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Abstract

Tempo estimation aims at estimating the pace of a musical piece
measured in beats per minute. This paper presents a new tempo
estimation method that utilizes coherent energy changes across
multiple frequency sub-bands to identify the onsets. A new
measure, called the sub-band synchrony, is proposed to detect
and quantify the coherent amplitude changes across multiple
sub-bands. Given a musical piece, our method first detects the
onsets using the sub-band synchrony measure. The periodicity
of the resulting onset curve, measured using the autocorrelation
function, is used to estimate the tempo value. The performance
of the sub-band synchrony based tempo estimation method is
evaluated on two music databases. Experimental results indi-
cate a reasonable improvement in performance when compared
to conventional methods of tempo estimation.

Index Terms: Music Tempo Estimation, Sub-band Synchrony

1. Introduction
The experience of listening to music is an engagement of our
mind with the elements of music that broadly comprise melody,
harmony, rhythm and timbre [1]. Rhythm, in its most generic
sense, refers to all temporal aspects of a musical work, includ-
ing periodicity, pace, syncopation, and the perception of repeti-
tion of a musical piece with time. A perceptually fundamental
aspect of rhythm is the pace or tempo, the most salient compo-
nent of which is the beat or tactus [2, 3]. The tapping behavior
of humans (where one taps at the tactus rate) is considered a
reliable indicator of tempo perception [4, 5, 6]. The tempo of a
musical piece is defined as the rate of the tactus pulse, typically
expressed in ‘beats per minute’ (BPM) [7]. This is considered
as a quantified measure of musical speed [8, 9]. Tempo esti-
mation has applications in music production and mixing, music
classification [10, 11], and audiovisual synchronization [12].

One popular approach to music tempo estimation involves
the detection of discrete onsets, and using the inter-onset in-
terval to measure the tempo [13, 14]. Musical onsets refer to
the discrete events that indicate the beginning of the notes or
percussive events [15]. Onsets in music often act as the phe-
nomenal accents, which are events that emphasize a moment in
music, and are important in the role of meter perception [16].
An onset detection method based on acoustic energy flux was
proposed by Laroche [17]. Fitzgerald used median filtering to
separate the percussive events from the non-percussive ones to
detect the percussive onsets [18]. In a comprehensive study,
Bello et al. [15] provided a bottom-up description of the ba-
sic approach to onset detection using amplitude envelope. In
another study, Dixon [19] discussed the pragmatic methods of
onset detection including phase deviation and complex domain
based methods, followed by an exhaustive evaluation. Dan Ellis
used the Mel spectrogram to detect the onsets and to estimate
tempo [20], while Dixon [14] proposed an energy based onset
detector. In another work, Dixon also implemented periodicity

computations in band-limited signals derived from the main au-
dio signal to compute onsets and metrical structure [21]. Multi-
ple frequency bands and comb resonators were used for tempo
estimation by Klapuri [16]. Filterbank approaches have also
been investigated in the past [22, 23]. Recent methods have
focused on using neural networks to determine the beat onset
curve and comb filtering to capture the periodicity [24]. Period-
icity capture has also been done using autocorrelation methods
[25].

This paper proposes a tempo estimation method that relies
on the coherent changes across multiple frequency sub-bands to
identify the onsets. We detect and quantify the coherent ampli-
tude changes across multiple sub-bands, and derive a measure
called the sub-band synchrony. The idea of multiband process-
ing for tempo estimation is not new. It has been previously used
for detection of periodicity [23] and metrical structure [21]. Our
method differs from these works in the way we decompose the
music signal (in a larger auditory band), and in proposing a
new technique for identifying the points of coherent changes
across the spectrum. This allows us to track harmonic as well as
the percussive changes, leading to a more accurate onset curve,
which is then used for tempo estimation. We evaluate our pro-
posed tempo estimation method on two databases (one publicly
available database [26] and the other created by the authors)
comprising of music from different genres. Our method demon-
strates competitive results as compared to the existing methods,
in addition to being simplified.

2. Sub-band Synchrony based Tempo
Estimation

In this section, we describe the proposed sub-band synchrony
tempo estimation method. Our method looks for coherent
changes across multiple sub-bands of a music signal to identify
onsets. The periodicity of the resulting onset curve is measured
using the generalized autocorrelation function, and the tempo is
inferred from the periodicity thereafter. The steps of our pro-
posed method are described below in detail.

2.1. Sub-band Decomposition

Let us consider a given digital music signal s[n], n =
1, 2, ..., N , where N is the total number of samples in the sig-
nal, and s[n] is the amplitude of the signal at sample n. A gam-
matone filter bank, denoted as gk[n] [27], is used to decompose
s[n] into K sub-bands. Gammatone filters are chosen as they
are widely used as approximations of auditory filters in the hu-
man auditory system [28].

sk[n] = gk[n] ∗ s[n], k = 1, 2, ...,K (1)

where ∗ indicates convolution, and sk[n] is the output of the
filter bank. The impulse response of a gammatone filter is taken
to be (from [27])

gk[n] = anp−1e−2πbn
cos(2πfkn+ φ) (2)
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where p is the filter order, b is a bandwidth parameter, fk is
the k-th filter center frequency and φ is the phase. In our ex-
periments, splitting into around K = 40 sub-bands is observed
to yield most accurate results, though the exact number is not
critical.

