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Summary

Bayesian Vector Autoregressions (BVARs) are standard multivariate autore-
gressive models routinely used in empirical macroeconomics and finance for struc-
tural analysis, forecasting and scenario analysis in an ever growing number of
applications.

A preeminent field of application of BVARs is forecasting. BVARs with in-
formative priors have often proved to be superior tools compared to standard
frequentist/flat-prior VARs. In fact, VARs are highly parametrised autoregressive
models, whose number of parameters grows with the square of the number of vari-
ables times the number of lags included. Prior information, in the form of prior
distributions on the model parameters, helps in forming sharper posterior distri-
butions of parameters, conditional on an observed sample. Hence, BVARs can
be effective in reducing parameters uncertainty, and improving forecast accuracy
compared to standard frequentist/flat-prior VARs.

This feature in particular has favoured the use of Bayesian techniques to ad-
dress ‘big data’ problems, in what is arguably one of the most active frontiers in
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the BVAR literature. Large-information BVARs have in fact proven to be valuable
tools to handle empirical analysis in data-rich environments.

BVARs are also routinely employed to produce conditional forecasts and scen-
ario analysis. Of particular interest for policy institutions, these applications
permit evaluating ‘counterfactual’ time evolution of the variables of interests con-
ditional on a pre-determined path for some other variables, such as the path of
interest rates over a certain horizon.

The ‘structural interpretation’ of estimated VARs as the data generating pro-
cess of the observed data requires the adoption of strict ‘identifying restrictions’.
From a Bayesian perspective, such restrictions can be seen as dogmatic prior beliefs
about some regions of the parameter space that determine the contemporaneous
interactions among variables, and for which the data are uninformative. More
generally, Bayesian techniques offer a framework for structural analysis through
priors that incorporate uncertainty about the identifying assumptions themselves.

Keywords: Bayesian inference, Vector Autoregression Models, BVAR, SVAR, forecasting
JEL Classification: C30, C32
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1 Introduction

Bayesian Vector Autoregressions (BVARs) have been applied to an increasingly large

number of empirical problems. In this article we review some of the most common ap-

plications of BVARs in macroeconomics and finance, such as structural identification,

forecasting and scenario analysis. A companion article surveys Bayesian inference meth-

ods for Vector Autoregression models, commonly used priors for economic and financial

variables, and it introduces the notation used throughout this paper (Miranda-Agrippino

and Ricco, 2018).

Forecasting has featured predominantly in the development of BVARs. In this con-

text, BVARs with informative priors have often proved to be superior tools compared

to standard frequentist/flat-prior VARs. VARs are highly parametrised autoregressive

models, whose number of parameters grows with the square of the number of variables

times the number of lags included. Given the limited length of standard macroeco-

nomic datasets – that usually involve monthly, quarterly, or even annual observations

–, such overparametrisation makes the estimation of VARs impossible with standard

(frequentist) techniques, already for relatively small sets of variables. This is known in

the literature as the ‘curse of dimensionality’. BVARs efficiently deal with the problem

of over-parametrisation through the use of prior information about the model coeffi-

cients. The general idea is to use informative priors that shrink the unrestricted model

towards a parsimonious näıve benchmark, thereby reducing parameter uncertainty, and

improving forecast accuracy. Section 2 discusses forecasting with BVARs, while Section

3 focusses on conditional forecast and scenario analysis.

Another important area of application is the study of causal relationships among eco-

nomic variables with Structural (B)VARs (Sims and Zha, 1998). It is common practice

to present results from SVARs in the form of impulse response functions – i.e. causal

responses over time of a given variable of interest to an ‘identified’ economic shock – to-

gether with bands that characterise the shape of the posterior distribution of the model

(see Sims and Zha, 1999).1 Section 4 reviews Bayesian techniques in SVARs.

1An extreme version of lack of sample information arises in this context. In fact Structural VARs can
be parametrised in terms of reduced form VARs that capture the joint dynamics of economic variables,
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The application of Bayesian techniques to ‘big data’ problems is one of the most

active frontiers in the BVAR literature. Indeed, because they can efficiently deal with

parameters proliferation, large BVARs are valuable tools to handle empirical analysis

in data-rich environments (Bańbura et al., 2010). Important applications in this case

also concern forecasting and structural analysis, where large-information BVARs can

efficiently address issues related to misspecification and non-fundamentalness. De Mol

et al. (2008) have discussed the connection between BVARs and factor models, another

popular way to handle large datatsets. We review large BVARs in Section 5.

