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Synopsis
The extremely high absorption of energy of electromagnetic waves in underwater 
environments restricts the range of signals to be used to acoustic signals. In addition 
the sea is a complex medium in which many kinds of environmental changes, mul­
tipath propagation phenomenon, masking of the signals of interest by noise and/or 
reverberation signals, and attenuation, among others, will affect the propagation of 
sound through it.
On one hand, environmental changes will cause different degrees of nonstationarity 
at the signals to be processed. On the other hand, the use of acoustic waves will 
imply that, for the active sonar case, different Doppler shifts of the signals to track 
will take place as the relative radial velocity of the sonar platform to the contact 
varies. This will cause that in some instances the contact signals share not only 
time, but also frequency bins with the noise and/or the reverberation signals. For the 
noise-limited case, an optimum solution for signal detection based on the correlation 
receiver or Matched-filter, exists. However, for reverberation-limited environments 
there is not any optimum solution which is feasible to be implemented in a practical 
system. Adaptive filters grew out of the demand of systems capable of operating 
in uncertain, time-varying environments. Due to the wide range of applications for 
which they have shown to be useful, considerable amount of work has been dedicated 
during the last few years to their development. The preliminary part of the thesis 
presents a basic model of the underwater environment for the active sonar case upon 
which the suitability of certain adaptive structures for active echo detection and rang­
ing is initially based. A classification and the description of some existing adaptive 
systems and their main characteristics are presented too. Subsequent parts of the 
thesis include the theoretical development of a generic adaptive algorithm which will 
operate with complex data sequences. Several sets of experiments are carried out 
and the results presented in order to investigate the suitability for the application of 
interest of several adaptive systems and algorithms. Adaptive processing the received 
signals as presented here must be understood as a preprocessing stage of the overall 
active sound navigation and ranging (sonar) problem. The study is restricted to the 
narrowband case.
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Chapter 1

Introduction

Digital signal processing (DSP) has nowadays become a main field for a wide range of 

applications due to the fast growing progress in circuit design in the sense of increase 

of computational power and size reduction. A considerable amount of work has been 

dedicated in the last few decades to the study and development of adaptive filtering 

as a practical approach to either modelling systems whose main characteristics are 

not fixed or tracking signals under time-varying environments in the statistical sense. 

Current applications for adaptive filters (AF’s) are in fields such as communications, 

sonar, radar, seismology, biomedical electronics, system modelling and identification, 

mechanical design, speech recognition and navigation systems.

Research on the suitability of several AF’s for the application of signal detection in a 

reverberation-limited environment has been performed and the obtained results are 

presented here. This first chapter is an introductory section to the overall problem, 

some comments about the classical approach to solve it and the consideration of 

several possible novel approaches. Far from being the main thrust of the thesis, a 

basic model for the underwater environment is presented in the second chapter. Prior 

to proceeding with the processing of real data, an initial judgement of the suitability 

of different adaptive structures for the application of interest will be based over the 

proposed model. Chapter 3 deals with an introduction to the main classes of AF ’s, 

their principal characteristics, and various existing adaptive algorithms. In chapter 4

1
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the theoretical development and study of conditions for stability of a generic stochastic 

algorithm designed to operate over complex valued data is presented. Chapters 5 

and 6 deal with experimental work carried out with various adaptive structures and 

algorithms and with several sets of signals. Chapter 7 includes the main aspects to 

be considered in order to derive a hypothetical least-squares algorithm with parallel 

adaptation which may provide improved results when operating in nonstationary 

environments. Finally, chapter 8 will state the reached conclusions and further work 

will he proposed.

1.1 General aspects of the underwater environ­
ment

Sound transmission is the single most effective means of directing energy transfer over 

long distances in seawater. Neither radio-wave nor optical propagation is effective for 

this purpose, since the former, at all but the lowest usable frequencies, attenuates 

rapidly in the conducting salt water (the absorption of electromagnetic energy in a 

conductive medium like sea water is extremely high, about 45y/J dB per kilometre, 

where / i s  frequency in Hertz [1]), and the latter is subject to scattering by suspended 

material in the sea [2]. Fundamentals of sound transmission in the sea can be found 

in [2]-[4]. It is worth to note from [2] that sound speed in that medium is determined 

by the following equation:

c = ( 1B/p)>'1 ( 1.1 )

where 7 is the water specific heal at constant pressure, p is its density and Ii is its 

isothermal bulk modulus of elasticity, and these three last variables will depend upon 

temperature, T, pressure, P, and chemical composition or salinity, S.

In many underwater environments, applying Eq. 1.1, the obtained figure for sound 

speed, c, will be of about 1500 ms~l. The frequencies of the acoustic signals used 

within the sonar problem will range from a few Hz to a few MHz. The corresponding 

wavelengths will therefore range between a few km to a few pm respectively.
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1.2 Active echo location

Active echo location corresponds to the concept of transmitting and receiving signals 

and further processing them to identify and localise objects. If sounds are transmit­

ted, this process is known as sonar (sound navigation and ranging). When there is 

relative radial velocity, v, between the SONAR platform and the object to detect, 

not only will there be a time-delay, r, corresponding to the roundtrip travel time of 

the signal, f(t), from the transmitter to the object and back, but there will be a time 

scaling, s, of the signal as well [5].

Two different models for the received signal, g(t), corresponding to the wideband 

model and the narrowband model respectively can be encountered in [5] as follows:

ind

g(t) «  f ( t  -  r ) e ^ “ - r>

The narrowband condition can be represented by [5]:

2v 1
T < tb

( 1.2 )

(1.3)

(1.4)

where TB is the time-bandwidth product of the signal. Thus, when the narrowband 

condition holds, the received signal is given by Eq. 1.3. Furthermore, if this is the 

case, it can be demonstrated that time scaling the signal by s is approximated by a 

Doppler shift, wj. For a transmitted signal with carrier frequency wc =  2 x fc, the 

approximation is [5]:
—  9 ?>

1.5
— 2v

Wd =  ------ % (5 — 1 )wc
c

1.3 Research objectives

In the active sonar case there will generally be relative movement between the sonar 

platform and the object to detect. Constraining the research to the narrowband
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case, changes in the relative radial velocity will be translated into Doppler shifts of 

the received signal relative to the frequency of the transmitted signal. As it will 

be shown ahead, when working in a reverberation-limited environment, not only will 

the reverberation be a nonstationary signal, but unpredictable frequency shifts of 

the signal back from the contact (regarded from now on as the contact signal) will 

happen. These facts will cause the separation between the bands of the reverberation 

and the contact signals not to be a fixed one. The most unfavourable situation for 

contact detection will happen when these two bands are very close or even overlap. 

Figure 1.1 shows a schematic representation of this situation:

REVERBERATION

Figure 1.1: Reverberation and dynamic contact bands.

The main objective of the research presented here is to investigate a feasible means 

of increasing the probability, with respect to current figures, of unequivocally track­

ing narrowband contacts when buried in reverberation, both in the time and in the 

frequency domains. It is as well deemed to be a necessary step to investigate the spe­

cific conditions under which, in the real scenario, possible different difficulties arise 

and why, in order to be able to further devise particular systems suitable for solving 

the given problem. This will be done with the aid of several adaptive systems and 

algorithms, and with synthetic as well as with various sets of real signals.
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1.4 Classical approach

Correlation processing by means of matched filters has been shown to be the optimum 

solution for detecting known signals in additive white Gaussian noise (AWGN) [6]. 

The idea behind correlation processing is to correlate the received signal with several 

replicas of the transmitted signal, each one of these with a different time delay and 

Doppler-shift (time scale in the wideband case). When the received signal matches a 

replica, high correlation results. The highest value of all the correlations is selected. 

If the maximum value is higher than a prefixed threshold value a detection will be 

established at the range and with a velocity worked out from the corresponding time- 

delay and Doppler-shift respectively. The various parts of this process are represented 

in Figure 1.2, where rn stands for a fixed time parameter and wjn for a fixed frequency 

parameter.

The test statistic in the decision process involves the calculation of the noise correla­

tion matrix, R

For the case of AWGN, the test statistic can be shown to be equivalent to matched 

filtering [6]. However, in a reverberation-limited environment, calculating R  involves 

the calculation of the correlation matrix of the reverberation signal. A theoretical 

solution to this problem can be encountered in [6], but because of the difficulties 

encountered in practice of calculating the correlation matrix of the reverberation 

signal the correlation detector for the AWGN has often been used in the reverberation- 

limited case in spite of not being an optimum solution.
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Figure 1.2: Correlation processing a received contact.

1.5 Alternative approaches

Several technical approaches were initially considered as possible alternative fields to 

be researched for seeking of a feasible solution to the problem.

Power spectral density information is insufficient when phase information is needed 

and may be insufficient for extracting the necessary information from non-Gaussian 

signals. Higher-order cumulants and their higher-order spectra (polyspectra) can be 

shown to provide more information [7]. As a practical example of the application of 

this technique to the sonar problem, range and Doppler information are extracted 

from a Doppler-spread active sonar echo in AWGN using fourth-order spectra in [8].

Iligher-order cumulants and polyspectra are believed to be fruitful approaches for the 

application of interest although the high computational load appears to be its main 

constraint.
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Time-frequency processing as well as signal imaging with the aid of several time- 

frequency distributions is another interesting area whose research is believed to be 

fruitful within the sonar problem. A great deal about time-frequency analysis, de­

scription of many time-frequency distributions and their main characteristics can 

be encountered in [9]. Cochlear time-frequency representations as a way of time- 

frequency correlating the spectrogram of an echo signal with a series of replicas are 

presented in [10] for biosonar target recognition. The study of space-time resolution 

properties from ambiguity function analysis for the same application is as well pre­

sented in [10]. Transient signal analysis by means of the Wigner-Ville distribution 

(W VD ) can be encountered, for instance, in [11]. Detection and classification o f some 

underwater acoustic signals using the WVD and the cross Wigner-Ville distribution 

(XW V D ) is shown in [12].

Fuzzy logic allows more flexibility in reasoning than binary logic. Greater richness in 

the detection decision process is achieved by using fuzzy logic. Several applications 

of fuzzy algorithms in the domain of sonar systems are introduced in [13].

Artificial neural networks (ANNs) have also been applied to the study of target recog­

nition by sonar. A neural network model for 3-dimensional target recognition via 

sonar is proposed in [14]. Detection of several kinds of short-duration underwater 

signals by using ANNs is shown in [15]. ANNs require training data which should 

come from the same statistical distribution as the main source of data. The statis­

tics o f reverberation signals will vary depending on, among other factors, depth of 

operation, wind-speed, environmental characteristics and the type of signals being 

transmitted, so, intuitively, there will be in principle so many combinations of possi­

ble data with which train a neural network for detecting signals in reverberation noise.
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1.5.1 Justification of the selected approach

A great amount of work has been dedicated in the last few decades to the study 

and development of AF’s and adaptive algorithms to be applied in a wide variety of 

fields such as communications, sonar, radar, system modelling and identification, seis­

mology, biomedical electronics, mechanical design, speech recognition and navigation 

systems, as stated previously. Not only their inherent ability of learning the unknown 

characteristics of signals in time-varying environments and the great and interesting 

scope of the subject, but as well previous results obtained by using AF’s for signal 

tracking purposes did encourage the decision of adopting AF’s as the approach to 

find a solution for the problem introduced above. For instance, interference cancella­

tion in AWGN is achieved in [16] using an adaptive notch filter (ANF) implemented 

by means of a 2nd order allpass filter. A cascade of notch filters is used in [17] to 

track multiple sinusoids in additive broadband noise. A highly efficient ANF with 

improved tracking properties is presented in [18] to track the time-varying frequency 

of a sinusoidal component in AWGN. Three adaptive beamforming methods and real 

data from the Baltic sea are used in [19] for weak moving signal localisation and 

tracking in the presence of strong interference. Passive tracking of a maneuvering 

target is presented in [20] using a particular adaptive algorithm. Signal recovery in 

a reverberation-limited environment was achieved in [21] by using an adaptive noise 

canceller (ANC) together with real reverberation data from the deepest part of Dabob 

Bay, Washington.
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Chapter 2

Modelling the underwater 
environment

2.1 Introduction

As an assential component of this work, a model for simulating in some way the 

underwater environment has been developed. Special attention has been paid to 

the modelling of reverberation signals as they constitute the principal difficulty in 

underwater contact recovery applications. The main purpose of simulating the real 

scenario has been to be able to generate synthetic data in order to experiment with 

it when working with several adaptive structures. This has allowed to have an initial 

impression on the suitability of a given adaptive algorithm (AA), for the application 

of interest, before working on real data.

A description follows of the main characteristics of the problem. Then, theoretical as­

pects of those signals and some practical examples of thereby synthetically generated 

data are shown.

2.2 Passive and active sonar

In the passive sonar cusc there are not transmitters but only receivers at the array of 

transducers of the sonar system. The acoustic signals are received from a hypothetical

11



CHAPTER 2. MODELLING THE UNDERWATER ENVIRONMENT 12

source and only reception of acoustic data takes place. In the active sonar case the 

system transmits and receives acoustic data. If the transmit and receive transducers 

are at the same location the active sonar is monostatic, whereas it is bistatic when 

the transmit and receive transducers are at different locations.

Figures 2.1 and 2.2 show the effects of the channel for a passive sonar and an active 

sonar (bistatic) respectively.

Figure 2.1: Effects of the channel. Passive sonar [1],

Figure 2.2: Effects of the channel. Active sonar [1],

Reverberation-limited environments are caused by active sonars. The next section 

introduces further explanation of the model for the active sonar case shown in Figure 

2.2 above.
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2.3 Active sonar case

The multipath propagation phenomenon causes time, frequency and angle dispersion 

of the transmitted signal on its way to and from the contact respectively. In addition 

to the distortion of the signal due to the multipath phenomenon, ambient noise, flow 

noise and reverberation will be present at the receiver thus masking the contact.

The characteristics of the received contact will depend on the transmitted waveform 

and appropriate selection of this is important to reduce the effects of the channel

[1]. Research has been performed into this problem (see for instance [2)-[4], where 

wideband hyberbolic frequency modulated (HFM) signals are used for different ap­

plications related to the radar/sonar problem) but, as said previously, problems arise 

for detecting signals buried in reverberation, especially when their frequency bands 

overlap, no matter what kind of waveform is transmitted.

Ambient noise is generated in the sea by many sources: wave action, thermal agita­

tion, rainfall, seismic events, sounds made by animals, etc. Although these sources are 

localised, ambient noise is an all-pervading quantity with stationary Gaussian statis­

tics. Flow noise corresponds to the self-noise of a moving vessel in which a sonar sys­

tem might be placed. Discrete components will be present at the spectrum of the flow 

noise with frequencies proportional to the blade-rate proceeding from the propeller 

cavitation. Reverberation occurs as a result of the presence of scattering elements 

throughout the region insonified by the active sonar. Backscattered echoes from the 

surface and the bottom of the sea cause surface-reverberation. Volume-reverberation 

is the result of multi-backscattering of the transmitted echo from suspended reflective 

and diffractive objects such as plankton and nekton.

Ambient noise, reverberation and contact signals will be synthetically generated and 

added to be present at the receiver as explained below.
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2.3.1 Noise-lim ited and reverberation-limited environments

The sonar system is said to be background noise-limited if the sum of the ambient 

noise and the flow noise dominates the reverberation component, and reverberation- 

limited if the converse is true [1],

2.4 Modelling ambient noise

As pointed out previously, an optimum solution to the noise-limited case already ex­

ists and no further insight on the subject is going to be presented here. Detailed 

descriptions of the characteristics and the properties of ambient noise can be found 

in [5, 6]. One or other noise source will be predominant at different intervals of the 

whole frequency band.

Ambient noise has been found by probability density analyses of data in one deep- 

and two shallow-water areas to have a Gaussian amplitude distribution at moderate 

depths. This is consistent with the view that the noise originates through a great 

many sources of random amplitude and phase [5]. To model ambient noise, AWGN 

with zero mean and finite variance was generated.

2.5 Modelling reverberation

Two different approaches are encountered in the literature to simulate reverbera­

tion signals: the point-scatter model approach [6, 7] and the central limit approach 

[7, 8, 9, 10]. Theoretical aspects of both models are explained below. Reverbera­

tion signals have been generated by means of both approaches and examples of real 

valued synthetic reverberation signals generated by both approaches are shown and 

their main features compared to those of 1-channel reverberation data provided by 

the Defence Evaluation Research Agency (I)ERA) site at Bincleaves, Portland, UK. 

Further analysis will show the analogy between both models.
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2.5.1 M odel I: Central L im it theorem based

Repeated investigations since the forties have confirmed that the instantaneous rever­

beration amplitude is Rayleigh-distributed [5]. On the other hand, spread and shift 

of the frequency of a transmitted sinusoidal sonar pulse will contribute to widening 

of the frequency band of the reverberation signal. The velocity of the sonar platform 

will cause a Doppler shift in centre frequency. The frequency spread is due to the 

finite duration of the sonar pulse and by the random motion of the reverberation 

producing scatterers.

A mathematical model which takes into account these factors can be encountered in

[1] as

v(t) =  A(t)cos(wct +  «!>(<)) ( 2 . 1 )

where A(t) is Rayleigh distributed, 4>(<) is uniformly distributed, and wc is the centre 

frequency of the transmitted signal.

Applying the Central Limit theorem, the reverberation signal, v(t), can be shown to 

result in a Gaussian distributed signal. The Central Limit theorem states that the 

sum of n independent identically distributed (iid) random variables with finite mean 

and finite variance approaches a Gaussian random variable as n becomes large [11]. 

Expanding the cosine term in Eq. 2.1 into its Fourier series, Eq. 2.1 can be seen as 

the sum of iid random variables fulfilling the hypothesis of the theorem and therefore 

resulting in a Gaussian distributed random variable.

Figure 2.3 contains the time waveform of a synthetic reverberation signal generated 

according to this model, rmodl. Figure 2.4 shows the probability density function 

(pdf) of the elements in rmodl. Figure 2.5 shows the pdf of the amplitude of rrnodl. 

Figure 2.6 is a time-frequency representation of rrnodl, obtained by applying a short- 

time Fourier transform (STFT) with an 80% overlap.
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v(t)=reverberation (Model I)

~*0 0 5 1 1 5
time(s)

2.3: Model I generated reverberation time waveform.

pdf of reverberation (Model I)

Figure 2.4: Model I generated reverberation pdf.
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Amplitude pdf reverberation M odel I

Figure 2.5: Model I generated reverberation amplitude pdf.

spectrogram of reverberation (Model I)

Figure 2.6: Model 1 generated reverberation spectrogram.
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2.5.2 M odel I I :  Point-scatter based

Point-scattered reverberation data can be generated by placing a large number of 

point scatterers randomly throughout the scattering region of interest and summing 

the echoes from each point scatter [7], Let the static case be considered in the first 

place.

For a transmitted waveform s(t), the signal received from the nth backscattering 

element will be a„s(t — <„). Therefore, affected by an attenuation coefficient ‘an’ , and 

by a time delay ‘<n’ . The attenuation coefficient is related to the strength of the nth 

scatterer, and the time delay to its position.

The received signal can be expressed as well as:

s (t )(g )a n6(t -  tn) (2.2)

where (g) denotes convolution and an6(t — tn) is an impulse of strength ‘a „’ located 

at t =  tn.

For a number n of scatterers, the received signal will be:

N
SR(t) =  s(t) (g) ^  an6(t -  tn)

n= 1
(2.3)
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If s(t)  is in analytic1 form,

s(<) =  (2.4)

where f 0 is the natural frequency of s(t) then,

sR(t) =  v (t )eU2*M  <g> £  an6(t -  tn)
n = 1

=  Y , anP-(t -  <„)e(-’2,r-fo(i- i"»  (2.5)
n = l

whose envelope is, by definition:

n = l

N  N
= -  in)cos(2TVf0tn) -  j  ^2 ann(t -  tn)sin(2xf0t„) (2.6)

n = l  n= l

Both summations have the same variance, and by the Central Limit theorem are as­

sumed Gaussian with zero mean. Because of the orthogonality of the cosine and sine 

functions, the real and imaginary parts are statistically independent [6]. This can be 

proved by means of calculating the covariance of the real and imaginary parts,

C ov(x,y) =  < xy >  — < x > <  y > (2.7)

'T h e  a n a l y t i c  f u n c t i o n  o f  a  rea l s ig n a l  s ( t )  is a  c o m p l e x  fu n c t io n  t h a t  ca n  b e  e x p r e s s e d  as 
-4(<)el j )) anci w h o s e  s p e c tr u m  is id e n t ic a l  t o  th e  p a r t  o f  th e  s p e c tr u m  o f  s ( t ) ,  S ( w ) ,  c o r r e s p o n d in g  
t o  t h e  p o s i t iv e  fr e q u e n c ie s  o n ly . T h e  rea l p a r t  o f  th e  a n a ly t ic  s ig n a l w ill b e  th e  o r ig in a l  s ig n a l ,  « ( ( ) ,  
a n d  th e  im a g in a r y  p a r t  ca n  b e  r ig o r o u s ly  c a lc u la t e d  b y  m e a n s  o f  th e  H ilb e r t  T r a n s fo r m . H o w e v e r , 
a n  a lte r n a t iv e  w a y  o f  o b ta in in g  an a p p r o x im a t io n  o f  th e  a n a ly t i c  s ig n a l is  b y  m e a n s  o f  th e  Q u a d r a ­
tu r e  A p p r o x im a t io n .  A  m e a s u r e m e n t  o f  h o w  g o o d  a  p a r t ic u la r  Q u a d r a tu r e  A p p r o x im a t io n  is ca n  b e  
p e r fo r m e d  b y  e v a lu a t in g  th e  a m o u n t  o f  e n e r g y  r e m a in in g  in t h e  n e g a t iv e  fr e q u e n c ie s  a n d  c o m p a r in g  
it w it h  th e  t o ta l  a m o u n t  o f  e n e r g y  o f  th e  a n a ly t ic  s ig n a l o b t a in e d  in  th e  r ig o r o u s  w ay .
A lt h o u g h  s ig n a ls  a re  real in n a tu re , th e  a n a ly t i c  s ig n a l is c r e a te d  in  o r d e r  th a t  o n e  is a b le  t o  w ork  
w it h  a  s ig n a l w h o s e  w h o le  s p e c tr u m  is id e n t ic a l  t o  th e  p o s i t iv e  p a r t  o f  th e  s p e c t r u m  o f  th e  rea l 
s ig n a l  s ( t )  o n ly , th e re fo re  a v o id in g  n e g a t iv e  fr e q u e n c ie s . O n e  o f  th e  a d v a n ta g e s  o f  u s in g  t h e  a n a ly t ic  
s ig n a l  is th a t  its  a m p l i t u d e  a n d  p h a se  a re  u n a m b ig u o u s ly  d e f in e d . A n d , as i l lu s tra te d  in  s e c t io n  5 , 
th e  in s ta n ta n e o u s  fr e q u e n c y  o f  su ch  a  s ig n a l  is  e q u a l t o  th e  d e r iv a t iv e  o f  y> ((), ¥>(<)'.
I t  is  w o r th  n o t in g  a t  th is  p o in t ,  h o w e v e r , t h a t  in s ta n ta n e o u s  fr e q u e n cy  m u s t  b e  u n d e r s t o o d  as a  
f r e q u e n c y  a v e ra g e , a n d  th a t  it  is a  p a r a m e t e r  th a t  c o u ld  h a v e  a  s ta n d a r d  d e v ia t io n  a n d  a  v a r ia n c e , 
a l lo w in g  n e g a t iv e  v a lu e s . It is th e  a v e ra g e  v a lu e  a t a n y  p a r t ic u la r  in s ta n t  o f  t im e  th e  a m o u n t  w h ich  
a lw a y s  w ill b e  p o s i t iv e  a c c o r d in g  t o  th is  d e f in i t io n  o f  in s ta n ta n e o u s  fr e q u e n cy . I n fo r m a t io n  r e g a r d in g  
th is  p a r t ic u la r  issu e  ca n  b e  e n c o u n te r e d  in  [12]
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where < >  stands for expected value.

In this case

x =  anfi(t — tn)cos(2wf0tn) (2.8)

y =  anfj.(t -  tn)sin(2-Kf0tn) (2.9)

and

C ov(x ,y ) =  < a2nn(t -  tn)2 cos(2n f 0tn)sin(2n f 0tn) > -  < anfi(t -  tn)cos(2wf0tn) >

< a„fi(t — tn)sin(2irf0tn) > =  0 (2.10)

As a„, p(< — tn) and cos(2n/o<„) or sin(2irf0tn) are statistically independent, the last 

equation above can be written as:

C ov(x ,y ) =  < a2n X  ¡j.(t — tn)2 > <  cos(2Trf0tn)sin(2vf0tn) >

— <  an > 2< n(t — tn) > 2< cos(2irf0tn) > <  sin(2nf0tn) >  (2-11)

and C ov(x,y) =  0 in this case because:

<  cos(2Trf0tn) >  =  0 ( 2 . 12)

< sin (2xf0tn) >  =  0 (2.13)

< cos{2nfQtn)sin(2irf0tn) > =  ^ < sin(4wf0t„) > =  0 (2.14)

hence being the real and the imaginary parts independent.

The received envelope is thus identified as a complex Gaussian variable. The statis­

tical properties of such a variable can be encountered in [6], It is proved [6] that the 

magnitude of the received envelope is a Rayleigh variable.

Let now the relative movement of the sonar platform be considered. When the active 

sonar is moving with a constant velocity ‘ v\ the relative radial velocity between the 

sonar and any of the scattering elements will cause a frequency shift of any of the
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replicas in their way back to the active sonar (note that the narrowband condition 

is assumed to hold for the transmitted waveform and therefore time scale is equiva­

lent to frequency shift). Therefore, as opposed to the static case, a frequency spread 

around the centre frequency of the transmitted signal will be produced. So, this must 

be accounted for in the proposed model.

Let the modulus of the instantaneous velocity of the sonar be denoted by v. For the 

nth scatterer, its relative radial velocity to the sonar platform, tv, will be

ur =  vcos(ipn) (2.15)

%j)n being the angle between the velocity of the sonar and the position of the nth 

scatterer relative to the sonar. Scatterers located at different positions will originate 

different frequency shifts.

The following assumptions are made for the scattering elements [5]:

1) A random, homogeneous distribution of scatterers throughout the area or volume 

producing reverberation at any instant of time.

2) A density of scatterers so large that a large number of scatterers occur in an ele­

mental volume dV or area dA.

3) A pulse length short enough for propagation effects over the range extension of the 

elemental volume or area to be neglected.

4) An absence of multiple scattering; that is, the reverberation produced by rever­

beration is negligible.

So, the scattering elements will be uniformly distributed within the ocean body at 

locations t =  tn. For each of those locations, the angle 4>n will be different and so will 

be the relative radial velocity and the frequency shift. This one will be given by

fd„ ~  2vcos(4’n)/\0 (2.16)
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A0 being the wavelength corresponding to the centre frequency of the transmitted 

waveform. As the distribution of tn is uniform, so will be that of ipn and therefore 

the distribution of /¿ n. The received signal from N uniformly distributed scatterers, 

now will be
N

sR(t) =  £  ans (t -  (2.17)
n=1

with

an: zero mean finite variance distributed 

tn: uniformly distributed 

fdn■ uniformly distributed

Control over the bandwidth of the reverberation signal will be possible by varying 

the standard deviation of the uniformly distributed tn and /¿ n.

Figure 2.7 contains the time waveform of a synthetic reverberation signal generated 

according to this second model, rmod‘2. Figure 2.8 shows the probability density 

function (pdf) of the elements in rmod2. Figure 2.9 shows the histogram of the 

amplitude of rmod2. Figure 2.10 is a time-frequency representation of rmod2, obtained 

by applying a short-time Fourier transform (STFT) with an 80% overlap.
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v1(t)=reverberation (M odel II)

tim e(s)

Figure 2.7: Model II generated reverberation time waveform.

pdf of reverberation (Model II)

Figure 2.8: Model II generated reverberation pdf.
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Am plitude distribution of reverberation M o d e l II 10001---------- .-----------.---------- 1----------1---------- .-----

Figure 2.9: Model II generated reverberation amplitude histogram.

spectrogram of reverberation (Model II)

Figure 2.10: Model II generated reverberation spectrogram.
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Some analysis demonstrating the analogy between these two models has been per­

formed and follows below. Nevertheless, experimenting with them has shown that the 

point-scatter approach allows better control over the bandwidth of the reverberation. 

More sophisticated ways to model reverberation exist. For instance, complex-valued 

baseband nonstationary multibeam Gaussian reverberation is generated in [10] us­

ing multivariate complex autoregressive (AR) filters excited by complex multivariate 

white Gaussian noise.

Only real-valued synthetic reverberation signals have been generated within this work. 

The obtained sequences have been deemed to be accurate enough in order to perform 

an initial evaluation of the suitability of several adaptive structures for the applica­

tion o f interest.

The time waveform, pdf and spectrogram of a ping containing real 1-channel rever­

beration signal are shown below, allowing a qualitative comparison with the synthetic 

reverberation signals generated by means of the Central Limit and point-scatter mod­

els. The real reverberation signal corresponds to the received multi-backscattered 

signal when transmitting a 200 ms long pulse in shallow water. The sampling fre­

quency was Ikllz, and the reverberation centre frequency was 500 Hz. The total time 

duration of ping was about 2.17 s.

Figure 2.11 contains the time waveform of a real reverberation signal corresponding to 

the transmission of one pulse, rreal. Figure 2.12 shows the probability density function 

(pdf) of the elements in rreal. Figure 2.13 shows the histogram of the amplitude of 

rreal. Figure 2.14 is a time-frequency representation of rreal obtained by applying a 

short-time Fourier transform (STFT) with an 80% overlap.
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real 1 -ch a n ne l reverberation signal

tim e(s)

Figure 2.11: Real reverberation time waveform from a transmitted pulse.

pdf real 1 -ch a nn . reverberation ping

Figure 2.12: Real reverberation pdf.
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specgram of 1-ch a rm , real reverberation ping

x 107

1°.

f(Hz)

Figure 2.14: Real reverberation spectrogram.
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2.5.3 Analogy between both models

Let some notes on the encountered equivalence between both models be depicted 

here. Substituting s(t — tn) in Eq.2.17, the received waveform for the non-static sonar 

case is

sR(t) =  £  anfi(t -  tn)eO W o«-t„»c(i3*/*.0 (2.18)
71=1

The expression above for the received signal can be written as
N

sR(t) =  /ifl(<)e°2’r/ot)e(j2’r/d" ,) (2.19)
n = l

with

M t )  =  E  °nP(t -  < „ ) e < - ^ ‘ "> (2.20)
n = l

In Eq.2.19, fiR{t) has been shown to be a variable whose magnitude is Rayleigh 

distributed, thus it can be taken out of the summation as it will be statistically inde­

pendent of the term with uniformly distributed frequencies. Applying the

Central Limit theorem this corresponds to a Gaussian distributed random variable, 

whose amplitude magnitude is Rayleigh distributed and whose frequency band is uni­

formly distributed.

The Central Limit approach given by Eq.2.1 presents a uniform distribution of the 

phase of the backscattered signal. Equivalence between both models will thus be 

demonstrated if the phase and frequency uniform distributions in the respective mod­

els are shown to produce the same effect to the thereby generated signals.

Let the reverberation signal as given by Eq.2.1 be rewritten in its general form as­

suming that is given by a complex valued time series,

v(t) =  A(f)e<^<‘»  (2.21)

where in this case,
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= wct +  $(*) (2.22)

and identify v(t) as given by Eq.2.21 with an analytic signal.