Next, we compute the envelopes for sub-band signals. Each
signal is squared so as to demodulate the input signal by using
the input itself as its carrier wave. This means that half the
energy of the signal is pushed up to higher frequencies and half
is shifted down toward DC.

s̃k[n] = 2× [sk[n]]
2

(3)

To maintain the correct amplitude scaling, the signal is ampli-
fied by a factor of two, and its square root is taken to reverse the
scaling distortion that resulted from squaring the signal. The
signal is then downsampled by a factor of 4 to reduce the sam-
pling frequency. To prevent aliasing, an finite impulse response
(FIR) decimation is used, which applies a low pass filter before
downsampling the signal.

s̃k,dec[n] = dec(s̃k[n], 4) (4)

where dec(x, n) denotes the decimation function decimating x
by a factor of n.

The next step is to use an envelope detection function to
each of the sub-bands. We compute the envelope by passing
sk[n] through a low pass filter as follows.

Ek[n] =
√

h[n] ∗ s̃k,dec[n] (5)

where Ek[n] denotes the final sub-band envelope for band k,
and h[n] is the impulse response of a two-degree low pass filter
used as a smoothing function. The resulting envelopes are used
to detect the onsets. Fig. 1(a) shows a sample music signal and
Fig. 1(b) shows its 40 corresponding envelopes.

2.2. Onset Detection using Sub-band Synchrony

In order to detect the changes in a spectrum that correspond
to onsets, it is necessary to compute a measure of temporal
changes of the envelopes. To achieve this, we take the derivative
of all the envelopes.

Dk[n] =
d

dn
Ek[n] (6)

where Dk[n] is the derivative of the envelope Ek[n].
At every onset event it is expected that the sub-bands will

reflect a coherent disturbance resulting in a coherent change in
its local energy. This coherent change in the sub-band energy
is called sub-band synchrony. This phenomenon is also evident
from Fig. 1(c), where the derivatives of the sub-band envelopes
are close to zero across all sub-bands at the non-onset positions,
and those at the onset positions exhibit greater magnitude
and variability. To quantify sub-band synchrony, we look at
statistical properties across the frequency bands over time.
Two statistical estimates are computed from Dk[n] for onset
detection.

Sub-band synchrony mean (SBSμ): From Fig. 1, we observe
that the points of onset give rise to higher derivative values
across sub-band envelopes. Thus, the mean (Eq. 7) of the
derivative values across sub-band envelopes is expected to be
higher at the onset points.

μ[n] =
1

M

M∑
k=1

Dk[n] (7)
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Figure 1: The proposed onset detection process for a music sam-
ple: (a) the music signal, (b) 40 sub-band envelopes, (c) deriva-
tive of each subband, (d) onset envelope obtained after taking
mean of the derivative envelopes at each time frame

where M is the number of sub-bands. The mean computed at
each time frame yields the onset curve (see Fig. 1(d)).

Sub-band synchrony variance (SBSσ): Statistical variances
of Dk[n] across frequency bands are computed at each time
frame, as given in Eq. 8. We expect variances at onset event
instances to be higher than non-onset event instances because
the magnitude of Dk[n] for k’s in which there are prominent
changes are much more than for those in which there are rela-
tively less prominent changes. For example, at the onset of a
played middle-C piano note, many mid-range bands will show
a coherent change, but the magnitude in bands near the extreme
high and low frequencies will remain close to zero. At non-
onset time frames, all band magnitudes will remain close to
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Figure 2: Fourier transform of autocorrelation of onset curve
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Figure 3: Prior probability distribution function for tempo val-
ues

zero. The variances is computed as follows:

σ[n] =
1

M

M∑
k=1

(Dk[n]− μ[n])2 (8)

where M is the number of sub-bands, and μ[n] is the mean

across bands (refer to equation 7). Finally the onset curve Ṡ[n]
is obtained as follows.

