j T M (3.10*0 .
If we expand the V.'ronskians in M  and rearrange, we get

M = -ik t S e(bc)r ( V ‘)(k i ' ' ) i /( k i . ) - J t 0>/(i'k.)j(ici,c)) q ' ( b . )

U 0 J 1 ~  ~ - -  1 (3 .1 0 5).

Nov/ £•*) and Q f O  satisfy the same set of coupled equations 
(3.21) in the EMR.

L dr* *  7 dr “ £ t1") ~ 0 (3 .106)

M d  l d"rl + %  Jr ~ G(r)]Q(r) = O (3.107),
where is defined in (3.61). If we now multiply (3.106) on

the left by QCr)^ , multiply (3.107) on the left by f?Vr)T and 
subtract the latter from the transpose of the former, then we get 
(using the symmetry of &(f))

=  ( } , * ? )  I - i"f«->T a w j

' 0 r  + 7 ^  (3 .108).
The general solution of the matrix differential equation is

?> )  » A l l  (for some constant matrix H )  (3.109).— r ~ ~
To determine the constant matrix we must use the asymptotic beha­
viour of Q(r) and K*£r) given by (3.92,93). Therefore

if9



n u .«
Finally, from (3.10^,105,108,109,110) we get

V  -  &  ( W . r i - C

( 3 * 110) ,

(3.111).
Now because of the orthonormality of the spherical harnonics

v/e get from (3.97*93) the secular equation 
n
%  $*// 8 ', *  £• 21 D  ,fl / (3 . 112).j 20 A U L A- A-

In this equation represents the exciting amplitude and v;e set
r* //

it equal to o^ h so that, for each L , v/e solve (3.112) to obtain

8 , 7 0 .  V.’ith this set of vector solutions, relative to each par-
//

ticular exciting v/ave L , v/e are in a position to calculate the 
photoionization cross-section.

In the interests of simplicity v/e restrict our calculation to 

the case where the photoabsorbing atom is at the centre of the 
cluster with 1 = 1 .  Me calculate only the K-edge cross-sections, 

so that the initial state is a spherically symmetric 1s state 1^*^ 

v/hich lies so deep in energy that the spatial extent of the wave- 
function is effectively entirely bounded by the atomic sphere.
This means that the integral in the dipole transition matrix ele­

ment need only be performed in that sphere.
From Natoli et al. (1986) we have that the cross-section, for

A
electromagnetic radiation polarized in the £ direction, is given 
by

< r ( E i b -  4 f r \ t * u 2  (3 .1 1 3),

where Ci is the fine-structure constant, "tiui is the photon ener­
gy and

D", <3.11*0.

In this last expression 'T'.H) is our solution of the Lippmann-
Schwinger equation (3.90) relative to the exciting wave L  • Now,

-j*
for I" 6 ‘T, , v/e have from (3.20) that

K  (£;r)s (fi) (3.115)
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and fron (3.95) that

Also,
( 3 . 1 1 6 ) .

(3.117).
Now, we shall further specialise our calculation to an average 

cross-section over all orientations of the molecule. Since the 
propagation vector of the radiation does not appear in (3.113), 
this average is equivalent to averaging over all polarization

Since the initial 1s state in an atom is usually populated by two 
electrons, the total cross-section (3 *118) has to be doubled.

Section 3.1*-? Inclusion of Molecular Point Symmetry.

The dimension of the secular matrix (3.78) is in principle 

infinite; however, for practical calculations, it must be made 

finite. This is done by truncating the angular momentum indices 
i_ 2 in the expansions of the wavefunction for each SSR

to some maximum allowed t -value (which may vary from sphere to 
sphere). The dimension is then roughly proportional to the number 
of atoms in the cluster times ( /(max)+1)^; and the total number 
of matrix elements is the square of this. Fortunately, the conve­

rgence in i is quite rapid - /(max) = being quite adequate 
for most atomic spheres. Even so, for clusters of ten or more 
atoms say, we are looking at matrices with dimensions in the reg­
ion of 100 and upwards. The main burden of the calculations of

A
directions € . The result is v/ell known to be

(Here the X- are the three components of the position operator.)
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Secs« 3.2,3 is in the construction of the secular matrix and the 

subsequent matrix manipulations, i.e. finding inverses or determ­
inants; so large matrices are rather undesirable.

One method of reducing the work involved arises if the molecu­

le has some point symmetry; that is to say, if the molecular pot­

ential is invariant under some non-trivial subgroup of the group 

0(3) of orthogonal transformations about a fixed point. In this 
case, as is well known (see e.g. Tinkham (196*0), the wavefuncti- 

ons may be chosen to transform according to the irreducible repr­
esentations (irreps) of the point group.

Specifically we consider the case where the molecule is invar­
iant under the finite group of transformations £  relative to the 

molecular centre Rg. This group has a finite number of finite- 
dimensional irreps f~ (for X = 1,2,...,g). Because of the sym­

metry, the molecule will consist of P groups of equivalent atoms 
(transforming into each other under the group); and for each gro­
up p = 1,2,...,P there are Np atoms, (h'e index the OS by p = 0 

so that î 0 = 1.) For a given group p , the individual atoms are 

labelled = 1 , 2 so that our usual atonic index L beco­
mes composite i =  ( /° , ). Note that N  = 2? Np .

It is shov/n in Diamond (1973) for the MT case, that a v/avefun-
r- (K)ction transforming according to column /\ of an irrep / may be 

constructed by expanding in terms of linear combinations of sphe­

rical harmonics at the atomic sites with the correct transformat­

ion properties built in. Although the extension to the full-pote­
ntial case is not straightforward, we do not describe it here, 
since it would be a too complicated digression from our line of 

argument; and the result is the same as for the MT case anyway.
In particular, we expand in the symmetrised combinations

^  n  x  (*>*) (3 .119),
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'..'here it runs through the combinations that nay arise for a given 

.i on a given set of equivalent atoms p (possibly there are none 

such;. The constants form a unitary transformation from

the spherical harmonic bases on the atoms, which block diagonali­
zes the secular equation according to the irreps. '■!e can then 

restrict our attention to a particular block which is of a small­
er, more manageable size. The symmetrized secular matrix is then

^AA' "  f (3.120),
v/here A = ( / ,n  ) and we have dropped the Y  and } indices sin­

ce these are fixed. The parts of the secular matrix in (3.78) are 

given by similar expressions to (3.120) and the symmetrized secu­
lar matrix is then given by

f "0 A A'
The secular equation is now

(3.121).

__ — - /£  S ",  8 =AA^ A
p'a'

(£<o)

8 H  v  , A  , (0<i)
r° ¡¡7 AA A' y (3.122).

Note that the symmetrized basis functions are normalized to

?   ̂rn  r\ * (3,123)’
which implies that

í í  K.n  K.r\  = ¿  ,/*»« C.wi **
We introduce also

A

(3.12«t).

x £ ( r „ )  -  * £ ( * > * >  <3,125>
purely for the purpose of the symmetrized expansion of the poten­
tial, since it is thus normalized to unity on individual atoms. 

Now the ( O '  may be calculated directly without calculatingA*»
i.-ithe ( i  ) and invoking the transformation as in (3.120). For a 

given group of equivalent atoms p , we represent the potential bj
V C ? )  = 2  ?  VAV f) X ‘ ( r j  0 (1 , -  r.) (3 . 1 2 6 ).j»» A A * A '

V/e note that the molecular potential must transform according to
53



the totally symmetric irrep Y = 1 of . .e shall denote this 

implicitly by using the X for the potential and the X for the 

wavefunction which may belong to any of the irreps. So the wave-

function in group P may be written. . i . a
n t ) -  £  ?  t;<n)X

where
(3.127) ,

( 3 . 1 2 8 )  . 

(3.129),

(3.130).

|  C ( r ‘ ;

Now ^  is a solution of the Schrodinger equation

( V 2+ f)'t'(r) * Vtr)V(rj
so that

f  s  l if +

A
Since X  transforms as V  = 1 and X as some general irrep, their 

product must transform as X. Therefore there exist constants 
(A, A ; A J such that

X ‘( g X Ai(r,)= (3.131).
Using (3.123) v/e get

* f  S ? ? . K , n (3' 132)-
If v/e now define

I/.W ( O  = 2? 7> (A, a '; a 'J Y r (r)
/»/» * ff * /i (3.133),

then, putting (3.131) into (3.130) and using (3.133), together 
with the isolating property of the 6 functions, we get

Multiplying both sides of (3.13*0 by X\lrc), integrating with a *
respect to (, and summing over ^ , gives by (3.123,128)

r H i r* * J * * - ^ ] « * > > *  $ U" * (r)* M lr) (3.135).
With the one may create symmetrized versions of the V/ron-

skian matrices used in the definitions of the SSR t-matrices



Using the symmetrized basis, all relations involving unsymmetris­

ed quantities are also valid for the corresponding symmetrized 
quantities.

The use of a symmetric basis alters the expression for the 
photoabsorption cross-section (3»118). The dipole-allowed final 

states that can be excited from an initial 1s state will only 

belong to a few of the irreps. Furthermore, the degeneracy of an 

irrep means that, for the average over orientations, we need to 

consider only one of the columns of the irrep. The final result 
is then

< r ( D - 12

where diY) is the dimension of the irrep V.
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Chapter k, MODELLING THE POTENTIAL.

Section 4.1: Initial Potential Generating Program MLPSHX.

Since the central point of this work is the removal of an app­
roximation to the one—electron potential, we shall devote some 

space to the development of an accurate representation of the 
potential in the form required by the FP-SW formalism of the pre­

vious chapter. As is seen from (3.19-22), the potential in each 

SSR must be represented by a spherical harmonic expansion (SHX) 

about the centre of the region. The formulae (3.70,71,73,7*+,88, 
102) which use the potential in the IR do not seem to favour any 

particular type of representation for that potential. The origin­
al idea for evaluating these integrals was to use a SHX of the 

potential around the molecular centre and then to re-expand the 

atom-centred (and OS-centred) partial waves about the molecular 

centre using ( ) .  The SHX would be that of a potential which 
was the true potential in the IR and zero elsewhere. Consequently 

the IR integrals could be extended to the whole interior of the 
OS and reduce to the sum of a set of radial integrals multiplied 

by the Gaunt-like coefficients of (A30) and some structure facto­

rs like (3.29) etc.

The choice of a scheme to evaluate the IR integrals (3.70) 
etc., proved to be the most troublesome and difficult part of the 

work. In the end, the scheme just outlined was deemed unsatisfac­
tory and we abandoned it for several reasons. These centred arou­

nd the considerable algebraic complexity involved (particularly 

in the symmetrized form described in Sec. 3**0» and doubts about 

what degree of accuracy could be expected with the / -truncation 
in the re-expansions and the SHX of a discontinuous potential. 

While continuing investigations into similar schemes, we have
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settled temporarily on a brute-force three-dimensional numerical 

quadrature scheme which v/e describe in Sec* 5.1» In this scheme 
the potential values are stored on the grid points of the quadra­

ture mesh and no questions of convergence arise. Nevertheless, 

with an eye to future possibilities, we consider in this section 

the SHX of the IP potential about the centre of the molecule and 
what difficulties are encountered*

Before becoming involved in the expansion of the potential, a 

question immediately arises about which potential to use. Follow­
ing the discussion of Sec* 2*1, v/e should use a potential which 

is the sum of the Coulomb potential of the ground-state electron 

density of the cluster plus the nuclei, and Slater's X«. approxi­

mation to the exchange-correlation potential. Initially however, 

we usually do not have the true electron density, so we approxim­
ate it by a superposition of the electron densities of the free 

atoms. These last may be obtained from independant calculations 
whose results are tabulated (e.g. Clementi and Roetti (197*0 or 

Herman and Skillman (1963))* In this thesis we use only potentia­
ls derived from such superpositions. Presumably, if one wishes to 

approach experimental results as closely as possible, one should 

use self-consistent electron densities. However, for the purpose 
of determining the size and nature of the effects of including 

non-MT corrections to the potential, such superimposed potentials 

are probably quite adequate. One requires at least that they mod­

el, in an approximate way, the potential variations of a real 

molecule that the MT potential lacks.
We describe now the details of the generation of the potential 

representation in the form used by the FP-SW method. A program 

called MLPSHX was written to carry out the generation of such 

representations for arbitrary clusters. The notation is that of
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ato-

Chap. 3»

Mow we seek the superimposed potential of a cluster of N 

ras with nuclei at sites for t = 1,2,...,A/. ’..’ith each atom < 

is associated a nucleus of charge £.nd an electron cloud of
density (spherically symmetric), such that

[ rlp. (r; dr = 2  * (= 2, if atom neutral) (4.1).
The potential energy of the electron, that we seek is

V ( ? )  e  + Vci (r)  + (4.2),

«here is the Coulomb potential energy due to the nuclei, VL-g

is the Coulomb potential energy due to the electrons and VXfl is 

the exchange-correlation potential energy.

