
 

 
 

 
 

warwick.ac.uk/lib-publications 
 

 
 
 
 
Manuscript version: Author’s Accepted Manuscript 
The version presented in WRAP is the author’s accepted manuscript and may differ from the 
published version or Version of Record. 
 
Persistent WRAP URL: 
http://wrap.warwick.ac.uk/109578                                               
 
How to cite: 
Please refer to published version for the most recent bibliographic citation information.  
If a published version is known of, the repository item page linked to above, will contain 
details on accessing it. 
 
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the 
University of Warwick available open access under the following conditions.  
 
Copyright © and all moral rights to the version of the paper presented here belong to the 
individual author(s) and/or other copyright owners. To the extent reasonable and 
practicable the material made available in WRAP has been checked for eligibility before 
being made available. 
 
Copies of full items can be used for personal research or study, educational, or not-for-profit 
purposes without prior permission or charge. Provided that the authors, title and full 
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata 
page and the content is not changed in any way. 
 
Publisher’s statement: 
Please refer to the repository item page, publisher’s statement section, for further 
information. 
 
For more information, please contact the WRAP Team at: wrap@warwick.ac.uk. 
 

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/109578
mailto:wrap@warwick.ac.uk


IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. XX, NO. X, MARCH 2016 1

A Computational Study of Expressive Facial
Dynamics in Children with Autism

Tanaya Guha, Member, IEEE, Zhaojun Yang, Student Member, IEEE,
Ruth B. Grossman, Shrikanth S. Narayanan, Fellow, IEEE

Abstract—Several studies have established that facial expressions of children with autism are often perceived as atypical, awkward or
less engaging by typical adult observers. Despite this clear deficit in the quality of facial expression production, very little is understood
about its underlying mechanisms and characteristics. This paper takes a computational approach to studying details of facial
expressions of children with high functioning autism (HFA). The objective is to uncover those characteristics of facial expressions,
notably distinct from those in typically developing children, and which are otherwise difficult to detect by visual inspection. We use
motion capture data obtained from subjects with HFA and typically developing subjects while they produced various facial expressions.
This data is analyzed to investigate how the overall and local facial dynamics of children with HFA differ from their typically developing
peers. Our major observations include reduced complexity in the dynamic facial behavior of the HFA group arising primarily from the
eye region.

Index Terms—Autism, perception, awkwardness, facial expressions, facial dynamics
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1 INTRODUCTION

CHILDREN with Autism spectrum disorder (ASD) have
significantly impaired social communication abilities,

even those who have preserved language and cognitive
skills and are commonly referred to as having high func-
tioning autism (HFA). These social impairments are charac-
terized by difficulties in using non-verbal cues [1], including
difficulties in perceiving and producing facial expressions
[2], [3]. It has been noted that individuals with HFA have
difficulties processing dynamic facial information related to
emotional state (a key component in social interaction) as
compared to static stimuli [4]. They also display ambiguous
expressions and more neutral/flat affect expressions com-
pared to their TD counterparts [5]. Several studies have
established that facial expressions of children with HFA are
often perceived as atypical, awkward or less engaging by
typical adult observers [5], [6], [7]. In fact, their expressions
are perceived as awkward after just one second of inter-
action [7]. Even naı̈ve observers, without any knowledge
of the subjects’ diagnosis, perceive children with HFA to
be more awkward compared to their typically developing
(TD) peers [7]. Despite this clear deficit in the quality of
facial expression production, very little is understood about
the underlying mechanisms and characteristics of facial
expressions.

Atypicality in facial expressions of children with Autism
has been studied through observations by humans [6], [7].
However, subtle movements causing differences in the facial
dynamics between the HFA and the TD groups may not
be easy to capture by visual inspection alone, which under-
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scores the need for objective data analysis methods. The use-
fulness of computational behavior analysis has been noted
in several recent studies, such as in analyzing atypicality in
prosody [8], [9], [10], and in asynchronization of speech and
gestures of children with autism [11]. Following this line
of computational research to better understand behavioral
phenotyping in autism, the work in this paper aims at
quantifying atypicality of facial expressions in children with
HFA, which is otherwise difficult to achieve by plain visual
inspection. Our approach relies on direct measurement of
facial movements during specific expressions, followed by
analyses of those movement patterns.

