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Input-Dependent Structural Identifiability of Nonlinear Systems

Alejandro F. Villaverde1, Neil D. Evans2, Michael J. Chappell2, and Julio R. Banga1

Abstract— A dynamic model is structurally identifiable if
it is possible to infer its unknown parameters by observing
its output. Structural identifiability depends on the system
dynamics, output, and input, as well as on the specific values of
initial conditions and parameters. Here we present a symbolic
method that characterizes the input that a model requires to
be structurally identifiable. It determines which derivatives
must be non-zero in order to have a sufficiently exciting
input. Our approach considers structural identifiability as
a generalization of nonlinear observability and incorporates
extended Lie derivatives. The methodology assesses structural
identifiability for time-varying inputs and, additionally, it can
be used to determine the input profile that is required to make
the parameters structurally locally identifiable. Furthermore,
it is sometimes possible to replace an experiment with time-
varying input with multiple experiments with constant inputs.
We implement the resulting method as a MATLAB toolbox
named STRIKE-GOLDD2. This tool can assist in the design of
new experiments for the purpose of parameter estimation.

I. INTRODUCTION

The concept of structural identifiability describes whether
it is theoretically possible to determine the true value of a
parameter from observations of the model output [6], [30].
Structural identifiability is a mathematical property deter-
mined by the model equations, which define the mapping
from parameters to outputs; unlike practical identifiability,
it is not affected by the quantity or quality of the data.
Structurally unidentifiable parameters are a possible source
of error in predictions made by dynamic models, and com-
promise their ability to provide biological insight [25].

Since [3], many methods have been proposed to analyse
the structural identifiability of biological models. Some of
them, such as the similarity transformation approach [9], [32]
and direct test [7], are applicable to autonomous systems, i.e.
systems with no input. Other approaches, such as those based
on power series [17], differential algebra [4], [15], implicit
functions [31], or differential geometry [27], can be applied
to systems with external inputs. Additionally, it is possible
to assess identifiability for a fully defined experiment (i.e.
with specific values for initial conditions and inputs) with
numerical approaches based on profile likelihoods [18] or the
sensitivity matrix [23]. There are a number of software tools
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implementing some of the aforementioned methodologies.
Examples designed for determining global identifiability
include DAISY [4], GenSSI [5], and COMBOS [16]; for
testing for local identifiability, EAR [13], STRIKE-GOLDD
[27], or Data2Dynamics [19].

These methods analyse models with a given input-output
configuration. The term qualitative experiment design was
coined to refer to the selection of input and output ports
in order to maximize the number of structurally identifiable
parameters [22], [29]. In fact, to fully define the qualitative
aspects of an experiment design that guarantees structural
identifiability we must determine:

(a) which type of perturbations must be applied to the
system (input definition),

(b) which states, or combinations thereof, must be measured
(output definition), and

(c) which initial conditions of the states are appropriate.

We note that, once structural identifiability has been guar-
anteed by taking into account the aforementioned issues (a,
b, c), a full experiment definition still requires deciding on
other aspects, such as the number and timing of the samples,
detailed characterization of the inputs, and so on. This task
is known as quantitative experiment design, and can be used
for maximizing practical identifiability.

In the present paper we address a different, although
related, problem. We seek to determine, a priori, what
mathematical form the inputs must have in order to guarantee
structural identifiability, that is, the question (a) in the above
list. In regard to the other points, question (b) has been
studied in [1], [2], and question (c) in [8], [21], [26]. As an
example of the problem we want to address, imagine a model
for which a constant input is not sufficiently exciting, and
requires a ramp input to make its output different for different
parameters. To a certain extent, this situation resembles
the relationship between structural identifiability and initial
conditions (item ‘c’). Generally, methods that analyse struc-
tural identifiability yield results that are valid for almost all
initial conditions; however, a model classified as structurally
identifiable may lose structural identifiability when started
from particular initial conditions [8], [21], [26]. Likewise, for
the case of inputs, structural identifiability analysis methods
can determine whether a model is structurally identifiable
provided that sufficiently exciting inputs are applied – but it
is not straightforward to characterize the necessary inputs
with the existing implementations of these methods [4],
[15]. Our aim is to determine this qualitative information
analytically, without performing a numerical, or quantitative,
optimal experimental design (OED) procedure. In this way



we will be able to rule out insufficiently exciting inputs a
priori, removing them from consideration in a subsequent
quantitative OED.