The mean frequency of an analytic signal can be shown to be [12]

< w > =  J ifi'(t)\v(t)\2d(t) =  J v '(t)A 2(t)d(t) (2.23)

with the aid of the Parseval’s theorem

/  H<)|M<) =  /  |V(u,)|2d(^) (2.24)

where V(ic) is the Fourier transform of v(t).

This result shows that the derivative of the phase is the instantaneous frequency, as 

integrating ‘something’ with the density over time yields to the average frequency. 

That ‘something’ must be the instantaneous value for which the average is being cal­

culated, by definition.

If we differentiate the phase of v(t) we obtain the next expression for the instantaneous 

frequency:

M *)/ d (t) =  wc +  $'(<) (2.25)

As 4>(i) was uniformly distributed, if 4>'(f) is also uniformly distributed, the instan­

taneous frequency of the reverberation signal would be uniformly distributed around 

the centre frequency wc.

The derivative of a function evaluated at a particular value of the function’s domain 

is given by the value of the slope of the straight line tangent to the function evaluated 

at that particular point. Joining the consecutive values of the uniformly distributed 

random sequence $ (n T )  by straight lines, the random sequence given by the corre­

sponding values of the slopes will be uniform too (i>(nT) represents a discrete dis­

tribution for convenience with n being the sample number and T the sampling period).
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Hence, the relation between <t>(i) and f dn has been established and the equivalence 

between both models demonstrated, as both have Rayleigh distributed amplitudes 

and the uniform distribution of the frequency in the second model has been shown 

to be equivalent to having a uniformly distributed phase, as it is the case in the first 

model.

2.6 Modelling contact signals

Real data for the contact was not provided and it had to be computer generated for 

all the experiments carried out, either with synthetic or with real reverberation data. 

The study presented herein is related to the narrowband case. This restricts the range 

of signals to be used as the contact signal. In addition, only sinusoidal pulses to be 

regarded as the contact have been encountered in the literature when studying the 

active sonar problem restricted to the narrowband case.

The general form of a burst of a sinewave (a laneburst) with a pre-selected time 

duration and frequency has been used in most of the experiments. It has been given 

by real-valued sequences when working with real-valued reverberation data and by 

complex-valued sequences when working with complex-valued data. Linear frequency 

modulated (LFM) signals with varying frequency slopes and with abrupt changes in 

the frequency value were used in some of the experiments to evaluate the ability of the 

adaptive systems in preserving the changes at the output. Finally, multicomponent 

signals given by the addition of several bursts of sinewaves with different frequencies 

were regarded as well as contact signals in order to evaluate their preservation at the 

output of the adaptive systems.

2.7 Summary

A model of the underwater environment for the active sonar case has been pro­

posed. Self-made noise has been assumed absent. Ambient noise has been modelled
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as AWGN.

Special attention has been paid to the modelling of reverberation signals, as the main 

objective of the research is to assume a reverberation-limited environment and sup­

press in some way the reverberation in order to enhance and be able to detect the 

contact.

Two different ways of modelling reverberation have been proposed, and the equiva­

lence between both models demonstrated. The time waveforms, pdf’s and 3-D spec­

trograms of synthetic and real reverberation signals have been compared and they 

have been shown similar qualities.

Synthetic sinusoidal pulses have been said to have been regarded as the contact in 

most instances when performing experimental work, both with synthetic and with 

real reverberation signals.

LMF pulses and the addition of several sinusoidal pulses with different frequencies 

have been used as contact signals in some of the experimental work carried out with 

synthetic reverberation signals, in order to evaluate the behaviour of the AF’s under 

research in the presence of those situations.
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Chapter 3

Adaptive filters

Some fundamentals on adaptive signal processing (ASP) systems and adaptive algo­

rithms are discussed in this chapter.

3.1 Adaptive systems: main characteristics

There are two main reasons for the need of ASP:

(i) The filter parameters to achieve certain specifications are unknown.

(ii) The parameters of a system to be modelled may vary with time.

ASP systems usually have some or all of the following characteristics [1]:

1) They can automatically adapt (self-optimise) in the face of changing (nonstation- 

ary) environments and changing system requirements.

2) They can be trained to perform specific filtering and decision-making tasks. Syn­

thesis of systems having these capabilities can be accomplished automatically through 

training. In a sense, adaptive systems can be ‘ programmed’ by a training process.

3) Because of the above, adaptive systems do not require the elaborate synthesis 

procedures usually needed for nonadaptive systems. Instead, they tend to be ‘self­

designing’ .

4) They can extrapolate a model of behaviour to deal with new situations after having 

been trained on a finite and often small number of training signals or patterns.

33
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5) To a limited extent, they can repair themselves; that is, they can adapt around 

certain kinds of internal defects.

6) They can usually be described as linear time variant systems.

7) Usually, they are more complex and difficult to analyse than nonadaptive systems, 

but they offer the possibility of substantially increased system performance when the 

input signal characteristics are unknown or time varying.

Adaptive systems change their parameters’ values in order to optimise specified per­

formance functions. As for the case of fixed filters, AF’s can be designed to be either 

non-recursive or recursive. The former ones are known as finite impulse response 

(FfR) AF’s, and the latter ones as infinite impulse response (HR) AF’s. IIR AF’s 

offer in principle the same advantages as HR fixed filters over FIR designs. However, 

IIR AF’s have two important limitations when used for practical purposes:

a) The poles of their transfer function may lie outside the unit circle in the z-domain 

during the process of adaptation, therefore yielding instability.

b) Their performance or cost functions are not quadratic and may have local minima. 

This fact will make the search of the absolute minimum of the function difficult.

Many adaptive algorithms use a gradient search for the global minimum of the perfor­

mance function, a) above has been a serious limitation for multimodal performance 

functions and consequently IIR AF’s have had very limited application. Recent re­

search on the subject of IIR AF’s proposes several methods to overcome the problem 

of instability. For instance, a particular adaptive genetic algorit hm is presented in [2], 

a new class of AF’s, dubbed fixed pole adaptive filters (FPAF’s), is presented in [3] 

together with some methods for selecting the fixed pole locations based on a-priori 

information regarding the operating environment of the AF, and one dimensional 

block adaptive IIR filters are presented in [4] based on the LMS algorithm leading to 

reduced computational complexity.
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Most of the AF’s researched in this thesis have been implemented by means of linear 

1 FIR adaptive structures. So far, HR AF’s have been shown to be feasible only for 

a few very specific applications due to their stability constraints.

3.1.1 Closed-loop adaptation

Figure 3.1, from [1], shows a typical closed-loop adaptive system.

Input

signal

Other

Data

Figure 3.1: Closed-loop adaptation

In closed-loop adaptive processes the adjustment of the parameters of the processor 

will not only depend on the ‘other data’ and the input signal, but on the output 

signal too. This will allow the parameters of the filter being adjusted with little or 

no a-priori knowledge of the input signals statistics [1]. 'I’he values of those parame­

ters will be provided by the adaptive algorithm, which will perform the appropriate 

calculations in order to optimise a specified performance function as the input data 

flows through.

'B y  lin e a r  it is m e a n t  th a t  th e  s te a d y -s ta te  o u t p u t  o f  th e  f ilte r  w ill b e  a  lin ea r  fu n c t io n  o f  th e  
in p u t  s e q u e n c e . N o te  n e v e rth e le ss  th a t  a n y  A F  is t im e  v a r y in g  a n d  n o n lin e a r  in th e  f o l l o w in g  sense : 
w h ile  a d a p t a t io n  th e  f ilte r  p a ra m e te rs  v a ry  a n d  th e re fo re  th e  o u t p u t  c a n n o t  b e  e x p r e ss e d  a s  a  s in g le  
l in e a r  fu n c t io n  o f  th e  in p u t  se q u e n ce .
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An alternative representation of the closed-loop or performance-feedback system above 

is shown in Figure 3.2 [1],

d (desired output)

Figure 3.2: Signals in closed-loop adaptation

where d (desired output), is the primary input, x (input), is the reference input, y 

(output), is the processor output, and e (error), is the error signal or system output.

3.1.2 Th e  Adaptive Linear Com biner (A L C )

With the exception of an ANF implemented by means of an IRR structure based 

on a 2nd order allpass section for experimental purposes at the initial stages of the 

work, the rest of the AF’s being the object of research have been implemented using 

FIR AF’s, as stated above. In particular, the ALC has been present in all of those 

structures.

Figure 3.3, from [1], shows a representation of the ALC in the form of a single-input 

adaptive transversal filter. The ALC appears in one form or another in many AF’s, 

and it is the single most important element in learning systems and adaptive pro­

cesses in general [1],
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Figure 3.3: Adaptive linear combiner in the form of single-input adaptive transversal 
filter [1].

For a system such as the one in Figure 3.3, with a number of taps L, the output, yk, 

can be expressed as:

yk =  X TkW k =  W TkX k (3.1)

where

=  [*k x k-\ xk- 2 ••• xk- L] (3.2)

is the input vector,

W jf =  [u»o* t»u w2k ... wit] (3.3)

is the weight vector, and k denotes iteration number.

In the adaptation process with performance feedback, as shown in Figure 3.2 , the 

weight vector is adjusted to cause the output, yk, to agree as closely as possible with 

the desired response signal, dk, the ‘other data’ in Figure 3.1. The difference between 

dk and yk, yields the error signal, ek =  dk — yk.

The statistical approach to the solution of the linear filtering problem requires the 

availability of certain statistical parameters. In many practical instances the adaptive 

process is orientated toward minimising the mean-square value, or average power of 

the error signal. In that case, and for stationary inputs, the resulting solution is 

widely known as the Wiener filter.
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Assuming that dk, X* and ek are statistically stationary, the quadratic performance 

function is given by Eq.3.4 [1],

E[e\) =  E[d\] + W t R W  -  2 P r W  (3.4)

where

R  =  E [X kX Tk] (3.5)

is defined as the input correlation matrix,

P =  E[dkX Tk] (3.6)

is defined as the cross-correlation vector between the input vector and the desired 

response, and T stands for transpose.

Eq. 3.4 represents the mean square error performance surface for the adaptive linear 

combiner and it is worth noting that it is a quadratic function of the weight vector 

when the input signals and the desired response are statistically stationary.

The minimum mean-square error is achieved by setting the weight vector, W , to its 

optimal value, W ", sometimes called the Wiener weight vector [1],

W * = R - 'P  (3.7)

The Wiener approach to the linear filtering problem has been depicted here for con­

venience as it will be referred to later in this work.

Nonquadratic cost functions can be used as well within the statistical approach to 

the linear filtering problem. A deterministic rather than statistical approach to the 

problem could be adopted too. All these cases will be discussed below.
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3.2 Adaptation algorithms

Closed-loop AF’s are operated by recursive algorithms in order to achieve certain 

pre-established performance or specification. Different kinds of adaptive algorithms 

have been developed in the literature in order to be used within a wide range of appli­

cations. Usually, the choice of one algorithm or other is determined by the suitability 

of their specific properties to a particular problem.

A fair classification of the main characteristics of a particular ASP algorithm can be 

encountered in [5]. The main aspects of this classification are outlined below:

1) Rate of convergence. It can be defined as the number of iterations 

needed to approach the global minimum of a pre-established performance 

function, or optimum solution. This is an important aspect as fast rates 

of convergence will be needed when there is the need to rapidly adapt to a 

stationary environment with unknown statistics or when the environment 

is nonstationary and there is the need of tracking the nonstationarities.

2) Misadjustment. This provides a quantitative measure of the amount 

by which the steady state or final value of the cost function deviates from 

the optimum value.

3) Robustness. This refers to the ability of the algorithm to operate sat­

isfactorily with ill conditioned input data.

4) Computational requirements. This includes the number of operations 

required per iteration by the particular algorithm and the size of the mem­

ory locations required to store the data and the program.

5) Structure. This refers to the structure of the information flow in the 

algorithm, determining the manner in which it will be implemented in 

hardware form.

6) Numerical properties. Inaccuracies occur in numerical implementation
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of algorithms due to round-off noise and representation errors in the com­

puter. The manner in which an error, introduced at an arbitrary point in 

the algorithm, propagates to future time instants is one of the aspects to 

study. The effect and amplification of round-off noise at the filter output 

is another source of inaccuracy. Some special rescue devices allow the im­

plementation of certain adaptive algorithms sensitive to such numerical 

errors.

3.2.1 Classes of adaptive algorithms

Initially, all adaptive algorithms can be divided into two main classes depending on 

the numerical procedure or approach towards the minimum of a given cost function:

(i) Those which use a statistical approach.

(ii) Those which use a deterministic approach.

Within class (i) above, the most commonly used procedures are based on gradient 

search methods. In a very general sense, gradient search methods yield in most of the 

cases algorithms with the following form for the iterative weight adaptation process

[7]=
w„etu = w 0id ±  gain x gradient (3-8)

where the error is a scalar signal, the gradient is a vector signal and the gain is a 

scalar or a matrix.

The two best-known gradient methods are the Newton’s method and the method of 

the steepest descent. Another efficient way of tackling the problem of continuously 

approaching the minimum of the performance function and still using a statistical 

approach, is by means of Kalman filter theory. Contrary to practical gradient search 

methods, Kalman filter theory makes full use of all the information available at the
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time of adaptation. Much faster rates of adaptation are thereby achieved, although 

the price to pay is increased algorithm complexity [5].

Algorithms pertaining to class (ii) above can be obtained by extending the classical 

method of least squares to develop recursive algorithms for the design of AF ’s. Given 

a number N of real values, u(l), u(2), . . . ,u(N), at times <i,<2, . . . ,tN, the method 

of least scjuares provides a means of constructing a hypothetical curve which fits the N 

points in some optimum fashion. Denoting the time dependence of this curve by /(<,•), 

the best fit is obtained by minimising the sum of squares of the difference between 

/( it )  and u(i) for i =  1,2,. . . , JV. This provides an exact solution to the particular 

problem without invoking assumptions on the statistics of the numerical sequences, 

thus the deterministic character of the approach.

Two widely used adaptive least squares algorithms are the recursive least squares 

(RLS) algorithm and the class of least squares lattice (LSL) algorithms. The RLS 

algorithm may be viewed as the deterministic counterpart of the Kalman filter the­

ory [5]. LSL algorithms are based on a different structure than the RLS algorithm 

and present the useful information in a different way. Still, they provide an exact 

solution to the linear filtering problem too. Both the RLS and the LSL algorithms 

achieve faster rates of convergence under certain circumstances and have a series of 

properties that make them very interesting for some applications, compared to other 

algorithms based on gradient search methods. Again, the price to pay is an increased 

computational complexity.

Experimental work has been carried out with several gradient search based algorithms 

and with the deterministic class of LSL algorithms. Further insight on their theoret­

ical aspects is thus provided below.
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3.2.2 Stochastic gradient algorithms

In many instances the signals to be processed are stochastic and the parameters of 

the performance surface are unknown and/or time-varying. If those parameters were 

known, the minimum of the cost function could be immediately reached using gradi­

ent procedures by calculating the ‘ true’ gradient. It is in that fashion that the ideal 

Wiener solution given by Eq. 3.7 is reached.

Stochastic gradient algorithms involve having to estimate in some way or another the 

gradient of a particular performance function to continually indicate the direction in 

which its minimum lies. The estimated gradient at each particular instant of time 

may be seen as the true gradient evaluated at that time plus some kind of noise. 

Hence the use of the term ‘stochastic gradient’ for this class of algorithms.

Newton’s and steepest descent methods

Both of these methods are gradient search methods, and cause all components of 

the weight vector to be changed at each step in the search procedure. For Newton’s 

method, the changes are always in the direction of the minimum of the performance 

surface, provided that the surface is quadratic. For the steepest descent method, the 

changes are in the direction of the negative gradient of the performance surface. For 

both methods the gradient vector needs to be measured at each step in the search 

procedure.

Newton’s method

Newton’s method is initially a method for finding the zeros of a given function which 

involves having to calculate the second order derivatives of the function. A detailed 

description of this gradient search method can be encountered in [1], Iterative adap­

tation of the weight vector is there shown to be given by,

W *+1 = W fc- i R - > V * (3.9)
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where V* >s the gradient vector evaluated at the kth iteration. This method is known 

to adapt to the optimum solution in one only step [1][7]. However, on one hand, the 

fact of having to calculate the inverse of the input correlation matrix makes it fairly 

complex from the computational point of view. On the other hand, such a rapid 

adaptation to the minimum of the performance surface makes the method interesting 

from the mathematical point of view but it is not so useful for filtering purposes. 

This is because slow adaptation results in a filtering process that reduces the noise 

in the weight vector caused by estimating the gradient function during the adapta­

tion process. It can now be anticipated that some kind of tradeoff between rate of 

convergence and the amount of ‘excess noise’ present at the output of the filtering 

process will be needed when searching the global minimum of a cost function. These 

facts have led to Newton’s method, as given Eq. 3.9, not usually being implemented 

in practical adaptive filtering systems.

The method of steepest-descent

This is the most widely applicable method for deriving adaptive algorithms to be 

implemented in practical systems. Basically, adaptation involves correcting the weight 

vector in the direction of the negative of the gradient vector of the performance surface 

at each iteration. Adaptation of the weight vector is given by [1],

w *+1 = W* + M -V )  (3-10)

where p is a constant known as the stability parameter, governing the step size of 

adaptation and the stability of the process. Furhter insight into the theory of the 

method can be found, for instance, in [1][5][7].

An interesting comparison between the performance of both methods is presented in 

Chapter 5 of [1], The analysis assumes a quadratic performance surface and the data 

being processed by a structure of the form depicted in Figure 3.4. Gradient compo­

nent estimation is performed by means of derivative measurement (taking differences 

between short-term averages of the square error).
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o e

Figure 3.4: ALC applied to error function optimisation

One important consideration derived from the analysis is that searching the minimum 

of the performance function by means of the steepest descent method will impose a 

number nl of different time constants in the adaptation process, whereas only one 

time constant is imposed by means of Newton’s method2

3.2.3 Th e  least mean square (L M S ) algorithm. M ain fea­
tures

The LMS algorithm is a stochastic gradient algorithm that has been used in the im­

plementation of many practical ASP systems yielding satisfactory results for a wide 

range of applications in the literature. It is developed following the method of the 

steepest descent and some of its interesting features are its simplicity and ease of im­

plementation. Full development of the LMS algorithm and conditions for its stability 

can he encountered in [1] for the case of processing real-valued data, and in [5] for 

the general case of processing complex-valued data sequences.

Still, some notes on the LMS algorithm as encountered in [1] are presented here for 

being considered of relevance. The error signal at the ktfl iteration in the adaptive 

structure drawn in Figure 3.4 will be given by

c o n s t a n t s  as d iffe re n t  e ig e n v a lu e s  a t  t h e  in p u t  c o r r e la t io n  m a tr ix , R .  H o w e v e r , o n ly  o n e  t im e  c o n s ta n t  
is  im p o s e d  b y  th e  N e w t o n ’s m e th o d ,  th is  o n e  h e n c e  b e in g  in s e n s it iv e  t o  th e  e ig e n v a lu e  s p r e a d  o f  
th e  in p u t  c o r r e la t io n  m a tr ix  [1], T h is  is  c o m m e n t e d  h ere  as it  w ill  b e  a n  i m p o r t a n t  p o in t  t o  b e  
c o n s id e r e d  fu r th e r  o n .

2 It ca n  b e  s h o w n  th a t  fo r  th e  s te e p e s t  d e sce n t  m e th o d  th e re  w ill  b e  as m a n y  a d a p t a t io n  t im e
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Let £ be defined as,

(3.12)

from Eq. 3.4.

In order to derive the LMS algorithm, the estimate or mean value of the square error, 

£, is approximated by the instantaneous value of the square error at each iteration, 

ek. Then, Eqs. 3.4 and an approximation of 3.12 become

Using this approximation to calculate the gradient estimate of £* at that iteration 

number, V ti this one can be shown to be obtained as [1]

steepest descent method, Eq. 3.10, the LMS algorithm is obtained as given by

Eq. 3.15 shows the well-known ease of implementation of the LMS algorithm, as no 

averaging, squaring, or differentiation are required.

In order to illustrate the process of vector weight adaptation towards the minimum of 

a quadratic performance surface, a straightforward example follows. For the system 

shown in Figure 3.4, let the desired signal and the adaptive transversal filter input 

be a sinewave and a cosinewave with the same frequency respectively,

ik =  el =  dl +  w£x,xrw, -  2dkX TkW k (3.13)

V* =  -2e*X * (3.14)

Substituting now this result into the expression for weight adaptation given by the

W;t+i =  W k +  2 fiX kek (3.15)

dk =  sin(2wf0kT) (3.16)

x k =  cos(2irf0kT) (3.17)

with

T =  f, =  1, f 0 =  0.1 and k =  500
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The LMS algorithm was used to adapt the weights of the adaptive transversal filter. 

It was programmed on a computer by means of a Pascal procedure. The weight vec­

tor had in this case two components so that the performance surface and the weight 

adaptation process towards its minimum could be visualised. The value of the stabil­

ity parameter, /r, was equal to a 10% of the maximum calculated value according to 

theory. This has been shown to be an appropriate figure for many applications [1], 

The mean square error (MSE) was calculated according to Eq. 3.4.

Figure 3.5 is a representation of the corresponding quadratic performance surface 

on the weight vector. Figure 3.6 shows the values of the weight vector components 

during adaptation over contours of the performance surface. It can be seen how the 

weight vector approaches the minimum as the adaptation process goes along. The 

initial weight vector was set up to w0 =  [15 10].
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quadratic performance surface

Figure 3.5: Quadratic performance surface

weight vector adaptation; mu=10% ot maximum calculated value

Figure 3.6: Weight vector adaptation over contours of the performance surface
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Figure 3.7 shows the time waveforms of the desired signal, d*, and the output of the 

adaptive transversal filter. Figure 3.8 shows the time waveforms of the input to the 

adaptive transversal filter, Xk, and the error signal or output of the adaptive system, 

e*.

desired response = sin(2*pi*0.1*n*T)

0 50 100 150 200 250 300 350

adaptive tranversal filter output

Figure 3.7: Desired signal and output of the adaptive transversal filter

transversal filter input signal = cos(2*pi*0.1*n*T)

Figure 3.8: Adaptive transversal filter input and error signals

In order to minimise the error signal, the difference in phase between both input 

signals tends to be suppressed and the output of the transversal filter progressively
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matches the sinewave. Although about 300 iterations are plotted, it can be appreci­

ated how the system minimises the error within the first 150 iterations.

The process of adaptation having been explained and illustrated as shown above, let 

a few parameters of interest be defined for the LMS as given in [1], Some of them 

have already been presented above when citing the main characteristics of an adaptive 

algorithm. Conceptually, they will be of interest for any adaptive algorithm and will 

provide a means of evaluating its performance when used within a particular adaptive 

system and application. It is important to note that for all the parameters defined 

below it is assumed that the input signals are stationary.

Stability is a key aspect of a given algorithm. So, conditions for stability must accom­

pany the development of any adaptive algorithm in order to guarantee the reliability 

of a practical adaptive system. For the LMS algorithm, stability is ensured provided 

that the value of fi is within the interval

where Amar is the maximum eigenvalue of the input correlation matrix, R.

In order not to have to calculate the eigenvalues of R , a more restrictive bound for fi 

is given by

where tr stands for trace. In particular, for the transversal filter,

0 <  fi <
A,

(3.18)
'max

(3.20)

where L is the number of taps or order of the filter, and E [x2k] is identified as the 

transversal filter input signal power.
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It has been encountered that for a wide range of applications in which the adaptive

transversal filter is used together with the LMS, an appropriate value for g is a 10% 

of the maximum value as given by Eq. 3.20.

tion, or approach to the ideal solution of a given optimisation problem. As it was 

advanced above, for the LMS algorithm there will be as many different time con­

stants as different eigenvalues in the input correlation matrix. The time constant

the smallest eigenvalue determining the time of adaptation or relaxation time of the

algorithm is the deviation from the optimum solution to the minimisation problem 

due to the presence of noise in the weight vector during the process of adaptation. 

Being the minimum MSE as obtained by the Wiener filter and fa the calculated 

MSE at each iteration as obtained from Eq. 3.13, a way of quantifying the amount 

of noise introduced by the approximation is by defining the excess MSE as follows

Another important aspect is the time of adaptation towards a predefined specifica-

corresponding to the nth eigenvalue of R, An, in terms of input sample index will be 

given by,

system, and this latter one being defined as four time constants corresponding to that 

eigenvalue.

And another fact to be considered in order to evaluate the performance of an adaptive

excess M SE  =  E[fa -  £mln] (3.22)

For the LMS algorithm it can be shown to be approximated by

excess M SE  «  /i£mln<r[R] (3.23)

Defining now misadjustment,M, as the ratio of the excess MSE to the minimum MSE, 

this parameter will provide a relative measurement of how closely the adaptive process



CHAPTER 3. ADAPTIVE FILTERS 51

tracks the Wiener vector solution.

excess MSE
M  = -------------------  (3.24)

Smtn

which for the LMS can therefore be approximated by

M  «  n <r[R] (3.25)

Eq. 3.25 states that the misadjustment is directly proportional to the stability pa­

rameter, fi. Hence, the tradeoff between rapidity of adaptation and excess of noise in 

the steady state of the adaptive system being explicitly manifested.

Basic theoretical aspects of the LMS algorithm have been presented. The concepts 

defined above are applicable when developing any adaptive algorithm and will be used 

ahead for the rest of the adaptive algorithms used within the research. As stated pre­

viously, the LMS algorithm has been widely applied and plenty of practical examples 

for many different applications can be encountered in the literature since its initial 

development. Most of them use an adaptive transversal filter as the adaptive proces­

sor within the system.

Further chapters will show experimental work with the LMS algorithm, synthetic data 

and real data given both, in real and complex-valued formats. Some more comments 

on other theoretical aspects and possible variations of the LMS algorithm will be 

made after presenting and evaluating some of the experimental results. Let us now 

some other stochastic gradient algorithms based as well on the method of the steepest 

descent, but with nonquadratic cost function, be introduced.

3.2.4 Nonquadratic cost function stochastic algorithms

Being based on the method of the steepest descent too, these algorithms were devised 

and appeared in the literature after the LMS. All the following examples cited below
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used an adaptive transversal filter as the adaptive processor.

The least mean fourth (LMF) adaptive algorithm and its family were presented in 

[8]. The cost function to be minimised was in this case given by,

K being a natural number.

Similarly as for the LMS algorithm, £[e^A] is approximated by e„h at each iteration

n denoting now iteration number for clarity.

Note that if K  =  1 the resulting algorithm is the LMS, if K  =  2 then it results in the 

LMF, and so on.

Conditions for stability of this family o f algorithms when used for adaptive plant 

modelling are given in [8]. It is there shown that when K  > 1 a lesser value of mis- 

sadjustment is achieved for the same number of iterations than for K  =  1, the noise 

plant being uniformly distributed, a sinewave or a square wave. However, the LMS 

yielded better results when the plant noise was gaussian distributed.

One of the disadvantages of the LMF and its family is their tendency to instability 

for two different reasons:

(i) The importance of the initial condition due to nonquadratic performance surface.

(ii) The fact that the gradient estimate may become too large under error signal ab­

solute values higher than 1, yielding instability.

This has resulted in using the so-called switched LMF/LMS algorithm in practical 

situations, switching to the LMS whenever the absolute value of the error signal is

(3.26)

in order to calculate an estimate of the gradient. The obtained difference equation 

for weight vector update results in [8],

W n+1 =  W n +  2fiI<e2h' - i X n (3.27)
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higher than 1 [9][10] [11]. That allows faster rates of adaptation under the operation 

of the LMF and ensures the stability of the system.

A similar algorithm was proposed in [12], this time allowing non-integer values at the 

exponent of the cost function, for data echo cancellation in a communication channel. 

The proposed cost function was given by,

f (e )  =  \ek\T (3.28)

where r is any real number >  2.

The algorithm, in terms of weight vector adaptation, was given by,

W w  =  W * +  p rX Jt|e*|T-,5jfn(e*:) (3.29)

where sgn stands for sign function. Conditions for stability were derived assuming 

small deviation of the initial condition for the weight vector from the optimum value. 

Computer simulations were performed using a similar switching gradient technique as 

commented above for the LMF/LMS. The input signals were given by non-gaussian 

binary sequences. Incrementing r by 0.1 for each simulation, led to increased perfor­

mance in terms of the rate of adaptation. A maximum of performance was reached 

for values of r between 2.6 and 3.8 depending on the echo path model being used 

and the level of far-end signal to near-end signal ratio present in the channel. Fur­

ther increasing the value of r resulted in progressive decrement of performance until 

instability was reached.

A variation of the least mean higher order (LMH) algorithm above was recently 

presented in [13] being applied to adaptive equalisation. The exponent of the cost 

function was this time within the interval (1,2), yielding the so-called least mean 

lower order (LML) algorithm. The digital message being applied to the channel was 

a random bipolar sequence from the set {-1,1}. The channel was corrupted by AWGN 

with zero mean and finite variance.
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Experimental results showed that both, larger stable dynamic range of the stability 

parameter, /¿, and better performance in terms of bit-error-rate (BER), were provided 

by the LML as compared to the LMS.

An extension of the LMH to its complex counterpart has been developed and condi­

tions for its stability derived. This will be presented in the next chapter. Experimental 

results obtained with these algorithms for the application of interest in this work will 

be presented in subsequent chapters.

3.2.5 Deterministic least-squares algorithms

Considering the adaptive system shown in Figure 3.4, the least-squares method re­

quires that the output of the transversal filter, yk, fits in some optimum fashion the 

desired signal, <4, without invoking assumptions on the statistics of the inputs ap­

plied to the filter, for k =  1, . . . ,  N, N being the total signals length. To achieve such 

an optimisation, the cost function to be minimised according to the method of least 

squares, although weighted as shown in Eq. 3.30, will be given by [5],

£(n) =  ¿ / ? ( n ’ *)le(')|2 (3.30)
1 = 1

where n indicates iteration number and f3(n,i) is known as the weighting factor or 

forgetting factor, this being defined in the interval (0,1).

The weighting factor is used in order to associate a lesser weight to the data in the 

distant past, thereby allowing the tracking of changes in the statistics of the input 

data, or nonstationarities. An usual form of weighting the output data sequence is 

by means of the exponential weighting factor defined by [5],

0 (n ,i) =  A "-', * =  1,2, . . . , n  (3.31)

A being within the interval (0,1) (note that if A =  1 then the exact method of least 

squares is obtained).
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Eq. 3.32 is an expression for the resulting cost function given by the method of 

exponentially weighted least squares [5]

e(n) =  ¿ A " - <|e(«)|2 (3.32)
1=1

Full development of the adaptive algorithm based on the performance function given 

by Eq. 3.32 can be encountered in [5]. The resulting algorithm is known as the 

recursive least-squares (RLS) algorithm. The RLS offers a superior convergence over 

that of the LMS, specially in the case of large eigenvalue spread of the input corre­

lation matrix. However it involves a much higher computational cost. A method to 

substantially reduce the computational cost inherent to the RLS is presented as well 

in [5] based on the combination of four transversal filters. It results in the so-called 

fast transversal filters (FTF) algorithm. This algorithm offers the same rate of con­

vergence as the RLS and the computational cost is reduced to a level comparable to 

that of the LMS. The price to pay now is a much more complex algorithm statement.

Main features of the RLS

Convergence analysis of the RLS is presented in detail in [5]. There it is concluded 

that, under stationary conditions, best steady state (i.e. smallest misadjustment) is 

achieved by setting A equal to 1. Furthermore, as the number of iterations approaches 

infinity the RLS algorithm is there shown to produce zero misadjustment. However, 

for the application under research nonstationarities must be handled and therefore 

values for A less than 1 will be needed. This will cause two sources of additional noise 

in the weight vector:

(i) Weight vector noise [5] that will be measured by the so-called estimation error

[14]-
(ii) Weight vector lag [5].