2 Forecasting with BVARs

Reduced form Bayesian Vector Autoregressions, that are written as

yt = A1yt−1 + . . .+ Apyt−p + c+ ut , (1)

when estimated with informative priors over the autoregressive parameters {Ai, . . . Ap}

and the variance-covariance of the errors Σ, usually outperform VARs estimated with

frequentist techniques (or flat priors). Using the frequentist terminology, reasonably

specified priors reduce estimated parameters variance and hence improve forecast ac-

curacy, at the cost of the introduction of relatively small biases. From a more Bayesian

perspective, the prior information that may not be apparent in short samples – as for

example the long-run properties of economic variables captured by the Minnesota priors

– helps in forming sharper posterior distributions for the VAR parameters, conditional

on an observed sample (see e.g. Todd, 1984, for an early treatment of forecasting with

BVARs).

and an ‘impact matrix’ describing the casual connection between stochastic disturbances and economic
variables. This matrix is not uniquely identified by sample information and hence the investigator has
to elicit prior beliefs on it (see Sims and Zha, 1998; Baumeister and Hamilton, 2015).
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2.1 Bayesian Forecasting

The fundamental object in Bayesian forecasting is the posterior predictive density.2

That is, the distribution of future data points yT+1:T+H = [y′T+1, . . . , y
′
T+H ]′, conditional

on past data y1−p:T . Choosing a particular forecast F – e.g. the mode or median of

the predictive distribution, alongside appropriate probability intervals –, is essentially a

decision problem, given a specified loss function L(·). The Bayesian decision corresponds

to choosing the forecast that minimises the expected loss, conditional on past data

E[L(F , yT+1:T+H |y1−p:T )] =

∫
L(F , yT+1:T+H)p(yT+1:T+H |y1−p:T )dyT+1:T+H

. (2)

For a given loss function, the solution to the minimisation problem is a function of the

data, i.e. F(y1−p:T ). For example, with quadratic loss function L(F , yT+1:T+H |y1−p:T ) =

(F − yT+1:T+H)′(F − yT+1:T+H), the solution is the conditional expectation F(y1−p:T ) =

E[yT+1:T+H |y1−p:T ]. The predictive density is given by

p(yT+1:T+H |y1−p:T ) =

∫
p(yT+1:T+H |y1−p:T , θ)p(θ|y1−p:T )dθ, (3)

where θ is the vector collecting all the VAR parameters, i.e. A and Σ, p(θ|y1−p:T ) is the

posterior distribution of the parameters, and p(yT+1:T+H |y1−p:T , θ) is the likelihood of

future data. Eq. (3) highlights how Bayesian forecasts account for both the uncertainty

related to future events via p(yT+1:T+H |y1−p:T , θ), and that related to parameters values

via p(θ|y1−p:T ).

The posterior predictive density for h > 1 is not given by any standard density

function. However, if it is possible to sample directly from the posterior probability for

the parameters, Eq. (3) provides an easy way to generate draws from this predictive

density.

Algorithm 1: Sampling from the Posterior Predictive Density.

For s = 1, . . . , nsim:

1. Draw θ(s) from the posterior p(θ|y1−p:T ).

2The exposition in this section follows Karlsson (2013). See also Geweke and Whiteman (2006).
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2. Generate u
(s)
T+1, . . . , u

(s)
T+H from the distribution of the errors and calculate recurs-

ively ỹ
(s)
T+1, . . . , ỹ

(s)
T+H from the VAR equations with parameters A(s).

The set
{
ỹ

(s)
T+1, . . . , ỹ

(s)
T+H

}nsim

s=1
is a sample of independent draws from the joint predictive

distribution.

Kadiyala and Karlsson (1993) analyse the forecasting performance of different priors

and find that those that induce correlation among the VAR coefficients, e.g. the sums-

of-coefficient priors (Doan et al., 1984) and the co-persistence prior (Sims, 1993), tend

to do better.

Carriero et al. (2015a) conduct an extensive assessment of Bayesian VARs under

different specifications and evaluate the relative merits of different model specifications

and treatments of the data. In particular, starting from a benchmark VAR in levels and

with NIW, sums-of-coefficients, and co-persistence priors, they evaluate (1) the effects

of the optimal choice of the tightness hyperparameters, (2) of the lag length, (3) of the

relative merits of modelling in levels or growth rates, (4) of direct, iterated and pseudo-

iterated h-step-ahead forecasts, (5) the treatment of the error variance Σ and (6) of

cross-variable shrinkage f(`). They find that in general simpler specifications tend to

be very effective.3,4

2.2 Bayesian Model Averaging and Prediction Pools

Bayesian analysis offers a straightforward way to deal with model uncertainty. Consider

for instance the two competing models M1 and M2 with likelihood p(y|θ1,M1, y1−p:0)

and p(y|θ2,M2, y1−p:0) and prior probabilities p(θ1|M1) and p(θ2|M2) respectively.