We address this problem by building on an existing tool,
STRIKE-GOLDD [27], which is a MATLAB toolbox that
implements a structural identifiability analysis methodology
based on differential geometry. It considers structural iden-
tifiability as an extension of observability, and assesses this
by testing whether an observability-identifiability matrix has
full rank. Here we show that, in its original form, STRIKE-
GOLDD may wrongly classify an identifiable model as
unidentifiable if a time-varying input is required for identifi-
cation, which happens when a constant input does not excite
the system dynamics sufficiently. This limitation originates
from the definitions of the Lie derivatives used to build the
observability-identifiability matrix, which are not appropriate
for time-varying inputs. We modify the method by using
extended Lie derivatives, which correctly analyse the effect
of time-varying inputs. Importantly, in this way it is possible
to obtain information about the type of input that is necessary
in order to guarantee structural identifiability, by studying
the dependence of the rank of the identifiability matrix
on the expression for the (potentially time-varying) inputs.
We demonstrate this capability with several models which
are shown to require time-varying inputs in order to be
structurally identifiable. We also show that it is sometimes
possible to avoid the requirement of time-varying inputs by
approximating it with multiple experiments with constant
inputs of different values. This is particularly useful for
biological systems, since the ability to change inputs over
time is typically limited in this context.

The method proposed here was partly described in a
short paper presented at the FOSBE 2018 conference [28].
With respect to that paper, the present manuscript contains
the following extensions: (i) it extends the methodology to
multidimensional inputs, enabling it to specify different time
dependencies for every individual input; (ii) it shows that
the requirement of time-varying inputs may sometimes be
replaced with multiple experiments with constant inputs; (iii)
it provides an implementation of the method as a software
toolbox, STRIKE-GOLDD2; and (iv) it demonstrates the
application of the resulting tool to nonlinear, nonrational
models.

II. METHODOLOGY

A. Notation

Dynamic biological processes may be described by ordi-
nary differential equations (ODEs) as follows:

model M :

 ẋ(t) = f(x(t), u(t), p),
y(t) = g(x(t), p),
x0 = x(t0, p)

(1)

where f and g are analytic vector functions, p ∈ Rq is the
parameter vector, u(t) ∈ Rr the input vector, x(t) ∈ Rn the
state variable vector, and y(t) ∈ Rm the output vector. We
drop the dependence on p for ease of notation.

B. Background on observability

Conceptually, a model is observable if it is possible to
determine its internal state vector x by observing its output
vector y. Observability can be evaluated by calculating the
rank of an observability matrix O(x) that represents a map
between the model output y (and its derivatives ẏ, ÿ, . . .)
on the one hand, and its state x on the other. If O(x) has
full rank, then the model is observable. The observability
matrix contains the partial derivatives of the output (and its
derivatives) with respect to the states:

O(x(t)) =


∂
∂xy(t)
∂
∂x ẏ(t)
∂
∂x ÿ(t)

...
∂
∂xy

(n−1)(t)

 (2)

Theorem 1. The Observability Rank Condition (ORC): If
the system M given by (1) satisfies rank(O(x0)) = n, where
O is defined by (2), then it is (locally) observable around x0
[24].

C. Structural identifiability: definitions

Definition 1. A parameter pi is structurally globally iden-
tifiable (s.g.i.) if it can be uniquely determined from the
system output, that is, if for almost any p∗ ∈ Rq (i.e., for
any p except those belonging to a set of measure zero) the
following property holds for all t and all admissible inputs
u [15]:

y(t, p̂) = y(t, p∗)⇒ p̂i = p∗i (3)

Definition 2. A parameter pi is structurally locally identi-
fiable (s.l.i.) if for almost any p∗ there is a neighbourhood
V (p∗) in which (3) holds.
Definition 3. A parameter pi is structurally unidentifiable
(s.u.) if (3) does not hold in any neighbourhood of p∗.
Definition 4. A model M is s.g.i. if all its parameters are
s.g.i.; it is s.u. if at least one of its parameters is s.u.; and
it is s.l.i. if all its parameters are either s.l.i. or s.g.i. and at
least one of them is not s.g.i..

