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Representation of Homothetic Forward Performance Processes in Stochastic
Factor Models via Ergodic and Infinite Horizon BSDE∗

Gechun Liang† and Thaleia Zariphopoulou‡

Abstract. In an incomplete market, with incompleteness stemming from stochastic factors imperfectly corre-
lated with the underlying stocks, we derive representations of homothetic (power, exponential, and
logarithmic) forward performance processes in factor-form using ergodic BSDE. We also develop
a connection between the forward processes and infinite horizon BSDE, and, moreover, with risk-
sensitive optimization. In addition, we develop a connection, for large time horizons, with a family
of classical homothetic value function processes with random endowments.
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1. Introduction. This paper contributes to the study of homothetic forward performance
processes, namely, of power, exponential and logarithmic type, in a stochastic factor market
model. Stochastic factors are frequently used to model the predictability of stock returns,
stochastic volatility, and stochastic interest rates. (For an overview of the literature, we
refer the reader to the review paper [38].) Forward performance processes were introduced
and developed in [27], [28], and [30] (see, also, [29], [31], and [32]). They complement the
classical expected utility paradigm in which the utility is a deterministic function chosen at
a single point in time (terminal horizon). The value function process is, in turn, constructed
backwards in time, as the dynamic programming principle yields. As a result, there is limited
flexibility to incorporate updating of risk preferences, rolling horizons, learning, and other
realistic “forward in nature” features if one requires that time-consistency is being preserved
at all times. Forward investment performance criteria alleviate some of these shortcomings
and offer the construction of a genuinely dynamic mechanism for evaluating the performance
of investment strategies as the market evolves across (arbitrary) trading horizons.

In [33] a stochastic PDE (cf. (10) herein) was proposed for the characterization of forward
performance processes in a market with Itô-diffusion price processes. It may be viewed as the
forward analogue of the finite-dimensional classical Hamilton–Jacobi–Bellman (HJB) equation
that arises in Markovian models of optimal portfolio choice. Like the HJB equation, the
forward SPDE is fully nonlinear and possibly degenerate. In addition, however, it is ill-posed
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and its volatility coefficient is an input that the investor chooses while, in the classical case,
the corresponding volatility is uniquely determined from the Itô decomposition of the value
function process. These features result in significant technical difficulties and, as a result, the
use of the forward SPDE for general Itô-diffusion market dynamics has been limited. Results
for time-monotone processes (zero forward volatility) can be found in [32], and a connection
between the forward performance process and optimal portfolios has been explored in [12] (see,
also [11]). In semi-martingale markets, an axiomatic construction for exponential preferences
can be found in [40].

When the market coefficients depend explicitly on stochastic factors, as herein, there
is more structure that can be explored by seeking performance criteria represented as de-
terministic functions of these factors. As was first noted in [33], the SPDE reduces to a
finite-dimensional HJB equation (see equation (51) therein) that these functions are expected
to satisfy. Still, however, this HJB equation remains ill-posed and how to solve it is an open
problem.

For a single stochastic factor, two cases have been so far analyzed, specifically, for the
power and exponential cases. The power case was treated in [35], where the homotheticity
reduces the forward HJB to a semilinear PDE which is, in turn, linearized using a distor-
tion transformation. One then obtains a one-dimensional ill-posed linear equation with state
dependent coefficients, which is solved using an extension of Widder’s theorem. The expo-
nential case was studied in [29] (see, also, [28] and [23]) in the context of forward exponential
indifference prices.

Multifactor modeling of forward performance processes is considered in [34], where the
complete market setting is analyzed in detail. Because of market completeness, the Legendre–
Fenchel transformation linearizes the forward SPDE, and a multidimensional ill-posed linear
equation with space/time dependent coefficients arises. Its solutions are, in turn, characterized
via an extension of Widder’s theorem developed by the authors. More recently, multifactors
of different (slow and fast) scales in incomplete markets were studied in [37], and asymptotic
expansions were derived for the limiting regimes. Therein, the leading order terms are ex-
pressed as time-monotone forward performances with appropriate stochastic time-rescaling,
resulting from averaging phenomena. The first order terms reflect compiled changes in the
investor’s preferences based on market changes and her past performance.

Herein, we initiate a study to generalize the existing results on forward processes in factor-
form allowing for market incompleteness, multistocks, and multistochastic factors. We first
focus on homothetic processes (power, exponential, and logarithmic), for these are also the
popular choices of risk preferences in the classical setting.

For such cases, the homotheticity reduces the SPDE to an ill-posed multidimensional
semilinear PDE (cf. (13), (40)), which, however, cannot be linearized. To our knowledge,
no results exist to date for such ill-posed equations. The main contribution herein is that
we bypass the difficulties generated by the ill-posedness by constructing factor-form forward
processes directly from Markovian solutions of a family of ergodic BSDE. While the form of
their driver is suggested by the operator appearing in the ill-posed PDE, we use exclusively
results from ergodic equations to construct the forward solutions and not from (forward)
stochastic optimization. As a byproduct, we use these findings to construct a smooth solution
to the ill-posed multidimensional semilinear PDE. To our knowledge, this approach is new. It
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346 GECHUN LIANG AND THALEIA ZARIPHOPOULOU

is quite direct and requires mild assumptions on the dynamics of the factors, essentially the
ergodicity condition (4).

The second contribution is that we provide a connection with risk-sensitive optimization
and the constant appearing in the solution of the ergodic BSDE. Thus, we provide a new
interpretation, in the context of forward optimization, of the classical results of [5], [14], and
[15] on the optimal growth rate of long-term utility maximization problems.

In a different direction, we develop a connection of the homothetic forward processes with
infinite horizon BSDE. Our contribution is threefold. First, we establish that the solutions
of the latter are themselves homothetic forward processes, albeit not Markovian. Second, we
show that as the parameter ρ, which appears naturally in these BSDE, converges to zero, the
relevant solutions will converge to their Markovian ergodic counterparts. Third, we use these
infinite horizon BSDE to establish a connection among the homothetic forward processes we
construct and classical analogues, specifically, finite-horizon value function processes with an
appropriately chosen terminal endowment. We show that these value functions converge to
the homothetic processes as the trading horizon tends to infinity.

In the finite horizon setting, (quadratic) BSDE were first studied in [22] and have been
subsequently analyzed by a number of authors. They constitute one of the most active areas
of research in financial mathematics, for they offer direct applications to risk measures [2],
indifference prices [1], [18], [24], and value functions for homothetic utilities [19]. Several
extensions to the latter line of applications include, among others, [25] and [3], where the
results of [19] were, respectively, generalized to a continuous martingale setting and to jump-
diffusions. We note that in the traditional framework, prices, portfolios, risk measures, and
value functions are intrinsically constructed “backward” in time and, thus, BSDE offer the
ideal tool for their analysis.

Despite the popularity of (quadratic) BSDE in the finite horizon setting, neither their
ergodic or infinite horizon counterparts have received much attention to date. In an infinite-
dimensional setting, an ergodic Lipschitz BSDE was introduced in [16] for the solution of an
ergodic stochastic control problem; see also [8], [10], [36] and more recently [9] and [20] for
various extensions. The infinite horizon quadratic BSDE was first solved in [6] by combining
the techniques used in [7] and [22].

To our knowledge, both types of ergodic and infinite horizon equations have been so far
motivated mainly from theoretical interest. Our results show, however, that both types of
equations are natural candidates for the characterization of forward performance processes
and their associated optimal portfolios and wealths. It is worth mentioning that both the
ergodic and infinite horizon BSDE we consider actually turn out to be Lipschitz, since one
can show that the parts corresponding to the relevant processes Z are bounded. In other words,
the quadratic growth, which is the standard assumption in the current setting, does not play
a crucial role. Indeed, as we show in the appendix, the existing results from the ergodic
Lipschitz BSDE [16] and the infinite horizon Lipschitz BSDE [7] can be readily adapted to
solve the forward equations at hand.

We conclude by mentioning that while we focus on forward processes in factor-form, most
of the results also apply for non-Markovian forward processes (e.g., the results in section 3.1.3).
Furthermore, we stress that a measure transformation (see the examples in 3.1.3) might in-
dicate that one can construct new homothetic forward processes directly from the ones with
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zero volatility, thus making the results herein redundant. However, this is not the case. On
the one hand, changing measure corresponds to changing the risk premia, which essentially
amounts to changing the original market model. Therefore, one does not produce any gen-
uinely new forward processes within the original market. More importantly, zero volatility
forward processes are decreasing in time and path-dependent with regards to the stochastic
factors. It is not possible to produce from them their Markovian counterparts using a measure
change transformation.

The paper is organized as follows. In section 2, we introduce the market model and review
the notion of forward performance process and the forward SPDE. In sections 3, 4, and 5, we
construct the corresponding forward performance processes in factor-form and the associated
optimal portfolios and wealth processes. In each section, we also present the connection with
an ill-posed semilinear PDE as well as with the solutions of the related infinite horizon BSDE
and with finite horizon counterparts. For the reader’s convenience, we present the technical
background results on the ergodic and infinite horizon BSDE in the appendix.