Bayesian Model Averaging (BMA) obtains the marginalised (with respect to the models)

3Since the work of Sims et al. (1990), it is common practice to keep variables in (log-)levels. However,
whether to employ in VARs variables in growth rates, log-levels, or levels remains an empirically
important question. In the context of forecasting, for example, Carriero et al. (2015a) recommend the
use of differenced data.

4Carriero et al. (2015a) also find that overall the differences between the iterated and direct forecasts
are small, but there are large gains from the direct forecast for some of the variables. This is presumably
because the direct forecast is more robust to misspecification.
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predictive distribution as

p(yT+1:T+H |y) = p(yT+1:T+H |y,M1)p(M1) + p(yT+1:T+H |y,M2)p(M2), (4)

where p(Mj) is the prior probability assigned to model Mj, and p(yT+1:T+H |y,Mj)

is the model’s marginal likelihood. Eq. (4) can be extended to allow for M different

models. This can be seen as a generalisation of the predictive distribution in Eq. (3)

where instead of conditioning on a single model, M different models are considered.

BMA was introduced in economic forecasting by the seminal work of Geweke (1999) and

its applications in the context of forecast combinations and pooling have been numerous.

Notable extensions to BMA include the Linear Optimal Prediction Pools of Geweke and

Amisano (2011, 2012), and the Dynamic Prediction Pools of Del Negro et al. (2016).5

Earlier reviews of BMA and forecast combinations are in Geweke and Whiteman (2006)

and Timmermann (2006). The evolution of forecast density combinations is discussed

in detail in Aastveit et al. (2018)’s chapter in this collection. We refer the reader to

their paper for further details.

3 Conditional Forecasts and Scenario Analysis

Forecasts that condition on a specific path for one of the variables, such as e.g. a

preferred path for the policy interest rate, are of particular interest to central banks.

Early treatment of such forecasts, also referred to as scenario analysis, is in Doan et al.

(1984), who note that a conditional forecast is equivalent to imposing restrictions on

the disturbances uT+1, . . . , ut+H . Waggoner and Zha (2012) suggest a way to compute

conditional forecasts which does not condition on specific parameters values (for example

the posterior means) and produces minimum squared forecast errors conditional on the

restrictions. Moreover, it yields posterior distributions for the parameters which are

5Other relevant contributions on density forecast combination are Waggoner and Zha (2012);
Geweke and Amisano (2011); Hall and Mitchell (2007); Billio et al. (2013); Amisano and Geweke
(2017); Raftery et al. (2010). Applications are in e.g. Hwang (2017); Koop and Korobilis (2012) and
Aastveit et al. (2017) in the context of real-time forecasting.
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consistent with the constrained paths. Let

RyT+1:T+H = r (5)

denote the desired restrictions on the future path of some of the variables in yt. These

can be rewritten as

R [E(yT+1:T+H |y, θ) + C ′uT+1:T+H)] = r , (6)

where

C =


C0 C1 · · · CH−1

0 C0 · · · CH−2

...
. . .

0 · · · 0 C0

 , (7)

and Cj are the coefficients of the MA representation with

C0 = In

Cj =

p∑
i=0

AiCj−i ∀j > 0 . (8)

Rearranging Eq. (6) as

RC ′uT+1:T+H = r −RE(yT+1:T+H |y1−p:T , θ) , (9)

defining G ≡ RC ′ and g ≡ r − RE(yT+1:T+H |y1−p:T , θ), and noting that uT+1:T+H ∼

N (0, IH ⊗ Σ), one obtains the conditional distribution of uT+1:T+H as

uT+1:T+H |(GuT+1:T+H = g) ∼ N
(
ΣHG

′(GΣHG
′)−1g, ΣH − ΣHG

′(GΣHG
′)−1GΣH

)
(10)

which can be used to draw from the predictive distribution. In order to ensure consist-

ency of the posterior distribution with the restriction in Eq. (9), Waggoner and Zha
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(2012) suggest treating yT+1:T+H as latent variables and simulating the joint posterior

of the parameters and the future observations using the following MCMC sampler.

Algorithm 2: MCMC Sampler for VAR with restrictions on yT+1:T+H.