Remark 1. Structural local identifiability and observability
are generic properties that hold for all points in parameter or
state space (except possibly for a subset of measure zero).
As an example, consider the model given by ẋ = u, y =
[cos(x), sin(x)]T . This model is locally observable: every
xA can be distinguished from nearby states. However it is
not globally observable: xA cannot be distinguished from
xB = xA + 2kπ for any integer k [11].

D. Structural identifiability as generalized observability

The model’s structural identifiability can be evaluated in
the same way as its observability. To this end, we consider the
parameters pi as additional states with zero dynamics, ṗi =
0, i.e., we augment the state variable vector as x̃ = (x, p).
The augmented (or generalized) observability-identifiability
matrix, OI(x̃), is then defined for constant inputs as:



OI(x̃) =


∂
∂x̃y(t)
∂
∂x̃ ẏ(t)
∂
∂x̃ ÿ(t)

...
∂
∂x̃y

(n+q−1)(t)

 (4)

Theorem 2. Observability-Identifiability Condition (OIC): if
the system M given by (1) with constant input u satisfies
rank(OI(x̃0)) = n + q, with OI(x̃0) given by (4), then
it is observable and (at least locally) identifiable in a
neighbourhood N(x̃0) of x̃0.

Remark 2. The OIC can be used to determine the structural
identifiability of the model as a whole and of its parame-
ters individually. Each column in (4) contains the partial
derivatives with respect to a particular parameter (or state).
Therefore, if deleting a given column does not change the
rank of OI , it means that the corresponding parameter is
unidentifiable.

E. Calculating OI with extended Lie derivatives

For nonlinear systems OI can be calculated using differ-
ential geometry tools.

Definition 5. The Lie derivative of g with respect to f is
defined by:

Lfg(x̃) =
∂g(x̃)

∂x̃
f(x̃, u). (5)

Higher order Lie derivatives can be recursively calculated as:

L2
fg(x̃) =

∂Lfg(x̃)
∂x̃ f(x̃, u),

...

Li
fg(x̃) =

∂Li−1
f g(x̃)

∂x̃ f(x̃, u).

(6)

Note that if the input vector contains only constant inputs,
u(t) = u, the expressions for the Lie derivatives used in
(5, 6) correspond to the output derivatives, i.e. y(i)(t) =
Li
fg(x̃). Structural identifiability analysis methods such as

STRIKE-GOLDD [27] have used this equality to calculate
OI . However, for time-varying inputs the equality between
output derivatives and the Lie derivatives defined in (5,6)
does not hold. To preserve this correspondence for time-
varying inputs u(t) we modify the definition of the Lie
derivative as follows:

Definition 6. The extended Lie derivative [13] is defined by:

Lfg(x̃) =
∂g(x̃)

∂x̃
f(x̃, u) +

j=∞∑
j=0

∂g(x̃)

∂u(j)
u(j+1). (7)

In the second term of the sum within (7), u(j) and u(j+1) de-
note the jth and (j+1)th derivatives of the input, respectively
(note that we write u instead of u(t) to ease the notation).
Higher order extended Lie derivatives are calculated using:

Li
fg(x̃) =

∂Li−1
f g(x̃)

∂x̃
f(x̃, u)+

j=∞∑
j=0

∂Li−1
f g(x̃)

∂u(j)
u(j+1) (8)

Remark 3. Since the output function g does not depend on
the input directly (i.e. it is g(x̃), not g(x̃, u)), it holds that

j=∞∑
j=0

∂g(x̃)

∂u(j)
u(j+1) = 0 (9)

and the first order extended Lie derivative defined in (7)
is identical to its non-extended counterpart (5). However,
the summation term is not necessarily zero for higher order
extended Lie derivatives (8), Li

fg(x̃), if i ≥ 2.