To objectively understand facial expression-related atyp-
icality in autism, we use direct motion capture (mocap)
technique to record subtle facial movements in both chil-
dren with HFA and TD subjects as they produced specific
expressions. Mocap is a powerful technique to obtain de-
tailed, precise description of gesture dynamics. It is widely
used for supporting multimodal modeling in a variety of
application domains including animation, human-machine
interaction and sports [12], [13]. In this work on expressive
facial movements, we use a mimicry paradigm to control
task performance and variability, where subjects mimic a
fixed set of facial expressions performed by actors in stimuli
videos [14]. Movements of markers affixed to the face are
recorded while the subjects mimicked facial expressions,
and subsequently used for computationally examining the
movement dynamics of the resulting facial expressions. The
usefulness of computational approaches for analyzing such
data was established in our previous work [15], [16], [17].
Our preliminary analysis indicated that facial dynamics of
children with HFA differ from those of TD children in
various objective ways, such as in exhibiting rougher head
motion, higher variability within the HFA group, and lower
bilateral symmetry [15], [16].

Our present study of facial expression production mech-
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anisms in autism involves understanding the overall dy-
namics of the entire face, localized dynamics in specific fa-
cial regions, as well as the dynamical relationships between
the movements across different facial regions.

The notion of complexity is fundamental to any dy-
namical system - mechanical or physiological, and can
be understood as the rate at which new information is
generated by the system. There is significant evidence of
various physiological (dynamical) systems being associated
with atypical and often reduced measures of complexity
[18], [19], although the interpretation of complexity varies
with the physiological parameters being studied and the
developmental condition being investigated. Motivated by
these past observations, we study the facial expression pro-
duction system (a physiological dynamical system) in terms
of its dynamic complexity. First, we consider the hypothesis
whether expressive facial movement patterns in HFA rep-
resent a system of reduced complexity compared to the TD
peers. Reduced complexity in the context of facial dynamics
may be interpreted as partial loss of subtle movements,
repetitive patterns in the dynamics, and highly correlated
movements between facial regions. We investigate whether
the TD group and the HFA group have similar or differing
patterns of complexity in their overall facial dynamics using
the multiple scale entropy (MSE) method, which provides
a measure of system complexity [20]. Next, we hypothesize
that subjects with HFA will exhibit lower complexity than
the TD group for some, if not all, emotion conditions. To
understand the dynamics of specific facial surface regions,
we divide the face into smaller regions (eye, cheek, and
mouth) following [21]. MSE-based complexity analysis is
performed on each specified region separately. Through this
analysis, we expect to identify those particular regions of the
face that contribute to differences across HFA and control
groups.

In case of reduced complexity in facial dynamics, one
would expect higher predictability between facial regions
i.e. the movement pattern of one region could be predicted
well using the information from another. To understand
such dynamical relationship between facial regions, i.e., co-
variation in their movement patterns, we adopt a predictive
modeling approach. Using the Granger causality model [22],
we attempt to predict the dynamics of one facial region us-
ing the information from the other. In cases where behavior
of one region can be predicted significantly well by another
region, a causal dependency is established. We study the
pairwise causal dependency between facial regions for the
various facial expression conditions. Our hypothesis is that
in case of reduced complexity in overall dynamics, there will
be a stronger presence of causal dependency between facial
regions.

The rest of the article is organized as follows: Section
2 provides details on the data collection process, Section 3
describes the computational methodologies we have used to
analyze facial dynamics along with observations, followed
by a discussion in Section 4 and conclusion in Section 5.

2 DATABASE

In this computational study, mocap technique is used to
record facial movements of HFA and TD subjects as they

Fig. 1. Positions of the 32 facial motion capture markers affixed to each
participant’s face (left), Division of the 28 markers (excluding the stability
markers) into eye, cheek and mouth regions (right)

produce various expressions related to emotion. To reduce
task-specific variability, we adopt a mimicry paradigm,
where subjects mimic a fixed set of facial expressions per-
formed by actors in stimuli videos.