2. The stochastic factor model and its forward performance process. The market con-
sists of a riskless bond and n stocks. The bond is taken to be the numeraire and the individual
(discounted by the bond) stock prices Si

t , t ≥ 0, solve, for i = 1, . . . , n,

(1)
dSi

t

Si
t

= bi(Vt)dt+

d∑
j=1

σij(Vt)dW
j
t

with Si
0 > 0. The process W = (W 1, · · · ,W d)T is a standard d-dimensional Brownian motion

on a filtered probability space (Ω,F ,F = {Ft}t≥0,P) satisfying the usual conditions. The
superscript T denotes the matrix transpose.

The d-dimensional process V = (V 1, · · · , V d) models the stochastic factors affecting the
dynamics of stock prices, and its components are assumed to solve, for i = 1, . . . , d,

(2) dV i
t = ηi(Vt)dt+

d∑
j=1

κijdW j
t

with V i
0 ∈ R.

We introduce the following model assumptions.

Assumption 1.
(i) The market coefficients b(v) = (bi(v)) and σ(v) = (σij(v)), 1 ≤ i ≤ n, 1 ≤ j ≤ d,

v ∈ Rd, are uniformly bounded and the volatility matrix σ(v) has full row rank n.
(ii) The market price of risk vector θ(v), v ∈ Rd, defined as the solution to the equation

σ(v)θ(v) = b(v) and given by θ(v) = σ(v)T [σ(v)σ(v)T ]−1b(v), is uniformly bounded and
Lipschitz continuous.

Assumption 2. The drift coefficients of the stochastic factors satisfy the dissipative con-
dition

(3) (η(v) − η(v̄))T (v − v̄) ≤ −Cη|v − v̄|2
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348 GECHUN LIANG AND THALEIA ZARIPHOPOULOU

for any v, v̄ ∈ Rd and a constant Cη large enough. The volatility matrix κ = (κij), 1 ≤ i, j ≤ d,
is a constant matrix with κκT positive definite and normalized to |κ| = 1.

The “large enough” property of the above constant Cη will be refined later on when we
introduce another auxiliary constant Cv (cf. (57) and the example in section 3.1.3) related to
the drivers of the upcoming BSDE.

The dissipative condition (3) implies that the stochastic factor process V admits a unique
invariant measure, and it is, thus, ergodic. Indeed, a direct application of Gronwall’s inequality
yields that V satisfy, for any v, v̄ ∈ Rd, the exponential ergodicity condition

(4) |V v
t − V v̄

t |2 ≤ e−2Cηt|v − v̄|2,
where the superscript v denotes the dependence on the initial condition.

Inequality (4) states that any two distinct paths of the process V will converge to each
other exponentially fast. We note that (4) is the only condition needed to be satisfied by the
stochastic factors. Any diffusion process satisfying inequality (4) may serve as a stochastic
factor vector.

Next, we consider an investor who starts at time t = 0 with initial endowment x and
trades among the (n+ 1) assets. We denote by π̃ = (π̃1, · · · , π̃n)T the proportions of her
total (discounted by the bond) wealth in the individual stock accounts. Assuming that the
standard self-financing condition holds and using (1), we deduce that her (discounted by the
bond) wealth process solves

dXπ
t =

n∑
i=1

π̃i
tX

π
t

dSi
t

Si
t

= Xπ
t π̃

T
t (b(Vt)dt+ σ(Vt)dWt)

with X0 = x ∈ D, where the set D ⊆ R denotes the wealth admissibility domain.
For mere convenience, we will be working throughout with the trading strategies rescaled

by the volatility, namely,

(5) πT
t = π̃T

t σ(Vt).

Then, the wealth process solves

(6) dXπ
t = Xπ

t π
T
t (θ(Vt)dt+ dWt).

For any t ≥ 0, we denote by A[0,t] the set of admissible strategies in the trading interval [0, t],
given by

(7) A[0,t] = {(πu)u∈[0,t] : π ∈ L2
BMO[0, t], πu ∈ Π and Xπ

u ∈ D, u ∈ [0, t]}.
The set Π ⊆ Rd is closed and convex, and the space L2

BMO[0, t] defined as

L2
BMO[0, t] =

{
(πu)u∈[0,t] : π is F-progressively measurable and

ess sup
τ

EP

(∫ t

τ
|πu|2du

∣∣∣∣Fτ

)
< ∞ for any F-stopping time τ ∈ [0, t]

}
.
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The above integrability condition is also called the BMO-condition, since for any π ∈ L2
BMO[0, t],

ess sup
τ∈[0,t]

EP

(∫ t

τ
πT
u dWu

∣∣∣∣Fτ

)2

= ess sup
τ∈[0,t]

E

(∫ t

τ
|πu|2du

∣∣∣∣Fτ

)
< ∞,

and, hence, the stochastic integral
∫ s
0 πT

u dWu, s ∈ [0, t] , is a BMO -martingale.
In turn, we define the set of admissible strategies for all t ≥ 0 as A := ∪t≥0A[0,t].
Next, we review the notion of forward performance process, introduced and developed in

[28, 29, 30, 31, 32, 33]. Variations and relaxations of the original definition can be also found
in [4], [12], [17], and [34].

Definition 2.1. A process U (x, t) , (x, t) ∈ D× [0,∞), is a forward performance process if
(i) for each x ∈ D, U (x, t) is F-progressively measurable;
(ii) for each t ≥ 0, the mapping x �→ U(x, t) is strictly increasing and strictly concave;
(iii) for any π ∈ A and 0 ≤ t ≤ s,

(8) EP (U(Xπ
s , s)|Ft) ≤ U (Xπ

t , t) ,

and there exists an optimal portfolio π∗ ∈ A such that, for 0 ≤ t ≤ s,

(9) EP

(
Us(X

π∗
s , s)|Ft

)
= U

(
Xπ∗

t , t
)
.

As mentioned earlier, it was shown in [33] that U (x, t) is associated with an ill-posed fully
nonlinear SPDE, which plays the role of the HJB equation in the classical finite-dimensional
setting. Formally, this forward SPDE is derived by first assuming that U (x, t) admits the Itô
decomposition

dU(x, t) = b(x, t)dt+ a(x, t)T dWt

for some F-progressively measurable processes a(x, t) and b(x, t), and that all involved quan-
tities have enough regularity so that the Itô–Ventzell formula can be applied to U(Xπ

s , s) for
all admissible π. The requirements (8) and (9) then yield that, for a chosen volatility process
a (x, t) , the drift b (x, t) must have a specific form.

In the setting herein, the forward performance SPDE takes the form

dU(x, t) =

(
−1

2
x2Uxx(x, t)dist

2

(
Π,−θ(Vt)Ux(x, t) + ax (x, t)

xUxx(x)

)

+
1

2

|θ(Vt)Ux(x, t) + ax (x, t) |2
Uxx(x, t)

)
dt+ a(x, t)T dWt,(10)

where dist (Π, x) represents the distance function from x ∈ Rd to Π. Furthermore, if a strong
solution to (6) exists, say, Xπ∗

t , when the feedback policy

(11) π∗
t = ProjΠ

(
− θ(Vt)Ux(X

π∗
t , t)

Xπ∗
t Uxx(Xπ∗

t , t)
− ax(X

π∗
t , t)

Xπ∗
t Uxx(Xπ∗

t , t)

)
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is used, then the control process π∗
t is optimal. We note that these arguments are formal and

a general verification theorem is still lacking.
Herein, we bypass these difficulties and construct homothetic forward performance pro-

cesses in factor-form using directly the Markovian solutions of associated ergodic BSDE. The
SPDE is merely used to guess the appropriate form of the latter.

3. Power case. We start with the construction of forward performance processes that are
homogeneous of degree δ ∈ (0, 1) and have the factor-form

(12) U (x, t) =
xδ

δ
ef(Vt,t),

where f : Rd × [0,∞) → R is a (deterministic) function to be specified. For this range of δ,
the admissible wealth domain is taken to be D = R+.

Using the form (12) and the SPDE (10), we deduce that f must satisfy, for (v, t) ∈
Rd × [0,∞), the semilinear PDE

(13) ft +
1

2
Trace

(
κκT∇2f

)
+ η(v)T∇f + F (v, κT∇f) = 0

with

(14) F (v, z) := −1

2
δ(1− δ)dist2

(
Π,

z + θ(v)

1− δ

)
+

1

2

δ

1− δ
|z + θ(v)|2 + 1

2
|z|2.

The above equation, however, is ill-posed with no known solutions to date. On the other
hand, as we demonstrate below, the process f (Vt, t) can be actually constructed directly from
the Markovian solution of an ergodic BSDE whose driver is of the above form (cf. (16)).

3.1. Construction via ergodic BSDE. We first introduce the underlying ergodic BSDE
and provide the main existence and uniqueness result for Markovian solutions. For the reader’s
convenience, we present the proof in the appendix.

Proposition 3.1. Assume that the market price of risk vector θ (v) satisfies Assumption 1(ii)
and let the set Π be as in (7). Then, the ergodic BSDE

(15) dYt = (−F (Vt, Zt) + λ)dt+ ZT
t dWt

with the driver F (·, ·) defined as

(16) F (Vt, Zt) := −1

2
δ(1 − δ)dist2

(
Π,

Zt + θ(Vt)

1− δ

)
+

1

2

δ

1− δ
|Zt + θ(Vt)|2 + 1

2
|Zt|2

admits a unique Markovian solution (Yt, Zt, λ), t ≥ 0.
Specifically, there exist a unique λ ∈ R and functions y : Rd → R and z : Rd → Rd such

that (Yt, Zt) = (y (Vt) , z (Vt)). The function y(·) is unique up to a constant and has at most
linear growth, and z(·) is bounded with |z(·)| ≤ Cv

Cη−Cv
, where Cη and Cv are as in (3) and

(57), respectively.