The estimation error for the RLS is a measurement of how well it performs in a sta­

tionary environment in terms of the amount of noise being present at the steady state
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weight vector. On the other hand, nonstationarities are translated into continuous 

variation of the position of the minimum of the performance surface. Following the 

nonstationarities involves having to track the dynamic minimum. The weight vector 

lag causes additional noise to be present at the weight vector as a result of the delay 

involved for the system to track the movement of the minimum of the performance 

surface. This noise is known as the lag error.

When designing an adaptive filter to operate in a nonstationary environment, there 

will be a tradeoff between the rapidity with which the system is able to adapt to 

nonstationarities, and the steady state performance of the system. In effect, adap­

tive systems that are designed to perform well in quickly varying situations perform 

poorly when their environment is stationary and vice versa [14].

Exact expressions for the estimation and lag errors are difficult to be obtained. They 

have been shown to depend, in the literature, among other things, on the value of the 

forgetting factor, the model of nonstationarity being used within a practical system 

and the nature of the signals being considered. For instance, an approximation of 

those parameters is encountered in [5]. For the estimation error a value of A close to 

one is assumed and is shown to depend on the forgetting factor value, the order of the 

filter and the variance of the output or error signal. However, it is stated there that 

for values of A approaching 0.9 the estimation error depends as well on some fourth 

order statistics of the input signal of the adaptive processor.

Accurate expressions of the estimation and lag errors for adaptive system identifi­

cation are encountered in [14]. The input signal to the adaptive transversal filter is 

coloured gaussian noise and AWGN is present at the desired signal. Expressions are 

derived assuming a random walk model of nonstationarity. The same kind of expres­

sions are derived in [15] for tracking Doppler shifted chirped communication signals 

in AWGN. It is shown there that as the bandwidth of the signal increases the relative
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lag misadjustment is shown to decrease.

3.2.6 Th e  class of least-squares lattice (L S L ) algorithms. 
M ain features

This class of algorithms represents an alternative to the solution of the least squares 

problem achieved by the RLS. LSL algorithms, on the contrary to the RLS, have a 

modular lattice structure and present the information in a different way. The instan­

taneous values of the tap weights in the transversal filters of the RLS and FTF algo­

rithms represent the information contained in the input data and that property can 

be exploited for applications such as system identification, parametric spectrum anal­

ysis or adaptive equalisation. Recursive LSL algorithms present information about 

the input data in the form of instantaneous values of reflection coefficients. Hence, 

additional computation is required if the information extracted by a LSL algorithm is 

to be presented in the form of parameters of a multiple linear regression model as in 

system identification and parametric spectrum analysis, or the impulse response of a 

communication channel as in adaptive equalisation. However, the structure of a mul­

tistage lattice predictor can be shown to be appropriate, for instance, for modelling 

elastic wave propagation in a stratified solid medium, for seismic signal processing or 

for speech signal processing [5].

In terms of computational complexity, the number of operations per iteration is of 

the same order for the FTF and the class of recursive LSL algorithms.

One important difference between the exponentially weighted LSL and FTF algo­

rithms when used in practical digital systems is the better behaviour of the former 

with regard to finite-precision problems. This happens especially for fast realisations 

of these algorithms and normally so-called rescue devices must be used within appli­

cations involving the implementation of the FTF. Not much research has been done 

regarding this issue during the last decade. A recent publication, [16], shows a way
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to overcome some of these problems, but still more research must be done. Because 

of this, the LSL should be of preference, especially for those applications for which it 

particularly suits.

Previous satisfactory results with the LSL encountered in [17] for the application of 

interest encouraged its use. Further research and experimental results with a recur­

sive LSL and real reverberation data will be presented in subsequent chapters.

First, some theoretical aspects of the class of recursive LSL algorithms will be de­

scribed.

Linear Prediction. Forward and Backward Prediction

Linears predictors allow the prediction of a future value of a stationary discrete­

time stochastic process given a set of past sample values of the process. A for­

ward predictor of order M consists of a linear transversal filter with M tap weights, 

w0, , Wos, ... ,ir<jA/, that calculates the predicted value of u(n), un, given the set of 

samples u(n — l),u (n  — 2), ... ,u(n — M ). un consists of a linear combination of the 

samples u(n — 1), u(n — 2), ... , u(n — M ) as given by

M
=  woku(n ~ k) (3.33)

k=i

The tap weights are optimised in the mean-square sense in accordance with the Wiener 

filter theory. Figure 3.9 shows a representation of a forward linear predictor.

Backward prediction uses samples u(n), u(n — 1), ... , u(n — M + 1) to make a predic­

tion of the sample u(n — M ), un-M- Figure 3.10 shows a representation of a backward
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linear predictor.

Figure 3.9: One-step predictor [5].

Figure 3.10: Backward one-step predictor [5].

A direct method for computing the prediction-error filter coefficients and prediction- 

error power in a computationally efficient way is by means of the Levinson-Durbin 

recursion [5]. Defining am as the (m +  1) — by — 1 tap weight vector of a forward 

prediction-error filter of order m, and a®" as the (m +  1) — by — 1 tap weight vector of 

the corresponding backward prediction-error filter of order m, the Levinson-Durbin 

recursion for the weight vector order update of a forward prediction-error filter is 

stated as follows,

— — 1
0 + r„ o

a m - l

(3.34)

where Tm is a constant known as the reflection coefficient [5].

a®' is obtained by backward rearrangement of the elements of vector am and their
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complex conjugation.

Note that am_i,; =  — Woi for 1 <  i <  m.

And for a backward prediction-error filter, the tap-weight vector may be order up­

dated, according to the Levinson-Durbin recursion, as follows [5],
0 + r* 0 (3.35)

Lattice-Predictors

A lattice predictor is a device that combines the forward and backward prediction- 

error filtering operations into a single structure. The connection of a number M of 

stages, each stage in the form of lattice, yields a lattice predictor of order M. Figure

3.11 shows the signal-flow graph of a lattice predictor of order M.

Further insight into the operation of a lattice filter shows that the backward prediction

Figure 3.11: Signal-flow graph of lattice prediction-error filter of order M [5].

errors b0(n), 6i(n), ... , bm(n) produced by the connection of m stages in cascade, may 

be viewed as a form of the Gram-Schmidt orthogonalisation procedure applied to the 

corresponding sequence of input samples u(n),u(n  — 1), ... ,u (n  — m ) [5].

Joint-Process Estimation

The lattice predictor can be used as a subsystem to solve a joint-process estimation 

problem that is optimal in the mean-square estimation sense. Figure 3.12 shows a
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lattice-based structure for joint-process estimation.

There are two optimum estimations happening jointly by using this structure [5]:

a) Transformation of the sequence of correlated input samples u(n),u(n  — 1), ... , 

u(n — M ) into a corresponding sequence of uncorrelated backward prediction errors 

b0(n), 6i(n), ... ,bM(n).

b) Estimation of the desired response, d(n), by means of a multiple regression filter, 

with the form of a transversal filter, operating on the sequence of backward prediction 

errors

b0(n),b i(n ), ... ,b\f(n) as inputs.

Figure 3.12: Lattice-based structure for joint-process estimation [5].

The fact that the backward prediction errors are orthogonal to each other simplifies 

the solution to the problem significantly.

¿o, fcj, ... , km are referred to as the regression coefficients of the estimator.
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LSL Filters.

A class of exact or deterministic least-squares algorithms, based on a structure as 

the one just shown in Figure 3.12, are known collectively as least-squares lattice 

algorithms. Figure 3.13 shows a Joint-process estimator using the LSL algorithm 

based on a-posteriori estimation.

Figure 3.13: Joint-process estimator using the LSL algorithm based on a-posteriori 
estimation errors [5].

LSL algorithms involve both order-update and time-update recursions. A summary 

of the recursive LSL algorithm and the corresponding initialisation can be encoun­

tered in [5] using a-posteriori estimation errors as follows:

a) Summary of the recursive LSL algorithm: 

a.l) Whitening process.

Starting with n =  1, in the following sequences, compute the various order-updates, 

m =  1,2, ... , M , where M is the final order of the least-squares lattice predictor:

A™ -!(n) =  AAm-i(n  -  1) + 6m_i(n -  1 )fm-\(n) 
-  1)

(3.36)
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r> i~\ A m_i(n)1 f,m\n) — ,, / -I \ —1 ( ̂
(3.37)

r  /..x A m - lH  
Fm-i(n)

(3.38)

fm (^) =  Pym6m_i(n 1) (3.39)

^m(^) =  m̂ —1 1) H- l(^) (3.40)

F r  /-x  |Am_i(n)|2 
I m(^) — I m —1 (^) rj / i\ -O m — 1 ( ̂  1)

(3.41)

n , \ „  , „  |Am_,(n)|2 Bm(n) — Bm-i(n  1)
r  m —1 (n)

(3.42)

, , ,  , „  |6m-i(n  -  1)|2 (n l ) - 7 m_i(n 1)
B-m — 1 ( ̂  1 /

(3.43)

where * denotes complex conjugate as the algorithm is developed in the general case 

of having to process complex-valued data.

a.2) Joint-process estimation.

Starting with n =  1, compute the various order-updates in the following sequence:

m =  0,1, , M.

i \ \ i i\ . bm(n) m
Pm(n ) —  ^Pm(n 1 )  d "  / \ 7m(^J

/ . . X  M " )km[n) — D f \Bm(n)

em+i(n ) =  em(n) -  k^(n)bm(n)

.(«) (3.44)

(3.45)

(3.46)

b) Summary of the initialisation of the recursive LSL algorithm using a-posteriori 

estimation errors.

b .l) To initialise the algorithm, at time n =  0 set:

A m_,(0) =  0

Fm_i(0) =  6 6, small positive constant

B m - l ( 0 )  = s

b.2) At each instant n >  1, generate the various zeroth-order variables as follows:
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fo(n) =  bo(n) -  u0

F0(n) =  B0(n) =  A F0(n — 1) +  |u(n)|2 

7o(n -  1) =  1

b.3) For joint-process estimation, initialise the algorithm by setting at time n =  0:

Pm(0 )  =  0

At each instant n >  1, generate the zeroth-order variable: 

e0(n) =  d(n)

3.2.7 Th e  Adaptive Noise Canceller (A N C )

The ANC is the usual structure used to estimate a signal corrupted by additive 

noise, this being understood here as any form of interference, deterministic as well as 

stochastic. A general schematic representation of the ANC is shown in Figure 3.14. 

The combined signal and noise, s + n0, form the primary input to the ANC. A second

A N C

Figure 3.14: Adaptive Noise Canceller

sensor receives noise nj. Provided that n0 and nt are in some way correlated and 

that s is uncorrelated with both, n0 and n\, it is shown in [1] that the adaptive filter 

produces an output, y, that is the best least squares estimate of the primary noise no 

as minimising E[e2] implies

■Emm[e2] =  £[s2] +  £mm[(rco -  S/)2] (3.47)
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Therefore, if E[e2] is minimised, E[(n0 — y)2] is also minimised, and the filter output, 

y, is then a best least-squares estimate of the primary noise n0. Moreover, when 

E[(n0 — y)s] is minimised, E[(e — s )*] is also minimised, since 

e — s =  n0 — y.

On the other hand, when the reference input is completely uncorrelated with the 

primary input, the filter will turn itself off, and will not increase the output noise.

In this case the transversal filter output y will be uncorrelated with the primary input. 

The output power will be [1]

E[e2) =  £[(a +  n0)2] + 2 £ [ -y (s  +  n0)] +  E[y2] =

=  £[(s +  n0)2] +  E[y2] (3.48)

Minimising output power requires that E[y2\ is minimised, which is accomplished by 

making all weights zero, bringing E[y2\ to zero.

Several beamformers orientated towards different directions are normally used as data 

receivers for the active sonar problem. In the practical field, provided that the di­

rection of arrival of the contact is known, one of the beamformers will be orientated 

towards that direction. The primary input to the ANC will consist of a composite 

additive signal containing contact, noise and reverberation. The data recorded by the 

rest of the beamformers will contain, in the best of the cases, noise and reverberation 

and will be combined in an appropriate way to form the reference input. However, 

in some instances contact components may be present in some of those beamformers 

and therefore in the reference input of the ANC. An evaluation of the effects of signal 

components in the reference input, assuming stationarity of the input signals and er­

ror signal optimisation in the mean square sense, is performed in [1], It is there shown 

that, although undesirable, a small amount of contact components in the reference 

input causes some distortion of the contact but does not render the application of 

adaptive noise cancelling useless.
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For most of the experimental results presented ahead, synthetic contact signals will be 

present only at the primary input of the ANC. Some of the experimental results will 

as well provide an evaluation of the allowed level of presence of contact components 

at the reference input with multichannel real reverberation data.

3.3 Summary

The main features and characteristics of ASP systems have been discussed.

Although IIR AF’s can be designed and of use in practical applications, FIR AF’s 

have been said to be mostly used in practical systems due to their more relaxed sta­

bility constraints. In particular, the ALC has been said to be present in one form or 

another in most practical adaptive systems.

Two main classes of adaptive algorithms have been presented:

1) Stochastic gradient algorithms.

2) Deterministic least-squares algorithms.

Within the class of stochastic gradient algorithms, two common methods of searching 

the minimum of a given performance surface or cost function have been introduced, 

namely, as Newton’s method and the method of the steepest-descent.

Following the method of the steepest-descent, several adaptive algorithms have been 

described. With quadratic cost function, the operation of the well-known LMS algo­

rithm has been illustrated. With non-quadratic cost function, the LMF, LMH and 

LML algorithms have been described too.

Within the class of deterministic least-squares algorithms, the main features of the 

RLS and FTF algorithms have been discussed. The main features of the class of 

LSL algorithms were then presented, and the LSL algorithm based on a-posteriori
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estimation errors and its structure as a joint-process stimator have been described in 

more detail.

Finally, the ANC as devised in [1] has been introduced and its operation explained. 

The ANC, implemented by the several stochastic algorithms under consideration, 

by the LSL algorithm based on a-posteriori estimation errors, and by the stochastic 

gradient algorithm proposed in the next chapter, has been the tool used in most of 

the experimental work presented ahead in this thesis.
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Chapter 4

The generic stochastic algorithm

A new generic stochastic gradient (GSG) algorithm is presented in this Chapter. 

Based on the recent stochastic gradient algorithm that minimises the cost function 

|e*|r with r >  2, the GSG is an extension to operate over complex data sequences. 

Derivation of the final expression for the weight vector update o f the GSG algorithm 

follows a similar procedure as the one encountered in the literature for the LMS 

algorithm when developed to work over complex-valued data sequences.

Analysis of the conditions for stability of the algorithm is based on small perturbation 

theory.

4.1 Introduction

Stochastic gradient algorithms which minimise nonquadratic cost functions have been 

shown to provide improved performance over that of the LMS for adaptive echo cancel­

lation in communication channels and for adaptive channel equalisation applications

[1][2][3].
Expressions for the weight vector update of those adaptive algorithms were derived 

assuming that the discrete-time sequences to be processed were available in real form.

In many practical situations (e.g., communications, sonar, radar, etc) the baseband 

signals of interest appear in complex form.

70



CHAPTER 4. THE GENERIC STOCHASTIC ALGORITHM 71

An extension of the stochastic gradient algorithm which minimizes the cost function 

|e*|T, with r > 2, to deal with complex data sequences is presented here.

A detailed study of the discrete-time formulation of Wiener fdters and the statistical 

analysis of the LMS algorithm operating for the general case of complex data are to be 

found in [4] and will not be dealt with here. However, the mathematical development 

in this chapter uses some ideas of [4], particularly the 4 assumptions quoted below, 

these being considered of relevant importance:

1) Each sample vector u(n) of the input process is statistically independent of all 

previous vectors u(fc), k =  0, 1, ... ,n — 1, as shown by

£'[u(n)u, / (fc)] = 0, k =  0 ,1 , ... , n — 1 (4-1)

2) Each sample vector u(n) of the input process is statistically independent of all 

previous samples of the desired response d(k), k =  0, 1, ... , n — 1, as shown by

E[u(n)d*(k)] =  0, k =  0, 1, ... , n -  1 (4.2)

3) The sample d(n) of the desired response is dependent on the corresponding sample 

vector u(n) of the input process, but statistically independent of all previous samples 

of the desired response.

4) The tap-input vector u(n) and the desired response d(n) consist of mutually 

Gaussian-distributed random variables for all n.

u and d are the tap-input vector and the desired response respectively, as shown in 

Figure 4.1. n is the sample number.

Assumptions 1 to 4 above are known as the fundamental assumption, and the statis­

tical analysis of the LMS algorithm based on the fundamental assumption is called 

the independence theory [4].

In order to derive an expression for the new GSG, use is made of the fundamental 

assumption and the discrete-time formulation of Wiener filters for the general case of
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complex-valued sampled time series.

Furthermore, in order to perform the analysis of the stability conditions for the pro­

posed algorithm, use will be made of small perturbation theory. Thus only small 

deviations of the initial weight vector from that of the optimum, will be considered.

4.2 The generic stochastic gradient algorithm (GSG)

Before proceeding with the derivation of the GSG, a short review of the LMS technique 

will be carried out because it has a bearing on what follows.

4.2.1 Notes on the LM S

A general transversal filter used to solve the linear filtering problem when the signals 

of interest are given by complex valued discrete-time sequences is shown in Figure 4.1.

d(n)

Figure 4.1: Transversal filter.

By means of the general transversal filter in Figure 4.1, a closed-loop adaptive filter 

which will be able to follow changes in the statistics of the input data and provide a 

solution close to that of the Weiner solution provided that the changes in the statistics
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are not too rapid is that of the ANC, and is repeated here for convenience as shown 

in Figure 4.2.

Primary

Adaptive Noise Canceller

Figure 4.2: Adaptive Noise Canceller.

Assuming that u(n) is weakly stationary and with zero mean, and developing the 

discrete-time version of the Wiener filter theory, the optimum weight vector w0 can 

be shown to be:

w0 =  R -1p (4.3)

where R  =  £ [u (n)u / , (n)] is the correlation matrix of the tap-input vector u(n) and 

p =  £J[u(n)d"(n)] is the cross-correlation vector between the tap-input vector u(n) 

and the desired response d(n) [4], The asterisk and the superscript H signify complex 

conjugation and Hermitian transposition respectively.

The index of performance or cost function to be minimised, J( w ), is:

J( w) =  E[e(n)e'(n)\ (4.4)

where w is the tap weight vector represented by [te0, wt ,

dn is the output of the transversal filter, which is designed in such a way that the 

difference between d(n), the sample value of the desired response at time n, and the 

transversal filter output is made as small as possible in a statistical sense. 

Expressing J(w) in terms of the desired response, the M  +  1 tap weight vector w 

and the M + 1 reference input vector u(n), and developing the product, J(w ) can
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be shown to be [4]:

J(w) =  — p ww -  w wp +  w hR w (4.5)

It is by differentiating the mean-square error J(w ) with respect to the tap-weight 

vector w and setting all the partial differential equations equal to zero that the opti­

mum solution w0 is obtained.

The gradient of the cost function J (w ) thus obtained is [4]:

V  =  —2p -I- 2Rw (4.6)

and at time n it will be:

V(rc) =  — 2p +  2Rw(n) (4.7)

When working with an adaptive structure as the one shown in Figure 3.14, update of 

the weight vector can be performed by means of the method of steepest descent:

w(n + 1) =  w(n) +i/i[-v(f»)] (4.8)

Thus,

w(n + 1) =  w(n) + /r[p — Rw(n)] (4.9)

If it were possible to make exact measurements of the gradient vector at each itera­

tion, and if the step-size parameter p is suitably chosen, then the tap-weight vector 

computed by using the method of the steepest-descent would indeed converge to the 

optimum Wiener solution. In reality, however, exact measurements of the gradient 

vector are not possible, and the gradient vector must be estimated from the available 

data.

To develop an estimate of the gradient vector V (n )5 the most obvious strategy is to 

substitute estimates of the correlation matrix R  and the cross-correlation vector p in 

the formula of Eq.4.7.

The simplest choice of estimators for R  and p is to use instantaneous estimates that
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are based on sample values of the tap-input vector and desired response, as defined 

by, respectively [4],

R (n) =  u(n)uH(n) (4.10)

p(n) = u(n)d*(n) (4.11)

Correspondingly, the instantaneous estimate of the gradient vector is as follows,

V  =  —2u (n)d*(n) +  2u(n)u/i (rc)w(n) (4.12)

After substituting and appropriately manipulating the terms, the corresponding final 

recursion relation for the weight vector adaptation is [4]:

w(n +  1) =  w(n) ■+ /iu(n)e“(n) (4.13)

Eq.4.13 constitutes the general form of the LMS.

4.2.2 Derivation of the G S G

The LMS algorithm having been introduced, and making use of some of its features, 

the GSG is derived below.

Let Ji(w ) be defined as,

J i(w ) =  e(n )e’ (n) (4.14)

the proposed cost function to be optimised will be,

/f (w ) =  £ [(J 1(w )i)]  (4.15)

H( w) =  f?[(e(n)e’ (n ))i] (4.16)

Note that Ji(w ) is a real valued function. Therefore, for real positive values of r, 

H (w ) will be a real valued function too.

Note that if r =  2 the complex form of the LMS introduced above is obtained. Note 

as well that for r =  4, the resulting algorithm will result in the complex form of the
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Least-Mean Fourth (LMF) algorithm.

In general,

[ /(» (* ))] ' = (4.17)

where the symbol ' denotes derivative.

Then,

VH(Mw)) = V £[(Ji(w))f] = £[v(J’i(w))f]

=  ¿ ^ W w ^ i - D v W w ) ) ]  (4.18)

Note that the order of operation between V  and E  is interchangeable as they are 

linear operations.

In order to calculate v (-A (w ))i recall that,

Ji(w )(n) =  e(n)e*(n) (4.19)

eII — w "(n )u (n ) (4.20)

e*(n) =  dT(n ) — uH (n)'w(n) (4.21)

Then,

)(n) =  d(n)cT(n) — d(n)uH (n)'w(n) —

(n)u(n)d*(n) +  w w (n)u(n)u// (n)'w(n) (4.22)

a(n cII (4.23)

b(n) =  w w(n)u(n)d*(n) (4.24)

c(n) = w /, (n)u(n)uii(n)w(n) (4.25)

Naming now,
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yields to,

V ( - A ( w ) ( n ) )  =
S(d(n)d"(n)) 6(a(n)) ¿>(b(n)) 6(c(n))

(4.26)
6 w  ¿ w  6 w  ¿w

The first term on the right hand side of Eq.4.26 will be 0 as d(n)d*(n) is independent

o f  w .

Differentiation of a scalar function with respect to a vector given by complex valued 

components was described in [4]. Following exactly the same procedure, the last three 

terms on the right hand side of Eq.4.26 can be written as follows:

* («(»))
6 w

=  0.

¿w
S(c(n))

=  2u (n)d’ (r

<5w
- 2 u (n )u / , (n )w

So, combining the results above, v(^i(w)(n)) *s obtained as:

(4.27)

(4.28)

(4.29)

V(>7i(w)(n)) =  —2u(n)d*(n) +  2u(n)uw (n)w (4.30)

Hence, the gradient o f the cost function H(J i(w )), Vi can be expressed as:

V  =  £ [^ (J i (w )) ( i -1>v(./i(w ))] (4.31)

=  ^ ( ^ ( w ) ) ^ - 1)]£ [v (^ (w )) ]  + C O V (^ (J 1(w ))< i-I) ,v ( ^ (w ) ) )  (4.32)

=  E [ ^ (  J 1( w ) ) <i _1)]£ ,[ - 2 u ( n ) d * ( n )  +  2 u (n )u , / (n )w ]

+ C O E (I (J 1(w ))(? -1) ,v ( j l(w ))) (4.33)

=  ^ [§ (^ i(w ))(i - 1)] (-2 p  +  2Rw) + C O V (| (J ,(w )) ‘ f - » ,  v (^ i(w )))  (4.34)

where COV  denotes covariance.

Note that if C O V V (^ i(w ))) =  0 the optimum solution will be equal 

to the Wiener solution, w 0. When COV( j ( 7 i ( w ))*2-1 *, V (^ / i (w ) ) )  ^  0, the optimum



CHAPTER 4. THE GENERIC STOCHASTIC ALGORITHM 78

weight vector will as well be the solution to a linear equation on the weight vector, 

w, and will just be separated by a finite distance from the Wiener solution.

As before with the LMS, the knowledge of the signal statistics required in Eq.4.34 

can be replaced by a training sequence, which again will be the data sequence itself. 

The coefficients of the adaptive filter will be calculated and updated by the proposed 

algorithm, which is based on the method of the steepest-descent too.

The ‘ true gradient’ given by Eq.4.31 becomes, at sample number n, the noisy or 

stochastic gradient V (n) by removing the statistical expectations:

V (" )  =  ^ (^ (w ) ) (i _1)V (^ i(w )) (4.35)

Note that now w  has been used instead of w  itself to be referred as the current esti­

mate of the tap-weight vector.

As done with the LMS, the simplest estimates for the input correlation matrix, R, 

and the cross-correlation vector, p, will be considered. Instantaneous estimates for 

these two variables will therefore be as given by Eqs. 4.10 and 4.11.

Substituting now J i ( w )  and V ( 'A ( ' ' 0 )  by their corresponding expressions:

V (” ) =  -(e(n )e*(n ))(2-1)( — 2u(n)<f(rc) -f 2u(rc)u, , (n)w (n)) (4.36)

Rearranging the last expression,

V (n) =  ^(e(n)e*(n))(7-1)(-2)u (n )(d*(n ) — u'^rcjw in)) (4.37)

and recognising the last factor in Eq.4.37 as e*(n) and simplifying:

V(re) =  —T(e(n)e*(n))*i_1^u(n)e*(n) (4.38)

Note that e(n)e*(n) is the squared modulus of the error signal at time n. Referring 

to this quantity as ‘ sqrmod(e(n))\ Eq.4.38 can be written as:

V(w) =  —T(sqrmod(e(n))Ÿ% *'u(n)e*(n) (4.39)
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Finally, using the obtained gradient estimate to update the weight vector at each 

iteration following the method of steepest descent'.

w (n +  1) =  w (n) +  - t  p(sqrmod(e(n)))^~1) u(n)e" (n) (4.40)

The algorithm described by Eq.4.40 is the GSG.

4.3 Stability of the GSG

Conditions for stability of the GSG must now be obtained.

4.3.1 General analysis for stability of the G S G

Let the structure of an ANC be as the one shown in Figure 4.3, where u(n) and y(n) 

are assumed zero-mean correlated random signals, s(n) is regarded as the contact 

signal, uncorrelated with u(n) and y(n) and with the form of a sinewave, and y(n) is 

an estimate of y(n) as given by the output of the transversal filter.

s(n)

u(n)

-  H (z )
y(n) ,

Re fe re nce

inp u t

Transversal Filter
y(n)

e(n)

Figure 4.3: ANC with signais of interest for réverbération suppression.

The error signal, e(n), will therefore be:

e(n) =  d(n) — ÿ(n) (4.41)
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d(n) is given by,

d(n) =  s(n) +  y(n) (4.42)

Then,

e(n) =  s(n) +  y(n) -  y(n)

y(n) can be expressed as:

(4.43)

M
y(n) =  u(n)wH(n) =  ^  uk(n)wl(n) (4.44)

k=0

When the optimum weight vector is achieved (we rename it here as w0), perfect 

matching between the output of the transversal filter and the desired response (y(n) 

and y(n) respectively in this case, as s(n) is uncorrelated with both, u(n) and y(n)) 

is achieved. Therefore, y(n) can be written as:

M
y(n) =  u(n)v/Q =  "52 uk(n)wok (4-45)

o

We can now define the GSG in terms of the error-weight vector instead of the weight 

vector itself by defining the error-weight vector as:

v(n) =  w (n) — w0 (4.46)

By subtracting w0 at both sides of Eq.4.40 the following expression is obtained:

v(n +  1) =  v(n) +  -ry(sqrmod(e(n)))^  l)u(n)e*(n) 

which is equal to:

v(n +  1) =  v(n) -f ^r/i(e(n )e '(n ))*i_1*u(n)e*(n) 

Considering e(n) as given by Eq.4.43, then e*(n) will be as given by:

(4.47)

(4.48)

e*(n) =  s*(n) + t/*(n) -  ym(n) (4.49)
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Hence, the error samples can be expressed in terms of the error-weight vector as fol­

lows:

e(n) =  s(n) +  Wgu(n) — ¿ " (n ju fn )  =  s(n) — v H(n)u(n) (4.50)

e*(n) =  s*(n) +  uw(n)w0 — uw(n)w(n) =  sm(n) — u H(n)\(n) (4-51)

Substituting the last two expressions into Eq.4.48 we obtain:

v(n  -f 1) = v(n) + ^r/ju(n)[(s(n) — v H(n)u(n))x  

(s*(n) — uH(n)v(n))](i _1)(s*(n) — uH(n)v(n)) (4.52)

v(n +  1) =  v(n) +  ^r/iu(n)(s(n) — vH(n)u(n))**_1*x

(s*(n) — u/i(n)v(n))^_1*(s*(n) — uw(n)v(n)) (4.53)

v(n +  1) =  v(n) -f ir/iu(rc)x

(s(n) — vH(n)u(n))*i_1*(s*(n) — u/,(n)v(n))^ (4.54)

Redefining  ̂ as A and manipulating s(n) and s*(ra):

v(n + 1) =  v(n) +  /zAu(n)(s(n))A *(1 — v H(n)u(n)
s(n) )A- '(s * (n ))A(l u "(n )v (n ) A 

s*(n)
(4.55)

To carry on, small deviations of w(0) from w0 will be considered, assuming therefore 

closeness of the initial weight vector to the optimum solution, w0.

Applying the binomial theorem [5] to Eq.4.55, and ignoring higher order terms as 

powers of v(n) will rapidly vanish due to closeness of w(0) to w0, we obtain:

v ( n  +  1 )  =  v ( n )  +  / i A u ( n ) ( s ( n ) ) A ‘ ( • s * ( n ) ) A( l  -  ( A  -  i ) 2 L i ! l l i i M ) ( i  _ \ u  ^ V ^ )
s(n) s*(n)

(4.56)

Developing the product of the last two factors in the second term on the right hand 

side of Eq.4.56:

(1 — (A — 1)
v H(n)u(n)

s(n) )(1 — A
uH(n)v(n) 

s * ( n )
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= j _  Auw(n)v(n) _  _  . v"(w )u (n ) _  v " (n)u(n)uH(n)v(n)
■s*(n) s(n ) s(n)«*(n)

then,

(4.57)

v(n +  1) = v(n) +  fi\(s(n))x *(.s*(n))Au(n)x
u H{n)v(n) /x iXv w(n)u(n) , wx , x v H(rc)u(n)uH(n)v(ii) 

*•(*) U s(n) + A (A _ 1 ) s(n)s*(n) (4.58)

v (n  +  l) =  v(n) +  //A(s(n))A 1(s*(n))Au(n) — fi\2(s(n))x 1(s*(rc))A 1 u(n)uii(n )v (n )—

/¿A(A — l)(s(n ))A 2(s*(n))Au (n )v //(n)u(n)+

/¿A2(A — l)(s(n ))A_2(s*(n))A_1u (n )v // (n)u(n)u, , (n)v(n) (4.59)

Taking expectations at both sides of Eq.4.59:

E [ v ( n  +  1 ) ]  =  £ [ v ( n ) ]  +  ^ X E [ { a ( n ) f { ” ) ) X ] E [ u ( n ) ] ~
3\n)

— / i A 2 £ [ ( s ( n ) s * ( n ) ) A _ 1 ] £ ’ [ u ( n ) u , / ( n ) ] £ [ v ( 7 i ) ]  —

—/xA(A -  ]E[u(n)vtf(n)u(n)]+

/¿A2(A — 1)£,’[  ̂ -----]E[u(n)vH(n)u(n)u/ , (n)v(n)l (4.60)
s ( n )

Recall that v(n) is independent of both, u(n) and s(n). Recall as well that s(n) is 

‘a burst of sinewave1, and therefore any expression of the form (s(n)s*(n))a, with n 

any real number, will be independent of the input vector u(n), (it might be worth 

noting by the way here that the same argument will be true for s(n) having many 

other forms, specially if expressed in any deterministic manner as it will be the case 

in practice in many cases). Then, all the COV terms that would appear when tak­

ing expectations on both sides of Eq.4.59 will be zero. Thus, all the terms on the 

right hand side of Eq.4.60 will be able to be expressed as stated above because the 

expected value of the product will be equal to the product of the expected values due 

to independence of variables.
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The second term on the right hand side of Eq.4.60 will vanish after taking expecta­

tions as £[u(n)] = 0.