Remark 4. It can be seen that the ith Lie derivative, Li
fg(x̃),

may contain input derivatives only up to order (i−2). Hence,
the infinite summation in (8) can be truncated in practice at
j = i− 2, and Li

fg(x̃) is calculated as:

Li
fg(x̃) =

∂Li−1
f g(x̃)

∂x̃
f(x̃, u) +

j=i−2∑
j=0

∂Li−1
f g(x̃)

∂u(j)
u(j+1)

(10)

Extended Lie derivatives can be used to calculate OI(x̃)
for nonlinear models with inputs that are polynomial func-
tions of time as follows:

OI(x̃) =


∂
∂x̃y(t)
∂
∂x̃ ẏ(t)
∂
∂x̃ ÿ(t)

...
∂
∂x̃y

(n+q−1)(t)

 =


∂
∂x̃g(x̃)

∂
∂x̃ (Lfg(x̃))
∂
∂x̃ (L

2
fg(x̃))
...

∂
∂x̃ (L

n+q−1
f g(x̃))


(11)

F. Structural identifiability analysis for experiment design

The method presented in the preceding subsections can
assist input design. Extended Lie derivatives (8) can be used
to characterize the type of time dependency that is needed for
the input to enable structural identifiability, by determining
which of its derivatives must be non-zero. We can do this
by setting to zero in OI (11) the derivatives of the input of
order higher than a given one and recalculating rank(OI ).
This condition (u(k) = 0) holds for any time instant,
not just momentarily; as a result, higher order derivatives
(u(k+1), u(k+2), . . . ) are also zero. For example, if OI has
full rank for u̇ = 0, a constant input is sufficient for
structural identifiability. If, however, OI has full rank for
{u̇ 6= 0, ü = 0}, but not for u̇ = 0, then a ramp input is
necessary and sufficient, and a constant input is not. Note
that this approach does not make a priori assumptions about
the validity of the OIC for specific inputs. It directly assesses
whether a particular form of u(t) leads to a decrease in the
rank of OI with respect to the most generic case, which is
assumed to be sufficiently exciting. The effect of a specific
input can be tested by entering the corresponding expression
for u(t) in (4).

Remark 5. Note that the input u(t) is in general a multi-
dimensional vector, so these considerations apply to each of
the inputs individually.



G. Replacing time-varying inputs with constant inputs

An experiment with a time-varying input can be piece-
wise approximated by a series of experiments with constant
input. In some cases both set-ups are indeed equivalent for
the purpose of structural identifiability. A multi-experiment
setting can be specified by modifying the model to include
as many replicates of the state, output, and input vectors
as experiments [14], which increases the dimension of the
corresponding matrix OI . The first tool to implement multi-
experiment structural identifiability analysis was GenSSI 2.0
[14].

H. Implementation

The methodology presented in this section has been im-
plemented in a MATLAB toolbox called STRIKE-GOLDD2,
which is available at https://sites.google.com/
site/strikegolddtoolbox/. The download includes
the examples analysed in this paper and a complete docu-
mentation.

III. RESULTS

Here we demonstrate the use of the STRIKE-GOLDD2
toolbox with several case studies: a 4-parameter linear model
of a physiological system, a 10-parameter nonlinear model
of ion channels, and an 8-parameter nonlinear model of
a bioprocess with five inputs. The two latter models are
nonlinear and non-rational in structure, which makes their
symbolic analysis more challenging. Fig. 1 shows conceptual
versions of the three models. To clarify specific aspects of the
methodology we include as an Appendix a detailed analysis
of the bioprocess model, which is provided as Supplementary
Information due to page limitations.