We next present one of the main results.
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Theorem 3.2. Let (Yt, Zt, λ) = (y(Vt), z(Vt), λ), t ≥ 0, be the unique Markovian solution of
(15). Then,

(i) the process U(x, t), (x, t) ∈ R+ × [0,∞) , given by

(17) U(x, t) =
xδ

δ
ey(Vt)−λt ,

is a power forward performance process with volatility

(18) a (x, t) =
xδ

δ
ey(Vt)−λtz(Vt).

(ii) The optimal portfolio weights π∗
t and the associated wealth process X∗

t (cf. (5) and (6))
are given, respectively, by

(19) π∗
t = ProjΠ

(
z(Vt) + θ(Vt)

1− δ

)
and X∗

t = X0E
(∫ ·

0
(π∗

s)
T (θ(Vs)ds+ dWs)

)
t

.

Proof. It is immediate that the process U(x, t) is F-progressively measurable, strictly
increasing, and strictly concave in x and homogeneous of degree δ. To show that it also
satisfies requirements (ii) and (iii) of Definition 1, we will establish that, for 0 ≤ t ≤ s, if
π ∈ A,

EP

(
(Xπ

s )
δ

δ
eYs−λs|Ft

)
≤ (Xπ

t )
δ

δ
eYt−λt,

while for π∗ given by (19),

EP

(
(Xπ∗

s )δ

δ
eYs−λs|Ft

)
=

(Xπ∗
t )δ

δ
eYt−λt.

To this end, the wealth equation (6) and Itô’s formula yield

(Xπ
s )

δ = (Xπ
t )

δ exp

(∫ s

t
δ

(
πT
u θ(Vu)− 1

2
|πu|2

)
du+

∫ s

t
δπT

u dWu

)
.

On the other hand, from the ergodic BSDE (15), we have

(20) Ys − λs = Yt − λt−
∫ s

t
F (Vu, z(Vu))du +

∫ s

t
z(Vu)

TdWu.

Combining the above yields

(Xπ
s )

δeYs−λs = (Xπ
t )

δeYt−λt exp

(∫ s

t

(
δ

(
πT
u θ(Vu)− 1

2
|πu|2

)
− F (Vu, z(Vu))

)
du

+

∫ s

t

(
δπT

u + z(Vu)
T
)
dWu

)
.
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Therefore,

EP

(
(Xπ

s )
δeYs−λs|Ft

)
= (Xπ

t )
δeYt−λtEP

(
exp

(∫ s

t

(
δ

(
πT
u θ(Vu)− 1

2
|πu|2

)
− F (Vu, z(Vu))

)
du

+

∫ s

t

(
δπT

u + z(Vu)
T
)
dWu

∣∣∣∣Ft

)
.

Next, for s ≥ 0 and π ∈ A, we define a probability measure, say, Qπ, by introducing the
Radon–Nikodym density process Zu, u ∈ [0, s] ,

(21) Zu =
dQπ

dP

∣∣∣∣
Fu

= E(N)u with Nu =

∫ u

0

(
δπT

t + ZT
t

)
dWt.

We recall that both processes πu and z(Vu), u ∈ [0, s] , satisfy the BMO -condition (up to time
s). Therefore, the process Nu, u ∈ [0, s] , is a BMO -martingale and, in turn, E(N) is in Doob’s
class D and, thus, uniformly integrable. In turn,

EP

(
exp

(∫ s

t
(F π(Vu, z(Vu))− F (Vu, z(Vu))) du

) Zs

Zt

∣∣∣∣Ft

)

= EQπ

(
exp

(∫ s

t
(F π(Vu, z(Vu))− F (Vu, z(Vu))) du

)∣∣∣∣Ft

)
,

where

F π(Vt, z(Vt)) : = −1

2
δ(1 − δ)|πt|2 + δπT

t (z(Vt) + θ(Vt)) +
1

2
|z(Vt)|2

= −1

2
δ(1 − δ)

∣∣∣∣πt − z(Vt) + θ(Vt)

1− δ

∣∣∣∣
2

+
1

2

δ

1− δ
|z(Vt) + θ(Vt)|2 + 1

2
|z(Vt)|2.

Using that F π(Vt, z(Vt)) ≤ F (Vt, z(Vt)), we easily deduce that

EP

(
(Xπ

s )
δeYs−λs|Ft

)
≤ (Xπ

t )
δeYt−λt.

Moreover, for π = π∗ as in (19), F π∗
(Vt, z(Vt)) = F (Vt, z(Vt)) and, thus,

EP

(
(Xπ∗

s )δeYs−λs|Ft

)
= (Xπ∗

t )δeYt−λt.

To show (18), we recall the SPDE (10) and observe that representation (17) yields

dU(x, t) = U(x, t)(−F (Vt, z(Vt)) +
1

2
|z(Vt)|2)dt+ U(x, t)z(Vt)

TdWt.

The rest of the proof follows easily.
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3.1.1. Connection with risk-sensitive optimization. We provide an interpretation of the
constant λ, appearing in the representation of the forward performance process (17), as the
solution of the risk-sensitive control problem (23). It turns out that the constant λ is also the
optimal growth rate of the long-term utility maximization problem as considered in [5], [14],
and [15] (see (24) below).

Proposition 3.3. Let T > 0 and π ∈ A and define the probability measure Pπ using the
Radon–Nikodym density process Zu, u ∈ [0, T ],

(22) Zu =
dPπ

dP

∣∣∣∣
Fu

= E
(∫ ·

0
δπT

u dWu

)
u

and the stochastic functional

L(Vs, πs) := −1

2
δ(1 − δ)|πs|2 + δθ(Vs)

Tπs

for s ∈ [0, T ] .
Let (y(Vt), z (Vt) , λ), t ≥ 0, be the unique Markovian solution of the ergodic BSDE (15) and

Xπ solving the wealth equation (6). Then, λ is the long-term growth rate of the risk-sensitive
control problem

(23) λ = sup
π∈A

lim sup
T↑∞

1

T
lnEPπ

(
e
∫ T
0 L(Vs,πs)ds

)
,

or, alternatively,

(24) λ = sup
π∈A

lim sup
T↑∞

1

T
lnEP

(
(Xπ

T )
δ

δ

)
.

For both problems (23) and (24), the associated optimal control process π∗
t , t ≥ 0, is as in

(19).

Proof. We first observe that the driver F (·, ·) in (16) can be written as

F (Vt, Zt) = sup
πt∈Π

(
L(Vt, πt) + ZT

t δπt
)
+

1

2
|Zt|2.

Therefore, for arbitrary π̃ ∈ A, we rewrite the ergodic BSDE (15) under the probability
measure Pπ̃ as

dYt =

(
− sup

πt∈Π

(
L(Vt, πt) + ZT

t δπt
)
+ ZT

t δπ̃t + λ− 1

2
|Zt|2

)
dt+ ZT

t dW
Pπ̃

t ,

where the process W Pπ̃

t := Wt −
∫ t
0 δπ̃udu, t ≥ 0, is a Brownian motion under Pπ̃. In turn,

eλT+Y0e−YT E
(∫ ·

0
ZT
u dW

Pπ̃

u

)
T

= exp

(∫ T

0

(
sup
πt∈Π

(
L(Vt, πt) + ZT

t δπt
)− (L(Vt, π̃t) + ZT

t δπ̃t
))

dt

)
e
∫ T
0 L(Vt,π̃t)dt.
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Next, we observe that for any π̃ ∈ A, the first exponential term on the right-hand side is
bounded below by 1. Taking expectation under Pπ̃ then yields

eλT+Y0EPπ̃

(
e−YT E

(∫ ·

0
ZT
s dW

Pπ̃

s

)
T

)
≥ EPπ̃

(
e
∫ T
0

L(Vs,π̃s)ds
)
.

Using the measure Qπ̃, defined in (21), we deduce that

λ+
Y0

T
+

1

T
lnEQπ̃

(
e−YT

) ≥ 1

T
lnEPπ̃

(
e
∫ T
0

L(Vs,π̃s)ds
)
.

Note, however, that there exists a constant, say, C, independent of T, such that

1

C
≤ EQπ

(
e−YT

) ≤ C.

This follows from the linear growth property of the function y (·) and the ergodicity condition
(4) (see, for example, [13]).

Sending T ↑ ∞ then yields that, for any π̃ ∈ A,

λ ≥ lim sup
T↑∞

1

T
lnEPπ̃

(
e
∫ T
0 L(Vs,π̃s)ds

)
with equality choosing π̃s = π∗

s , with π∗
s as in (19).

To show that λ also solves (24), we observe that for π ∈ A, we have

EP

(
(Xπ

T )
δ

δ

)
=

Xδ
0

δ
EP

(
e
∫ T
0

L(V s,πs)dsE
(∫ ·

0
δπT

s dWs

)
T

)

=
Xδ

0

δ
EPπ

(
e
∫ T
0 L(Vs,πs)ds

)
,

and the rest of the arguments follow.