The last term on the right hand side of Eq.4.60 involves a second order of the error- 

weight vector, which can be neglected due to the chosen initial condition for w(0). 

The third term on the right hand side of Eq.4.60 can be written as:

where R  is the well known input correlation matrix.

For the fourth term on the right hand side of Eq.4.60, performing some further ma­

nipulation on the term £ ’[u(n)vw(n)u(n)] as follows:

ilu fn jv^ fn lu jn )] =  £?[u(n)(uw(n)v(n))*] (4.61)

as if

y =  v H (n)u(n) (4.62)

then,

y* =  uw(n)v(n) (4.63)

it follows that,

£[(u*i(n)u/f(n)v(n))*] =  ¿?[(u*(n)uii(n))*].£/[v’ (n)] =  £'[u(?i)ur (n))]£[v '"(«)]
(4.64)

Then,

E[v(n +  1)] =  £[v(n)] -  /iA2£[(s(n)5*(n))A- ‘ ]x

R £[v(n )] -  pA(A -  l ) £ [ i f M p ^ ] £ [ u ( n ) u r (n)]£[v*(n)]
s (n) (4.65)

E[v(n +  1)] =  £ [v(n )](I -  pA2£[(s(n)s*(n))A- 1] R ) -

-  pA(A -  l )£ [ i£ l^ M ^ ]£ [u ( n )u T(n)]S[v-(n)] (4.66)

where I is the identity matrix.
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The factor £'[u(ra)uT(n)] will be a (M  +  1) * (M  +  1) diagonal matrix if the 

data accomplishes the fundamental assumption. Let this matrix be named as:

S = £[u(n)uT(n)]

being in the general case the elements in the main diagonal complex valued. 

Then, naming

M»! =  I -  /rA2£[(s(n)s*(n))A- 1]R

Eq.4.66 can be written as:

£ [v (n  +  1)] =  ^!ZJ[v(n)] +  ® 2E[v*(n)]

4- i can be expressed as:

/  A> 0 \
= Q

V 0 ... /3m )

where /?0, ••• ,13m are the eigenvalues of the matrix R, which can be shown 

greater or equal to zero [6].

Q is the matrix of the corresponding orthonormal eigenvectors, and QQ;/ = I 

IP2 is itself a diagonal matrix, as so it is S.

Let the norm of the vector v (n + l) be denoted as ||v(n +  1)||. Then, 

||v(n +  1)|| =  E [v"(n  +  l)]£ [v (n  +  1)]

If it can be proved that,

||v(n+ 1)|| < &||v(n)||

with 0 < k <  1, which is equivalent to saying that:

input

(4.67)

(4.68)

(4.69)

(4.70)

(4.71) 

to be

(4.72)

(4.73)

||v(n+l)||<*»||v(0)|| (4.74)
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then it will have been proved that £'[v(n)] —+ 0.

For two general vectors a and b,

||a+b|| <||a|| +  ||b|| (4.75)

where the equality will only hold when the angle between the two vectors is 0. 

’‘&i£'[v(n)] and are two vectors themselves. Let them be denoted as

v ^ n )  and v ^ n )  respectively. Then, from Eq.4.70:

||v(n + 1)|| =  ||v*,(n) +  v*a(n)|| <  ||v*I(n)|| +  ||v*2(n)|| (4.76)

The first term on the right hand side of Eq.4.76 can be written, according to Eq.4.72 

and the definition of v ^ fn ), as:

llv*,(n)|| =  E [ v H ( n ) ] Q

=  E [ v " ( n ) ] Q  

with j} =  s u p \ P i \ ,  i =  0,

f f t  ... o \ (  f t ... 0 >
Q"Q

\ 0 ... /3m ) K 0 •• Pm y

I  f t  -  0 \ 

t 0 ...' ftM y

Q H E [ v ( n )

Qw£'[v(n)] < /92||v(n)||

,M ;

(4.77)

(4.78)

For the second term of Eq.4.76 we have:

l|v*2(n)|| =  £[v#2(n)]£;[v*2(n)] (4.79)

||v 4i2(n) (s(n ))2

||v,a(n)|| =  E[v*"(n)],*2A2(A -  1)2(£[

(s*(n))2

(s(n)a*(n))2A
(s(n)s*(n))2

(4.80)

_  C Q V ( (a(/w); , ; " ))A , ! <,/ " > ( " » - ) ) S " S g |v - ( n ) )
( a ( n ) ) 2 ( s * ( n ) ) 2

(4.81)



CHAPTER 4. THE GENERIC STOCHASTIC ALGORITHM 86

Recalling that by definition S = £ [u (n )u7 (n)] and that the fundamental assumption 

holds, then,

then SH will be:

S =  E
f wjj(n) ... 0  ̂

V 0 -  “ m ( " )  )
(4.82)

Hence,

S "  =  E
/  Ug2(n) ... 0 \

A 0 ... û (n) /
(4.83)

/  (uS(n)u0(« ) )2 0 \
S "S  =  E -  COV((u(n)uT(n))H, (u(n)uT(n))) (4.84)

A 0 — (“m("K ( ii))! /.
from the definition of COV.

Note that all the elements in both terms on the right hand side of Eq.4.84 will be 

non-negative real valued numbers. This is obvious for the first term. For the second 

term, it can be proved by seeing it as the COV of two diagonal matrices with the 

elements in the main diagonal of one equal to the complex conjugate of the respective 

elements in the main diagonal of the other one, and the rest of the elements equal to 

zero. Hence, it can be stated that:

S "S  < E
17 (uÒ(n)u0(n ))2 ... 0 ^

(4.85)
A 0 -  (uM(«)uM(n))2 /.

Now let the factor within curly brackets, which contains the term COV on the right 

hand side of Eq.4.81, be named as T(n). Then,

T(n) =  E (s(n)sm(n))2
COV(

(s(n)sm(n))x (sm(ii)s(n))x
(s(n)s-(n))2 (s(n))2 ’ (s*(n))2

Note that, again, both terms will be non-negative real values. Hence,

(4.86)

r(n) < ^ ( s H s 'H ) 2̂ - 1’] (4.87)
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With all this, the following inequality for ||v*2(n)||, as given by Eq.4.81, follows:

l|v *» || < m2A2(A -  iyE[(s(n)s*(n))«x- " ]E
' (uo(n)u0(n))2 ... 0  ̂

\ 0 ... (ulf(n)uM(n) )2 /
l|v*(n)||

(4.88)
And as ||v*(n)|| = ||v(rc)||, then,

l|v.2(n)|| < » 2\2(\ -  l)2£[(s(n)s*(n))2<*-»]£

f (uj(n)uo(n))2 ... 0 ^

/  (u;(n)ii0(rc))2 ••• 0 >

k 0 ... (u*M{n)uM(n))2 )
llv WII

(4.89)

imposes M + 1 different modes of exponential conver-
V 0 ... (u-M (n)uM{n))2 J \

gence of f?[v*2] for an appropriate value of f i .  That is, if /; is chosen so that all terms
f (ug(n)uo(n))2 ... 0 ^

A2(A - l)2£[(s(n)ii*(n))2(A- ,)]E

£ [v * 2](n)] -v 0.

So that it happens it is sufficient that:

A 0 -  î M(n)uM(n))2 /
are less than 1, then

0 <  fi <
1

A(A — l)(£’[(s(n)s*(n))2<A_1)])2 (max(E[(u*(n)ui(n))2]))r .« = o,i, , m
2

(4.90)

On the other hand, it is as well necessary that (n)] —> 0.

Recalling that ||v«,(n)|| <  /321|v(rt)||, being ¡3 the largest eigenvalue of the input cor­

relation matrix, and that was defined as:

f&i = I -  iiA2£[(s(n)s*(n))A- 1]R

convergence of iJfv.ji, (rc)] to 0 will be ensured if:

(4.91)

0 < n < 1 (4.92)
A2£[(s(n)s*(n))A- 1]/?mor

In order not to have to find out the maximum eigenvalue of the input correlation
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matrix, the last inequality can be further bounded by writing:

or,

0 < H <

0 < fi <

1

___________________ 1___________________
A2£[(s(n)s*(n))A_1](M  +  l)£[u(n)u*(n)]

(4.93)

(4.94)

Finally, for convergence of the GSG, it is necessary that both, Jsfv^^n)] and £ ’[viji2(n)] 

tend to zero. Therefore, both, Eq.4.90 and Eq.4.94, must be satisfied, thus the fi­

nal boundary of f i  being given by the intersection of both intervals. It this worth 

recalling at this point that this result will only hold under the assumption of small 

perturbation theory.

4.3.2 Alternative way for searching boundaries of /t for sta­
bility of the G S G

An alternative and more immediate way of obtaining a boundary of p for stability of 

the GSG is shown below.

This method would be valid provided that the error signal obtained when initialising 

a system is the absolute maximum of the error function. This condition will not be 

valid in general when working in nonstationary environments, but it might be valid 

when working in a stationary environment and certain types of systems to be mod­

elled or approximated by an adaptive structure.

The GSG can be written as:

v(n  +  1) =  v(n) +  i r  /i(e(n)e*(n))*2_1)u(n)e* (n) (4.95)

Rather than expanding the factor (e(n)e*(n))*i - »  in the second term on the right 

hand side of Eq.4.95 before taking expectations, the initial value (e(0)e“ (0 ))(i~ 1' could 

be considered instead of ¿J[(e(n)e*(ii))(a-1)], as the initial weight vector, assumed to
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be close enough to w0, is known and if the algorithm converges, then e(n) is a non­

crescent function under the conditions pointed out above.

Then the GSG can be expressed in the following way for the purpose of boundary 

searching:

v(n +  1) =  v(n) +  ^r/i(e(0)e*(0))(2 1)u(n)e*(n) (4.96)

Substituting e*(n) by its corresponding expression in terms of u(n) and v(n):

v(n + 1) = v(n) +  -rp(e(0)e*(0))(2_1*u(n)(s'(n) — uw(n)v(n)) (4.97)

v (n +  1) = v(n) + ir /i(e (0)e '(0))*2 -1)u(rc)s*(n) — i/ir(e(0)e*(0))*i _1|u(n)ui/(n)v(n)

(4.98)

The second term on the right hand side of Eq.4.98 will vanish after taking expecta­

tions on both sides, as £[u(n) =  0] and the fundamental assumption holds. Then,

£[v(n + 1)] = £[v(n)] — ipr(e(0)e*(0))^_1*R£[v(n)] (4.99)

£[v(rc -(- 1)] = (I -  ipr(e(0)e*(0))(J_1)R)£[v(n)] (4.100)

Naming now,

© = I -  i/rr(e(0)e*(0))(i _1)R  (4.101)

Eq.4.100 becomes:

£[v(n + 1)] = ©£[v(n)] (4.102)

/< can now be chosen so that all the leading diagonal elements of ©  have absolute 

value less than 1.

Following a similar procedure as in the previous analysis, the condition above will be 

fulfilled if:

20 < <
r(e(0)e*(0))(i  l)Pmax

(4.103)
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where /3max is the maximum eigenvalue of the input correlation matrix R , to follow 

the same notation as before.

Again, in order not to have to seek for the maximum eigenvalue of R , a narrower 

boundary for fi can be expressed by:

or,

0 < n < 

0 < ¡1 <

r(e(0)e*(0))<i-»E“ oft

2
r(e(0)e*(0))*2 l\ M  +  l)F[u(n)u*(n)] 

For the choice of p in Eq.4.105, 0  can be written as:

/  ¿o ... 0 \
©  =  A  A h

V 0 ... 8m t

8 =  sup|<5,| <  1, i =  0,1, ... , A/; A A W =  I.

Then, recalling that the norm of v(n +  1), ||v(n +  1)|| is

||v(n + 1)|| =  E[vH(n +  l)]£ [v(n  +  1)]

then,

II v(ra +  1)|| =  E[vH (n)]A
I  ¿o2 0 \

\ 0 ••• 8m )
A Hx

Then,

£[v(n)] < ¿2||v(n)|| 

||v(n +  1)|| < ¿2||v(n)|| 

IIv(rt +  1)|| < ¿2n||v(0)||

(4.104)

(4.105)

(4.106)

(4.107)

(4.108)

(4.109)

(4.110)

with 8 <  1.

Hence, i?[v(n -f 1)] —► 0 as n increases.
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4.4 Summary

Derivation and analysis of conditions for stability of a stochastic gradient algorithm 

with nonquadratic cost function have been presented for the general case of operation 

over complex data sequences.

The new algorithm has been derived following the method of the steepest descent and 

making use of some of the assumptions and features of the LMS when developed to 

deal with complex data sequences.

Analysis of conditions for stability of the algorithm has been carried out assuming 

small perturbation theory.

As for the experimental results obtained when using the stochastic gradient algorithm 

operating over real valued discrete sequences with nonquadratic cost function, the new 

GSG is expected to offer improved performance over that of the LMS dealing with 

complex data sequences in terms of convergence rates.

Experimental results obtained with the LMS and the GSG algorithms processing 

synthetic data will be presented in subsequent chapters.
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Chapter 5

Experiments with real-valued data

Experimental results obtained when processing synthetic and real data, given by real­

valued sequences, are presented in this chapter.

Apart from some initial experimental work which is shown first carried out with an 

ANF, the rest of the presented results were obtained by processing the corresponding 

data with an ANC, implemented by means of the LMS, LMH, LMF, LML and LSL 

algorithms.

A means of evaluating the performance of the several adaptive algorithms was needed 

in order to be able to establish a comparison among the obtained results in each case. 

There can be several performance criteria to assess the suitability of a given algorithm 

for a particular application, specially in the case of operating in a nonstationary en­

vironment.

Furthermore, the pulsed nature of the contact signals for the active sonar case is an 

additional variable that can make the quantitative evaluation of the performance of 

a given algorithm, somehow, more difficult, as short time duration contacts can be 

regarded as transient signals.

In addition, as the detectability of very low and zero-Doppler contact signals is be­

ing investigated in this thesis, a conventional evaluation of the SRR improvement 

achieved by a particular filter is not a feasible task. This is because, when the rever­

beration and contact frequency bands overlap, it is very difficult to ascertain in an 

exact manner which part of the output signal energy can be regarded as remaining

93
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contact and which part can regarded as remaining reverberation, at the output of a 

filter.

In order to be able to make a comparison among the performance of the several adap­

tive algorithms under evaluation, the so-called signal plus noise-to-local background 

ratio (SNLBR) was defined. The way in which this quantity was obtained, for all the 

experimental results presented in this chapter, is described in the next section.

5.1 SNLBR evaluation

This measurement procedure evaluates the ratio between the energy of a given com­

posite signal, and the energy of the local reverberation signal that surrounds the 

composite signal. The aim of this straightforward procedure is to be able to evaluate, 

quantitatively, the level of signal preservation within the time interval in which the 

contact signal is present, and the level of local reverberation reduction, after filtering 

a received ping.

This procedure will not discern, for the time interval where the contact is present, 

between the level of signal energy corresponding to contact and the level of signal 

energy corresponding to reverberation. However, it will provide a good indication 

of whether there is or not considerable amount of signal preservation at the interval 

where the contact is present, and surrounding reverberation signal rejection, at the 

output of a given filter. This will be sufficient to be able to assess and compare the 

performance of the several adaptive algorithms.

Therefore, the following steps are undertaken to obtain the value of the SNLBR of a 

given composite signal, as defined here:

1) The total energy of the local composite signal is calculated from the corresponding 

time sequence.

2) The total energy of a pre-specified time interval of the reverberation signal sur­
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rounding the local composite signal is calculated.

3) The dB ratio between both quantities is obtained.

Average results obtained processing a large amount of pings with the several adap­

tive algorithms under evaluation, obtained by applying this SNLBR measurement 

procedure, will be presented ahead. Some representative particular evaluation results 

corresponding to the processing of some of the pings will be shown. The waveforms 

corresponding to some of those cases will be shown too in order to provide with 

qualitative results which aid the quantitative evaluation results.

5.2 An ANF. Experimental results

An ANF based on a second order allpass section whose adaptation algorithm is per­

formed using the Normalised Recursive Least Mean Square method (NRLMS) [1] was 

used as a first approach to the problem. Its structure allows independent control over 

the bandwidth and the notch frequency of the filter’s impulse response. Fig.5.1 shows 

a representation of an ANF.

Figure 5.1: ANF representation.

A composite signal, consisting of a synthetic linear FM pulse, whose frequency varied 

between 0 and 200 Hz, plus one ping of 1-channel real data reverberation recorded in 

shallow water, was filtered.

The whole real data set consisted of 16 files, with a sequence of 10 collected pings at 

each file. Each of the pings corresponded to the received signal from a corresponding 

transmitted echo. The ping processed within this experiment was chosen randomly
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from that real data set.

The data was provided by DERA.

Reverberation signal characteristics were as follows:

f c =  500 Hz, centre frequency

/„  =  4000 Hz, sampling frequency

number o f samples =  8684 ,corresponding to «  2.1 sec.

SRR = 1 0  dB, signal-to-reverberation ratio

The parameters of the ANF where: 

a =  0.9025 

»Fo =  1 
7 — 0.99 

H =  0.0005

The value chosen for a implies that the notch bandwidth is set to 0.016. This set 

allows almost all frequencies in the range [0, f,/2] to be reached [1].

Fig.5.2 shows how the ANF is able to follow the change in frequency of the FM 

contact signal embedded in reverberation. However, satisfactory results were not 

obtained when low or zero-Doppler shifts occurred. In addition, further experimental 

work showed a very slow behaviour of the ANF' when abrupt changes in the frequency 

of the contact occurred. It as well encountered a poor performance for lower SRR’s, 

even for the case of well separated reverberation and contact frequency bands.

For the application of interest, SRR’s of about 0 dB for the received composite signal 

are supposed to be a realistic figure. After the experimental work performed with the 

ANF it was concluded that it is not a suitable adaptive structure to detect low and 

zero-Doppler contact signals buried in reverberation.
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ANF freq. tracking curve

Figure 5.2: Frequency tracking characteristic of the ANF.

5.3 Experimental results with synthetic reverber­
ation and an ANC implemented by means of 
the LMS

A qualitative evaluation of the performance of the ANC and the LMS as a means of 

adapting the weight-vector is carried out with two sets of simulated data. 

Reverberation was generated with the point-scattered model presented in Chapter 2. 

Reverberation signals at primary and reference inputs, rp and rr respectively, consist 

of a number ‘nb ’ of backscattered echoes. A number ‘nc ’ of echoes were common 

at both inputs, and a number ‘nd’ were separately generated to be different at both 

inputs, being nb =  nc +  nd. Different values of ‘n c ’ for a given ‘nb’ will lead to 

different cross-correlation functions between reverberations at both channels.

This arrangement of the synthetic reverberation data would correspond, in the real 

scenario, to having two different channels for receiving the data, with a determinate 

overlap between their beamformers.

The contact was generated in the form of a Hanning windowed burst of sinewave. 

Hanning windowing the contact is performed in order to reduce the sidelobes ampli-
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tudes at its spectrum.

5.3.1 First set of experimental results

For the first set of simulated data the characteristics of the reverberation signals were 

as follows:

f s =  1, normalised sampling frequency.

/o = 0.1, normalised frequency of the transmitted pulse.

NT  =  3000, total number of samples. 

v =  30m/s, velocity of sonar platform, 

c =  1500m/s, velocity of sound in the medium. 

ga=/pi, grazing angle.

nb =  5000, total number of backscattered echoes. 

nc =  3000, number of echoes common in both inputs.

That creates a reverberation signal whose normalised centre frequency is located at 

about 0.1.

A set of echoes were generated as estated above, with a length of 200 samples, and 

with normalised frequencies varying between 0.08 and 0.12.

The SRR was equal to 0 dB for all the cases.

For the setting of the filter parameters, p was equal to the 10% of the maximum 

allowed value for stability of the filter.

The misadjustment, M, was chosen of a 10%, which is shown to be an appropriate 

figure for many applications [3].

Then, the number of taps of the transversal filter, L, and therefore, the corresponding 

adapting time of the filter, 47’mse, were varied within the different simulations. The 

equations which approximately relate L, 4Tm,c and M, are [3]:
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(5.1)

M  ~  /rfr[R] (5.2)

Figure 5.3 shows the time sequences of the input to and output signals from the ANC

for the corresponding simulation results. Two echoes were present at the primary 

input. The first echo was located between samples 1801 and 2000, and had a nor­

malised frequency equal to 0.12. The second echo was located between samples 2001 

and 2800, with a normalised frequency equal to 0.11.

The zero-shift correlation parameter (zscp) between rp and rr was evaluated about 

0.6. The zscp’s between both echos and rp were equal to 0.02 and 0.05 respectively. 

L was chosen empirically equal to 79.

Part of the rp energy is filtered at times were no echoes are present. Predominant 

signal energy can be appreciated at the output of the filter at the interval in which 

the first echo was present. However, the amplitude levels of the output signal for the 

interval in which the second echo was present are o f about the same level of those of 

the output signal for times in which no contacts were present. Therefore, detection 

of the second echo would not be possible.
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rev. at p-channel; synthetic data primary input=rev.+localised echoes; SRR=0dB

f  0
E

0 rev. at r1-c$annel; synftetic d a ti000

I  »
E

0 adaptive9i?iear corritîfà^r outpu?000

sample number; fs=1

Figure 5.3: Processing synthetic reverberation by an ANC(LMS). Setl.

Figure 5.4 shows the input and output time sequences of a second set of simulation 

results. One echo was present at the primary input. It was located between samples 

2301 and 2500, and had a normalised frequency equal to 0.1 (zero-Doppler echo). 

This time the zscp between the echo and rp was about 0.5, which is considerably 

higher than that of the previous simulation. The filter order was equal to 79 too. 

The time sequences are presented this time in dB. It can be seen that there is no 

signal energy being predominant at the output of the filter for the interval in which 

the zero-Doppler contact is present over the rest of the times. So, contact detection 

would not be possible either.
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rev. at p-channel; synthetic data; fcr=0.1 p rim a ry  in pu t=rev.+ lo c alise d  e c h o l ; S R R = O d B
50 50

rev. at r-cftannel; syRftietic dati000 0 10»coutriHI00 3000
50 50

CQ CD

^P8°output;^.=% 3000 synttietic echo present in primary inpu$?<9=0.1
50 20

-1001 - 4 0

ft

0
sample number; fs=1

1000 2 0 0 0  3 0 00 0 1000 2 0 0 0  3 0 00
sample number; fs=1

Figure 5.4: Processing synthetic reverberation by an ANC(LMS). Set2.

5.3.2 Second set of experimental results

Similar simulations were carried out with the following variations for the signals in­

volved:

- Length of the new generated reverberation signals was of 6000 samples.

- The correlation between the reverberation signals present at both channels was 

higher. That was made by using a larger number of backscattered echoes common in 

both inputs.

- The correlation functions between the contact signals and the reverberations pre­

sented much lower values for the case of zero-Doppler shift. That was achieved by 

varying the bandwidth of the reverberation signals by means of increasing the relative 

velocity of the sonar platform to the scatters, and obtaining higher doppler shifts for 

the backscattered echoes in that way.

Misadjustment and step size, p, were chosen as before of 10% and 10% of p maximum 

respectively.

- Longer contacts were used. Their length will be stated in each particular case.
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Better results in terms of reverberation level reduction were obtained in this set of 

simulations. However, still considerable peaks at the ANC output for times at which 

contact signals were not present were encountered.

Figure 5.5 shows the input and output time sequences, in dB, for the following sim­

ulation results.

One echo was present at the primary input. It was located between samples 2201 and 

3000, and had a normalised frequency equal to 0.1 (zero-Doppler echo).

This time the zscp between the echo and rp was equal to 0.04.

The filter order was equal to 79.

Considerable amount of reverberation energy was filtered for the whole signal duration 

interval. The amplitude of the ANC output was a few dB ’s higher for the interval at 

which the zero-Doppler echo was present, compared to that of the output signal for 

most of the times at which no contact was present. However, close to the contact there 

was still an interval for which the amplitude was about the same than the output 

signal at the interval in which the contact was present, thus, making its detection

difficult.
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Figure 5.5: Processing synthetic reverberation by an ANC(LMS). Set3.

Another set of simulations were performed witli a longer contact (located between 

samples 2001 and 5000) which had a normalised frequency equal to 0.092 (still within 

the reverberation frequency ridge) and with filter orders equal to 79 and 149 re­

spectively. The simulation results were not satisfactory either, in terms of contact 

preservation.

A last set of simulation results was obtained with a contact whose normalised fre­

quency was equal to 0.08 (outside the main frequency reverberation ridge).

Figure 5.6 shows the time sequences of the results.

The contact was located between samples 1 and 1000.

The filter order was equal to 79.

Considerable amount of reverberation energy was rejected for all times and much 

higher level of signal amplitude could be appreciated at the output of the filter for 

the interval in which the contact was present. Therefore, further processing this 

output signal would yield in clear echo detection.
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rev. at p -c h a n n e l;  synthetic d a ta ; fcr=0.1 
50

prim a ry  inpu t=rev.+ localised  e c h o 3 ; S R R = 0 d B  
5 0 1------------------------- ---------------------------------------------

0  A L C  oiitp u f; L= 7 9 ; 3 9 m s e = 8 0 0 6 0 00  synthetic e c h o  present in prim a ry  in p u t;% = ? ).0 8
20 r

AD1-----------
2 0 00  4 0 00

sam ple  n u m be r; fs=1

Figure 5.6: Processing synthetic reverberation by an ANC(LMS). Set4.

From the simulations above, it is corroborated the importance of the fulfillment of 

the correlation requirements among the input signals for reverberation rejection. It 

can be said as well that the LMS did not yield, for these particular sets of results, a 

satisfactory response in terms of low and zero-Doppler contact preservation.

5.4 Experimental results with 1-channel real re­
verberation and an ANC implemented by means 
of the LMS

The same ping processed by the ANF in Section 5.2 was regarded in this experiment 

as rp.

rr was obtained in an artificial manner, as only 1-channel data was available, by 

means of the following procedure:

- Regard the reverberation signal at the primary input as subsetl.

- Obtain a second ping from the whole real data set, recorded at a different interval 

of time, subset2.
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- Combine both subsets in the following way to obtain the reverberation signal at the 

reference input, rr.

rr — k * subset! +  (1 — k) * subset2 0 < k <  1

A justification of generating rr in this way is based on the previous analysis of the 

whole real data set, in which it is shown that the long term first and second order 

statistics of the reverberation signals do not present large variations.

Therefore, taking subsets from a recorded time interval close to the recording time 

interval for subsetl, and combining both signals as stated above, may correspond to 

receiving reverberation signal through a reference channel which is rotated a certain 

angle with respect to the primary channel, and whose beam-patterns present an over­

lap of a certain solid angle. The closer the value of k to 1, the higher will be the 

overlapping between both beam patterns.

The value of k for this particular experiment was equal to 0.7.

The synthetic contact signal added to rp consisted of two bursts of sinewaves. The 

first one with a frequency of 500 Hz (zero-Doppler echo) and located between samples 

501 and 2000, and the second one with a frequency of 600 Hz and located between 

samples 3001 and 4000. The Signal-to-Reverberation Ratio (SRR) was equal to 0 dB 

for both cases.

After empirical work, values for p =  4.25 * 10-7 and L =  150 were chosen in order to 

ensure a close approximation to the optimum response for this particular data set. 

Figure 5.7 shows the time waveforms of the primary input and the output of the 

filter. Figure 5.8 shows a time-frequency (t-f) representation of the primary input 

signal and Figure 5.9 shows the corresponding t-f representation of the output of the 

filter.
The t-f representations were obtained by means of the short-time Fourier transform 

(STFT) with 75% overlap.

Results show how the 600 Hz echo is preserved while the reverberation signal energy 

level is considerably reduced. However, the zero-Doppler echo is removed together
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with the reverberation signal.

p -in p u t= re v (fc= 5 0 0H z)+c1  (500H z;5 0 1 :2 0 0 0)+ c2(6 00 H z;30 0 1 :4 0 0 0 );S R R s= 0 d B  
4 0 0 1------------------- 1------------------- 1------------------- 1-------------------1-------------------1------------------ 1------------------- «--------------------1----------

-4 0 0 ------------------- 1--------------------1--------------------1-------------------‘-------------------1-------------------1------------------- 1------------------ 1—
0  1000 2 0 0 0  3000 4000  5000 6000 7 0 0 0  8000

A N C (L M S ) output2001------- 1---------1--------1--------1--------1--------1--------1------- 1—

- 2001----------------------1-----------------------1----------------------1----------------------1----------------------'----------------------1-----------------------1----------------------1—
0  1000 2 0 0 0  3000 4000 5000 6000 7 0 0 0  8000

sample num ber (fs=4000 H z )

Figure 5.7: P-input and output time waveforms. ANC(LMS) real data set 1.

p -in pu t=rev.+c1  (500H z;501:2000)+c2(600H z;3001:4Q 00);S R R s=0dB

«a
I

2000
freq .(H z)

Figure 5.8: P-input t-f representation. ANC(LMS) real data set 1.
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A N C (L M S ) o utput

Figure 5.9: Output t-f representation. ANC(LMS) real data set 1.

5.5 Experimental results with 1-channel real re­
verberation, synthetic reverberation, and an 
ANC implemented by means of the LSL

5.5.1 First set of experimental results

The same real reverberation and contact signals as in the previous experiment were 

used in the following experiment. An ANC was this time implemented by means of 

the LSL algorithm based on a priori estimation errors presented in Chapter 3. The 

values of the parameters of the LSL filter were chosen, after empirical work, as fol­

lows:

A =  0.98, forgetting factor

6 =  Fo(0) =  0.5, small positive constant to ensure the nonsingularity of the deter­

ministic input correlation matrix [2]

M =  10, order of the filter

Figure 5.10 and Figure 5.11 show the time waveform and t-f representation of the 

output signal from the LSL respectively.
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A N C (L S L ) output

Figure 5.10: Output time waveform. ANC(LSL) real data set 1.

A N C (L S L )  output

sa m p le  no.

Figure 5.11: Output t-f representation. ANC(LSL) real data set 1.

In this case it can be seen that not only has the reverberation energy level been 

notably reduced, but considerable amount of energy is preserved at the time intervals 

where the echoes were present, at the output of the filter, even the for zero-Doppler

one.
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5.5.2 Second set of experimental results

The same synthetic reverberation signals processed in Section 5.2.2 with the LMS 

were used in this experiment with the LSL.

In order to have a first evaluation of the behaviour of the LSL algorithm with regard 

to abrupt changes of the frequency of the contact signal and preservation of mul­

ticomponent contact signals, the synthetic contact signal was of the form shown in 

Figure 5.12, which is a schematic t-f representation of the primary input composite 

signal.