Given restrictions as in Eq. (9), select starting values for A(0) and Σ(0) using e.g.

simulation on historical data. For s = 1, . . . , nsim:

1. Draw uT+1:T+H from the distribution in Eq. (10) and recursively calculate

y
(s)
T+h =

h−1∑
j=1

y
(s)′

T+h−jA
(s−1)
j +

p∑
j=h

y′T+h−jA
(s−1)
j + u

(s)′

T+h .

2. Augment y1−p:T with y
(s)
T+1:T+h and draw A(s) and Σ(s) from the full conditional

posteriors

Σ(s)|y1−p:T , y
(s)
T+1:T+h, A

(s−1),

A(s)|y1−p:T , y
(s)
T+1:T+h,Σ

(s),

using an appropriate sampling given the chosen VAR specification and priors.

3. Discard the parameters to obtain a draw
{
y

(s)
T+1, . . . , y

(s)
T+h

}
from the joint predict-

ive density consistent with the restrictions in Eq. (9).

Jarociński (2010) suggests an efficient way to sample uT+1:T+H that reduces the

computational burden of the algorithm discussed above. An extension to this method

is in Andersson et al. (2010), who restrict the forecasts yT+1:T+H to be in a specified

region S ∈ RnH . This is a case of ‘soft’ restrictions, as opposed to those in Eq. (9).

Robertson et al. (2005) follow a different approach and propose exponential tilting as a

way to enforce moment conditions on the path of future yt. This is the approach also

implemented in Cogley et al. (2005). These methods are typically used in conjunction

with small VARs, and become quickly computationally cumbersome as the system’s

dimension increases.
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Bańbura et al. (2015) propose instead a Kalman Filter-based algorithm to produce

conditional forecasts in large systems which admit a state-space representation such as

large Bayesian VARs and Factor Models. Intuitively, this method improves on com-

putational efficiency due to the recursive nature of filtering techniques which allow to

tackle the problem period by period.

Antolin-Diaz et al. (2018) propose a method to conduct ‘structural scenario analysis’

that can be supported by economic interpretation by choosing which structural shock

is responsible for the conditioning path.

4 Structural VARs

Reduced form VARs can capture the autocovariance properties of multiple time-series.

However, their ‘structural interpretation’ as the data generating process of the observed

data, and of their one-step-ahead forecast errors in terms of economically meaningful

shocks, requires additional identifying restrictions.

A VAR in structural form (SVAR) can be written as

B0yt = B1yt−1 + · · ·+Bpyt−p +Bc + et, et ∼ i.i.d.N (0, In) , (11)

where B0 is a matrix of contemporaneous (causal) relationships among the variables, and

et is a vector of structural shocks that are mutually uncorrelated and have an economic

interpretation. All structural shocks are generally assumed to be of unitary variance.

This does not imply a loss of generality, however, since the diagonal elements of B0 are

unrestricted. In the structural representation, the coefficients have a direct behavioural

interpretation, and it is possible to provide a causal assessment of the effects of economic

shocks on variables – e.g. the effect of a monetary policy shock onto prices and output.

Premultiplying the SVAR in Eq. (11) by B−1
0 yields its reduced-form representation, i.e.

the VAR in Eq. (1). Comparing the two representations one obtains that Ai = B−1
0 Bi,

10



i = 1, . . . , p, and ut = B−1
0 et. The variance of the reduced form forecast errors, ut is

Σ = B−1
0 B−1′

0 . (12)

Since Σ is symmetric, it has only n(n+ 1)/2 independent parameters. This implies that

the data can provide information to uniquely identify only n(n + 1)/2 out of the n2

parameters in B0. In fact, given a positive definite matrix Σ, it is possible to write B0

as the product of the unique lower triangular Cholesky factor of Σ (Σ = ΣCholΣ
′
Chol)

times an orthogonal matrix Q

B0 = QΣChol . (13)

From this decomposition it is clear that while ΣChol is uniquely determined for a given

Σ, the n(n − 1)/2 unrestricted parameters span the space of the O(n) group of n × n

orthogonal matrices. The central question in structural identification is how to recover

the elements of B0 given the variance-covariance matrix of the one-step-ahead forecast

errors, Σ. That is, how to choose Q out of the many possible n-dimensional orthogonal

matrices.6

From a Bayesian perspective, the issue is that since yt depends only on Σ and not on

its specific factorisation, the conditional distribution of the parameter Q does not get

updated by the information provided in the data, i.e.

p(Q|Y,A,Σ) = p(Q|A,Σ) . (14)

For some regions of the parameter space, posterior inference will be determined purely

by prior beliefs even if the sample size is infinite, since the data are uninformative. This

is a standard property of Bayesian inference in partially identified models, as discussed

for example in Kadane (1975), Poirier (1998), and Moon and Schorfheide (2012).