2.1 Participants

Twenty participants (2 females and 18 males) with HFA
and nineteen (1 female and 18 males) TD subjects, all aged
between nine and fourteen years, were recruited for this
experiment at the FACE Lab at Emerson College. Diagnosis
of ASD was confirmed via the Autism Diagnostic Obser-
vation Schedule, Module 3 [1] by trained administrators
and confirmed by clinical impression. All participants in
the ASD group demonstrated language and cognitive skills
within normal limits, allowing us to describe them as hav-
ing HFA. We administered the Childhood Autism Rating
Scale [23] to all participants and excluded participants who
scored above the threshold indicating concern for ASD
from the TD cohort. Participants with learning differences
(e.g. dyslexia), known genetic disorders, or other relevant
diagnoses (e.g. attention deficit hyperactivity disorder) were
excluded from both groups to reduce heterogeneity of the
cohort. The mean ages of HFA participants (12.90 ± 3.19)
and TD participants (12.67 ± 2.34) were not significantly
different (t(37) = 0.25, p = 0.80). We assessed the subjects’
IQ using the Leiter International Performance Scale [24] and
receptive vocabulary with the Peabody Picture Vocabulary
Test [25]. The mean IQ of HFA participants (106.35± 15.38)
and control participants (108.74 ± 11.93) were also not
significantly different (t(37) = 0.53, p = 0.59). Parents of all
participants gave informed written consent and participants
over the age of twelve provided written consent for partic-
ipation in the experiment. This study was approved by the
Institutional Review Board of University of Massachusetts
Medical School.

2.2 Data Acquisition and Preparation

Thirty two reflective markers were affixed to the face of each
participant (see Fig. 1 for marker positions). The movement
of these markers was recorded by six infrared motion-
capture cameras at 100 frames per second. The participants
were instructed to mimic expressions in video stimuli se-
lected from the Mind Reading corpus [14]. A study staff
member was present in the room throughout the duration
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Fig. 2. Group differences in overall complexity. The red markers on the HFA plot indicate the scale factors at which HFA group has significantly
lower complexity compared to the control group (error bars are omitted for clarity).

of the study to answer questions and repeat instructions if
necessary.

The stimuli included two predefined, very similar sets of
expressions with 18 tasks (smiling, frowning, being tearful,
etc.) in each set. Each participant mimicked only one set of
expressions. For ease of interpretability, these expressions
are grouped into the six basic emotion categories that they
are associated with - anger, fear, disgust, joy, sadness and
surprise. The emotion labels for the tasks are provided in the
Mind Reading corpus, and have been validated in prior re-
search [26], [27]. Since these are not spontaneous emotions,
we will refer to these categories as facial expression condition
in this paper.

The specific arrangement of markers was based on a
ninety marker, high-resolution face template [28] developed
through the analysis of basic facial movement patterns
using concepts of the Facial Action Coding System (FACS)
[29]. We reduced the set to the 32 most critical markers
delineating all central facial features, as well as overall head
movement, and maintained a minimum of 4mm separation
between markers to maximize recording resolution. Out of
the 32 facial markers, 4 stability markers (the solid orange
markers on the forehead and near the ears as shown in
Fig. 1) are used to measure and later correct head motion.
The positions of the remaining 28 markers are recomputed
with respect to these stability markers to remove head
motion. The resulting motion data are aligned, centered,
and inspected manually to remove and correct artifacts.
Face normalization is performed to remove subject-specific
structural variability that may exist due to different facial

structures and shapes of the subjects. The processed mocap
data thus accounts for pure expression-related motion, and
is free from head motion and subject-specific structural
variability. For more details on the preprocessing methods,
refer to our previous work [16].

Each such preprocessed mocap time series, consisting
of horizontal and vertical coordinates of a marker, is next
converted to a distance time series D = {d1, d2, ..., dN},
where di is the distance of the marker from its rest position
at the ith time instant. We use this distance time series data
for further computational analyses.