Ṡ[n] =

{
μ[n], for SBSμ

σ[n], for SBSσ
n = 1, 2, ..., N (9)

2.3. Tempo Estimation

The tempo of the given music signal is computed from the peri-
odicity of the onset curve Ṡ[n]. The autocorrelation approach is
utilized to calculate the periodicity. Autocorrelation is defined
as the cross-correlation of a signal with itself at a certain lag.
The periodicity curve is obtained by computing the autocorre-
lation for all lags from −N to N . We thus have the periodicity
curve R[n] calculated as:

R[l] =
N∑

n=1

Ṡ[n]Ṡ[n− l] l = −N,−(N −1), ..., N (10)

where l is the lag. Next, the fast Fourier transform (FFT) of
R[l] is computed, as shown in Fig. 2, to find the frequency
distribution of its oscillations. The peaks denote the dominant
frequencies in the Fourier spectrum of the periodicity function
R[l]. The Fourier spectrum so obtained is then scaled by a prior
tempo probability distribution function to eliminate unrealistic
tempo estimates. This prior tempo probability distribution func-
tion is derived from a model of tactus periods of actual songs
measured by many authors [2]. The model for tactus periods is
defined as

P (τ) =
1

K
exp

{
− 1

2σ2

[
log10

(
τ

μ

)]2
}

(11)

where P (τ) is the probability of the tactus period of an actual
song being τ ; μ denotes moderate pulse period and is typically
around 600 ms; σ is the standard deviation of the logarithm of
the pulse period and typically has a value of about 0.2. 1

K
is the

normalization constant. From this, for each tactus period τ (in
seconds), we can read off the probability and assign that to the
tempo corresponding to tactus period τ . The probability distri-
bution function of tempos can thus be derived, and is shown in
Fig. 3.

After scaling, the frequency at which the peak is obtained
is finally converted to the tempo value (in BPM) as follows.

tempoSBS = fp × fmax

NFFT

× 60 (12)

Table 1: Summary of the two databases used in our work

ISMIR2004 [26] IITK-MT
Number of songs 465 230
Duration per song 20 sec 10 or 30 sec

Max tempo (in BPM) 242 334
Min tempo (in BPM) 24 54

Table 2: Results on the ISMIR2004 database

Metric MFCC [20] FB [29] SBSμ SBSσ

ε (in %) 43.26 29.68 23.66 21.08
εscaled (in %) 75.70 60.65 77.42 71.18

RMSE 10.88 14.54 8.76 9.30

where fp is the fast Fourier transform (FFT) point at which the
peak occurs, fmax is the Nyquist frequency of the audio (i.e.
for an audio with sampling rate 44.1 kHz, fmax = 22.05 kHz),
and NFFT is the number of points in the FFT.

3. Performance Evaluation
The performance of the proposed tempo estimation method is
evaluated on two datasets namely ISMIR2004 database [26]
and the IITK-MT database. Table 1 contains a summary of the
datasets.
ISMIR2004 database [26]: This database consists of 465 songs
(duration 20 secs each) with approximately constant tempos.
IITK-MT database: This database is created by the authors us-
ing 230 song excerpts (duration 10 or 30 seconds each) from
four different genres (Western classical, Indian classical, pop-
ular music, and rock music). This also includes an annotated
dataset by Dan Ellis [20].

3.1. Evaluation Metrics

Three metrics are used in performance evaluation. The first
is denoted by ε, which computes the percentage of estimated
tempos falling in a 4% band around the ground-truth tempos
[26]. The second metric denoted as εscaled, takes into account
the octave tempo deviations, and computes the percentage of
estimated tempos falling within 4% of 1, 2, 1/2, 3, 1/3 times the
ground truth tempo. The third metric is the root mean squared
error (RMSE) of the estimated tempo. Taking into account oc-
tave deviations this error is computed between the estimated
tempo and the nearest of 1, 2, 1/2, 3, 1/3 of the ground truth
values.

Using the above metrics, the sub-band synchrony tempo es-
timation method is compared with two other methods namely
Mel Frequency Cepstral Coefficients (MFCC)-based [20] and
filter bank (FB)-based [29] tempo estimation. Results are sum-
marized in Tables 2 and 3. The (relative) error distribution for
the proposed and the compared methods are presented in Fig. 4.

Relative errors are calculated as ((tempoestimated −
tempoactual)/tempoactual). The results in Tables 2 and 3 show

Table 3: Results on the IITK-MT database

Metric MFCC [20] FB [29] SBSμ SBSσ

ε (in %) 58.26 51.74 65.22 58.70
εscaled (in %) 84.35 63.04 85.65 79.13

RMSE 15.13 22.74 11.78 14.44
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Figure 4: Error histograms for the three evaluated methods.
Errors greater than 2.5 have been truncated in these charts to
save space.

that the proposed sub-band synchrony-based tempo estimation
method outperforms the other two methods when octave (dou-
ble) tempo deviations are taken into account. The metric εscaled

takes into account octave deviations since the metrical level is
subjective and not always clearly agreed upon by human listen-
ers [26].

4. Conclusion
A sub-band synchrony based tempo estimation method is pre-
sented in this work. A measure of sub-band synchrony which
detects onsets by locating coherent changes across different fre-
quency sub-bands is developed. This method is able to track
harmonic as well as percussive changes leading to more accu-
rate onset detection, and subsequently better tempo estimation.
Experimental results indicate that this method performs reason-
ably better than two existing methods. Future work will inves-
tigate real-time tempo estimation using higher order statistical
measures obtained from sub-band synchrony.
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