Much of ingenuity and creativity in the SVAR literature has been devoted to provide

6It is assumed that the information in the history of yt is sufficient to recover the structural shocks
et, i.e., that it is possible to write the structural shocks as a linear combination of the reduced form
innovations ut. In this case, it is said that the shocks are fundamental for yt. Departures from this
case are discussed in Section 5. Relevant references are provided therein.
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arguments – i.e. ‘identification schemes’ – about the appropriate choice of p(Q|A,Σ).7

These arguments translate into what can be viewed as Bayesian inference with dogmatic

prior beliefs – i.e. distributions with singularities – about the conditional distribution

of Q, given the reduced form parameters. For example, the commonly applied recursive

identification amounts, from a Bayesian perspective, to assuming with dogmatic cer-

tainty that all of the upper diagonal elements of B0 are zero, while we do not have

any information on the other values of B0. Equivalently, it assumes with certainty that

Q = In. Similarly, other commonly used identifications – e.g. long-run, medium-run,

sign restrictions, etc. – can be expressed in terms of probabilistic a priori statements

about the parameters in B0.

Once a B0 matrix is selected, dynamic causal effects of the identified structural

shocks on the variables in yt are usually summarised by the structural impulse response

functions (IRFs). In a VAR(p), they can be recursively calculated as

IRFh = ΘhB
−1
0 h = 0, . . . , H , (15)

where

Θh =
h∑
τ=1

Θh−τAτ h = 1, . . . , H , (16)

Θ0 = In, and Aτ are the reduced form autoregressive coefficients of Eq. (1) with

Aτ = 0 for τ > p. The (i, j) element of IRFh denotes the response of variable i

to shock j at horizon h. Uncertainty about dynamic responses to identified structural

shocks is typically reported in the Bayesian literature as point-wise coverage sets around

the posterior mean or median IRFs, at each horizon – i.e. as the appropriate quantiles of

the IRFs posterior distribution. For example, 68% coverage intervals can be reported as

two lines representing the posterior 16th and 84th percentiles of the distribution of the

IRFs. Such credible sets usually need to be interpreted as point-wise, i.e. as credible sets

for the response of a specific variable, to a specific shock, at a given horizon. However,

point-wise bands effectively ignore the existing correlation between responses at different

7A survey of the identification schemes proposed in the literature goes beyond the scope of this
article. A recent textbook treatment on the subject is in Kilian and Lütkepohl (2017).

12



horizons. To account for the time (horizon) dependence, Sims and Zha (1999) suggest

to use the first principal components of the covariance matrix of the IRFs.

Sims and Zha (1998) discuss a very general framework for Bayesian inference on the

structural representation in Eq. (11). Rewrite the SVAR as

yB0 = xB + e , (17)

where the T × n matrices y and e and the T × k matrix x are defined as

y =


y′1
...

y′T

 , x =


x′1
...

x′T

 , e =


e′1
...

e′T

 , (18)

and B = [B1, . . . , Bp, Bc]. The likelihood can be written as

p(y|B0, B) ∝ |B0|T exp
{
−1

2
tr [(yB0 − xB)′(yB0 − xB)]

}
, (19)

where |B0| is the determinant of B0 (and the Jacobian of the transformation of e in

y). Conditional on B0, the likelihood function is a normal distribution in B. Define

β ≡ vec(B) and β0 ≡ vec(B0). A prior for the SVAR coefficients can be conveniently

factorised as

p(β0, β) = p(β|β0)p(β0), (20)

where p(β0) is the marginal distribution for β0, and can include singularities generated

by e.g. zero restrictions. The (conditional) prior for β can be chosen to be a normal

p.d.f.8

β|β0 ∼ N
(
β

0
, λ−1In ⊗ Γβ0

)
. (21)

The posterior distribution of β is hence of the standard form

β|β0,y ∼ N
(
β0, In ⊗ Γβ0

)
, (22)

8As it is usually done in the literature, Sims and Zha (1998) suggest to preserve the Kronecker
structure of the likelihood to avoid the inversion of nk × nk matrices and gain computational speed.
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where the posterior moments are updated as in the standard VAR with Normal-Inverse

Wishart priors (see e.g. Kadiyala and Karlsson, 1997). The posterior for β0 will depend

on the assumed prior.9

Baumeister and Hamilton (2015) apply a streamlined version of this framework to

provide analytical characterisation of the informative prior distributions for impulse-

response functions that are implicit in a commonly used algorithm for sign restrictions.