3 DATA ANALYSIS AND INTERPRETATION

Our study of facial expression patterns in autism involves
understanding the overall dynamics of the markers of the
entire face, localized dynamics in specific facial regions, as
well as the covariation of dynamics between facial regions.

3.1 Overall Facial Dynamics
In this section, we investigate whether the TD group and
the HFA group have similar or differing patterns of com-
plexity in their overall facial dynamics using the multi-
ple scale entropy (MSE) method [20], [30]. Although the
interpretation of complexity varies with the physiological
parameters being studied and the developmental condition
being investigated, there is significant evidence for various
pathological processes being associated with atypical and
often reduced measures of physiological complexity [18],
[19]. We hypothesize that subjects with HFA will exhibit lower
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complexity than the TD group for some, if not all, facial
expression conditions.

The complexity of a dynamical system can be under-
stood as the rate at which new information is produced.
MSE is a measure of dynamic complexity which is often use-
ful in the context of physiological time series. This method
estimates the complexity of a time series by computing an
information theoretic quantity, called the sample entropy, at
multiple time scales. The sample entropy Se at a given scale
is computed as the negative logarithm of the conditional
probability of two sequences within the time series being
similar (in the sense of a distance metric) in an (m + 1)-
dimensional space, given that they are similar in the m-
dimensional space.

Consider a time series X = {x1, x2, ..., xN} from
which we may form an m-dimensional vector Xm

i =
{xi, xi+1, ..., xi+m−1}. Let the distance between any such
two vectors be denoted as d(Xm

i , X
m
j ), where i 6= j en-

forces no self-matching. The function d(·) in our work is
the Chebyshev distance, although any distance function is
applicable. Let Cm(r) be the number of vector pairs for
which d(Xm

i , X
m
j ) < r where r is a predefined threshold.

Similarly, Cm+1(r) denotes the number of cases where
d(Xm+1

i , Xm+1
j ) < r. The sample entropy is computed as:

Se = −ln
Cm+1(r)

Cm(r)
(1)

For a time scale factor τ , the original time series X is first
coarse-grained to obtain Yτ =

{
y1, y2, ..., yN/τ

}
where yj =

1
τ

∑jτ
i=(j−1)τ+1 xi. For multiscale analysis, Se is computed

for multiple values of τ . In this study, we have used m = 2,
and r = 0.2× standard deviation of the time series. These
parameter values are chosen based on previous studies that
show that sample entropy has good statistical validity for
these values [31].

To perform MSE analysis on our database, we use the
distance time series data D containing the distances of each
facial marker from its rest position (see section 2.2). For
each subject performing a mimicry task, we thus have a
multichannel time-series, Dq

task ∈ RN×M , where q is the
subject id, N is the length of the time series, and M = 28
facial markers. The sample entropy ofDqtask is computed for
each of the 28 channels at τ = 1, 2, .., 25. An overall measure
of complexity is obtained by adding the Se values across all
channels for each Dntask at each scale. If a subject performs
multiple tasks under the same expression condition, the
MSE values are averaged across tasks at each scale.

The overall complexity of each subject was computed
in terms of the sample entropy values at 25 scale fac-
tors. To identify group difference, a two-sample t-test was
performed at each scale for every expression condition at
5% significance level. In general, a system is considered
more complex than the other if it produces higher values
of sample entropy relative to the other consistently over
increasing values of scale factor. As predicted, the results
of MSE analysis shows that the HFA group has significantly
reduced sample entropy patterns for three expression con-
ditions: disgust (all 25 scales), joy (all except scales 4 and
7) and sadness (all 25 scales). Plots of group differences are
presented in Fig. 2 where red markers indicate the scales

Fig. 3. Group difference in complexity for facial regions. Shaded regions
indicate where the HFA group exhibit significantly lower complexity (p ≤
0.05) than the control group.
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Fig. 4. Group difference in complexity for facial regions for all expression
conditions

at which the group difference is significant i.e. p ≤ 0.05.
For anger, significant group difference was observed only
at τ = 1 which is not sufficient to infer group difference
in complexity pattern. No difference is observed for fear or
surprise.