3.1.2. Connection with an ill-posed multi-dimensional semilinear PDE. A byproduct
of the previous result is the construction of a smooth solution to the ill-posed semilinear PDE
given in (25) below. Recall that the latter was derived from (10) as a necessary requirement
when we seek forward processes of the form (12). We establish below that for an appropriate
initial datum, this ill-posed PDE has a solution, which is separable in time and space.

We note that the well-posed analogue of this semilinear equation, as well as of the one
appearing in the exponential case (cf. (40)), have been extensively analyzed and used for the
representation of indifference prices, risk measures, power and exponential value functions,
etc. To our knowledge, however, their ill-posed versions have not been studied, with the
exception of the one-dimensional case studied in [35]. This case, on the other hand, can be
linearized and the solution is constructed using an extension of Widder’s theorem. We refer
in detail to this case in 3.1.3. However, the multidimensional case cannot be linearized and,
to our knowledge, no results for this case exist to date.

Proposition 3.4. Consider the ill-posed semilinear PDE

(25) ft + Lf + F (v, κT∇f) = 0,

(v, t) ∈ Rd × [0,∞) with F (·, ·) as in (14) (or (16)) and L being the infinitesimal generator of
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the factor process V ,

(26) L =
1

2
Trace

(
κκT∇2

)
+ η(v)T∇.

For initial condition f(v, 0) = y(v), where y(·) is the function appearing in the Markovian
solution (y (Vt) , z (Vt) , λ) of the ergodic BSDE (15), (25) admits a smooth solution given by

f(v, t) = y(v)− λt.

Proof. First, assume that the function y (·) appearing in Proposition 2 is in C2(Rd). Itô’s
formula then gives

dy(Vt) = Ly(Vt)dt+
(
κT∇y(Vt)

)T
dWt,

which combined with (15) yields that Zt = z (Vt) = κT∇y(Vt) and

−λ+ Ly(Vt) + F (Vt, κ
T∇y(Vt)) = 0.

It therefore remains to show that y (·) ∈ C2(Rd). Indeed, for any ρ > 0, consider the semilinear
elliptic PDE

(27) ρyρ = Lyρ + F
(
v, κT∇yρ

)
.

Classical PDE results yield that the above equation admits a unique bounded solution yρ (·) ∈
C2(Rd). Using arguments similar to the ones in the appendix, we deduce that |yρ(v)| ≤ K

ρ

and |∇yρ(v)| ≤ Cv
Cη−Cv

.

Therefore, for any reference point, say, v0 ∈ Rd, we have that ρyρ(v0) is uniformly bounded
and, moreover, that the difference yρ(v) − yρ(v0) is equicontinuous. Using a diagonal argu-
ment (cf. (74) in the appendix), we deduce that there exists a subsequence ρn ↓ 0 such that
ρny

ρn(v0) → λ and yρn(v)−yρn(v0) → y(v), uniformly on compact sets of Rd. Since, however,
both ρny

ρn(v) and ∇yρn(v) are bounded uniformly in ρn, ∇2yρn(v) is also bounded on com-
pact sets, as it follows from (27) above. In turn, this yields a Hölder estimate for ∇yρn(v),
uniformly on compact sets. Standard arguments for elliptic equations then give that the limit
y(·) ∈ C2(Rd) (see, for example, [13, Theorem 3.3]).

3.1.3. Example: Single stock and single stochastic factor. For the state equations (1)
and (2), let n = 1 and d = 2. Then, the stock and the stochastic factor processes follow,
respectively,

dSt = b(Vt)Stdt+ σ(Vt)StdW
1
t ,

dV 1
t = η(Vt)dt+ κ1dW 1

t + κ2dW 2
t and dV 2

t = 0

with min(κ1, κ2) > 0, |κ1|2 + |κ2|2 = 1 and σ (·) bounded by a positive constant.
Let Π = R×{0} so that π2

t ≡ 0. Then, the wealth equation (6) reduces to dXπ
t =

Xπ
t π

1
t

(
θ(Vt)dt+ dW 1

t

)
with θ(Vt) = b(Vt)/σ(Vt). In turn, the driver of (15) takes the form

F (Vt, Z
1
t , Z

2
t ) =

1

2

δ

1− δ
|Z1

t + θ(Vt)|2 + 1

2
|Z1

t |2 +
1

2
|Z2

t |2.

By Theorem 3.2, the optimal portfolio weights are
(
π∗,1
t , π∗,2

t

)
=
(
Z1
t +θ1(Vt)
1−δ , 0

)
.
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Next, note that if Cθ and Kθ are, respectively, the Lipschitiz constant and the bound for
the market price of risk θ(v) (cf. Assumption 1(ii)), then

|F (v, z1, z2)− F (v̄, z1, z2)| ≤ δ

1− δ
|z1 + θ(v)||θ(v)− θ(v̄)|

≤ δ

1− δ
max{1,Kθ}Cθ(1 + |z|)|v − v̄|.

Hence, we may take in inequality (57) the constant Cv to be defined as Cv = δmax{1,Kθ}Cθ/(1−
δ).

To find the processes Z1
t and Z2

t , we set Zi
t = κiZt, i = 1, 2, for some process Zt to be

determined. Then, (15) further reduces to

dYt =

(
− δ̂

2
|Zt|2 − δκ1

1− δ
θ(Vt)Zt − δ

2(1 − δ)
|θ(Vt)|2 + λ

)
dt

+ Zt

(
κ1dW 1

t + κ2dW 2
t

)
with δ̂ = 1−δ+δ|κ1|2

1−δ .

Next, let Ỹt := eδ̂(Yt−λt) and Z̃t := δ̂ỸtZt. Then,

dỸt = −δ̂
δ

2(1− δ)
|θ(Vt)|2Ỹtdt+ Z̃tdW̃t,

where W̃t := κ1W 1
t + κ2W 2

t − ∫ t
0

δκ1

1−δθ(Vu)du, t ≥ 0, is a Brownian motion under some
probability measure equivalent to P.

Let βt := exp
(∫ t

0 δ̂
δ

2(1−δ) |θ(Vu)|2du
)
. Applying Itô’s formula to Ỹtβt yields

Ỹt =
β0
βt

Ỹ0 +

∫ t

0

βu
βt

Z̃udW̃u.

The power forward performance process can be then written as

U(x, t) =
xδ

δ
(Ỹt)

1/δ̂ =
xδ

δ

(
β0
βt

Ỹ0 +

∫ t

0

βu
βt

Z̃udW̃u

)1/δ̂

.

The above result yields an alternative representation to the solution derived in [35], where the
same market model is considered, bypassing various lengthy steps for the reduced linearized
forward SPDE. Indeed, one can easily deduce that writing Ỹt = ỹ (Vt, t) and using the dynamics
of the stochastic factor (2) yields that ỹ (v, t) must satisfy

ỹt (v, t) +
1

2
ỹvv (v, t) +

(
η (v) +

δκ1

1− δ
θ (v)

)
ỹv (v, t) +

δ̂δ

2 (1− δ)
θ2 (v) ỹ (v, t) = 0,

recovering directly the result of [35].
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3.2. Connection with infinite horizon BSDE. In this section, we build a connection
between power forward processes and the solutions of a family of infinite horizon BSDE. The
contribution is threefold.

First, these solutions are themselves power forward processes, albeit not in a factor-form.
Second, we consider their limit as the parameter ρ, appearing naturally in the infinite hori-
zon BSDE, converges to zero. We establish that appropriately discounted, they provide an
approximation to the process U (x, t) as ρ ↓ 0. Third, we build a connection with a family
of classical value function processes in finite horizon, say, [0, T ], when the horizon is long
(T ↑ ∞).

We start with some background results on infinite horizon BSDE. Among others, we recall
that [7] is one of the first papers in which Girsanov’s transformation is used to solve infinite
horizon BSDE with Lipschitz driver, while the quadratic driver case was solved in [6]. We
refer the reader to [6] for further references.

Proposition 3.5. Let ρ > 0, and consider the infinite horizon BSDE

(28) dY ρ
t = (−F (Vt, Z

ρ
t ) + ρY ρ

t ) dt+ (Zρ
t )

T
dWt,

where the driver F (·, ·) is given in (15) with θ(·), Π, and V satisfying the assumptionthes in
section 1. Then, (28) admits a unique Markovian solution (Y ρ

t , Z
ρ
t ), t ≥ 0.

Specifically, for each ρ > 0, there exist unique functions yρ : Rd → R and zρ : Rd → Rd

such that (Y ρ
t , Z

ρ
t ) = (yρ(Vt), z

ρ(Vt)) with |yρ (·) | ≤ K
ρ and |zρ (·) | ≤ Cv

Cη−Cv
, where Cη as in

(3), and Cv, K given in (57) and (59), respectively.

The solvability of (28) is an intermediate step to solve (15) and is included in the proof
of Proposition 3.1 in the appendix.

Theorem 3.6. Let (yρ (Vt) , z
ρ (Vt)) , t ≥ 0, be the unique Markovian solution to the infinite

horizon BSDE (28). Then,
(i) the process Uρ (x, t) , (x, t) ∈ R+ × [0,∞) , given by

(29) Uρ(x, t) =
xδ

δ
ey

ρ(Vt)−
∫ t
0
ρyρ(Vs)ds

is a power forward performance process with volatility

aρ (x, t) =
xδ

δ
ey

ρ(Vt)−
∫ t
0 ρyρ(Vs)dszρ (Vt) .