Y/e know that V «  is a solution of Poisson's equation (note V  
is an energy in Rydbergs)

V * v CN(r; =  S i r p ^ i O

p (?) = -  £  e ; s'(r- R-)
'rt l*«

where

so that
v c„ i n  =  /|f-

Likev/ise V «  is a solution of

v 2 v ce (r) =  - Ivr p i n
and the total superimposed electron density is

pfr; = £  P (|r- «¿1)
¿*i '

(4.3) ,

(4.4) ;

(4.5) .

(4.6)

(4.7).
Let us consider for the moment the general problem of solving 

Poisson's equation in multipoles. Thus, for some general charge 
density p(r) expanded as

pi?) 2  S ( j n Y L lr> C.8),

v/e wish to find V(r ), satisfying Poisson's equation, and expand­
ed as

v ( ? ) *  Z v j n v j h

As is well known, we may write the solution using (A37) as
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V(r)  ,  [  i p < 0 / | r - s | ) < ( Js (4.io).
Using the expansion formula in (A37), and the spherical harmonic 
addition theorem, this is

If we now put (4.8,9) into (4.11) and use the orthonormality of 

the spherical harmonics, we find

where oC is taken to be the average of the atomic values given by 

Schwarz (1972) for the atoms in the cluster. In the MT version of 
the SW-X method (Johnson (1973)) each separate atomic potential 
uses its own appropriate Oi ̂ . In our case this would cause pote­
ntial discontinuities, which we are trying to avoid; so we take a

(4.12).

or, more explicitly,

3 the electron
density again and V is the potential energy of a given electron) 

we may use the i - 0 case in (4.14), along with the linearity of

Poisson's equation and (4.7), to write

with

Thus we can set

Vc ( r j 2 VC H ( ? ) +  Vc g ( f )  = i  V.-lJr-M) (4.17),
where

(4.18).
The Xec potential we shall take to be
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single value» In any case the differences are only a few percent 

of the Xoc potential and this itself is a small fraction of the 
total potential.

We now need to find the SHX of the electron density in (4.7) 
about a particular atomic site i • The general problem of spheri­

cal harmonic re-expansions is treated by Lowdin (1956), although 

we do not use his full machinery, since we can take advantage of 
the fact that we are superimposing spherical functions at the 
different sites.

Thus, within atomic sphere /T,- , we write
pi?) = £ (if.20),

so that
p£V,)= Jp

j*i (4.21).
The individual integrals in (4.21) may be evaluated as follows.

First we note that the function , considered as a
j  —1

function of • • , is axially symmetric about the direction of Kj,-.
Therefore it may be expanded in Legendre polynomials thus:

R-fin-fy) = f  ( •  «*.»>
if

for some as yet unknown /3̂ . Using the addition theorem (A24) in

(4.22) and then putting the result into (4.21) gives

( V 'V i)  = ,  '-"■v''-
J  ̂ ^If we consider a fixed f,- in (4.22) and denote vf S • l\,( , then

I?! - R;,| -  Jr, ~*J,‘ - 4r,«J( <‘>.2*)
and the use of the well-known orthogonality integral for Legendre 
polynomials gives

K )  = J1 p; (7ri‘+ ) P, W  v  (^.25).
At this point Lowdin (1956) introduces his recurrence-relation
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method for the calculation of (.^.23)» Our earlier experiments 

with this method led to large integration errors at high t , pre­

sumably related to the high polynomial powers that appear as wei­

ght factors in the separate sub-integrals. Although a recasting 
of the recurrence relations in some manner may provide more stab­

le results, we abandoned the method in favour of a direct evalua­

tion of (^.25) using a ^S-point Gauss—Legendre mesh on the inter­

val (-1,1).

Although we have only calculated the expansion of the electron 

density in (*+.23,25), the result also applies to the potential 
energy (^.17) once the radial forms (**.18) have been calculated 
and stored away. VJhile the method gives smooth and accurate radi­

al functions for the expansion in an atomic region, some problems 

arise when the expansion is around the molecular centre. This is 

because of the cusps in the electron density at the atomic nuclei 

and the Coulomb singularities in the potential, both of which 

give rise to slowly convergent SHXs, whose radial functions are 
not smooth.

For an ASR these problems do not matter because the required 
radial extent of the SHX does not reach as far as neighbouring 

nuclei. For the IR however, it extends past all atomic centres. 
Fortunately, the SHX for the IR is only required to give a good 

approximation of the potential in the IR, and does not really 

need to model the Coulomb singularities or density cusps in the 

ASRs. These are already well modelled by their own SHXs and thus, 
via (3»21), are completely accounted for in the solution of the 

Schrodinger equation. In extracting the SHX for the IR electron 
density and potential we can replace the singularities by "caps" 

in the ASRs that fit smoothly to the values at the sphere bound­

aries.
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The beneficial effects of this approach may be seen for a sim­

ple situation in Fig. ^.1# Here we model the potential energy ( = 

2/R) of a proton in the field of another proton fixed at the pos­

ition P = (0,0,2) Bohr. The SHX of the potential is about the 

origin 0 and is truncated at L = 9. In the first case we show the 

truncation error when the potential singularity is included (and 
the expansion (A37) is used); and in the second we have replaced 

the potential, within 1 Bohr of the fixed proton, by a quadratic 
smoothly fitting cap. The specification of the contour intervals 

shows first the lowest contour, then the contour interval (in 

brackets) and finally the highest contour. Notice that in the 

second case the contour intervals are twenty times as fine as in 
the first.

In our electron density and potential expansions we use quart- 
ic caps. Instead of (^.Bl) we have for the IR

' 4 i , r  +  <1̂ * +  « , r  + * f r *  ( r < t y )

Pj (r>l>j)(.k,Z7),

where

The are chosen so that pj is smooth at T = 0 and matches up

11-1-*,

to the second derivative at T = bj . This means
*■ * *1 « ° «. = fjlij) -  ft’jpjC’j) f T

\  i j 'p / iv -  i  p*<v - i  t jv / h j)+\
Note that the re-expansions we have described so far apply 

only to the electron density and to the Coulomb part of the pote­

ntial. This is because of the linear superposition property asso­
ciated with these quantities. Unfortunately, the Xot potential 

(*+•1 9) does not have this property so we must find other means of 
generating the SHXs. At first sight (^.19) suggests that there 
might exist some direct algebraic means of using the SHXs for p
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Figure lf.1: Truncation error for 1=9 SHXs of 2/R potential: (a)
unaltered, (b) quadratically capped. Contours full (+), broken 

(-): spacing (a) -0.9(0.2)0.9, (b) -0.0^5(0.01)0.0^5 Rydbergs.
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(which we have already obtained) to obtain the SIIXs of its cube 

root, and thus V *  ; however, no such mathematical means appear 
to exist. Alternatively we might consider the inverse direction; 

expressing p in terms of its cube root and trying to solve the 
implicit equations that result (by iterative methods etc.). While 

the latter possibility seems promising, its implementation was 
deemed too complicated because of the double products of Gaunt 

coefficients (A30) that appear in the expressions. Nevertheless, 

a fresh attack on the problem may reopen the possibility of using 
this potentially fast method.

For the present we have resorted to direct evaluation of the 
surface integrals

V ‘ c* v , ) =  (k.29).

The main difficulty here is that we must find a numerical quadra­

ture for the surface of the sphere, which is accurate and yet 

does not require too many points. Since the region of integration 

is fixed, we might hope to use some two-dimensional analogue of 
the one-dimensional Gaussian quadrature formulae. These latter 

are well known for their great efficiency. Unfortunately, no com­

parable general scheme is known for generating efficient spheric­

al formulae of arbitrarily high degree (see Stroud (1971))« One 
possible method is to use a product of two one-dimensional formu­

lae for the 6 and 4* parts of the surface integral. While this 
gives reasonable results, the uneven distribution of points over 
the sphere surface means that, for a given final accuracy, more 

points are required than is strictly necessary.

There are available in the literature a variety of schemes for 
integration over a spherical surface that are much better than 

product formulae. (Stroud (1971) contains a large collection and 

McLaren (1963) gives a more detailed exposition.) One measure of



the efficiency cf such formulae is

Ep = ~r I )l/3Np (^.30),

■here -¿(max) refers to the highest order spherical harmonic whi­
ch is integrated exactly by the formula; ( 1? (max) + 1 )L~ then being 

the total number of such functions. N P is the total number of 

points in the formula ( 5Np accounting for the two positional 

degrees and one weight degree of freedom for each point)• For 

highly efficient formulae may be about 1. V.'e have found in

Lebedev (1977) a 302-point formula with i(max) = 29 (giving an 
of about 0.993). The formula is based on the use cf a set of 

points and './eights invariant under the octahedral group with inv­

ersion 0,̂ . 3y considering combinations of spherical harmonics 

that transform according to the totally symmetric irrep of 0^ 

only, the size of the equations that need to be solved to provide 

the positions and weights of points is greatly reduced (functions 

in the other irreps automatically giving zero sums by virtue of 

the orthogonality of irreps). Although such a method is applicab­
le in principle to arbitrarily high i(max), it is pointed out by 

Lebedev (1977) that the size and complexity of the equations inc­
rease rapidly with h  max) •

The -¿(max) of 29 in our 302-point formula is easily adequate 
for our purposes. This may be seen from a consideration of (3.22) 

together with the properties of the Gaunt coefficients in App. A2 
which show that the highest i -component in the potential that is 

used is double that of the wavefunction. Since, even for the con­

tinuum wavefunctions of Sec. 3.3» we would take a wave function 

l (max) of 10 or so (related to the XANES energy range and the 
cluster size - see Sec. 5.5), then the potential ¿(max) is not 

too great for our formula. And in fact, using this formula in 
MLPSHX to evaluate (^.29) has produced good results as we show in
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the next 3ecti:a.

Hots that MLPSHX ;as written to take account of molecular sym­
metry following the discussion of Sec. 3«^. The results of the 

program are thus the symmetrized potential radial components that 
appear in (3 o126). '..:e do not give the details since it is only a 

minor extension to the formalism of this section.

Section 4.2: Full Potential for Chromium Hexacarbonyl and 

Discussion.

Me now use MLPSHX to generate a full potential for our model 

system chromium hexacarbonyl. First of all let us see the electr­

on density that results from the superposition of free atoms.

This is shown in Fig. if.2. Note particularly the build-up of den­

sity around the CO ligand in contrast with the relatively low 

density between the Cr and C atoms. Given the large fraction of 
the C and 0 valence electrons involved in the triple carbonyl 

bond, one might expect that the actual density is significantly 
different from our free-atom superposition. One therefore suspec­

ts that a self-consistent density for the CO ligand would be more 
appropriate here.

The total potential from (^.2) that this density gives may be 
seen in Fig. *f.3. 3y considering this figure in conjunction with 

Fig. 2.1 we may estimate that the typical error of the MT potent­

ial is of the order of half a Rydberg over much of the IR volume, 

rising to two or more Rydbergs at the carbon and oxygen sphere 

boundaries.
As a first test we ran MLPSHX with the same sphere radii as 

was used for the MT case. (Remember that these were chosen with 
touching spheres so that the C and 0 potentials matched at their 

contact point.) The i. -truncations were chosen to be roughly dou-
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ELECTRON DENSITY, Cr(C0)6. OVERLAPPED F R E E  ATOMS.