3.2 Localized Facial Dynamics
It is possible that group differences in overall facial dynam-
ics, when they exist, arise from only certain parts of the face
while other facial regions exhibit normal behavior. A well
established approach to studying local facial movements
involves using the FACS [29], [32]. The FACS is designed to
encode movement of individual facial muscles (called action
units) from slight changes in facial appearance. Examples of
action units are inner brow raise and lip corner pull. The
facial action units thus can be considered as the low-level
building block of facial expressions.

In this work, however, we do not follow the action units-
based approach. Studies have reported important behav-
ioral traits of children with autism related to facial regions
- the eye avoidance hypothesis in autism [33], [34], [35] for
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TABLE 1
Region of highest complexity

HFA TD
Anger cheek eye

Disgust mouth cheek
Fear cheek cheek
Joy cheek eye

Sadness cheek eye
Surprise cheek eye

example. Hence, we intend to analyze facial movements at
the level of facial regions. We group the markers into three
facial regions, eye, cheek and mouth, pertaining to the core
feature areas [36] (see Fig. 1). This kind of partition has also
been adopted in [21].

3.2.1 Complexity analysis

To compute the local complexity of a region, we average the
MSE values across all the markers present in that region,
separately at each scale factor. Two regions are considered
different if their complexity is significantly different (p ≤
0.05) for a majority of the scale factors.

To investigate the group differences in local regions of
a face, a two sample t-test was performed on the MSE
results for each of the three regions (see Fig. 3). For anger
and fear, no facial region was found to be significantly
different between the groups. For disgust (eye: p = 0.008,
cheek: p = 1.77e − 5, mouth: p = 0.003) and sadness (eye:
p = 7.34e − 4, cheek: p = 0.025, mouth: p = 6.61e − 4),
reduced complexity is observed for the HFA group in all
three regions. For joy, the group difference comes from eye
(p = 0.014) and mouth (p = 0.022) regions. Although, the
overall complexity pattern of the HFA group does not differ
from that of the control group for surprise, the mouth region
(p = 0.009) still shows significantly reduced complexity.
Overall, the eye region shows the highest between-group
difference in complexity, followed by mouth and cheek
regions (see Fig. 4).

In addition, we report the region of maximum com-
plexity pertaining to each expression condition for the two
groups (see Table 1). We observe that apart from fear, the
regions of highest complexity between the two groups are
always different. While the control group produces the most
complex motion in the eye region in cases of anger, joy,
sadness and surprise, the highest complexity in the HFA
group is observed in the cheek region for these emotion-
related expressions.

3.2.2 Similarity analysis

In this section, we investigate the (dis)similarity between
the HFA and control groups in terms of their facial ex-
pression dynamics in the three facial region. To measure
the group difference, we employ the dynamical time warping
(DTW) method. DTW measures the similarity (or dissimi-
larity) between two temporal sequences by finding the best
alignment between them in terms of a warping distance. It
directly compares the dynamical patterns in the sequences
without making any statistical assumptions. DTW has wide
applications in diverse domains, such as speech recognition
[37] and emotion classification [38].

Fig. 5. Average dissimilarity in facial region dynamics between HFA and
TD. Brighter color indicates larger dissimilarity.

Given two multidimensional time series X ∈ Rd×Nx ,
Y ∈ Rd×Ny , where d is the data dimensionality and Nx
and Ny are the lengths of X and Y . DTW finds the best
warping path by optimizing the distance between X and
Y . We construct a distance matrix D ∈ RNx×Ny , where the
element di,j measures the distance between the ith point xi
in X and the j-th point yj in Y . In this work, we use `2-
norm to measure the pointwise distance: di,j = ||xi − xj ||2.
A warping path W = w1, w2, · · · , wK defines a mapping
between X and Y , where the k-th element of W is defined
as wk = (i, j), where wk(1) = i and wk(2) = j. X can be
warped to the same length of Y based on the warping path,
i.e., the ith point of X corresponds to the jth point of Y . The
optimal warping path is the one that minimizes the warping
distance dw(W ):

dw(W ) =
K∑
k=1

D(wk(1), wk(2)) (2)

This path can be found using dynamic programming with
space and time complexity of O(NxNy).