(ii) The optimal portfolio weights π∗,ρ
t and the associated wealth process X∗,ρ

t (cf. (5), (6)),
t ≥ 0, are given, respectively, by

π∗,ρ
t = ProjΠ

(
zρ(Vt) + θ(Vt)

1− δ

)
and X∗,ρ

t = X0E
(∫ ·

0
(π∗,ρ

s )T (θ(Vs)ds + dWs)

)
t

.

The proof is similar to the one of Theorem 3.2, and it is thus omitted.
The next result relates the factor-from forward process U(x, t) (cf. Theorem 3.2) and

the path-dependent one Uρ (x, t) (cf. Theorem 3.6) and their corresponding optimal portfolio
strategies.

We use the superscript v to denote dependence on the initial condition.
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Proposition 3.7. For (x, t) ∈ R+ × [0,∞) , let U(x, t) and Uρ(x, t) be the power forward
processes given in (17) and (29), and y (Vt) the component of the Markovian solution to the
ergodic BSDE (15). Then, for an arbitrary reference point v0 ∈ Rd, there exists a subsequence
ρn ↓ 0 (depending on v0) such that, for (x, t) ∈ R+ × [0,∞) ,

(30) lim
ρn↓0

Uρn(x, t)e−yρn (v0)

U(x, t)
= 1.

Moreover, for each t ≥ 0, the associated optimal portfolio weights π∗,ρn and π∗ satisfy

(31) lim
ρn↓0

EP

∫ t

0
|π∗,ρn

s − π∗
s |2 ds = 0.

Proof. For an arbitrary reference point v0 ∈ Rd, from the representations (17) and (29),
we have that

Uρ(x, t)e−yρ(v0)

U(x, t)
= exp

(
(yρ (V v

t )−
∫ t

0
ρyρ (V v

u ) du)− (y(V v
t )− λt)− yρ(v0)

)

= exp

(
(yρ (V v

t )− yρ (v0)− y(V v
t ))−

∫ t

0
ρ (yρ (V v

u )− yρ (v0)) du− (ρyρ (v0)− λ)t

)
.

On the other hand, the limits (74) and (75), established in the appendix, yield that there
exists a subsequence ρn ↓ 0 such that

lim
ρn↓0

(yρn (V v
t )− yρn (v0)− y(V v

t )) = 0,

lim
ρn↓0

ρn (y
ρn (V v

t )− yρn (v0)) = 0 and lim
ρn↓0

(ρny
ρn (v0)− λ) = 0,

and we conclude.
To show assertion (31), we use the Lipschitz continuity of the projection operator on the

convex set Π and the convergence

(32) lim
ρn↓0

EP

∫ t

0
|zρn (V v

s )− z (V v
s )|2 ds = 0

for t ≥ 0. The latter is established in the appendix.

3.3. Connection with the classical power expected utility for long horizons. We examine
whether the forward processes U (x, t) and Uρ (x, t) can be interpreted as long-term limits of
the classical value function process. We show that this is indeed the case for a family of
expected utility models with appropriately chosen terminal random (multiplicative) payoffs.

To this end, let [0, T ] be an arbitrary trading horizon and introduce, for ρ > 0, the value
function process

(33) uρ(x, t;T ) = ess sup
π∈A[t,T ]

EP

(
(Xπ

T e
ξT )δ

δ
|Ft,X

π
t = x

)

for (x, t) ∈ R+ × [0, T ] and the wealth process Xπ
s , s ∈ [t, T ], solving (6).
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The payoff ξT is defined as

(34) ξT := −1

δ

∫ T

0
ρY ρ,T

t dt,

where Y ρ,T
t is the solution of the finite-horizon quadratic BSDE

(35) Y ρ,T
t =

∫ T

t

(
F (Vs, Z

ρ,T
s )− ρY ρ,T

s

)
ds−

∫ T

t

(
Zρ,T
s

)T
dWs

with the driver F (·, ·) given in (16). The associated optimal portfolio weights are denoted by
π∗,ρ,T
s , s ∈ [t, T ].

We recall that the classical optimal investment problem with power utility has been solved
using quadratic BSDE methods in [19] for a Brownian motion setting and in [25] for a general
semi-martingale framework.

Proposition 3.8.
(i) Let uρ(x, t;T ) and Uρ(x, t) be given in (33) and (29), respectively. Then, for each ρ > 0

and (x, t) ∈ R+ × [0,∞) ,

lim
T↑∞

uρ(x, t;T )

Uρ(x, t)
= 1,

and the optimal portfolio weights satisfy, for s ∈ [t, T ) ,

lim
T↑∞

EP

∫ s

t

∣∣π∗,ρ,T
u − π∗,ρ

u

∣∣2 du = 0.

(ii) Let U (x, t) be the power forward process as in (17). Then, for each arbitrary reference
point v0 ∈ Rd, there exists a subsequence ρn ↓ 0 (depending on v0) such that, for (x, t) ∈
R+ × [0,∞) ,

lim
ρn↓0

lim
T↑∞

uρn(x, t;T )e−yρn (v0)

U(x, t)
= 1,

and the optimal portfolio weights satisfy, for s ∈ [t, T ) ,

lim
ρn↓0

lim
T↑∞

EP

∫ s

t

∣∣π∗,ρn,T
u − π∗

u

∣∣2 du = 0.

Proof. We only show part (i). From Theorem 3.3 in [6] we have that |Y ρ,T
t | ≤ K

ρ , and

therefore, the quantity δξT = − ∫ T
0 ρY ρ,T

u du is bounded. On the other hand, the driver F (·, ·)
satisfies properties (58) and (59). Therefore, using similar arguments to the ones used in [19,

section 3], it follows that the value function process is given by uρ(x, t;T ) = xδ

δ e
Yt with Yt

being the unique solution of the quadratic BSDE

(36) Yt = δξT +

∫ T

t
F (Vs, Zs)ds−

∫ T

t
(Zs)

T dWs

for t ∈ [0, T ] . In addition, the optimal portfolio weights are given by π∗,ρ,T
t = ProjΠ(

Zt+θ(Vt)
1−δ ).
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Note, however, that the pair of processes (Y ρ,T
t − ∫ t

0 ρY
ρ,T
s ds, Zρ,T

t ), t ∈ [0, T ], with

(Y ρ,T
t , Zρ,T

t ) solving (35) also satisfies the above quadratic BSDE (36). Therefore, we must

have Yt = Y ρ,T
t − ∫ t

0 ρY
ρ,T
s ds, t ∈ [0, T ] and, as a consequence,

uρ(x, t;T ) =
xδ

δ
exp

(
Y ρ,T
t −

∫ t

0
ρY ρ,T

s ds

)
.

In turn,

uρ(x, t;T )

Uρ(x, t)
= exp

(
(Y ρ,T

t −
∫ t

0
ρY ρ,T

s ds)− (Y ρ
t −

∫ t

0
ρY ρ

s ds)

)
.

Using (65) we deduce that limT↑∞ Y ρ,T
t = Y ρ

t , and we easily conclude.
The convergence of the optimal portfolio weights follows from the Lipschitz continuity of

the projection operator on the convex set Π and the convergence of Zρ,T to Zρ in L2
ρ[t,∞).

The space L2
ρ[t,∞) is defined in (66) and the latter limit is shown in (67) in the appendix.

3.4. General (non-Markovian) power forward performance processes and ergodic BSDE.
Departing from factor-form power forward performance processes, we may still use the ergodic
BSDE approach we developed earlier to construct such processes of the general form

U (x, t) =
xδ

δ
eKt

for some F-progressively measurable process Kt, t ≥ 0, independent of x.
Indeed, consider an arbitrary process Z ∈ L2

BMO, and, in turn, choose (Yt, λ), t ≥ 0,
λ ∈ R and Y being F-progressively measurable, such that the triplet (Yt, Zt, λ) solves the
ergodic BSDE (15). Using similar arguments as the ones in the proof of Theorem 3.2, we may
deduce that the process

(37) U (x, t) =
xδ

δ
eYt−λt,

(x, t) ∈ R+ × [0,∞), satisfies Definition 2.1. Then, the SPDE (10) will yield that the forward
volatility is given by the process a (x, t) = U (x, t)Zt, t ≥ 0. One can also develop similar
connections with infinite horizon BSDE and the value function processes with terminal (mul-
tiplicative) payoff, as in sections 3.2 and 3.3.

The analysis of general power forward processes is beyond the scope of this paper and will
be carried out separately. Herein, we only comment on three examples, cast in the absence of
portfolio constraints, Π = Rd.

(i) Time-monotone case. Let Zt ≡ 0, t ≥ 0, and choose (Yt, λ) as

Yt − λt := Y0 −
∫ t

0

1

2

δ

1− δ
|θ(Vs)|2ds

for any constant Y0 ∈ R. Then, (Yt, 0, λ) satisfies (15). In turn, we deduce, using (37) and the
above, that the process

U(x, t) := eY0
xδ

δ
e−

1
2

δ
1−δ

At
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with At =
∫ t
0 |θ(Vs)|2ds is a power performance process. This process has zero volatility

(a (x, t) ≡ 0), and it is decreasing in time and path-dependent (see [32] for a general study).
Variations of this solution with nonzero forward volatility can be constructed, as is shown

below. We stress, however, that these forward processes essentially correspond to a fictitious
market with different risk premia, and thus they do not constitute genuine new solutions for
the original market.