X DISTANCE (Bohr Radii)

Figure *f.2: Chromium hexacarbonyl electron density resulting from 

the superposition of the free-atom densities* Plane of contour 
plot intersects four of the CO ligands. Contour interval is

0.0** Bohr”^ with the highest contour at 0.**5 Bohr-^ (closest 
to the atomic nuclei), and the lowest at 0.01 Bohr-^. (This is 

summarized as 0.01(0.0**)0.**5 Bohr-^.) 
ble the typical wavefunction values for the reasons described 

above. Thus ¿(max) = 20(IR/EMR), 10(Cr), 5 ( 0  and 5(0). When the 
potential was reconstructed from the SHX radial functions the 

results were very good, v/ith the values in the SSRs and most of 
the IR within 0.05 Ryd. of the actual values. The greatest inacc­

uracies occurred in the vicinity of the oxygen sphere in the IR. 
The worst was a discontinuity of about 0.6 Ryd. on a small part 

of the oxygen sphere surface; the average magnitude over the who­
le surface being about a quarter of this. The discontinuities at 

the other sphere surfaces, closer to the molecular centre, were
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TOTAL POTENTIAL. Cr(C0>6. OVERLAPPED F R E E  ATOMS.

X DISTANCE (Bohr Rada)

Figure -̂»3? Chromium hexacarbonyl total potential from the super­

imposed free-atom electron densities. There are two contour 
intervals for the sixteen contours ’./hose values are then summ­

arized as -o.0(0.6)-1,2(0.15)-0.15 Fyd., with the lowest value 
nearest to the atomic nuclei.

less than a tenth of this. The decline in accuracy of the expans­
ions is of course directly related to the distance from the expa­

nsion centre (for fixed >£(max)).
At this point v/e realize that the considerations that are tak­

en into account when choosing sphere radii for the FP, are signi­

ficantly different from the MT case. The main consideration in 
the latter case is to reduce the IR volume as much as possible. 

This requires the various spheres to be touching and leaves litt­
le room for manoeuvre when trying to minimize potential disconti­

nuities at sphere boundaries. Although in the FP case we wish 
also to reduce the IP volume, it is not such a pressing requirem-
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:nt, - i n s :  -ur p o t e n t i a l  nod el there to r:".s-:r.aMc, ~'h;  u : cessiby 
-f having touching spheres cun than be r e l a x e d  and  ••:> can adapt 
the individual radii to ameliorate the local inaccuracies of the
rr/c -..AS •

T.iereoore, an our filial odel for th3 chror.i ---- - —
potential, ;e expand the o::ygen spheres by 1;?5 at the expense of
the cr.rbcn spheres (’:espins them touch!ag). Thi s increases the

angle subtended by the oxygen, spheres as seen from the molecular 
centre and, considering the relationship between the nur.ber of 

lobes and the order of a spherico.l harmonic, ve might hope that 
the l -truncation that v;e used above for the 1?. ..'ill give a bett­

er representation. a also reduce the chromium sphere radius by 

about 11?;. This enlarges the in volume, but that particular regi­

on is more accurately represented by the higher i -truncation of 
the SHX in the IX.

The parameters of the partition are nov; as follows. The Cr-C 
distance is 3.6075 Bohr and the C-0 distance is 2.1^36 3ohr. The 

oxygen sphere radii are increased to 1.2176 Bohr v.'hile the chrom­

ium and carbon spheres are reduced to 2.2000 and 0.3309 Bohr res­

pectively. The OS touches the oxygen spheres and is thus 5.37^ 
Bohr. The J -truncation is the same as given earlier except that 
the larger sphere radii for the oxygens require an increase of 

the associated i(na::) to 6. The symmetrised basis functions for 

the potential have Ji -values, in consecutive order for each regi-
on; 0 , ^, 6, o 10, 12, 12, lb, 15, 16, 13, IS, 20, 20 (IS+EMH);

0, U, 6, 8, 10 (Or); 0, 1, 2. 3, b, 'f, 5, 5 (C) and 0, 1. 2, 3,

5, 5, S, 6 (0).

The residual truncation error for this model is seen in Fig. 
d.if. e note that, for a small trade-off of accuracy near the

carbon spheres, \;e have reduced the worst errors of the previous
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TOTAL POTENTIAL. Cr(C0)6. ACTUAL - RECONSTRUCTED (O.F.A.).

X DISTANCE (Bohr Radii)

Figure Residual truncation error for expansion of chromium
hexacarbonyl potential. Positive contours are full and negati­
ve contours are broken. Contour values are -0.75(0.1)0.75 Ryd. 

model by a half. In general we note that the inaccuracies of our 
model are from one to three orders of magnitude smaller than the 

MT case. VJe therefore feel that this is a sufficient foundation 
on which to base our test of the FP-SV theory of Chap. 3. Let us 

stress that, from now on, the partition and its various paramete­

rs will be held constant; and we reiterate the fact that the val­
ues of these parameters result solely from the accuracy requirem­

ents of the potential model.
Let us finally look at the actual radial functions that MLPSHX 

gives for the potential expansions. These may be seen in Figs.
and k ,6 . Note the smooth behaviour of the IR functions espec­

ially in the neighbourhood of the C and O radii. In the region of 
l~ = 0 the behaviour of the ASR radial functions should be propo-
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RADIAL FUNCTIONS. TOTAL POTL. (RYD.). Cr(C0)6. INTERST. REGION.

RADIAL FUNCTIONS. TOTAL POTL.  (RYD.). Cr(C0)6. CHROMIUM ATOM.
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Figure 4.5: Chromium hexacarbonyl potential radial functions for 

the IR(+EMR) and the Cr atom. In the IR plot the left edge is 

the Cr nucleus, the two full vertical lines correspond to the 
C and 0 distances and the vertical broken line (both plots) is 

the Cr sphere radius. In ascending order the curves correspond 
to the symmetrized functions (see text); (IR, at r=3«o Bohr) 

1,2,1*,3,6,5,8,9,13,1^,7,10,12; (Cr, at r=2.2 Bohr) 1,2,3,**,5.
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RADIAL FUNCTIONS. TOTAL POTL. (RYD.). CHC0)6, CARBON ATOM.

RADIUS (Bohr Rad.)

RADIAL FUNCTIONS. TOTAL POTL. (RYD.), Cr(C0)6. OXYGEN ATOM.

RADIUS (Bohr Rad.)

Figure (+.'6: Chromium hexacarbonyl potential radial functions for 
the C and 0 atoms. The broken vertical lines correspond to the 
sphere radii for each atom. In ascending order, at the sphere 
radii, the curves correspond to the symmetrized functions;
(C) 1,if,5,8,7,6,2,3; (0) 1,2,5,7,10,9,8,6,4,3. Note that each 
radial function is multiplied by the appropriate linear combi­
nation of spherical harmonics to give its actual contribution.
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rtional to f (except for £ = O and the Coulomb singularities). 

The limited precision of the computer arithmetic means that this 
behaviour is not accurately reproduced for the higher i -values. 

Tecause of concern over what this inaccuracy might do to the int­
egration of the coupled radial Schrodinger equations, v.e have 
written a program called INPSHX which, among other things, smoot­
hs the radial functions by using a Chebyshev polynomial approxim­

ation for the part remaining when the original function is divid­
ed by r l. (These radial -functions for the potential are analogous to those 

in (4.20).)
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Chapter FULL-POTENTIAL SCATTEFED-WAVE PROGRAMS

Section 5»1; The Energy Eigenvalue Search Program ENESHX.
The ultimate aim of the programming task is to produce comput­

er code that will calculate the XANES of an arbitrary cluster. 
Since our main purpose at present is to explore the effects of 

full-potential (FP) calculations and their computational feasibi­

lity, our immediate goal is less ambitious. Nevertheless, we wish 
to produce code that will have a useful life significantly beyond 
our initial investigations, and general enough to be usable for a 

wide variety of physically interesting molecules or clusters.
Also it should be amenable to further development and to incorpo­

ration into more advanced programs. A further desirable feature 
is that it produce results in a reasonable time even on relative­

ly small computers.
With these general requirements in mind we have decided to 

restrict the calculations to K-edge XANES in the dipole approxim­

ation, for symmetric molecules with say three shells of coordina­
ting atoms. The code is designed to be as fast and as accurate as 

possible at the expense of storage space.
From a practical point of view v/e must also arrange the progr­

amming so that it can be easily debugged. We need to be able to 

tell the difference between mere programming errors and fundamen­
tal deficiencies of the theory. This is partly achieved by follo­

wing the basic plan of the old programs (described in Sec. 2,k) 
and using as much of the actual code as possible. This has been 
done with the special function, interpolation, integration and 
matrix manipulation subroutines, all of which are well tested and 

quite flexible. Other than these, the code is almost entirely

new.



'.'ith ths necessity of testing in mind we have decided to v/rite 

the code in two stages, firstly we wrote an energy eigenvalue 
search program called ENE5HX (analogous to ENERGY of Sec. 2.*+) 

which realises the theory of Sec. 3.2 for bound states. This is 
much simpler than the full continuum photoionization program 
(that we called CNT3HX in analogy with CCNTTTM) and would be an 

important part of a future FP self-consistent field program. 
ENESHX can then be tested separately and, once this has been done 
it may be adapted to make CMTSHX by taking advantage of the great 

similarity of the important parts.
Vie now describe the writing of ENESHX. This program takes a 

non-MT potential from MLPSHX and IHPSHX and searches for one- 

electron eigenstates in that potential. In particular, given a 
range of energies in which to search, and an irreducible represe­

ntation of the point group of the cluster to which the eigensta­
tes belong, it looks for those energies at which the (symmetriz­
ed) secular matrix S (from (3.120)) has zero determinant. The 
search procedure tests the determinant on an evenly spaced mesh 

in the energy range and having found a change in sign it refines 
the zero position with a binary search. The details need not con­

cern us here since it is similar to that of the old ENERGY. Also, 
when the energy is very deep, the electron is confined in an ato­

mic core and the wavefunction may be treated quite simply. The 
effects of non-sphericity of the potential have negligible conse­

quences for deep core levels so we do not include it. The most 
important nev; feature of the code in the FP case is the construc­
tion of the secular matrix for a valence eigenstate, and we desc­

ribe here the important details.
It was shown in Sec. 3«2 that the secular matrix may be writt­

en as a sum of three parts
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s  = t " V  H  1- T (5.1 )
sach of which is constructed in a very different way. The block

and T  includes the effects of the non-ccnstant interstitial pot-A»
ential on this propagation.

summation in (3.120) follows that of ENERGY in general outline, 
but v;e have modified some of the important details like the stor­

age and retrieval of the Gaunt coefficients of (A23). The summat­

ion is quite complicated and v/e do not reproduce the details

The first novel feature is the calculation of the atomic scat­

on are now coupled (as described earlier) and we must deal with 
matrices. V,'e then need the matrix solution and its derivative at 

the sphere boundary to put into ( 3.50,51,83,81)-) to get the indiv­

idual diagonal blocks of • Following (3.21,22,57) we put the 

radial equation into the form

diagonal matrix t" gives the scattering behaviour of each atom, 
while H  describes the propagation of the electron between atoms

The propagators (or "structure factors") H are in fact ident­

ical to those of the MT program ENERGY. Cur evaluation of the

here .

tering matrices in t . Gince the atomic potentials have non-sphe- 

rical components, the solutions of the radial Schrodinger equati­

(5.2),

/
(5.3), 

(5.*0X = r 8 ( r )
ss, ~

and ^  is the desired matrix solution.
From (5.2) it is not difficult to show that

( I - j i  {Sir**. ))X (»■♦<>)= 2 ( I  + ^ <•"$(»•)) xo -j -  ( I - ¿ G O - ) )  Xir-k) + 0 ^ 5 . 5 ) .

On dropping terms of order k* and higher one obtains the recurre­

nce relation for the matrix Humerov method. By defining
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(5.S)y  in 2 L I '  Tl
the recurrence relation takes the simpler form

Y(r+k)  ̂ U X(t) -  ¡0 Y ( f )  -  y  {»•-(.) (5 .7 ) .