The contact signal was therefore of the form of a linear FM pulse with different fre­

quency swapping rates for three of the intervals, it was of the form of a zero-Doppler 

burst of sinewaveat the sample intervals [501,1000], [1501,1700] and [5001,6000], four 

additional echoes of the same form with frequencies equal to 0.12, 0.125, 0.13 and 

0.14 were added at the sample interval [1501,1700], and it contemplated two abrupt 

changes in frequency, from 0.4 to 0.1 and from 0.2 to 0.1, at sample numbers 1500 

and 5000 respectively.

All the contact intervals were Hanning windowed.

The local SRR for any of the intervals was of 0 dB.

Normalised Contact signal

Figure 5.12: Input t-f schematic t-f representation. ANC(LSL) synthetic data set 1. 

The parameters of the LSL algorithm were as in the previous experiment.
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Figure 5.13 shows the time sequences of the composite primary input to the ANC, 

the reference input and the output signals.

Figure 5.14 and Figure 5.15 show a t-f representation of the primary input and the 

output signals respectively.

The results show how the LSL succeeds in rejecting a great part of the energy of the 

reverberation signal, tracking the contact as its frequency varies even for the abrupt 

changes stated above, preserving the multicomponent part of the contact, and allow­

ing zero-Doppler echo detection.

composite synthetic prim ary input to the A N C

20  -

TO
-2 0  ________ i________ i________ i________ 4________ 4________ ;

0  1 0 0 0  2 0 0 0  3 0 0 0  4 0 0 0  5 0 0 0  6 0 0 0
sample number

Figure 5.13: Input and output time waveforms. ANC(LSL) synthetic data set 1.
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A N C  synthetic prim ary input

x  105 

6-,
5 -

4 -

: P-input t-f representation. ANC(LSL) synthetic data set 1.

corresponding A N C  output

KHz)
1000

2000
3000

4000
5000

sam p le  no.

sam ple no.

Figure 5.15: Ouput t-f representation. ANC(LSL) synthetic data set 1.
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5.6 Experimental results with several pings of 1- 
channel real reverberation and the LSL, LMS, 
LMH and LML algorithms. Qualitative com­
parison of their performances

Files 12 and 16 of the real data set mentioned in Section 5.2 were processed by the 

several algorithms above.

Pings 1, 2, 3 and 4 were combined with pings 6, 7, 8 and 9, for each of the files, to 

obtain the rr’s as explained in Section 5.3.

Thus, the experiments presented ahead involved the processing of 4 consecutive pings 

from file 12, on one hand, and the processing of another 4 consecutive pings from file 

16, on the other hand. As each of the pings was 8684 samples long, the whole signal 

length being processed in each of the cases was equal to 34736 samples.

To form the primary composite input to the ANC, one synthetic echo with the form 

of a Hanning windowed burst of sinewave was added to each of the first 4 pings of 

both files. All the echoes were generated so that the input SRR was equal to 0 dB. 

The length of all the echoes was equal to 1000 samples.

The echoes at both files were located at time intervals and with frequencies as shown 

in Table 5.1.

Table 5.1: Echoes characteristics at files 12 and 16.

file ping no. initial sample of echo echo frequency (Hz)
12 i 1501 475

2 2001 500
3 501 500
4 2001 525

16 1 1001 485
2 1001 495
3 2001 510
4 2001 550

The zero-shift correlation parameters between rp and rr, zscprevs, and between rp
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and the echo, zscprpe, were evaluated for each of the pings as shown in Table 5.2.

Table 5.2: Zero shift correlation parameters of signals from files 12 and 16.

file ping no. zscprevs zscprpe
12 i 0.8135 0.0173

2 0.8428 0.3263
3 0.8369 0.5197
4 0.8434 0.0329

16 1 0.8242 0.0174
2 0.8188 0.11
3 0.8652 0.0445
4 0.8139 0.0355

5.6.1 Processing the signals from files 12 and 16 w ith  the
LS L

The LSL was first used to process the signals above. Again, values of 10 and 0.98 for 

M and A respectively were encountered suitable empirically.

Figure 5.16 shows the time waveforms of the primary input, the output and the echoes 

at the primary input involved in the experiment with the signals from file 12.

Figure 5.17 shows the spectrum of the corresponding primary and reference inputs, 

and the spectrum of the output of the filter.

Figure 5.18 shows the same time waveforms for the experiment with the signals from 

file 16.

Figure 5.19 shows the corresponding spectrums.
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ANC(LSL) composite primary input; record D12 -  pings 1 to 4

a) 200■o3
t  0
E
*  -200
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time (s)
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x 104

Figure 5.16: ANC(LSL) time waveforms processing signals from file 12.

x 10 spectrum of reference input

frequency (Hz)

Figure 5.17: ANC(LSL) spectrums processing signals from file 12.
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Figure 5.18: ANC(LSL) time waveforms processing signals from file 16.

,5 spectrum of reference input

frequency (Hz)

Figure 5.19: ANC(LSL) spectrums processing signals from file 16.
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The time waveforms and the spectrums above show that great amount o f energy cor­

responding to reverberation signal was filtered for both sets of results.

It can be seen at Figure 5.16 that predominant energy is preserved at the output of 

the filter for the time intervals where the echoes were located, specially for echoes 1, 

2 and 4. However, more difficulties could be encountered for detecting the third echo. 

Figure 5.18 shows that all the echoes were highly preserved at the output o f the ANC 

for that experiment, yielding clear detection.

Figures 5.17 and 5.19 show that all the echoes were embedded within the main rever­

beration frequency bands for both cases, and therefore the obtained results can be 

deemed to be promising and quite satisfactory. Echoes 1, 2 and 3 at Figure 5.18 were 

respectively 15, 5 and 10 Hz shifted from the centre frequency of the reverberation, 

and were clearly detectable at the output. Echo 2 at Figure 5.16 was a zero-Doppler 

one and was as well clearly detectable at the output of the ANC. Echo 3 at Fig­

ure 5.16, zero-Doppler, presented more difficulties for its detection. The rest of the 

echoes, with higher Doppler shifts, were highly preserved too.

From Table 5.2, it can be seen that the zero-shift correlation parameter between the 

reverberation and the zero-Doppler contacts is considerably higher than the same 

correlation parameter for the rest of the contacts with different Doppler-shifts. In 

particular, zscprpe is equal to 0.5197 for the zero-Doppler echo at ping 3 of file 12. 

Decorrelation between both signals at the primary input is intuitively a desired con­

dition for signal preservation at the output of an ANC, and it was mentioned to be 

required for the adaptive noise cancelling technique presented in Chapter 3 with the 

LMS algorithm to be efficient. It seems that the relatively high correlation between 

the primary input signals for that particular ping could be the reason o f not obtain­

ing a clear detection of the zero-Doppler echo. Special attention to this fact will be 

paid when processing a larger number of pings ahead in order to be able to induce a 

conclusion or not.
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The same signals as in the experiment above with LSL were processed with the ANC 

being implemented with the LMS algorithm.

The order of the filter, M, and the parameter that governs the rapidity of adaptation 

and the stability of the LMS algorithm, /¿, were equal to 40 and the 10% of the 

maximum calculated value according to theory, respectively. These parameters were 

chosen after empirical work with several combinations of higher and lesser values of 

both parameters.

Figure 5.20 shows the time waveforms of the primary input, the output and the echoes 

at the primary input of the ANC for the set of signals from file 12.

Figure 5.21 shows the same time waveforms for the set of signals from file 16.

ANC(LMS) composite primary input; record D12 -  pings 1 to 4

4-------- ♦------ ♦--------- ♦
0 0.5 1 1.5 2 2.5 3 3.5

sample number x 104

Figure 5.20: ANC(LMS) time waveforms processing signals from file 12.
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ANC(LMS) composite primary input; record D16 -  pings 1 to 4

sample number x 104

Figure 5.21: ANC(LMS) time waveforms processing signals from file 16.

From the obtained results it can be seen that only the echo at ping 4 of file 16, with 

the highest frequency shift from the reverberation centre frequency and equal to 50 

Hz, could be unequivocally detected. Hence, again, the LSL algorithm is shown to 

clearly outperform the LMS algorithm for the application of interest, and the results 

above agree with those obtained with synthetic and real reverberation signals previ­

ously.

Note that for these experiments and for the experiments that follow with the stochas­

tic LMH and LML algorithms the amplitude of the real reverberation input signals 

was normalised prior to processing. That was done in order to avoid high values of 

the error signal that would yield unstability of the LMH, as it involves calculating 

the value of eT_1, which presents an exponent > 1 for values of r > 2. Normalising 

the data when processed with the LMS and the LML algorithms was performed just 

so that all the results obtained with the several stochastic algorithms presented the 

same amplitude scale.
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5.6.3 Processing the signals from files 12 and 16 w ith the 
L M H

The same sets of signals were processed this time with the LMH algorithm presented 

in Chapter 3.

The value of the cost function exponent, r, was increased from 2.2 to 4 in amounts 

of 0.2 for each of the simulation results presented below.

Conditions for stability of the algorithm can be encountered at [4]. For each of the 

experiments the filter order, M, and the value of the stability parameter, g, were equal 

to 40 and 10% of the maximum calculated value according to theory, respectively. 

Those values were again chosen empirically.

Figures 5.22 to 5.25 show the time waveforms of the primary input, the echoes at the 

primary input of the ANC and the output signals when processing the set of signals 

from file 12 with the LMH and the different values of r (from 2.2 to 4 with increments 

of 0.2).

ANC(LMH) composite primary input; record D12 -  pings 1 to 4

sample number 10<

Figure 5.22: ANC(LMH) input signals from file 12 and output signal for tao=2.2
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ANC(LMH) output; tao=2.4

1 ANC(l!tîh) o u tp u A o = 2 .6  2,5 3 3 5

1 ANC(ÜNÎH) outpul;^ao=2.8 2 5 3 3 5

Figure 5.23: ANC(LMH) output signals for tao=2.4, 2.6 and 2.8

ANC(LMH) output; tao=3

1.5 2
sample number

Figure 5.24: ANC(LMH) output signals for tao=3, 3.2 and 3.4
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A N C ( L M H )  o utp u t; t a o = 3 .6

Figure 5.25: ANC(LMH) output signals for tao=3.6, 3.8 and 4

Figures 5.26 to 5.29 show the same time waveforms when processing the 4 pings from 

file 16.

A N C ( L M H )  c o m p o s ite  p rim a ry  in p u t; re c o rd  D 1 6  -  p in g s  1 to  4

0  0 .5  1
e c h o e s  a f ^ r i m a r y  inp^Jt of A N C

2 .5  3  3 .5

i  i  i  1

T  T  t  t

0 .5
1 A N C (llw iH ) o utp u t; ̂ a o = 2 .2  2 5

3  3

Mitili I  in , \  | ,1

0 .5
__ 1_____________1------------------------1------------------------ 1-------------

1 1 .5  2  2 .5 3  3
s a m p le  n u m b e r

Figure 5.26: ANC(LMH) input signals from file 16 and output signal for tao=2.2
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ANC(LMH) output; tao=2.4

Figure 5.27: ANC(LMH) output signals for tao=2.4, 2.6 and 2.8

ANC(LMH) output; tao=3

1.5 2
sample number

Figure 5.28: ANC(LMH) output signals for tao=3, 3.2 and 3.4
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ANC(LMH) output; tao=3.6
1 ---------------- 1---------------- 1---------------- 1----------------- 1---------------- r

sample number x 104

Figure 5.29: ANC(LMH) output signals for tao=3.6, 3.8 and 4

For all the experiments above with the LMH algorithm the first ping of both sets of 

signals being filtered was processed by the LMS algorithm. That is because condi­

tions for stability of the LMH are derived in [4] assuming small perturbation theory. 

As the long term first and second order statistics of the consecutive pings being pro­

cessed can be shown to be alike, processing the first ping by the LMS algorithm is 

a way o f  allowing the weight vector of the transversal filter to approach the opti­

mum solution, in the statistical sense. Then the remaining 3 pings in each set are 

processed by the LMH having accomplished the initial condition for the weight vector.

The obtained results show that, on one hand, the closer the value of r is to 2, the 

higher the level of the composite signal being filtered is. On the other hand, better 

results than those obtained by the LMS algorithm in terms of some of the echoes 

possible detection are achieved for higher order exponents. In particular, echoes 2 

and 4 at file 12 could be deemed to yield posterior detection for r ’s between 2.2 and
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3.4. And the same could be said for echoes 3 and 4 at file 16.

Still, much better results were obtained when processing the data with the LSL algo­

rithm.

5.6.4 Processing the signals from files 12 and 16 with the 
L M L

Results obtained processing the same signals with the LML algorithm presented in 

Chapter 3 are shown below.

The value of the cost function exponent, r, was increased from 1.1 to 2 in amounts 

of 0.1 when performing the experiments.

The filter order was again equal to 40. The value of fi was this time calculated 

empirically for each of the experiments and were within the interval [0.003,0.01]. 

Figures 5.30 to 5.33 show the time waveforms of the primary input, the echoes at the 

primary input of the ANC and the output signals when processing the set of signals 

from file 12 with the LML and the different values of r (from 1.1 to 2 with increments 

of 0.1).

A N C ( L M L )  c o m p o s ite  p rim a ry  in p u t; re c o rd  D 1 2  -  p in g s  1 to  4

0 5 1 echoes af prim ary inp'Lt of A N C  2 5  3 3

l i t i I_ _ _ _ _ _
T  T  1  1 r

0 ,5  1 A N C (Ò S l ) output; ?ao=1.1 2 5  3  3

- - - - - - - - 1- - - - - - - - 1- - - - - - - - 1- - - - - - - - 1- - - - - - - - 1- - - - - -
0.5 1 1.5 2 2 .5

V  T l , p
— i- - - - - - - -

3 3

Figure 5.30: ANC(LML) input signals from file 12 and output signal for tao=l.l
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Figure 5.31: ANC(LML) output signals for tao=1.2, 1.3 and 1.4
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Figure 5.32: ANC(LML) output signals for tao=1.5, 1.6 and 1.7
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Figure 5.33: ANC(LML) output signals for tao=1.8, 1.9 and 2

Figures 5.34 to 5.37 show the same time waveforms when processing the 4 pings from 

file 16.

A N C (L M L ) com posite prim ary input; record D16 -  pings 1 to 4

Figure 5.34: ANC(LML) input signals from file 16 and output signal for tao=l.l
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ANC(LML) output; tao=1.2

sample number x 1Q4

Figure 5.35: ANC(LML) output signals for tao=1.2, 1.3 and 1.4

ANC(LML) output; tao=1.5

sample number x 10

Figure 5.36: ANC(LML) output signals for tao=1.5, 1.6 and 1.7
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ANC(LML) output; tao=1.8
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Figure 5.37: ANC(LML) output signals for tao=1.8, 1.9 and 2

The LML achieves more primary input composite signal rejection and better results 

than the LMS, but as it happened with the LMH, unambiguous detection of most of 

the contacts after the filtering process would not be possible due to relatively high 

amplitudes of the output signals at some of the subintervals where contacts were not 

present.

5.6.5 Conclusions

Examining the results obtained from the previous experiments with several pings of 

the 1-channel real data set, the following comments can be made:

1) The LSL algorithm has been shown to outperform the group of stochastic gradient 

algorithms, LMS, LMH and LML, and provide satisfactory results in most of the 

performed experiments.

2) Relatively high correlation between rp and contact at the primary input of the ANC 

has been evaluated when zero-Doppler shifts occurred. This fact has been pointed out
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to be a possible reason of not being able to preserve the third echo at file 12, which 

presented a correlation parameter equal to 0.5197. Further investigation on this issue 

could provide an estimate o f the maximum degree of correlation allowed between rp 

and contact as an initial condition for the LSL algorithm to yield satisfactory results 

in terms of zero-Doppler contact detection.

3) The LMH and LML algorithms have been shown to achieve higher composite signal 

rejection than the LMS algorithm. Although very low and zero-Doppler contacts 

detection has not been possible, the obtained results indicate that for Doppler-shifts 

sufficiently separated from the reverberation centre frequency, adaptation by means 

of the LMH and the LML, the value of r being within certain interval respectively, 

yields improved results over those obtained by using the LMS.

4) A more thorough evaluation with a larger number of pings is needed in order to 

be able to generalise, or not, the conclusions above.
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5.7 Quantitative performance evaluation of the 
LSL, L M H /F /S  and LML algorithms

The performance of the several adaptive algorithms under evaluation was obtained 

processing a large amount of pings from the 1-channel real data set. The SNLBR’s 

of the input and output composite signals were evaluated by applying the evaluation 

procedure described in Section 5.1.

Several cases were evaluated, such as different levels of contact components at the 

ANC primary input, different Doppler-shifts of the contact from the primary input 

reverberation signals, and different levels of contact components at the reference input 

of the ANC, for a fixed level of the SNLBR at the ANC primary input.

5.7.1 1-channel real data set description

The real data set first presented in Section 5.2, is described in more detail here. The 

acoustic data was collected from a contact moving towards and then away from a 

sonar array. The contact was moving in a straight line at about 30° to the stern 

of the trials ship. The radial velocity component was more or less constant as the 

contact moved from its maximum range of 1650 m to the closest point of approach 

(CPA) to the sonar, 500 m. However, the radial velocity has a sudden transition 

through zero as the contact began to move away from the array. The experiment 

was carried out in shallow water giving the worst reverberation-limited environment. 

Near the maximum range and when the radial velocity was zero, contact was poor. 

In addition, contact was better when approaching.

The data was stored as 2 sets of 16 records of 10 pings each. A ping consisted of 8684 

samples, corresponding to the return signal from a transmitted signal at time t. The 

sampling rate was 4 KHz. The reverberation band was centred at 500 Hz.

The first set was in complex format because it had been heterodyned to reduce the
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sampling rate. The second set contained the real in-phase component. The first 8 

records of the real in-phase data set, (named as records 2, 4, 6, 8, 10, 12, 14 and 16 

hereafter), were used to obtain the evaluation results below. They contained data 

corresponding to the contact moving from the farest to the CPA to the sonar.

Prior to obtain the primary and reference input signals from the pings at each record, 

the contact was removed by conventional stop-band filtering for all the cases in which 

there was clear separation between the target and the reverberation frequency bands. 

The reason of removing the real contact for those cases was to be able to concentrate 

the study to very low- and zero-Doppler contacts. This was done by generating syn­

thetic contacts, with the form of a time limited sinewave as for most of the previous 

examples shown so far, whose detailed information regarding their energy levels, lo­

cation and correlation with the corresponding reverberation signals, was able to be 

obtained.

The reverberation signals at the primary and reference inputs to the ANC were ob­

tained as follows, from all records:

Pings 1, 2, 3, 4 and 5, in that sequence, at each record, were regarded as the rever­

beration signal at the primary input of the ANC, rp.

To obtain the reverberation signal to be at the reference input of the ANC, rr, pings 

6, 7, 8, 9 and 10, at the same record, were combined with those ones present at the 

primary input.

Therefore, 5 primary and reference input reverberation signals to the ANC were ob­

tained from each record, resulting in a total number of pings being processed equal 

to 40.

After evaluating the first and second order main statistics of the 8 records and ap­

preciate that they were alike, combining records 6, 7, 8, 9 and 10 with records 1, 2, 

3, 4 and 5, respectively, to obtain rr is a way to simulate a second channel whose



CHAPTER 5. EXPERIMENTS WITH REAL-VALUED DATA 132

main steer angle is pointed towards a different direction than that one of the channel 

through which the data was recorded, being a certain overlap between both channels.

For all records, pings 1, 2, 3, 4 and 5 were combined with pings 6, 7, 8, 9 and 10, 

respectively, to obtain the corresponding reference input reverberation signals, in the 

following way:

each of the ping numbers from 6 to 10 was regarded as rtemp, and the corresponding 

rr was obtained combining rp, (ping number from 1 to 5, as appropriate), with rtemp 

as follows:

rr =  A' * rp +  (1 — K ) * rtemp, 0 < K  < 1 (5-3)

K  was set up equal to 0.6 for all cases. This allowed relatively high correlation be­

tween rp and rr, as required.

5.7.2 O utput S N L B R  versus input S N L B R . LSL algorithm 
overall results

A synthetic contact was added to each of the 40 rp’s. In each case, 5 different values 

of the primary input SNLBR were considered.

The values of the variables of interest for all the pings being processed were as follows:

si =  8684 samples, total signal length for each of the pings being processed.

f ,  =  4000 Hz, sampling frequency.

f c =  500 Hz, reverberation signals centre frequency.

f c =  497 Hz, contact frequency.

nse =  800, length of contact in samples.

ise =  1201, initial sample of primary input composite signal where the contact was 

located.

srrsinvector =  [—5 —2.5 0 2.5 5] dB, values of the input SRR’s at the primary input 

of the ANC. The corresponding values of the evaluated input SNLBR can be seen at
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the performance evaluation graphs for each of the pings being processed.

No contact components were considered at the reference input of the ANC.

The parameters of the LSL algorithm were as follows:

M  =  10, filter order.

lambdasvec =  [0.88 0.90 0.92 0.94 0.96 0.98], different values of A being considered 

when processing each of the pings.

8 =  1, small initial constant to ensure the nonsingularity of the input correlation 

matrix.

The averaged evaluation results obtained processing the 40 pings, obtained as stated 

above, with the several values of the LSL forgetting factor, A, are shown in Figure 

5.38.

Figure 5.38: Averaged results over pings 1 to 40 when processed by the LSL. Output
SNLBR versus input SNLBR. — o — A =  0.88, — x — A =  0.90, — \---- A =  0.92,
-  * -  A =  0.94, - □  -  A =  0.96, -  t> -  A =  0.98.
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The obtained results indicate that, in the average, there was SNLBR improvement 

at the output of the filter for all the values of A having been considered, and for 

all the primary input SNLBR levels. Furthermore, improved results were obtained 

by higher values of A, with a maximum SNLBR improvement between 4 and 6 dB 

approximately for A equal to 0.98.

The particular evaluation results corresponding to the processing of each ping were 

obtained. From those results, it could be seen that not always SNLBR improvement 

was achieved for any of the values of A, and as well that not always higher values of A 

provided better results. To illustrate this, some representative performance evaluation 

results, corresponding to the processing of the several pings from record 4, are shown 

in Figure 5.39.

L S L  e va l. a );  re c o rd  4  -  p in g  1 L S L  e va l. a );  reco rd  4  -  p ing  2  L S L  e v a l. a );  re c o rd  4  -  p in g  3

L S L  e va l. a );  re c o rd  4  -  p in g  4  L S L  e va l. a ); reco rd  4  -  p ing  5

Figure 5.39: Output SNLBR versus input SNLBR for pings 1 to 5 at record 4. LSL 
algorithm.

The main aim of presenting the overall experimental results shown in this chapter 

is to be able to assess and compare the performance of the several algorithms under



CHAPTER 5. EXPERIMENTS WITH REAL-VALUED DATA 135

consideration. For this reason, detailed analysis of the obtained results is going to 

be omitted here, leaving it for the next chapter, in which results processing a large 

number of 4-channel real reverberation signals (an important difference being that 

the reference channel input will be then able to be obtained in a similar way as it 

would be obtained in a real scenario) will be thoroughly analysed.

As it will be seen from the rest of the evaluation results presented in this chapter, the 

LSL algorithm will outperform the rest of the algorithms under evaluation. For that 

reason, the detailed analysis of the obtained results made in the next chapter will be 

made for results obtained with the LSL algorithm only. This will make things easier.

5.7.3 O utput S N L B R  versus input S N L B R . L M L  algorithm 
overall results

Exactly the same signals as for Section 5.7.2 were processed now by the LML algo­

rithm.

The parameters of the LML algorithm were as follows:

M  =  40, filter order. This value was found suitable according to previous experimen­

tal work.

taosvec =  [1.3 1.4 1.5 1.6 1.7 1.8], different values of the LML cost function expo­

nent, r, being considered when processing each of the pings.

The corresponding values of the stability parameter, fi, were obtained empirically.

The obtained evaluation results processing all the input signals with the several values 

of t were averaged and the averaged results can be seen in Figure 5.40. Those results 

indicate that, in the average, SNLBR improvement was achieved by all values of r, 

for all the levels of the primary input SNLBR. Similar levels of overall SNLBR im­

provement as those achieved by the LSL algorithm were obtained. The performance 

was similar for most values of t , with slightly superior overall performance obtained 

for r equal to 1.3 and 1.5.
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A v e ra g e  results pro cessing 4 0  p ings with L M L

Figure 5.40: Averaged results over pings 1 to 40 when processed by the LML. Output
SNLBR versus input SNLBR. — o — r =  1.3, — x — r =  1 .4 ,---- 1---- t  — 1.5,
— * — r =  1.6, — □ — t  — 1.7, — >  — t  =  1.8

The particular evaluation results corresponding to the processing of each ping were 

obtained for this experiment too. It could as well be seen that not always SNLBR 

improvement was achieved for any of the values of r, and that not always values of r 

equal to 1.3 or to 1.5 provided better results. To illustrate this, some representative 

performance evaluation results, corresponding to the processing of the several pings 

from record 6, are shown in Figure 5.41.
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L M L  e v a l. a ); record 6 -  ping 4  L M L  eval. a ); record 6  -  p ing  5

Figure 5.41: Output SNLBR versus input SNLBR for pings 1 to 5 at record 6. LML 
algorithm. —o — r  =  1.3, — x — r = 1.4, —+ — r =  1.5, — * — r =  1.6, — □ — r =  1.7, 
— t> — r =  1.8

Although the averaged results indicated that similar overall performance is achieved 

by the LML algorithm to that of the LSL algorithm, the evaluation results corre­

sponding to each of the 40 pings showed that in fact there was a high number of 

pings for which SNLBR improvement was not achieved for any of the values of r, for 

all or most of the primary input SNLBR levels. For instance, looking at Figure 5.41, 

it can be seen that enormous SNLBR improvement was achieved when processing 

ping 1, but there was not improvement at all for the rest of the pings.

5.7.4 O utput S N L B R  versus input S N L B R . L M H  algorithm 
overall results

The same signals as for the previous two sections were processed this time by the 

LMH algorithm for a set of several values of r.
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The parameters of the LMH algorithm were as follows:

M  =  40, filter order. This value was found suitable according to previous experimen­

tal work.

taosvec =  [2.3 2.6 2.9 3.2 3.5 3.8], different values of the LMH cost function expo­

nent, t , being considered when processing each of the pings.

The corresponding values of the stability parameter, p, were calculated according to 

the conditions for stability of the algorithm derived in [4]. A 10% of the correspond­

ing maximum allowed values of fi for stability was found empirically an appropriate 

figure for most of the following experiments carried out with the LMH algorithm.

The averaged results processing the 40 pings with the several values of r are shown 

in Figure 5.42. Averaged results corresponding to the processing of all the pings with 

values of t equal to 2.3 and 2.6 were not be able to be obtained as, for this particular 

experiment, stability of the LMH algorithm was not achieved when processing some 

of the pings with those values of r.

The results at Figure 5.42 show that better performance was achieved by higher val­

ues of /i, although SNLBR improvement was not obtained with any of the values of 

r, in the average.

The particular evaluation results corresponding to the processing of all the pings were 

obtained. These results showed that SNLBR improvement was not achieved for any 

of the values of t in most of the cases. Higher values of r did not always provide 

better results either.

Figure 5.43 contains a representative sample of the evaluation results, corresponding 

to the processing of pings at record 14.
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Average results processing 40 pings with LMH

Figure 5.42: Averaged results over pings 1 to 40 when processed by the LMH. Output 
SNLBR versus input SNLBR. — i- — r =  2.9, — * — t  =  3.2, — □ — r =  3.5, 
-  t> -  r =  3.8

LMH eval. a); record 14 -  ping 4 LMH eval. a); record 14 -  ping 5

Figure 5.43: Output SNLBR versus input SNLBR for pings 1 to 5 at record 14. LMH 
algorithm. — x — r =  2.0, — |—  r =  2.9, — r =  3.2, — t =  3.5, — t> — r =  3.8
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From the experimental results obtained with the LSL, LML and LMH algorithms in 

this and the previous two sections, it can be said that similar average performances 

were obtained by the LSL and the LML algorithms, with maximum SNLBR improve­

ments of about 6 and 8 dB respectively, and no improved SNLBR was provided by 

the LMH algorithm. Higher values o f X and r yielded better results in the average, 

although it was seen that this was not always true when examining the particular 

evaluation results corresponding to the processing of each of the pings. Examining 

the particular evaluation results it was found as well that the number of pings for 

which there was SNLBR improvement was considerably higher when processing the 

data with the LSL algorithm. In addition, the values of the stability parameter, /r, 

for the LML algorithm had to be found empirically as conditions for stability of this 

algorithm have not either been encountered in the literature, nor derived. Thus, from 

the evaluated performance results from the last sets of experiments, it can be said 

that the LSL algorithm provided satisfactory results in most of the cases and should 

be preferred over the LML and the LMH algorithms.

The next section contains average evaluation results obtained processing the same 

signals as for the previous experiments with the LSL, LML and LMH algorithms, 

considering several levels of contact components at the reference input of the ANC.

5.7.5 Output S N L B R  versus input S N L B R . Contact com­
ponents at the A N C  reference input

Several levels of contact components at the reference input of the ANC were consid­

ered. The reference input composite signals were generated at SRR levels equal to 

-12, -10, -8, -6, -4 and -2 dB. The primary input SRR was fixed at 0 dB. The values 

of the rest of the input signals and filter parameters of interest were exactly the same 

as for the previous sets of experiments.

Figures 5.44, 5.45 and 5.46 show the results averaged over the 40 pings with the LSL,
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LML and LMH algorithms, respectively.

Average results processing 40 pings with LSL

Figure 5.44: Averaged results over pings 1 to 40 when processed by the LSL. —o — A =  
0.88, -  x -  A =  0.90, - + -  A =  0.92, A =  0.94, A =  0.96, -  > -  A =  0.98.

Figure 5.45: Averaged results over pings 1 to 40 when processed by the LML. — o 
—  r  =  1.3, — x — r =  1.4, — |-— r  =  1.5, — * — r -  1.6, — r =  1.7, — fc>— r =  1.8
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Figure 5.46: Averaged results over pings 1 to 40 when processed by the LMH. — h 
— r =  2.9, —  * —  t  =  3.2, —□ — r =  3.5, — t> — r =  3.8

Figures 5.44, 5.45 and 5.46 present decreasing characteristics in all the cases, as it 

would have been expected.

In the average, SNLBR improvement can be obtained with the LSL and the LML 

algorithms for reference input SRRs up to between -10 and -8 dB, for a primary input 

SRR equal to 0 dB. The same is true for the LMH algorithm for reference input SRRs 

up to -12 dB.

The same comments as for the previous experiments regarding the values of A and r 

at the respective algorithms apply.

Although not shown in this section, the particular evaluation results corresponding 

to the processing of each of the pings were obtained and examined for each of the 

algorithms. As before, different values of A and r provided superior performances in 

some instances, and the number of pings for which SNLBR improvement was achieved 

was considerably higher for the LSL algorithm. And SNLBR improvement was not 

achieved in practically any case with any of the algorithms for reference SRR levels 

higher than -6 dB.
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In consequence, the obtained results indicate that the LSL algorithm provides im­

proved responses, and that, in the average, reference input SRR levels slightly lower 

than -8 dB would allow to obtain SNLBR improvement.

Next section includes more experimental results obtained considering several contact 

frequency shifts from the reverberation centre frequency.

5.8 Output SNLBR versus contact frequency

The same 40 primary and reference input signals as before were again processed by 

the LSL, LML and LMH algorithms, in order to evaluate their performances for sev­

eral contact frequencies around the reverberation signals centre frequency. The values 

of the contact frequencies being considered were, for each of the pings, 492, 496, 500, 

504 and 508 Hz. No contact components were present at the ANC reference input, 

and the primary input SRR was equal to 0 dB. Contacts were located at sample num­

ber 2001 of the primary input reverberation signals in this occasion. The considered 

values of r for the LMH algorithm were this time 2, 2.4, 2.8, 3.2, 3.6 and 4. The rest 

of the signals and filters parameters were as for the previous experiments.