Sign restrictions are a popular identification scheme, pioneered in a Bayesian framework

by Canova and De Nicolo (2002) and Uhlig (2005). The scheme selects sets of models

whose B0 comply with restrictions on the sign of the responses of variables of interests

over a given horizon. Bayesian SVARs with sign restrictions are typically estimated using

algorithms such as in Rubio-Ramı́rez et al. (2010), where a uniform (or Haar) prior is

assumed for the orthogonal matrix. Operationally, a n × n matrix X of independent

N (0, 1) values is generated, and decomposed using a QR decomposition where Q is the

orthogonal factor and R is upper triangular. The orthogonal matrix is used as candidate

rotation Q and the signs of the responses of variables at the horizons of interest are

assessed against the desired sign restrictions. Baumeister and Hamilton (2015) show that

this procedure implies informative distributions on the structural objects of interest. In

fact, it implies that the impact of a one standard-deviation structural shock is regarded

(before seeing the data) as coming from a distribution with more mass around zero when

the number of variables n in the VAR is greater than 3 (and with more mass at large

values when n = 2). It also implies Cauchy priors for structural parameters such as

elasticities. The influence of these priors does not vanish even asymptotically, since the

data do not contain information about Q. In fact, as the sample size goes to infinity, the

height of the posterior distribution for the impact parameters is proportional to that of

the prior distribution for all the points in the parameter space for which the structural

coefficients satisfy the set restrictions that orthogonalise the true variance-covariance

matrix.

Giacomini and Kitagawa (2015) suggest the use of ‘ambiguous’ prior for the struc-

9Canova and Pérez Forero (2015) provide a general procedure to estimate structural VARs also in
the case of overidentified systems where identification restrictions are of linear or of nonlinear form.
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tural rotation matrix in order to account for the uncertainty about the structural para-

meters in all under-identified SVARs. The methodology consists in formally incorpor-

ating in the inference all classes of priors for the structural rotation matrix which are

consistent with the a priori ‘dogmatic’ restrictions. In a similar vein, Baumeister and

Hamilton (2017) discuss how to generalise priors on B0 to a less restrictive formulation

that incorporates uncertainty about the identifying assumptions themselves, and use

this approach to study the importance of shocks to oil supply and demand.

5 Large Bayesian VARs

The size of the VARs typically used in empirical applications ranges from three to a

dozen variables. VARs with larger sets of variables are impossible to estimate with

standard techniques, due the ‘curse of dimensionality’ induced by the densely paramet-

rised structure of the model.10 However, in many applications there may be concerns

about the omission of many potentially relevant economic indicators, that may affect

both structural analysis and forecasting.11 Additionally, big datasets are increasingly

important in economics to study phenomena in a connected and globalised world, where

economic developments in one region can propagate and affect others.12

VARs involving tens or even hundreds of variables have become increasingly popular

following the work of Bańbura et al. (2010), that showed that standard macroeconomic

priors – Minnesota and sums-of-coefficients – with a careful setting of the tightness

10The number of parameters to be estimated in an unrestricted VAR increases in the square of n, the
number of variables in yt. Even when mechanically feasible, that is, when the number of available data
points allows to produce point estimates for the parameters of interest, the tiny number of available
degrees of freedom implies that parameters are estimated with substantial degrees of uncertainty, and
typically yield very imprecise out-of-sample forecasts.

11A standard example of this has been the debate about the so called ‘price puzzle’ – positive
reaction of prices in response to a monetary tightening – that is often found in small scale VARs (see
for example Christiano et al., 1999). The literature has often connected such a puzzling result as an
artefact resulting from the omission of forward looking variables, like the commodity price index. In
fact, one of the first instances of VARs incorporating more than a few variables was the 19-variable
BVAR in Leeper et al. (1996) to study the effects of monetary policy shocks.

12Large datasets of macroeconomic and financial variables are increasingly common. For example,
in the US, the Federal Reserve Bank of St. Louis maintains the FRED-MD monthly database for well
over 100 macroeconomic variables from 1960 to the present (see McCracken and Ng, 2015), and several
other countries and economic areas have similarly sized datasets.
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parameters allowed to effectively incorporate very large sets of endogenous variables.

Indeed, a stream of papers have found large VARs to forecast well (see, e.g. Bańbura

et al. 2010, Carriero et al. 2015a, Carriero et al. 2009, Giannone et al. 2014 and Koop

2013).