We apply DTW to measure the similarity between every
pair of HFA and TD subjects using the corresponding facial
region-based time series data, and compute the warping dis-
tance dw(W ). Fig. 5 presents the average HFA-TD similarity
of facial dynamics in each region, where brighter color indi-
cates larger warping distance, i.e. , lower similarity between
the groups. Consistent with our previous observation, the
eye region shows a significantly larger dissimilarity than
the cheek region across expression conditions (p < 0.01),
and than the mouth region in the expression of anger, fear,
joy and surprise. In addition, the cheek region exhibits the
smallest dynamic difference (p < 0.01). The eye region-
based HFA-TD difference in the expressions of joy and fear
is significantly larger compared to those in other expression
conditions (p < 0.01).

3.3 Relationship in Movement Patterns between Facial
Regions

Facial expressions are produced as the results of a complex
interplay and coordination between various facial regions.
Such dynamic relationships may be highly non-linear, and
difficult to discern with simple measures like correlation
or coherence. In addition to studying the existence of the
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Fig. 6. Granger causality pattern between facial regions in the HFA and TD groups. The thickness and color of the arrows represent the percentage
of subjects showing statistically significant causality (p ≤ 0.05) for the corresponding region pairs.

cross-region relationship, we are interested in the interaction
(directional) effects between movement patterns in different
regions. To study the complex dynamic relationship be-
tween facial regions, we use the Granger causality model
[22].

Granger causality is a popular statistical measure for
analyzing the directional influence of one time series on
another [22]. It has been widely applied to analyze various
physiological and biomedical signals [39] [40] [41]. Com-
pared to other metrics, such as correlation which is linear
and symmetric, Granger causality measures a non-linear
and directional relationship between variables and is more

suitable for the lag-lead system.
Given two time series X and Y , the Granger causality

measureFX→Y defines the influence of the past information
of X on improving the prediction of the current value of Y .
Let’s consider the following two linear regression models:

Y (t) =
P∑
i=1

αiY (t− i) + εY (t)

Y (t) =
P∑
i=1

βiY (t− i) +
P∑
i=1

δiX(t− i) + εXY (t)

(3)

where P is the maximum number of lags for X and Y in the
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models; {αi}Pi=1, {βi}Pi=1 and {δi}Pi=1 are the regression co-
efficients, and εY and εXY are the residuals of the regression
models. The Granger causality measure is then defined by
taking the natural logarithm of the ratio of the total variance
of the two residuals εY and εX :

FX→Y = ln

(
var(εY )

var(εXY )

)
(4)

If FX→Y is significantly greater than zero, then X is
Granger causing Y . This significance is examined using an
F -test.

For Granger causality analysis, we first determine the
model order P using the Akaike information criterion (AIC).
Analysis shows that 35% of the subjects attain a model order
of 3, and hence we use P = 3 throughout our analysis.
Causal dependency is examined for all possible ordered
pairs of facial regions. This requires testing 6 unique ordered
pairs for causality. Fig. 6 presents the Granger causality
patterns between facial regions for the HFA and TD groups.
The arrows indicate the direction of causal dependency
originating from the region that predicts pointing to the
predicted region. The thickness and the color of the arrows
correspond to the percentage of subjects showing statisti-
cally significant (p ≤ 0.05) causality between the relevant
region pairs. Since the resulting percentage of subjects show-
ing significant causality over all the pairs of facial regions
ranges from 10% to 70%, we equally divide the interval
[10%, 70%] into three groups to represent different strength
levels between regions: low-level [10%, 30%], medium-level
[30%, 50%] and high-level [50%, 70%]. As expected, we ob-
serve that subjects with HFA exhibit stronger causal depen-
dency between regions compared to their TD peers. The
dependency is particularly pronounced for the expression
conditions of anger, disgust, joy and sadness.