A. A two compartment model

This model represents a physiological system with two
compartments (i.e. two states, of which one is measured)
and one input. The model equations are given by:

M1 :

 ẋ1 = −(k1e + k12) · x1 + k21 · x2 + b · u,
ẋ2 = k12 · x1 − k21 · x2,
y = x1

(12)
where the unknown parameter vector is given by p =
(k1e, k12, k21, b). Note that the initial condition of the unmea-
sured state, x2(0), is also considered unknown. The model
diagram is shown in Fig. 1.A.

Calculating the matrix OI in Eq. (4) for M1 with 5 ex-
tended Lie derivatives, as in (7–8), yields a 6×6 matrix with
rank(OI) = 6. Therefore the observability-identifiability
rank condition (OIC) is satisfied. This means that the model
is structurally identifiable (as long as the input is sufficiently
exciting). When the input is constant, OI can be calculated
using (5–6); in this case rank(OI) = 5 and the model is
unidentifiable.

The practical meaning of these results is that, in order
to determine the values of the parameters (k1e, k12, k21, b)
by measuring the model output (y = x1), it is necessary

to perform an experiment with time-varying input (u̇ 6= 0).
Moreover, we can characterize the type of time dependency
that is needed for the input to enable structural identifiability.
We can do this by replacing the higher order derivatives
of the input in OI by zero and recalculating rank(OI ).
For the model M1 this procedure yields rank(OI) = 6
even if ü = 0, as long as u̇ 6= 0; however, rank(OI)
reduces to 5 if u̇ = 0. Thus we know that a ramp input
(u(t) = c1 · t+ c2, where c1 and c2 are arbitrary constants)
suffices for structural identifiability of the parameters, but a
constant input (u(t) = c2) does not. The two time course
plots in Fig. 2 illustrate this fact. For this model we could
not find a set of experiments with constant inputs that was
equivalent to a time-varying input. The following example
illustrates the opposite situation.
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0
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1

Two-compartment model, constant input (u = 1)

p
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Two-compartment model, ramp input (u = t)

p
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p
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Fig. 2. Output of the two-compartment model for two different parameter
vectors (p1 = [1, 1, 1, 2], p2 = [0.5, 0.5, 2, 1]) and two different inputs (a
constant input, u(t) = 1, and a ramp input, u(t) = t). With a constant
input (upper plot), the two parameter vectors yield the same model output
(note that the figure plots only two parameter vectors, but there is an
infinite number of pairs of such vectors that are indistinguishable) and hence
the parameters are structurally unidentifiable. In contrast, the parameters
become identifiable with a time-varying input such as a ramp (lower plot).

B. A Markov model of ion channels

Ion channels regulate the flow of ions across cell mem-
branes. Their conductance can be described by Hodgkin-
Huxley (HH) models [12], and also with continuous time
ODE models of Markov decision processes (MMs) [20].
Such Markov models are of the form

M2 :

{
ẋ =M(p, u) · x,
y =

∑n1

i=1 xi
(13)

where u is the membrane potential, x is the vector of n
normalised conducting (open) or non-conducting (closed)
states, the observation y is the sum of all of the n1 conducting
states, and M is an n × n matrix, typically sparse. The
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   (A) M1: two-compartment          (B) M2: ion channels               (C) M3: bioprocess 

Fig. 1. Schematic representations of the three models used as case studies. Grey circles represent states (xi), dashed lines represent measured outputs
(yi), and incoming arrows represent inputs (ui). An arrow from a state xi to another state xj means that xi appears in the dynamic equation of ẋj .
The remaining symbols (e.g. k12) represent unknown parameters or known constants. (A) M1, the two-compartment model defined by (12). (B) M2, the
Markov model of ion channels defined by (13). Note that the mathematical model used in the analysis was reduced with respect to this representation, and
thus it does not contain the state x3 nor parameters a31 and b31. They are nevertheless depicted in the diagram to facilitate its interpretation. (C) M3, the
bioprocess model described in the Supplementary Information file.

matrix M is mass conserving, i.e.
∑n

i=1 xi(t) is constant.
In experiments the conductance y(t) changes over time as
the enforced membrane potential u(t) is varied, thus altering
the reaction rates. The influence of the membrane potential
on the reaction rates is modelled by:

Mij(u(t)) = exp(aij + bij · u(t)). (14)

MMs are a generalization of HH models that are more
versatile thanks to the use of more parameters. However,
this increased flexibility also makes them more prone to
identifiability issues: Fink and Noble analysed a number of
MMs [10], concluding that most of them had some type of
unidentifiability (either structural or practical).