At each step of the recurrence procedure one obtains using

(5*7) then, performing a matrix inversion in (5.5), one obtains

X ( r+1«) .•v
To use the matrix Numerov procedure in practice for the atomic 

spheres and for the outer sphere, it is necessary to provide tv:o 

initial solution matrices for the first two points of the integr­

ation mesh. Tor an atom the asymptotic form of the solution near 

the origin is (Natoli et al. (1936))

Xm- ‘ r) -  '•‘" 's« -  <5-8)-
Furthermore, the monopole part of the potential, i.e. the Coulomb 

singularity dominates near the origin and the radial Schrodinger 
equation becomes effectively decoupled. Thus we can take the sol­
ution matrices for small r  to be those of the uncoupled equatio­

ns, using a power series expansion and putting them on the matrix 

diagonal according to (5.3).
For the EMR v/e use a similar argument, since the monopole part 

of the potential dies away most slowly (in the absence of a non­
zero dipole moment)o Thus we take X to be diagonal at infinity 

(or some sufficiently large starting radius) and use the diagonal 
oart of G. V.’e then use the WKB approximation to obtain each of 
the diagonal elements in the asymptotic region and then use the 

Numerov method to integrate inwardso
It will have been seen that the Numerov method depends on the 

equal spacing of the mesh points. However, in the ASRs the poten­
tial is varying rapidly in the region of the nucleus and the mesh 
points need to be closer together in that region. This is done 
using a scheme of mesh doubling in which, every twenty (equally
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spaced) mesh points, the mesh increment doubles in size. The han­

dling of the recurrence relation across these jumps (especially 

in the inward recurrence used for the 'EM!?) requires some extra 
manipulations, but poses no real problems.

The most complicated and difficult part of the program is the 

evaluation of the matrix T  for the 13?, given by (3.70,71»73»7*0

'..nere

V l ’r,>
W  » I

and
Pi ri

l, for V0 < f < 0 say, as

(?) ¿‘s (5.9);

. *
lsr>> (5.10),
(P * ° )

( p ~ o ) (5.11)

(5.12).

The integral in (5.9) is over the IR and v/e need to find a 
scheme of numerical integration which is flexible enough to cope 

with different geometries and yet still be accurate. The general 
problem of finding Gaussian quality points and ’./eights for numer­
ical quadrature in three-dimensional regions of arbitrary shape 

remains unsolved, although efficient formulae for regions with 

speciali shapes are known (Stroud (1971))»
Although the shape of the IR itself is rather inconvenient, it 

is made up from the interior of the sphere /T'0 minus the volumes 

of the atomic spheres Tl . Efficient quadrature formulae are kno­
wn for spherical surfaces and it is easy to combine them with 
Gaussian line formulae to give accurate formulae for spherical 

volumes. Thus our choice of integration method is to first integ­
rate over the whole sphere with a large, accurate formula and

then use smaller formulae for the atoms, subtracting their indiv­
idual contributions, ’,’e took the formula for /T 0 to be a product
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of the 302-point spherical surface formula of Lebedev (1977) (see 

Sec. ^ol) and a Gauss-Legendre formula for the radius with the 
number of points chosen according to the radius of the OS. (This 

was one point for each half Bohr of radius.) Since the size of 
atoms does not vary too widely, v/e have fixed the atomic sphere 

formulae to be products of a 32-point surface formula with a five 
point Gauss-Jacobi radial formula (of order 2). In practice the 

points and weights are lumped together in one formula, with some 
of the weights being negative. For the clusters studied so far 

one typically requires between 1500 and 6000 points.

Stroud (1971) comments that an efficient quadrature formula 
tends to have all its points inside the region of integration and 

to have all its weights positive. Our general formula falls down 
in these respects and is a compromise forced upon us by the lack 

of better methods. Nevertheless, provided that the integrand is 
smooth over the whole interior of the OS, we should expect to 
obtain high accuracy. The existence of the spherical Neumann fun­

ction in (5»11) however, creates a problem since this function 
has a pole of order i  +1 at the atomic centre and 'would upset the 
numerical quadrature. Since the contribution of the integrand 

inside the atomic spheres is first added then subtracted away, 
its precise behaviour is unimportant as long as it is smooth, so 
that the two numerical quadratures see no discontinuities or sin­

gularities. M e dispose of the singularity by matching the Neumann 
function outside the sphere to a smooth continuation inside the 

sphere:
<*. +  + Axr * U ~ ° )

r l ( A, + -t « . O  U > ° )  (5.13),

so that the value, first and second derivatives are matched at 

the sphere boundary; i.e.
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>wz(kl\) ktt^(kki) * ^'»¿0‘1'i) (5.11*).
The snail r behaviour in C3• T3) is chosen so that the function 
is smooth near the origin when multiplied by the appropriate sph­

erical harmonic (see (5.12)).
The procedure we have described for the integration in (5*9) 

is rather cumbersome and its potential accuracy may be somewhat 
questionable. However, numerical tests with simple geometries, 
involving spheres cut from larger spheres and known functions 

with singularities smoothed away, indicated that accuracies of 

three to five significant figures were possible. On the other 
hand it was not known whether such results would be obtained in 

the more complicated situation of (5.9) and we were forced to 

just try it and see.
It is obvious from (5.9-12) that the calculation of T  willA/

use a lot of time and space because of the large and complicated
arrays used, especially since there are several thousand points
in the integration mesh, '.'hat we did with SIIESHX was to calculate
as much as possible at the beginning and to store it for later

use during the program running time. In particular, we store
X. (s4 ) and where il is an index that runs over all
1+ W' *

the integration mesh points and is the weight for a given

mesh point. The first of these is a particularly large array and 
can occupy typically several megabytes (Mbytes) of computer memo­

ry. Nov/ the variation of T  with energy resides only in k in/v

(5.9,10) so, at a new energy point, one recalculates an array 

containing and then performs a summation

T [ r' = k £  F ' j * ' )  ( * *  V ( t * ) ) F ' ' ( * • )  (5 .1 5 ) .
/»A fL A ^

The three parts of the secular matrix are then added together and

the determinant is calculated.

80



Ton.
The program EEESHX is quite large and algebraically very comp­

licated. It is important at this stage, bearing in mind that it 
•jill form the basis for the development of (T'TSHX, that v;e find 
an unequivocal v;ay of testing it. A particularly clear test is 
provided by the hydrogen molecular ion This system is a bou­
nd state of one electron and tv/o protons, and we thus do not have 
to worry about exchange, multi-electron effects or self-consiste­

ncy. Furthermore, the exact analytic solution (in the Born-Oppen- 
heimer approximation for fixed proton separation R ) has been 
known for a long time (Bates et al. (1953) and references there­
in). Smith and Johnson (1969) used it as one of the first tests 

for their program ENEHGY and we shall refer to their results. 

Pettifor (1973) has demonstrated analytically for H?+ that the 

inclusion of the non-spherical components of the potential in the 
atomic spheres appreciably modifies the wavefunctions.

V.'e perform our calculations with R = 2.0 Bohr, very close to 
the known equilibrium separation of the protons. The initial par­

tition (denoted A) is as follows. The protons are placed on the 
z-axis at }£ R and , and are each enclosed by spheres of rad­

ius )£ R centred on their positions; while the whole molecule is 

enclosed in an outer sphere of radius R centred on the origin. 
The potential seen by the electron (and also the partition that 

we have constructed) has a point symmetry ^ with respect to 
the origin. As mentioned in the discussion of Sec. 3.^ the wave- 

functions will transform according to the irreps of this group.
^ is a continuously infinite group and has an infinite number

of irreps; A„ , A„ , A_ and A_ being one-dimensional; while E1g 1u d g 2u mg
and E are two-dimensional (where m = 1,2,3,••••)• Following 

Smith and Johnson (19&9) and Bates et al. (1953) we shall search
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for the ten lowest-lying eigenstates in the irreps A. . A_ ,
I g  <— U

.nd E 1u*
Smith and Johnson (1969) have taken the truncation of the all-

the EMR. V.'e take the truncation much higher to try to minimize 
the errors resulting from the use of a finite number of partial 

waves. (See Tab. 5.3 for details.) The i -truncation for the pot­
ential is taken at twice the values used for the wavefunctions.

As in Bates et al. (1953) we label the eigenstates by integer 
quantum numbers n, 1 and m, such that n-1 ^  1 ^ m ^ 0. If m = 0, 

the state belongs to A. or Ap , while if m ^ 0, then it is in
E or E . The parity of i. determines whether the state is mg mu
"gerade" or "ungerade". Note that in the limit ft— ^0, the quant­
um numbers would correspond in meaning to the usual ones for the
hydrogen-like wavefunctions of He+ and the eigen-energies would 

2approach -k/n •
For the purposes of our initial investigations of FP calculat­

ions, the program was written so that it may be run in three mod­
es. The first, denoted "L=0" corresponds to the MT version of the 

potential, in which only the monopole part of the potential is 
used in the ASRs and the EMR, and the potential in the IR is res­
et to the constant value V 0 (its average); the second, denoted 
"+L>0,,f then introduces the higher multipole parts of the poten­

tial in the ASRs and the EMR; and the third, denoted "+IR", intr­
oduces the true non-constant potential in the IR. In this way we 

can separate the effects of the different non-MT parts of the 

potential.
The results of our calculations with ENESHX on partition A may 

be seen in Tab. 5*1« 3efore considering them in detail v/e should 
mention several preliminary tests that were made. Firstly, v/e

owed l -values at $ = 1 for the atomic
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Table 5.11 Comparison of exact eigenvalues (h) in Rydbergs (from
Bates et al. (1953)) for H^+ v.'ith those calculated by the pro­

grams ENERGY and ENESHX. The ten states are specified by their 

Mulliken (1955) designations (a) and, as in the Bates et al, 
paper, the united atom designations (b) and the quantum numb­
ers (c). The ENERGY results (d) are those of Smith and Johnson 

(1 9 6 9)» The ENESHX results (e), (f) and (g) correspond to the 
successive introduction (as described in the main text) of the 

non-MT components of the potential.
State ENERGY ENESHX Exact

(a) (b) (c) (d) (e) (f) (g) (h)

Mul. U.a. Q.nc • S. & J. L=0 +L > 0 +IR Bates et

des. des. n 1 m paper (MT ap.) on atoms varying al.paper

1a1g 1s rg 1 0 0 -2.0 716 -2 .0 719 6 -2.10906 -2 .1 8 9 7 3 -2.20525

2alg 2s (T g 2 0 0 -0 .70 738 -0.70412 -O .70 76 9 -O.72093 -0.72173

3a.1g 3d<rs 3 2 0 -0.45574 -0.45597 -O.4 7 3 3O -O.47102 -0.47155
kai1g 3s <rg 3 0 0 -0.3^859 -0.34873 -O .3 5 1 2 3 -O.35525 -0.35536

1a2u 2p <r u 2 1 0 -1.2868 -1.2879 5 -1 .31151 -1.33426 -1.33507

2a2u 3p<r * u 3 1 0 -0.49722 -0.49752 -O .50696 -O.5IO85 -0.51083

5a2u kv<r * u k 1 0 -0.26979 -O .26973 -0.27310 -0.27466 -0.27463

^ 2 « 4f<ru 4 3 0 -0.24997 -0.24994 -O .25329 -O.25329 -0.25329

l61g 3dirg 3 2 1 -0.44646 -0.44646 -O .4 539 7 -O.4 5 3 33 -0.45340

1e1u 2pir^ u 2 1 1 —0.88866 -O .88867 -0.86514 -O.85585 -0.85755

checked whether our copy of the Smith and Johnson program ENERGY

gave the results quoted in Tab. 5.1(d). This was in fact the case

except for the 2a. state v/hich we found at -0.70577 Ryd. V.'e the- 1g
refore suspect the value quoted in Smith and Johnson (1969) to be 
a misprint. ”e then ran ENESHX in the L=0 node for the same H  - 

truncation and found the same results, confirming that those par­
ts of ENESHX which correspond to ENERGY, but which were programm­
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ed differently, have been done correctly» Note that the differen­
ces between Tab. 5.1(d) and (e) result from the higher l -trunca­

tion used in the latter. Because of the simple analytic form of 
the potential v/e can use (A37) to obtain an exact multipole exp­

ansion and bypass the program MLPSHX. Comparing the results from 
ENESHX using both potentials (and INPSHX with and without smooth­

ing) shows no differences, at least in the first five significant 

figures.
If we consider the results of ENESHX shown in Tab. 5.1, v/e see 

that the successive introduction of the non-MT components of the 

potential (going from column (e) to (f) and then to (g)) gives 
improved eigenvalues for all ten states. Looking more closely we 

see that the remaining error in the FP case, considered as a fra­

ction of that in the MT case (and defined by (E(g)-E(h))/(E(e)- 

E(h))) ranges from about for the 1a1g level (the ground
state) down to less than 0.2% for the highest levels (with the 
ifâ u level virtually exact). Also the relative sizes of the effe­
cts of the non-spherical potential components in the ASRs and the 
EMR, and of the non-constant IR potential, vary among the states. 