(ii) Market view case. Let Zt = φt with φ ∈ L2
BMO, and choose (Yt, λ), t ≥ 0, as

Yt − λt := Y0 − 1

2

δ

1− δ

∫ t

0
|φs + θ(Vs)|2ds − 1

2

∫ t

0
|φs|2ds+

∫ t

0
φT
s dWs.

We can then verify that (Yt, φt, λ) satisfies (15). Using (37) and rearranging terms, we deduce
the representation

U(x, t) =
xδ

δ
eY0− 1

2
δ

1−δ

∫ t
0 |φs+θ(Vs)|2dsE

(∫ ·

0
φT
s dWs

)
t

= eY0
xδ

δ
e−

1
2

δ
1−δ

Aφ
t Mt

with Aφ
t =

∫ t
0 |φs + θ(Vs)|2ds and Mt = E(∫ ·

0 φ
T
s dWs)t.

(iii) Benchmark case. A different parametrization yields an alternative representation and
interpretation of the solution. Let Zt = δφt with φ ∈ L2

BMO, and choose (Yt, λ) , t ≥ 0, as

Yt = Y0 + λt−
∫ t

0

1

2

δ

1− δ
|δφs + θ(Vs)|2ds− 1

2

∫ t

0
|δφs|2ds+

∫ t

0
δφT

s dWs.

Then, (Yt, δφt, λ) solves (15), and, in turn, (37) yields the power forward process

U(x, t) =
xδ

δ
eY0−

∫ t
0

1
2

δ
1−δ

|δφs+θ(Vs)|2dsE
(∫ ·

0
δφT

s dWs

)
t

= eY0
xδ

δ
e−

∫ t
0

1
2

δ
1−δ

|φs+θ(Vs)|2
(
E
(∫ ·

0
−φT

s (dWs + θ(Vs)ds)

)
t

)−δ

= eY0
1

δ

(
x

Mt

)δ

e−
1
2

δ
1−δ

Aφ
t

with Aφ
t =

∫ t
0 |φs + θ(Vs)|2ds and Mt = E (∫ ·

0 −φT
s (θ(Vs)ds + dWs)

)
t
. We may then view this

process as measuring the performance of investment strategies in relation to a “benchmark,”
represented by the process Mt.

For more details about the above processes and further interpretations, as well as the spec-
ification of the associated myopic and nonmyopic portfolio components, and the corresponding
wealth processes, we refer the reader to [33].

4. Exponential case. We examine forward performance processes in the exponential
factor-form

(38) U (x, t) = −e−γx+f(Vt,t),

where f is a (deterministic) function to be specified.
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For exponential forward performance processes, it is more convenient for the control policy
to represent the discounted amount (and not the proportions of the discounted wealth) invested
in the individual stock accounts. Hence, we set α̃t = π̃tX

π
t . In turn, we rescale α̃t by the

stocks’ volatility and deduce that the wealth process solves, for t ≥ 0,

(39) dXα
t = αT

t (θ(Vt)dt+ dWt)

with αT
t = α̃T

t σ(Vt). The set of admissible policies is A, and we take the admissible wealth
domain to be D = R.

As in the power case, (38) and (10) yield that f must satisfy, for (v, t) ∈ R+ × [0,∞) , a
semilinear PDE, given by

(40) ft +
1

2
Trace

(
κκT∇2f

)
+ η(v)T∇f +G(v, κT∇f) = 0

with

(41) G(v, z) =
1

2
γ2dist2

(
Π,

z + θ(v)

γ

)
− 1

2
|z + θ(v)|2 + 1

2
|z|2,

which is ill-posed with no known solutions to date. On the other hand, as in the former case,
we will construct the process f (Vt, t) itself directly from the Markovian solution of an ergodic
BSDE whose driver is of the above form (cf. (43)).

4.1. Construction via ergodic BSDE. The results are similar to the ones derived in the
previous section and are, thus, stated without proofs.

Proposition 4.1. Assume that the market price of risk vector θ (v) satisfies Assumption 1(ii)
and let the set Π be as in (7). Then, the ergodic BSDE

(42) dYt = (−G(Vt, Zt) + λ)dt+ ZT
t dWt

with the driver G(·, ·) is given by

(43) G(Vt, Zt) =
1

2
γ2dist2

(
Π,

Zt + θ(Vt)

γ

)
− 1

2
|Zt + θ(Vt)|2 + 1

2
|Zt|2

and admits a unique Markovian solution (Yt, Zt, λ), t ≥ 0.
Specifically, there exist a unique λ ∈ R and functions y : Rd → R and z : Rd → Rd such

that (Yt, Zt) = (y(Vt), z(Vt)). The function y(·) is unique up to a constant and has at most
linear growth, and z (·) is bounded with |z (·) | ≤ Cv

Cη−Cv
, where Cη and Cv are as in (3) and

(57), respectively.

Theorem 4.2. Let (Yt, Zt, λ) = (y(Vt), z(Vt), λ), t ≥ 0, be the unique Markovian solution of
the ergodic BSDE (42). Then,

(i) the process U (x, t) , given, for (x, t) ∈ R× [0,∞) , by

(44) U(x, t) = −e−γx+y(Vt)−λt
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is an exponential forward performance process with volatility

a (x, t) = −e−γx+y(Vt)−λtz(Vt).

(ii) The optimal portfolios α∗
t and the optimal wealth process X∗

t are given, respectively,
by

(45) α∗
t = ProjΠ

(
z(Vt) + θ(Vt)

γ

)
and X∗

t = X0 +

∫ t

0
(α∗

t )
T (θ(Vt)dt+ dWt).

An axiomatic construction of exponential performance processes was developed in [40] for
semi-martingale markets. These processes have been also used for the construction of forward
indifference prices (see, among others, [26], [28], [30], and [17]) as well as for the axiomatic
construction and characterization of the so-called maturity-independent entropy risk measures
in [39].

As in the power case, we may prove the following result.

Proposition 4.3. Consider the ill-posed semilinear PDE

(46) ft + Lf +G(v, κT∇f) = 0,

(v, t) ∈ Rd × [0,∞), with G (·, ·) as in (41) (or (43)) and L as in (26). For initial condition
f(v, 0) = y(v), where y(·) is the function appearing in the Markovian solution (y (Vt) , z (Vt) , λ)
of the ergodic BSDE (42), (46) admits a smooth solution given by

f(v, t) = y(v)− λt.

4.2. Representation via infinite horizon BSDE. In analogy to the results of section 3.2,
we derive an alternative representation of the exponential forward performance process using
an infinite horizon BSDE. The proof follows along similar arguments and is, thus, omitted.

Proposition 4.4. Assume that the market price of risk vector θ(v) satisfies Assumption 1(ii)
and let the set Π be as in (7). Let ρ > 0. Then, the infinite horizon BSDE

(47) dY ρ
t = (−G(Vt, Z

ρ
t ) + ρY ρ

t ) dt+ (Zρ
t )

T
dWt,

t ≥ 0, with the driver G(·, ·) as in (42), admits a unique Markovian solution. Specifically,
for each ρ > 0, there exist unique functions yρ : Rd → R and zρ : Rd → Rd such that
(Y ρ

t , Z
ρ
t ) = (yρ(Vt), z

ρ(Vt)), with |yρ (·) | ≤ K
ρ and |zρ (·) | ≤ Cv

Cη−Cv
, where Cη as in (3), and

Cv, K given in (57) and (59), respectively.

Theorem 4.5. Let (yρ (Vt) , z
ρ (Vt)) , t ≥ 0, be the unique Markovian solution to the infinite

horizon BSDE (47). Then,
(i) the process Uρ (x, t) , (x, t) ∈ R× [0,∞) , given by

(48) Uρ(x, t) = −e−γx+yρ(Vt)−
∫ t
0 ρyρ(Vu)du

is an exponential forward performance process with volatility

aρ (x, t) = −e−γx+yρ(Vt)−
∫ t
0 ρyρ(Vu)duzρ(Vt).
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(ii) The optimal portfolios α∗,ρ
t and optimal wealth process X∗,ρ

t (cf. (39)), t ≥ 0, are given,
respectively, as in (45) with z(Vt) replaced by zρ(Vt).

In line with Proposition 3.7, we have the following connection between the ergodic and
infinite horizon representations for exponential forward performance processes.

Proposition 4.6. Let Uρ(x, t) and U(x, t) be the exponential forward performance processes
(44) and (48), respectively. Then, for any reference point v0 ∈ Rd, there exists a subsequence
ρn ↓ 0 (depending on v0) such that, for (x, t) ∈ R× [0,∞) ,

lim
ρn↓0

Uρn(x, t)e−yρn (v0)

U(x, t)
= 1.

Moreover, for t ≥ 0, the associated optimal portfolios satisfy

lim
ρn↓0

EP

∫ t

0
|α∗,ρn

u − α∗
u|2 du = 0.

4.3. Connection with the classical exponential expected utility for long horizons. As in
section 3.3, we discuss the relationship between the exponential forward performance process
U(x, t) and its traditional finite horizon expected utility analogue with the latter incorporating
a terminal random endowment.