Figures 5.47, 5.48 and 5.49 present the averaged results over the 40 pings with the 

several values of A and r for the LSL, LML and LMH algorithms.
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Average results processing 40 pings with LSL

Figure 5.47: Averaged results over pings 1 to 40 for the several contact frequencies 
when processed by the LSL. — o — A =  0.88, — x — A =  0.90, — H—  A =  0.92, 
-  * -  A =  0.94, - □  -  A =  0.96, -  > -  A =  0.98.

Average results processing 40 pings with LML

Figure 5.48: Averaged results over pings 1 to 40 for the several contact frequencies 
when processed by the LML. — o — r =  1.3, — x — r =  1.4, — I—  r =  1.5, — * — r =  
1.6, — □ — t  — 1.7, -  > -  t  = 1.8
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Average results processing 40 pings with LMH

Figure 5.49: Averaged results over pings 1 to 40 for the several contact frequencies 
when processed by the LMH. —o— r =  2, — x — t  — 2.4, — (-— r =  2.8, — * — r =  3.2, 
— □ — r =  3.6, — t> — r =  4.

Figures 5.47, 5.48 and 5.49 indicate that, in the average, the LSL algorithm provided 

SNLBR improvements between 3.5 and 7.5 dB, for the contact frequencies and values 

of A under evaluation. Again, higher values of A provided improved results.

Similar levels of SNLBR improvement were achieved by the LML algorithm, its per­

formance being in the average quite the same for all the values of r.

Stable responses were obtained with the LMH algorithm for all pings and the values of 

r. Results obtained with r = 2 correspond to those provided by the LMS algorithm, 

and results obtained with r =  4 to those provided by the LMF algorithm. SNLBR 

improvement between about 4 and 5 dB was provided by the LMS algorithm, and 

improved results were not in general obtained for higher values of r.

The evaluation results corresponding to the processing of each of the pings were as 

well obtained and examined for this set of experiments. In general, similar comments 

as those made from the previous sets of experiments apply in this case. In summary, 

not always the same value of A or r at the respective algorithms provided better
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responses, and the total number of pings for which there was SNLBR improvement 

for all the contact frequencies was considerably higher for the LSL algorithm.

Some representative examples, this time corresponding to the evaluation performed 

when processing the pings from record 8, are shown next to briefly illustrate in some 

way the derived conclusions. Figures 5.50, 5.51 and 5.52 contain the corresponding 

performance evaluation results obtained with the LSL, LML and LMH algorithms.

LSL eval. b); record 8 -  ping 1 LSL eval. b); record 8 -  ping 2 LSL eval. b); record 8 -  ping 3

-4 —  - 101—
510 490490 500

contact frequency (Hz)
500 510

contact frequency (Hz)
500

contact frequency (Hz)
510

LSL eval. b); record 8 -  ping 4 LSL eval. b); record 8 -  ping 5
10 10

500
contact frequency (Hz)

—  - 2 ------------------------------------------
510 490 500

contact frequency (Hz)
510

Figure 5.50: Output SNLBR versus contact frequency for pings 1 to 5 at record 8 with 
LSL. Primary input SNLBR — o — A =  0.88, — x — A =  0.90, — I—  A =  0.92, 
-  * -  A =  0.94, - □  -  A =  0.96, -  > -  A = 0.98.
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LML eval. b); record 8 -  ping 1 l m l  evai. d  I, recora c

contact frequency (Hz) contact frequency (Hz)

LML eval. b); record 8 -  ping 4 LML eval. b); record 8 -  ping 5 
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490 500 510
contact frequency (Hz)

contact frequency (Hz)

Figure 5.51: Output SNLBR versus contact frequency for pings 1 to 5 at record 8 
with LML. Primary input SNLBR — o — r =  1.3, — x — r  = 1.4, — I—  r =  1.5, 
—  *  — t  = 1.6, — □ — r =  1.7, — > — r =  1.8

Figure 5.52: Output SNLBR versus contact frequency for pings 1 to 5 at record 8 
with LMH. Primary input SNLBR — o — t  =  2, — x — r =  2.4, — I—  r =  2.8, 
-  * -  T  = 3.2, -  T =  3.6, -  t> -  T  = 4
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5.9 Conclusions

The results from several experiments carried out with synthetic and real reverberation 

signals with the LMS, LSL, LMH and LML algorithms have been initially presented. 

The corresponding waveforms have shown that for cases for which zero-Doppler con­

tact detection was not able to be achieved with the LMS algorithm, the LSL algorithm 

provided satisfactory responses.

A qualitative comparison between the performance of the LSL, LMH and LML al­

gorithms for very low- and zero-Doppler contact detection processing several pings 

from a given real data set has followed. The corresponding waveforms have indicated 

that the LSL algorithm provided a higher number of satisfactory responses, and that 

these were sometimes achieved by lower values of the forgetting factor, A.

A simple measurement procedure to evaluate the level of presence of contact signal 

in a given composite signal has been presented, and this procedure has been used in 

order to obtain a quantitative evaluation of the performance of the several adaptive 

algorithms under evaluation by means of processing a large amount of real reverber­

ation signals for a set of different initial conditions.

Several levels of primary input SRR have heen considered when processing zero- 

Doppler contacts, without considering the presence of contact components at the 

reference input of the ANC.

Several levels of contact components at the reference input of the ANC have been 

considered when processing zero-Doppler contacts, for a fixed value primary input 

SRR equal to 0 dB.

Several contact frequency shifts from the reverberation centre frequency have been 

considered, for a fixed value of the primary input SRR equal to 0 dB.
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Average and particular evaluation results have been obtained with the several adap­

tive algorithms. The obtained results have indicated that the LSL algorithm provided 

a higher number of satisfactory responses in all the sets of experiments, the overall 

results being encouraging.

From the particular results, it was seen that not always higher values of A at the 

LSL algorithm resulted in higher improvement of the SNLBR. This is believed to be 

due to the existence of different degrees of nonstationary among the processed real 

reverberation signals.

The LSL algorithm is further evaluated in the following chapter with a large amount 

of multi-channel real reverberation data. A more detailed evaluation of the results 

is performed by referring to some first order statistical measures of the reverberation 

signals and to the degree of correlation among the input signals of interest.
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Chapter 6

Experiments with complex-valued 
data

Experimental results obtained with two sets of 4-channel real reverberation data given 

by complex-valued sequences will be presented in this chapter.

The performance of the LSL filter will be evaluated for a set of different initial con­

ditions, as several primary input SNLBR levels, several contact frequency shifts from 

the reverberation centre frequency, and several levels of contact components at the 

reference input of the ANC.

As in the previous chapter, the waveforms involved in all the experiments carried 

out will not be presented due to space constraints. The time waveforms, and spectra 

and/or spectrograms in some instances, corresponding to some experiments carried 

out with both real data sets will be presented first.

Averaged evaluation results obtained processing the 48 pings at the second real data 

set together with some particular evaluation results corresponding to the processing 

of some of the pings will follow, and comments and conclusions from the obtained 

results will be inferred.

The final part of the chapter will show that the GSG algorithm derived in Chapter 4 

provided the expected behaviour in terms of stability. Furthermore, it will be shown 

that satisfactory results were obtained for higher values of r when processing rela­
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tively high Doppler contacts embedded in multichannel real reverberation primary 

input signals.

6.1 Multichannel data sets description

Two sets of multichannel recorded real reverberation data given in complex format 

were provided by DERA. The description of both data sets follows:

Data set A

It contained 4 channels of complex basebanded data with 100% overlap between the 

channels. There was a phase-shift between the received signals for each of the chan­

nels, whose beamformers were orientated towards 4 symmetric directions in space. 

The total number of pings was 48, each one corresponding to the returns of a 200 

ms long transmitted pulse. The sampling frequency, / s, was 2 KHz. No target was 

present when generating the data.

The sonar was at a constant speed of about 11 m/s for the first 25 pings, running at 

a constant depth of 190 m. Between the 25th and the 30(/l pings, the sonar slowed 

down and decreased its depth ending up at 3.5 m/s and 100 m.

The time series of any of the pings presented an immediate volume return, similar 

to the transmitted pulse, within the first 500 samples of received data. These 500 

initial samples were rejected for all the pings before beginning to process the received 

signals as it does not correspond to either reverberation or noise signals.

Following the initial pulse, there was predominant reverberation signal, which dropped 

off with range. While the reverberation was predominant, the interval corresponded 

to the so-called reverberation-limited environment.

After about sample number 6000, the data was flat to about sample 14000, the end 

of the ping. This interval corresponded to the so-called noise-limited environment.
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Data set B

Its characteristics were similar to those ones of set A, the difference being that the 

overlap between the four channels was of 25%.

For all the performed experiments, the data received by channel 1 was regarded as 

reverberation at the primary channel of the ANC, rp. The data received by channels 

2, 3 and 4 were added and properly weighted so that the resulting signal had a total 

energy value equal to that of rp. The weighted signal was regarded as the reverbera­

tion at the reference channel of the ANC, rr.

All the generated synthetic echoes to be regarded as the contact signal had the form,

Ae*2**'1 H (t) =  A(cos(‘2irfet) +  jsin(2irfet))H (t) (6.1)

A being a constant amplitude, f e the frequency of the echo in Hz, and H(t) a Hanning 

window to reduce the amplitudes of the sidelobes at the corresponding spectra.

6.2 Some particular experimental results with data 
set A and the LSL algorithm

Primary and reference reverberation inputs to the ANC were obtained with pings 26, 

27, 28 and 29 from data set A. Several synthetic echoes were generated as stated in 

Eq. 6.1. Between the transmission of signals corresponding to pings 24 to 30 the sonar 

platform changed speed and depth as explained above. Hence, the largest changes in 

the long term statistics of the received signals are expected within the corresponding 

time interval, and it will be worth assessing the performance of the LSL algorithm 

when processing the four pings stated above.

The sampling frequency was scaled to 8 kHz and the real reverberation data centre 

frequency modulated to 2 KHz just for simulation purposes.

For this set of experimental results only samples 2001 to 4048 (2U =  2048) of the
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received pings were processed. This was to ensure that all the processed data came 

from a clearly reverberation-limited environment.

Data from pings 26 to 29 was processed consecutively. Thus, the inputs signals length 

was equal to 8192 samples, corresponding to 1.024 seconds of recorded data.

The characteristics of the synthetic echoes were as follows:

- Echoes numbers 1, 3, 5 and 7 had a frequency of 1950 Hz (regarded as zero-Doppler 

echoes) and were located at the samples intervals [201:500], [3249:3648] ([1201:1600] 

of ping 27), [4197,4796] ([101:600] of ping 28) and [6545,6944] ([401:800] of ping 29) 

with SRR’s at the primary input of the ANC of 0 dB.

- Echoes numbers 2 and 8 had a frequency of 2100 Hz and were located at samples 

intervals [1501:1700] and [7845:8144] respectively with SRR’s of 0 dB.

- Echo number 4 had a frequency of 2050 Hz and was located at the samples interval 

[2249:2448] with a SRR of 0 dB.

- Echo number 6 had a frequency of 2200 Hz and was located at the samples interval 

[7645:7844] with a SRR of 0 dB.

The parameters of the LSL were chosen empirically as follows: 

A=0.98 

M =  10 

6 =  0.5

Figure 6.1 shows the magnitude of the time sequences of the primary and reference 

inputs to the ANC, the reverberation signal at the primary input of the ANC, and 

the output of the ANC.

Figure 6.2 and Figure 6.3 show the time-frequency representations of the composite 

primary input and the output of the ANC respectively.

High preservation of energy is achieved for all the 8 echoes, even the zero-Doppler 

ones, independently of their duration, whereas high energy suppression follows for the 

reverberation signal. So, for this particular set of results, it is shown how the LSL
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provides satisfactory results in terms of zero-Doppler echo recovery for an input SRR 

equal to 0 dB.

r e v e rb e ra tio n  a t p rim a ry  in p u t

c o r re s p o n d in g  A N C  o utp u t

t im e  (s )

re v e rb e ra tio n  a t re fe re n c e  in p u t

t im e  (s )

Figure 6.1: Input and output time sequences.

p-inp»chann.1 reverberation from pings 26,27,28 and 29 + 8 echoes

sample no.

Figure 6.2: t-f representation of the composite primary input signal.
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A N C  (L S L ) output

s a m p le  no.

Figure 6.3: t-f representation of the ANC output.

Further simulations with other pings and similar initial conditions as for the experi­

ment above yielded satisfactory results too in terms of zero-Doppler contact preser­

vation.

6.3 Some particular experimental results with data 
set B and the LSL algorithm

Primary and reference reverberation inputs to the ANC were again obtained with 

pings 26, 27, 28 and 29, now from data set B.

As previously, the sampling frequency was scaled to 8 KHz and the real data frequency 

modulated to 2 KHz just for simulation purposes.

For this set of experimental results the whole length of the received signals for each 

ping, except the first 1000 samples in order to avoid the first backscattered echo, was 

processed.

Each of the processed pings was 11416 samples long. Thus, the resulting primary 

and reference signals were 11416 * 4 =  45664 samples long. From about sample



CHAPTER 6. EXPERIMENTS WITH COMPLEX-VALUED DATA 157

4000 of the whole 11416 samples long signals for all the pings, the environment was 

clearly noise-limited. Each ping started being clearly reverberation-limited, and after 

about the first 1500 to 2000 samples the reverberation level (RL) started dropping 

progressively, resulting in a transition period between the reverberation and the noise- 

limited environments until about sample 4000.

Four synthetic echoes were located as follows:

Echo 1 was between samples 501 and 1500 of the primary input signal, and had a 

frequency equal to 2000 Hz.

Echo 2 was between samples 12917 and 13916 (1501 and 2500 of ping 27), with a 

frequency equal to 1950 Hz (regarded as zero-Doppler).

Echo 3 was located between samples 24333 and 24932 (1501 and 2100 of ping 28) 

with a frequency equal to 2100 Hz.

Echo 4 was between samples 34249 and 34748 (1 and 500 of ping 29) with a frequency 

equal to 1800 Hz.

The SRR at the primary input of the ANC was equal to 0 dB for all the cases. 

Figures 6.4 and 6.5 show the time waveforms of the primary and reference inputs to 

the ANC respectively.

Figures 6.6 and 6.7 show the corresponding spectra.
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Figure 6.4: Primary input signal 2.

r -in p u t= re v e rb e ra t io n  fro m  c h a n n e ls  1 ,2 ,3  at p in g s  2 6 ,2 7 ,2 8 ,2 9

Figure (i..r): Reference input signal 2.
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s p e c tru m  of p -in p = r e v .  at p -c h a n n . +  4  e c h o e s  (2 0 0 0 ;1 9 5 0 ;2 1 0 0 ;1 8 0 0  H z )

-4 0 0 0  -3 0 0 0  -2 0 0 0  -1 0 0 0  0  1 0 0 0  2 0 0 0  3 0 0 0  4 0 0 0
fre q u e n c y  ( H z )

Figure 6.6: Spectrum of primary input signal 2.

s p e c tru m  of re fe re n c e  in p u t =  ref. re v e rb e ra tio n  sig n a l

- 4 0 1---------------------1--------------------------1----------------------- '----------------------- '------------------------1------------------------1----------------------- 1-----------------------
-4 0 0 0  -3 0 0 0  -2 0 0 0  -1 0 0 0  0  1 0 0 0  2 0 0 0  3 0 0 0  4 0 0 0

fre q u e n c y  ( H z )

Figure 6.7: Spectrum of reference input signal 2.
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From the spectrum of the primary composite signal can be appreciated that the four 

echoes were embedded in the main reverberation frequency ridge.

The data was processed with three different values of A (0.98, 0.93 and 0.88 respec­

tively).

The filter order, M, was equal to 10 for all the simulations, and again found appro­

priate empirically.

Figure 6.8 shows the time waveforms of the amplitudes of the primary input, the 

output, and the contact signals present at the primary input of the ANC, in that 

sequence. The value of A was 0.98.

Figure 6.9 shows the same results for a value of A equal to 0.93.

Figure 6.10 show the obtained results when A was decreased to 0.88.

A N C  p - i n p u t = p - r e v . f r o m  p in g s  2 6 ,2 7 ,2 8 ,2 9  +  4  e c h o e s ; S R R s = 0 d B

Figure 6.8: Experiment 1 - set B. Primary input and output time waveforms.
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A N C  p - i n p u t = p -r e v .f r o m  p in g s  2 6 ,2 7 ,2 8 ,2 9  +  4  e c h o e s ;  S R R s = O d B
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Figure 6.9: Experiment 2 - set B. Primary input and output time waveforms.

A N C  p - i n p u t = p -r e v .f r o m  p in g s  2 6 ,2 7 ,2 8 ,2 9  +  4  e c h o e s ;  S R R s = 0 d B

la m p i it ude|

Figure 6.10: Experiment 3 - set B. Primary input and output time waveforms.
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The following comments can be made from the results above:

- Decreasing the value of A yields higher levels of primary input composite signal 

energy being rejected.

- Predominant energy remains at the output of the filter for the time intervals at 

which echoes 1, 3 and 4 were located, over the rest of the times. However, the ratio 

between the maximum amplitude of remaining contact for the third ping and the 

maximum amplitude of remaining reverberation at the output of the ANC can be 

seen to be higher for values of A of 0.93 and 0.88 than for A equal to 0.98.

- There is no predominant contact amplitude at the output for the interval in which 

the second echo was present over the rest of the output signal from the second ping. 

So, it can be said that the 1950 Hz contact could not be unambiguously detected.

It is worth noting that echoes 2 and 3 were located within intervals at pings 27 and 

28, respectively, during which a transition from the reverberation- to the noise-limited 

environments was taking place. It is within this transition intervals that the short­

term statistics of the reverberation signals are expected to vary most.

Decreasing the value of the forgetting factor of the LSL algorithm, A, has been said 

theoretically to allow a more rapid adaptation of the adaptive system to changes in 

the statistics of the signals, that filter structure being suitable for operating in noil- 

stationary environments.

Although the second echo could not be deemed to be detected for any of the values 

of lambda chosen in this experiment, the third echo has been shown to be preserved 

at higher levels at the output of the ANC for values of A smaller than 0.98.

The results obtained in this experiment suggest that, for the application of interest, it 

is not only of relevance the Doppler-shift of the contact from the reverberation centre 

frequency, but the time location of the contact as well, the most problematic case in 

terms of contact detection being a zero-Doppler contact located within the transition 

between the reverberation- and the noise-limited environments.

Values of A close to 1 have been shown to provide zero-Doppler echo preservation
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when the contacts are located at time intervals where the environment is clearly 

reverberation-limited.

For this experiment, it has been seen that higher echo preservation is achieved re­

ducing the value of A when the contact is located within the transition from the 

reverberation- to the noise-limited environments.

Exactly the same experiment was performed with the same frequencies and time du­

rations for the echoes as in the previous experiment, but now all echoes started at 

sample number 501 of each ping, where the environment was clearly reverberation- 

limited. The filter order was again equal to 10 and the value of A was equal to 0.98. 

Figure 6.11 shows that not only considerable amount of reverberation energy was 

rejected, but that high amount of energy was preserved at the output of the filter for 

the time intervals in which the four echoes were present, including the second one. 

Thus, these results corroborate the importance for contact detection purposes of not 

only the contact frequency, but its time location within a received ping. As pointed 

out above, decreasing the value of A seems to be an appropriate action to follow when 

the contact signal is located within the transition between the reverberation-limited 

and the noise-limited environments.

A thorough evaluation of the performance of the LSL carried out processing the whole 

data set B will follow after presenting the results obtained for the following experi­

ment, in which the presence of contact components in the reference input of the ANC 

is considered.
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ANC p-input-p-rev. from pings 26,27,28,29 + 4 echoes; S RRs-0  dB

sample number

Figure 6.11: Experiment 4 - set B. Primary input and output time waveforms.

6.4 Contact components in the reference input 
of the ANC. Some particular experimental 
results with the LSL algorithm

For all the experiments presented so far contact signals have been present only in the 

primary input of the ANC. That is equivalent to say that, in the real scenario, the 

direction of arrival of the contact signal is known. In this case, the corresponding 

beamformer receiving the data to be the primary input of the ANC can be orientated 

exactly towards the appropriate direction, receiving the composite primary input. 

And the rest of the beamformers can be orientated towards other directions, collect­

ing in tha,t fashion reverberation signals absent of contact components.

In some instances it might happen that the exact direction of arrival of the contact 

signals is not known. In this case, the beamformer receiving primary input may not be 

able to be orientated precisely towards that direction. Furthermore, the orientation 

of the rest of the beamformers may not guarantee the absence of contact components 

in the respectively received signals.



CHAPTER 6. EXPERIMENTS WITH COMPLEX-VALUED DATA 165

Experimental results processing ping 25 of data set B with contact components being 

present at the reference input of the ANC are presented next. The experiments were 

carried out as follows:

The sampling frequency was scaled to 8 KHz, and the centre frequency of the rever­

beration frequency band was modulated, in this case, to 3 KHz.

Two synthetic echoes were located within the reverberation-limited interval of the 

received primary input noisy signal.

Echo 1 was located between samples 1500 and 1900, with a frequency of 2950 Hz. 

Echo 2 was located between samples 350 and 550, with a frequency of 3050 Hz. 

Three experiments were performed as follows:

1) Echoes 1 and 2 were present at the primary input of the ANC with a SRR of 0 

dB, and at the reference input with a SRR of -10 dB.

2) As in 1) but echoes in the reference input of the ANC were present with a SRR of 

-5 dB.

3) Echoes 1 and 2 were present at the primary input of the ANC as in 1) and 2) . No 

echoes were present at the reference input.

The parameters of the LSL filter were, as before, chosen empirically. M and A were 

equal to 10 and 0.98 respectively.

Figure 6.12 shows the time sequences of the inputs to the ANC for the case 1) above. 

Figure 6.13 shows the corresponding output of the filter.
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ANC p-input -  rev1. from ping 25 ♦ echoes at p-chann.

Figure 6.12: Experiment 5 - set B. Time waveforms of inputs for case 1).

ANC output; inputs from ping 25 + echoes

Figure 6.13: Experiment 5 - set B. ANC output time waveform and spectrum for case 
!)•

Figures 6.14 shows a time-frequency representation of the first 4000 samples of the 

primary input to the ANC for that case.

Figure 6.15 shows a time-frequency representation of the contact signals at the pri­

mary input input of the filter.

Figure 6.16 shows the corresponding time-frequency representation of the first 4000 

samples of the ANC output.
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primary input

f(Hz)

Figure 6.14: Experiment 5 - set B. t-f representation of p-inp for case 1).

echoes at primary input

sample no.

Figure 6.15: Experiment 5 - set B. t-f representation of echoes at p-inp for case 1).
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ANC output

sample no.

Figure 6.16: Experiment 5 - set B. t-f representation of ANC output for case 1).

Figure 6.17 shows the time sequence of the output of the ANC for case 2) above. 

Figure 6.18 shows the corresponding time-frequency representation of the first 4000 

samples of the ANC output.

A N C  output; inputs from ping 25 + echoes

sample number
spectrum of ANC output; inputs from ping 25 + echoes

-4000 -3000 -2000 -1000 0 1000 2000 3000 4000
frequency (Hz)

Figure 6.17: Experiment 5 - set B. ANC output for case 2).
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ANC output

sample no.

Figure 6.18: Experiment 5 - set B. t-f representation of ANC output for case 2).

Figure 6.19 shows the time-frequency representation of the first 4000 samples of the 

output of the ANC for case 3) above.

ANC output

sample no.

F igure 6.19: Experiment 5 - set B. t-f representation of ANC output for case 3).
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Results given by the experiment in case 1) show that both echoes could be clearly 

detected at the output of the filter, whereas great amount of reverberation signal 

energy was rejected.

Results given by the experiment in case 2) show that the low-Doppler echo is de­

tectable, but the zero-Doppler echo (2950 Hz) amplitude drops to the same level of 

the remaining reverberation amplitude, therefore its detection being notably diffi- 

culted.

Results given by the experiment in case 3) show how both echoes can be detected 

and that the zero-Doppler echo in this case is not appreciably distorted.

A theoretical evaluation of the effects of signal components at the reference input 

of the ANC, for the LMS algorithm, can be encountered in [1], Such a theoretical 

evaluation has not been encountered in the literature for the ANC being implemented 

with the LSL. For this particular set of results related to the active sonar application, 

it has been shown that a level of -10 dB of contact components at the reference 

input, although affects the performance of the filter, allows further zero-Doppler echo 

detection. Increasing the SRR to -5 dB caused that the zero-Doppler echo was not 

detectable at the output of the filter.

The performance of the LSL algorithm for different contact levels at the reference 

input of the ANC will be evaluated ahead in this chapter processing the 48 pings at 

data set B.
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6.5 SNLBR evaluation procedure

A different procedure to evaluate the SNLBR of a given composite signal was used 

to obtain all the experimental evaluation results that follow in this chapter. This 

procedure was provided by DERA, and it has been found suitable for the application 

of active sonar contact detection. It is based on the way that the filtered signals are 

further processed in order to be able to establish the detection of a contact, or not. 

According to this procedure, a detection will be called if the SNLBR improvement af­

ter having filtered a given ping is higher than certain pre-determined threshqld value. 

This threshold is set up, according to a classical statistical approach, so that certain 

values for the probability of detection (PD) and probability of false alarm (PFA) are 

achieved if the value of the SNLBR improvement is above that threshold.

The SNLBR evaluation procedure used in this chapter follows the next main steps to 

calculate the SNLBR:

1) An initial short-time Fourier transform (STFT) of the data is performed. The 

total number of equally spaced frequencies at each discrete Fourier transform (DFT) 

is fixed to certain value in order to obtain a reasonable frequency resolution. 75% 

overlap between the several time sequences being analysed is considered.

2) The time and frequency bins which contain information corresponding to the lo­

cal composite signal (the time interval where the contact is placed) are located and 

regarded as the inner window. And the time and frequency bins which contain in­

formation corresponding to the local background (the time interval surrounding the 

contact) are located and regarded as the outer window.

3) In order to calculate the SNLBR value, the ratio between the maximum value at 

the inner window and the mean value from all the time and frequency bins within 

the outer or exclusion window, is calculated in dB.

Figure 6.20 contains a generic representation of the inner and outer windows within
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the time-frequency plane.

After analysing the obtained results, both in the previous chapter and in this one, 

both procedures for evaluating the SNLBR were found consistent. The procedure 

used in the previous chapter provided a measurement of the ratio between the to­

tal amount of composite signal energy at the interval where the contact was located 

and the total amount of signal energy in its surroundings. This resulted, naturally, 

in values of the SNLBR closer to the corresponding values of the SRR of the pri­

mary input signals. The procedure used in this chapter was applied so as to have 

a good impression of the suitability of the LSL algorithm, for a particular application.

range

Figure 6.20: Schematic representation of a generic array containing time-frequency 
information.
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6.6 Processing data set B

Each of the 48 4-channel pings at data set B was combined in a similar way as for 

the previous experiments to form the primary and reference inputs to the ANC, and 

synthetic echoes generated and added to the primary input.

This section presents a thorough evaluation of the performance of the LSL algorithm. 

Averaged results, obtained for any of the following cases, are shown:

a) Zero-Doppler contacts were located within the clearly reverberation-limited en­

vironment interval, at several levels of primary input SRR. No contact components 

were present at the ANC reference input.

b) Zero-Doppler contacts were located within the transition interval from the reverberation- 

to the noise-limited environments, at several levels of primary input SRR. No contact 

components were present at the ANC reference input.

c) Several contact frequency shifts from the reverberation centre frequency, for a fixed 

primary input input SRR level, were located within the clearly reverberation-limited 

environment interval. No contact components were present at the ANC reference 

input.

d) The presence of zero-Doppler contact components at the ANC reference input was 

considered, at several levels, for a fixed level of primary input SRR. Contacts were 

located within the clearly reverberation-limited environment interval.

For all the cases above, each of the pings was processed for a set of different values of 

the LSL forgetting factor, A. These values were 0.88, 0.90, 0.92, 0.94, 0.96 and 0.98, 

respectively.

It is worth noting that for all the experiments, although input values of the SNLBR 

are plotted in each of the cases, the classical definition of the signal-to-reverberation 

ratio, SRR, was used when forming the primary input composite signals (i.e., SRR =  

lOlogiojj, where S is the total energy of the contact signal, and R is the total energy 

of the corresponding reverberation signal).
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The values of the input SRR considered in any of the cases above will be stated, and 

the corresponding values of the input SNLBR obtained when applying the evaluation 

procedure presented in the previous chapter, to any of the input signals, will be able 

to be seen at the corresponding evaluation plots.

6.6.1 O utput S N L B R  versus input S N L B R . Contacts within 
the reverberation limited environment interval

The values of the input signals parameters for this set of experimental results were 

as follows:

f ,  =  2 kHz, sampling frequency

f c =  500 H z, reverberation centre frequency

/ e =  495 Hz, contact frequency

nse =  400, contact length in samples (i.e., 200 ms long contacts, corresponding to 

the same time duration as that of the transmitted pulses)

ise =  500, initial sample of primary input reverberation signals where contact was 

located

srrsinvector =  [—5, —2.5, 0, 2.5, 5] dB, values of the primary input SRR.

The LSL algorithm parameters values were as follows:

M  =  10, filter order

6 =  0.8, small initial constant to ensure the nonsingularity of the input correlation 

matrix. (Note: its value does not have any effect on the results obtained for large 

input signals)

lambdasvector =  [0.88, 0.90, 0.92, 0.94, 0.96, 0.98], values of A being considered 

at the LSL algorithm for each case

Figure 6.21 shows the averaged results obtained when processing the 48 pings at data 

set B.
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Average results. Contact within reverberation-limited environment

Figure 6.21: output SNLBR versus input SNLBR. Contact in reverberation-limited 
environment. Averaged results. — o — A =  0.88, — x — A =  0.90, — 1—  A =  0.92, 
-  * -  A =  0.94, —□ — A =  0.96, -  > -  A =  0.98.

The averaged results show that SNLBR improvement was achieved at the output of 

the filter for any of the values of A having been considered. Improved results were 

achieved by increasing the value of A, and a maximum improvement of about 3.5 dB 

was achieved with A =  0.98, for the primary input SNLBR levels shown at Figure 6.21.

The particular evaluation results corresponding to the processing of each of the pings 

were obtained too. Some representative examples of these results are shown next, 

and some comments on the obtained overall particular results follow.

Figure 6.22 shows the particular results processing pings 1 to 6. Figure 6.23 shows 

similar results obtained when processing pings 25 to 30. Figure 6.24 when processing 

pings 37 to 42.
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Figure 6.22: output SNLBR versus input SNLBR. Contact in reverberation-limited
environment. Pings 1 to 6. — o — A = 0.88, — X — A =  0 .9 0 ,---- |- — A =  0.92,
-  * -  A =  0.94, —□ -  A =  0.96, -  > -  A =  0.98.

LSLeval. a); ping 25 LSL aval, a); ping 26 LSL eval. a); ping 27

LSL oval, a), ping 28 LSL oval, a); ping 29 LSL oval, a); ping 30

Figure 6.23: output SNLBR versus input SNLBR. Contact in reverberation-limited 
environment. Pings 25 to 30. — o — A =  0.88, — x — A =  0.90, — 1- — A =  0.92, 
-  * -  A =  0.94, —□ — A =  0.96, -  t> — A =  0.98.