Contrary to a conjecture of Pettifor (1973) (at the end of his 
Sec. Ill), the greater part of the improvement in the 1a1g level 
results from the proper treatment of the IR potential rather them, 

the higher multipoles of the sphere potentials. This variation of 
the two corrections comes from the different apportionment of the 

electron density between the different regions of the partition» 

as may be seen physically by considering the first-order energy 

shift in perturbation theory, given by

A E  = < T \ A V  I V> (5 .16).
If a larger part of the electron density is in one of the regions 
then the difference between the full and MT potentials in that
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region will have a greater effect on the energy shift. This may 

be seen for the f+a2u level in which the great bulk of the electr­
on density is in the EMR so that, even in the +L ̂  0 mode, the 
eigenvalue is exact. This shows incidently that the integration 
of the coupled radial equations in (3»21) is quite accurate.

Hence we can say that the remaining error in, for example, the
1a, state is due to the deficiencies of our treatment of the IP.1S
potential effect by the Born approximation. In this state the 

Born approximation has given of the correction that should
have come from the IR (defined by (E(g)-E(f))/(E(h)-E(f))).

VJe see that even in the worst case the Born approximation is 

quite reasonable and a great improvement over the MT case. One 
suspects that if we had calculated the full T  in (3*73) the rem­

aining error would disappear. As we pointed out earlier the prac­
tical difficulties in realizing this full calculation have yet to 

be resolved. However, noting the accuracy of the radial solutions 
for the ASRs and the EMR, we are led to reconsider the use of 

empty interstitial spheres so that for some of the IR we have a 

more accurate solution and the remaining IR is smaller.

It is not difficult to see that a ring of six empty spheres 
may be inserted around the "equator" of our earlier partition (A) 

so that each sphere touches two others, the OS and both hydrogen 
spheres. Let us denote this new partition B. It may be further 

seen that two more rings of six smaller empty spheres may be pla­
ced above and belov; the first in a staggered configuration such 
that each sphere touches the OS, one hydrogen sphere and two of 
the larger empty spheres. Let us denote this partition C. The 
symmetry of these two new partitions is now Dg^ with the six-fold 

axis along the z-axis. This group has twelve irreps, but the four 
irreps of ^ that we consider are not split by the lowering of
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symmetry.
The energy eigenvalues calculated with these two partitions 

may be seen in Tab. 5.2. As before, for a fixed partition, the
Table 5.2: ETJESHX energy eigenvalues in Rydbergs for H_,+ with the 

two empty-sphere partitions B and Co In both cases values are 
given for all three program modes.

State Molecular partition B Molecular partition C

(1 shell empty spheres) (2 shells empty spheres)

(a) (b) (c) (d) (e) (f) (g)
L=0 +L > 0 +IR L=0 +L > 0 +IR

1a1s -2.07376 -2.136 16 -2 .1978O -2 .0 73 76 -2 .1 39 8 7 -2.19847
2a.

1g -0.70426 -0 .7119 8 -0.72123 -0.70425 -0 .712 2 1 -0 .72 119

3a„
1g -0.45621 -0.47254 -O.4 713O -O.4562I -0.47244 -O .47131

ifa'11g -0.34878 -0.35247 -0.35524 -O .34878 -0.35249 -0.35522

1a~2u -1.2 8385 -1.30953 -1.33406 -1.28384 -1 .3 1 16 5 -1 .33425

2a2u -0.49721 -O .50703 -O .51082 -0.49721 -O .50745 -O .51085

5a2u -0.26982 -O .27332 -0.27465 -O.26982 -O.2 734 7 -0.27465

ifa2u -0.24999 -0.25332 -O .25329 -0.24999 -0.25331 -O .25329

1e„1g -0.44610 -0.45355 -0.4533^ -0.44610 -0.453^8 -0.45335
1 e. 1u -O.88966 -0.86363 -O .85699 -0.88969 -O.86353 -O.857II
successive improvement of the potential gives uniformly better 

eigenvalues, '..'hen we compare among partitions the results are 
somewhat equivocal. For the full calculation (the +IR mode) there 

is a general improvement as one goes from partition A to B to C. 
When the eigenvalues are better it is by a greater margin than 
when they are worse. However, for the L=0 and +L>0 modes it is 

less clear. By the time we get to partition C the calculations 
have become very time-consuming and cumbersome, and it is clear 
that a point of diminishing returns has been reached. (For detai­

ls of the parameters used in constructing the partitions see Tab.
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Table 5.3s Summary of details of the partitions used for the 
system. For each partition is given its point symmetry with

respect to the origin of coordinates, with the main symmetry 
axis taken to be along the z-axis. The details of the numbers, 

positions and radii of the spherical regions are given togeth­
er with the i -truncations used for the potential and the wav- 

efunctions, and the resulting dimensions of the secular matri­
ces for each irrep. (Note that the partitions are chosen so 

that one of the mirror planes is the xz-plane.) For the IR we 
show the number of mesh points used by ENESHX to perform the 

numerical quadrature given by Eqn. 5 •"'5, together with the
fraction of the outer sphere volume in the IR.

Molecular partition A B c
Point symmetry °-h °6h D6h

No. Rad. Prototype posn. i(max)

Group of SRs (au) (x,y,z) (au) w. P.
equivalent 1 2 ( 0 , 0 , 0  ) 6 12 + + +

spheres used 2 H 1 ( 0 , 0 , 1  ) 3 6 + +

in partition 6 2/3 ( V 3  , 0 , 0 ) 2 if + +

12 2 /5 (6/5.2VT/5.V5) 2 if +

A1g 8 13 19
Secular matrix dimensions, A2u 7 9 15
by irrep E1g 6 10 19

E1u 6 13 22

Details Number of integration mesh points 1830 2790 if710

of IR Percentage of OS volume 75.0 52.8 i+3.2

5.3.)
So far the eigenvalues have been above the average interstiti­

al potential 5  Vj « and thus v/e have not tested the equations

(3.29,33,33,50,51,55*70,71 »73 or 7*0 • This may be done in tv/o
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■■ays. Firstly, we can change K  to a different value (re-scaling 

partition A appropriately). For example, if R = 2.3 3ohr, then 

V  becomes -5/3 Ryd. which is above the new 1a. energy (fromI  • s
3ates et al. (1953)) of -1.83299 Ryd. ENESTIX gives in this case
for the three modes E(la. ) = -1.77562 (L=0), -1.30732 (+L^0)' o
and -1.87130 (+XR). Otherwise we can observe that Vg is to some 
extent an arbitrary parameter, and we can reset it to, say, V9 = 
-1.9 Ryd. (keeping R = 2.0 Bohr). ENESHX now gives E(1a. ) =' O
-1.91990 (L=0), -1.957^8 (+L > 0) and -2.1^135 (+IR). Either way 

the results are good.
The latter example raises a question about the suitability of 

using VeS  V x as the zero of the interstitial potential. As we 

have said, this zero may be set arbitrarily. The reason for our 

choice is to reduce the strength of the interstitial potential so 

that the Born approximation is reasonably good. In effect this 
means reducing the size of the matrix elements of , Experiment­
ing with different values for in the case shows that more
accurate eigenvalues may be obtained when Vg is a few tenths of 

a Rydberg below V . For example, if is reset from Va = -7/3
Ryd. (its value in partition A in Tab. 5.3) to \/g = -2.56 Ryd., 

then E(1a„ ) = -2.19888 (in the +IR mode, i.e. with the full pot- 
ential). However, different states achieve their optimum accuracy 

at different values of . Nevertheless, it is possible that 
some different a priori choice of Ve (other than ) might give 

a general improvement in accuracy. Consideration of the form of 
the integrands in (3 .7 0 ,7 1 ,7 3 ,7^,88) suggests that some weighted 

average of the interstitial potential might be more appropriate.
An important part of the research concerns the computational 

feasibility and general practicability of the theory. These depe­
nd of course on the computing power available, ("e note that this
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power is currently increasing rapidly.) All the non-MT calculati­
ons reported here were performed on a VAX 3650 running under ver­
sion of the VMS operating system. The main processor runs at
S mega-instructions per second (Mips) (although in comparing this 

with other computers one should take into account the sizes of 
their respective "instruction sets"). The central memory has 52 
mega-bytes (Mbyte) of storage; although any one program may use 

at most 3.91 Mbyte of this. Since the computer is a "virtual mem­
ory" machine, any program requiring more storage must leave the 
excess on the much slower mass-storage disks, "swapping" the inf­

ormation in and out of the CPU as required. Once this happens the 

computer time rises sharply.

In Tab. 5»^ we see details of computing requirements for the 
runs of ETTESHX whose results were shown in Tabs. 5.1 and 5.2. It 

Table 5.^1 CPU-times and memory requirements for ENESHX with the 
H2+ ion for the different partitions and program modes. For a 

given energy the times are those for the evaluation of a sing­
le secular determinant. Virtually all of this time is taken in 

constructing the secular matrix itself.

Molecular partition A 3 C

Program mode L=0 +L > 0 +IR L=0 +L ̂  0 +IR L=0 +L > 0 +IR

Memory used (Mbyte) 0 . 7  0 . 7  1 . 9 0 . 8  0 . 8  3 1 1 6

CPU-time per V 0 . 3 2  0 .3 ^  1 . 7 8 0 .6 3 0.69 5 .9 9 1 . 8 5  2 . 0 2  2 3 . 1

energy point A2 u 0 .2 5 0.26 1 .51 0 . 3 3  0 . 3 5  * t .1 9 1.33 1.^5 20.0

by irrep E1S 0 . 2 0  0 .2 0  1 . 3 5 O.ifl o .M f  5 . 3 2 2.6k 2 . 7 3  2 3 . 5

( sec) E1u 0 . 1 9  0 .2 0  I . 8 3 0 . 7 ^  0 .8 1  7 . 2 7 3 . 1 0  3 . 3 ^  3 0 . 3

is seen that, when the true IP potential is used, it is by far 
the greatest user of CPU-time and storage space. The small diffe­

rences between the L=0 and +L>0 modes arise because in the L=0 
mode the atomic t-matrices are diagonal and hence the matrix inv-



arsion routine takes less time. It should be noted that the L=0 

calculation with ENERGY for partition A is about ten tir.es as 
fast as EHESHX (although the latter would not normally be used in 

that node).
It is clear that more may be made of the II-,' test. In particu­

lar, it would be interesting to know hov; good the wavefunctions 

are. Since Bates et al. (1953) give the algebraic form of the 
exact solutions and the FP-S’.J theory gives the wavefunctions via 
(3.20,48,49,54,80,85,36,89), they may be easily compared. For now 

we shall be satisfied with the results obtained which show that 
the program is working correctly; that the inclusion of non-MT 
parts of the potential is correctly described by the extended SM 

theory of Sec. 3»2; and that even with the use of the Born appro­

ximation for the IF the eigenvalues produced are much more accur­

ate than in the MT case. Finally we note that the results of 
Tabs. 5»1 and 5«2 came from the first runs of ENESHX without exp­
erimenting with any of the free parameters in the partitions. V.'e 
believe ENESHX to be the first general-purpose full-potential 

scattered-wave program in existence.

Section 5.3: BNESHX Results for Chromium Hexacarbonyl.
V/hile the system provides an excellent test of EMESHX, it

is interesting to try it for a more realistic cluster. Vie theref­

ore used it for our model compound chromium hexacarbonyl whose MT 
potential is quite bad, so that we could get an idea of the sizes 

of the improvements that might result when the full potential is 
used. Unfortunately, there are no exact calculations for this 

system and, since we use the non-self-consistent potential of 
Sec. 4, the results will only be an approximation to the real 

case. A comparison with experiment is possible, but in this case
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would not serve to distinguish between errors of the basic cne- 
electron (RHF) hamiltonian or those stemming from the !!T approxi­

mation.
’.,'e denote the partition of Sec. k as A and let the ^-truncat­

ion for the wavefunction be /(max) = 6 (OS), 6 (Cr), 3 (C) and 
3 (0). V.'ith this partition the IP makes up 92.2fj of the OS volume 

(a very open cluster) and *+638 points are required for the IP 
integration. The values of the core-level energies are shown in 

Tab. 5*5. The dividing line betv/een core and valence levels was 
Table 5.3: Gore levels for Cr(CO)g from ENESHX. In principle some 

of these levels should be split by the ligand field into diff­
erent irreps of the point group. In practice this splitting is 

very small, so we denote the states by their atomic designati­
ons as well. In the ground state all of these levels are fill­

ed and we give the number of electrons in each.