To this end, let ρ > 0 and [0, T ] be an arbitrary trading horizon. Consider a family of
maximal expected utility problems

(49) uρ (x, t;T ) = ess sup
α∈A[t,T ]

EP

(
−e−γ(Xα

T+ξT )|Ft,X
α
t = x

)

for (x, t) ∈ R × [0, T ] and the wealth process Xα
s , s ∈ [t, T ], solving (39). The payoff ξT is

defined as ξT = 1
γ

∫ T
0 ρY ρ,T

t dt, where Y ρ,T
t is the solution of the finite horizon quadratic BSDE

Y ρ,T
t =

∫ T

t

(
G(Vs, Z

ρ,T
s )− ρY ρ,T

s

)
ds−

∫ T

t

(
Zρ,T
s

)T
dWs

with the driver G(·, ·) given in (43). The optimal portfolios are denoted by α∗,ρ,T
s for s ∈ [t, T ].

We have the following convergence result.

Proposition 4.7.
(i) Let uρ(x, t;T ) and Uρ(x, t) be given in (49) and (48), respectively. Then, for each

ρ > 0, and (x, t) ∈ R× [0,∞) ,

lim
T↑∞

uρ(x, t;T )

Uρ(x, t)
= 1,

and the optimal portfolios satisfy, for s ∈ [t, T ) ,

lim
T↑∞

EP

∫ s

t

∣∣α∗,ρ,T
u − α∗,ρ

u

∣∣2 du = 0.
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(ii) Let U (x, t) be the exponential forward process as in (44). Then, for any reference point
v0 ∈ Rd, there exists a subsequence ρn ↓ 0 (depending on v0) such that, for (x, t) ∈ R× [0,∞) ,

lim
ρn↓0

lim
T↑∞

uρn(x, t;T )e−yρn (v0)

U(x, t)
= 1,

and the optimal portfolios satisfy, for s ∈ [t, T ) ,

lim
ρn↓0

lim
T↑∞

EP

∫ s

t

∣∣α∗,ρn,T
u − α∗

u

∣∣2 du = 0.

5. Logarithmic case. We conclude with logarithmic forward performance processes in
factor-form, namely, of the form

(50) U (x, t) = lnx+ f (Vt, t)

for a function f to be determined. The “additive” format is more appropriate for the loga-
rithmic class, given the “myopic” character of the latter in the classical setting. Then, (50)
and (10) yield that f : (v, t) ∈ Rd × [0,∞) must satisfy the ill-posed linear equation

(51) ft +
1

2
Trace

(
κκT∇2f

)
+ η(v)T∇f + F̃ (v) = 0

with

F̃ (v) = −1

2
dist2 {Π, θ(v)} + 1

2
|θ(v)|2.

The results that follow are similar to the ones in section 3 and, because of this, they are stated
in an abbreviated manner. To this end, the associated ergodic BSDE is given by

(52) dYt = (−F̃ (Vt) + λ)dt+ ZT
t dWt

with the driver

F̃ (Vt) = −1

2
dist2 {Π, θ(Vt)}+ 1

2
|θ(Vt)|2,

as it is easily guessed by the form of the operator appearing in (51) above. Working as
in the proof of Proposition 3.1 we deduce that (52) has a unique Markovian solution, say,
(Yt, Zt, λ) = (y(Vt), z(Vt), λ), for some functions y(·) and z(·) with similar properties to the
ones therein.

We verify that the process

(53) U(x, t) := lnx+ y (Vt)− λt

is a logarithmic forward performance process in factor-form. The SPDE (10) then yields
volatility a(x, t) = z(Vt). Moreover, the optimal policy and the wealth it generates are given,
respectively, by π∗

t = ProjΠθ(Vt), and

X∗
t = X0E

(∫ ·

0
(ProjΠθ(Vs))

T (θ(Vs)ds + dWs)

)
t

.

D
ow

nl
oa

de
d 

06
/0

6/
17

 to
 1

29
.6

7.
11

8.
12

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

366 GECHUN LIANG AND THALEIA ZARIPHOPOULOU

The constant λ has the interpretation

λ = sup
π∈A

lim sup
T↑∞

1

T
EP (lnX

π
T ) .

A byproduct of this result is that the ill-posed linear PDE (51) has a smooth solution for
initial data f (v, 0) = y (v) , given by f (v, t) = y (v)− λt.

There is also a connection with infinite horizon BSDE. Indeed, we easily deduce that the
infinite horizon BSDE

(54) dY ρ
t =

(
−F̃ (Vt) + ρY ρ

t

)
dt+ (Zρ

t )
T
dWt

has a unique Markovian solution (yρ (Vt) , z
ρ (V )) , and, in turn, the process Uρ(x, t), (x, t) ∈

R+ × [0,∞), defined as

(55) Uρ(x, t) := lnx+ yρ (Vt)−
∫ t

0
ρyρ (Vs) ds,

is a path-dependent logarithmic forward performance process.
The process U(x, t) and Uρ(x, t) in (53) and (55) are connected in a similar way as their

power analogues in Proposition 3.7. Namely, for an arbitrary reference point v0 ∈ Rd, there
exists a subsequence ρn ↓ 0 (depending on v0) such that, for (x, t) ∈ R+ × [0,∞),

lim
ρn↓0

(Uρn(x, t)− yρn (v0)− U(x, t)) = 0.

Finally, in order to connect U(x, t) and Uρ(x, t) with their classical counterparts, we
introduce the logarithmic expected utility problem

(56) uρ(x, t;T ) = ess sup
π∈A[t,T ]

EP (lnX
π
T + ξT |Ft,X

π
t = x) ,

where ξT = − ∫ T
0 ρY ρ,T

u du and Y ρ,T
t , t ∈ [0, T ] , is the unique solution of the BSDE on [0, T ],

Y ρ,T
t =

∫ T

t

(
F̃ (Vu)− ρY ρ,T

u

)
du−

∫ T

t

(
Zρ,T
u

)T
dWu.

Using similar arguments to the ones in Proposition 3.8, we deduce that for any reference point
v0 ∈ Rd, there exists a subsequence ρn ↓ 0 (depending on v0) such that, for (x, t) ∈ R+×[0,∞),

lim
ρn↓0

lim
T↑∞

(uρn(x, t;T )− yρn (v0)− U(x, t)) = 0.

Appendix A. Solving ergodic and infinite horizon BSDE.
We present background results for Markovian solutions of the ergodic BSDE (15) and (42).

We also obtain the existence and uniqueness of bounded Markovian solutions to the infinite
horizon BSDE (28) and (47) as intermediate steps in the proofs of Propositions 3.1 and 4.1.
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Equations (52) and (54) appearing in the logarithmic case are degenerate versions on (15) and
(28), so they are not discussed.

We start with the key observation that, using Assumption 1(ii) on the market price of risk
process as well as the definition of the admissible set A and the Lipschitz continuity of the
distance function dist (Π, ·), we deduce that the drivers H = F , G appearing in (16) and (43)
satisfy

(57) |H(v, z) −H(v̄, z)| ≤ Cv(1 + |z|)|v − v̄|,

(58) |H(v, z) −H(v, z̄)| ≤ Cz(1 + |z|+ |z̄|)|z − z̄|,
and

(59) |H(v, 0)| ≤ K

for any v, v̄, z, z̄ ∈ Rd, and Cv, Cz, K > 0 being positive constants.
The main ideas for establishing existence and uniqueness of solutions come from Theorem

3.3 in [6], Theorem 3.3 in [7], Theorem 4.4 in [16], and Theorem 2.3 in [22]. To this end, we
first define the truncation function q : Rd → Rd,

(60) q(z) :=
min (|z|, Cv/(Cη −Cv))

|z| z1{z 	=0},

and consider the truncated ergodic BSDE,

(61) dYt = (−H(Vt, q(Zt)) + λ) dt+ ZT
t dWt,

t ≥ 0, where q is as in (60), and the driver H(·, ·) satisfies conditions (57)-(59). We easily
obtain the Lipschitz continuity conditions

(62) |H(v, q(z)) −H(v̄, q(z)| ≤ CηCv

Cη − Cv
|v − v̄|

and

(63) |H(v, q(z)) −H(v, q(z̄)| ≤ Cz
Cη + Cv

Cη − Cv
|z − z̄|.

If, therefore, we can show that the BSDE (61) admits a Markovian solution denoted, say,
by (Yt, Zt, λ) with |Zt| ≤ Cv

Cη−Cv
, t ≥ 0, then q(Zt) = Zt, t ≥ 0. In turn, this process

(Yt, Zt, λ) would also solve the ergodic BSDE (15) in Proposition 3.1 and (42) in Proposition
4.1, respectively.