CHAPTER 6. EXPERIMENTS WITH COMPLEX-VALUED DATA 177

LSL eval. a); ping 37

LSL eval. a); ping 40

input SNLBR (dB)

LSL eval. a) ; ping 41 LSL eval. a); ping 42

Figure 6.24: output SNLBR versus input SNLBR. Contact in reverberation-liinited
environment. Pings 37 to 42. — o — A =  0.88, — x — A =  0 .9 0 ,---- 1---- A =  0.92,
-  * -  A =  0.94, - □  -  A =  0.96, -  t> -  A =  0.98.

As a first comment to the particular obtained results shown in Figures 6.22 to 6.24, 

it can be seen that, on one hand not always SNLBR improvement was achieved for 

all of the values of A in some instances, and on the other hand that increasing the 

value of A did not always yield higher output SNLBR’s.

In order to aid the interpretation of all the obtained particular results, the nor­

malised zero-shift correlation parameters between the primary and reference input 

reverberations and between the primary input reverberation and the contact signal 

were calculated for each of the 48 pings. Table 6.1 shows the corresponding values, 

where zscprev denotes normalised zero-shift correlation parameter between primary 

and reference input reverberations and zscperp denotes normalised zero-shift correla­

tion parameter between contact and primary input reverberation.

Tables 6.2 and 6.3 show the calculated values of the following first order statistics, 

for each of the 48 pings being processed:

Effjrp, mean frequency of the reverberation signal at the primary input of the filter.
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The frequency band being considered to perform the calculations was from 400 to 

600 Hz, where the main reverberation frequency ridge laid.

E[f]rr, mean frequency of the reverberation signal at the reference input of the filter. 

Std[f]rp, frequency standard deviation of the primary input reverberation spectrum 

amplitude.

Std[f]rr, frequency standard deviation of the reference input reverberation spectrum 

amplitude.

RPmax[f], frequency at which the maximum value of the primary input reverberation 

spectrum amplitude was found.

RRmax[f], frequency at which the maximum value of the reference input reverbera­

tion spectrum amplitude was found.

Table 6.1: zscp’s for pings 1 to 48. Contact in reverberation-limited environment.

ping 1 ping 2 ping 3 ping4 ping 5 ping 6
zscprevs 0.63 0.62 0.61 0.62 0.62 0.58
zscperp 0.20 0.18 0.33 0.18 0.26 0.17

ping 7 ping 8 ping 9 ping 10 ping 11 ping 12
zscprevs 0.58 0.61 0.61 0.61 0.61 0.59
zscperp 0.21 0.27 0.21 0.17 0.28 0.21

ping 13 ping 14 ping 15 ping 16 ping 17 ping 18
zscprevs 0.63 0.60 0.65 0.62 0.62 0.64
zscperp 0.18 0.40 0.16 0.23 0.28 0.21

ping 19 ping 20 ping 21 ping 22 ping 23 ping 24
zscprevs 0.62 0.62 0.61 0.63 0.66 0.73
zscperp 0.31 0.21 0.21 0.31 0.21 0.06

ping 25 ping 26 ping 27 ping 28 ping 29 ping 30
zscprevs 0.84 0.91 0.88 0.88 0.90 0.91
zscperp 0.04 0.13 0.08 0.30 0.49 0.43

ping 31 ping 32 ping 33 ping 34 ping 35 ping 36
zscprevs 0.90 0.93 0.94 0.93 0.91 0.92
zscperp 0.34 0.51 0.44 0.51 0.84 0.84

ping 37 ping 38 ping 39 ping 40 ping 41 ping 42
zscprevs 0.93 0.92 0.89 0.88 0.93 0.95
zscperp 0.49 0.43 0.37 0.48 0.76 0.65

ping 43 ping 44 ping 45 ping 46 ping 47 ping 48
zscprevs 0.93 0.93 0.89 0.93 0.94 0.94
zscperp 0.76 0.71 0.59 0.43 0.30 0.36
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Table 6.2: Some first order statistics of pings 1 to 32.

ping no. E[f]rp E[f)rr Std[f]rp Std[f]rr RPmax[f] RRmax[f]
i 486.9 495.1 26.8 26.1 502.2 502.2
2 489.1 495.2 26.6 24.2 496.6 496.6
3 491.4 497.0 26.9 23.5 497.2 496.9
4 492.1 497.2 27.9 27.8 503.4 503.4
5 490.1 495.1 28.3 28.4 493.1 493.1
6 490.3 496.6 28.3 27.4 505.3 505.3
7 490.5 496.4 31.7 29.8 494.0 502.4
8 489.2 496.6 28.0 24.1 499.0 499.7
9 490.7 496.9 28.0 27.6 491.7 498.5
10 491.5 497.5 28.2 27.1 495.9 507.9
11 491.2 496.7 30.4 26.9 496.4 505.0
12 489.6 495.6 30.0 28.0 483.3 489.3
13 492.1 496.8 28.2 24.4 500.5 504.8
14 493.0 497.4 31.0 25.9 504.3 497.4
15 491.5 496.0 27.0 23.7 495.2 501.7
16 491.0 494.7 28.3 24.4 498.5 491.2
17 491.5 495.6 30.1 25.9 495.0 499.1
18 490.5 497.9 26.1 23.0 502.4 507.1
19 492.5 496.5 26.4 25.5 499.3 499.3
20 490.6 495.8 29.0 24.6 485.0 497.4
21 491.3 496.3 30.5 28.2 503.6 506.7
22 490.7 494.7 25.0 24.6 497.8 499.1
23 480.4 484.7 22.5 21.7 486.7 484.8
24 465.2 470.4 18.6 18.8 467.5 467.5
25 459.3 465.2 16.1 14.2 465.9 471.2
26 464.5 467.6 13.8 13.4 471.4 471.4
27 469.0 472.2 15.2 14.6 476.4 476.4
28 476.1 480.1 15.9 13.3 474.7 474.7
29 482.7 486.8 15.9 13.4 479.9 495.5
30 484.0 486.9 15.5 12.8 497.1 489.3
31 484.8 486.3 14.5 12.9 491.9 491.9
32 484.8 486.7 13.4 12.5 483.1 495.2
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Table 6.3: Some first order statistics of pings 33 to 48.

ping no. E[f]rp Efflrr Std[f]rp Std[f]rr RPmax[f] RRmax[f]
33 487.2 490.4 12.8 10.1 485.9 494.7
34 489.0 491.4 14.7 14.6 494.0 482.3
35 493.4 494.4 11.3 11.4 494.8 494.8
36 494.6 499.0 15.2 12.3 495.2 493.3
37 491.9 494.7 15.2 13.1 490.2 490.2
38 494.7 497.3 13.4 13.3 500.9 500.9
39 487.6 492.4 14.0 13.3 485.5 504.5
40 496.7 500.0 12.0 11.7 501.2 501.2
41 491.4 492.0 12.1 11.7 499.7 489.7
42 496.1 497.5 10.5 8.9 495.9 495.0
43 489.2 489.6 11.3 10.7 491.2 491.2
44 498.9 499.5 10.9 10.5 503.8 503.6
45 492.5 493.6 14.7 13.2 496.4 496.4
46 500.7 503.9 13.8 11.6 513.6 513.6
47 502.0 501.6 15.0 12.3 506.7 500.0
48 499.4 501.0 13.8 13.0 502.9 502.9

The following comments can be made from the obtained overall particular results, 

and the values shown at Tables 6.2, 6.3 and 6.1:

a) Out of the 48 processed pings, only pings 14, 28, 32, 35, 36, 40 and 43 did not 

present improvement of the output SNLBR with respect to the input SNLBR, for 

any of the values of A having been considered.

b) For the rest of the pings there was an improvement of several dB’s of the output 

SNLBR, the amount of this one depending on each particular case, for all or for some 

of the A values.

c) Better performance was achieved with higher values of A for pings 1, 3, 4, 5, 6, 7, 

8, 11, 13, 14, 16, 17, 18, 20, 21, 23, 25, 29, 30, 33, 34, 37, 38, 44, 45 and 46. In most 

of these cases the performance dropped down together with the decreasement of the 

value of A.

d) Better performance was achieved with lower values of A for pings 2, 9, 15, 19, 22, 

24, 26, 27, 28, 31, 42 and 48.

e) For the pings stated in a), for which improvement of the SNLBR was not achieved, 

the following comments can be made:
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- Ping 14 = >  E[f]rp  =  497.4, RPm ax[f] =  504.3, zscperp =  0.40.

- Ping 28 = >  E[f]rp  =  476.1, RPm ax[f] =  474.7, zscperp — 0.30.

- Ping 32 = >  E[f]rp  =  484.4, RPm ax[f] =  483.1, zscperp =  0.51.

- Ping 35 = >  E[f]rp  =  493.4, RPm ax[f] =  494.8, zscperp =  0.84.

- Ping 36 = >  E[f]rp  =  494.6, RPm ax[f] =  492.2, zscperp =  0.84.

- Ping 40 = >  E[f]rp  =  496.7, R Pm ax[f] =  501.2, zscperp =  0.48.

- Ping 43 = >  E[f]rp  =  489.2, RPm ax[f) — 491.2, zscperp =  0.76.

It is worth noting that for all these cases the value of zscperp was comparatively spe­

cially high (note that only pings 14, 29, 30, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 

44, 45 and 46 presented values of zscperp equal or above 0.4), and that either E[f]rp 

or RPmaxff], or both, approached the contact frequency, 495 Hz.

On one hand, this suggests that, as expected, higher correlation between contact and 

reverberation is obtained as their frequencies get closer, and that higher correlation 

values imply a reduction of the performance of the LSL. On the other hand, although 

convergence of the LMS with certain correlation and nonstationarities of the input 

signals is said to be demonstrated in several articles cited in [1], superior convergence 

behaviour is expected by the RLS [2]. And similar convergence behaviour of the RLS 

and the LSL is shown in [3]. Indeed, satisfactory results were obtained when process­

ing pings 29, 30, 33, 34, 37, 38, 41, 42, 45 and 46, for all of which the value of zscperp 

was shown comparatively high (above 0.4).

Although more results in this sense will be commented when presenting further re­

sults ahead, the results above suggest that, apart from the correlation levels among 

the signals of interest, some other factor or factors have important effect on the be­

haviour of a given adaptive filter (AF). A quantitative evaluation of the so-called 

non-stationarity degree (NSD) was for the first time given in [4], and it is shown there 

that the severity of the tracking problem is characterised by the NSD. It could well 

happen that the NSD is specially high for the cases above for which improvement of 

the SNLBR was not achieved at the output of the ANC.

A way of obtaining a parallel adaptation of A for the RLS is introduced in [2] prior
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previous evaluation of the NSD. Further research could be performed in that way in 

order to attempt a parallel adaptation of the LSL.

Before passing to the next section, the time waveforms corresponding to the processing 

of pings 3 and 39 for this set of experimental results are shown. From the particular 

evaluation results shown in Figures 6.22 to 6.24, it can be seen that the SNLBR im­

provement corresponding to the processing of those two pings varies approximately 

between 1 and 4 dB, for the different values of A having been considered. Looking 

at Figure 6.21, it can be seen that the average SNLBR improvement provided by the 

LSL filter for this experiment varies approximately between 2 and 3 dB. So, the time 

waveform corresponding to the processing of pings 3 and 39 will represent in some way, 

qualitatively, the average kind of response expected by the LSL algorithm in this case.

Figure 6.25 contains the primary composite input, output and contact at primary 

channel time waveforms corresponding to processing signals from ping 3 with a value 

of A at the LSL algorithm equal to 0.98, which corresponds, according to Figure 6.22, 

to a SNLBR improvement of about 4 dB. Figure 6.26 contains the corresponding 

output time waveforms for values of A equal to 0.94 and 0.88, which correspond to 

SNLBR improvements of about 3.5 and 2 dB respectively.

Figure 6.27 contains the primary composite input, output and contact at primary 

channel time waveforms corresponding to processing signals from ping 39 with a value 

of A at the LSL algorithm equal to 0.98, which corresponds, according to Figure 6.24, 

to a SNLBR improvement of about 3.5 dB. Figure 6.28 contains the corresponding 

output time waveforms for values of A equal to 0.94 and 0.88, which correspond to a 

SNLBR improvements of about 1.25 and 1.5 dB in respectively.

It can be seen how a SNLBR improvements between 2.5 and 3.5 dB, correspond to 

considerable amount of reverberation signal rejection and contact signal preservation. 

As the values of the SNLBR improvement decrease from that ‘threshold’ , the level
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of presence of reverberation signal tends to be similar to that of the contact at the 

output of the filter.

A N C  (L S L )  com p o s ite  prim ary input from  ping 3  plus synthetic contact

A N C  (L S L ) o utp u t; forgetting factor =  0 .9 8

Figure 6.25: Processing of ping 3 with A =  0.98.

ANC (LSL) output; forgetting factor = 0.94

ANC (LSL) output, forgetting factor = 0 88

sample number; fs = 2 kHz

Figure 6.26: Processing of ping 3 with A =  0.94 and A =  0.88.
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A N C  (L S L ) c o m p o s ite  p rim ary inp u t from  ping 3 9  plus sy n th e tic  contact

Figure 6.27: Processing of ping 39 with A = 0.98.

A N C  (L S L ) output; forgetting factor =  0 .8 8  
0 .3 5 1------------------------------------ 1------------------------------------ 1------------------------------------1------------------------------------1----------

0 .3  -

0 .2 5  -

sa m p le  n u m b e r; fs =  2  k H z

Figure 6.28: Processing of ping 39 with A =  0.94 and A =  0.88.



CHAPTER 6. EXPERIMENTS WITH COMPLEX-VALUED DATA 185

6.6.2 O utput S N L B R  versus input S N L B R . Contacts within 
the transition from the reverberation- to the noise- 
lim ited environments

Similar performance evaluation results were obtained processing the same 48 pings as 

previously, with the only difference this time being that the contacts where located at 

the transition interval between the reverberation- and the noise-limited environments. 

So, the values of the several parameters related to the input signals were exactly the 

same as for the previous set of experimental results, except for the initial sample of 

the primary input reverberation signals where the contacts were located, ise, which 

was in this case equal to 2001.

The values of all the LSL algorithm parameters were exactly the same as for the 

previous experiment too, including the several values of A for which each of the pings 

was processed.

Figure 6.29 shows the obtained averaged performance evaluation results after pro­

cessing the 48 pings at data set B for this case.

Similar values of SNLBR improvement as for the previous experiment, in the average, 

are achieved in this case. And higher SNLBR improvements are achieved by higher 

values of A, too.



CHAPTER 6. EXPERIMENTS WITH COMPLEX-VALUED DATA 186

Average results. Contact within transition interval from reverberation- to noise-limited environments

Figure 6.29: output SNLBR versus input SNLBR. Contact in transition environment. 
Averaged results. — o — A = 0.88, — x — A =  0.90, — I—  A = 0.92. — * — A =  0.94, 
— □ — A =  0.96, -  t> -  A =  0.98.

The particular evaluation results for each of the 48 processed pings were obtained, and 

some representatives examples are shown next. Comments on the obtained overall 

particular evaluation results will follow.

Figure 6.30 shows the particular results processing pings 7 to 12. Figure 6.31 shows 

similar results obtained when processing pings 19 to 24. Figure 6.32 when processing 

pings 25 to 30.
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ping 10; LSL; echo in trans, env. ping 11 ; LSL; echo in trans. env. ping 12; LSL; echo in trans. env.

Figure 6.30: output SNLBR versus input SNLBR. Contact in transition environment. 
Pings 7 to 12. — o — A =  0.88, — x — A = 0.90, — I—  A =  0.92, — * — A =  0.94, 
- □  — A =  0.96, -  >  -  A =  0.98.

ping 19; LSL; echo in trans. env.

input SNLBR (dB) input SNLBR (dB)

ping 22; LSL; echo in trans. env. ping 23; LSL; echo in trans. env. ping 24; LSL; echo in trans. env.

Figure 6.31: output SNLBR versus input SNLBR. Contact in transition environment. 
Pings 19 to 24. -  o -  A =  0.88, -  x -  A =  0.90, -  +  -  A =  0.92, -  * -  A =  0.94, 
- □  — A =  0.96, -  >  -  A =  0.98.
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ping 25; LSL; echo in trans. env. ping 26; LSL; echo in trans. env. ping 27; LSL; echo in trans. env.

input S N LB R  (dB)

ping 28; LSL; echo in trans. env. ping 29; LSL; echo in trans. env. ping 30; LSL; echo in trans. <

input SNLBR (dB) nput S NLBR  (dB)

Figure 6.32: output SNLBR versus input SNLBR. Contact in transition environment. 
Pings 25 to 30. -  o -  A =  0.88, -  x -  A = 0.90, -  + -  A =  0.92, -  * -  A = 0.94, 
- □  -  A =  0.96, -  >  -  A =  0.98.

Table 6.4: zscperp’s for pings 1 to 48. Contact in transition environment.

ping 1 ping 2 ping 3 ping4 ping 5 ping 6
zscperp 0.40 0.43 0.32 0.16 0.508 0.19

ping 7 ping 8 ping 9 ping 10 ping 11 ping 12
zscperp 0.25 0.29 0.43 0.16 0.22 0.34

ping 13 ping 14 ping 15 ping 16 ping 17 ping 18
zscperp 0.43 0.29 0.35 0.14 0.47 0.37

ping 19 ping 20 ping 21 ping 22 ping 23 ping 24
zscperp 0.42 0.53 0.37 0.41 0.33 0.09

ping 25 ping 26 ping 27 ping 28 ping 29 ping 30
zscperp 0.14 0.14 0.47 0.72 0.33 0.34

ping 31 ping 32 ping 33 ping 34 ping 35 ping 36
zscperp 0.49 0.44 0.41 0.45 0.40 0.41

ping 37 ping 38 ping 39 ping 40 ping 41 ping 42
zscperp 0.59 0.43 0.30 0.48 0.33 0.35

ping 43 ping 44 ping 45 ping 46 ping 47 ping 48
zscperp 0.68 0.38 0.57 0.34 0.44 0.75
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In order to aid the interpretation of the obtained overall performance evaluation re­

sults, Table 6.4 contains the values of the zero-shift correlation parameters of interest, 

as for the previous experiment.

Briefly, the following comments can be made from the obtained results:

a) Out of the 48 processed pings, only pings 1, 5, 14, 21, 28 and 32 did not present 

improvement SNLBR improvement, for any of the values of A.

b) As for the previous experimental results, for the rest of the pings there was an 

improvement o f several dB’s of the output SNLBR, the amount of this one depending 

on each particular case, for all or for some of the A values.

c) Better performance was achieved with higher values of A for pings 3, 7, 8, 9, 10, 

11, 12, 13, 15, 16, 17, 19, 20, 22, 23, 24, 25, 26, 29, 30, 32, 33, 37, 38, 44 and 45. In 

most of these cases the performance dropped together with the decreasement of the 

value of A.

d) Better performance was achieved with lower values of A for pings 2, 34, 35, 36, 41, 

43, 46, 47 and 48.

f) For the pings stated in a), for which improvement of the SNLBR was not achieved, 

the following comments can be made from Tables 6.2, 6.3 and 6.4:

- Ping 1 = >  E [f]rp  =  489.1, RPm ax[f] =  502.2, zscperp =  0.40.

- Ping 5 = >  E [f]rp  = 490.1, RPm ax[f] =  493.1, zscperp =  0.50.

- Ping 14 = >  E [f]rp  =  493.0, RPm ax[f] =  502.2, zscperp =  0.29.

- Ping 21 = >  E [f]rp  =  491.3, RPm ax[f) =  503.6, zscperp =  0.37.

- Ping 28 = >  E [f]rp  =  476.1, RPm ax[f] =  474.7, zscperp = 0.72.

Although most values of the zscperp parameter for these 5 pings can be seen to be 

considerably high, for this experiment 23 out of the 48 pings presented a value of 

zscperp > 4, which means that for 19 of them the LSL was providing improved re­

sponses (particularly improved performance was found for pings 20, 22, 31, 32, 33, 35, 

36, 37, 45 and 48, for all of which the zscperp was quite high). So, as for the previous 

experiment, the pings for which satisfactory results were not achieved presented rel­

atively high zscperp values, but on the other hand satisfactory results were obtained
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processing a considerable amount of pings with relatively high zscperp values. Again, 

this suggests that some other factor or factors have effect on the LSL performance. 

One of these could be the NSD of the input data.

Some of the time waveforms corresponding to the particular evaluation performance 

results were obtained. As for those shown in the previous section, values of the 

SNLBR improvement of about 3 dB corresponded to output time waveforms for 

which considerable amount of contact preservation and of primary input reverberation 

rejection took place.

In summary, the results obtained in this case with the LSL algorithm were again quite 

satisfactory in terms of zero-Dopplers active sonar contact detection, for the levels of 

input SRR having been considered.

6.6.3 Output S N L B R  versus contact frequency. Contacts 
within the reverberation limited environment interval

Experimental results were obtained with the same data set in order to evaluate the 

performance of the LSL algorithm for several values of the contact frequency shift 

from the reverberation centre frequency, for a fixed level of primary input SRR equal 

to 0 dB. The contact frequencies being considered were in the interval [484,504] Hz.

The values of the variables of interest for this experiment were as follows:

f ,  =  2000 Hz, sampling frequency.

f c =  500 Hz, carrier frequency to modulate the data.

fesvector  =  [484 488 492 496 500 504] Hz, contact frequencies.

nse =  400, length of contact signal in samples.

SRRe =  0 dB, input SRR at primary input of the ANC.

M =  10, filter order.

6 =  1, small initial constant to ensure the nonsingularity of the input correlation 

matrix.
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lambdasvec =  [0.88 0.90 0.92 0.94 0.96 0.98], values o f A being considered when 

processing each of the 48 pings.

Figure 6.33 shows the obtained averaged values when processing the 48 pings for 

the several contact frequencies with the several values of A. It can be seen that, once 

again, a few dB of overall improvement was provided by the LSL filter. Furthermore, a 

maximum average SNLBR improvement of about 6 dB was achieved for the frequency 

interval [484,496] Hz, and an average SNLBR improvement between 2 and and 3.5 

dB for contact frequencies equal to 500 Hz (similar to the values obtained from the 

previous experiments, as expected) and 504 Hz.

Average results. Contact in reverberation-limited environment

Figure 6.33: output SNLBR versus contact frequency. Contact in reverberation- 
limited environment. Averaged results. — o — A =  0.88, — x — A =  0.90, — (- — A =  
0.92, -  * -  A =  0.94, -  A =  0.96, -  > -  A = 0.98, - - Input SNLBR (dB).

Some of the particular performance evaluation results corresponding to this experi­

ment are shown next. Figure 6.34 contains the obtained results processing pings 13
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to 18. Figure 6.35 the obtained results processing pings 25 to 30. And Figure 6.36 

the corresponding results from the processing of pings 43 to 48. The values of the 

calculated input SNLBR for each of the contact frequencies and each of the stated 

pings, corresponding to the input value of 0 dB for the SRR in all cases, are shown 

in Table 6.5.

Table 6.5: Evaluated input SNLBR for contact frequencies between 484 and 504 Hz 
for several pings.

ping no. 484 Hz 488 Hz 492 Hz 496 Hz 500 Hz 504 Hz
13 input SNLBR(dB) 7.4 6.4 6.4 6.2 4.0 7.1
14 input SNLBR(dB) 8.7 9.1 8.0 6.0 11.1 11.6
15 input SNLBR(dB) 7.2 4.0 3.0 2.4 2.0 4.4
16 input SNLBR(dB) 5.4 3.5 2.2 -0.7 6.8 7.4
17 input SNLBR(dB) 8.8 8.1 6.6 6.3 11.0 8.9
18 input SNLBR(dB) 7.0 6.7 8.1 8.2 13.6 14.1
25 input SNLBR(dB) 4.7 6.1 9.3 10.1 18.4 19.2
26 input SNLBR(dB) 7.3 7.9 9.0 10.0 17.9 19.6
27 input SNLBR(dB) 4.0 3.0 4.7 6.0 12.6 14.2
28 input SM.BH(dB) 7.2 7.0 3.7 6.7 11.7 12.8
29 input SNLBR(dB) 8.8 6.0 3.4 0.5 6.2 7.9
30 input SNLBR(dB) 6.5 6.9 6.2 3.5 9.4 9.5
43 input SNLBR(dB) 8.6 9.0 7.1 9.3 10.8 9.4
44 input SNLBR(dB) 13.9 12.9 11.9 9.4 17.3 16.3
45 input SNLBR(dB) 11.7 14.5 9.6 4.8 8.9 8.5
46 input SNLBR(dB) 11.6 11.9 10.5 10.2 11.5 10.14
47 input SNLBR(dB) 13.8 15.7 14.1 12.3 12.6 11.7
48 input SNLBR(dB) 15.2 13.5 14.3 12.8 10.2 11.3
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LSLeval. b); ping 13 LSL eval. b); ping 14 LSL eval. b); ping 15

contact frequency (Hz) 

LSL eval. b); ping 16

contact frequency (Hz) 

LSL eval. b); ping 17

contact frequency (Hz) 

LSL eval. b); ping 1 8

contact frequency (Hz)

Figure 6.34: contact frequency /  output SNLBR for pings 13 to 18. — o — A =  0.88, 
-  x -  A =  0.90, -  +  -  A =  0.92, -  * -  A =  0.94, - □  -  A =  0.96, -  > -  A =  0.98.

LSL eval. b); ping 25 LSL eval. b); ping 26 LSL eval. b); ping 27

contact frequency (Hz) 

LSL eval. b); ping 28 LSL eval. b); ping 29 LSL eval. b); ping 30

Figure 6.35: contact frequency /  output SNLBR for pings 25 to 30. — o — A =  0.88, 
-  x -  A =  0.90, -  +  -  A =  0.92, -  * -  A =  0.94, - □  -  A =  0.96, -  > -  A =  0.98.
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Figure 6.36: contact frequency /  output SNLBR for pings 43 to 48. — o — A =  0.88, 
-  x -  A =  0.90, -  +  -  A =  0.92, -  * -  A =  0.94, - □  -  A =  0.96, -  >  -  A =  0.98.

From Figures 6.34 to 6.36 and from Table 6.5, it can be seen that SNLBR improvement 

was achieved for most of the frequencies and pings under evaluation, for all or for 

some of the values of A. It can be seen as well that, again, not always higher values 

of A provided improved responses. Particularly, this can be observed for most of the 

evaluation results corresponding to pings 25 to 30. It is worth recalling that between 

pings 24 and 30 the sonar changed speed and depth as stated at the beginning of the 

chapter. Intuitively, it is expected that the short-term statistics of the received data 

are highly variable for those pings, and therefore the better results obtained with 

smaller values of A at most instances for those pings could be justified in that way. 

Of course, changes of the short-term statistics of the data may not be subject only to 

the variation of the position and the speed of the sonar platform, but to many other 

sources too. Although this particular aspect has not been thoroughly investigated, it 

is clearly manifested by the fact that improved performance was obtained for smaller 

values of A when processing some other pings too, as it happened when analysing the 

results from the two previous experiments.

Although detailed information obtained from the analysis of the results for all the
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particular pings, such as evaluated correlation parameters, etc, is going to be omitted 

here, some conclusions derived from the performed analysis are stated below:

a) The absolute minimum of most of the curves, corresponded to the closest contact 

frequency to the values of E[f]rp or RPmax[f] at Tables 6.2 and 6.3 in each case. This 

is an expected behaviour, and indicates somehow the smooth changes in the long 

term statistics of the reverberation signals due to the motion of the sonar.

b) From the processing of the 288 input signals (48 pings and 6 different contact 

frequencies at each ping), only in 22 cases there was not achievement of SNLBR im­

provement for any of the values of A. And from these 22 cases, a ‘particularly high’ 

correlation between the primary input reverberation and the contact was found.

c) On the other hand, for a considerable number of cases for which SNLBR improve­

ment was certainly achieved, ‘high’ correlation between the primary input signals 

was corroborated, as for the previous sets of experimental results. This suggests that 

other factor/s may be affecting the performance of the filter, as repeated along the 

chapter.

So, again, in practical terms, a quite satisfactory performance of the LSL filter, in 

terms of contact detection, was obtained. It is worth noting that, for this experiment, 

the 288 contact signals were embedded within the primary input reverberation fre­

quency bands in all the cases. This makes the obtained results particularly promising.

6.6.4 O utput S N L B R  versus input S N L B R . Presence of 
contact components at the A N C  reference input

Results obtained processing the same real data set, this time considering the presence 

of zero-Doppler contact components at several levels at the reference input of the LSL 

filter, are presented in this section.

The values of the input variables of interest in this case were as follows: 

f ,  =  2000 Hz, sampling frequency
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f c =  495 Hz, contact frequency 

nse =  400, length of contact in samples

ise =  1001, initial sample of the primary input reverberation signals where the con­

tacts were located

SRRp =  0 dB, ANC primary input SRR

SRRrvector =  [—12 , —10 , —8 , —6 , —4 , —2] dB, ANC reference input SRR’s 

M  =  10, LSL filter order

8 =  1, small initial constant to ensure the nonsingularity of the input correlation 

matrix

lambdasvector =  [0.88, 0.90, 0.92, 0.94, 0.96, 0.98], values of A being considered 

at the LSL algorithm for each case

Figure 6.37 shows the averaged results obtained when processing the 48 pings for this 

experiment.

The evaluated average value of the primary input SNLBR resulted equal to 9.8 dB 

(corresponding to the initial 0 dB of SRR, for the particular location of the contacts 

in this case).

Figure 6.37 shows that, in the average, improved performance was obtained by higher 

values of A, and that the performance decreased as the level of contact components 

at the reference input increased, as it would have been expected.

It can be seen as well that the output SNLBR is similar to the primary input SNLBR, 

for the lowest value of the reference input SNLBR (about 7.5 dB, which corresponds 

to the initial value of -12 dB for the reference input SRR). So, extrapolating the 

obtained results, SNLBR improvement would be expected to start, in the average, 

for levels of reference input SNLBR lower than about 7.5 dB, when A is equal to 

0.98, for the considered level of primary input SNLBR. This is to say that SNLBR 

improvement would be expected for reference input levels lower than about -12 dB, 

for a primary input SRR equal to 0 dB.

Indeed, looking at the waveforms corresponding to the experimental results presented
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in Section 6.4 (Figures 6.12 to 6.19), for which the presence of contact components at 

the ANC reference input was considered, it can be seen that, for the particular ping 

being processed there, the zero-Doppler contact was not able to be detected at the 

output of the filter for a level of -5 dB of the reference input SRR, the primary input 

SRR being equal to 0 dB. However, decreasing the reference input SRR to -10 dB, 

the output signals showed that the zero-Doppler contact was clearly detectable and 

a considerable amount of reverberation energy was rejected.

Figure 6.37: output SNLBR versus reference input SNLBR. Averaged results. — o
-  A =  0.88, -  x -  A =  0.90, — I—  A =  0.92, -  * -  A =  0.94, —□ — A =  0.96,
-  t> -  A =  0.98.

In order to complete the analysis of the obtained results for this experiment, the 

evaluation results corresponding to some representative particular cases are shown 

next, and comments on the results are made.

Figure 6.38 shows the obtained evaluation results when processing pings 7 to 12, 

Figure 6.39 the corresponding results when processing pings 25 to 30, and Figure 

6.40 when processing pings 37 to 42.
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ping 7; LSL eval. c)

ref-inp. SNLBR (dB)

ping 8; LSL eval. c)

ref-inp, SNLBR (dB)

ping 9; LSL eval. c)

Figure 6.38: output SNLBR versus reference input SNLBR for pings 7 to 12.
— A =  0.88, -  x -  A =  0.90, -  +  -  A =  0.92, -  * -  A =  0.94, - □  — A =
-  fc> -  A =  0.98.

ping 25; LSL eval. c) ping 26; LSL eval. c) ping 27; LSL eval. c)

Figure 6.39: output SNLBR versus reference input SNLBR for pings 25 to 30
-  A =  0.88, -  x -  A = 0.90, -  + -  A =  0.92, -  * -  A =  0.94, - □  -  A =
-  > -  A =  0.98.