State Occupation Energy

(a) (b) (c) (d)

Atomic Molecular (electrons) (Rydbergs)

level equivalents

Cr-1 s 1a„ 2 -*+29.537
Cr-2s 2a„ 2 -*+8 .S*+62is
Cr-2p It.1u 6 -*+1.5 1 8 9

0-1 s 3a. 1e 2t. 1g S 1u 12 -3 8 .0 7 5 6

C-1s “•is 5*-lu 12 -2 0 .2 6 5 1

Cr-3s 2 -5.33918

Cr-3p ift1u 6 -3 . 3 6 2 1 9

chosen as -3.0 Ryd. (in accordance with the normal practice in 

the old SW programs). However, the real valence states will lie 
much higher than this. Since the core states do not use the non- 
MT components of the potential they are of minor interest.



Table 5.6: Filled valence levels for Cr(CO)g from ENESHX using
the partition of Chap. 1+ (that we denote partition A).

1*0 +L> 0 +IR
State Energy State Energy State Energy

(Ryd.) (Ryd.) (Ryd.)

6a1g -1.72652 6a.
1g -1 .811+70 5*iu -2.11+1+61

5*1« -1.72 6 16 36g —1.811+51+ 3eg -2.11+357

3es —1 a72bb2 5*1U -1.81325 6a.
1g -2 .11+288

7a1g -0 .71+01+0 keg -0.79972 keg -1.07651

6t1u -0.73079 7a.1g -0.79862 7a.1g -1.07075
keg -0.72061* 6t- ' 1u -0.79256 6t1u -1.0 6 873

1t2g -O .65852 1t2g -0.63395 1t2g -1.01230

7t1u -0.65260 7t1u -0.62691 1t.1g -0.99529

1t2u -0.61+503 1t2u -0.61518 7t1u -0 .991+67

1t1g -O .63683 1t.1g -0.60679 1t2u -0.98927

8a1g -0.1+9500 8a-1g -0.51319 8a1g -0.61+511+

5eg -0.33561+ -0.3561+0 56g -0.56278

8ti„ -0.31078 . 8t1u -0.30836 8t1u -0.1+3661

2t2g -0.30296 2t2g -0.28727 2t2g -0.1+3587
In Tab. 5»6 we see the ENESHX results for partition A in each

of the program modes. The inclusion of non-MT components of the 

potential has a marked effect on the eigenvalues, particularly 
that of the IR. The general trend is a drop in energy by about 

0.1 to 0.1+ Ryd. Note that the 6a1g, 3eg and 5t^u levels stem pri­
marily from the oxygen 2s levels on the six atoms, while the 
7a^g, 1+ê  and 6t^u are largely carbon 2s in origin. The splitting 
of these levels is quite small and they can be still thought of 
as core levels, with the true valence levels starting at higher 

energy. It will have been seen that, although the general orderi­

ng of the eigenvalues has remained the same, some of the closely
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lying eigenvalues have changed position. The reasons 'or these 
changes seem to lie in a subtle balance of competing effects,

’..•hose elucidation requires a much more penetrating analysis than 
is available to us at present.

\'e can also include empty spheres in our partition to reduce 
the sine of the IR. It is possible to put eight spheres at the 

corners of a cube (as in Sec. 2.^) to na.intain the octahedral 
symmetry of the partition. In particular, the prototype for this 
group of spheres has its centre at (d,d,d) where d = 2.6^3 Bohr, 

and the radius is 2,337 Bohr (touching the Cr sphere and the 
OS). The IB is thus reduced to 60,2% of the OS volume, but the IB 
integration now requires 5918 points. The ¡L -truncation fcr the 

empty spheres is ¿(max) = 2 for the wave functions and i(max) = 

k for the potential. This partition (denoted 3) represents the 
biggest cluster treated so far, with a central atom and three 

shells of coordinating spheres.
The results for partition 3 may be seen in Tab. 5«7 and they 

appear to be qualitatively not very much different from those for 

partition A. In general they are a few hundredths of a Rydberg 
deeper in energy, and there has been a slight change in the bala­

nce between the SSR and IB corrections, '..'hat is quite obvious 
from both of these runs is that the proper treatment of the IB is 
essential for all of the filled levels that we show. Although the 
higher virtual levels may be well treated in the +L> 0 mode beca­
use they spread significantly into the EMR, the important electr­

onic states require the full potential. This fact will presumably 
be important for the development of a fully self-consistent FP-SW 

program.
The details of the computer runs may be seen in Tab. 5«3. The 

CPTJ-times are not prohibitive although, in the +IR mode for part-
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ition Bt it can be seen that the "swapping" mentioned earlier is 

starting tc tal:e a serious toll.
Eable 5.7s Filled valence levels for Cr(CO),- from EiTESHX using

empty interstitial spheres (partition 3).
L=0 +L ̂  0 +11?

State Energy State Energy State Energy

(2 yd.) (2 yd.) (2 yd.)

' o -1.73559 6ais -1.34393 * 1u -2.15650

* 1u -1.75514 3®.0 -1 .84384
0 -2.15549

3e,o -1.75332 5 t1u -1.34267 6a-
1g -2.15462

7 a1 - -0.76113 7 a1S -0.82439 ke (TO -1 .03182

6t-1u -0.75514 he S -0.82232 ‘ r* -1 .07729

TO -0.74423 6t-1u -0.31746 6t1u -1 .07570

1t2S -0 .6S982 it_
2g -0 .6 6 9 0 8 1t2g -1.02344

7 t1u -0.68477 7t,1u -0.66143
1t1S -1 .00547

1t2u -0.68049 1t-2u -0 .6 5 3 2 8 7 t1u - 1 .00515

1t1S -0 . 6 7 1 8 7 1tis -0.61+360 1t2u -1.00091

8a1g -0.4?423 8aig -0.57560 Sa,1g -0.71964

5e,o -0.35103 5er*0 -0.38306 5e_
0

-0 .5 8 1 6 1

2t2g -0 .2 9 1 6 5 8t„1u -0.33315 St.1u -0.48866

8t1u -0.27907 2t_2g -0.31148 2t_2S -0.45336



Cr(CO)^ .molecule and the two partitions A (from Chap, 4) ando
3 (as A but v.'ith empty spheres), Me show times for eisht cf
the ten irreos of 0, . For the irrens A. and A_ no anprorria- h * 1 u ¿g r

mable 5«C; CPTT-tiaes and nesiory requirements for EMESHX with the

te basis functions v:ere found. For each of the irreps shown v:e 
give also the dimensions of the secular matrices.

Molecular partition A 3

Program mode L=0 4*L > 0 +IP L=0 +L >0 +IP

dim S dim S

V 14 0 .7 3 0.77 1 0 . 3 17 1 .76 1.94 25.4

A-2u 5 0 .2 3 0 .2 3 7 . 4 9 0.77 0.73 1S .0

CPU-tines E6 13 1 , 4 c 1 . 4 4 12.0 21 3 . 2 1 3 . 3 4 3 2 .O

per energy point Eu 6 0.24 0.24 7.5 9 0 .8 7 0.33 1 8 .4

for each irrep T-i~ 12 0.54 0 .5 8 9*6 15 1 . 3 9 1 . 4 4 24.3

( sec) T*1u 24 1.77 1.86 1 6 .3 30 4.75 5.23 51.4

T_2g 20 1.14 1.20 1 3 .4 26 3.37 3.92 41.3

T_2u 16 1 .02 1 .0 6 1 1 . 7 19 2.33 2.39 31.5
Memory used (Mbytes) 0 . 9 0.9 3 . 5 1.1 1.1 6.5

Section 5.4; The Continuum Photo-Absorption Cross-Section Program 

CNTSHX.

Having confidence that the programming of ENESHX had been done 
correctly, the coding of CNTSHX followed. Furthermore, the good 
results from ENESHX, particularly for H^*, show that our approach 
to non-MT calculations was fundamentally correct and that v;e mig­

ht expect similar results in the continuum case.
As in ENESHX the most difficult part of CNTSHX lay in the cre­

ation of the secular matrix. The solution of the secular equation 
and the consequent evaluation of the photoabsorption cross-secti­

on (following (3.136)) required no new programming innovations
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and loosely follows COMTT'M. The major rev; feature of the continu­
um secular matrix is that it is complex. It is possible to treat 

the real and imaginary parts separately even when solving the 

secular equation, but this requires a doubling of the dimensions 

and added complication. So we decided to use explicitly the comp­
lex variables available in the FORTRAN language. This has the 

advantage of clarity and leaves us in a position to be able to 
introduce complex potentials easily when we come to treat inelas­

tic loss mechanisms more appropriately.
The secular matrix in CNTSHX is made using a.dapted versions of 

the routines in ENESHX. For H  and T ,  the differences arise only 

from the appearance of the spherical ilankel function rather than 
the spherical Neumann function, and involve no great difficulti­

es. For ~t we can still perform the integrations for *Cr) inA/ A/
real algebra, the introduction of complex arising only when we 

construct the matrix Wronskians. The major difference here arises 

when we consider the EMR, since both the regular and irregular 
solutions are present. In this case we call the Numerov integrat­

ion routine for each solution separately, imposing the appropria­
te boundary condition at infinity through the choice of the first 

two values in the Numerov recurrence formula. This choice will be 
the values of the regular and irregular Coulomb wavefunctions for 

a cluster with residual charge Z, since at large distance the 
potential will have settled down very close to a -2Z/r tail.
(Note that, for photoionization Z will be usually 1 au(C), altho­
ugh we will also use a neutral cluster for which the Coulomb wav­
efunctions degenerate into the spherical Bessel and Neumann func­

tions.)
Compared to the original writing of ENESHX, the above modific­

ations to produce CNTSHX were not very difficult and did not take
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long to complete. Providing an absolute test for CMTSTTX was howe­
ver not so easy. Unfortunately, there seems to o::ist no analytic

formula for the continuum states of H2 * The only such formula
that v/e know of is that for hydrogen-like atoms, which can be 

used to calculate exact photoabsorption cross-sections (see Bethe 

and Salpeter (1957)). The result is

<r(y) * 5 f t )  H  2*) ( 7 7 (1 )*)4 ( I - e (5.17).
This is the cross-section for photoionisation from the 1s ground 

state, of an electron on the field of a nucleus of charge i , to 
a continuum final state of wave-number k (with energy k ).

Although this system has only one atom and a spherically symm­

etric potential, it is possible to use it as a test for CUTSHX.

To make it a meaningful test of the effects of non-MT potentials 

requires however careful consideration. It is possible to repres­
ent the potential exactly by a MT potential with no IP and obtain 

a result arbitrarily close to (5.17). 3ut this would not be very 
useful for our purpose. V.'e can however make a "pseudo-cluster" in 

which the central atom is coordinated by, say, six empty spheres 
in an octahedral configuration. In this way the MT approximation 

is not so good and we might expect to see differences as the non- 
spherical components in the empty spheres and the potential vari­

ation in the IP are introduced.
There are some difficulties that necessitate a judicious choi­

ce of the various parameters. As we have said in Sec. 3.3, the 
integration for the dipole matrix elements is performed only in 

the sphere of the photoionized atom, on the assumption that the
initial-state wavefunction is effectively zero outside the sphe-

_  3 .re. Bearing in mind that the radial integral has a factor r in 
it, we must be careful to ensure that the initial wavefunction
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has become small enough at the sphere boundary so that the asymp­

totic tail does not contribute significantly. Ox course this ’.ill 
also depend on the range of energies under consideration.

'e chose 2 = 3 (a doubly ionised lithium atom), with the sph­

ere radii being b(Li) = b Bohr, b(FS) = 1.5 3ohr and b(OS) = 7 
Bohr. Typical potential discontinuities for the MT potential are 

of the order of half a Rydberg. In Fig. 5.1 v:e see the CNTSHX 

results for this pseudo-cluster compared with the enact values 

of (5.17).