Here we consider a cyclic MM model defined by (13,14),
with n = 3 states and y = x1. In principle this model
has 12 parameters (4 per state) as depicted in Fig. 1.B.
However, being a cyclic model it is possible to reduce it
to 2 states and 10 parameters. Its analysis reveals similar
structural identifiability properties as the previous model:
with a constant input it is unidentifiable, and becomes
identifiable for a first order time-varying input.

For this model the requirement of a time-varying input can
be replaced by 4 experiments with different constant inputs,
which may be easier to perform. Indeed, past works [10]
proposed experimental protocols with piecewise constant in-
puts for identifying this type of model. These works reported
that such protocols succeeded in avoiding ‘numerical’ or
‘practical’ unidentifiability. Our result provides a theoretical
justification of the success of such protocols.

C. Bioprocess model

The nonlinear bioprocess model in Fig. 1.C has 5 states
that represent gas concentrations, all of which can be
measured. There are 8 unknown parameters (p1, . . . , p8),
and 7 known constants (k1, . . . , k7), as well as 5 external
inputs (u1, . . . , u5). Due to lack of space, the equations of
this model are provided in the Supplementary Information
file, which also presents a detailed, step-by-step analysis
of this model in order to illustrate the application of the
methodology. In the remainder of this section we summarize
the results of this analysis.

The model is structurally unidentifiable with constant
inputs (specifically, the parameters p4, p5, p6, and p7 are
s.u.), while with time-varying inputs all parameters are s.l.i..
Interestingly, not all inputs need to be time-varying for the
model to be s.l.i.; in fact, it suffices that the first derivatives
of u3 and u4 are non-zero. Therefore, the model can be
made structurally identifiable with constant inputs u1, u2,
and u5, and ramp inputs u3 and u4. In other words, an input
vector u = [c1, c2, c3a + c3b · t, c4a + c4b · t, c5], where the
ci are constants, makes the model s.l.i.. Alternatively, the
model can also be made s.l.i. by performing 4 experiments
with different constant inputs; this is useful if experimental
limitations allow only constant inputs.

IV. CONCLUSIONS

The methodology presented in this paper analyses the
structural identifiability of models with continuously time-
varying inputs. To this end it uses extended Lie derivatives
to include the input derivatives in the identifiability matrix.
The approach takes into account the ability (or lack thereof)
of a given time-varying input to excite the dynamic behaviour



in the system that leads to the resolution of structural non-
identifiabilities. To the best of our knowledge, this informa-
tion cannot be readily obtained with the currently available
tools for structural identifiability analysis. Importantly, the
methodology presented here can be applied to nonlinear and
even non-rational models with multiple inputs. It should be
noted that the method analyses not only structural identifia-
bility but also nonlinear observability.

The method is helpful when designing new experiments
because it delimits the type of external inputs that are
required to correctly estimate the model parameters from
the resulting dataset. More specifically, it establishes which
derivatives of which inputs must be non-zero. It can also
test the effect of a particular input. The method has been
implemented as an open source MATLAB toolbox called
STRIKE-GOLDD2.

We have demonstrated the methodology with three dy-
namic models of biological systems. The three models were
classified as structurally unidentifiable from an experiment
with constant input, and structurally identifiable with time-
varying inputs. For two of the case studies we found that
the requirement of time-varying inputs could be avoided
if several experiments were performed: these models are
structurally identifiable by considering four experiments with
different constant inputs. This alternative can be convenient
in practical applications, since it is not always possible to
change the inputs to a biological system dynamically during
the course of an experiment. In future work we plan to
investigate this matter further, with the aim of establishing
when a single experiment with time-varying inputs can be
replaced by multiple experiments with constant inputs.
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