—  o  

0.96,

—  o  

0.96,
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ping 37; LSL eval. c) ping 38; LSL eval. c) ping 39; LSL eval. c)

ping 40; LSL eval. c) ping 41; LSL eval. c)

ref-inp. SNLBR (dB) 

ping 42; LSL eval. c)

ref-inp. SNLBR (dB)

Figure 6.40: output SNLBR versus reference input SNLBR for pings 37 to 42. — o
-  A =  0.88, -  x -  A =  0.90, -  +  -  A =  0.92, -  * -  A =  0.94, —□ — A =  0.96,
-  t> -  A =  0.98.

From the particular evaluation results it can be seen, once again, that not always 

higher values of A provided better results. It can be seen as well that not always 

the output SNLBR decreased as the reference input SNLBR increased, but rather 

increased. This suggests that the performance evaluation procedure which measures 

the SNLBR corresponding to a given composite signal must be allowed certain margin 

of error. Therefore, if this is the case, a way of improving the measure evaluation 

procedure and reduce that margin of error could be investigated. Other explanation 

could be the fact that, due to the nature itself of the reverberation signals, which are 

no more than a multi-backscattered echo of the transmitted signal from many differ­

ent sources, for the zero-Doppler case the contact components at the ANC reference 

input may be in-quadrature or close to in-quadrature with the corresponding refer­

ence input reverberation signal interval, therefore cancelling each other, and due to 

the stochastic nature of the reverberation signals, the same contact signal present at 

the ANC primary input could be in-phase or close to in-phase with the corresponding 

primary input reverberation signal, therefore the signals tending to add up with each
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other. This would enhance the signal at the time interval for which the contact is 

received, at the ANC primary input, being explained in this way the obtained cres­

cent characteristic of the output SNLBR as the reference input level of the presence 

of contact components increases at the reference input of the filter. This speculation 

has not been checked out from the actual processed signals, and it is left here as an 

open question.

In order to aid the interpretation of the overall particular evaluation results for this 

experiment, Table 6.6 contains the calculated values of the zero-shift correlation pa­

rameter between the primary input reverberation and the contact signals for each of 

the 48 pings.

Table 6.6: zscperp’s for pings 1 to 48. Contact components in reference input.

ping 1 ping 2 ping 3 ping4 ping 5 ping 6
zscperp 0.33 0.43 0.52 0.42 0.38 0.50

ping 7 ping 8 ping 9 ping 10 ping 11 ping 12
zscperp 0.50 0.41 0.51 0.50 0.35 0.26

ping 13 ping 14 ping 15 ping 16 ping 17 ping 18
zscperp 0.44 0.25 0.48 0.54 0.35 0.21

ping 19 ping 20 ping 21 ping 22 ping 23 ping 24
zscperp 0.51 0.45 0.23 0.66 0.34 0.05

ping 25 ping 26 ping 27 ping 28 ping 29 ping 30
zscperp 0.08 0.11 0.24 0.33 0.78 0.63

ping 31 ping 32 ping 33 ping 34 ping 35 ping 36
zscperp 0.51 0.80 0.80 0.50 0.53 0.44

ping 37 ping 38 ping 39 ping 40 ping 41 ping 42
zscperp 0.57 0.60 0.43 0.36 0.59 0.53

ping 43 ping 44 ping 45 ping 46 ping 47 ping 48
zscperp 0.41 0.51 0.53 0.33 0.59 0.37

The following comments can be made from the obtained overall results:

a) The pings and reference input SRR levels for which there was improvement of the

SNLBR at the output of the filter are shown in Table 6.7.

The values of A that yielded better performance varied within the different pings,
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although in many cases were between 0.98 and 0.94.

Table 6.7: Ping numbers and reference input SRR levels with output SNLBR im­
provement.

ping no. ref-inp. SRR level/s (dB)
2 -12, -10 and -8
5 -12, -10, -8 and -6
10 -12, -10,-8 and -6
12 -12
14 -12
19 -12, -10, -8, -6, -4 and -2
20 -12 and -10
24 -12, -10, -8 and -6
25 -12,-10,-8 and -6
28 -12 and -10
29 -12 and -10
30 -12 and -10
35 -12, -10,-8 and -6
38 -12, -10, -8 ,-6  and -4
39 -12, -10,-8 and -6
40 -12, -10, -8 ,-6 , -4 and -2
44 -12, -10, -8 ,-6 , -4 and -2
46 -12, -10 and -8

There were 18 pings for which satisfactory results in terms of SNLBR improvement 

were obtained according to the evaluation performance procedure (note that those 

pings for which there was SNLBR improvement but presented crescent characteristics 

at the evaluation performance curves have not been included). The reference input 

SRR levels being tolerated varied between -12 and -2 dB, but in general it could be 

said that for levels above -8 dB the improvement would not be significant, 

b) It is worth noting from Table 6.6 that for this particular experiment there was a 

high number of correlated primary input signals (31 values >  0.4 out of 48), and that 

although for many cases for which SNLBR was not achieved for any of the values of 

the reference input SRR, most of the pings for which there was SNLBR improvement 

presented a relatively high primary input correlation parameter.
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6.7 Experiments with the GSG algorithm

Some of the results obtained with the GSG algorithm developed in Chapter 4 follow 

in this section showing that it performs as expected in terms of stability behaviour. 

The obtained results further indicate that it is able to reject a considerable amount of 

real reverberation signals and preserve a high-Doppler contact signal at the output. 

As it will be seen, similar responses in terms of reverberation signal rejection and con­

tact preservation are provided for several values of the cost function exponent within 

the interval 2 <  r < 4. Although it has not been obtained as yet, a more thorough 

evaluation of the GSG algorithm performance and comparison with that of the LMS 

algorithm needs to be carried out.

Primary and reference input reverberation signals from ping number 25 of data set B 

were obtained as for the previous experiments. A synthetic contact of the form of a 

burst of sinewave was placed at sample number 1201 of the primary input reverbera­

tion signal. The SRR was equal to 0 dB. The reverberation signals centre frequency 

was equal to 500 Hz and the contact frequency was equal to 700 Hz. The order of the 

adaptive filter was set to 140 on this occasion. Figure 6.41 contains the input and 

output signals when r was equal to 2 (i.e. corresponding to the LMS algorithm), and 

Figure 6.42 contains the same input and output waveforms when r was set equal to 4 

(i.e. the LMF algorithm). Although not shown here, similar responses were obtained 

by increasing the value of r by an amount of 0.1 from 2 to 4. As it can be seen 

though from Figures 6.41 and 6.42, some differences can be appreciated between the 

corresponding output signals.

Further experiments with the GSG algorithm and other kind of signals, as those 

corresponding to echo cancelling or channel equalisation problems, will be able to 

indicate whether the GSG algorithm provides improved adaptation over that of the
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LMS algorithm in some instances with higher values of r.

sample number sample number

Figure 6.41: Input and output signals processing ping 25 of data set B with the GSG 
algorithm, r =  2.

ANC p-inp. -  contact + rp from ping 25 ANC (G SG) output; tau-4

0 5000 10000 15000 0
sample number

5000 1 0000 15000
sample number

Figure 6.42: Input and output signals processing ping 25 of data set B with the GSG 
algorithm, r =  4.
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6.8 Conclusions

The performance of the LSL algorithm for zero-Doppler active sonar contact detec­

tion in reverberation-limited environments has been thoroughly evaluated.

The corresponding waveforms related to a few initial experiments carried out pro­

cessing several pings from two 4-channel real data sets have been shown in order 

to present a qualitative evaluation of the performance of the filter. Zero- and low- 

Doppler contacts, without and with presence of contact components at the reference 

input of the ANC, have been shown to be able to be detectable for a primary input 

SRR equal to 0 dB.

A measurement procedure to calculate the SNLBR level from a given composite sig­

nal, found suitable for the active sonar application, has been presented.

This procedure has been used to evaluate the performance of the LSL algorithm pro­

cessing a large amount real data for a set of different situations, such as different 

levels of the primary input SNLBR, different contact frequency shifts from the re­

verberation centre frequency, and different levels of the reference input SNLBR when 

the presence of contact components at the reference input of the ANC was considered.

The performance of the LSL algorithm has been found satisfactory and certainly 

promising, from the obtained and analysed results. For the levels of primary and ref­

erence input SNLBR’s having been considered, it has been inferred that not only the 

correlation between the contact and reverberation signals, but possibly the NSD of 

the processed signals, have effect on the performance of the filter. Actually, although 

the average results indicate that improved performance are achieved by a value of 

A equal to 0.98 in all the sets of experiments carried out, it has been seen as well 

that in a considerable amount of particular cases, higher values of A did not provide 

better responses, but the contrary. This clearly indicates that several levels of the 

NSD occur within the processed data.



CHAPTER 6. EXPERIMENTS WITH COMPLEX-VALUED DATA 205

The waveforms corresponding to a few experiments for which the calculated SNLBR 

improvements were close to the obtained averaged figures, have shown that these are 

enough in order to be able to call a detection of a low- or zero-Doppler contact.

Based on the improved behaviour of a RLS algorithm with parallel adaptation of A 

over that of the classical RLS algorithm, presented in [2] when operating in nonsta- 

tionary environments, a possible way of improving the present obtained results with 

the LSL algorithm has been said to attempt a similar parallel adaptation of A for the 

LSL algorithm.

This would be subject of further work. Which are believed to be the main consid­

erations to follow when attempting the derivation of such a parallel algorithm are 

presented in the next chapter.
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Chapter 7

A review of doubly adaptive filters

7.1 Introduction

Doubly adaptive filters are designed to operate in nonstationary environments. They 

iteratively update, not only the filter coefficients, but the filter parameter governing 

the stability and speed of adaptation o f the filter too. The adaptations are made, as 

explained ahead, in order to achieve a certain performance specification.

A review of existing doubly adaptive filters is firstly presented in this chapter. The 

main aspects to be considered when deriving a possible new doubly adaptive filter 

are secondly outlined.

Convergence time and the misadjustment at convergence are the most meaningful 

measures of the performance of a given adaptive filter when applied in an unknown 

stationary environment. Indeed, a trade-off exists in conventional adaptive filters be­

tween these two performance criteria.

In nonstationary environments the so-called estimation and lag errors are the two 

components of the excess MSE, and therefore of the misadjustment [1], In the pres­

ence o f a nonstationarity, there is a performance trade-off between these two errors, 

as quicker adaptations are characterised by larger estimation errors, and smaller es­

timation errors are achieved by slower adaptations.

207
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The main aim of a doubly adaptive filter is to perform a second adaptation of the 

convergence-controlling parameter in a ‘data dependent’ way. Appropriate ‘ tuning’ 

of the convergence-controlling parameter when a nonstationarity manifests itself will 

allow the appropriate trade-off between the lag and estimation errors when required.

The first adaptation environment model to be considered is one in which the desired 

signal is piecewise stationary. That is, sudden changes in target filter are considered. 

In this environment, the attempt is to achieve a learning curve following the dashed 

line in Figure 7.1 [2], Changes of the nonstationarity in the desired reference signal 

are assumed to take place, for this illustration, at the iteration numbers corresponding 

to misadjustments of -3 dB, -6dB, and so forth.

Figure 7.1: Doubly adaptation principle [2].

That is, when the misadjustment at convergence (MAC) is achieved for a given value 

of the corresponding convergence-controlling parameter, the latter is modified in order 

to further reduce the value of the misadjustment by a pre-determined amount.
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7.2 A few existing doubly adaptive filters

Literature regarding some existing doubly adaptive filters is cited in this section. A 

brief criticism to the doubly adaptive algorithms cited below can be encountered in [2],

LMS-based doubly adaptive algorithms are the variable step (VS) algorithm proposed 

by Chabries and Bishop in [3], variants to the VS algorithm proposed in [4] and [5], 

the dual sign algorithm (DSA) proposed by Kwong in [6], the so-called automatic 

gain control (AGC) algorithm proposed by Shan and Kailath in [7], the damped con­

vergence factor (DCF) algorithm proposed by Kami and Zeng in [8], the gradient 

adaptive step-size (GAS) algorithm proposed by Mathews and Xie in [9], and the 

variable stepsize algorithm proposed by Kwong and Johnston in [10].

The most significant attempt to govern the forgetting factor of the RLS algorithm 

to enhance RLS performance is said in [2] to be due to Fortescue, Keshenbaum and 

Ydstie in [11].

Let us assume an adaptive structure as depicted in Figure 7.2. Let the input signal, 

x, be stationary and the desired reference signal, d, contain nonstationary additive 

noise. Under these assumptions, the doubly adaptive algorithms cited above can be 

seen [2] to require some a-priori knowledge of the adaptation environment in the form 

of an estimate of the additive noise power in d.

It happens in practise that such an estimate of the additive noise power is in many 

cases not readily available during adaptation. S. Douglas Peters develops in [2] two 

new doubly adaptive algorithms that provide improved performance over the rest of 

the doubly adaptive algorithms cited so far, and do not require explicit knowledge of 

the additive noise signal statistics. Furthermore, if these statistics were available, the 

two derived algorithms would incorporate this information into their operation and
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make use of it to provide improved performance.

One of these algorithms is NLMS-based, and the other one is RLS-based. Both 

algorithms make use of parallel adaptation (PA), as explained ahead in this chapter. 

They will be referred to as the PA-NLMS and the PA-RLS algorithms, respectively.

Figure 7.2: An adaptive system structure.

7.3 PA-NLMS and PA-RLS algorithms: Main as­
pects of their development

Practical advantages of using the LSL algorithm for the application under research in 

this thesis have been manifested and aided with experimental results. From those ex­

perimental results, it has been appreciated that when the contact signals occur within 

the transition between the reverberation- and noise-limited environments, lower val­

ues of the forgetting factor provide improved algorithm performance.

In addition, the LSL algorithm has been said, on one hand, to provide similar per­

formance to that of the RLS algorithm, to be as robust as the RLS algorithm when 

operating on correlated inputs, and to present, on the other hand, a computational 

cost similar to that of the FTF algorithm, which is considerably reduced over that 

of the RLS algorithm. A table containing the number of operations per iteration 

required for any of these algorithms can be encountered in [1], chapter 9.
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For these reasons, it is believed that an additional adaptation o f the forgetting fac­

tor for the LSL algorithm could be a way of further improving the obtained results, 

specially in those cases in which the nonstationarities of the reverberation signals at 

the time intervals where the contact signals are present become severe.

If a similar parallel adaptation algorithm can be derived from the classical LSL al­

gorithm, the hypothetical PA-LSL algorithm, with similar performance to that of 

the PA-RLS, the main advantage is believed that would be a considerably reduced 

computational cost over that of the PA-RLS algorithm.

In order to give some scope for further work which is believed to be fruitful, the 

following two sections contain the main steps undertaken when the PA-NLMS and 

PA-RLS algorithms are derived in [2], Throughout that work, the filter input is 

taken to be stationary, (although that is said not to be necessary for the application 

of the corresponding algorithms). Thus, the nonstationarities are assumed to happen 

within the desired reference signal. In consequence, models of nonstationarity become 

models of target filter weight behaviour.

The random walk model of the first-order Markov model of nonstationarity is used for 

deriving both algorithms. This allows the mathematical tractability of the problem 

to be reasonably reduced, and still makes the derived algorithms suitable for a wide 

range of applications, as it has been shown that an algorithm that tunes itself as if it 

were in a random walk environment can also tune itself successfully in a number of 

other nonstationary situations [12].

7.3.1 K ey steps when deriving the P A -N L M S  algorithm

For the random walk model of nonstationarity the target filter weights are taken to 

vary at each sample in accordance with

Wjfc+l =  w* + z* (7.1)
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where z*, is a random perturbation vector. The first- and second-order statistics of z 
are taken to be E\Z;t] =  0  and E [ z i , .z J ]  =  < 5 j* Z , respectively, where

In order to the handling of the time variation of the NLMS convergence-controlling 

parameter, p, instead of optimising this quantity with respect to the misadjustment 

in the subsequent sample, the optimisation is performed to minimise the steady-state 

misadjustment in a random walk environment. The advantage of this approach is 

the relative simplicity of estimating the necessary environmental quantities. The 

approach disadvantage seems to be the weight that it gives to an artificial model of 

nonstationarity.

In consequence, the first step is to express the MAC as a function of p under the 

assumption above. This is shown in [2] to be

where the normalised nonstationarity-to-noise ratio (NNR), q, is first defined in [13]

entiating Eq.7.2 with respect to fi and setting the obtained expression equal to zero. 

Taking the more meaningful solution in the resulting quadratic equation results in [2]

Now, if a reliable estimate of the quantity q was available, optimal steady-state ran­

dom walk NLMS adaptation would be readily available. Unfortunately, q is practically 

unobservable for a single NLMS procedure. In order to make q observable, the use 

of two independent NLMS processes with sufficiently different value of p running in 

parallel is proposed in [2].

M AC  =  Moc p + q/P
2 - P

(7.2)

as q =  N " fCTx, N being the filter order, and the minimum possible MSE, as ob­

tained from the Wiener solution.

The best possible p for steady-state random walk performance is obtained by differ­

(7.3)
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As for the LMS algorithm, the value of the square error at the kth iteration is ap­

proximated to be the MSE, E[e2], for the NLMS algorithm.

cation of this idea is not, of course, limited to the NLMS adaptation, and , as it will 

be seen ahead, is applied as well to derive the PA-RLS algorithm.

Hence, in order to continuously tune ft in a NLMS primary process, two fixed-/! (one 

high and one low) indicator processes running in parallel are used. Denoting these 

three processes by the subscripts v, h and /, respectively, and taking fth =  1 and 

f i  =  a, 0 < o  <  1, the two indicator processes will provide for the estimation of q on 

which ftv will depend.

Solving two instances of Eq.7.4 for q at each iteration, and approximating E[e2\ by 

the observable e2 in each case, yields in [2]

denominator of q, improved performance can be achieved. Detailed analysis can be 

encountered in [2],

Then, once q has been estimated, the estimated value of the ‘optimum’ convergence­

controlling parameter is shown to be obtained as [2]

The obtained result is then smoothed, since a number of non linearities are involved 

in the last step of the process, to obtain [2]

E[e2] can be expressed as a function of q for the NLMS algorithm as [2]

(7.4)

Then, using two instances of Eq.7.4 of different /i, q becomes observable.

The explicit use of this principle is referred to as parallel adaptation (PA). The appli­

(7.5)

It is further shown that by independent exponential smoothing of the numerator and

{f t ' ( q k ) ,  qk > o
0, otherwise

Pv,k+1 = Pk =  -VAit-i + (1 - (7.6)
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The PA-NLMS algorithm has now been outlined.

Before proceeding with the presentation of the PA-RLS algorithm, let the main steps 

undertaken to obtain the PA-NLMS algorithm be enumerated here.

1) The MAC is expressed as a function of p assuming a random walk scenario.

2) This function is differentiated with respect to p and the resulting expression is set 

equal to zero in order to achieve an expression for the corresponding optimum value 

of p, fi-(q).

3) As the corresponding value of p’ (q) can not be obtained from a single process 

because q is not observable in this case, f?[e2] is expressed as a function of q and two 

indicator processes with different value of p are used in order to make q observable 

at that iteration.

4) Exponential smoothing of the obtained value of q takes place, and the resulting 

value is used to estimate an appropriate value of p to be used in the subsequent 

iteration of the algorithm.

The statement of PA-NLMS algorithm can be encountered in [2],

7.3.2 K ey steps when deriving the P A -R L S  algorithm

The PA-RLS can be derived using a procedure similar to that for the PA-NLMS al­

gorithm.

Optimisation of the convergence-controlling parameter, A in this case, is performed 

in order to minimise the steady-state misadjustment in a random walk environment.
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Let us enumerate here the main steps undertaken for deriving the PA-RLS algorithm, 

skipping detailed steps that can be encountered in [2],

1) An expression for the steady-state RLS misadjustment in a random walk scenario 

is derived.

2) The optimum value of A to achieve the minimum possible value of the misad­

justment in 1) is obtained as a function of q. This is done by differentiating the 

steady-state RLS misadjustment with respect to a certain function of A and setting 

the resulting expression equal to zero.

3) At this point, the present value of q must be estimated, as this quantity is not 

practically observable for a single process.

An initial expression to obtain qk+1 is derived under the assumption that a-priori 

knowledge about the additive noise power in the form of the estimate <j2, exists.

A second expression to obtain qk+i is derived under the assumption that an estimate 

of a2 does not exist. This is an important contribution because knowledge of <72 

will not exist for many applications in which real-time processing is required within 

nonstationary scenarios. In this case, in order to obtain an estimate of the additive 

noise power, as for the PA-NLMS algorithm, a parallel process with a fixed value of 

A is used. The idea is that, if the forgetting factor of this fixed process is sufficiently 

low, the estimation misadjustment will dominate under most practical conditions.

4) Once the estimate of cr2 for the following iteration has been obtained, the following 

value of q can be calculated. And having the corresponding value of q, the required 

value of A* to be used in the following iteration of the algorithm can be obtained.

The statement of the PA-RLS algorithm can be encountered in [2], [12].
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7.4 Main considerations for deriving the hypo­
thetical PA-LSL algorithm

The main aspects to be considered for deriving a PA-LSL algorithm, following a sim­

ilar procedure as that for deriving the PA-RLS algorithm, are suggested as:

1) Assume operation of the filter under a random walk scenario. Assume that the 

input and the desired reference signals, x  and d respectively, are of the same form as 

for the derivation of the PA-NLMS and PA-RLS algorithms. This would allow the 

random walk model of nontationarity to be related to the model of the target filter 

regression coefficient vector, /cm(n), and/or to the model of the forward and backward 

reflection coefficients, T />m(n ) and P|,,m(n) respectively, behaviour.

2) Obtain an expression for the steady-state LSL misadjustment under the random 

walk scenario. Such an expression already existed in the literature prior to the deriva­

tion of the PA-RLS algorithm. Whether this expression already exists or not in the 

literature for the LSL algorithm is unknown at present.

3) The expression of the steady-state misadjustment should be a function of, among 

other variables, q and A. Differentiating this expression with respect to an appropri­

ate function of A and setting the resulting expression equal to zero, would allow to 

express the ‘optimum’ value of A as a function of the nonstationarity degree, q.

4) The following step would be to obtain an estimate of q at the corresponding iter­

ation. Assuming that a-priori knowledge of the additive noise power in the form of 

the estimate o f does not exist, a parallel LSL process with a sufficiently low value of 

A could be used to obtain of.

5) Once of has been obtained, an estimate of q for the following iteration should be
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able to be obtained. This would make possible to obtain the ‘optimum’ value of A at 

the following iteration.

Assuming that an expression of the steady-state LSL misadjustment under the ran­

dom walk scenario does not already exist, deriving of such an expression is believed 

to be a difficult task, the lattice structure of the filter from departure being an ad­

ditional difficulty. Without going into further detail within these notes, it may be 

worth looking at the kind of approximations made in [2] when deriving an expression 

for the counterpart steady-state RLS misadjustment. Similar sort of approximations 

may be required to complete this initial stage when attempting to derive a hypothet­

ical PA-LSL algorithm.

It should be as well worth looking at the way in which an estimate of q at the following 

iterarion number is obtained as a function of of in [2], And noting the relationship 

between the tap-weight vector wm(n) for the RLS algorithm and the corresponding 

regression coefficient vector Km(n) for the LSL algorithm in [1], chapter 9.

7.5 Conclusions

Indications on a possible way of tackling the task of deriving a hypothetical PA-LSL 

algorithm have been given in this chapter, the suggestion being to follow a derivation 

similar to that for the PA-RLS algorithm.

The problem seems to be far from trivial. However, the thought of a possible perfor­

mance similar to that of the PA-RLS algorithm, although with reduced computational 

cost, should be a strong encouregement. The new algorithm could provide improved 

results for the application under research, specially when the contact signals are re­

ceived within the transition from the reverberation- to the noise-limited environments 

and are correlated with the reverberation signals. And, needless to say, it could as well
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be useful for a wide range of applications under a number of nonstationary scenarios.
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Chapter 8

Conclusions and further work

8.1 Conclusions

Several adaptive filters and algorithms have been implemented and evaluated to investigate 

their suitability for detecting active sonar signals masked by reverberation.

A basic model of the underwater environment has been presented in Chapter 2. Synthetic 

reverberation signals have been obtained by means of two mathematical models, Central 

Limit theorem and point-scattered based, as encountered in [1] and [2] respectively. The 

analogy between these to models has been established, and the point-scattered model has 

been said to allow more precise control over the bandwidth of the reverberation signals and 

the possibility o f introducing clusters and inhomogeneities.

Ambient noise has been generated as AWGN, and other sources of noise, such as propeller 

noise, etc, have not been taken into consideration.

Synthetic contacts have been generated, in general, with the form of narrowband sinusoidal 

pulses, although linear FM pulses and multicomponent signals have been considered as well 

in a few instances.

The main purpose o f modelling the underwater environment for the active sonar case has 

been to be able to initially assess the suitability of the adaptive cancelling technique for the 

problem under research, prior to evaluating it with real reverberation signals.

The fundamentals of ASP systems and several adaptive algorithms have been discussed

2 2 1
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in Chapter 3. The possibility of implementing adaptive IIR filters has been pointed out, 
although FIR adaptive filters have been used in most of the following experiments due to 
the fact that they allow easier control over their stability behaviour.
Classical methods to search the minimum of a given performance function have been out­
lined, and several stochastic gradient algorithms derived following the method of the steepest 
descent have been presented.
Deterministic least squares algorithms, such as the RLS and the LSL algorithms, and their 
main properties, have been presented too.

A generic stochastic gradient algorithm, based on the nonquadratic cost function algorithm 
derived in [3], has been derived in Chapter 4 and conditions for its stability have been 
obtained. The GSG algorithm is a nonquadratic cost function algorithm whose novelty is 
that it operates over complex valued data sequences.
The stability behaviour of the GSG algorithm has been corroborated to approximate the 
derived theoretical conditions. The GSG algorithm has been shown to provide a certain 
amount of reverberation suppression and high-Dopplers contact preservation when filtering 

real reverberation signals.

A few experiments with synthetic and real data and the LMS, LMH, LML and LSL algo­
rithms have been initially presented in Chapter 5. Zero-Doppler contact detection has been 
shown not possible with the LMS algorithm, whereas satisfactory results processing the 
same signals were provided by the LSL algorithm. In addition, the LSL algorithm provided 
satisfactory responses in terms of allowing certain levels of contact components at the ANC 
reference input, and of tracking even abrupt changes in the frequency of the contact signals 
and preserving multicomponent signals.
A qualitative comparison between the performance of the LSL, LMH and LML algorithms 
has followed, the LSL algorithm outperforming the others in most instances. It was cor­
roborated in those experiments that not always higher values of the LSL forgetting factor, 
A, provided better results, and the same comment applied to the value of the cost function 

exponent, r, for the LMH and the LML algorithms.
A quantitative evaluation of the performance of the several algorithms was obtained pro­
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cessing a large amount of pings from a 1-channel real data set provided by DERA. A 

measurement procedure to evaluate the level o f contact preservation and reverberation re­

jection of a given filter was proposed, and it was used to obtain the corresponding evaluation 

results.

It was seen that, although the LML algorithm provided levels o f SNLBR improvement sim­

ilar to those obtained with the LSL algorithm, in the average, evaluating the particular 

results obtained for each of the processed pings the LSL algorithm provided a considerably 

higher number of satisfactory responses in all the cases under evaluation.

The same comments as for the obtained qualitative results applied regarding the values 

of A and r, respectively, although it was found that, in the average a value of A equal to 

0.98 provided higher SNLBR improvements for the LSL, a value of r equal to 3.8 for the 

LMH, and values of r equal to 1.3 and 1.5 for the LML, algorithms respectively. The better 

performance achieved with values of A and r different to those, respectively, was related to 

changes of the NSD of the reverberation signals.

Once the LSL algorithm was found to provide improved and satisfactory results, its perfor­

mance was evaluated in Chapter 6 processing 4-channel reverberation signals provided by 

DERA in two real data sets.

Qualitative results under several initial conditions were presented processing pings from 

both real data sets first. The obtained results were in accordance with the previously ob­

tained results processing synthetic and real reverberation signals, an important difference 

with all the previous experiments being that in this case the reference input could be ob­

tained from the multi-channel data as it would be obtained in the real scenario combining 

the data received by the several channels.

As for Chapter 5, a large amount of data contained this time in one of the 4-channel data 

sets was processed, and the performance of the LSL algorithm under several initial condi­

tions obtained.

A measurement procedure, found suitable for the active sonar problem and provided by 

DERA, was used in this occasion to obtain the evaluation results.

From the results, it was found that the LSL algorithm provided promising responses in 

terms of low- and zero-Doppler contact detection, for several levels of the SRR at the pri­
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mary input signals, in plenty of the particular instances. It was found as well that certain 
levels of contact signal at the reference channel of the LSL filter could be tolerated and did 
not render the LSL filter useless for the application under research. Presence of contact 
components at the ANC reference input would correspond, in the real scenario, in principle, 
to the case in which exact direction of arrival of the contact signals is not known, as for 
this case cannot be guaranteed that the beamformers forming the reference channel are all 
orientated towards directions for which contact components are absent.
Furthermore, the LSL algorithm was shown to provide satisfactory responses when pro­
cessing correlated composite signals in many instances, and therefore found robust in that 
sense. It was found as well that, among those cases in which SNLBR improvement was not 
achieved, high correlation between those signals was encountered in most instances. This, 
and the fact of obtaining better performances for smaller values of A in some particular 
cases, made it possible to infer that, not only the correlation factor, but the NSD degree of 
the processed data has an effect on the performance of the filter too.

After all the experiments carried out and analysed, it can be concluded that the adaptive 
noise cancelling technique implemented by means of the LSL algorithm is an efficient means 
of detecting low- and zero-Doppler contact signals in reverberation-limited environments.

8.2 Further work

The feasibility of implementing the LSL algorithm in a practical active sonar system should 
be investigated.

Following a similar procedure to that by which the PA-RLS algorithm is derived in [4], the 
main aspects to be considered in order to derive a hypothetical PA-LSL algorithm have 
been outlined in Chapter 7. Improved responses of the PA-RLS algorithm over those of the 
classical RLS algorithm when operating in a number of nonstationary scenarios, even in 
severe ones, were demonstrated in [4], If a PA-LSL algorithm could be derived, the present 
performance of the LSL algorithm may be improved when processing data with high levels 
of the NSD. The main advantage of the PA-LSL algorithm over the PA-RLS algorithm it
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is believed to be a reduced computational cost.

Pulsed narrowband sinusoidal signals have been considered in this investigation. The nar­
rowband condition has been assumed for being found suitable for relatively long ranges. 
Further research with other kinds of contact signals may yield fruitful results. For instance, 
linear period (LP) signals are known to be Doppler invariant, and may be suitable for this 
particular application.

Although the LSL filter has been shown robust when processing correlated input signals, 
further investigation of possible ways of decorrelating the data may be a way of improving 
the present results.

Further work with the GSG algorithm needs to be carried out in order to be able to compare 
its performance with that of the LMS algorithm for several applications in which complex­
valued data needs to be processed.
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Appendix A

Automated software description

Figure A .l contains a flowchart with the main actions undertaken by the automated soft­

ware which generates and processes the ANC input signals, and evaluates the obtained 

results, for the several sets of experimental work with a large number of pings included in 

Chapters 5 and 6.

All the required software is in the attached floppy disk.

Detailed information about how the software is structured for each of the main experiments 
and the actions undertaken by each of the built-in MATLAB and C procedures can be 
encountered in file ‘infofile.txt’ .
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Figure A .l: Automated software main actions flowchart.