CROSS-SECTION RATIOS (CNTSHX/ANALYTIC) FOR Li2+

PHOTO-ELECTRON ENERGY. E (Rydbergs)

Figure 5.1? Photoionization cross-sections for Li£"+ from CNTSHX 

compared with the analytic values. The CNTSHX values are shown 
for the three program modes as ratios of the exact formula of 

equation (5 »1 7) which is sho'wn inset.
Firstly, we see that the inclusion of non-spherical components 

in the SSR potentials (-:-L>0 mode) gives only a slight improveme­
nt over the MT case (L=0 mode). This is because they exist only



the empty eresin the empty spheres whose total volume is small in comparison 

with the 1?.• The inclusion ox the influence of the non-constant 
12 potential produces the main improvement, and above 1 2yd. the 

residual error is reduced to less than 1T'. Belov; 1 Byd. it seems 
reasonable to conclude that the error of up to 5£> results from 
the use of the 3orn approximation. In actual fact at higher ener­

gies, the underlying improvement is probably better than that 
shown here. A little experimentation indicates that the error 
above 3 Byd. arises from the truncation of the radial integral 

within the lithium sphere rather than the Born approximation.
In summary, v;e can be confident that CTTTSHX is programmed cor­

rectly and that the inclusion of non-MT corrections to the poten­
tial produces significant improvements in the calculated cross- 

sections. In the next section we see how large the improvements 
are for a realistic cluster such as our model system chromium 

hexacarbonyl•

Section 5.5’ CNTSHX Results for Chromium Hexacarbonyl.

V.’e perform our first CTITSHX calculations with the two partiti­

ons (A and 3 of Sec. 5»3) for chromium hexacarbonyl. In the cont­
inuum case however, it is necessary to increase the maximum L - 
values allowed in the truncation, particularly those in the EM3. 
Although the excitation of an s-state would normally give a p- 

wave final state, the non-central nature of the molecular potent­
ial gives rise to higher order partial waves. The maximum l nec­
essary may be found crudely by /(max)« k R , where k is the 
photoelectron wave-number and R is a measure of the range of the 

molecular potential (which we can take to be the radius of the 
OS)o Thus if we wish to calculate cross-sections up to four Rydb­
ergs above the ionization threshold (so that k ^ 2 au(L "*)),
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then we should go up to i ~ 1^. In practice the higher componen­
ts are still quite small even at the top of this energy range, so 

that v/e can get way with t- (max) = 9« Our l -truncation was then 
chosen to be |(inax) = 9 (OS), 9 (Cr), h (C), (0) and (for the

empty spheres in partition B) 3 (FS).
Recalling that our calculations give only the continuum cross- 

sections and that transitions to bound final states are not incl­

uded, we note that the two small bound-state peaks at 6018 and 
6023 eV in the experimental spectrum of chromium hexacarbonyl (in 

Fig, 2.2) will not be reproduced. For the purpose of determining 
the effects of the use of full potentials, we shall ignore them 
and concentrate on the features of the continuum spectrum for our 

analysis.
The results from CNTSHX for these two partitions may be seen 

in Figs. 5»2 and 5»3» Note that the potentials from MLPSHX use

CROSS-SECTION COMPARISON. Cr(CO)„, CNTSHX(P-INa)

Figure 5.2: CNTSHX results with INa potential for chromium hexac-
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r.rbonyl. This uses partition A with the free-aton densities 

for all atoms.

CROSS-SECTION COMPARISON. Cr(CO)e. CNTSHX(P-INb)

Figure 5.3? CNTSHX results with INb potential for chromium hexac- 

arbonyl. This uses partition 3 with the free-atom densities 

for all atoms.
the atoms in their ground states with the wave functions frcn Cle- 

menti and Roetti (1971)-) in the configurations Cr: 1s22s“2p^3s23p° 
Iis13d^, Cs 1s22s22p2 and 0: 1s22s22 p \  The first thing we see is 
that the differences between the full-potential spectra and the 

MT spectra (+IR and L=0 respectively) are rather large, especial­
ly in the lower part of the energy range. 3y comparison, the inc­
lusion of the non-spherical components in the SSRs (+L>0 mode) 

had relatively little effect, although in partition 3 the effects 
are noticeably larger. Comparing the full calculation in each 
case, vie see only small differences indicating that the Born app­
roximation is indeed giving the majority of the correction due to
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the IR potential.
The computing performance is summarized in Tab. 5»9. The large 

increase in storage requirements over ENESHX is due to the use of 

complex variables for the arrays used to calculate the interstit­
ial T ,  in conjunction with the higher /-truncation. The large 

amount of storage required for partition B causes much swapping 
between the disk and the main memory, and thus a considerable 

time penalty. For the computer that we used, the TNb calculation 
probably represents the limits of practicability, especially in a 

multi-user environment.
Table 5.98 CPU-times and memory requirements for CNTSHX with chr­

omium hexacarbonyl for the different program modes and partit­

ions. The dipole-allowed final states lie only in the T^ irr­

educible representation of 0^»

Molecular partition A B

CPU-time Memory CPU-time Memory

(sec) (Mbyte) (sec) (Mbyte)

L=0 7.5 1.8 2A
Program mode •♦■Ii > 0 8.0 1.8 15.9 2,h

+IR 110 7.1 21*f 10.5

As far as the comparison with experiment goes, the results 

s t i l l  leave much to be desired. The two continuum "shape resonan­

ces" are found in a l l  cases although with considerable variation
(

of detail. The most encouraging improvement of the +IR case is  in 

the separation of the minima following the two main peaks. Exper­

imentally this is  2.5 Ryd., but for the L=0 and +L>0 modes (in  

both INa and INb) i t  is  found to be 2.0 Ryd. In the +IR mode in 

both cases we find i t  to be 2.6 Ryd. On the negative side the +IR 

mode gives too small a magnitude to the first peak and the wrong 

shape to the broader second peak. For a ll modes the general size
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of the oscillations is too large. In the L=0 and +L > 0 modes v/e 

see some extra structure within the first half Rydberg above thr­
eshold. This seems to stem from the two bound-state transitions 

becoming resonances in the continuum. The potentials of the L=0 
and + L ) 0 modes are not deep enough to bind these states so they 
have become embedded in the continuum. This is partly borne out 

by a search with ENESHX for virtual T^u levels. Only in the +IR 

mode do they turn up as bound states.
Although the results are in poor agreement with experiment, 

they are undoubtedly telling us something important about the 
physics of the situation. One immediate response might be to vary 
the available free parameters in the partition, in the hope of 

more closely approaching experiment. As with the MT case, this 

path is sterile and devoid of physical meaning, and is completely 

at variance with the ab initio approach. It seems likely that the 
answer lies in the physical considerations that we set aside ear­
lier. Of these a more realistic potential appears to be the most 
pressing immediate requirement. While the inelastic loss and the 

exchange may be of comparable importance, they are beyond the 

scope of this work.
In using the potentials INa and INb we took no account of the 

effects of the redistribution of electron density in bonds, or of 
the core hole and consequent partial relaxation of the electronic 

levels in its presence. Since we have no self-consistent full- 
potential final state available, we must see what can be done 

with the formalism that we have assembled. Virtually the only 
thing that remains to us is some variation on the Z+1 approximat­

ion introduced earlier.
We retain the partition A and vary the electronic structure on 

the central chromium atom. As before we take the orbitals of man­
1 0 3



ganese, which lies just above chromium in the periodic table; 
removing an electron from the 1s orbital to create the core hole. 

With a chromium nucleus and the remaining 2*f electrons in the 
manganese orbitals, this leaves us with a neutral system in the 

configuration 1s 2s ¿p 3 6 p p w s  3d • In theory v/e should remove 
one of the electrons in the highest levels to give the fully ion­

ized system. However, it is not physically obvious as to which 
one we should remove and furthermore, the possibility of shieldi­

ng of the core hole by other mobile electrons in the solid state 
suggests that the ionized state may not be appropriate.

V'e therefore tried three further calculations, denoted Z+1a, 
Z+1b and Z+1c, in which the configuration of the outer orbitals 

is 1 and ks^3d? respectively (the last being comple­

tely ionized). The results are shown in Figs. 5.^* 5»5 and 5*6» 
and one is immediately struck by the sensitivity of the +IR resu- 

CROSS—SECTION COMPARISON. Cr(CO),. CNTSHX(P-Z-t-la)

Figure 3.tf; CNTSHX results with Z+1a potential for Cr(CO)g. Uses
1 2 5partition A with Mn orbitals in configuration 1s . ..^s 3d .



CROSS-SECTION  COMPARISON, Cr(CO)a, C N TSH X (P -Z + lb )

Figure 5.5: CNTSHX results with Z+1b potential for Cr(CO)g. Uses 

partition A with Mn orbitals in configuration 1s . ..^s 3d .

CROSS-SECTION COMPARISON, Cr(CO),. CNTSHX(P-Z+lc)

Figure 5.6: CMTSHX results with Z+1c potential for Cr(CO)g. Uses 

partition A with Mn orbitals in configuration 1s ,.»ks 3d «
105



Its to the changes in the configuration of the outer electrons. 
By comparison, the MT results (L=0 mode) vary relatively little 

and mainly in the position of the main features on the energy 
axis. Clearly the MT averaging process is acting to nullify the 

variation in the charge density between the three cases.
Of all our calculations to date, the Z+1a case seems closest 

to experiment. The first peak is a more reasonable size and the 
asymmetry of the second peak is better. The overall magnitude of 

the structure is still too large and it is presumably here that 
the correct treatment of inelastic loss will be required.
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Chapter 6. CONCLUSIONS

Section 6.1: Main Results. Discussion and Future Directions.
We have shown that it is possible, even using modest computing 

resources, to remove the muffin-tin approximation in scattered- 
wave Xoc calculations of one-electron energy eigenvalues and core 

level photoionization cross-sections. The results obtained show 
that the non-constant components of the interstitial region pote­

ntial are as important as, if not more important than, the non- 
spherical components of the atomic sphere potentials, especially 
for open, covalently bonded systems. It is a necessary prerequis­
ite of any XANES calculation for these systems to remove the MT 

approximation prior to discussing other physical effects, such as 
the correct modelling of the core hole, the appropriate exchange- 

correlation potential, inelastic loss and self-consistency. Inde­
ed in the last case it may be that the MT approximation causes 
the SCF iterations to give potentials even further removed from 

reality than the superimposed free-atom potentials; so that the 

benefits of real self-consistency have been masked.
It is also clear that the XANES calculations are very sensiti­

ve, both in the energy-separation of spectral features and in 

their shape and magnitude, to the choice of potential adopted. As 
a consequence this work raises serious questions about the signi­
ficance and quantitative accuracy of previous ab initio XANES 

calculations for similar open systems based on MT potentials. (It 
is conceivable that MT potentials adjusted to fit model-compound 
spectra may be transferrable to unknown materials, but this is by 

no means obvious.)
Having settled on the FP-SV.' theory developed by Natoli et al. 

(1986), for the reasons given in Chap. 2, we derived the bound-
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state version (in the B o m  approximation for the TP.) for the fir­
st time (applying the general scheme given in Natoli at al. 
(19°6)). It was shown in a new result that the expressions (3.50) 

etc. for the atomic t-matrices do imply symmetry of the matrices 
even though this is not readily apparent.

In Chap. A- v;e showed that the potential can be modelled to an 
adequate degree of accuracy, by spherical harmonic expansions, so 

that meaningful tests of non-MT corrections were possible. Altho- 
the modelling of the IP potential was treated, it was not used in 
the later development of the FP-SW programs, but still remains a 

possible avenue for future development to obviate the necessity 
for the "brute-force" technique that we finally adopted for the 
evaluation of the interstitial T-matrix.

Chap. 5 contains the main tests for the new programs and star­
ts with the hydrogen molecular ion test of ENESHX. This showed 
considerable improvement in the eigenvalues compared with the MT 

case and showed moreover that the bulk of the improvement came 
from the extra-atomic regions (mainly the IR for the ground state 

and the EMR for the excited states). Thus the inclusion of non- 
spherical atomic potential components is not so important. In the 

more typical Cr(CO)g case the pattern was repeated, although a 
self-consistent potential was not available. (The inclusion of 
self-consistency in the treatment of the ground-state electron 
density (possibly via an external MO calculation) should be cons- 
dered a high priority step towards comparison with experiment.)