We first establish existence of Markovian solutions of (61). For this, we adapt the per-
turbation technique and the Girsanov’s transformation used in [16, section 4] in an infinite-
dimensional setting. To this end, let n > 0, and consider the discounted BSDE with a small
discount factor, say, ρ > 0, on the finite horizon [0, n],

(64) Y ρ,v,n
t =

∫ n

t
(H(V v

s , q(Z
ρ,v,n
s ))− ρY ρ,v,n

s ) ds−
∫ n

t
(Zρ,v,n

s )T dWs,
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where we use the superscript v to emphasize the initial dependence of the stochastic factor
process on its initial data V v

0 = v.
From [7, section 3.1], we deduce that BSDE (64) admits a unique solution (Y ρ,v,n

t , Zρ,v,n
t ) ∈

L2
[0,n] with |Y ρ,v,n

t | ≤ K
ρ , 0 ≤ t ≤ n, where

L2 [0, n] =

{
(Yt)t∈[0,n] : Y is F-progressively measurable and EP

(∫ n

0
|Yt|2dt

)
< ∞

}
.

On the other hand, parameterizing (64) by the auxiliary horizon n, we obtain (cf. [7, sec-
tion 3.1]) that there exists a process Y ρ,v

t , t ≥ 0, such that

(65) lim
n↑∞

Y ρ,v,n
t = Y ρ,v

t

for a.e. (t, ω) ∈ [0,∞)×Ω, and moreover that for each ρ > 0, both {Y ρ,v,n
t } and {Zρ,v,n

t } are
Cauchy sequences in L2

ρ [0,∞], where

L2
ρ[0,∞) =

{
(Yt)t∈[0,∞) : Y is F-progressively measurable

and EP

(∫ ∞

0
e−2ρt|Yt|2dt

)
< ∞

}
.(66)

Therefore, there exist limiting processes (Y ρ,v
t , Zρ,v

t ), t ≥ 0, belonging to L2
ρ[0,∞), such that

(67) lim
n↑∞

(Y ρ,v,n
t , Zρ,v,n

t ) = (Y ρ,v
t , Zρ,v

t )

in L2
ρ[0,∞) with |Y ρ,v

t | ≤ K
ρ . It is, then, easy to show that the process (Y ρ,v

t , Zρ,v
t ), t ≥ 0, is a

solution to the infinite horizon BSDE

(68) dY ρ,v
t = (−H(V v

t , q(Z
ρ,v
t )) + ρY ρ,v

t ) dt+ (Zρ,v
t )

T
dWt.

Moreover, we recall that the solution is Markovian in the sense that there exist functions, say,
yρ(·) and zρ(·), such that

(Y ρ,v
t , Zρ,v

t ) = (yρ(V v
t ), z

ρ(V v
t )) .

Next, using the Girsanov’s transformation and adapting the argument in [16, Lemma 4.3],
we claim that the Lipschitz continuity property

(69) |yρ(V v
t )− yρ(V v̄

t )| ≤
Cv

Cη − Cv
|V v

t − V v̄
t |

holds, for any v, v̄ ∈ Rd, with the constants Cv and Cη as in (57) and (3), respectively.
Indeed, define, for t ≥ 0,

ΔYt := Y ρ,v
t − Y ρ,v̄

t and ΔZt := Zρ,v
t − Zρ,v̄

t .
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Then,

d (ΔYt) = − (H(V v
t , q(Z

ρ,v
t ))−H(V v̄

t , q(Z
ρ,v̄
t ))

)
dt+ ρΔYtdt+ (ΔZt)

T dWt

= −ΔHtdt+ ρΔYtdt+ (ΔZt)
T (dWt −mtdt) ,

where ΔHt := H(V v
t , q(Z

ρ,v
t ))−H(V v̄

t , q(Z
ρ,v
t )) and

mt :=
H(V v̄

t , q(Z
ρ,v
t ))−H(V v̄

t , q(Z
ρ,v̄
t ))

|ΔZt|2 ΔZt1{ΔZt 	=0}.

The process mt is bounded, as it follows from (63). Therefore, we can define the process
W̄t := Wt −

∫ t
0 mudu, t ≥ 0, which is a Brownian motion under some measure Qm equivalent

to P. Hence, for 0 ≤ t ≤ s < ∞, taking conditional expectation on Ft under Q
m yields

ΔYt =
βs
βt

EQm (ΔYs|Ft) +EQm

(∫ s

t

βu
βt

(ΔHu) du

∣∣∣∣Ft

)
,

where βt = e−ρt. Note, however, that the first expectation above is bounded by 2K/ρ, and
thus, it converges to zero as s ↑ ∞. Moreover, by (62), the second expectation is bounded by

EQm

(∫ s

t

βu
βt

(ΔHu) du

∣∣∣∣Ft

)
≤ CηCv

Cη − Cv
EQm

(∫ s

t
e−ρ(u−t)|V v

u − V v̄
u |du

∣∣∣∣Ft

)

≤ CηCv

Cη − Cv

eρt
(
e−(ρ+Cη)t − e−(ρ+Cη)s

)
ρ+ Cη

|v − v̄|,

where we used the exponential ergodicity condition (4). Then, inequality (69) follows by
letting s ↑ ∞.

Next, assume that yρ(·) ∈ C2(Rd). Applying Itô’s formula to yρ(V v
t ) yields

(70) dyρ(V v
t ) = Lyρ(V v

t )dt+
(
κT∇yρ(V v

t )
)T

dWt,

where L is as in (26). In turn, from (68) and (70) we deduce that

(71) κT∇yρ(V v
t ) = Zρ,v

t

and (with a slight abuse of notation) that

(72) ρyρ(v) = Lyρ(v) +H
(
v, q

(
κT∇yρ(v)

))
for v ∈ Rd. Equation (72) is a standard semilinear elliptic PDE, and classical PDE results
yield that it admits a unique bounded solution yρ(·) ∈ C2(Rd) with |yρ(v)| ≤ K

ρ . In addition,

recall that (69) yields |∇yρ(v)| ≤ Cv
Cη−Cv

, and thus, using (71) and Assumption 2 on the matrix
κ, we obtain that, for t ≥ 0,

(73) |Zρ,v
t | ≤ Cv

Cη − Cv
.
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Next, we fix a reference point, say, v0 ∈ Rd. Define the process Ȳ ρ,v
t := Y

ρ,v

t − Y ρ,v0
0 , and

consider the perturbed version of the infinite horizon BSDE (68), namely,

Ȳ ρ,v
t = Ȳ ρ,v

s +

∫ s

t

(
H(V v

u , q(Z
ρ,v
u ))− ρȲ

ρ,v

u − ρY ρ,v0
0

)
du−

∫ s

t
(Zρ,v

u )T dWu

for 0 ≤ t ≤ s < ∞. Then Ȳ ρ,v
t = ȳρ(V v

t ) with ȳρ(·) = yρ(·)− yρ(v0).
Since, on the other hand, yρ(·) is Lipschitz continuous, uniformly in ρ, we deduce that

|ȳρ(v)| ≤ Cv
Cη−Cv

|v − v0| . Moreover, |ρyρ(v)| ≤ K. Hence, there exists a sequence ρ0n ↓ 0 such
that

lim
ρ0n↓0

ρ0ny
ρ0n(v0) = λ

for some constant λ.
Next, we take a dense subset, say, S = {v1, · · · , vn, · · · } ∈ Rd. Since ȳρ0n(v1) is bounded,

there exists a subsequence of {ρ0n}, denoted as {ρ1n}, such that

lim
ρ1n↓0

ȳρ1n(v1) = y(v1)

for some y(v1). Proceeding this way, we obtain a sequence {ρ0n} ⊃ {ρ1n} ⊃ · · · . Taking its
diagonal sequence {ρnn}, denoted as {ρn}, we deduce that, for v ∈ S,

(74) lim
ρn↓0

ρny
ρn(v0) = λ and lim

ρn↓0
ȳρn(v) = y (v) .

Moreover, since the function ȳρ(·) is Lipschitz continuous uniformly in ρ, the limit y(·)
can be extended to a Lipschitz continuous function defined for all v ∈ Rd,

(75) lim
ρn↓0

ȳρn(v) = y (v) .

Thus, we have limρn↓0 Ȳ
ρn,v
t = y (V v

t ) and limρn↓0
(
ρnȲ

ρn
t

)
= 0.

Next, define the process Y v
t = y(V v

t ), t ≥ 0. It is then standard to show that there exists
Zv
u = z(V v

u ), u ∈ [t, s], in L2[t, s] such that limρn↓0 Zρn,v = Zv in L2[t, s], and moreover, that
the triplet (Y v

t , Z
v
t , λ) = (y(V v

t ), z(V
v
t ), λ) is a solution to the truncated ergodic BSDE (61).

Finally, using the latter limit and the fact that |Zρ,v
t | ≤ Cv/(Cη − Cv), as it follows from

(73), we obtain that |Zv
t | ≤ Cv/(Cη − Cv). Therefore, q(Zv

t ) = Zv
t , t ≥ 0, and in turn, the

triplet (Y v, Zv, λ) is also a solution to the ergodic BSDEs (15) and (42) in Propositions 3.1
and 4.1, respectively.

From the above arguments, it follows, as a byproduct, the existence of Markovian solutions
to the infinite horizon BSDEs (28) and (47), respectively.

It remains to show the uniqueness of Markovian solutions to the ergodic BSDE (15) and
(42). Indeed, since Zt, t ≥ 0, is bounded by Cv/(Cη−Cv) for both (15) and (42), the uniqueness
can be proved along similar arguments used in [16, Theorem 4.6] and [10, Theorem 3.11].

The uniqueness of the Markovian solutions to the infinite horizon BSDE (28) and (47)
follows easily from [7, section 3.1] and [6, Theorem 3.3].
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