Early examples of higher-dimensional VARs are Panel VARs, where small country-

specific VARs are interacted to allow for international spillovers (see e.g. Canova and

Ciccarelli, 2004, 2009). These models can be seen as large scale models that impose

more structure on the system of equations. Koop and Korobilis (2015) study methods

for high-dimensional panel VARs. In the study of international spillovers, an alternative

to Panel VARs are Global VARs (Pesaran et al., 2004). A Bayesian treatment to G-

VARs is in e.g. Cuaresma et al. (2016).

A recent development in this literature has been the inclusion of stochastic volat-

ility in Large BVAR models. Carriero et al. (2016a) assume a factor structure in the

stochastic volatility of macroeconomic and financial variables in Large BVARs. In Car-

riero et al. (2016b), stochastic volatility and asymmetric priors for large n are instead

handled using a triangularisation method which allows to simulate the conditional mean

coefficients of the VAR by drawing them equation by equation. Chan et al. (2017) pro-

pound composite likelihood methods for large BVARs with multivariate stochastic volat-

ility which involve estimating large numbers of parsimonious sub-models and then taking

a weighted average across them. Koop et al. (2016) discuss large Bayesian VARMA.

Koop (2017) reviews the applications of big data in macroeconomics.

5.1 Bayesian VARs and Dynamic Factor Models

Research started with Bańbura et al. (2010) has shown that large BVARs are competitive

models in leading with large-n problems in empirical macroeconomics, along with factor

models (see e.g. Forni et al., 2000; Stock and Watson, 2002) and Factor-Augmented

VARs (FAVARs, see e.g. Bernanke et al., 2005). Indeed, Bayesian VARs are strictly

connected to factor models as shown by De Mol et al. (2008) and Bańbura et al. (2015).

The link can be better understood in terms of data that have been transformed to
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achieve stationarity, ∆yt, and that have been standardised to have zero mean and unit

variance. A VAR in first differences can be written as

∆yt = Φ1∆yt−1 + · · ·+ Φp∆yt−p + vt. (23)

Imposing the requirement that the level of each variable yt must follow an independent

random walk process is equivalent to requiring its first difference ∆yt to follow an inde-

pendent white noise process. Hence, the prior on the autoregressive coefficients in Eq.

(23) can be characterised by the following first and second moments:

E [(Φ`)ij|Ψ] = 0, ∀` Var [(Φ`)ij|Ψ] =


λ21
f(`)

for i = j,∀`
λ21
f(`)

Σij

ω2
j

for i 6= j,∀`.
(24)

The covariance between coefficients at different lags is set to zero. Since the variables

have been rescaled to have the same variance, we can set Σ = σIn, where Σ = E[vtv
′
t].

Denote the eigenvalues of the variance-covariance matrix of the standardised data

by ζj, and the associated eigenvectors by νj, for j = 1, . . . , n, i.e.

[
1

T

T∑
t=1

∆yt∆y
′
t

]
νj = νjζj, (25)

where ν ′iνj = 1 if i = j and zero otherwise. We assume an ordering such that ζ1 ≥ ζ2 ≥

· · · ≥ ζn. The sample principal components of ∆yt are defined as

zt =

[
ν1√
ζ1

. . .
νn√
ζn

]′
yt ≡ W∆yt . (26)

The principal components transform correlated data, ∆yt, into linear combinations

which are cross-sectionally uncorrelated and have unit variance, i.e. T−1
∑T

t=1 ztz
′
t = In.

The principal components can be ordered according to their ability to explain the vari-

ability in the data, as the total variance explained by each principal component is equal

to ζj.
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Rewrite the model in Eq. (23) in terms of the ordered principal components, as

∆yt = Φ1W
−1zt−1 + · · ·+ ΦpW

−1zt−p + vt . (27)

The priors that impose a uniform shrinkage on the parameters in Eq. (24) map into a

non-uniform shrinkage on the parameters in Eq. (27):

E
[
(Φ`W

−1)ij|Ψ
]

= 0, ∀` Var
[
(Φ`W

−1)ij|Ψ
]

=


λ21ζj
f(`)

for i = j,∀`
λ21ζj
f(`)

Ψij

ω2
j

for i 6= j,∀`.
(28)

Importantly, the prior variance for the coefficients on the j-th principal component is

proportional to its share of explained variance of the data ζj.

If the data are characterised by a factor structure, then, as n and T increase, ζj will

go to infinity at a rate n for j = 1, . . . , r where r is the number of common factors.

Conversely, ζr+1, . . . , ζn will grow at a slower rate, which cannot be faster than n/
√
T .