The lithium pseudo-cluster test for CNTSHX showed that non-MT 

effects reflect themselves strongly in the photoionization cross- 
sections and proved the validity of the method and program codi­
ng. Again the largest effects were seen to come from the inclus­
ion of the proper modelling of the IR potential. In the case of
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Cr(CO)< the inclusion of non-MT corrections showed an improvement 
v.ith respect to the experiment (although this ¡nay be fortuitous), 
'.'hile the spacing of features in the XANES remained insensitive 

to the details of the potential (in particular how the core hole 
was modelled), the shape and magnitude of these features changed 

markedly even with the fairly minor modifications of the central- 
atom potential that were involved. This of course emphasizes the 
need for a better understanding of the core-hole problem (and the 
related one of self-consistency).

Irrespective of the choice of potential all calculations show­
ed far greater variation in the magnitude of the cross-section 

than is seen in the experiment. This is undoubtedly due to inela­
stic scattering phenomena and is another high priority area for 

future research.
The use of full potentials for small open clusters must now be 

considered an indispensable part of any meaningful XANES calcula­
tions and further consideration of the physics of the photoioniz­

ation process is necessary before comparison with experiment.



Appendix A. Mathematical Formulae

A1I Spherical Bessel and Related Functions.

Define the spherical Bessel and Neumann functions, Ĵ  and 'll 
respectively, for / = O, 1, 2, .... , by

-(-»*({ i f ( ^ )

and then define the spherical Hankel functions of the first and 
a (•) J tosecond kinds, -ĥ  and respectively, from these by

■A ft*) (= Aft*))= Jt w +* \  (*) A  ft*) (5 1  ~c*)) s  jt (%) - i *L (x) c A2).
Furthermore, define modified spherical Bessel, Neumann and Hankel 
functions by

itc*) = i~ljf t ix-) ^ w 5 - r /+ly i i j  (A3>
and

-l U, ft (ix) (Aif).
a (>) / toNote that all of these functions are real except and /tv ̂

which form a complex conjugate pair.

Let ff be one of these eight functions, and let ¡5 3 1 if Â
• /  (>) /  to \is one of the ordinary functions ( , A.̂  or 4\̂  ) or S--1

if "f. is one of the modified functions ( ^  , -(c^or Aft),
Then satisfies the second-order differential equation

Aftc*) -t i  fftb) - -  s) Af (*) = 0 (A5)
(which is effectively the free-particle radial Schroedinger equa­

tion with S = 1 or -1 corresponding to positive or negative ener­
gies respectively). The also satisfy a recurrence relation

( A6) ;

and a differential-recurrence relation
J+i

Aft*) =  s ^.,Cx) ~  * 1 T  ft(x) (A7)*
The behaviour of these functions for very small and very large

values of the argument is given by
tlx) ---* * /n(x)--- - -  /-•)]!Jft > x-»o faf+,)H r  J rf+« (A8),
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and

h LX)
---- * L * o  ( x  - J n  i%;--* -~/Un ( x ~  {̂ p i r )X-+CO v X  J Z  v X  J (A9)

Finally we have the Wronskians
j W a / (x; -  ĵ i*; 'w ■ *  '/x 1 (A10)
jtLx) *  ‘A 1 (A11)

and -  i'wA^Lt) =  -i'rf/x1 (A12)

A2: Spherical Harmonics.

Define the usual complex spherical harmonics V  (r), for int-

(A13),

egral i and -m with }■ , by

v W # i f e = i / '  p ; v j £ i " '
with the associated Legendre functions P^ defined by

T / W  (-“ > 0  e n ^ ) ( A 1 4 )

The associated Legendre functions satisfy the differential equat­

ion
[ O-*-1) ̂  -  ■2 x ^  +  * (*+ 0  ~ = o (A17)

and the recurrence relation

l)xP/ W * (£•*•> — '•*)Pj+( £*J + (i+**) L*-) (A18).
The spherical harmonics satisfy the orthonormality relation

J y, w  ^  y, J ^  iJL <f > = V  ' <A19>
and have the parity and complex conjugation properties given by

Y/w) (' ^  = (',)J U 2 0 )

and
W r*> = ( - r  vu ( t f  <421>.

An important result is the Addition Theorem for spherical harmon­

ics, which is
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(A22)P  (k.r)= f i  y, ( k) y, (r)l J (-fl JrT,f / »» t-m.
From the spherical harmonics we define the Gaunt coefficients

4 U ~ , A A ~ J  = f (A23).
These may be expressed in terms of Clebsch-Gordan coefficients by

^ (A"’. C ( i , i J i'" ,* s« i)C (tJJ t°o o ) (A2if)
which are themselves given by Wigner's closed formula

(A + A - t j i  (A -A*A)? (/,+A -/, ) / ( / , < - . , ) / ( / , - » , ) ]  j'Ax [ ( « v o
(A < V A  +0! (A-*-,) ! (A+*0! (A -~J/ Ü. + -  J I

r ^  (-tf**1*'"1 (i1+ii + +'l - 1)( ( / , - ^ ,  +  t)!_________ *|

L t +! ( A - A + A  - O !  ( A + - 3- 0 !  ( t + A - A - ^ J U  CA25)
( -t being such that the factorial arguments are non-negative).
Mow C  (A A  A  ■»»'('»''i.'xij) is non-zero only when yHj ■=. i»i( and

A + A ^ A  ^ | A "  A  I (the "triangle condition"), and has the

symmetries
C -  C~0 ,+̂  C (A A  A  -"«/ -*ii -«t})

= ( - if1 J ( A 26 ) .

From the properties of the Clebsch-Gordan coefficients it follows 

that (A/" ' i ) is non-zero only if /rHj ■= /*»»,.#-/)** , A +A  ̂  
>I A - A I  and ¿,-i-A+A is even; that it is real and that it has 
the following symmetries

A ,w î) ~ ^ Î A _i,,i A - « a  A  -"i)

— G\ ,*n( A ‘w i} 5  ('*) ^  ( A A  —’••j A  -,|"1 ) (A27) »
In the main body of the thesis we use only real spherical har­

monics and quantities derived from them. These are defined by a 

unitary transformation as follows:

V/o(r) (A28)

where od = 1 corresponds to cosine and oC= 2 corresponds to sine
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real spherical harmonics; and ^ C • (Note that for nt=0, JC
may be taken to be only 1.) For real spherical harmonics the add­

ition theorem takes the form

p.(ii.f) =  g -  V. V ’ ( i ) V '(?) (.29)

where L =  ( / , « , < )  and the sum over ^  and goes through all 

allowed values for a fixed l . Furthermore the real spherical
/ Jharmonics are orthonormal and have parity {.->) .

We define real spherical harmonic analogues of the Gaunt coef­

ficients by
r J y^chy^eny^jr)dji(r) U30).

These may be directly related to those of (A23) by the compact 

expression

[ >/jr if | | if even J

l i if T*1, — C  J l o if oC odd J

i f 'H; + n»\- ~ /kh .* j *
otherwise

/, /n
] (A31)

x C C-0 k G C A " * * ; «
Q

where oC= # } — I • The are much used in the FP-

SW theory, but are quite complicated functions of their integer 
arguments. What is done in practice is to use (A31) and the ordi­
nary Gaunt coefficients. However these last are too time-consumi­
ng to recalculate at need, so they are calculated once at the 
beginning of a program and stored away. We have developed a new 
algorithm for the storage and retrieval of these coefficients, 

which uses less space than previous methods (primarily because of 
our concern at the high i. -truncations that are required for the 

potential model). The method uses the symmetry and restriction 
conditions of quite heavily and the algebra is
too long to reproduce here. For a high H -truncation the number 
of stored values goes roughly as /(max >5/32.
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. ■ ■* —̂
At a given energy Er the free-particle Green function G cCr',s) 

satisfies
(vr + £ ) = 5 (r-s) (A32).

The actual form of the Green function is determined by the bound­
ary conditions. For negative energy, and defining , we

have
a t  ( r , s )  = -  ( - x | r - s  l ) / 4 ir  | r - s |

=  - X  2  U f<$) (A33).

For positive energy and , we have either the standing—

A2; Green Functions.

wave Green function
-  c*o ( k l r - s l ) / 4 v  | r - s  |

= k 2 j (kr\)*t (ksjV V (s) 
L l l *- »-

( 4 r < s )  (A3it)f

d^(r,t;= - [ i k l r ~ ? l ) / 4 i r  l r - i  |
=  (* r < SJ (A35)<

We also include the Green function for Poisson's equation, v/hich 

satisfies
G p(r,?) - -  4ir ¿ ’( F - s j  (A36).

This is well-known to be
G p (r,?; =  ' / | r - s |

= ¿2 ( ri/su>) P'(r- s) (H r<s) (A37).
A4: Re-expansion Theorems.

We give several important results concerning spherical harmon­
ic expansions and re-expansions about different sites. Firstly,

(i k-r ) «  4ir 2T i ̂¡Akr) Y (k ) Y  (r) (A38);r v u 1 ¡~
and so

htsjo (-k-r)» 4tr 2 (-•/i (kr)y (i)Y (r) (A39).i_ i ]» l*
More importantly,



l (k|r-i|>y (*^S)« L-Ot*ll(LL,S)iJb’)iJi'*)Y/i'r) V*ts) (AifO),

J( (klr-il)Yt(P-i)= 4 , 2 i .  (rt2)i

«it i k i M » X ( A j . 4 * z r i l'-<-i r(u .,O j J,(W*i .i» o v /( ijy t. ( s j (Ali3)

and
4irr£  ilU'1 u ^ ) j v{yrU l̂ s ) y , ( f i ) y j b  u w ,

where (A*H, A*f3 and A^^) are valid only for T< S .



Appendix B. List of Programs

The FP-SW programs were developed from the older MT-based pro­
grams. They are written in a dialect of FORTRAN IV; one that is 

used by the VAX series of computers, but which is transportable 

enough to be easily run on a wide range of other computers. VJe 
have retained some useful features (like dummy dimensioning of 
arrays to accomodate varying molecular sizes) and abandoned othe­
rs (like COMMON block usage and implicit parameter passing). In 
general we have tried to make the new programs as modular as we 
could and format them clearly with plenty of comments. It was 
possible to use some of the old source code directly. (Vie estima­
te that this amounts to about 25^ of the source code of the new 

programs. It consists mainly of subroutines for numerical integr­

ation, interpolation and approximation, special functions and 
matrix manipulation - some from the NAG and IMSL libraries. Not 
much of the rest was directly usable although it served as a gen­
eral guide.)

We now list the important MT-based programs. The bound-state 
ones are essentially those of Smith and Johnson (1969), although 

they have been much altered by later programmers. The continuum 
program is that used in Natoli et al. (1980). After each program 
name we give the number of lines of source code, this being a 

good measure of its importance.
MOLPOT (527) - prepares initial MT potential from overlapped free 

atoms for use by ENERGY or CONTNM.

MOLSYM (857) - generates linear combinations of spherical harmon­
ics at the atomic sites, that transform according to the irre- 

ps of the point group; used by ENERGY, SCF and CONTNM.
ENERGY (221^) - finds one-electron energy eigenvalues in a given
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MT potential. It uses subroutines from AUXSUB.

SCF (3637) — iterates an input MT potential to self-consistency 
as the ground state or an excited state (with core hole). It 

uses subroutines from AUXSUB.
CONTNM (3023) - for given initial and final state MT potentials 

(from MOLPOT or SCF) it calculates core-level photoionization 
cross-sections. It uses subroutines from AUXSUB.

AUXSUB (1911) - is a collection of auxiliary subroutines used by 
the main MT-SW programs.
The FP-SW programs that we have developed are analogous to the 

MT ones. (However, no new version of SCF has yet been written.) 
MLPSHX (133*+) - generates spherical harmonic representation of 

the potential constructed from overlapped free atoms.

INPSHX (1119) - prepares potential from MLPSHX in a form usable 
by the main programs, performing optional smoothing of the 
asymptotic behaviour of the SHX radial functions. Uses some 

subroutines from the NAG library.
ENESHX (3869) - does the FP energy eigenvalue search for bound 

states.
CNTSHX (*+211) - does the FP continuum photoionization cross-sect­

ion calculations for given initial and final state potentials. 
Two further programs are referred to in our discussion of the 

deficiencies of the MT approximation and their effects even in 

the EXAFS region. See Pettifer and Cox (19 83) for details of the 
origins and development of these programs.
MTAHARA - calculates atomic scattering phase shifts in a MT pote­

ntial. Uses Dirac-Hara energy-dependant exchange.
EXAFSFT - fits details of local structure around the absorbing 

site to match an experimental EXAFS spectrum using ab initio 
theory and phase shifts from MTAHARA.
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