We also observe that the causal relationship between
adjacent regions is stronger than that between non-adjacent
ones for both groups. For example, the coupling between
cheek and mouth regions is stronger than that between eye
and mouth. A strong eye-to-mouth relationship for HFA
subjects is also observed for the expressions of joy.

4 DISCUSSION

The present study found reduced complexity in facial ex-
pression dynamics of subjects with HFA relative to their
TD peers. Significant difference is observed for expressions
related to disgust, joy and sadness. These movement dif-
ferences may be the reason naı̈ve observers perceive the
facial expressions of individuals with ASD as awkward. In
the context of facial expression, reduced complexity can be
understood as a lack of variability, subtlety, or richness in
overall facial dynamics. Our observation supports a previ-
ous study that noted more neutral/flat affect expressions
in HFA group compared to their TD counterparts [5]. Our
findings of reduced complexity are also consistent with
past research showing atypical, often reduced, complexity
measures of physiological dynamic systems in people with
developmental or other conditions [18], [19].

We have also identified the facial regions with atypical
complexity in HFA subjects for each expression condition.
For expressions related to emotions like disgust and sadness

the reduced complexity in HFA subjects is observed across
all facial regions, while for other emotions (joy and surprise)
only parts of the face exhibit atypical dynamics.

On the other hand, from both local complexity and DTW-
based similarity analysis, we find that the major group
difference in facial dynamics comes from the eye region.
Recall that the eye region exhibits the highest complexity
in the TD group (see Table 1), but the HFA group shows
reduced complexity in this region. The observed dynamic
dissimilarity may result from this difference in complexity.

As shown in Table 1, HFA subjects exhibit highest com-
plexity in the cheek region, which also explains the smallest
dynamic difference observed in Fig. 5. These observations
indicate that the cheek movements of participants with
HFA are more natural and also reinforce that the perceived
atypicality and awkwardness likely result from reduced
complexity of movements in the eye, rather than the cheek
region. One possible explanation for this behavior may
come from the eye avoidance hypothesis in autism where
children with autism avoid looking at the eye region of
the face [33], [34], and may not be able to produce the
intricate movements in the eye region, because they lack
experience perceiving and processing this complex dynamic
information.

The Granger causality analysis shows that HFA subjects,
in general, have stronger causal dependency between facial
regions compared to TD subjects. Group difference is espe-
cially prominent in the emotions of anger, disgust, joy and
sadness. Recall that the HFA subjects have reduced com-
plexity for these emotions. The strong dependency between
facial regions in the HFA group suggests that subjects with
HFA have smaller degrees of freedom in the underlying
production mechanism, which in turn, supports our obser-
vation of reduced complexity in overall facial movements.

5 CONCLUSION

Several autism research studies have emphasized the impor-
tance of understanding vocal [9], [11] and facial behavioral
expressions [7], since they have such significant impact on
how children with HFA are perceived by naı̈ve observers.
In this study, we analyzed mimicked facial expressions in
children with HFA using computational techniques. We
observe that facial expressions of children with HFA have
reduced complexity when compared to those of TD subjects.
This is further emphasized by the observation of higher
causal dependency between various facial regions in HFA
across various expression conditions, suggesting lower de-
grees of freedom in the underlying mechanism. The group
differences in expression dynamics are more prominent for
expressions of anger, disgust, joy and sadness, and mainly
arise from the eye region.

Since our observations are made based on analyzing
the mocap recordings of only 20 children with autism, we
cannot generalize the findings to the entire autism spectrum
population, particularly due to the inherent heterogeneity
in the condition. Our current experimental setup also can
not identify whether the observed differences between the
HFA and TD subjects resulted from an underlying group
difference in perceiving the visual stimuli vs. a pure pro-
duction difference. Our findings also do not speak to the
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spontaneous production of expressions during naturalistic
social interactions - since the expressions we analyzed are
based on a mimicry paradigm. Nevertheless, within the
scope of this study, our analyses suggest that children with
HFA lack richness and variability in their facial expression
patterns, indicating a production mechanism that allows
less degrees of freedom of movement between regions.
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