If λ1 is set such that it converges to zero at a rate that is faster than that for the

smaller eigenvalues and slower than that for the largest eigenvalues, e.g. λ1 ∝
√
T
n

1
T % ,

with 0 < % < 1/2, then λ1ζj will go to infinity for j = 1, . . . , r and the prior on

the coefficients associated with the first r principal components will become flat (see

Bańbura et al., 2015). Conversely, the coefficients related to the principal components

associated with the bounded eigenvalues will be shrunk to zero, since λ1ζj will go to

zero for j > r.

De Mol et al. (2008) show that, if the data are generated by a factor model and

λ1 is set according to the rate described above, the point forecasts obtained by using

shrinkage estimators converge to the unfeasible optimal forecasts that would be obtained

if the common factors were observed.

5.2 Large SVARs, non-fundamentalness

One of the open problems in SVARs is the potential ‘non-fundamentalness’ of structural

shocks for commonly employed VARs (a review on this issue is in Alessi et al. 2011).
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Non-fundamentalness implies that the true structural shocks (i.e. et in Eq. 11) cannot

be retrieved from current and past forecast errors of the VARs of choice (see Hansen

and Sargent, 1980; Lippi and Reichlin, 1994). This situation arises when for example

the econometrician does not have all the information available to economic agents, such

as news about future policy actions. This is notoriously the case for fiscal shocks, as

explained in Leeper et al. (2013). In this case, economic agents’ expectations may not

be based only on the current and past yt, implying that the residuals of the reduced-

form model (i.e. ut in Eq. 1) are not the agents’ expectation/forecast errors. As

a consequence, the shocks of interest may not be retrieved from the forecast errors,

and may be non-fundamental. A possible solution is to allow for noninvertible moving

average (MA) components. A different strategy is to view non-fundamentalness as an

omitted variables problem. In this respect BVARs (and factor models) can offer a

solution to the incorporation of larger information sets. For example, Ellahie and Ricco

(2017) discuss the use of large BVARs to study the propagation of government purchases

shocks, while controlling for potential non-fundamentalness of shocks in small VARs.13

5.3 Forecasting in Data-Rich Environments

A research frontier is the application of Bayesian VARs to forecasting in data-rich envir-

onment, where the predictive content of large datasets (typically counting 100 or more

variables) is exploited to forecast variables of interest. A recent survey is in Bok et al.

(2017).

Bańbura et al. (2010) study the forecasting performance of large Bayesian VARs.

They find that while it increases with model size – provided that the shrinkage is appro-

priately chosen as a function of n –, most of the gains are in fact achieved by a 20-variable

VAR. Evaluation of the forecasting performance of medium and large Bayesian VARs is

also provided in Koop (2013). Carriero et al. (2011) evaluate the forecasting accuracy of

reduced-rank Bayesian VARs in large datasets. The reduced-rank model adopted has a

13Lütkepohl (2014) has observed that while large information techniques can be of help in dealing
with the problem, they are bound to distort the parameter estimates and also the estimated impulse
responses, hence results have to been taken with some caution.
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factor model underlying structure, with factors that evolve following a VAR. Koop and

Korobilis (2013) extend the framework to allow for time-varying parameters. Giannone

et al. (2017) argue in favour of dense (as opposed to sparse) representations of predict-

ive models for economic forecasting and use a ‘spike-and-slab’ prior that allows for both

variable selection and shrinkage.

BVARs are also a valuable tool for real-time forecasting and nowcasting with mixed-

frequency datasets. In fact, they can be cast in state-space form and filtering techniques

can be easily used to handle missing observations, data in real time, and data sampled

at different frequencies. Ghysels (2016) introduces a class of mixed-frequency VAR

models that incorporates data sampled at different frequencies and discusses Bayesian

approaches to the estimation of these models. Recent examples of these applications

include Korobilis (2013), Schorfheide and Song (2015); Carriero et al. (2015b); Brave

et al. (2016); Clark (2011); Giannone et al. (2014); McCracken et al. (2015).

Koop et al. (2016) propose the use of Bayesian compressed VARs for high dimen-

sional forecasting problems, and find that these tend to outperform both factor models

and large VAR with prior shrinkage. More recently, Kastner and Huber (2017) develop

BVARs that can handle vast dimensional information set and also allow for changes in

the volatility of the error variance. This is done by assuming that the reduced-form resid-

uals have a factor stochastic volatility structure (which allows for conditional equation-

by-equation estimation) and by applying a Dirichlet-Laplace prior (Bhattacharya et al.,

2015) to the VAR coefficients that heavily shrinks the coefficients towards zero while

still allowing for some non-zero parameters. Kastner and Huber (2017) provide MCMC-

based algorithms to sample from the posterior distributions and show that their proposed

model typically outperforms simpler nested alternatives in forecasting output, inflation

and the interest rate.
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